X86ISelLowering.cpp revision c735c1c2aed2cbaeb61296f4269535b5d13d8b0a
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86InstrBuilder.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/VariadicFunction.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/IR/CallingConv.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GlobalAlias.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/MC/MCContext.h"
44#include "llvm/MC/MCExpr.h"
45#include "llvm/MC/MCSymbol.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, SDLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  // If the input is a buildvector just emit a smaller one.
89  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
90    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
91                       Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk);
92
93  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
94  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
95                               VecIdx);
96
97  return Result;
98}
99
100/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
101/// sets things up to match to an AVX VINSERTF128 instruction or a
102/// simple superregister reference.  Idx is an index in the 128 bits
103/// we want.  It need not be aligned to a 128-bit bounday.  That makes
104/// lowering INSERT_VECTOR_ELT operations easier.
105static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
106                                  unsigned IdxVal, SelectionDAG &DAG,
107                                  SDLoc dl) {
108  // Inserting UNDEF is Result
109  if (Vec.getOpcode() == ISD::UNDEF)
110    return Result;
111
112  EVT VT = Vec.getValueType();
113  assert(VT.is128BitVector() && "Unexpected vector size!");
114
115  EVT ElVT = VT.getVectorElementType();
116  EVT ResultVT = Result.getValueType();
117
118  // Insert the relevant 128 bits.
119  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
120
121  // This is the index of the first element of the 128-bit chunk
122  // we want.
123  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
124                               * ElemsPerChunk);
125
126  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
127  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
128                     VecIdx);
129}
130
131/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
132/// instructions. This is used because creating CONCAT_VECTOR nodes of
133/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
134/// large BUILD_VECTORS.
135static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
136                                   unsigned NumElems, SelectionDAG &DAG,
137                                   SDLoc dl) {
138  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
139  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
140}
141
142static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
143  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
144  bool is64Bit = Subtarget->is64Bit();
145
146  if (Subtarget->isTargetEnvMacho()) {
147    if (is64Bit)
148      return new X86_64MachoTargetObjectFile();
149    return new TargetLoweringObjectFileMachO();
150  }
151
152  if (Subtarget->isTargetLinux())
153    return new X86LinuxTargetObjectFile();
154  if (Subtarget->isTargetELF())
155    return new TargetLoweringObjectFileELF();
156  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
157    return new TargetLoweringObjectFileCOFF();
158  llvm_unreachable("unknown subtarget type");
159}
160
161X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
162  : TargetLowering(TM, createTLOF(TM)) {
163  Subtarget = &TM.getSubtarget<X86Subtarget>();
164  X86ScalarSSEf64 = Subtarget->hasSSE2();
165  X86ScalarSSEf32 = Subtarget->hasSSE1();
166  TD = getDataLayout();
167
168  resetOperationActions();
169}
170
171void X86TargetLowering::resetOperationActions() {
172  const TargetMachine &TM = getTargetMachine();
173  static bool FirstTimeThrough = true;
174
175  // If none of the target options have changed, then we don't need to reset the
176  // operation actions.
177  if (!FirstTimeThrough && TO == TM.Options) return;
178
179  if (!FirstTimeThrough) {
180    // Reinitialize the actions.
181    initActions();
182    FirstTimeThrough = false;
183  }
184
185  TO = TM.Options;
186
187  // Set up the TargetLowering object.
188  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
189
190  // X86 is weird, it always uses i8 for shift amounts and setcc results.
191  setBooleanContents(ZeroOrOneBooleanContent);
192  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
193  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
194
195  // For 64-bit since we have so many registers use the ILP scheduler, for
196  // 32-bit code use the register pressure specific scheduling.
197  // For Atom, always use ILP scheduling.
198  if (Subtarget->isAtom())
199    setSchedulingPreference(Sched::ILP);
200  else if (Subtarget->is64Bit())
201    setSchedulingPreference(Sched::ILP);
202  else
203    setSchedulingPreference(Sched::RegPressure);
204  const X86RegisterInfo *RegInfo =
205    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
206  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
207
208  // Bypass expensive divides on Atom when compiling with O2
209  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
210    addBypassSlowDiv(32, 8);
211    if (Subtarget->is64Bit())
212      addBypassSlowDiv(64, 16);
213  }
214
215  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
216    // Setup Windows compiler runtime calls.
217    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
218    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
219    setLibcallName(RTLIB::SREM_I64, "_allrem");
220    setLibcallName(RTLIB::UREM_I64, "_aullrem");
221    setLibcallName(RTLIB::MUL_I64, "_allmul");
222    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
223    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
224    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
225    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
226    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
227
228    // The _ftol2 runtime function has an unusual calling conv, which
229    // is modeled by a special pseudo-instruction.
230    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
231    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
232    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
233    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
234  }
235
236  if (Subtarget->isTargetDarwin()) {
237    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
238    setUseUnderscoreSetJmp(false);
239    setUseUnderscoreLongJmp(false);
240  } else if (Subtarget->isTargetMingw()) {
241    // MS runtime is weird: it exports _setjmp, but longjmp!
242    setUseUnderscoreSetJmp(true);
243    setUseUnderscoreLongJmp(false);
244  } else {
245    setUseUnderscoreSetJmp(true);
246    setUseUnderscoreLongJmp(true);
247  }
248
249  // Set up the register classes.
250  addRegisterClass(MVT::i8, &X86::GR8RegClass);
251  addRegisterClass(MVT::i16, &X86::GR16RegClass);
252  addRegisterClass(MVT::i32, &X86::GR32RegClass);
253  if (Subtarget->is64Bit())
254    addRegisterClass(MVT::i64, &X86::GR64RegClass);
255
256  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
257
258  // We don't accept any truncstore of integer registers.
259  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
260  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
261  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
262  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
263  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
264  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
265
266  // SETOEQ and SETUNE require checking two conditions.
267  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
268  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
269  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
270  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
271  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
272  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
273
274  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
275  // operation.
276  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
277  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
278  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
279
280  if (Subtarget->is64Bit()) {
281    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
282    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
283  } else if (!TM.Options.UseSoftFloat) {
284    // We have an algorithm for SSE2->double, and we turn this into a
285    // 64-bit FILD followed by conditional FADD for other targets.
286    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
287    // We have an algorithm for SSE2, and we turn this into a 64-bit
288    // FILD for other targets.
289    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
290  }
291
292  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
293  // this operation.
294  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
295  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
296
297  if (!TM.Options.UseSoftFloat) {
298    // SSE has no i16 to fp conversion, only i32
299    if (X86ScalarSSEf32) {
300      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
301      // f32 and f64 cases are Legal, f80 case is not
302      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
303    } else {
304      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
305      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
306    }
307  } else {
308    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
309    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
310  }
311
312  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
313  // are Legal, f80 is custom lowered.
314  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
315  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
316
317  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
318  // this operation.
319  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
320  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
321
322  if (X86ScalarSSEf32) {
323    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
324    // f32 and f64 cases are Legal, f80 case is not
325    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
326  } else {
327    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
328    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
329  }
330
331  // Handle FP_TO_UINT by promoting the destination to a larger signed
332  // conversion.
333  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
334  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
335  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
336
337  if (Subtarget->is64Bit()) {
338    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
339    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
340  } else if (!TM.Options.UseSoftFloat) {
341    // Since AVX is a superset of SSE3, only check for SSE here.
342    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
343      // Expand FP_TO_UINT into a select.
344      // FIXME: We would like to use a Custom expander here eventually to do
345      // the optimal thing for SSE vs. the default expansion in the legalizer.
346      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
347    else
348      // With SSE3 we can use fisttpll to convert to a signed i64; without
349      // SSE, we're stuck with a fistpll.
350      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
351  }
352
353  if (isTargetFTOL()) {
354    // Use the _ftol2 runtime function, which has a pseudo-instruction
355    // to handle its weird calling convention.
356    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
357  }
358
359  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
360  if (!X86ScalarSSEf64) {
361    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
362    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
363    if (Subtarget->is64Bit()) {
364      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
365      // Without SSE, i64->f64 goes through memory.
366      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
367    }
368  }
369
370  // Scalar integer divide and remainder are lowered to use operations that
371  // produce two results, to match the available instructions. This exposes
372  // the two-result form to trivial CSE, which is able to combine x/y and x%y
373  // into a single instruction.
374  //
375  // Scalar integer multiply-high is also lowered to use two-result
376  // operations, to match the available instructions. However, plain multiply
377  // (low) operations are left as Legal, as there are single-result
378  // instructions for this in x86. Using the two-result multiply instructions
379  // when both high and low results are needed must be arranged by dagcombine.
380  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
381    MVT VT = IntVTs[i];
382    setOperationAction(ISD::MULHS, VT, Expand);
383    setOperationAction(ISD::MULHU, VT, Expand);
384    setOperationAction(ISD::SDIV, VT, Expand);
385    setOperationAction(ISD::UDIV, VT, Expand);
386    setOperationAction(ISD::SREM, VT, Expand);
387    setOperationAction(ISD::UREM, VT, Expand);
388
389    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
390    setOperationAction(ISD::ADDC, VT, Custom);
391    setOperationAction(ISD::ADDE, VT, Custom);
392    setOperationAction(ISD::SUBC, VT, Custom);
393    setOperationAction(ISD::SUBE, VT, Custom);
394  }
395
396  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
397  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
398  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
399  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
400  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
401  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
402  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
403  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
404  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
405  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
406  if (Subtarget->is64Bit())
407    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
408  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
409  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
410  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
411  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
412  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
413  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
414  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
415  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
416
417  // Promote the i8 variants and force them on up to i32 which has a shorter
418  // encoding.
419  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
420  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
421  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
422  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
423  if (Subtarget->hasBMI()) {
424    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
425    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
426    if (Subtarget->is64Bit())
427      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
428  } else {
429    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
430    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
431    if (Subtarget->is64Bit())
432      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
433  }
434
435  if (Subtarget->hasLZCNT()) {
436    // When promoting the i8 variants, force them to i32 for a shorter
437    // encoding.
438    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
439    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
440    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
441    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
442    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
443    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
444    if (Subtarget->is64Bit())
445      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
446  } else {
447    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
448    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
449    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
450    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
451    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
452    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
453    if (Subtarget->is64Bit()) {
454      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
455      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
456    }
457  }
458
459  if (Subtarget->hasPOPCNT()) {
460    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
461  } else {
462    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
463    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
464    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
465    if (Subtarget->is64Bit())
466      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
467  }
468
469  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
470  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
471
472  // These should be promoted to a larger select which is supported.
473  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
474  // X86 wants to expand cmov itself.
475  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
476  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
477  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
478  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
479  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
480  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
481  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
482  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
483  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
484  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
485  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
486  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
487  if (Subtarget->is64Bit()) {
488    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
489    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
490  }
491  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
492  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
493  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
494  // support continuation, user-level threading, and etc.. As a result, no
495  // other SjLj exception interfaces are implemented and please don't build
496  // your own exception handling based on them.
497  // LLVM/Clang supports zero-cost DWARF exception handling.
498  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
499  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
500
501  // Darwin ABI issue.
502  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
503  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
504  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
505  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
506  if (Subtarget->is64Bit())
507    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
508  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
509  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
510  if (Subtarget->is64Bit()) {
511    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
512    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
513    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
514    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
515    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
516  }
517  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
518  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
519  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
520  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
521  if (Subtarget->is64Bit()) {
522    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
523    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
524    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
525  }
526
527  if (Subtarget->hasSSE1())
528    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
529
530  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
531
532  // Expand certain atomics
533  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
534    MVT VT = IntVTs[i];
535    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
536    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
537    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
538  }
539
540  if (!Subtarget->is64Bit()) {
541    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
542    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
543    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
544    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
545    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
546    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
547    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
548    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
549    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
550    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
551    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
552    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
553  }
554
555  if (Subtarget->hasCmpxchg16b()) {
556    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
557  }
558
559  // FIXME - use subtarget debug flags
560  if (!Subtarget->isTargetDarwin() &&
561      !Subtarget->isTargetELF() &&
562      !Subtarget->isTargetCygMing()) {
563    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
564  }
565
566  if (Subtarget->is64Bit()) {
567    setExceptionPointerRegister(X86::RAX);
568    setExceptionSelectorRegister(X86::RDX);
569  } else {
570    setExceptionPointerRegister(X86::EAX);
571    setExceptionSelectorRegister(X86::EDX);
572  }
573  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
574  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
575
576  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
577  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
578
579  setOperationAction(ISD::TRAP, MVT::Other, Legal);
580  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
581
582  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
583  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
584  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
585  if (Subtarget->is64Bit()) {
586    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
587    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
588  } else {
589    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
590    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
591  }
592
593  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
594  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
595
596  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
597    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
598                       MVT::i64 : MVT::i32, Custom);
599  else if (TM.Options.EnableSegmentedStacks)
600    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
601                       MVT::i64 : MVT::i32, Custom);
602  else
603    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
604                       MVT::i64 : MVT::i32, Expand);
605
606  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
607    // f32 and f64 use SSE.
608    // Set up the FP register classes.
609    addRegisterClass(MVT::f32, &X86::FR32RegClass);
610    addRegisterClass(MVT::f64, &X86::FR64RegClass);
611
612    // Use ANDPD to simulate FABS.
613    setOperationAction(ISD::FABS , MVT::f64, Custom);
614    setOperationAction(ISD::FABS , MVT::f32, Custom);
615
616    // Use XORP to simulate FNEG.
617    setOperationAction(ISD::FNEG , MVT::f64, Custom);
618    setOperationAction(ISD::FNEG , MVT::f32, Custom);
619
620    // Use ANDPD and ORPD to simulate FCOPYSIGN.
621    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
622    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
623
624    // Lower this to FGETSIGNx86 plus an AND.
625    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
626    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
627
628    // We don't support sin/cos/fmod
629    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
630    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
631    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
632    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
633    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
634    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
635
636    // Expand FP immediates into loads from the stack, except for the special
637    // cases we handle.
638    addLegalFPImmediate(APFloat(+0.0)); // xorpd
639    addLegalFPImmediate(APFloat(+0.0f)); // xorps
640  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
641    // Use SSE for f32, x87 for f64.
642    // Set up the FP register classes.
643    addRegisterClass(MVT::f32, &X86::FR32RegClass);
644    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
645
646    // Use ANDPS to simulate FABS.
647    setOperationAction(ISD::FABS , MVT::f32, Custom);
648
649    // Use XORP to simulate FNEG.
650    setOperationAction(ISD::FNEG , MVT::f32, Custom);
651
652    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
653
654    // Use ANDPS and ORPS to simulate FCOPYSIGN.
655    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
656    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
657
658    // We don't support sin/cos/fmod
659    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
660    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
661    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
662
663    // Special cases we handle for FP constants.
664    addLegalFPImmediate(APFloat(+0.0f)); // xorps
665    addLegalFPImmediate(APFloat(+0.0)); // FLD0
666    addLegalFPImmediate(APFloat(+1.0)); // FLD1
667    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
668    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
669
670    if (!TM.Options.UnsafeFPMath) {
671      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
672      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
673      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
674    }
675  } else if (!TM.Options.UseSoftFloat) {
676    // f32 and f64 in x87.
677    // Set up the FP register classes.
678    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
679    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
680
681    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
682    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
683    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
684    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
685
686    if (!TM.Options.UnsafeFPMath) {
687      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
688      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
689      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
690      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
691      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
692      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
693    }
694    addLegalFPImmediate(APFloat(+0.0)); // FLD0
695    addLegalFPImmediate(APFloat(+1.0)); // FLD1
696    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
697    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
698    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
699    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
700    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
701    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
702  }
703
704  // We don't support FMA.
705  setOperationAction(ISD::FMA, MVT::f64, Expand);
706  setOperationAction(ISD::FMA, MVT::f32, Expand);
707
708  // Long double always uses X87.
709  if (!TM.Options.UseSoftFloat) {
710    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
711    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
712    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
713    {
714      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
715      addLegalFPImmediate(TmpFlt);  // FLD0
716      TmpFlt.changeSign();
717      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
718
719      bool ignored;
720      APFloat TmpFlt2(+1.0);
721      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
722                      &ignored);
723      addLegalFPImmediate(TmpFlt2);  // FLD1
724      TmpFlt2.changeSign();
725      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
726    }
727
728    if (!TM.Options.UnsafeFPMath) {
729      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
730      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
731      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
732    }
733
734    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
735    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
736    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
737    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
738    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
739    setOperationAction(ISD::FMA, MVT::f80, Expand);
740  }
741
742  // Always use a library call for pow.
743  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
744  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
745  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
746
747  setOperationAction(ISD::FLOG, MVT::f80, Expand);
748  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
749  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
750  setOperationAction(ISD::FEXP, MVT::f80, Expand);
751  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
752
753  // First set operation action for all vector types to either promote
754  // (for widening) or expand (for scalarization). Then we will selectively
755  // turn on ones that can be effectively codegen'd.
756  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
757           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
758    MVT VT = (MVT::SimpleValueType)i;
759    setOperationAction(ISD::ADD , VT, Expand);
760    setOperationAction(ISD::SUB , VT, Expand);
761    setOperationAction(ISD::FADD, VT, Expand);
762    setOperationAction(ISD::FNEG, VT, Expand);
763    setOperationAction(ISD::FSUB, VT, Expand);
764    setOperationAction(ISD::MUL , VT, Expand);
765    setOperationAction(ISD::FMUL, VT, Expand);
766    setOperationAction(ISD::SDIV, VT, Expand);
767    setOperationAction(ISD::UDIV, VT, Expand);
768    setOperationAction(ISD::FDIV, VT, Expand);
769    setOperationAction(ISD::SREM, VT, Expand);
770    setOperationAction(ISD::UREM, VT, Expand);
771    setOperationAction(ISD::LOAD, VT, Expand);
772    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
773    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
774    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
775    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
776    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
777    setOperationAction(ISD::FABS, VT, Expand);
778    setOperationAction(ISD::FSIN, VT, Expand);
779    setOperationAction(ISD::FSINCOS, VT, Expand);
780    setOperationAction(ISD::FCOS, VT, Expand);
781    setOperationAction(ISD::FSINCOS, VT, Expand);
782    setOperationAction(ISD::FREM, VT, Expand);
783    setOperationAction(ISD::FMA,  VT, Expand);
784    setOperationAction(ISD::FPOWI, VT, Expand);
785    setOperationAction(ISD::FSQRT, VT, Expand);
786    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
787    setOperationAction(ISD::FFLOOR, VT, Expand);
788    setOperationAction(ISD::FCEIL, VT, Expand);
789    setOperationAction(ISD::FTRUNC, VT, Expand);
790    setOperationAction(ISD::FRINT, VT, Expand);
791    setOperationAction(ISD::FNEARBYINT, VT, Expand);
792    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
793    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
794    setOperationAction(ISD::SDIVREM, VT, Expand);
795    setOperationAction(ISD::UDIVREM, VT, Expand);
796    setOperationAction(ISD::FPOW, VT, Expand);
797    setOperationAction(ISD::CTPOP, VT, Expand);
798    setOperationAction(ISD::CTTZ, VT, Expand);
799    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
800    setOperationAction(ISD::CTLZ, VT, Expand);
801    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
802    setOperationAction(ISD::SHL, VT, Expand);
803    setOperationAction(ISD::SRA, VT, Expand);
804    setOperationAction(ISD::SRL, VT, Expand);
805    setOperationAction(ISD::ROTL, VT, Expand);
806    setOperationAction(ISD::ROTR, VT, Expand);
807    setOperationAction(ISD::BSWAP, VT, Expand);
808    setOperationAction(ISD::SETCC, VT, Expand);
809    setOperationAction(ISD::FLOG, VT, Expand);
810    setOperationAction(ISD::FLOG2, VT, Expand);
811    setOperationAction(ISD::FLOG10, VT, Expand);
812    setOperationAction(ISD::FEXP, VT, Expand);
813    setOperationAction(ISD::FEXP2, VT, Expand);
814    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
815    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
816    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
817    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
818    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
819    setOperationAction(ISD::TRUNCATE, VT, Expand);
820    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
821    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
822    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
823    setOperationAction(ISD::VSELECT, VT, Expand);
824    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
825             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
826      setTruncStoreAction(VT,
827                          (MVT::SimpleValueType)InnerVT, Expand);
828    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
829    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
830    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
831  }
832
833  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
834  // with -msoft-float, disable use of MMX as well.
835  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
836    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
837    // No operations on x86mmx supported, everything uses intrinsics.
838  }
839
840  // MMX-sized vectors (other than x86mmx) are expected to be expanded
841  // into smaller operations.
842  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
843  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
844  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
845  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
846  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
847  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
848  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
849  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
850  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
851  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
852  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
853  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
854  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
855  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
856  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
857  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
858  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
859  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
860  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
861  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
862  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
863  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
864  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
865  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
866  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
867  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
868  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
869  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
870  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
871
872  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
873    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
874
875    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
876    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
877    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
878    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
879    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
880    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
881    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
882    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
883    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
884    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
885    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
886    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
887  }
888
889  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
890    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
891
892    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
893    // registers cannot be used even for integer operations.
894    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
895    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
896    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
897    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
898
899    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
900    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
901    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
902    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
903    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
904    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
905    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
906    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
907    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
908    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
909    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
910    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
911    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
912    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
913    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
914    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
915    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
916    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
917
918    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
919    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
920    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
921    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
922
923    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
924    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
925    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
926    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
927    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
928
929    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
930    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
931      MVT VT = (MVT::SimpleValueType)i;
932      // Do not attempt to custom lower non-power-of-2 vectors
933      if (!isPowerOf2_32(VT.getVectorNumElements()))
934        continue;
935      // Do not attempt to custom lower non-128-bit vectors
936      if (!VT.is128BitVector())
937        continue;
938      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
939      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
940      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
941    }
942
943    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
944    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
945    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
946    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
947    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
948    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
949
950    if (Subtarget->is64Bit()) {
951      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
952      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
953    }
954
955    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
956    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
957      MVT VT = (MVT::SimpleValueType)i;
958
959      // Do not attempt to promote non-128-bit vectors
960      if (!VT.is128BitVector())
961        continue;
962
963      setOperationAction(ISD::AND,    VT, Promote);
964      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
965      setOperationAction(ISD::OR,     VT, Promote);
966      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
967      setOperationAction(ISD::XOR,    VT, Promote);
968      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
969      setOperationAction(ISD::LOAD,   VT, Promote);
970      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
971      setOperationAction(ISD::SELECT, VT, Promote);
972      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
973    }
974
975    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
976
977    // Custom lower v2i64 and v2f64 selects.
978    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
979    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
980    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
981    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
982
983    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
984    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
985
986    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
987    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
988    // As there is no 64-bit GPR available, we need build a special custom
989    // sequence to convert from v2i32 to v2f32.
990    if (!Subtarget->is64Bit())
991      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
992
993    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
994    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
995
996    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
997  }
998
999  if (Subtarget->hasSSE41()) {
1000    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
1001    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
1002    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
1003    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
1004    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
1005    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
1006    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
1007    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
1008    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
1009    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
1010
1011    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
1012    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
1013    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
1014    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
1015    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
1016    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
1017    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
1018    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
1019    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
1020    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
1021
1022    // FIXME: Do we need to handle scalar-to-vector here?
1023    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
1024
1025    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
1026    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
1027    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
1028    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
1029    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
1030
1031    // i8 and i16 vectors are custom , because the source register and source
1032    // source memory operand types are not the same width.  f32 vectors are
1033    // custom since the immediate controlling the insert encodes additional
1034    // information.
1035    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1036    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1037    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1038    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1039
1040    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1041    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1042    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1043    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1044
1045    // FIXME: these should be Legal but thats only for the case where
1046    // the index is constant.  For now custom expand to deal with that.
1047    if (Subtarget->is64Bit()) {
1048      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1049      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1050    }
1051  }
1052
1053  if (Subtarget->hasSSE2()) {
1054    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1055    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1056
1057    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1058    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1059
1060    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1061    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1062
1063    // In the customized shift lowering, the legal cases in AVX2 will be
1064    // recognized.
1065    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
1066    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
1067
1068    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
1069    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
1070
1071    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
1072
1073    setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
1074    setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
1075  }
1076
1077  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1078    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1079    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1080    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1081    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1082    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1083    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1084
1085    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1086    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1087    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1088
1089    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1090    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1091    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1092    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1093    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1094    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1095    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1096    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1097    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1098    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1099    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1100    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1101
1102    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1103    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1104    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1105    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1106    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1107    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1108    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1109    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1110    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1111    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1112    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1113    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1114
1115    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1116    setOperationAction(ISD::TRUNCATE,           MVT::v4i32, Custom);
1117
1118    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1119
1120    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1121    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
1122    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1123    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1124
1125    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
1126    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1127    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1128
1129    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1130
1131    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1132    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1133
1134    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1135    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1136
1137    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1138    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1139
1140    setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
1141
1142    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1143    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1144    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1145    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1146
1147    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1148    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1149    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1150
1151    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1152    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1153    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1154    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1155
1156    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1157    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1158    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1159    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1160    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1161    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1162
1163    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1164      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1165      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1166      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1167      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1168      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1169      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1170    }
1171
1172    if (Subtarget->hasInt256()) {
1173      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1174      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1175      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1176      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1177
1178      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1179      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1180      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1181      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1182
1183      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1184      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1185      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1186      // Don't lower v32i8 because there is no 128-bit byte mul
1187
1188      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1189
1190      setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
1191    } else {
1192      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1193      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1194      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1195      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1196
1197      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1198      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1199      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1200      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1201
1202      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1203      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1204      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1205      // Don't lower v32i8 because there is no 128-bit byte mul
1206    }
1207
1208    // In the customized shift lowering, the legal cases in AVX2 will be
1209    // recognized.
1210    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1211    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1212
1213    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1214    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1215
1216    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1217
1218    // Custom lower several nodes for 256-bit types.
1219    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1220             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1221      MVT VT = (MVT::SimpleValueType)i;
1222
1223      // Extract subvector is special because the value type
1224      // (result) is 128-bit but the source is 256-bit wide.
1225      if (VT.is128BitVector())
1226        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1227
1228      // Do not attempt to custom lower other non-256-bit vectors
1229      if (!VT.is256BitVector())
1230        continue;
1231
1232      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1233      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1234      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1235      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1236      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1237      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1238      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1239    }
1240
1241    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1242    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1243      MVT VT = (MVT::SimpleValueType)i;
1244
1245      // Do not attempt to promote non-256-bit vectors
1246      if (!VT.is256BitVector())
1247        continue;
1248
1249      setOperationAction(ISD::AND,    VT, Promote);
1250      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1251      setOperationAction(ISD::OR,     VT, Promote);
1252      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1253      setOperationAction(ISD::XOR,    VT, Promote);
1254      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1255      setOperationAction(ISD::LOAD,   VT, Promote);
1256      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1257      setOperationAction(ISD::SELECT, VT, Promote);
1258      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1259    }
1260  }
1261
1262  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1263  // of this type with custom code.
1264  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1265           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1266    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1267                       Custom);
1268  }
1269
1270  // We want to custom lower some of our intrinsics.
1271  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1272  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1273
1274  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1275  // handle type legalization for these operations here.
1276  //
1277  // FIXME: We really should do custom legalization for addition and
1278  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1279  // than generic legalization for 64-bit multiplication-with-overflow, though.
1280  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1281    // Add/Sub/Mul with overflow operations are custom lowered.
1282    MVT VT = IntVTs[i];
1283    setOperationAction(ISD::SADDO, VT, Custom);
1284    setOperationAction(ISD::UADDO, VT, Custom);
1285    setOperationAction(ISD::SSUBO, VT, Custom);
1286    setOperationAction(ISD::USUBO, VT, Custom);
1287    setOperationAction(ISD::SMULO, VT, Custom);
1288    setOperationAction(ISD::UMULO, VT, Custom);
1289  }
1290
1291  // There are no 8-bit 3-address imul/mul instructions
1292  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1293  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1294
1295  if (!Subtarget->is64Bit()) {
1296    // These libcalls are not available in 32-bit.
1297    setLibcallName(RTLIB::SHL_I128, 0);
1298    setLibcallName(RTLIB::SRL_I128, 0);
1299    setLibcallName(RTLIB::SRA_I128, 0);
1300  }
1301
1302  // Combine sin / cos into one node or libcall if possible.
1303  if (Subtarget->hasSinCos()) {
1304    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1305    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1306    if (Subtarget->isTargetDarwin()) {
1307      // For MacOSX, we don't want to the normal expansion of a libcall to
1308      // sincos. We want to issue a libcall to __sincos_stret to avoid memory
1309      // traffic.
1310      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1311      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1312    }
1313  }
1314
1315  // We have target-specific dag combine patterns for the following nodes:
1316  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1317  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1318  setTargetDAGCombine(ISD::VSELECT);
1319  setTargetDAGCombine(ISD::SELECT);
1320  setTargetDAGCombine(ISD::SHL);
1321  setTargetDAGCombine(ISD::SRA);
1322  setTargetDAGCombine(ISD::SRL);
1323  setTargetDAGCombine(ISD::OR);
1324  setTargetDAGCombine(ISD::AND);
1325  setTargetDAGCombine(ISD::ADD);
1326  setTargetDAGCombine(ISD::FADD);
1327  setTargetDAGCombine(ISD::FSUB);
1328  setTargetDAGCombine(ISD::FMA);
1329  setTargetDAGCombine(ISD::SUB);
1330  setTargetDAGCombine(ISD::LOAD);
1331  setTargetDAGCombine(ISD::STORE);
1332  setTargetDAGCombine(ISD::ZERO_EXTEND);
1333  setTargetDAGCombine(ISD::ANY_EXTEND);
1334  setTargetDAGCombine(ISD::SIGN_EXTEND);
1335  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1336  setTargetDAGCombine(ISD::TRUNCATE);
1337  setTargetDAGCombine(ISD::SINT_TO_FP);
1338  setTargetDAGCombine(ISD::SETCC);
1339  if (Subtarget->is64Bit())
1340    setTargetDAGCombine(ISD::MUL);
1341  setTargetDAGCombine(ISD::XOR);
1342
1343  computeRegisterProperties();
1344
1345  // On Darwin, -Os means optimize for size without hurting performance,
1346  // do not reduce the limit.
1347  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1348  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1349  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1350  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1351  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1352  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1353  setPrefLoopAlignment(4); // 2^4 bytes.
1354
1355  // Predictable cmov don't hurt on atom because it's in-order.
1356  PredictableSelectIsExpensive = !Subtarget->isAtom();
1357
1358  setPrefFunctionAlignment(4); // 2^4 bytes.
1359}
1360
1361EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1362  if (!VT.isVector()) return MVT::i8;
1363  return VT.changeVectorElementTypeToInteger();
1364}
1365
1366/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1367/// the desired ByVal argument alignment.
1368static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1369  if (MaxAlign == 16)
1370    return;
1371  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1372    if (VTy->getBitWidth() == 128)
1373      MaxAlign = 16;
1374  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1375    unsigned EltAlign = 0;
1376    getMaxByValAlign(ATy->getElementType(), EltAlign);
1377    if (EltAlign > MaxAlign)
1378      MaxAlign = EltAlign;
1379  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1380    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1381      unsigned EltAlign = 0;
1382      getMaxByValAlign(STy->getElementType(i), EltAlign);
1383      if (EltAlign > MaxAlign)
1384        MaxAlign = EltAlign;
1385      if (MaxAlign == 16)
1386        break;
1387    }
1388  }
1389}
1390
1391/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1392/// function arguments in the caller parameter area. For X86, aggregates
1393/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1394/// are at 4-byte boundaries.
1395unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1396  if (Subtarget->is64Bit()) {
1397    // Max of 8 and alignment of type.
1398    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1399    if (TyAlign > 8)
1400      return TyAlign;
1401    return 8;
1402  }
1403
1404  unsigned Align = 4;
1405  if (Subtarget->hasSSE1())
1406    getMaxByValAlign(Ty, Align);
1407  return Align;
1408}
1409
1410/// getOptimalMemOpType - Returns the target specific optimal type for load
1411/// and store operations as a result of memset, memcpy, and memmove
1412/// lowering. If DstAlign is zero that means it's safe to destination
1413/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1414/// means there isn't a need to check it against alignment requirement,
1415/// probably because the source does not need to be loaded. If 'IsMemset' is
1416/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1417/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1418/// source is constant so it does not need to be loaded.
1419/// It returns EVT::Other if the type should be determined using generic
1420/// target-independent logic.
1421EVT
1422X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1423                                       unsigned DstAlign, unsigned SrcAlign,
1424                                       bool IsMemset, bool ZeroMemset,
1425                                       bool MemcpyStrSrc,
1426                                       MachineFunction &MF) const {
1427  const Function *F = MF.getFunction();
1428  if ((!IsMemset || ZeroMemset) &&
1429      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1430                                       Attribute::NoImplicitFloat)) {
1431    if (Size >= 16 &&
1432        (Subtarget->isUnalignedMemAccessFast() ||
1433         ((DstAlign == 0 || DstAlign >= 16) &&
1434          (SrcAlign == 0 || SrcAlign >= 16)))) {
1435      if (Size >= 32) {
1436        if (Subtarget->hasInt256())
1437          return MVT::v8i32;
1438        if (Subtarget->hasFp256())
1439          return MVT::v8f32;
1440      }
1441      if (Subtarget->hasSSE2())
1442        return MVT::v4i32;
1443      if (Subtarget->hasSSE1())
1444        return MVT::v4f32;
1445    } else if (!MemcpyStrSrc && Size >= 8 &&
1446               !Subtarget->is64Bit() &&
1447               Subtarget->hasSSE2()) {
1448      // Do not use f64 to lower memcpy if source is string constant. It's
1449      // better to use i32 to avoid the loads.
1450      return MVT::f64;
1451    }
1452  }
1453  if (Subtarget->is64Bit() && Size >= 8)
1454    return MVT::i64;
1455  return MVT::i32;
1456}
1457
1458bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1459  if (VT == MVT::f32)
1460    return X86ScalarSSEf32;
1461  else if (VT == MVT::f64)
1462    return X86ScalarSSEf64;
1463  return true;
1464}
1465
1466bool
1467X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
1468  if (Fast)
1469    *Fast = Subtarget->isUnalignedMemAccessFast();
1470  return true;
1471}
1472
1473/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1474/// current function.  The returned value is a member of the
1475/// MachineJumpTableInfo::JTEntryKind enum.
1476unsigned X86TargetLowering::getJumpTableEncoding() const {
1477  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1478  // symbol.
1479  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1480      Subtarget->isPICStyleGOT())
1481    return MachineJumpTableInfo::EK_Custom32;
1482
1483  // Otherwise, use the normal jump table encoding heuristics.
1484  return TargetLowering::getJumpTableEncoding();
1485}
1486
1487const MCExpr *
1488X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1489                                             const MachineBasicBlock *MBB,
1490                                             unsigned uid,MCContext &Ctx) const{
1491  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1492         Subtarget->isPICStyleGOT());
1493  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1494  // entries.
1495  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1496                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1497}
1498
1499/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1500/// jumptable.
1501SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1502                                                    SelectionDAG &DAG) const {
1503  if (!Subtarget->is64Bit())
1504    // This doesn't have SDLoc associated with it, but is not really the
1505    // same as a Register.
1506    return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
1507  return Table;
1508}
1509
1510/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1511/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1512/// MCExpr.
1513const MCExpr *X86TargetLowering::
1514getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1515                             MCContext &Ctx) const {
1516  // X86-64 uses RIP relative addressing based on the jump table label.
1517  if (Subtarget->isPICStyleRIPRel())
1518    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1519
1520  // Otherwise, the reference is relative to the PIC base.
1521  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1522}
1523
1524// FIXME: Why this routine is here? Move to RegInfo!
1525std::pair<const TargetRegisterClass*, uint8_t>
1526X86TargetLowering::findRepresentativeClass(MVT VT) const{
1527  const TargetRegisterClass *RRC = 0;
1528  uint8_t Cost = 1;
1529  switch (VT.SimpleTy) {
1530  default:
1531    return TargetLowering::findRepresentativeClass(VT);
1532  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1533    RRC = Subtarget->is64Bit() ?
1534      (const TargetRegisterClass*)&X86::GR64RegClass :
1535      (const TargetRegisterClass*)&X86::GR32RegClass;
1536    break;
1537  case MVT::x86mmx:
1538    RRC = &X86::VR64RegClass;
1539    break;
1540  case MVT::f32: case MVT::f64:
1541  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1542  case MVT::v4f32: case MVT::v2f64:
1543  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1544  case MVT::v4f64:
1545    RRC = &X86::VR128RegClass;
1546    break;
1547  }
1548  return std::make_pair(RRC, Cost);
1549}
1550
1551bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1552                                               unsigned &Offset) const {
1553  if (!Subtarget->isTargetLinux())
1554    return false;
1555
1556  if (Subtarget->is64Bit()) {
1557    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1558    Offset = 0x28;
1559    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1560      AddressSpace = 256;
1561    else
1562      AddressSpace = 257;
1563  } else {
1564    // %gs:0x14 on i386
1565    Offset = 0x14;
1566    AddressSpace = 256;
1567  }
1568  return true;
1569}
1570
1571//===----------------------------------------------------------------------===//
1572//               Return Value Calling Convention Implementation
1573//===----------------------------------------------------------------------===//
1574
1575#include "X86GenCallingConv.inc"
1576
1577bool
1578X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1579                                  MachineFunction &MF, bool isVarArg,
1580                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1581                        LLVMContext &Context) const {
1582  SmallVector<CCValAssign, 16> RVLocs;
1583  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1584                 RVLocs, Context);
1585  return CCInfo.CheckReturn(Outs, RetCC_X86);
1586}
1587
1588SDValue
1589X86TargetLowering::LowerReturn(SDValue Chain,
1590                               CallingConv::ID CallConv, bool isVarArg,
1591                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1592                               const SmallVectorImpl<SDValue> &OutVals,
1593                               SDLoc dl, SelectionDAG &DAG) const {
1594  MachineFunction &MF = DAG.getMachineFunction();
1595  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1596
1597  SmallVector<CCValAssign, 16> RVLocs;
1598  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1599                 RVLocs, *DAG.getContext());
1600  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1601
1602  SDValue Flag;
1603  SmallVector<SDValue, 6> RetOps;
1604  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1605  // Operand #1 = Bytes To Pop
1606  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1607                   MVT::i16));
1608
1609  // Copy the result values into the output registers.
1610  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1611    CCValAssign &VA = RVLocs[i];
1612    assert(VA.isRegLoc() && "Can only return in registers!");
1613    SDValue ValToCopy = OutVals[i];
1614    EVT ValVT = ValToCopy.getValueType();
1615
1616    // Promote values to the appropriate types
1617    if (VA.getLocInfo() == CCValAssign::SExt)
1618      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1619    else if (VA.getLocInfo() == CCValAssign::ZExt)
1620      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1621    else if (VA.getLocInfo() == CCValAssign::AExt)
1622      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1623    else if (VA.getLocInfo() == CCValAssign::BCvt)
1624      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1625
1626    // If this is x86-64, and we disabled SSE, we can't return FP values,
1627    // or SSE or MMX vectors.
1628    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1629         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1630          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1631      report_fatal_error("SSE register return with SSE disabled");
1632    }
1633    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1634    // llvm-gcc has never done it right and no one has noticed, so this
1635    // should be OK for now.
1636    if (ValVT == MVT::f64 &&
1637        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1638      report_fatal_error("SSE2 register return with SSE2 disabled");
1639
1640    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1641    // the RET instruction and handled by the FP Stackifier.
1642    if (VA.getLocReg() == X86::ST0 ||
1643        VA.getLocReg() == X86::ST1) {
1644      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1645      // change the value to the FP stack register class.
1646      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1647        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1648      RetOps.push_back(ValToCopy);
1649      // Don't emit a copytoreg.
1650      continue;
1651    }
1652
1653    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1654    // which is returned in RAX / RDX.
1655    if (Subtarget->is64Bit()) {
1656      if (ValVT == MVT::x86mmx) {
1657        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1658          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1659          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1660                                  ValToCopy);
1661          // If we don't have SSE2 available, convert to v4f32 so the generated
1662          // register is legal.
1663          if (!Subtarget->hasSSE2())
1664            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1665        }
1666      }
1667    }
1668
1669    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1670    Flag = Chain.getValue(1);
1671    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1672  }
1673
1674  // The x86-64 ABIs require that for returning structs by value we copy
1675  // the sret argument into %rax/%eax (depending on ABI) for the return.
1676  // Win32 requires us to put the sret argument to %eax as well.
1677  // We saved the argument into a virtual register in the entry block,
1678  // so now we copy the value out and into %rax/%eax.
1679  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() &&
1680      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
1681    MachineFunction &MF = DAG.getMachineFunction();
1682    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1683    unsigned Reg = FuncInfo->getSRetReturnReg();
1684    assert(Reg &&
1685           "SRetReturnReg should have been set in LowerFormalArguments().");
1686    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1687
1688    unsigned RetValReg
1689        = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
1690          X86::RAX : X86::EAX;
1691    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1692    Flag = Chain.getValue(1);
1693
1694    // RAX/EAX now acts like a return value.
1695    RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
1696  }
1697
1698  RetOps[0] = Chain;  // Update chain.
1699
1700  // Add the flag if we have it.
1701  if (Flag.getNode())
1702    RetOps.push_back(Flag);
1703
1704  return DAG.getNode(X86ISD::RET_FLAG, dl,
1705                     MVT::Other, &RetOps[0], RetOps.size());
1706}
1707
1708bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1709  if (N->getNumValues() != 1)
1710    return false;
1711  if (!N->hasNUsesOfValue(1, 0))
1712    return false;
1713
1714  SDValue TCChain = Chain;
1715  SDNode *Copy = *N->use_begin();
1716  if (Copy->getOpcode() == ISD::CopyToReg) {
1717    // If the copy has a glue operand, we conservatively assume it isn't safe to
1718    // perform a tail call.
1719    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1720      return false;
1721    TCChain = Copy->getOperand(0);
1722  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1723    return false;
1724
1725  bool HasRet = false;
1726  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1727       UI != UE; ++UI) {
1728    if (UI->getOpcode() != X86ISD::RET_FLAG)
1729      return false;
1730    HasRet = true;
1731  }
1732
1733  if (!HasRet)
1734    return false;
1735
1736  Chain = TCChain;
1737  return true;
1738}
1739
1740MVT
1741X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1742                                            ISD::NodeType ExtendKind) const {
1743  MVT ReturnMVT;
1744  // TODO: Is this also valid on 32-bit?
1745  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1746    ReturnMVT = MVT::i8;
1747  else
1748    ReturnMVT = MVT::i32;
1749
1750  MVT MinVT = getRegisterType(ReturnMVT);
1751  return VT.bitsLT(MinVT) ? MinVT : VT;
1752}
1753
1754/// LowerCallResult - Lower the result values of a call into the
1755/// appropriate copies out of appropriate physical registers.
1756///
1757SDValue
1758X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1759                                   CallingConv::ID CallConv, bool isVarArg,
1760                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1761                                   SDLoc dl, SelectionDAG &DAG,
1762                                   SmallVectorImpl<SDValue> &InVals) const {
1763
1764  // Assign locations to each value returned by this call.
1765  SmallVector<CCValAssign, 16> RVLocs;
1766  bool Is64Bit = Subtarget->is64Bit();
1767  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1768                 getTargetMachine(), RVLocs, *DAG.getContext());
1769  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1770
1771  // Copy all of the result registers out of their specified physreg.
1772  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1773    CCValAssign &VA = RVLocs[i];
1774    EVT CopyVT = VA.getValVT();
1775
1776    // If this is x86-64, and we disabled SSE, we can't return FP values
1777    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1778        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1779      report_fatal_error("SSE register return with SSE disabled");
1780    }
1781
1782    SDValue Val;
1783
1784    // If this is a call to a function that returns an fp value on the floating
1785    // point stack, we must guarantee the value is popped from the stack, so
1786    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1787    // if the return value is not used. We use the FpPOP_RETVAL instruction
1788    // instead.
1789    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1790      // If we prefer to use the value in xmm registers, copy it out as f80 and
1791      // use a truncate to move it from fp stack reg to xmm reg.
1792      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1793      SDValue Ops[] = { Chain, InFlag };
1794      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1795                                         MVT::Other, MVT::Glue, Ops), 1);
1796      Val = Chain.getValue(0);
1797
1798      // Round the f80 to the right size, which also moves it to the appropriate
1799      // xmm register.
1800      if (CopyVT != VA.getValVT())
1801        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1802                          // This truncation won't change the value.
1803                          DAG.getIntPtrConstant(1));
1804    } else {
1805      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1806                                 CopyVT, InFlag).getValue(1);
1807      Val = Chain.getValue(0);
1808    }
1809    InFlag = Chain.getValue(2);
1810    InVals.push_back(Val);
1811  }
1812
1813  return Chain;
1814}
1815
1816//===----------------------------------------------------------------------===//
1817//                C & StdCall & Fast Calling Convention implementation
1818//===----------------------------------------------------------------------===//
1819//  StdCall calling convention seems to be standard for many Windows' API
1820//  routines and around. It differs from C calling convention just a little:
1821//  callee should clean up the stack, not caller. Symbols should be also
1822//  decorated in some fancy way :) It doesn't support any vector arguments.
1823//  For info on fast calling convention see Fast Calling Convention (tail call)
1824//  implementation LowerX86_32FastCCCallTo.
1825
1826/// CallIsStructReturn - Determines whether a call uses struct return
1827/// semantics.
1828enum StructReturnType {
1829  NotStructReturn,
1830  RegStructReturn,
1831  StackStructReturn
1832};
1833static StructReturnType
1834callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1835  if (Outs.empty())
1836    return NotStructReturn;
1837
1838  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1839  if (!Flags.isSRet())
1840    return NotStructReturn;
1841  if (Flags.isInReg())
1842    return RegStructReturn;
1843  return StackStructReturn;
1844}
1845
1846/// ArgsAreStructReturn - Determines whether a function uses struct
1847/// return semantics.
1848static StructReturnType
1849argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1850  if (Ins.empty())
1851    return NotStructReturn;
1852
1853  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1854  if (!Flags.isSRet())
1855    return NotStructReturn;
1856  if (Flags.isInReg())
1857    return RegStructReturn;
1858  return StackStructReturn;
1859}
1860
1861/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1862/// by "Src" to address "Dst" with size and alignment information specified by
1863/// the specific parameter attribute. The copy will be passed as a byval
1864/// function parameter.
1865static SDValue
1866CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1867                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1868                          SDLoc dl) {
1869  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1870
1871  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1872                       /*isVolatile*/false, /*AlwaysInline=*/true,
1873                       MachinePointerInfo(), MachinePointerInfo());
1874}
1875
1876/// IsTailCallConvention - Return true if the calling convention is one that
1877/// supports tail call optimization.
1878static bool IsTailCallConvention(CallingConv::ID CC) {
1879  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
1880          CC == CallingConv::HiPE);
1881}
1882
1883/// \brief Return true if the calling convention is a C calling convention.
1884static bool IsCCallConvention(CallingConv::ID CC) {
1885  return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
1886          CC == CallingConv::X86_64_SysV);
1887}
1888
1889bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1890  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1891    return false;
1892
1893  CallSite CS(CI);
1894  CallingConv::ID CalleeCC = CS.getCallingConv();
1895  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
1896    return false;
1897
1898  return true;
1899}
1900
1901/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1902/// a tailcall target by changing its ABI.
1903static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1904                                   bool GuaranteedTailCallOpt) {
1905  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1906}
1907
1908SDValue
1909X86TargetLowering::LowerMemArgument(SDValue Chain,
1910                                    CallingConv::ID CallConv,
1911                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1912                                    SDLoc dl, SelectionDAG &DAG,
1913                                    const CCValAssign &VA,
1914                                    MachineFrameInfo *MFI,
1915                                    unsigned i) const {
1916  // Create the nodes corresponding to a load from this parameter slot.
1917  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1918  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1919                              getTargetMachine().Options.GuaranteedTailCallOpt);
1920  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1921  EVT ValVT;
1922
1923  // If value is passed by pointer we have address passed instead of the value
1924  // itself.
1925  if (VA.getLocInfo() == CCValAssign::Indirect)
1926    ValVT = VA.getLocVT();
1927  else
1928    ValVT = VA.getValVT();
1929
1930  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1931  // changed with more analysis.
1932  // In case of tail call optimization mark all arguments mutable. Since they
1933  // could be overwritten by lowering of arguments in case of a tail call.
1934  if (Flags.isByVal()) {
1935    unsigned Bytes = Flags.getByValSize();
1936    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1937    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1938    return DAG.getFrameIndex(FI, getPointerTy());
1939  } else {
1940    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1941                                    VA.getLocMemOffset(), isImmutable);
1942    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1943    return DAG.getLoad(ValVT, dl, Chain, FIN,
1944                       MachinePointerInfo::getFixedStack(FI),
1945                       false, false, false, 0);
1946  }
1947}
1948
1949SDValue
1950X86TargetLowering::LowerFormalArguments(SDValue Chain,
1951                                        CallingConv::ID CallConv,
1952                                        bool isVarArg,
1953                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1954                                        SDLoc dl,
1955                                        SelectionDAG &DAG,
1956                                        SmallVectorImpl<SDValue> &InVals)
1957                                          const {
1958  MachineFunction &MF = DAG.getMachineFunction();
1959  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1960
1961  const Function* Fn = MF.getFunction();
1962  if (Fn->hasExternalLinkage() &&
1963      Subtarget->isTargetCygMing() &&
1964      Fn->getName() == "main")
1965    FuncInfo->setForceFramePointer(true);
1966
1967  MachineFrameInfo *MFI = MF.getFrameInfo();
1968  bool Is64Bit = Subtarget->is64Bit();
1969  bool IsWindows = Subtarget->isTargetWindows();
1970  bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
1971
1972  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1973         "Var args not supported with calling convention fastcc, ghc or hipe");
1974
1975  // Assign locations to all of the incoming arguments.
1976  SmallVector<CCValAssign, 16> ArgLocs;
1977  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1978                 ArgLocs, *DAG.getContext());
1979
1980  // Allocate shadow area for Win64
1981  if (IsWin64)
1982    CCInfo.AllocateStack(32, 8);
1983
1984  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1985
1986  unsigned LastVal = ~0U;
1987  SDValue ArgValue;
1988  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1989    CCValAssign &VA = ArgLocs[i];
1990    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1991    // places.
1992    assert(VA.getValNo() != LastVal &&
1993           "Don't support value assigned to multiple locs yet");
1994    (void)LastVal;
1995    LastVal = VA.getValNo();
1996
1997    if (VA.isRegLoc()) {
1998      EVT RegVT = VA.getLocVT();
1999      const TargetRegisterClass *RC;
2000      if (RegVT == MVT::i32)
2001        RC = &X86::GR32RegClass;
2002      else if (Is64Bit && RegVT == MVT::i64)
2003        RC = &X86::GR64RegClass;
2004      else if (RegVT == MVT::f32)
2005        RC = &X86::FR32RegClass;
2006      else if (RegVT == MVT::f64)
2007        RC = &X86::FR64RegClass;
2008      else if (RegVT.is256BitVector())
2009        RC = &X86::VR256RegClass;
2010      else if (RegVT.is128BitVector())
2011        RC = &X86::VR128RegClass;
2012      else if (RegVT == MVT::x86mmx)
2013        RC = &X86::VR64RegClass;
2014      else
2015        llvm_unreachable("Unknown argument type!");
2016
2017      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2018      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2019
2020      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2021      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2022      // right size.
2023      if (VA.getLocInfo() == CCValAssign::SExt)
2024        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2025                               DAG.getValueType(VA.getValVT()));
2026      else if (VA.getLocInfo() == CCValAssign::ZExt)
2027        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2028                               DAG.getValueType(VA.getValVT()));
2029      else if (VA.getLocInfo() == CCValAssign::BCvt)
2030        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2031
2032      if (VA.isExtInLoc()) {
2033        // Handle MMX values passed in XMM regs.
2034        if (RegVT.isVector())
2035          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2036        else
2037          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2038      }
2039    } else {
2040      assert(VA.isMemLoc());
2041      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2042    }
2043
2044    // If value is passed via pointer - do a load.
2045    if (VA.getLocInfo() == CCValAssign::Indirect)
2046      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2047                             MachinePointerInfo(), false, false, false, 0);
2048
2049    InVals.push_back(ArgValue);
2050  }
2051
2052  // The x86-64 ABIs require that for returning structs by value we copy
2053  // the sret argument into %rax/%eax (depending on ABI) for the return.
2054  // Win32 requires us to put the sret argument to %eax as well.
2055  // Save the argument into a virtual register so that we can access it
2056  // from the return points.
2057  if (MF.getFunction()->hasStructRetAttr() &&
2058      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
2059    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2060    unsigned Reg = FuncInfo->getSRetReturnReg();
2061    if (!Reg) {
2062      MVT PtrTy = getPointerTy();
2063      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2064      FuncInfo->setSRetReturnReg(Reg);
2065    }
2066    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2067    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2068  }
2069
2070  unsigned StackSize = CCInfo.getNextStackOffset();
2071  // Align stack specially for tail calls.
2072  if (FuncIsMadeTailCallSafe(CallConv,
2073                             MF.getTarget().Options.GuaranteedTailCallOpt))
2074    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2075
2076  // If the function takes variable number of arguments, make a frame index for
2077  // the start of the first vararg value... for expansion of llvm.va_start.
2078  if (isVarArg) {
2079    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2080                    CallConv != CallingConv::X86_ThisCall)) {
2081      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2082    }
2083    if (Is64Bit) {
2084      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2085
2086      // FIXME: We should really autogenerate these arrays
2087      static const uint16_t GPR64ArgRegsWin64[] = {
2088        X86::RCX, X86::RDX, X86::R8,  X86::R9
2089      };
2090      static const uint16_t GPR64ArgRegs64Bit[] = {
2091        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2092      };
2093      static const uint16_t XMMArgRegs64Bit[] = {
2094        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2095        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2096      };
2097      const uint16_t *GPR64ArgRegs;
2098      unsigned NumXMMRegs = 0;
2099
2100      if (IsWin64) {
2101        // The XMM registers which might contain var arg parameters are shadowed
2102        // in their paired GPR.  So we only need to save the GPR to their home
2103        // slots.
2104        TotalNumIntRegs = 4;
2105        GPR64ArgRegs = GPR64ArgRegsWin64;
2106      } else {
2107        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2108        GPR64ArgRegs = GPR64ArgRegs64Bit;
2109
2110        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2111                                                TotalNumXMMRegs);
2112      }
2113      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2114                                                       TotalNumIntRegs);
2115
2116      bool NoImplicitFloatOps = Fn->getAttributes().
2117        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2118      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2119             "SSE register cannot be used when SSE is disabled!");
2120      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2121               NoImplicitFloatOps) &&
2122             "SSE register cannot be used when SSE is disabled!");
2123      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2124          !Subtarget->hasSSE1())
2125        // Kernel mode asks for SSE to be disabled, so don't push them
2126        // on the stack.
2127        TotalNumXMMRegs = 0;
2128
2129      if (IsWin64) {
2130        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2131        // Get to the caller-allocated home save location.  Add 8 to account
2132        // for the return address.
2133        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2134        FuncInfo->setRegSaveFrameIndex(
2135          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2136        // Fixup to set vararg frame on shadow area (4 x i64).
2137        if (NumIntRegs < 4)
2138          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2139      } else {
2140        // For X86-64, if there are vararg parameters that are passed via
2141        // registers, then we must store them to their spots on the stack so
2142        // they may be loaded by deferencing the result of va_next.
2143        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2144        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2145        FuncInfo->setRegSaveFrameIndex(
2146          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2147                               false));
2148      }
2149
2150      // Store the integer parameter registers.
2151      SmallVector<SDValue, 8> MemOps;
2152      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2153                                        getPointerTy());
2154      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2155      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2156        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2157                                  DAG.getIntPtrConstant(Offset));
2158        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2159                                     &X86::GR64RegClass);
2160        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2161        SDValue Store =
2162          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2163                       MachinePointerInfo::getFixedStack(
2164                         FuncInfo->getRegSaveFrameIndex(), Offset),
2165                       false, false, 0);
2166        MemOps.push_back(Store);
2167        Offset += 8;
2168      }
2169
2170      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2171        // Now store the XMM (fp + vector) parameter registers.
2172        SmallVector<SDValue, 11> SaveXMMOps;
2173        SaveXMMOps.push_back(Chain);
2174
2175        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2176        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2177        SaveXMMOps.push_back(ALVal);
2178
2179        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2180                               FuncInfo->getRegSaveFrameIndex()));
2181        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2182                               FuncInfo->getVarArgsFPOffset()));
2183
2184        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2185          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2186                                       &X86::VR128RegClass);
2187          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2188          SaveXMMOps.push_back(Val);
2189        }
2190        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2191                                     MVT::Other,
2192                                     &SaveXMMOps[0], SaveXMMOps.size()));
2193      }
2194
2195      if (!MemOps.empty())
2196        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2197                            &MemOps[0], MemOps.size());
2198    }
2199  }
2200
2201  // Some CCs need callee pop.
2202  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2203                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2204    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2205  } else {
2206    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2207    // If this is an sret function, the return should pop the hidden pointer.
2208    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2209        argsAreStructReturn(Ins) == StackStructReturn)
2210      FuncInfo->setBytesToPopOnReturn(4);
2211  }
2212
2213  if (!Is64Bit) {
2214    // RegSaveFrameIndex is X86-64 only.
2215    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2216    if (CallConv == CallingConv::X86_FastCall ||
2217        CallConv == CallingConv::X86_ThisCall)
2218      // fastcc functions can't have varargs.
2219      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2220  }
2221
2222  FuncInfo->setArgumentStackSize(StackSize);
2223
2224  return Chain;
2225}
2226
2227SDValue
2228X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2229                                    SDValue StackPtr, SDValue Arg,
2230                                    SDLoc dl, SelectionDAG &DAG,
2231                                    const CCValAssign &VA,
2232                                    ISD::ArgFlagsTy Flags) const {
2233  unsigned LocMemOffset = VA.getLocMemOffset();
2234  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2235  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2236  if (Flags.isByVal())
2237    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2238
2239  return DAG.getStore(Chain, dl, Arg, PtrOff,
2240                      MachinePointerInfo::getStack(LocMemOffset),
2241                      false, false, 0);
2242}
2243
2244/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2245/// optimization is performed and it is required.
2246SDValue
2247X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2248                                           SDValue &OutRetAddr, SDValue Chain,
2249                                           bool IsTailCall, bool Is64Bit,
2250                                           int FPDiff, SDLoc dl) const {
2251  // Adjust the Return address stack slot.
2252  EVT VT = getPointerTy();
2253  OutRetAddr = getReturnAddressFrameIndex(DAG);
2254
2255  // Load the "old" Return address.
2256  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2257                           false, false, false, 0);
2258  return SDValue(OutRetAddr.getNode(), 1);
2259}
2260
2261/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2262/// optimization is performed and it is required (FPDiff!=0).
2263static SDValue
2264EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2265                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2266                         unsigned SlotSize, int FPDiff, SDLoc dl) {
2267  // Store the return address to the appropriate stack slot.
2268  if (!FPDiff) return Chain;
2269  // Calculate the new stack slot for the return address.
2270  int NewReturnAddrFI =
2271    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2272  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2273  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2274                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2275                       false, false, 0);
2276  return Chain;
2277}
2278
2279SDValue
2280X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2281                             SmallVectorImpl<SDValue> &InVals) const {
2282  SelectionDAG &DAG                     = CLI.DAG;
2283  SDLoc &dl                             = CLI.DL;
2284  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2285  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2286  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2287  SDValue Chain                         = CLI.Chain;
2288  SDValue Callee                        = CLI.Callee;
2289  CallingConv::ID CallConv              = CLI.CallConv;
2290  bool &isTailCall                      = CLI.IsTailCall;
2291  bool isVarArg                         = CLI.IsVarArg;
2292
2293  MachineFunction &MF = DAG.getMachineFunction();
2294  bool Is64Bit        = Subtarget->is64Bit();
2295  bool IsWin64        = Subtarget->isCallingConvWin64(CallConv);
2296  bool IsWindows      = Subtarget->isTargetWindows();
2297  StructReturnType SR = callIsStructReturn(Outs);
2298  bool IsSibcall      = false;
2299
2300  if (MF.getTarget().Options.DisableTailCalls)
2301    isTailCall = false;
2302
2303  if (isTailCall) {
2304    // Check if it's really possible to do a tail call.
2305    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2306                    isVarArg, SR != NotStructReturn,
2307                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2308                    Outs, OutVals, Ins, DAG);
2309
2310    // Sibcalls are automatically detected tailcalls which do not require
2311    // ABI changes.
2312    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2313      IsSibcall = true;
2314
2315    if (isTailCall)
2316      ++NumTailCalls;
2317  }
2318
2319  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2320         "Var args not supported with calling convention fastcc, ghc or hipe");
2321
2322  // Analyze operands of the call, assigning locations to each operand.
2323  SmallVector<CCValAssign, 16> ArgLocs;
2324  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2325                 ArgLocs, *DAG.getContext());
2326
2327  // Allocate shadow area for Win64
2328  if (IsWin64)
2329    CCInfo.AllocateStack(32, 8);
2330
2331  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2332
2333  // Get a count of how many bytes are to be pushed on the stack.
2334  unsigned NumBytes = CCInfo.getNextStackOffset();
2335  if (IsSibcall)
2336    // This is a sibcall. The memory operands are available in caller's
2337    // own caller's stack.
2338    NumBytes = 0;
2339  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2340           IsTailCallConvention(CallConv))
2341    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2342
2343  int FPDiff = 0;
2344  if (isTailCall && !IsSibcall) {
2345    // Lower arguments at fp - stackoffset + fpdiff.
2346    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2347    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2348
2349    FPDiff = NumBytesCallerPushed - NumBytes;
2350
2351    // Set the delta of movement of the returnaddr stackslot.
2352    // But only set if delta is greater than previous delta.
2353    if (FPDiff < X86Info->getTCReturnAddrDelta())
2354      X86Info->setTCReturnAddrDelta(FPDiff);
2355  }
2356
2357  if (!IsSibcall)
2358    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
2359                                 dl);
2360
2361  SDValue RetAddrFrIdx;
2362  // Load return address for tail calls.
2363  if (isTailCall && FPDiff)
2364    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2365                                    Is64Bit, FPDiff, dl);
2366
2367  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2368  SmallVector<SDValue, 8> MemOpChains;
2369  SDValue StackPtr;
2370
2371  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2372  // of tail call optimization arguments are handle later.
2373  const X86RegisterInfo *RegInfo =
2374    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
2375  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2376    CCValAssign &VA = ArgLocs[i];
2377    EVT RegVT = VA.getLocVT();
2378    SDValue Arg = OutVals[i];
2379    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2380    bool isByVal = Flags.isByVal();
2381
2382    // Promote the value if needed.
2383    switch (VA.getLocInfo()) {
2384    default: llvm_unreachable("Unknown loc info!");
2385    case CCValAssign::Full: break;
2386    case CCValAssign::SExt:
2387      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2388      break;
2389    case CCValAssign::ZExt:
2390      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2391      break;
2392    case CCValAssign::AExt:
2393      if (RegVT.is128BitVector()) {
2394        // Special case: passing MMX values in XMM registers.
2395        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2396        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2397        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2398      } else
2399        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2400      break;
2401    case CCValAssign::BCvt:
2402      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2403      break;
2404    case CCValAssign::Indirect: {
2405      // Store the argument.
2406      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2407      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2408      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2409                           MachinePointerInfo::getFixedStack(FI),
2410                           false, false, 0);
2411      Arg = SpillSlot;
2412      break;
2413    }
2414    }
2415
2416    if (VA.isRegLoc()) {
2417      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2418      if (isVarArg && IsWin64) {
2419        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2420        // shadow reg if callee is a varargs function.
2421        unsigned ShadowReg = 0;
2422        switch (VA.getLocReg()) {
2423        case X86::XMM0: ShadowReg = X86::RCX; break;
2424        case X86::XMM1: ShadowReg = X86::RDX; break;
2425        case X86::XMM2: ShadowReg = X86::R8; break;
2426        case X86::XMM3: ShadowReg = X86::R9; break;
2427        }
2428        if (ShadowReg)
2429          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2430      }
2431    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2432      assert(VA.isMemLoc());
2433      if (StackPtr.getNode() == 0)
2434        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2435                                      getPointerTy());
2436      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2437                                             dl, DAG, VA, Flags));
2438    }
2439  }
2440
2441  if (!MemOpChains.empty())
2442    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2443                        &MemOpChains[0], MemOpChains.size());
2444
2445  if (Subtarget->isPICStyleGOT()) {
2446    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2447    // GOT pointer.
2448    if (!isTailCall) {
2449      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2450               DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
2451    } else {
2452      // If we are tail calling and generating PIC/GOT style code load the
2453      // address of the callee into ECX. The value in ecx is used as target of
2454      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2455      // for tail calls on PIC/GOT architectures. Normally we would just put the
2456      // address of GOT into ebx and then call target@PLT. But for tail calls
2457      // ebx would be restored (since ebx is callee saved) before jumping to the
2458      // target@PLT.
2459
2460      // Note: The actual moving to ECX is done further down.
2461      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2462      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2463          !G->getGlobal()->hasProtectedVisibility())
2464        Callee = LowerGlobalAddress(Callee, DAG);
2465      else if (isa<ExternalSymbolSDNode>(Callee))
2466        Callee = LowerExternalSymbol(Callee, DAG);
2467    }
2468  }
2469
2470  if (Is64Bit && isVarArg && !IsWin64) {
2471    // From AMD64 ABI document:
2472    // For calls that may call functions that use varargs or stdargs
2473    // (prototype-less calls or calls to functions containing ellipsis (...) in
2474    // the declaration) %al is used as hidden argument to specify the number
2475    // of SSE registers used. The contents of %al do not need to match exactly
2476    // the number of registers, but must be an ubound on the number of SSE
2477    // registers used and is in the range 0 - 8 inclusive.
2478
2479    // Count the number of XMM registers allocated.
2480    static const uint16_t XMMArgRegs[] = {
2481      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2482      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2483    };
2484    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2485    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2486           && "SSE registers cannot be used when SSE is disabled");
2487
2488    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2489                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2490  }
2491
2492  // For tail calls lower the arguments to the 'real' stack slot.
2493  if (isTailCall) {
2494    // Force all the incoming stack arguments to be loaded from the stack
2495    // before any new outgoing arguments are stored to the stack, because the
2496    // outgoing stack slots may alias the incoming argument stack slots, and
2497    // the alias isn't otherwise explicit. This is slightly more conservative
2498    // than necessary, because it means that each store effectively depends
2499    // on every argument instead of just those arguments it would clobber.
2500    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2501
2502    SmallVector<SDValue, 8> MemOpChains2;
2503    SDValue FIN;
2504    int FI = 0;
2505    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2506      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2507        CCValAssign &VA = ArgLocs[i];
2508        if (VA.isRegLoc())
2509          continue;
2510        assert(VA.isMemLoc());
2511        SDValue Arg = OutVals[i];
2512        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2513        // Create frame index.
2514        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2515        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2516        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2517        FIN = DAG.getFrameIndex(FI, getPointerTy());
2518
2519        if (Flags.isByVal()) {
2520          // Copy relative to framepointer.
2521          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2522          if (StackPtr.getNode() == 0)
2523            StackPtr = DAG.getCopyFromReg(Chain, dl,
2524                                          RegInfo->getStackRegister(),
2525                                          getPointerTy());
2526          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2527
2528          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2529                                                           ArgChain,
2530                                                           Flags, DAG, dl));
2531        } else {
2532          // Store relative to framepointer.
2533          MemOpChains2.push_back(
2534            DAG.getStore(ArgChain, dl, Arg, FIN,
2535                         MachinePointerInfo::getFixedStack(FI),
2536                         false, false, 0));
2537        }
2538      }
2539    }
2540
2541    if (!MemOpChains2.empty())
2542      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2543                          &MemOpChains2[0], MemOpChains2.size());
2544
2545    // Store the return address to the appropriate stack slot.
2546    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2547                                     getPointerTy(), RegInfo->getSlotSize(),
2548                                     FPDiff, dl);
2549  }
2550
2551  // Build a sequence of copy-to-reg nodes chained together with token chain
2552  // and flag operands which copy the outgoing args into registers.
2553  SDValue InFlag;
2554  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2555    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2556                             RegsToPass[i].second, InFlag);
2557    InFlag = Chain.getValue(1);
2558  }
2559
2560  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2561    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2562    // In the 64-bit large code model, we have to make all calls
2563    // through a register, since the call instruction's 32-bit
2564    // pc-relative offset may not be large enough to hold the whole
2565    // address.
2566  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2567    // If the callee is a GlobalAddress node (quite common, every direct call
2568    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2569    // it.
2570
2571    // We should use extra load for direct calls to dllimported functions in
2572    // non-JIT mode.
2573    const GlobalValue *GV = G->getGlobal();
2574    if (!GV->hasDLLImportLinkage()) {
2575      unsigned char OpFlags = 0;
2576      bool ExtraLoad = false;
2577      unsigned WrapperKind = ISD::DELETED_NODE;
2578
2579      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2580      // external symbols most go through the PLT in PIC mode.  If the symbol
2581      // has hidden or protected visibility, or if it is static or local, then
2582      // we don't need to use the PLT - we can directly call it.
2583      if (Subtarget->isTargetELF() &&
2584          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2585          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2586        OpFlags = X86II::MO_PLT;
2587      } else if (Subtarget->isPICStyleStubAny() &&
2588                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2589                 (!Subtarget->getTargetTriple().isMacOSX() ||
2590                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2591        // PC-relative references to external symbols should go through $stub,
2592        // unless we're building with the leopard linker or later, which
2593        // automatically synthesizes these stubs.
2594        OpFlags = X86II::MO_DARWIN_STUB;
2595      } else if (Subtarget->isPICStyleRIPRel() &&
2596                 isa<Function>(GV) &&
2597                 cast<Function>(GV)->getAttributes().
2598                   hasAttribute(AttributeSet::FunctionIndex,
2599                                Attribute::NonLazyBind)) {
2600        // If the function is marked as non-lazy, generate an indirect call
2601        // which loads from the GOT directly. This avoids runtime overhead
2602        // at the cost of eager binding (and one extra byte of encoding).
2603        OpFlags = X86II::MO_GOTPCREL;
2604        WrapperKind = X86ISD::WrapperRIP;
2605        ExtraLoad = true;
2606      }
2607
2608      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2609                                          G->getOffset(), OpFlags);
2610
2611      // Add a wrapper if needed.
2612      if (WrapperKind != ISD::DELETED_NODE)
2613        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2614      // Add extra indirection if needed.
2615      if (ExtraLoad)
2616        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2617                             MachinePointerInfo::getGOT(),
2618                             false, false, false, 0);
2619    }
2620  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2621    unsigned char OpFlags = 0;
2622
2623    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2624    // external symbols should go through the PLT.
2625    if (Subtarget->isTargetELF() &&
2626        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2627      OpFlags = X86II::MO_PLT;
2628    } else if (Subtarget->isPICStyleStubAny() &&
2629               (!Subtarget->getTargetTriple().isMacOSX() ||
2630                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2631      // PC-relative references to external symbols should go through $stub,
2632      // unless we're building with the leopard linker or later, which
2633      // automatically synthesizes these stubs.
2634      OpFlags = X86II::MO_DARWIN_STUB;
2635    }
2636
2637    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2638                                         OpFlags);
2639  }
2640
2641  // Returns a chain & a flag for retval copy to use.
2642  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2643  SmallVector<SDValue, 8> Ops;
2644
2645  if (!IsSibcall && isTailCall) {
2646    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2647                           DAG.getIntPtrConstant(0, true), InFlag, dl);
2648    InFlag = Chain.getValue(1);
2649  }
2650
2651  Ops.push_back(Chain);
2652  Ops.push_back(Callee);
2653
2654  if (isTailCall)
2655    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2656
2657  // Add argument registers to the end of the list so that they are known live
2658  // into the call.
2659  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2660    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2661                                  RegsToPass[i].second.getValueType()));
2662
2663  // Add a register mask operand representing the call-preserved registers.
2664  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2665  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2666  assert(Mask && "Missing call preserved mask for calling convention");
2667  Ops.push_back(DAG.getRegisterMask(Mask));
2668
2669  if (InFlag.getNode())
2670    Ops.push_back(InFlag);
2671
2672  if (isTailCall) {
2673    // We used to do:
2674    //// If this is the first return lowered for this function, add the regs
2675    //// to the liveout set for the function.
2676    // This isn't right, although it's probably harmless on x86; liveouts
2677    // should be computed from returns not tail calls.  Consider a void
2678    // function making a tail call to a function returning int.
2679    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
2680  }
2681
2682  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2683  InFlag = Chain.getValue(1);
2684
2685  // Create the CALLSEQ_END node.
2686  unsigned NumBytesForCalleeToPush;
2687  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2688                       getTargetMachine().Options.GuaranteedTailCallOpt))
2689    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2690  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2691           SR == StackStructReturn)
2692    // If this is a call to a struct-return function, the callee
2693    // pops the hidden struct pointer, so we have to push it back.
2694    // This is common for Darwin/X86, Linux & Mingw32 targets.
2695    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2696    NumBytesForCalleeToPush = 4;
2697  else
2698    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2699
2700  // Returns a flag for retval copy to use.
2701  if (!IsSibcall) {
2702    Chain = DAG.getCALLSEQ_END(Chain,
2703                               DAG.getIntPtrConstant(NumBytes, true),
2704                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2705                                                     true),
2706                               InFlag, dl);
2707    InFlag = Chain.getValue(1);
2708  }
2709
2710  // Handle result values, copying them out of physregs into vregs that we
2711  // return.
2712  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2713                         Ins, dl, DAG, InVals);
2714}
2715
2716//===----------------------------------------------------------------------===//
2717//                Fast Calling Convention (tail call) implementation
2718//===----------------------------------------------------------------------===//
2719
2720//  Like std call, callee cleans arguments, convention except that ECX is
2721//  reserved for storing the tail called function address. Only 2 registers are
2722//  free for argument passing (inreg). Tail call optimization is performed
2723//  provided:
2724//                * tailcallopt is enabled
2725//                * caller/callee are fastcc
2726//  On X86_64 architecture with GOT-style position independent code only local
2727//  (within module) calls are supported at the moment.
2728//  To keep the stack aligned according to platform abi the function
2729//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2730//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2731//  If a tail called function callee has more arguments than the caller the
2732//  caller needs to make sure that there is room to move the RETADDR to. This is
2733//  achieved by reserving an area the size of the argument delta right after the
2734//  original REtADDR, but before the saved framepointer or the spilled registers
2735//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2736//  stack layout:
2737//    arg1
2738//    arg2
2739//    RETADDR
2740//    [ new RETADDR
2741//      move area ]
2742//    (possible EBP)
2743//    ESI
2744//    EDI
2745//    local1 ..
2746
2747/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2748/// for a 16 byte align requirement.
2749unsigned
2750X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2751                                               SelectionDAG& DAG) const {
2752  MachineFunction &MF = DAG.getMachineFunction();
2753  const TargetMachine &TM = MF.getTarget();
2754  const X86RegisterInfo *RegInfo =
2755    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
2756  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2757  unsigned StackAlignment = TFI.getStackAlignment();
2758  uint64_t AlignMask = StackAlignment - 1;
2759  int64_t Offset = StackSize;
2760  unsigned SlotSize = RegInfo->getSlotSize();
2761  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2762    // Number smaller than 12 so just add the difference.
2763    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2764  } else {
2765    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2766    Offset = ((~AlignMask) & Offset) + StackAlignment +
2767      (StackAlignment-SlotSize);
2768  }
2769  return Offset;
2770}
2771
2772/// MatchingStackOffset - Return true if the given stack call argument is
2773/// already available in the same position (relatively) of the caller's
2774/// incoming argument stack.
2775static
2776bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2777                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2778                         const X86InstrInfo *TII) {
2779  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2780  int FI = INT_MAX;
2781  if (Arg.getOpcode() == ISD::CopyFromReg) {
2782    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2783    if (!TargetRegisterInfo::isVirtualRegister(VR))
2784      return false;
2785    MachineInstr *Def = MRI->getVRegDef(VR);
2786    if (!Def)
2787      return false;
2788    if (!Flags.isByVal()) {
2789      if (!TII->isLoadFromStackSlot(Def, FI))
2790        return false;
2791    } else {
2792      unsigned Opcode = Def->getOpcode();
2793      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2794          Def->getOperand(1).isFI()) {
2795        FI = Def->getOperand(1).getIndex();
2796        Bytes = Flags.getByValSize();
2797      } else
2798        return false;
2799    }
2800  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2801    if (Flags.isByVal())
2802      // ByVal argument is passed in as a pointer but it's now being
2803      // dereferenced. e.g.
2804      // define @foo(%struct.X* %A) {
2805      //   tail call @bar(%struct.X* byval %A)
2806      // }
2807      return false;
2808    SDValue Ptr = Ld->getBasePtr();
2809    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2810    if (!FINode)
2811      return false;
2812    FI = FINode->getIndex();
2813  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2814    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2815    FI = FINode->getIndex();
2816    Bytes = Flags.getByValSize();
2817  } else
2818    return false;
2819
2820  assert(FI != INT_MAX);
2821  if (!MFI->isFixedObjectIndex(FI))
2822    return false;
2823  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2824}
2825
2826/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2827/// for tail call optimization. Targets which want to do tail call
2828/// optimization should implement this function.
2829bool
2830X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2831                                                     CallingConv::ID CalleeCC,
2832                                                     bool isVarArg,
2833                                                     bool isCalleeStructRet,
2834                                                     bool isCallerStructRet,
2835                                                     Type *RetTy,
2836                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2837                                    const SmallVectorImpl<SDValue> &OutVals,
2838                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2839                                                     SelectionDAG &DAG) const {
2840  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
2841    return false;
2842
2843  // If -tailcallopt is specified, make fastcc functions tail-callable.
2844  const MachineFunction &MF = DAG.getMachineFunction();
2845  const Function *CallerF = MF.getFunction();
2846
2847  // If the function return type is x86_fp80 and the callee return type is not,
2848  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2849  // perform a tailcall optimization here.
2850  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2851    return false;
2852
2853  CallingConv::ID CallerCC = CallerF->getCallingConv();
2854  bool CCMatch = CallerCC == CalleeCC;
2855  bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
2856  bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
2857
2858  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2859    if (IsTailCallConvention(CalleeCC) && CCMatch)
2860      return true;
2861    return false;
2862  }
2863
2864  // Look for obvious safe cases to perform tail call optimization that do not
2865  // require ABI changes. This is what gcc calls sibcall.
2866
2867  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2868  // emit a special epilogue.
2869  const X86RegisterInfo *RegInfo =
2870    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
2871  if (RegInfo->needsStackRealignment(MF))
2872    return false;
2873
2874  // Also avoid sibcall optimization if either caller or callee uses struct
2875  // return semantics.
2876  if (isCalleeStructRet || isCallerStructRet)
2877    return false;
2878
2879  // An stdcall caller is expected to clean up its arguments; the callee
2880  // isn't going to do that.
2881  if (!CCMatch && CallerCC == CallingConv::X86_StdCall)
2882    return false;
2883
2884  // Do not sibcall optimize vararg calls unless all arguments are passed via
2885  // registers.
2886  if (isVarArg && !Outs.empty()) {
2887
2888    // Optimizing for varargs on Win64 is unlikely to be safe without
2889    // additional testing.
2890    if (IsCalleeWin64 || IsCallerWin64)
2891      return false;
2892
2893    SmallVector<CCValAssign, 16> ArgLocs;
2894    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2895                   getTargetMachine(), ArgLocs, *DAG.getContext());
2896
2897    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2898    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2899      if (!ArgLocs[i].isRegLoc())
2900        return false;
2901  }
2902
2903  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2904  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2905  // this into a sibcall.
2906  bool Unused = false;
2907  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2908    if (!Ins[i].Used) {
2909      Unused = true;
2910      break;
2911    }
2912  }
2913  if (Unused) {
2914    SmallVector<CCValAssign, 16> RVLocs;
2915    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2916                   getTargetMachine(), RVLocs, *DAG.getContext());
2917    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2918    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2919      CCValAssign &VA = RVLocs[i];
2920      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2921        return false;
2922    }
2923  }
2924
2925  // If the calling conventions do not match, then we'd better make sure the
2926  // results are returned in the same way as what the caller expects.
2927  if (!CCMatch) {
2928    SmallVector<CCValAssign, 16> RVLocs1;
2929    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2930                    getTargetMachine(), RVLocs1, *DAG.getContext());
2931    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2932
2933    SmallVector<CCValAssign, 16> RVLocs2;
2934    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2935                    getTargetMachine(), RVLocs2, *DAG.getContext());
2936    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2937
2938    if (RVLocs1.size() != RVLocs2.size())
2939      return false;
2940    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2941      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2942        return false;
2943      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2944        return false;
2945      if (RVLocs1[i].isRegLoc()) {
2946        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2947          return false;
2948      } else {
2949        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2950          return false;
2951      }
2952    }
2953  }
2954
2955  // If the callee takes no arguments then go on to check the results of the
2956  // call.
2957  if (!Outs.empty()) {
2958    // Check if stack adjustment is needed. For now, do not do this if any
2959    // argument is passed on the stack.
2960    SmallVector<CCValAssign, 16> ArgLocs;
2961    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2962                   getTargetMachine(), ArgLocs, *DAG.getContext());
2963
2964    // Allocate shadow area for Win64
2965    if (IsCalleeWin64)
2966      CCInfo.AllocateStack(32, 8);
2967
2968    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2969    if (CCInfo.getNextStackOffset()) {
2970      MachineFunction &MF = DAG.getMachineFunction();
2971      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2972        return false;
2973
2974      // Check if the arguments are already laid out in the right way as
2975      // the caller's fixed stack objects.
2976      MachineFrameInfo *MFI = MF.getFrameInfo();
2977      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2978      const X86InstrInfo *TII =
2979        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2980      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2981        CCValAssign &VA = ArgLocs[i];
2982        SDValue Arg = OutVals[i];
2983        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2984        if (VA.getLocInfo() == CCValAssign::Indirect)
2985          return false;
2986        if (!VA.isRegLoc()) {
2987          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2988                                   MFI, MRI, TII))
2989            return false;
2990        }
2991      }
2992    }
2993
2994    // If the tailcall address may be in a register, then make sure it's
2995    // possible to register allocate for it. In 32-bit, the call address can
2996    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2997    // callee-saved registers are restored. These happen to be the same
2998    // registers used to pass 'inreg' arguments so watch out for those.
2999    if (!Subtarget->is64Bit() &&
3000        ((!isa<GlobalAddressSDNode>(Callee) &&
3001          !isa<ExternalSymbolSDNode>(Callee)) ||
3002         getTargetMachine().getRelocationModel() == Reloc::PIC_)) {
3003      unsigned NumInRegs = 0;
3004      // In PIC we need an extra register to formulate the address computation
3005      // for the callee.
3006      unsigned MaxInRegs =
3007          (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
3008
3009      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3010        CCValAssign &VA = ArgLocs[i];
3011        if (!VA.isRegLoc())
3012          continue;
3013        unsigned Reg = VA.getLocReg();
3014        switch (Reg) {
3015        default: break;
3016        case X86::EAX: case X86::EDX: case X86::ECX:
3017          if (++NumInRegs == MaxInRegs)
3018            return false;
3019          break;
3020        }
3021      }
3022    }
3023  }
3024
3025  return true;
3026}
3027
3028FastISel *
3029X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3030                                  const TargetLibraryInfo *libInfo) const {
3031  return X86::createFastISel(funcInfo, libInfo);
3032}
3033
3034//===----------------------------------------------------------------------===//
3035//                           Other Lowering Hooks
3036//===----------------------------------------------------------------------===//
3037
3038static bool MayFoldLoad(SDValue Op) {
3039  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3040}
3041
3042static bool MayFoldIntoStore(SDValue Op) {
3043  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3044}
3045
3046static bool isTargetShuffle(unsigned Opcode) {
3047  switch(Opcode) {
3048  default: return false;
3049  case X86ISD::PSHUFD:
3050  case X86ISD::PSHUFHW:
3051  case X86ISD::PSHUFLW:
3052  case X86ISD::SHUFP:
3053  case X86ISD::PALIGNR:
3054  case X86ISD::MOVLHPS:
3055  case X86ISD::MOVLHPD:
3056  case X86ISD::MOVHLPS:
3057  case X86ISD::MOVLPS:
3058  case X86ISD::MOVLPD:
3059  case X86ISD::MOVSHDUP:
3060  case X86ISD::MOVSLDUP:
3061  case X86ISD::MOVDDUP:
3062  case X86ISD::MOVSS:
3063  case X86ISD::MOVSD:
3064  case X86ISD::UNPCKL:
3065  case X86ISD::UNPCKH:
3066  case X86ISD::VPERMILP:
3067  case X86ISD::VPERM2X128:
3068  case X86ISD::VPERMI:
3069    return true;
3070  }
3071}
3072
3073static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3074                                    SDValue V1, SelectionDAG &DAG) {
3075  switch(Opc) {
3076  default: llvm_unreachable("Unknown x86 shuffle node");
3077  case X86ISD::MOVSHDUP:
3078  case X86ISD::MOVSLDUP:
3079  case X86ISD::MOVDDUP:
3080    return DAG.getNode(Opc, dl, VT, V1);
3081  }
3082}
3083
3084static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3085                                    SDValue V1, unsigned TargetMask,
3086                                    SelectionDAG &DAG) {
3087  switch(Opc) {
3088  default: llvm_unreachable("Unknown x86 shuffle node");
3089  case X86ISD::PSHUFD:
3090  case X86ISD::PSHUFHW:
3091  case X86ISD::PSHUFLW:
3092  case X86ISD::VPERMILP:
3093  case X86ISD::VPERMI:
3094    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3095  }
3096}
3097
3098static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3099                                    SDValue V1, SDValue V2, unsigned TargetMask,
3100                                    SelectionDAG &DAG) {
3101  switch(Opc) {
3102  default: llvm_unreachable("Unknown x86 shuffle node");
3103  case X86ISD::PALIGNR:
3104  case X86ISD::SHUFP:
3105  case X86ISD::VPERM2X128:
3106    return DAG.getNode(Opc, dl, VT, V1, V2,
3107                       DAG.getConstant(TargetMask, MVT::i8));
3108  }
3109}
3110
3111static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3112                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3113  switch(Opc) {
3114  default: llvm_unreachable("Unknown x86 shuffle node");
3115  case X86ISD::MOVLHPS:
3116  case X86ISD::MOVLHPD:
3117  case X86ISD::MOVHLPS:
3118  case X86ISD::MOVLPS:
3119  case X86ISD::MOVLPD:
3120  case X86ISD::MOVSS:
3121  case X86ISD::MOVSD:
3122  case X86ISD::UNPCKL:
3123  case X86ISD::UNPCKH:
3124    return DAG.getNode(Opc, dl, VT, V1, V2);
3125  }
3126}
3127
3128SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3129  MachineFunction &MF = DAG.getMachineFunction();
3130  const X86RegisterInfo *RegInfo =
3131    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
3132  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3133  int ReturnAddrIndex = FuncInfo->getRAIndex();
3134
3135  if (ReturnAddrIndex == 0) {
3136    // Set up a frame object for the return address.
3137    unsigned SlotSize = RegInfo->getSlotSize();
3138    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3139                                                           false);
3140    FuncInfo->setRAIndex(ReturnAddrIndex);
3141  }
3142
3143  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3144}
3145
3146bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3147                                       bool hasSymbolicDisplacement) {
3148  // Offset should fit into 32 bit immediate field.
3149  if (!isInt<32>(Offset))
3150    return false;
3151
3152  // If we don't have a symbolic displacement - we don't have any extra
3153  // restrictions.
3154  if (!hasSymbolicDisplacement)
3155    return true;
3156
3157  // FIXME: Some tweaks might be needed for medium code model.
3158  if (M != CodeModel::Small && M != CodeModel::Kernel)
3159    return false;
3160
3161  // For small code model we assume that latest object is 16MB before end of 31
3162  // bits boundary. We may also accept pretty large negative constants knowing
3163  // that all objects are in the positive half of address space.
3164  if (M == CodeModel::Small && Offset < 16*1024*1024)
3165    return true;
3166
3167  // For kernel code model we know that all object resist in the negative half
3168  // of 32bits address space. We may not accept negative offsets, since they may
3169  // be just off and we may accept pretty large positive ones.
3170  if (M == CodeModel::Kernel && Offset > 0)
3171    return true;
3172
3173  return false;
3174}
3175
3176/// isCalleePop - Determines whether the callee is required to pop its
3177/// own arguments. Callee pop is necessary to support tail calls.
3178bool X86::isCalleePop(CallingConv::ID CallingConv,
3179                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3180  if (IsVarArg)
3181    return false;
3182
3183  switch (CallingConv) {
3184  default:
3185    return false;
3186  case CallingConv::X86_StdCall:
3187    return !is64Bit;
3188  case CallingConv::X86_FastCall:
3189    return !is64Bit;
3190  case CallingConv::X86_ThisCall:
3191    return !is64Bit;
3192  case CallingConv::Fast:
3193    return TailCallOpt;
3194  case CallingConv::GHC:
3195    return TailCallOpt;
3196  case CallingConv::HiPE:
3197    return TailCallOpt;
3198  }
3199}
3200
3201/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3202/// specific condition code, returning the condition code and the LHS/RHS of the
3203/// comparison to make.
3204static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3205                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3206  if (!isFP) {
3207    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3208      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3209        // X > -1   -> X == 0, jump !sign.
3210        RHS = DAG.getConstant(0, RHS.getValueType());
3211        return X86::COND_NS;
3212      }
3213      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3214        // X < 0   -> X == 0, jump on sign.
3215        return X86::COND_S;
3216      }
3217      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3218        // X < 1   -> X <= 0
3219        RHS = DAG.getConstant(0, RHS.getValueType());
3220        return X86::COND_LE;
3221      }
3222    }
3223
3224    switch (SetCCOpcode) {
3225    default: llvm_unreachable("Invalid integer condition!");
3226    case ISD::SETEQ:  return X86::COND_E;
3227    case ISD::SETGT:  return X86::COND_G;
3228    case ISD::SETGE:  return X86::COND_GE;
3229    case ISD::SETLT:  return X86::COND_L;
3230    case ISD::SETLE:  return X86::COND_LE;
3231    case ISD::SETNE:  return X86::COND_NE;
3232    case ISD::SETULT: return X86::COND_B;
3233    case ISD::SETUGT: return X86::COND_A;
3234    case ISD::SETULE: return X86::COND_BE;
3235    case ISD::SETUGE: return X86::COND_AE;
3236    }
3237  }
3238
3239  // First determine if it is required or is profitable to flip the operands.
3240
3241  // If LHS is a foldable load, but RHS is not, flip the condition.
3242  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3243      !ISD::isNON_EXTLoad(RHS.getNode())) {
3244    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3245    std::swap(LHS, RHS);
3246  }
3247
3248  switch (SetCCOpcode) {
3249  default: break;
3250  case ISD::SETOLT:
3251  case ISD::SETOLE:
3252  case ISD::SETUGT:
3253  case ISD::SETUGE:
3254    std::swap(LHS, RHS);
3255    break;
3256  }
3257
3258  // On a floating point condition, the flags are set as follows:
3259  // ZF  PF  CF   op
3260  //  0 | 0 | 0 | X > Y
3261  //  0 | 0 | 1 | X < Y
3262  //  1 | 0 | 0 | X == Y
3263  //  1 | 1 | 1 | unordered
3264  switch (SetCCOpcode) {
3265  default: llvm_unreachable("Condcode should be pre-legalized away");
3266  case ISD::SETUEQ:
3267  case ISD::SETEQ:   return X86::COND_E;
3268  case ISD::SETOLT:              // flipped
3269  case ISD::SETOGT:
3270  case ISD::SETGT:   return X86::COND_A;
3271  case ISD::SETOLE:              // flipped
3272  case ISD::SETOGE:
3273  case ISD::SETGE:   return X86::COND_AE;
3274  case ISD::SETUGT:              // flipped
3275  case ISD::SETULT:
3276  case ISD::SETLT:   return X86::COND_B;
3277  case ISD::SETUGE:              // flipped
3278  case ISD::SETULE:
3279  case ISD::SETLE:   return X86::COND_BE;
3280  case ISD::SETONE:
3281  case ISD::SETNE:   return X86::COND_NE;
3282  case ISD::SETUO:   return X86::COND_P;
3283  case ISD::SETO:    return X86::COND_NP;
3284  case ISD::SETOEQ:
3285  case ISD::SETUNE:  return X86::COND_INVALID;
3286  }
3287}
3288
3289/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3290/// code. Current x86 isa includes the following FP cmov instructions:
3291/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3292static bool hasFPCMov(unsigned X86CC) {
3293  switch (X86CC) {
3294  default:
3295    return false;
3296  case X86::COND_B:
3297  case X86::COND_BE:
3298  case X86::COND_E:
3299  case X86::COND_P:
3300  case X86::COND_A:
3301  case X86::COND_AE:
3302  case X86::COND_NE:
3303  case X86::COND_NP:
3304    return true;
3305  }
3306}
3307
3308/// isFPImmLegal - Returns true if the target can instruction select the
3309/// specified FP immediate natively. If false, the legalizer will
3310/// materialize the FP immediate as a load from a constant pool.
3311bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3312  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3313    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3314      return true;
3315  }
3316  return false;
3317}
3318
3319/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3320/// the specified range (L, H].
3321static bool isUndefOrInRange(int Val, int Low, int Hi) {
3322  return (Val < 0) || (Val >= Low && Val < Hi);
3323}
3324
3325/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3326/// specified value.
3327static bool isUndefOrEqual(int Val, int CmpVal) {
3328  return (Val < 0 || Val == CmpVal);
3329}
3330
3331/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3332/// from position Pos and ending in Pos+Size, falls within the specified
3333/// sequential range (L, L+Pos]. or is undef.
3334static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3335                                       unsigned Pos, unsigned Size, int Low) {
3336  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3337    if (!isUndefOrEqual(Mask[i], Low))
3338      return false;
3339  return true;
3340}
3341
3342/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3343/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3344/// the second operand.
3345static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3346  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3347    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3348  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3349    return (Mask[0] < 2 && Mask[1] < 2);
3350  return false;
3351}
3352
3353/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3354/// is suitable for input to PSHUFHW.
3355static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3356  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3357    return false;
3358
3359  // Lower quadword copied in order or undef.
3360  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3361    return false;
3362
3363  // Upper quadword shuffled.
3364  for (unsigned i = 4; i != 8; ++i)
3365    if (!isUndefOrInRange(Mask[i], 4, 8))
3366      return false;
3367
3368  if (VT == MVT::v16i16) {
3369    // Lower quadword copied in order or undef.
3370    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3371      return false;
3372
3373    // Upper quadword shuffled.
3374    for (unsigned i = 12; i != 16; ++i)
3375      if (!isUndefOrInRange(Mask[i], 12, 16))
3376        return false;
3377  }
3378
3379  return true;
3380}
3381
3382/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3383/// is suitable for input to PSHUFLW.
3384static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3385  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3386    return false;
3387
3388  // Upper quadword copied in order.
3389  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3390    return false;
3391
3392  // Lower quadword shuffled.
3393  for (unsigned i = 0; i != 4; ++i)
3394    if (!isUndefOrInRange(Mask[i], 0, 4))
3395      return false;
3396
3397  if (VT == MVT::v16i16) {
3398    // Upper quadword copied in order.
3399    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3400      return false;
3401
3402    // Lower quadword shuffled.
3403    for (unsigned i = 8; i != 12; ++i)
3404      if (!isUndefOrInRange(Mask[i], 8, 12))
3405        return false;
3406  }
3407
3408  return true;
3409}
3410
3411/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3412/// is suitable for input to PALIGNR.
3413static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3414                          const X86Subtarget *Subtarget) {
3415  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3416      (VT.is256BitVector() && !Subtarget->hasInt256()))
3417    return false;
3418
3419  unsigned NumElts = VT.getVectorNumElements();
3420  unsigned NumLanes = VT.getSizeInBits()/128;
3421  unsigned NumLaneElts = NumElts/NumLanes;
3422
3423  // Do not handle 64-bit element shuffles with palignr.
3424  if (NumLaneElts == 2)
3425    return false;
3426
3427  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3428    unsigned i;
3429    for (i = 0; i != NumLaneElts; ++i) {
3430      if (Mask[i+l] >= 0)
3431        break;
3432    }
3433
3434    // Lane is all undef, go to next lane
3435    if (i == NumLaneElts)
3436      continue;
3437
3438    int Start = Mask[i+l];
3439
3440    // Make sure its in this lane in one of the sources
3441    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3442        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3443      return false;
3444
3445    // If not lane 0, then we must match lane 0
3446    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3447      return false;
3448
3449    // Correct second source to be contiguous with first source
3450    if (Start >= (int)NumElts)
3451      Start -= NumElts - NumLaneElts;
3452
3453    // Make sure we're shifting in the right direction.
3454    if (Start <= (int)(i+l))
3455      return false;
3456
3457    Start -= i;
3458
3459    // Check the rest of the elements to see if they are consecutive.
3460    for (++i; i != NumLaneElts; ++i) {
3461      int Idx = Mask[i+l];
3462
3463      // Make sure its in this lane
3464      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3465          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3466        return false;
3467
3468      // If not lane 0, then we must match lane 0
3469      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3470        return false;
3471
3472      if (Idx >= (int)NumElts)
3473        Idx -= NumElts - NumLaneElts;
3474
3475      if (!isUndefOrEqual(Idx, Start+i))
3476        return false;
3477
3478    }
3479  }
3480
3481  return true;
3482}
3483
3484/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3485/// the two vector operands have swapped position.
3486static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3487                                     unsigned NumElems) {
3488  for (unsigned i = 0; i != NumElems; ++i) {
3489    int idx = Mask[i];
3490    if (idx < 0)
3491      continue;
3492    else if (idx < (int)NumElems)
3493      Mask[i] = idx + NumElems;
3494    else
3495      Mask[i] = idx - NumElems;
3496  }
3497}
3498
3499/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3500/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3501/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3502/// reverse of what x86 shuffles want.
3503static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
3504                        bool Commuted = false) {
3505  if (!HasFp256 && VT.is256BitVector())
3506    return false;
3507
3508  unsigned NumElems = VT.getVectorNumElements();
3509  unsigned NumLanes = VT.getSizeInBits()/128;
3510  unsigned NumLaneElems = NumElems/NumLanes;
3511
3512  if (NumLaneElems != 2 && NumLaneElems != 4)
3513    return false;
3514
3515  // VSHUFPSY divides the resulting vector into 4 chunks.
3516  // The sources are also splitted into 4 chunks, and each destination
3517  // chunk must come from a different source chunk.
3518  //
3519  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3520  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3521  //
3522  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3523  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3524  //
3525  // VSHUFPDY divides the resulting vector into 4 chunks.
3526  // The sources are also splitted into 4 chunks, and each destination
3527  // chunk must come from a different source chunk.
3528  //
3529  //  SRC1 =>      X3       X2       X1       X0
3530  //  SRC2 =>      Y3       Y2       Y1       Y0
3531  //
3532  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3533  //
3534  unsigned HalfLaneElems = NumLaneElems/2;
3535  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3536    for (unsigned i = 0; i != NumLaneElems; ++i) {
3537      int Idx = Mask[i+l];
3538      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3539      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3540        return false;
3541      // For VSHUFPSY, the mask of the second half must be the same as the
3542      // first but with the appropriate offsets. This works in the same way as
3543      // VPERMILPS works with masks.
3544      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3545        continue;
3546      if (!isUndefOrEqual(Idx, Mask[i]+l))
3547        return false;
3548    }
3549  }
3550
3551  return true;
3552}
3553
3554/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3555/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3556static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3557  if (!VT.is128BitVector())
3558    return false;
3559
3560  unsigned NumElems = VT.getVectorNumElements();
3561
3562  if (NumElems != 4)
3563    return false;
3564
3565  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3566  return isUndefOrEqual(Mask[0], 6) &&
3567         isUndefOrEqual(Mask[1], 7) &&
3568         isUndefOrEqual(Mask[2], 2) &&
3569         isUndefOrEqual(Mask[3], 3);
3570}
3571
3572/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3573/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3574/// <2, 3, 2, 3>
3575static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3576  if (!VT.is128BitVector())
3577    return false;
3578
3579  unsigned NumElems = VT.getVectorNumElements();
3580
3581  if (NumElems != 4)
3582    return false;
3583
3584  return isUndefOrEqual(Mask[0], 2) &&
3585         isUndefOrEqual(Mask[1], 3) &&
3586         isUndefOrEqual(Mask[2], 2) &&
3587         isUndefOrEqual(Mask[3], 3);
3588}
3589
3590/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3591/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3592static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3593  if (!VT.is128BitVector())
3594    return false;
3595
3596  unsigned NumElems = VT.getVectorNumElements();
3597
3598  if (NumElems != 2 && NumElems != 4)
3599    return false;
3600
3601  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3602    if (!isUndefOrEqual(Mask[i], i + NumElems))
3603      return false;
3604
3605  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3606    if (!isUndefOrEqual(Mask[i], i))
3607      return false;
3608
3609  return true;
3610}
3611
3612/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3613/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3614static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3615  if (!VT.is128BitVector())
3616    return false;
3617
3618  unsigned NumElems = VT.getVectorNumElements();
3619
3620  if (NumElems != 2 && NumElems != 4)
3621    return false;
3622
3623  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3624    if (!isUndefOrEqual(Mask[i], i))
3625      return false;
3626
3627  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3628    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3629      return false;
3630
3631  return true;
3632}
3633
3634//
3635// Some special combinations that can be optimized.
3636//
3637static
3638SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3639                               SelectionDAG &DAG) {
3640  MVT VT = SVOp->getValueType(0).getSimpleVT();
3641  SDLoc dl(SVOp);
3642
3643  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3644    return SDValue();
3645
3646  ArrayRef<int> Mask = SVOp->getMask();
3647
3648  // These are the special masks that may be optimized.
3649  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3650  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3651  bool MatchEvenMask = true;
3652  bool MatchOddMask  = true;
3653  for (int i=0; i<8; ++i) {
3654    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3655      MatchEvenMask = false;
3656    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3657      MatchOddMask = false;
3658  }
3659
3660  if (!MatchEvenMask && !MatchOddMask)
3661    return SDValue();
3662
3663  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3664
3665  SDValue Op0 = SVOp->getOperand(0);
3666  SDValue Op1 = SVOp->getOperand(1);
3667
3668  if (MatchEvenMask) {
3669    // Shift the second operand right to 32 bits.
3670    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3671    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3672  } else {
3673    // Shift the first operand left to 32 bits.
3674    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3675    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3676  }
3677  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3678  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3679}
3680
3681/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3682/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3683static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3684                         bool HasInt256, bool V2IsSplat = false) {
3685  unsigned NumElts = VT.getVectorNumElements();
3686
3687  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3688         "Unsupported vector type for unpckh");
3689
3690  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3691      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3692    return false;
3693
3694  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3695  // independently on 128-bit lanes.
3696  unsigned NumLanes = VT.getSizeInBits()/128;
3697  unsigned NumLaneElts = NumElts/NumLanes;
3698
3699  for (unsigned l = 0; l != NumLanes; ++l) {
3700    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3701         i != (l+1)*NumLaneElts;
3702         i += 2, ++j) {
3703      int BitI  = Mask[i];
3704      int BitI1 = Mask[i+1];
3705      if (!isUndefOrEqual(BitI, j))
3706        return false;
3707      if (V2IsSplat) {
3708        if (!isUndefOrEqual(BitI1, NumElts))
3709          return false;
3710      } else {
3711        if (!isUndefOrEqual(BitI1, j + NumElts))
3712          return false;
3713      }
3714    }
3715  }
3716
3717  return true;
3718}
3719
3720/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3721/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3722static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3723                         bool HasInt256, bool V2IsSplat = false) {
3724  unsigned NumElts = VT.getVectorNumElements();
3725
3726  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3727         "Unsupported vector type for unpckh");
3728
3729  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3730      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3731    return false;
3732
3733  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3734  // independently on 128-bit lanes.
3735  unsigned NumLanes = VT.getSizeInBits()/128;
3736  unsigned NumLaneElts = NumElts/NumLanes;
3737
3738  for (unsigned l = 0; l != NumLanes; ++l) {
3739    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3740         i != (l+1)*NumLaneElts; i += 2, ++j) {
3741      int BitI  = Mask[i];
3742      int BitI1 = Mask[i+1];
3743      if (!isUndefOrEqual(BitI, j))
3744        return false;
3745      if (V2IsSplat) {
3746        if (isUndefOrEqual(BitI1, NumElts))
3747          return false;
3748      } else {
3749        if (!isUndefOrEqual(BitI1, j+NumElts))
3750          return false;
3751      }
3752    }
3753  }
3754  return true;
3755}
3756
3757/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3758/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3759/// <0, 0, 1, 1>
3760static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3761  unsigned NumElts = VT.getVectorNumElements();
3762  bool Is256BitVec = VT.is256BitVector();
3763
3764  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3765         "Unsupported vector type for unpckh");
3766
3767  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
3768      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3769    return false;
3770
3771  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3772  // FIXME: Need a better way to get rid of this, there's no latency difference
3773  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3774  // the former later. We should also remove the "_undef" special mask.
3775  if (NumElts == 4 && Is256BitVec)
3776    return false;
3777
3778  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3779  // independently on 128-bit lanes.
3780  unsigned NumLanes = VT.getSizeInBits()/128;
3781  unsigned NumLaneElts = NumElts/NumLanes;
3782
3783  for (unsigned l = 0; l != NumLanes; ++l) {
3784    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3785         i != (l+1)*NumLaneElts;
3786         i += 2, ++j) {
3787      int BitI  = Mask[i];
3788      int BitI1 = Mask[i+1];
3789
3790      if (!isUndefOrEqual(BitI, j))
3791        return false;
3792      if (!isUndefOrEqual(BitI1, j))
3793        return false;
3794    }
3795  }
3796
3797  return true;
3798}
3799
3800/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3801/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3802/// <2, 2, 3, 3>
3803static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3804  unsigned NumElts = VT.getVectorNumElements();
3805
3806  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3807         "Unsupported vector type for unpckh");
3808
3809  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3810      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3811    return false;
3812
3813  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3814  // independently on 128-bit lanes.
3815  unsigned NumLanes = VT.getSizeInBits()/128;
3816  unsigned NumLaneElts = NumElts/NumLanes;
3817
3818  for (unsigned l = 0; l != NumLanes; ++l) {
3819    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3820         i != (l+1)*NumLaneElts; i += 2, ++j) {
3821      int BitI  = Mask[i];
3822      int BitI1 = Mask[i+1];
3823      if (!isUndefOrEqual(BitI, j))
3824        return false;
3825      if (!isUndefOrEqual(BitI1, j))
3826        return false;
3827    }
3828  }
3829  return true;
3830}
3831
3832/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3833/// specifies a shuffle of elements that is suitable for input to MOVSS,
3834/// MOVSD, and MOVD, i.e. setting the lowest element.
3835static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3836  if (VT.getVectorElementType().getSizeInBits() < 32)
3837    return false;
3838  if (!VT.is128BitVector())
3839    return false;
3840
3841  unsigned NumElts = VT.getVectorNumElements();
3842
3843  if (!isUndefOrEqual(Mask[0], NumElts))
3844    return false;
3845
3846  for (unsigned i = 1; i != NumElts; ++i)
3847    if (!isUndefOrEqual(Mask[i], i))
3848      return false;
3849
3850  return true;
3851}
3852
3853/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3854/// as permutations between 128-bit chunks or halves. As an example: this
3855/// shuffle bellow:
3856///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3857/// The first half comes from the second half of V1 and the second half from the
3858/// the second half of V2.
3859static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3860  if (!HasFp256 || !VT.is256BitVector())
3861    return false;
3862
3863  // The shuffle result is divided into half A and half B. In total the two
3864  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3865  // B must come from C, D, E or F.
3866  unsigned HalfSize = VT.getVectorNumElements()/2;
3867  bool MatchA = false, MatchB = false;
3868
3869  // Check if A comes from one of C, D, E, F.
3870  for (unsigned Half = 0; Half != 4; ++Half) {
3871    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3872      MatchA = true;
3873      break;
3874    }
3875  }
3876
3877  // Check if B comes from one of C, D, E, F.
3878  for (unsigned Half = 0; Half != 4; ++Half) {
3879    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3880      MatchB = true;
3881      break;
3882    }
3883  }
3884
3885  return MatchA && MatchB;
3886}
3887
3888/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3889/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3890static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3891  MVT VT = SVOp->getValueType(0).getSimpleVT();
3892
3893  unsigned HalfSize = VT.getVectorNumElements()/2;
3894
3895  unsigned FstHalf = 0, SndHalf = 0;
3896  for (unsigned i = 0; i < HalfSize; ++i) {
3897    if (SVOp->getMaskElt(i) > 0) {
3898      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3899      break;
3900    }
3901  }
3902  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3903    if (SVOp->getMaskElt(i) > 0) {
3904      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3905      break;
3906    }
3907  }
3908
3909  return (FstHalf | (SndHalf << 4));
3910}
3911
3912/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3913/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3914/// Note that VPERMIL mask matching is different depending whether theunderlying
3915/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3916/// to the same elements of the low, but to the higher half of the source.
3917/// In VPERMILPD the two lanes could be shuffled independently of each other
3918/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3919static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3920  if (!HasFp256)
3921    return false;
3922
3923  unsigned NumElts = VT.getVectorNumElements();
3924  // Only match 256-bit with 32/64-bit types
3925  if (!VT.is256BitVector() || (NumElts != 4 && NumElts != 8))
3926    return false;
3927
3928  unsigned NumLanes = VT.getSizeInBits()/128;
3929  unsigned LaneSize = NumElts/NumLanes;
3930  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3931    for (unsigned i = 0; i != LaneSize; ++i) {
3932      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3933        return false;
3934      if (NumElts != 8 || l == 0)
3935        continue;
3936      // VPERMILPS handling
3937      if (Mask[i] < 0)
3938        continue;
3939      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3940        return false;
3941    }
3942  }
3943
3944  return true;
3945}
3946
3947/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3948/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3949/// element of vector 2 and the other elements to come from vector 1 in order.
3950static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3951                               bool V2IsSplat = false, bool V2IsUndef = false) {
3952  if (!VT.is128BitVector())
3953    return false;
3954
3955  unsigned NumOps = VT.getVectorNumElements();
3956  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3957    return false;
3958
3959  if (!isUndefOrEqual(Mask[0], 0))
3960    return false;
3961
3962  for (unsigned i = 1; i != NumOps; ++i)
3963    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3964          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3965          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3966      return false;
3967
3968  return true;
3969}
3970
3971/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3972/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3973/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3974static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3975                           const X86Subtarget *Subtarget) {
3976  if (!Subtarget->hasSSE3())
3977    return false;
3978
3979  unsigned NumElems = VT.getVectorNumElements();
3980
3981  if ((VT.is128BitVector() && NumElems != 4) ||
3982      (VT.is256BitVector() && NumElems != 8))
3983    return false;
3984
3985  // "i+1" is the value the indexed mask element must have
3986  for (unsigned i = 0; i != NumElems; i += 2)
3987    if (!isUndefOrEqual(Mask[i], i+1) ||
3988        !isUndefOrEqual(Mask[i+1], i+1))
3989      return false;
3990
3991  return true;
3992}
3993
3994/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3995/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3996/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3997static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3998                           const X86Subtarget *Subtarget) {
3999  if (!Subtarget->hasSSE3())
4000    return false;
4001
4002  unsigned NumElems = VT.getVectorNumElements();
4003
4004  if ((VT.is128BitVector() && NumElems != 4) ||
4005      (VT.is256BitVector() && NumElems != 8))
4006    return false;
4007
4008  // "i" is the value the indexed mask element must have
4009  for (unsigned i = 0; i != NumElems; i += 2)
4010    if (!isUndefOrEqual(Mask[i], i) ||
4011        !isUndefOrEqual(Mask[i+1], i))
4012      return false;
4013
4014  return true;
4015}
4016
4017/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4018/// specifies a shuffle of elements that is suitable for input to 256-bit
4019/// version of MOVDDUP.
4020static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
4021  if (!HasFp256 || !VT.is256BitVector())
4022    return false;
4023
4024  unsigned NumElts = VT.getVectorNumElements();
4025  if (NumElts != 4)
4026    return false;
4027
4028  for (unsigned i = 0; i != NumElts/2; ++i)
4029    if (!isUndefOrEqual(Mask[i], 0))
4030      return false;
4031  for (unsigned i = NumElts/2; i != NumElts; ++i)
4032    if (!isUndefOrEqual(Mask[i], NumElts/2))
4033      return false;
4034  return true;
4035}
4036
4037/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4038/// specifies a shuffle of elements that is suitable for input to 128-bit
4039/// version of MOVDDUP.
4040static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
4041  if (!VT.is128BitVector())
4042    return false;
4043
4044  unsigned e = VT.getVectorNumElements() / 2;
4045  for (unsigned i = 0; i != e; ++i)
4046    if (!isUndefOrEqual(Mask[i], i))
4047      return false;
4048  for (unsigned i = 0; i != e; ++i)
4049    if (!isUndefOrEqual(Mask[e+i], i))
4050      return false;
4051  return true;
4052}
4053
4054/// isVEXTRACTF128Index - Return true if the specified
4055/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4056/// suitable for input to VEXTRACTF128.
4057bool X86::isVEXTRACTF128Index(SDNode *N) {
4058  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4059    return false;
4060
4061  // The index should be aligned on a 128-bit boundary.
4062  uint64_t Index =
4063    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4064
4065  MVT VT = N->getValueType(0).getSimpleVT();
4066  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4067  bool Result = (Index * ElSize) % 128 == 0;
4068
4069  return Result;
4070}
4071
4072/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4073/// operand specifies a subvector insert that is suitable for input to
4074/// VINSERTF128.
4075bool X86::isVINSERTF128Index(SDNode *N) {
4076  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4077    return false;
4078
4079  // The index should be aligned on a 128-bit boundary.
4080  uint64_t Index =
4081    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4082
4083  MVT VT = N->getValueType(0).getSimpleVT();
4084  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4085  bool Result = (Index * ElSize) % 128 == 0;
4086
4087  return Result;
4088}
4089
4090/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4091/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4092/// Handles 128-bit and 256-bit.
4093static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4094  MVT VT = N->getValueType(0).getSimpleVT();
4095
4096  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4097         "Unsupported vector type for PSHUF/SHUFP");
4098
4099  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4100  // independently on 128-bit lanes.
4101  unsigned NumElts = VT.getVectorNumElements();
4102  unsigned NumLanes = VT.getSizeInBits()/128;
4103  unsigned NumLaneElts = NumElts/NumLanes;
4104
4105  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
4106         "Only supports 2 or 4 elements per lane");
4107
4108  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
4109  unsigned Mask = 0;
4110  for (unsigned i = 0; i != NumElts; ++i) {
4111    int Elt = N->getMaskElt(i);
4112    if (Elt < 0) continue;
4113    Elt &= NumLaneElts - 1;
4114    unsigned ShAmt = (i << Shift) % 8;
4115    Mask |= Elt << ShAmt;
4116  }
4117
4118  return Mask;
4119}
4120
4121/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4122/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4123static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4124  MVT VT = N->getValueType(0).getSimpleVT();
4125
4126  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4127         "Unsupported vector type for PSHUFHW");
4128
4129  unsigned NumElts = VT.getVectorNumElements();
4130
4131  unsigned Mask = 0;
4132  for (unsigned l = 0; l != NumElts; l += 8) {
4133    // 8 nodes per lane, but we only care about the last 4.
4134    for (unsigned i = 0; i < 4; ++i) {
4135      int Elt = N->getMaskElt(l+i+4);
4136      if (Elt < 0) continue;
4137      Elt &= 0x3; // only 2-bits.
4138      Mask |= Elt << (i * 2);
4139    }
4140  }
4141
4142  return Mask;
4143}
4144
4145/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4146/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4147static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4148  MVT VT = N->getValueType(0).getSimpleVT();
4149
4150  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4151         "Unsupported vector type for PSHUFHW");
4152
4153  unsigned NumElts = VT.getVectorNumElements();
4154
4155  unsigned Mask = 0;
4156  for (unsigned l = 0; l != NumElts; l += 8) {
4157    // 8 nodes per lane, but we only care about the first 4.
4158    for (unsigned i = 0; i < 4; ++i) {
4159      int Elt = N->getMaskElt(l+i);
4160      if (Elt < 0) continue;
4161      Elt &= 0x3; // only 2-bits
4162      Mask |= Elt << (i * 2);
4163    }
4164  }
4165
4166  return Mask;
4167}
4168
4169/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4170/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4171static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4172  MVT VT = SVOp->getValueType(0).getSimpleVT();
4173  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4174
4175  unsigned NumElts = VT.getVectorNumElements();
4176  unsigned NumLanes = VT.getSizeInBits()/128;
4177  unsigned NumLaneElts = NumElts/NumLanes;
4178
4179  int Val = 0;
4180  unsigned i;
4181  for (i = 0; i != NumElts; ++i) {
4182    Val = SVOp->getMaskElt(i);
4183    if (Val >= 0)
4184      break;
4185  }
4186  if (Val >= (int)NumElts)
4187    Val -= NumElts - NumLaneElts;
4188
4189  assert(Val - i > 0 && "PALIGNR imm should be positive");
4190  return (Val - i) * EltSize;
4191}
4192
4193/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4194/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4195/// instructions.
4196unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4197  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4198    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4199
4200  uint64_t Index =
4201    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4202
4203  MVT VecVT = N->getOperand(0).getValueType().getSimpleVT();
4204  MVT ElVT = VecVT.getVectorElementType();
4205
4206  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4207  return Index / NumElemsPerChunk;
4208}
4209
4210/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4211/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4212/// instructions.
4213unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4214  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4215    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4216
4217  uint64_t Index =
4218    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4219
4220  MVT VecVT = N->getValueType(0).getSimpleVT();
4221  MVT ElVT = VecVT.getVectorElementType();
4222
4223  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4224  return Index / NumElemsPerChunk;
4225}
4226
4227/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4228/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4229/// Handles 256-bit.
4230static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4231  MVT VT = N->getValueType(0).getSimpleVT();
4232
4233  unsigned NumElts = VT.getVectorNumElements();
4234
4235  assert((VT.is256BitVector() && NumElts == 4) &&
4236         "Unsupported vector type for VPERMQ/VPERMPD");
4237
4238  unsigned Mask = 0;
4239  for (unsigned i = 0; i != NumElts; ++i) {
4240    int Elt = N->getMaskElt(i);
4241    if (Elt < 0)
4242      continue;
4243    Mask |= Elt << (i*2);
4244  }
4245
4246  return Mask;
4247}
4248/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4249/// constant +0.0.
4250bool X86::isZeroNode(SDValue Elt) {
4251  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt))
4252    return CN->isNullValue();
4253  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
4254    return CFP->getValueAPF().isPosZero();
4255  return false;
4256}
4257
4258/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4259/// their permute mask.
4260static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4261                                    SelectionDAG &DAG) {
4262  MVT VT = SVOp->getValueType(0).getSimpleVT();
4263  unsigned NumElems = VT.getVectorNumElements();
4264  SmallVector<int, 8> MaskVec;
4265
4266  for (unsigned i = 0; i != NumElems; ++i) {
4267    int Idx = SVOp->getMaskElt(i);
4268    if (Idx >= 0) {
4269      if (Idx < (int)NumElems)
4270        Idx += NumElems;
4271      else
4272        Idx -= NumElems;
4273    }
4274    MaskVec.push_back(Idx);
4275  }
4276  return DAG.getVectorShuffle(VT, SDLoc(SVOp), SVOp->getOperand(1),
4277                              SVOp->getOperand(0), &MaskVec[0]);
4278}
4279
4280/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4281/// match movhlps. The lower half elements should come from upper half of
4282/// V1 (and in order), and the upper half elements should come from the upper
4283/// half of V2 (and in order).
4284static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4285  if (!VT.is128BitVector())
4286    return false;
4287  if (VT.getVectorNumElements() != 4)
4288    return false;
4289  for (unsigned i = 0, e = 2; i != e; ++i)
4290    if (!isUndefOrEqual(Mask[i], i+2))
4291      return false;
4292  for (unsigned i = 2; i != 4; ++i)
4293    if (!isUndefOrEqual(Mask[i], i+4))
4294      return false;
4295  return true;
4296}
4297
4298/// isScalarLoadToVector - Returns true if the node is a scalar load that
4299/// is promoted to a vector. It also returns the LoadSDNode by reference if
4300/// required.
4301static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4302  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4303    return false;
4304  N = N->getOperand(0).getNode();
4305  if (!ISD::isNON_EXTLoad(N))
4306    return false;
4307  if (LD)
4308    *LD = cast<LoadSDNode>(N);
4309  return true;
4310}
4311
4312// Test whether the given value is a vector value which will be legalized
4313// into a load.
4314static bool WillBeConstantPoolLoad(SDNode *N) {
4315  if (N->getOpcode() != ISD::BUILD_VECTOR)
4316    return false;
4317
4318  // Check for any non-constant elements.
4319  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4320    switch (N->getOperand(i).getNode()->getOpcode()) {
4321    case ISD::UNDEF:
4322    case ISD::ConstantFP:
4323    case ISD::Constant:
4324      break;
4325    default:
4326      return false;
4327    }
4328
4329  // Vectors of all-zeros and all-ones are materialized with special
4330  // instructions rather than being loaded.
4331  return !ISD::isBuildVectorAllZeros(N) &&
4332         !ISD::isBuildVectorAllOnes(N);
4333}
4334
4335/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4336/// match movlp{s|d}. The lower half elements should come from lower half of
4337/// V1 (and in order), and the upper half elements should come from the upper
4338/// half of V2 (and in order). And since V1 will become the source of the
4339/// MOVLP, it must be either a vector load or a scalar load to vector.
4340static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4341                               ArrayRef<int> Mask, EVT VT) {
4342  if (!VT.is128BitVector())
4343    return false;
4344
4345  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4346    return false;
4347  // Is V2 is a vector load, don't do this transformation. We will try to use
4348  // load folding shufps op.
4349  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4350    return false;
4351
4352  unsigned NumElems = VT.getVectorNumElements();
4353
4354  if (NumElems != 2 && NumElems != 4)
4355    return false;
4356  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4357    if (!isUndefOrEqual(Mask[i], i))
4358      return false;
4359  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4360    if (!isUndefOrEqual(Mask[i], i+NumElems))
4361      return false;
4362  return true;
4363}
4364
4365/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4366/// all the same.
4367static bool isSplatVector(SDNode *N) {
4368  if (N->getOpcode() != ISD::BUILD_VECTOR)
4369    return false;
4370
4371  SDValue SplatValue = N->getOperand(0);
4372  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4373    if (N->getOperand(i) != SplatValue)
4374      return false;
4375  return true;
4376}
4377
4378/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4379/// to an zero vector.
4380/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4381static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4382  SDValue V1 = N->getOperand(0);
4383  SDValue V2 = N->getOperand(1);
4384  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4385  for (unsigned i = 0; i != NumElems; ++i) {
4386    int Idx = N->getMaskElt(i);
4387    if (Idx >= (int)NumElems) {
4388      unsigned Opc = V2.getOpcode();
4389      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4390        continue;
4391      if (Opc != ISD::BUILD_VECTOR ||
4392          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4393        return false;
4394    } else if (Idx >= 0) {
4395      unsigned Opc = V1.getOpcode();
4396      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4397        continue;
4398      if (Opc != ISD::BUILD_VECTOR ||
4399          !X86::isZeroNode(V1.getOperand(Idx)))
4400        return false;
4401    }
4402  }
4403  return true;
4404}
4405
4406/// getZeroVector - Returns a vector of specified type with all zero elements.
4407///
4408static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4409                             SelectionDAG &DAG, SDLoc dl) {
4410  assert(VT.isVector() && "Expected a vector type");
4411
4412  // Always build SSE zero vectors as <4 x i32> bitcasted
4413  // to their dest type. This ensures they get CSE'd.
4414  SDValue Vec;
4415  if (VT.is128BitVector()) {  // SSE
4416    if (Subtarget->hasSSE2()) {  // SSE2
4417      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4418      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4419    } else { // SSE1
4420      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4421      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4422    }
4423  } else if (VT.is256BitVector()) { // AVX
4424    if (Subtarget->hasInt256()) { // AVX2
4425      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4426      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4427      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4428                        array_lengthof(Ops));
4429    } else {
4430      // 256-bit logic and arithmetic instructions in AVX are all
4431      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4432      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4433      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4434      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops,
4435                        array_lengthof(Ops));
4436    }
4437  } else
4438    llvm_unreachable("Unexpected vector type");
4439
4440  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4441}
4442
4443/// getOnesVector - Returns a vector of specified type with all bits set.
4444/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4445/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4446/// Then bitcast to their original type, ensuring they get CSE'd.
4447static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4448                             SDLoc dl) {
4449  assert(VT.isVector() && "Expected a vector type");
4450
4451  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4452  SDValue Vec;
4453  if (VT.is256BitVector()) {
4454    if (HasInt256) { // AVX2
4455      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4456      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4457                        array_lengthof(Ops));
4458    } else { // AVX
4459      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4460      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4461    }
4462  } else if (VT.is128BitVector()) {
4463    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4464  } else
4465    llvm_unreachable("Unexpected vector type");
4466
4467  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4468}
4469
4470/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4471/// that point to V2 points to its first element.
4472static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4473  for (unsigned i = 0; i != NumElems; ++i) {
4474    if (Mask[i] > (int)NumElems) {
4475      Mask[i] = NumElems;
4476    }
4477  }
4478}
4479
4480/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4481/// operation of specified width.
4482static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
4483                       SDValue V2) {
4484  unsigned NumElems = VT.getVectorNumElements();
4485  SmallVector<int, 8> Mask;
4486  Mask.push_back(NumElems);
4487  for (unsigned i = 1; i != NumElems; ++i)
4488    Mask.push_back(i);
4489  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4490}
4491
4492/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4493static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
4494                          SDValue V2) {
4495  unsigned NumElems = VT.getVectorNumElements();
4496  SmallVector<int, 8> Mask;
4497  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4498    Mask.push_back(i);
4499    Mask.push_back(i + NumElems);
4500  }
4501  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4502}
4503
4504/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4505static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
4506                          SDValue V2) {
4507  unsigned NumElems = VT.getVectorNumElements();
4508  SmallVector<int, 8> Mask;
4509  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4510    Mask.push_back(i + Half);
4511    Mask.push_back(i + NumElems + Half);
4512  }
4513  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4514}
4515
4516// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4517// a generic shuffle instruction because the target has no such instructions.
4518// Generate shuffles which repeat i16 and i8 several times until they can be
4519// represented by v4f32 and then be manipulated by target suported shuffles.
4520static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4521  EVT VT = V.getValueType();
4522  int NumElems = VT.getVectorNumElements();
4523  SDLoc dl(V);
4524
4525  while (NumElems > 4) {
4526    if (EltNo < NumElems/2) {
4527      V = getUnpackl(DAG, dl, VT, V, V);
4528    } else {
4529      V = getUnpackh(DAG, dl, VT, V, V);
4530      EltNo -= NumElems/2;
4531    }
4532    NumElems >>= 1;
4533  }
4534  return V;
4535}
4536
4537/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4538static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4539  EVT VT = V.getValueType();
4540  SDLoc dl(V);
4541
4542  if (VT.is128BitVector()) {
4543    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4544    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4545    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4546                             &SplatMask[0]);
4547  } else if (VT.is256BitVector()) {
4548    // To use VPERMILPS to splat scalars, the second half of indicies must
4549    // refer to the higher part, which is a duplication of the lower one,
4550    // because VPERMILPS can only handle in-lane permutations.
4551    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4552                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4553
4554    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4555    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4556                             &SplatMask[0]);
4557  } else
4558    llvm_unreachable("Vector size not supported");
4559
4560  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4561}
4562
4563/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4564static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4565  EVT SrcVT = SV->getValueType(0);
4566  SDValue V1 = SV->getOperand(0);
4567  SDLoc dl(SV);
4568
4569  int EltNo = SV->getSplatIndex();
4570  int NumElems = SrcVT.getVectorNumElements();
4571  bool Is256BitVec = SrcVT.is256BitVector();
4572
4573  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
4574         "Unknown how to promote splat for type");
4575
4576  // Extract the 128-bit part containing the splat element and update
4577  // the splat element index when it refers to the higher register.
4578  if (Is256BitVec) {
4579    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4580    if (EltNo >= NumElems/2)
4581      EltNo -= NumElems/2;
4582  }
4583
4584  // All i16 and i8 vector types can't be used directly by a generic shuffle
4585  // instruction because the target has no such instruction. Generate shuffles
4586  // which repeat i16 and i8 several times until they fit in i32, and then can
4587  // be manipulated by target suported shuffles.
4588  EVT EltVT = SrcVT.getVectorElementType();
4589  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4590    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4591
4592  // Recreate the 256-bit vector and place the same 128-bit vector
4593  // into the low and high part. This is necessary because we want
4594  // to use VPERM* to shuffle the vectors
4595  if (Is256BitVec) {
4596    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4597  }
4598
4599  return getLegalSplat(DAG, V1, EltNo);
4600}
4601
4602/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4603/// vector of zero or undef vector.  This produces a shuffle where the low
4604/// element of V2 is swizzled into the zero/undef vector, landing at element
4605/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4606static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4607                                           bool IsZero,
4608                                           const X86Subtarget *Subtarget,
4609                                           SelectionDAG &DAG) {
4610  EVT VT = V2.getValueType();
4611  SDValue V1 = IsZero
4612    ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
4613  unsigned NumElems = VT.getVectorNumElements();
4614  SmallVector<int, 16> MaskVec;
4615  for (unsigned i = 0; i != NumElems; ++i)
4616    // If this is the insertion idx, put the low elt of V2 here.
4617    MaskVec.push_back(i == Idx ? NumElems : i);
4618  return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
4619}
4620
4621/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4622/// target specific opcode. Returns true if the Mask could be calculated.
4623/// Sets IsUnary to true if only uses one source.
4624static bool getTargetShuffleMask(SDNode *N, MVT VT,
4625                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4626  unsigned NumElems = VT.getVectorNumElements();
4627  SDValue ImmN;
4628
4629  IsUnary = false;
4630  switch(N->getOpcode()) {
4631  case X86ISD::SHUFP:
4632    ImmN = N->getOperand(N->getNumOperands()-1);
4633    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4634    break;
4635  case X86ISD::UNPCKH:
4636    DecodeUNPCKHMask(VT, Mask);
4637    break;
4638  case X86ISD::UNPCKL:
4639    DecodeUNPCKLMask(VT, Mask);
4640    break;
4641  case X86ISD::MOVHLPS:
4642    DecodeMOVHLPSMask(NumElems, Mask);
4643    break;
4644  case X86ISD::MOVLHPS:
4645    DecodeMOVLHPSMask(NumElems, Mask);
4646    break;
4647  case X86ISD::PALIGNR:
4648    ImmN = N->getOperand(N->getNumOperands()-1);
4649    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4650    break;
4651  case X86ISD::PSHUFD:
4652  case X86ISD::VPERMILP:
4653    ImmN = N->getOperand(N->getNumOperands()-1);
4654    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4655    IsUnary = true;
4656    break;
4657  case X86ISD::PSHUFHW:
4658    ImmN = N->getOperand(N->getNumOperands()-1);
4659    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4660    IsUnary = true;
4661    break;
4662  case X86ISD::PSHUFLW:
4663    ImmN = N->getOperand(N->getNumOperands()-1);
4664    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4665    IsUnary = true;
4666    break;
4667  case X86ISD::VPERMI:
4668    ImmN = N->getOperand(N->getNumOperands()-1);
4669    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4670    IsUnary = true;
4671    break;
4672  case X86ISD::MOVSS:
4673  case X86ISD::MOVSD: {
4674    // The index 0 always comes from the first element of the second source,
4675    // this is why MOVSS and MOVSD are used in the first place. The other
4676    // elements come from the other positions of the first source vector
4677    Mask.push_back(NumElems);
4678    for (unsigned i = 1; i != NumElems; ++i) {
4679      Mask.push_back(i);
4680    }
4681    break;
4682  }
4683  case X86ISD::VPERM2X128:
4684    ImmN = N->getOperand(N->getNumOperands()-1);
4685    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4686    if (Mask.empty()) return false;
4687    break;
4688  case X86ISD::MOVDDUP:
4689  case X86ISD::MOVLHPD:
4690  case X86ISD::MOVLPD:
4691  case X86ISD::MOVLPS:
4692  case X86ISD::MOVSHDUP:
4693  case X86ISD::MOVSLDUP:
4694    // Not yet implemented
4695    return false;
4696  default: llvm_unreachable("unknown target shuffle node");
4697  }
4698
4699  return true;
4700}
4701
4702/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4703/// element of the result of the vector shuffle.
4704static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4705                                   unsigned Depth) {
4706  if (Depth == 6)
4707    return SDValue();  // Limit search depth.
4708
4709  SDValue V = SDValue(N, 0);
4710  EVT VT = V.getValueType();
4711  unsigned Opcode = V.getOpcode();
4712
4713  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4714  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4715    int Elt = SV->getMaskElt(Index);
4716
4717    if (Elt < 0)
4718      return DAG.getUNDEF(VT.getVectorElementType());
4719
4720    unsigned NumElems = VT.getVectorNumElements();
4721    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4722                                         : SV->getOperand(1);
4723    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4724  }
4725
4726  // Recurse into target specific vector shuffles to find scalars.
4727  if (isTargetShuffle(Opcode)) {
4728    MVT ShufVT = V.getValueType().getSimpleVT();
4729    unsigned NumElems = ShufVT.getVectorNumElements();
4730    SmallVector<int, 16> ShuffleMask;
4731    bool IsUnary;
4732
4733    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4734      return SDValue();
4735
4736    int Elt = ShuffleMask[Index];
4737    if (Elt < 0)
4738      return DAG.getUNDEF(ShufVT.getVectorElementType());
4739
4740    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4741                                         : N->getOperand(1);
4742    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4743                               Depth+1);
4744  }
4745
4746  // Actual nodes that may contain scalar elements
4747  if (Opcode == ISD::BITCAST) {
4748    V = V.getOperand(0);
4749    EVT SrcVT = V.getValueType();
4750    unsigned NumElems = VT.getVectorNumElements();
4751
4752    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4753      return SDValue();
4754  }
4755
4756  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4757    return (Index == 0) ? V.getOperand(0)
4758                        : DAG.getUNDEF(VT.getVectorElementType());
4759
4760  if (V.getOpcode() == ISD::BUILD_VECTOR)
4761    return V.getOperand(Index);
4762
4763  return SDValue();
4764}
4765
4766/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4767/// shuffle operation which come from a consecutively from a zero. The
4768/// search can start in two different directions, from left or right.
4769/// We count undefs as zeros until PreferredNum is reached.
4770static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp,
4771                                         unsigned NumElems, bool ZerosFromLeft,
4772                                         SelectionDAG &DAG,
4773                                         unsigned PreferredNum = -1U) {
4774  unsigned NumZeros = 0;
4775  for (unsigned i = 0; i != NumElems; ++i) {
4776    unsigned Index = ZerosFromLeft ? i : NumElems - i - 1;
4777    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4778    if (!Elt.getNode())
4779      break;
4780
4781    if (X86::isZeroNode(Elt))
4782      ++NumZeros;
4783    else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum.
4784      NumZeros = std::min(NumZeros + 1, PreferredNum);
4785    else
4786      break;
4787  }
4788
4789  return NumZeros;
4790}
4791
4792/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4793/// correspond consecutively to elements from one of the vector operands,
4794/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4795static
4796bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4797                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4798                              unsigned NumElems, unsigned &OpNum) {
4799  bool SeenV1 = false;
4800  bool SeenV2 = false;
4801
4802  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4803    int Idx = SVOp->getMaskElt(i);
4804    // Ignore undef indicies
4805    if (Idx < 0)
4806      continue;
4807
4808    if (Idx < (int)NumElems)
4809      SeenV1 = true;
4810    else
4811      SeenV2 = true;
4812
4813    // Only accept consecutive elements from the same vector
4814    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4815      return false;
4816  }
4817
4818  OpNum = SeenV1 ? 0 : 1;
4819  return true;
4820}
4821
4822/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4823/// logical left shift of a vector.
4824static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4825                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4826  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4827  unsigned NumZeros = getNumOfConsecutiveZeros(
4828      SVOp, NumElems, false /* check zeros from right */, DAG,
4829      SVOp->getMaskElt(0));
4830  unsigned OpSrc;
4831
4832  if (!NumZeros)
4833    return false;
4834
4835  // Considering the elements in the mask that are not consecutive zeros,
4836  // check if they consecutively come from only one of the source vectors.
4837  //
4838  //               V1 = {X, A, B, C}     0
4839  //                         \  \  \    /
4840  //   vector_shuffle V1, V2 <1, 2, 3, X>
4841  //
4842  if (!isShuffleMaskConsecutive(SVOp,
4843            0,                   // Mask Start Index
4844            NumElems-NumZeros,   // Mask End Index(exclusive)
4845            NumZeros,            // Where to start looking in the src vector
4846            NumElems,            // Number of elements in vector
4847            OpSrc))              // Which source operand ?
4848    return false;
4849
4850  isLeft = false;
4851  ShAmt = NumZeros;
4852  ShVal = SVOp->getOperand(OpSrc);
4853  return true;
4854}
4855
4856/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4857/// logical left shift of a vector.
4858static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4859                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4860  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4861  unsigned NumZeros = getNumOfConsecutiveZeros(
4862      SVOp, NumElems, true /* check zeros from left */, DAG,
4863      NumElems - SVOp->getMaskElt(NumElems - 1) - 1);
4864  unsigned OpSrc;
4865
4866  if (!NumZeros)
4867    return false;
4868
4869  // Considering the elements in the mask that are not consecutive zeros,
4870  // check if they consecutively come from only one of the source vectors.
4871  //
4872  //                           0    { A, B, X, X } = V2
4873  //                          / \    /  /
4874  //   vector_shuffle V1, V2 <X, X, 4, 5>
4875  //
4876  if (!isShuffleMaskConsecutive(SVOp,
4877            NumZeros,     // Mask Start Index
4878            NumElems,     // Mask End Index(exclusive)
4879            0,            // Where to start looking in the src vector
4880            NumElems,     // Number of elements in vector
4881            OpSrc))       // Which source operand ?
4882    return false;
4883
4884  isLeft = true;
4885  ShAmt = NumZeros;
4886  ShVal = SVOp->getOperand(OpSrc);
4887  return true;
4888}
4889
4890/// isVectorShift - Returns true if the shuffle can be implemented as a
4891/// logical left or right shift of a vector.
4892static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4893                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4894  // Although the logic below support any bitwidth size, there are no
4895  // shift instructions which handle more than 128-bit vectors.
4896  if (!SVOp->getValueType(0).is128BitVector())
4897    return false;
4898
4899  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4900      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4901    return true;
4902
4903  return false;
4904}
4905
4906/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4907///
4908static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4909                                       unsigned NumNonZero, unsigned NumZero,
4910                                       SelectionDAG &DAG,
4911                                       const X86Subtarget* Subtarget,
4912                                       const TargetLowering &TLI) {
4913  if (NumNonZero > 8)
4914    return SDValue();
4915
4916  SDLoc dl(Op);
4917  SDValue V(0, 0);
4918  bool First = true;
4919  for (unsigned i = 0; i < 16; ++i) {
4920    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4921    if (ThisIsNonZero && First) {
4922      if (NumZero)
4923        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4924      else
4925        V = DAG.getUNDEF(MVT::v8i16);
4926      First = false;
4927    }
4928
4929    if ((i & 1) != 0) {
4930      SDValue ThisElt(0, 0), LastElt(0, 0);
4931      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4932      if (LastIsNonZero) {
4933        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4934                              MVT::i16, Op.getOperand(i-1));
4935      }
4936      if (ThisIsNonZero) {
4937        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4938        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4939                              ThisElt, DAG.getConstant(8, MVT::i8));
4940        if (LastIsNonZero)
4941          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4942      } else
4943        ThisElt = LastElt;
4944
4945      if (ThisElt.getNode())
4946        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4947                        DAG.getIntPtrConstant(i/2));
4948    }
4949  }
4950
4951  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4952}
4953
4954/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4955///
4956static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4957                                     unsigned NumNonZero, unsigned NumZero,
4958                                     SelectionDAG &DAG,
4959                                     const X86Subtarget* Subtarget,
4960                                     const TargetLowering &TLI) {
4961  if (NumNonZero > 4)
4962    return SDValue();
4963
4964  SDLoc dl(Op);
4965  SDValue V(0, 0);
4966  bool First = true;
4967  for (unsigned i = 0; i < 8; ++i) {
4968    bool isNonZero = (NonZeros & (1 << i)) != 0;
4969    if (isNonZero) {
4970      if (First) {
4971        if (NumZero)
4972          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4973        else
4974          V = DAG.getUNDEF(MVT::v8i16);
4975        First = false;
4976      }
4977      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4978                      MVT::v8i16, V, Op.getOperand(i),
4979                      DAG.getIntPtrConstant(i));
4980    }
4981  }
4982
4983  return V;
4984}
4985
4986/// getVShift - Return a vector logical shift node.
4987///
4988static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4989                         unsigned NumBits, SelectionDAG &DAG,
4990                         const TargetLowering &TLI, SDLoc dl) {
4991  assert(VT.is128BitVector() && "Unknown type for VShift");
4992  EVT ShVT = MVT::v2i64;
4993  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4994  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4995  return DAG.getNode(ISD::BITCAST, dl, VT,
4996                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4997                             DAG.getConstant(NumBits,
4998                                  TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
4999}
5000
5001SDValue
5002X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, SDLoc dl,
5003                                          SelectionDAG &DAG) const {
5004
5005  // Check if the scalar load can be widened into a vector load. And if
5006  // the address is "base + cst" see if the cst can be "absorbed" into
5007  // the shuffle mask.
5008  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
5009    SDValue Ptr = LD->getBasePtr();
5010    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
5011      return SDValue();
5012    EVT PVT = LD->getValueType(0);
5013    if (PVT != MVT::i32 && PVT != MVT::f32)
5014      return SDValue();
5015
5016    int FI = -1;
5017    int64_t Offset = 0;
5018    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
5019      FI = FINode->getIndex();
5020      Offset = 0;
5021    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
5022               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5023      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5024      Offset = Ptr.getConstantOperandVal(1);
5025      Ptr = Ptr.getOperand(0);
5026    } else {
5027      return SDValue();
5028    }
5029
5030    // FIXME: 256-bit vector instructions don't require a strict alignment,
5031    // improve this code to support it better.
5032    unsigned RequiredAlign = VT.getSizeInBits()/8;
5033    SDValue Chain = LD->getChain();
5034    // Make sure the stack object alignment is at least 16 or 32.
5035    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5036    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5037      if (MFI->isFixedObjectIndex(FI)) {
5038        // Can't change the alignment. FIXME: It's possible to compute
5039        // the exact stack offset and reference FI + adjust offset instead.
5040        // If someone *really* cares about this. That's the way to implement it.
5041        return SDValue();
5042      } else {
5043        MFI->setObjectAlignment(FI, RequiredAlign);
5044      }
5045    }
5046
5047    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5048    // Ptr + (Offset & ~15).
5049    if (Offset < 0)
5050      return SDValue();
5051    if ((Offset % RequiredAlign) & 3)
5052      return SDValue();
5053    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5054    if (StartOffset)
5055      Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
5056                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5057
5058    int EltNo = (Offset - StartOffset) >> 2;
5059    unsigned NumElems = VT.getVectorNumElements();
5060
5061    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5062    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5063                             LD->getPointerInfo().getWithOffset(StartOffset),
5064                             false, false, false, 0);
5065
5066    SmallVector<int, 8> Mask;
5067    for (unsigned i = 0; i != NumElems; ++i)
5068      Mask.push_back(EltNo);
5069
5070    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5071  }
5072
5073  return SDValue();
5074}
5075
5076/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5077/// vector of type 'VT', see if the elements can be replaced by a single large
5078/// load which has the same value as a build_vector whose operands are 'elts'.
5079///
5080/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5081///
5082/// FIXME: we'd also like to handle the case where the last elements are zero
5083/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5084/// There's even a handy isZeroNode for that purpose.
5085static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5086                                        SDLoc &DL, SelectionDAG &DAG) {
5087  EVT EltVT = VT.getVectorElementType();
5088  unsigned NumElems = Elts.size();
5089
5090  LoadSDNode *LDBase = NULL;
5091  unsigned LastLoadedElt = -1U;
5092
5093  // For each element in the initializer, see if we've found a load or an undef.
5094  // If we don't find an initial load element, or later load elements are
5095  // non-consecutive, bail out.
5096  for (unsigned i = 0; i < NumElems; ++i) {
5097    SDValue Elt = Elts[i];
5098
5099    if (!Elt.getNode() ||
5100        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5101      return SDValue();
5102    if (!LDBase) {
5103      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5104        return SDValue();
5105      LDBase = cast<LoadSDNode>(Elt.getNode());
5106      LastLoadedElt = i;
5107      continue;
5108    }
5109    if (Elt.getOpcode() == ISD::UNDEF)
5110      continue;
5111
5112    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5113    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5114      return SDValue();
5115    LastLoadedElt = i;
5116  }
5117
5118  // If we have found an entire vector of loads and undefs, then return a large
5119  // load of the entire vector width starting at the base pointer.  If we found
5120  // consecutive loads for the low half, generate a vzext_load node.
5121  if (LastLoadedElt == NumElems - 1) {
5122    SDValue NewLd = SDValue();
5123    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5124      NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5125                          LDBase->getPointerInfo(),
5126                          LDBase->isVolatile(), LDBase->isNonTemporal(),
5127                          LDBase->isInvariant(), 0);
5128    NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5129                        LDBase->getPointerInfo(),
5130                        LDBase->isVolatile(), LDBase->isNonTemporal(),
5131                        LDBase->isInvariant(), LDBase->getAlignment());
5132
5133    if (LDBase->hasAnyUseOfValue(1)) {
5134      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5135                                     SDValue(LDBase, 1),
5136                                     SDValue(NewLd.getNode(), 1));
5137      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5138      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5139                             SDValue(NewLd.getNode(), 1));
5140    }
5141
5142    return NewLd;
5143  }
5144  if (NumElems == 4 && LastLoadedElt == 1 &&
5145      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5146    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5147    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5148    SDValue ResNode =
5149        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops,
5150                                array_lengthof(Ops), MVT::i64,
5151                                LDBase->getPointerInfo(),
5152                                LDBase->getAlignment(),
5153                                false/*isVolatile*/, true/*ReadMem*/,
5154                                false/*WriteMem*/);
5155
5156    // Make sure the newly-created LOAD is in the same position as LDBase in
5157    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5158    // update uses of LDBase's output chain to use the TokenFactor.
5159    if (LDBase->hasAnyUseOfValue(1)) {
5160      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5161                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5162      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5163      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5164                             SDValue(ResNode.getNode(), 1));
5165    }
5166
5167    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5168  }
5169  return SDValue();
5170}
5171
5172/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5173/// to generate a splat value for the following cases:
5174/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5175/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5176/// a scalar load, or a constant.
5177/// The VBROADCAST node is returned when a pattern is found,
5178/// or SDValue() otherwise.
5179SDValue
5180X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5181  if (!Subtarget->hasFp256())
5182    return SDValue();
5183
5184  MVT VT = Op.getValueType().getSimpleVT();
5185  SDLoc dl(Op);
5186
5187  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5188         "Unsupported vector type for broadcast.");
5189
5190  SDValue Ld;
5191  bool ConstSplatVal;
5192
5193  switch (Op.getOpcode()) {
5194    default:
5195      // Unknown pattern found.
5196      return SDValue();
5197
5198    case ISD::BUILD_VECTOR: {
5199      // The BUILD_VECTOR node must be a splat.
5200      if (!isSplatVector(Op.getNode()))
5201        return SDValue();
5202
5203      Ld = Op.getOperand(0);
5204      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5205                     Ld.getOpcode() == ISD::ConstantFP);
5206
5207      // The suspected load node has several users. Make sure that all
5208      // of its users are from the BUILD_VECTOR node.
5209      // Constants may have multiple users.
5210      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5211        return SDValue();
5212      break;
5213    }
5214
5215    case ISD::VECTOR_SHUFFLE: {
5216      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5217
5218      // Shuffles must have a splat mask where the first element is
5219      // broadcasted.
5220      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5221        return SDValue();
5222
5223      SDValue Sc = Op.getOperand(0);
5224      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5225          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5226
5227        if (!Subtarget->hasInt256())
5228          return SDValue();
5229
5230        // Use the register form of the broadcast instruction available on AVX2.
5231        if (VT.is256BitVector())
5232          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5233        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5234      }
5235
5236      Ld = Sc.getOperand(0);
5237      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5238                       Ld.getOpcode() == ISD::ConstantFP);
5239
5240      // The scalar_to_vector node and the suspected
5241      // load node must have exactly one user.
5242      // Constants may have multiple users.
5243      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5244        return SDValue();
5245      break;
5246    }
5247  }
5248
5249  bool Is256 = VT.is256BitVector();
5250
5251  // Handle the broadcasting a single constant scalar from the constant pool
5252  // into a vector. On Sandybridge it is still better to load a constant vector
5253  // from the constant pool and not to broadcast it from a scalar.
5254  if (ConstSplatVal && Subtarget->hasInt256()) {
5255    EVT CVT = Ld.getValueType();
5256    assert(!CVT.isVector() && "Must not broadcast a vector type");
5257    unsigned ScalarSize = CVT.getSizeInBits();
5258
5259    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5260      const Constant *C = 0;
5261      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5262        C = CI->getConstantIntValue();
5263      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5264        C = CF->getConstantFPValue();
5265
5266      assert(C && "Invalid constant type");
5267
5268      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5269      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5270      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5271                       MachinePointerInfo::getConstantPool(),
5272                       false, false, false, Alignment);
5273
5274      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5275    }
5276  }
5277
5278  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5279  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5280
5281  // Handle AVX2 in-register broadcasts.
5282  if (!IsLoad && Subtarget->hasInt256() &&
5283      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5284    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5285
5286  // The scalar source must be a normal load.
5287  if (!IsLoad)
5288    return SDValue();
5289
5290  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5291    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5292
5293  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5294  // double since there is no vbroadcastsd xmm
5295  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5296    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5297      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5298  }
5299
5300  // Unsupported broadcast.
5301  return SDValue();
5302}
5303
5304SDValue
5305X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
5306  EVT VT = Op.getValueType();
5307
5308  // Skip if insert_vec_elt is not supported.
5309  if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5310    return SDValue();
5311
5312  SDLoc DL(Op);
5313  unsigned NumElems = Op.getNumOperands();
5314
5315  SDValue VecIn1;
5316  SDValue VecIn2;
5317  SmallVector<unsigned, 4> InsertIndices;
5318  SmallVector<int, 8> Mask(NumElems, -1);
5319
5320  for (unsigned i = 0; i != NumElems; ++i) {
5321    unsigned Opc = Op.getOperand(i).getOpcode();
5322
5323    if (Opc == ISD::UNDEF)
5324      continue;
5325
5326    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5327      // Quit if more than 1 elements need inserting.
5328      if (InsertIndices.size() > 1)
5329        return SDValue();
5330
5331      InsertIndices.push_back(i);
5332      continue;
5333    }
5334
5335    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5336    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5337
5338    // Quit if extracted from vector of different type.
5339    if (ExtractedFromVec.getValueType() != VT)
5340      return SDValue();
5341
5342    // Quit if non-constant index.
5343    if (!isa<ConstantSDNode>(ExtIdx))
5344      return SDValue();
5345
5346    if (VecIn1.getNode() == 0)
5347      VecIn1 = ExtractedFromVec;
5348    else if (VecIn1 != ExtractedFromVec) {
5349      if (VecIn2.getNode() == 0)
5350        VecIn2 = ExtractedFromVec;
5351      else if (VecIn2 != ExtractedFromVec)
5352        // Quit if more than 2 vectors to shuffle
5353        return SDValue();
5354    }
5355
5356    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5357
5358    if (ExtractedFromVec == VecIn1)
5359      Mask[i] = Idx;
5360    else if (ExtractedFromVec == VecIn2)
5361      Mask[i] = Idx + NumElems;
5362  }
5363
5364  if (VecIn1.getNode() == 0)
5365    return SDValue();
5366
5367  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5368  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5369  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5370    unsigned Idx = InsertIndices[i];
5371    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5372                     DAG.getIntPtrConstant(Idx));
5373  }
5374
5375  return NV;
5376}
5377
5378SDValue
5379X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5380  SDLoc dl(Op);
5381
5382  MVT VT = Op.getValueType().getSimpleVT();
5383  MVT ExtVT = VT.getVectorElementType();
5384  unsigned NumElems = Op.getNumOperands();
5385
5386  // Vectors containing all zeros can be matched by pxor and xorps later
5387  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5388    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5389    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5390    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5391      return Op;
5392
5393    return getZeroVector(VT, Subtarget, DAG, dl);
5394  }
5395
5396  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5397  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5398  // vpcmpeqd on 256-bit vectors.
5399  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
5400    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5401      return Op;
5402
5403    return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5404  }
5405
5406  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5407  if (Broadcast.getNode())
5408    return Broadcast;
5409
5410  unsigned EVTBits = ExtVT.getSizeInBits();
5411
5412  unsigned NumZero  = 0;
5413  unsigned NumNonZero = 0;
5414  unsigned NonZeros = 0;
5415  bool IsAllConstants = true;
5416  SmallSet<SDValue, 8> Values;
5417  for (unsigned i = 0; i < NumElems; ++i) {
5418    SDValue Elt = Op.getOperand(i);
5419    if (Elt.getOpcode() == ISD::UNDEF)
5420      continue;
5421    Values.insert(Elt);
5422    if (Elt.getOpcode() != ISD::Constant &&
5423        Elt.getOpcode() != ISD::ConstantFP)
5424      IsAllConstants = false;
5425    if (X86::isZeroNode(Elt))
5426      NumZero++;
5427    else {
5428      NonZeros |= (1 << i);
5429      NumNonZero++;
5430    }
5431  }
5432
5433  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5434  if (NumNonZero == 0)
5435    return DAG.getUNDEF(VT);
5436
5437  // Special case for single non-zero, non-undef, element.
5438  if (NumNonZero == 1) {
5439    unsigned Idx = countTrailingZeros(NonZeros);
5440    SDValue Item = Op.getOperand(Idx);
5441
5442    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5443    // the value are obviously zero, truncate the value to i32 and do the
5444    // insertion that way.  Only do this if the value is non-constant or if the
5445    // value is a constant being inserted into element 0.  It is cheaper to do
5446    // a constant pool load than it is to do a movd + shuffle.
5447    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5448        (!IsAllConstants || Idx == 0)) {
5449      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5450        // Handle SSE only.
5451        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5452        EVT VecVT = MVT::v4i32;
5453        unsigned VecElts = 4;
5454
5455        // Truncate the value (which may itself be a constant) to i32, and
5456        // convert it to a vector with movd (S2V+shuffle to zero extend).
5457        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5458        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5459        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5460
5461        // Now we have our 32-bit value zero extended in the low element of
5462        // a vector.  If Idx != 0, swizzle it into place.
5463        if (Idx != 0) {
5464          SmallVector<int, 4> Mask;
5465          Mask.push_back(Idx);
5466          for (unsigned i = 1; i != VecElts; ++i)
5467            Mask.push_back(i);
5468          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5469                                      &Mask[0]);
5470        }
5471        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5472      }
5473    }
5474
5475    // If we have a constant or non-constant insertion into the low element of
5476    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5477    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5478    // depending on what the source datatype is.
5479    if (Idx == 0) {
5480      if (NumZero == 0)
5481        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5482
5483      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5484          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5485        if (VT.is256BitVector()) {
5486          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5487          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5488                             Item, DAG.getIntPtrConstant(0));
5489        }
5490        assert(VT.is128BitVector() && "Expected an SSE value type!");
5491        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5492        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5493        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5494      }
5495
5496      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5497        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5498        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5499        if (VT.is256BitVector()) {
5500          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5501          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5502        } else {
5503          assert(VT.is128BitVector() && "Expected an SSE value type!");
5504          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5505        }
5506        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5507      }
5508    }
5509
5510    // Is it a vector logical left shift?
5511    if (NumElems == 2 && Idx == 1 &&
5512        X86::isZeroNode(Op.getOperand(0)) &&
5513        !X86::isZeroNode(Op.getOperand(1))) {
5514      unsigned NumBits = VT.getSizeInBits();
5515      return getVShift(true, VT,
5516                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5517                                   VT, Op.getOperand(1)),
5518                       NumBits/2, DAG, *this, dl);
5519    }
5520
5521    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5522      return SDValue();
5523
5524    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5525    // is a non-constant being inserted into an element other than the low one,
5526    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5527    // movd/movss) to move this into the low element, then shuffle it into
5528    // place.
5529    if (EVTBits == 32) {
5530      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5531
5532      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5533      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5534      SmallVector<int, 8> MaskVec;
5535      for (unsigned i = 0; i != NumElems; ++i)
5536        MaskVec.push_back(i == Idx ? 0 : 1);
5537      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5538    }
5539  }
5540
5541  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5542  if (Values.size() == 1) {
5543    if (EVTBits == 32) {
5544      // Instead of a shuffle like this:
5545      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5546      // Check if it's possible to issue this instead.
5547      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5548      unsigned Idx = countTrailingZeros(NonZeros);
5549      SDValue Item = Op.getOperand(Idx);
5550      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5551        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5552    }
5553    return SDValue();
5554  }
5555
5556  // A vector full of immediates; various special cases are already
5557  // handled, so this is best done with a single constant-pool load.
5558  if (IsAllConstants)
5559    return SDValue();
5560
5561  // For AVX-length vectors, build the individual 128-bit pieces and use
5562  // shuffles to put them in place.
5563  if (VT.is256BitVector()) {
5564    SmallVector<SDValue, 32> V;
5565    for (unsigned i = 0; i != NumElems; ++i)
5566      V.push_back(Op.getOperand(i));
5567
5568    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5569
5570    // Build both the lower and upper subvector.
5571    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5572    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5573                                NumElems/2);
5574
5575    // Recreate the wider vector with the lower and upper part.
5576    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5577  }
5578
5579  // Let legalizer expand 2-wide build_vectors.
5580  if (EVTBits == 64) {
5581    if (NumNonZero == 1) {
5582      // One half is zero or undef.
5583      unsigned Idx = countTrailingZeros(NonZeros);
5584      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5585                                 Op.getOperand(Idx));
5586      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5587    }
5588    return SDValue();
5589  }
5590
5591  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5592  if (EVTBits == 8 && NumElems == 16) {
5593    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5594                                        Subtarget, *this);
5595    if (V.getNode()) return V;
5596  }
5597
5598  if (EVTBits == 16 && NumElems == 8) {
5599    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5600                                      Subtarget, *this);
5601    if (V.getNode()) return V;
5602  }
5603
5604  // If element VT is == 32 bits, turn it into a number of shuffles.
5605  SmallVector<SDValue, 8> V(NumElems);
5606  if (NumElems == 4 && NumZero > 0) {
5607    for (unsigned i = 0; i < 4; ++i) {
5608      bool isZero = !(NonZeros & (1 << i));
5609      if (isZero)
5610        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5611      else
5612        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5613    }
5614
5615    for (unsigned i = 0; i < 2; ++i) {
5616      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5617        default: break;
5618        case 0:
5619          V[i] = V[i*2];  // Must be a zero vector.
5620          break;
5621        case 1:
5622          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5623          break;
5624        case 2:
5625          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5626          break;
5627        case 3:
5628          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5629          break;
5630      }
5631    }
5632
5633    bool Reverse1 = (NonZeros & 0x3) == 2;
5634    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5635    int MaskVec[] = {
5636      Reverse1 ? 1 : 0,
5637      Reverse1 ? 0 : 1,
5638      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5639      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5640    };
5641    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5642  }
5643
5644  if (Values.size() > 1 && VT.is128BitVector()) {
5645    // Check for a build vector of consecutive loads.
5646    for (unsigned i = 0; i < NumElems; ++i)
5647      V[i] = Op.getOperand(i);
5648
5649    // Check for elements which are consecutive loads.
5650    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5651    if (LD.getNode())
5652      return LD;
5653
5654    // Check for a build vector from mostly shuffle plus few inserting.
5655    SDValue Sh = buildFromShuffleMostly(Op, DAG);
5656    if (Sh.getNode())
5657      return Sh;
5658
5659    // For SSE 4.1, use insertps to put the high elements into the low element.
5660    if (getSubtarget()->hasSSE41()) {
5661      SDValue Result;
5662      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5663        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5664      else
5665        Result = DAG.getUNDEF(VT);
5666
5667      for (unsigned i = 1; i < NumElems; ++i) {
5668        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5669        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5670                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5671      }
5672      return Result;
5673    }
5674
5675    // Otherwise, expand into a number of unpckl*, start by extending each of
5676    // our (non-undef) elements to the full vector width with the element in the
5677    // bottom slot of the vector (which generates no code for SSE).
5678    for (unsigned i = 0; i < NumElems; ++i) {
5679      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5680        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5681      else
5682        V[i] = DAG.getUNDEF(VT);
5683    }
5684
5685    // Next, we iteratively mix elements, e.g. for v4f32:
5686    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5687    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5688    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5689    unsigned EltStride = NumElems >> 1;
5690    while (EltStride != 0) {
5691      for (unsigned i = 0; i < EltStride; ++i) {
5692        // If V[i+EltStride] is undef and this is the first round of mixing,
5693        // then it is safe to just drop this shuffle: V[i] is already in the
5694        // right place, the one element (since it's the first round) being
5695        // inserted as undef can be dropped.  This isn't safe for successive
5696        // rounds because they will permute elements within both vectors.
5697        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5698            EltStride == NumElems/2)
5699          continue;
5700
5701        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5702      }
5703      EltStride >>= 1;
5704    }
5705    return V[0];
5706  }
5707  return SDValue();
5708}
5709
5710// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5711// to create 256-bit vectors from two other 128-bit ones.
5712static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5713  SDLoc dl(Op);
5714  MVT ResVT = Op.getValueType().getSimpleVT();
5715
5716  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5717
5718  SDValue V1 = Op.getOperand(0);
5719  SDValue V2 = Op.getOperand(1);
5720  unsigned NumElems = ResVT.getVectorNumElements();
5721
5722  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5723}
5724
5725static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5726  assert(Op.getNumOperands() == 2);
5727
5728  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5729  // from two other 128-bit ones.
5730  return LowerAVXCONCAT_VECTORS(Op, DAG);
5731}
5732
5733// Try to lower a shuffle node into a simple blend instruction.
5734static SDValue
5735LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5736                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5737  SDValue V1 = SVOp->getOperand(0);
5738  SDValue V2 = SVOp->getOperand(1);
5739  SDLoc dl(SVOp);
5740  MVT VT = SVOp->getValueType(0).getSimpleVT();
5741  MVT EltVT = VT.getVectorElementType();
5742  unsigned NumElems = VT.getVectorNumElements();
5743
5744  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
5745    return SDValue();
5746  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
5747    return SDValue();
5748
5749  // Check the mask for BLEND and build the value.
5750  unsigned MaskValue = 0;
5751  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
5752  unsigned NumLanes = (NumElems-1)/8 + 1;
5753  unsigned NumElemsInLane = NumElems / NumLanes;
5754
5755  // Blend for v16i16 should be symetric for the both lanes.
5756  for (unsigned i = 0; i < NumElemsInLane; ++i) {
5757
5758    int SndLaneEltIdx = (NumLanes == 2) ?
5759      SVOp->getMaskElt(i + NumElemsInLane) : -1;
5760    int EltIdx = SVOp->getMaskElt(i);
5761
5762    if ((EltIdx < 0 || EltIdx == (int)i) &&
5763        (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
5764      continue;
5765
5766    if (((unsigned)EltIdx == (i + NumElems)) &&
5767        (SndLaneEltIdx < 0 ||
5768         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
5769      MaskValue |= (1<<i);
5770    else
5771      return SDValue();
5772  }
5773
5774  // Convert i32 vectors to floating point if it is not AVX2.
5775  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
5776  MVT BlendVT = VT;
5777  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
5778    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
5779                               NumElems);
5780    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
5781    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
5782  }
5783
5784  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
5785                            DAG.getConstant(MaskValue, MVT::i32));
5786  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5787}
5788
5789// v8i16 shuffles - Prefer shuffles in the following order:
5790// 1. [all]   pshuflw, pshufhw, optional move
5791// 2. [ssse3] 1 x pshufb
5792// 3. [ssse3] 2 x pshufb + 1 x por
5793// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5794static SDValue
5795LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5796                         SelectionDAG &DAG) {
5797  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5798  SDValue V1 = SVOp->getOperand(0);
5799  SDValue V2 = SVOp->getOperand(1);
5800  SDLoc dl(SVOp);
5801  SmallVector<int, 8> MaskVals;
5802
5803  // Determine if more than 1 of the words in each of the low and high quadwords
5804  // of the result come from the same quadword of one of the two inputs.  Undef
5805  // mask values count as coming from any quadword, for better codegen.
5806  unsigned LoQuad[] = { 0, 0, 0, 0 };
5807  unsigned HiQuad[] = { 0, 0, 0, 0 };
5808  std::bitset<4> InputQuads;
5809  for (unsigned i = 0; i < 8; ++i) {
5810    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5811    int EltIdx = SVOp->getMaskElt(i);
5812    MaskVals.push_back(EltIdx);
5813    if (EltIdx < 0) {
5814      ++Quad[0];
5815      ++Quad[1];
5816      ++Quad[2];
5817      ++Quad[3];
5818      continue;
5819    }
5820    ++Quad[EltIdx / 4];
5821    InputQuads.set(EltIdx / 4);
5822  }
5823
5824  int BestLoQuad = -1;
5825  unsigned MaxQuad = 1;
5826  for (unsigned i = 0; i < 4; ++i) {
5827    if (LoQuad[i] > MaxQuad) {
5828      BestLoQuad = i;
5829      MaxQuad = LoQuad[i];
5830    }
5831  }
5832
5833  int BestHiQuad = -1;
5834  MaxQuad = 1;
5835  for (unsigned i = 0; i < 4; ++i) {
5836    if (HiQuad[i] > MaxQuad) {
5837      BestHiQuad = i;
5838      MaxQuad = HiQuad[i];
5839    }
5840  }
5841
5842  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5843  // of the two input vectors, shuffle them into one input vector so only a
5844  // single pshufb instruction is necessary. If There are more than 2 input
5845  // quads, disable the next transformation since it does not help SSSE3.
5846  bool V1Used = InputQuads[0] || InputQuads[1];
5847  bool V2Used = InputQuads[2] || InputQuads[3];
5848  if (Subtarget->hasSSSE3()) {
5849    if (InputQuads.count() == 2 && V1Used && V2Used) {
5850      BestLoQuad = InputQuads[0] ? 0 : 1;
5851      BestHiQuad = InputQuads[2] ? 2 : 3;
5852    }
5853    if (InputQuads.count() > 2) {
5854      BestLoQuad = -1;
5855      BestHiQuad = -1;
5856    }
5857  }
5858
5859  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5860  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5861  // words from all 4 input quadwords.
5862  SDValue NewV;
5863  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5864    int MaskV[] = {
5865      BestLoQuad < 0 ? 0 : BestLoQuad,
5866      BestHiQuad < 0 ? 1 : BestHiQuad
5867    };
5868    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5869                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5870                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5871    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5872
5873    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5874    // source words for the shuffle, to aid later transformations.
5875    bool AllWordsInNewV = true;
5876    bool InOrder[2] = { true, true };
5877    for (unsigned i = 0; i != 8; ++i) {
5878      int idx = MaskVals[i];
5879      if (idx != (int)i)
5880        InOrder[i/4] = false;
5881      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5882        continue;
5883      AllWordsInNewV = false;
5884      break;
5885    }
5886
5887    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5888    if (AllWordsInNewV) {
5889      for (int i = 0; i != 8; ++i) {
5890        int idx = MaskVals[i];
5891        if (idx < 0)
5892          continue;
5893        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5894        if ((idx != i) && idx < 4)
5895          pshufhw = false;
5896        if ((idx != i) && idx > 3)
5897          pshuflw = false;
5898      }
5899      V1 = NewV;
5900      V2Used = false;
5901      BestLoQuad = 0;
5902      BestHiQuad = 1;
5903    }
5904
5905    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5906    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5907    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5908      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5909      unsigned TargetMask = 0;
5910      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5911                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5912      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5913      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5914                             getShufflePSHUFLWImmediate(SVOp);
5915      V1 = NewV.getOperand(0);
5916      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5917    }
5918  }
5919
5920  // Promote splats to a larger type which usually leads to more efficient code.
5921  // FIXME: Is this true if pshufb is available?
5922  if (SVOp->isSplat())
5923    return PromoteSplat(SVOp, DAG);
5924
5925  // If we have SSSE3, and all words of the result are from 1 input vector,
5926  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5927  // is present, fall back to case 4.
5928  if (Subtarget->hasSSSE3()) {
5929    SmallVector<SDValue,16> pshufbMask;
5930
5931    // If we have elements from both input vectors, set the high bit of the
5932    // shuffle mask element to zero out elements that come from V2 in the V1
5933    // mask, and elements that come from V1 in the V2 mask, so that the two
5934    // results can be OR'd together.
5935    bool TwoInputs = V1Used && V2Used;
5936    for (unsigned i = 0; i != 8; ++i) {
5937      int EltIdx = MaskVals[i] * 2;
5938      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5939      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5940      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5941      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5942    }
5943    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5944    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5945                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5946                                 MVT::v16i8, &pshufbMask[0], 16));
5947    if (!TwoInputs)
5948      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5949
5950    // Calculate the shuffle mask for the second input, shuffle it, and
5951    // OR it with the first shuffled input.
5952    pshufbMask.clear();
5953    for (unsigned i = 0; i != 8; ++i) {
5954      int EltIdx = MaskVals[i] * 2;
5955      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5956      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5957      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5958      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5959    }
5960    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5961    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5962                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5963                                 MVT::v16i8, &pshufbMask[0], 16));
5964    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5965    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5966  }
5967
5968  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5969  // and update MaskVals with new element order.
5970  std::bitset<8> InOrder;
5971  if (BestLoQuad >= 0) {
5972    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5973    for (int i = 0; i != 4; ++i) {
5974      int idx = MaskVals[i];
5975      if (idx < 0) {
5976        InOrder.set(i);
5977      } else if ((idx / 4) == BestLoQuad) {
5978        MaskV[i] = idx & 3;
5979        InOrder.set(i);
5980      }
5981    }
5982    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5983                                &MaskV[0]);
5984
5985    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5986      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5987      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5988                                  NewV.getOperand(0),
5989                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5990    }
5991  }
5992
5993  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5994  // and update MaskVals with the new element order.
5995  if (BestHiQuad >= 0) {
5996    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5997    for (unsigned i = 4; i != 8; ++i) {
5998      int idx = MaskVals[i];
5999      if (idx < 0) {
6000        InOrder.set(i);
6001      } else if ((idx / 4) == BestHiQuad) {
6002        MaskV[i] = (idx & 3) + 4;
6003        InOrder.set(i);
6004      }
6005    }
6006    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
6007                                &MaskV[0]);
6008
6009    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
6010      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6011      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
6012                                  NewV.getOperand(0),
6013                                  getShufflePSHUFHWImmediate(SVOp), DAG);
6014    }
6015  }
6016
6017  // In case BestHi & BestLo were both -1, which means each quadword has a word
6018  // from each of the four input quadwords, calculate the InOrder bitvector now
6019  // before falling through to the insert/extract cleanup.
6020  if (BestLoQuad == -1 && BestHiQuad == -1) {
6021    NewV = V1;
6022    for (int i = 0; i != 8; ++i)
6023      if (MaskVals[i] < 0 || MaskVals[i] == i)
6024        InOrder.set(i);
6025  }
6026
6027  // The other elements are put in the right place using pextrw and pinsrw.
6028  for (unsigned i = 0; i != 8; ++i) {
6029    if (InOrder[i])
6030      continue;
6031    int EltIdx = MaskVals[i];
6032    if (EltIdx < 0)
6033      continue;
6034    SDValue ExtOp = (EltIdx < 8) ?
6035      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
6036                  DAG.getIntPtrConstant(EltIdx)) :
6037      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
6038                  DAG.getIntPtrConstant(EltIdx - 8));
6039    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
6040                       DAG.getIntPtrConstant(i));
6041  }
6042  return NewV;
6043}
6044
6045// v16i8 shuffles - Prefer shuffles in the following order:
6046// 1. [ssse3] 1 x pshufb
6047// 2. [ssse3] 2 x pshufb + 1 x por
6048// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
6049static
6050SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
6051                                 SelectionDAG &DAG,
6052                                 const X86TargetLowering &TLI) {
6053  SDValue V1 = SVOp->getOperand(0);
6054  SDValue V2 = SVOp->getOperand(1);
6055  SDLoc dl(SVOp);
6056  ArrayRef<int> MaskVals = SVOp->getMask();
6057
6058  // Promote splats to a larger type which usually leads to more efficient code.
6059  // FIXME: Is this true if pshufb is available?
6060  if (SVOp->isSplat())
6061    return PromoteSplat(SVOp, DAG);
6062
6063  // If we have SSSE3, case 1 is generated when all result bytes come from
6064  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
6065  // present, fall back to case 3.
6066
6067  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
6068  if (TLI.getSubtarget()->hasSSSE3()) {
6069    SmallVector<SDValue,16> pshufbMask;
6070
6071    // If all result elements are from one input vector, then only translate
6072    // undef mask values to 0x80 (zero out result) in the pshufb mask.
6073    //
6074    // Otherwise, we have elements from both input vectors, and must zero out
6075    // elements that come from V2 in the first mask, and V1 in the second mask
6076    // so that we can OR them together.
6077    for (unsigned i = 0; i != 16; ++i) {
6078      int EltIdx = MaskVals[i];
6079      if (EltIdx < 0 || EltIdx >= 16)
6080        EltIdx = 0x80;
6081      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6082    }
6083    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6084                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6085                                 MVT::v16i8, &pshufbMask[0], 16));
6086
6087    // As PSHUFB will zero elements with negative indices, it's safe to ignore
6088    // the 2nd operand if it's undefined or zero.
6089    if (V2.getOpcode() == ISD::UNDEF ||
6090        ISD::isBuildVectorAllZeros(V2.getNode()))
6091      return V1;
6092
6093    // Calculate the shuffle mask for the second input, shuffle it, and
6094    // OR it with the first shuffled input.
6095    pshufbMask.clear();
6096    for (unsigned i = 0; i != 16; ++i) {
6097      int EltIdx = MaskVals[i];
6098      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6099      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6100    }
6101    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6102                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6103                                 MVT::v16i8, &pshufbMask[0], 16));
6104    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6105  }
6106
6107  // No SSSE3 - Calculate in place words and then fix all out of place words
6108  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6109  // the 16 different words that comprise the two doublequadword input vectors.
6110  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6111  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6112  SDValue NewV = V1;
6113  for (int i = 0; i != 8; ++i) {
6114    int Elt0 = MaskVals[i*2];
6115    int Elt1 = MaskVals[i*2+1];
6116
6117    // This word of the result is all undef, skip it.
6118    if (Elt0 < 0 && Elt1 < 0)
6119      continue;
6120
6121    // This word of the result is already in the correct place, skip it.
6122    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6123      continue;
6124
6125    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6126    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6127    SDValue InsElt;
6128
6129    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6130    // using a single extract together, load it and store it.
6131    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6132      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6133                           DAG.getIntPtrConstant(Elt1 / 2));
6134      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6135                        DAG.getIntPtrConstant(i));
6136      continue;
6137    }
6138
6139    // If Elt1 is defined, extract it from the appropriate source.  If the
6140    // source byte is not also odd, shift the extracted word left 8 bits
6141    // otherwise clear the bottom 8 bits if we need to do an or.
6142    if (Elt1 >= 0) {
6143      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6144                           DAG.getIntPtrConstant(Elt1 / 2));
6145      if ((Elt1 & 1) == 0)
6146        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6147                             DAG.getConstant(8,
6148                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6149      else if (Elt0 >= 0)
6150        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6151                             DAG.getConstant(0xFF00, MVT::i16));
6152    }
6153    // If Elt0 is defined, extract it from the appropriate source.  If the
6154    // source byte is not also even, shift the extracted word right 8 bits. If
6155    // Elt1 was also defined, OR the extracted values together before
6156    // inserting them in the result.
6157    if (Elt0 >= 0) {
6158      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6159                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6160      if ((Elt0 & 1) != 0)
6161        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6162                              DAG.getConstant(8,
6163                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6164      else if (Elt1 >= 0)
6165        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6166                             DAG.getConstant(0x00FF, MVT::i16));
6167      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6168                         : InsElt0;
6169    }
6170    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6171                       DAG.getIntPtrConstant(i));
6172  }
6173  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6174}
6175
6176// v32i8 shuffles - Translate to VPSHUFB if possible.
6177static
6178SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6179                                 const X86Subtarget *Subtarget,
6180                                 SelectionDAG &DAG) {
6181  MVT VT = SVOp->getValueType(0).getSimpleVT();
6182  SDValue V1 = SVOp->getOperand(0);
6183  SDValue V2 = SVOp->getOperand(1);
6184  SDLoc dl(SVOp);
6185  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6186
6187  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6188  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6189  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6190
6191  // VPSHUFB may be generated if
6192  // (1) one of input vector is undefined or zeroinitializer.
6193  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6194  // And (2) the mask indexes don't cross the 128-bit lane.
6195  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6196      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6197    return SDValue();
6198
6199  if (V1IsAllZero && !V2IsAllZero) {
6200    CommuteVectorShuffleMask(MaskVals, 32);
6201    V1 = V2;
6202  }
6203  SmallVector<SDValue, 32> pshufbMask;
6204  for (unsigned i = 0; i != 32; i++) {
6205    int EltIdx = MaskVals[i];
6206    if (EltIdx < 0 || EltIdx >= 32)
6207      EltIdx = 0x80;
6208    else {
6209      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6210        // Cross lane is not allowed.
6211        return SDValue();
6212      EltIdx &= 0xf;
6213    }
6214    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6215  }
6216  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6217                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6218                                  MVT::v32i8, &pshufbMask[0], 32));
6219}
6220
6221/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6222/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6223/// done when every pair / quad of shuffle mask elements point to elements in
6224/// the right sequence. e.g.
6225/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6226static
6227SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6228                                 SelectionDAG &DAG) {
6229  MVT VT = SVOp->getValueType(0).getSimpleVT();
6230  SDLoc dl(SVOp);
6231  unsigned NumElems = VT.getVectorNumElements();
6232  MVT NewVT;
6233  unsigned Scale;
6234  switch (VT.SimpleTy) {
6235  default: llvm_unreachable("Unexpected!");
6236  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6237  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6238  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6239  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6240  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6241  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6242  }
6243
6244  SmallVector<int, 8> MaskVec;
6245  for (unsigned i = 0; i != NumElems; i += Scale) {
6246    int StartIdx = -1;
6247    for (unsigned j = 0; j != Scale; ++j) {
6248      int EltIdx = SVOp->getMaskElt(i+j);
6249      if (EltIdx < 0)
6250        continue;
6251      if (StartIdx < 0)
6252        StartIdx = (EltIdx / Scale);
6253      if (EltIdx != (int)(StartIdx*Scale + j))
6254        return SDValue();
6255    }
6256    MaskVec.push_back(StartIdx);
6257  }
6258
6259  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6260  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6261  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6262}
6263
6264/// getVZextMovL - Return a zero-extending vector move low node.
6265///
6266static SDValue getVZextMovL(MVT VT, EVT OpVT,
6267                            SDValue SrcOp, SelectionDAG &DAG,
6268                            const X86Subtarget *Subtarget, SDLoc dl) {
6269  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6270    LoadSDNode *LD = NULL;
6271    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6272      LD = dyn_cast<LoadSDNode>(SrcOp);
6273    if (!LD) {
6274      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6275      // instead.
6276      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6277      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6278          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6279          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6280          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6281        // PR2108
6282        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6283        return DAG.getNode(ISD::BITCAST, dl, VT,
6284                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6285                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6286                                                   OpVT,
6287                                                   SrcOp.getOperand(0)
6288                                                          .getOperand(0))));
6289      }
6290    }
6291  }
6292
6293  return DAG.getNode(ISD::BITCAST, dl, VT,
6294                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6295                                 DAG.getNode(ISD::BITCAST, dl,
6296                                             OpVT, SrcOp)));
6297}
6298
6299/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6300/// which could not be matched by any known target speficic shuffle
6301static SDValue
6302LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6303
6304  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6305  if (NewOp.getNode())
6306    return NewOp;
6307
6308  MVT VT = SVOp->getValueType(0).getSimpleVT();
6309
6310  unsigned NumElems = VT.getVectorNumElements();
6311  unsigned NumLaneElems = NumElems / 2;
6312
6313  SDLoc dl(SVOp);
6314  MVT EltVT = VT.getVectorElementType();
6315  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6316  SDValue Output[2];
6317
6318  SmallVector<int, 16> Mask;
6319  for (unsigned l = 0; l < 2; ++l) {
6320    // Build a shuffle mask for the output, discovering on the fly which
6321    // input vectors to use as shuffle operands (recorded in InputUsed).
6322    // If building a suitable shuffle vector proves too hard, then bail
6323    // out with UseBuildVector set.
6324    bool UseBuildVector = false;
6325    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6326    unsigned LaneStart = l * NumLaneElems;
6327    for (unsigned i = 0; i != NumLaneElems; ++i) {
6328      // The mask element.  This indexes into the input.
6329      int Idx = SVOp->getMaskElt(i+LaneStart);
6330      if (Idx < 0) {
6331        // the mask element does not index into any input vector.
6332        Mask.push_back(-1);
6333        continue;
6334      }
6335
6336      // The input vector this mask element indexes into.
6337      int Input = Idx / NumLaneElems;
6338
6339      // Turn the index into an offset from the start of the input vector.
6340      Idx -= Input * NumLaneElems;
6341
6342      // Find or create a shuffle vector operand to hold this input.
6343      unsigned OpNo;
6344      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6345        if (InputUsed[OpNo] == Input)
6346          // This input vector is already an operand.
6347          break;
6348        if (InputUsed[OpNo] < 0) {
6349          // Create a new operand for this input vector.
6350          InputUsed[OpNo] = Input;
6351          break;
6352        }
6353      }
6354
6355      if (OpNo >= array_lengthof(InputUsed)) {
6356        // More than two input vectors used!  Give up on trying to create a
6357        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6358        UseBuildVector = true;
6359        break;
6360      }
6361
6362      // Add the mask index for the new shuffle vector.
6363      Mask.push_back(Idx + OpNo * NumLaneElems);
6364    }
6365
6366    if (UseBuildVector) {
6367      SmallVector<SDValue, 16> SVOps;
6368      for (unsigned i = 0; i != NumLaneElems; ++i) {
6369        // The mask element.  This indexes into the input.
6370        int Idx = SVOp->getMaskElt(i+LaneStart);
6371        if (Idx < 0) {
6372          SVOps.push_back(DAG.getUNDEF(EltVT));
6373          continue;
6374        }
6375
6376        // The input vector this mask element indexes into.
6377        int Input = Idx / NumElems;
6378
6379        // Turn the index into an offset from the start of the input vector.
6380        Idx -= Input * NumElems;
6381
6382        // Extract the vector element by hand.
6383        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6384                                    SVOp->getOperand(Input),
6385                                    DAG.getIntPtrConstant(Idx)));
6386      }
6387
6388      // Construct the output using a BUILD_VECTOR.
6389      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6390                              SVOps.size());
6391    } else if (InputUsed[0] < 0) {
6392      // No input vectors were used! The result is undefined.
6393      Output[l] = DAG.getUNDEF(NVT);
6394    } else {
6395      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6396                                        (InputUsed[0] % 2) * NumLaneElems,
6397                                        DAG, dl);
6398      // If only one input was used, use an undefined vector for the other.
6399      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6400        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6401                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6402      // At least one input vector was used. Create a new shuffle vector.
6403      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6404    }
6405
6406    Mask.clear();
6407  }
6408
6409  // Concatenate the result back
6410  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6411}
6412
6413/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6414/// 4 elements, and match them with several different shuffle types.
6415static SDValue
6416LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6417  SDValue V1 = SVOp->getOperand(0);
6418  SDValue V2 = SVOp->getOperand(1);
6419  SDLoc dl(SVOp);
6420  MVT VT = SVOp->getValueType(0).getSimpleVT();
6421
6422  assert(VT.is128BitVector() && "Unsupported vector size");
6423
6424  std::pair<int, int> Locs[4];
6425  int Mask1[] = { -1, -1, -1, -1 };
6426  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6427
6428  unsigned NumHi = 0;
6429  unsigned NumLo = 0;
6430  for (unsigned i = 0; i != 4; ++i) {
6431    int Idx = PermMask[i];
6432    if (Idx < 0) {
6433      Locs[i] = std::make_pair(-1, -1);
6434    } else {
6435      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6436      if (Idx < 4) {
6437        Locs[i] = std::make_pair(0, NumLo);
6438        Mask1[NumLo] = Idx;
6439        NumLo++;
6440      } else {
6441        Locs[i] = std::make_pair(1, NumHi);
6442        if (2+NumHi < 4)
6443          Mask1[2+NumHi] = Idx;
6444        NumHi++;
6445      }
6446    }
6447  }
6448
6449  if (NumLo <= 2 && NumHi <= 2) {
6450    // If no more than two elements come from either vector. This can be
6451    // implemented with two shuffles. First shuffle gather the elements.
6452    // The second shuffle, which takes the first shuffle as both of its
6453    // vector operands, put the elements into the right order.
6454    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6455
6456    int Mask2[] = { -1, -1, -1, -1 };
6457
6458    for (unsigned i = 0; i != 4; ++i)
6459      if (Locs[i].first != -1) {
6460        unsigned Idx = (i < 2) ? 0 : 4;
6461        Idx += Locs[i].first * 2 + Locs[i].second;
6462        Mask2[i] = Idx;
6463      }
6464
6465    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6466  }
6467
6468  if (NumLo == 3 || NumHi == 3) {
6469    // Otherwise, we must have three elements from one vector, call it X, and
6470    // one element from the other, call it Y.  First, use a shufps to build an
6471    // intermediate vector with the one element from Y and the element from X
6472    // that will be in the same half in the final destination (the indexes don't
6473    // matter). Then, use a shufps to build the final vector, taking the half
6474    // containing the element from Y from the intermediate, and the other half
6475    // from X.
6476    if (NumHi == 3) {
6477      // Normalize it so the 3 elements come from V1.
6478      CommuteVectorShuffleMask(PermMask, 4);
6479      std::swap(V1, V2);
6480    }
6481
6482    // Find the element from V2.
6483    unsigned HiIndex;
6484    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6485      int Val = PermMask[HiIndex];
6486      if (Val < 0)
6487        continue;
6488      if (Val >= 4)
6489        break;
6490    }
6491
6492    Mask1[0] = PermMask[HiIndex];
6493    Mask1[1] = -1;
6494    Mask1[2] = PermMask[HiIndex^1];
6495    Mask1[3] = -1;
6496    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6497
6498    if (HiIndex >= 2) {
6499      Mask1[0] = PermMask[0];
6500      Mask1[1] = PermMask[1];
6501      Mask1[2] = HiIndex & 1 ? 6 : 4;
6502      Mask1[3] = HiIndex & 1 ? 4 : 6;
6503      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6504    }
6505
6506    Mask1[0] = HiIndex & 1 ? 2 : 0;
6507    Mask1[1] = HiIndex & 1 ? 0 : 2;
6508    Mask1[2] = PermMask[2];
6509    Mask1[3] = PermMask[3];
6510    if (Mask1[2] >= 0)
6511      Mask1[2] += 4;
6512    if (Mask1[3] >= 0)
6513      Mask1[3] += 4;
6514    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6515  }
6516
6517  // Break it into (shuffle shuffle_hi, shuffle_lo).
6518  int LoMask[] = { -1, -1, -1, -1 };
6519  int HiMask[] = { -1, -1, -1, -1 };
6520
6521  int *MaskPtr = LoMask;
6522  unsigned MaskIdx = 0;
6523  unsigned LoIdx = 0;
6524  unsigned HiIdx = 2;
6525  for (unsigned i = 0; i != 4; ++i) {
6526    if (i == 2) {
6527      MaskPtr = HiMask;
6528      MaskIdx = 1;
6529      LoIdx = 0;
6530      HiIdx = 2;
6531    }
6532    int Idx = PermMask[i];
6533    if (Idx < 0) {
6534      Locs[i] = std::make_pair(-1, -1);
6535    } else if (Idx < 4) {
6536      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6537      MaskPtr[LoIdx] = Idx;
6538      LoIdx++;
6539    } else {
6540      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6541      MaskPtr[HiIdx] = Idx;
6542      HiIdx++;
6543    }
6544  }
6545
6546  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6547  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6548  int MaskOps[] = { -1, -1, -1, -1 };
6549  for (unsigned i = 0; i != 4; ++i)
6550    if (Locs[i].first != -1)
6551      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6552  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6553}
6554
6555static bool MayFoldVectorLoad(SDValue V) {
6556  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6557    V = V.getOperand(0);
6558
6559  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6560    V = V.getOperand(0);
6561  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6562      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6563    // BUILD_VECTOR (load), undef
6564    V = V.getOperand(0);
6565
6566  return MayFoldLoad(V);
6567}
6568
6569static
6570SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) {
6571  EVT VT = Op.getValueType();
6572
6573  // Canonizalize to v2f64.
6574  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6575  return DAG.getNode(ISD::BITCAST, dl, VT,
6576                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6577                                          V1, DAG));
6578}
6579
6580static
6581SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG,
6582                        bool HasSSE2) {
6583  SDValue V1 = Op.getOperand(0);
6584  SDValue V2 = Op.getOperand(1);
6585  EVT VT = Op.getValueType();
6586
6587  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6588
6589  if (HasSSE2 && VT == MVT::v2f64)
6590    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6591
6592  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6593  return DAG.getNode(ISD::BITCAST, dl, VT,
6594                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6595                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6596                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6597}
6598
6599static
6600SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) {
6601  SDValue V1 = Op.getOperand(0);
6602  SDValue V2 = Op.getOperand(1);
6603  EVT VT = Op.getValueType();
6604
6605  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6606         "unsupported shuffle type");
6607
6608  if (V2.getOpcode() == ISD::UNDEF)
6609    V2 = V1;
6610
6611  // v4i32 or v4f32
6612  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6613}
6614
6615static
6616SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6617  SDValue V1 = Op.getOperand(0);
6618  SDValue V2 = Op.getOperand(1);
6619  EVT VT = Op.getValueType();
6620  unsigned NumElems = VT.getVectorNumElements();
6621
6622  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6623  // operand of these instructions is only memory, so check if there's a
6624  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6625  // same masks.
6626  bool CanFoldLoad = false;
6627
6628  // Trivial case, when V2 comes from a load.
6629  if (MayFoldVectorLoad(V2))
6630    CanFoldLoad = true;
6631
6632  // When V1 is a load, it can be folded later into a store in isel, example:
6633  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6634  //    turns into:
6635  //  (MOVLPSmr addr:$src1, VR128:$src2)
6636  // So, recognize this potential and also use MOVLPS or MOVLPD
6637  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6638    CanFoldLoad = true;
6639
6640  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6641  if (CanFoldLoad) {
6642    if (HasSSE2 && NumElems == 2)
6643      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6644
6645    if (NumElems == 4)
6646      // If we don't care about the second element, proceed to use movss.
6647      if (SVOp->getMaskElt(1) != -1)
6648        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6649  }
6650
6651  // movl and movlp will both match v2i64, but v2i64 is never matched by
6652  // movl earlier because we make it strict to avoid messing with the movlp load
6653  // folding logic (see the code above getMOVLP call). Match it here then,
6654  // this is horrible, but will stay like this until we move all shuffle
6655  // matching to x86 specific nodes. Note that for the 1st condition all
6656  // types are matched with movsd.
6657  if (HasSSE2) {
6658    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6659    // as to remove this logic from here, as much as possible
6660    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6661      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6662    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6663  }
6664
6665  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6666
6667  // Invert the operand order and use SHUFPS to match it.
6668  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6669                              getShuffleSHUFImmediate(SVOp), DAG);
6670}
6671
6672// Reduce a vector shuffle to zext.
6673SDValue
6674X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
6675  // PMOVZX is only available from SSE41.
6676  if (!Subtarget->hasSSE41())
6677    return SDValue();
6678
6679  EVT VT = Op.getValueType();
6680
6681  // Only AVX2 support 256-bit vector integer extending.
6682  if (!Subtarget->hasInt256() && VT.is256BitVector())
6683    return SDValue();
6684
6685  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6686  SDLoc DL(Op);
6687  SDValue V1 = Op.getOperand(0);
6688  SDValue V2 = Op.getOperand(1);
6689  unsigned NumElems = VT.getVectorNumElements();
6690
6691  // Extending is an unary operation and the element type of the source vector
6692  // won't be equal to or larger than i64.
6693  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
6694      VT.getVectorElementType() == MVT::i64)
6695    return SDValue();
6696
6697  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
6698  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
6699  while ((1U << Shift) < NumElems) {
6700    if (SVOp->getMaskElt(1U << Shift) == 1)
6701      break;
6702    Shift += 1;
6703    // The maximal ratio is 8, i.e. from i8 to i64.
6704    if (Shift > 3)
6705      return SDValue();
6706  }
6707
6708  // Check the shuffle mask.
6709  unsigned Mask = (1U << Shift) - 1;
6710  for (unsigned i = 0; i != NumElems; ++i) {
6711    int EltIdx = SVOp->getMaskElt(i);
6712    if ((i & Mask) != 0 && EltIdx != -1)
6713      return SDValue();
6714    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
6715      return SDValue();
6716  }
6717
6718  LLVMContext *Context = DAG.getContext();
6719  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
6720  EVT NeVT = EVT::getIntegerVT(*Context, NBits);
6721  EVT NVT = EVT::getVectorVT(*Context, NeVT, NumElems >> Shift);
6722
6723  if (!isTypeLegal(NVT))
6724    return SDValue();
6725
6726  // Simplify the operand as it's prepared to be fed into shuffle.
6727  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
6728  if (V1.getOpcode() == ISD::BITCAST &&
6729      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
6730      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6731      V1.getOperand(0)
6732        .getOperand(0).getValueType().getSizeInBits() == SignificantBits) {
6733    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
6734    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
6735    ConstantSDNode *CIdx =
6736      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
6737    // If it's foldable, i.e. normal load with single use, we will let code
6738    // selection to fold it. Otherwise, we will short the conversion sequence.
6739    if (CIdx && CIdx->getZExtValue() == 0 &&
6740        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
6741      if (V.getValueSizeInBits() > V1.getValueSizeInBits()) {
6742        // The "ext_vec_elt" node is wider than the result node.
6743        // In this case we should extract subvector from V.
6744        // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
6745        unsigned Ratio = V.getValueSizeInBits() / V1.getValueSizeInBits();
6746        EVT FullVT = V.getValueType();
6747        EVT SubVecVT = EVT::getVectorVT(*Context,
6748                                        FullVT.getVectorElementType(),
6749                                        FullVT.getVectorNumElements()/Ratio);
6750        V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
6751                        DAG.getIntPtrConstant(0));
6752      }
6753      V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V);
6754    }
6755  }
6756
6757  return DAG.getNode(ISD::BITCAST, DL, VT,
6758                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
6759}
6760
6761SDValue
6762X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6763  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6764  MVT VT = Op.getValueType().getSimpleVT();
6765  SDLoc dl(Op);
6766  SDValue V1 = Op.getOperand(0);
6767  SDValue V2 = Op.getOperand(1);
6768
6769  if (isZeroShuffle(SVOp))
6770    return getZeroVector(VT, Subtarget, DAG, dl);
6771
6772  // Handle splat operations
6773  if (SVOp->isSplat()) {
6774    // Use vbroadcast whenever the splat comes from a foldable load
6775    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6776    if (Broadcast.getNode())
6777      return Broadcast;
6778  }
6779
6780  // Check integer expanding shuffles.
6781  SDValue NewOp = LowerVectorIntExtend(Op, DAG);
6782  if (NewOp.getNode())
6783    return NewOp;
6784
6785  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6786  // do it!
6787  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6788      VT == MVT::v16i16 || VT == MVT::v32i8) {
6789    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6790    if (NewOp.getNode())
6791      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6792  } else if ((VT == MVT::v4i32 ||
6793             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6794    // FIXME: Figure out a cleaner way to do this.
6795    // Try to make use of movq to zero out the top part.
6796    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6797      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6798      if (NewOp.getNode()) {
6799        MVT NewVT = NewOp.getValueType().getSimpleVT();
6800        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6801                               NewVT, true, false))
6802          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6803                              DAG, Subtarget, dl);
6804      }
6805    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6806      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
6807      if (NewOp.getNode()) {
6808        MVT NewVT = NewOp.getValueType().getSimpleVT();
6809        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6810          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6811                              DAG, Subtarget, dl);
6812      }
6813    }
6814  }
6815  return SDValue();
6816}
6817
6818SDValue
6819X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6820  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6821  SDValue V1 = Op.getOperand(0);
6822  SDValue V2 = Op.getOperand(1);
6823  MVT VT = Op.getValueType().getSimpleVT();
6824  SDLoc dl(Op);
6825  unsigned NumElems = VT.getVectorNumElements();
6826  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6827  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6828  bool V1IsSplat = false;
6829  bool V2IsSplat = false;
6830  bool HasSSE2 = Subtarget->hasSSE2();
6831  bool HasFp256    = Subtarget->hasFp256();
6832  bool HasInt256   = Subtarget->hasInt256();
6833  MachineFunction &MF = DAG.getMachineFunction();
6834  bool OptForSize = MF.getFunction()->getAttributes().
6835    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
6836
6837  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6838
6839  if (V1IsUndef && V2IsUndef)
6840    return DAG.getUNDEF(VT);
6841
6842  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6843
6844  // Vector shuffle lowering takes 3 steps:
6845  //
6846  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6847  //    narrowing and commutation of operands should be handled.
6848  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6849  //    shuffle nodes.
6850  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6851  //    so the shuffle can be broken into other shuffles and the legalizer can
6852  //    try the lowering again.
6853  //
6854  // The general idea is that no vector_shuffle operation should be left to
6855  // be matched during isel, all of them must be converted to a target specific
6856  // node here.
6857
6858  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6859  // narrowing and commutation of operands should be handled. The actual code
6860  // doesn't include all of those, work in progress...
6861  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6862  if (NewOp.getNode())
6863    return NewOp;
6864
6865  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6866
6867  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6868  // unpckh_undef). Only use pshufd if speed is more important than size.
6869  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6870    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6871  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
6872    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6873
6874  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6875      V2IsUndef && MayFoldVectorLoad(V1))
6876    return getMOVDDup(Op, dl, V1, DAG);
6877
6878  if (isMOVHLPS_v_undef_Mask(M, VT))
6879    return getMOVHighToLow(Op, dl, DAG);
6880
6881  // Use to match splats
6882  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
6883      (VT == MVT::v2f64 || VT == MVT::v2i64))
6884    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6885
6886  if (isPSHUFDMask(M, VT)) {
6887    // The actual implementation will match the mask in the if above and then
6888    // during isel it can match several different instructions, not only pshufd
6889    // as its name says, sad but true, emulate the behavior for now...
6890    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6891      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6892
6893    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6894
6895    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6896      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6897
6898    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
6899      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
6900                                  DAG);
6901
6902    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6903                                TargetMask, DAG);
6904  }
6905
6906  if (isPALIGNRMask(M, VT, Subtarget))
6907    return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
6908                                getShufflePALIGNRImmediate(SVOp),
6909                                DAG);
6910
6911  // Check if this can be converted into a logical shift.
6912  bool isLeft = false;
6913  unsigned ShAmt = 0;
6914  SDValue ShVal;
6915  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6916  if (isShift && ShVal.hasOneUse()) {
6917    // If the shifted value has multiple uses, it may be cheaper to use
6918    // v_set0 + movlhps or movhlps, etc.
6919    MVT EltVT = VT.getVectorElementType();
6920    ShAmt *= EltVT.getSizeInBits();
6921    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6922  }
6923
6924  if (isMOVLMask(M, VT)) {
6925    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6926      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6927    if (!isMOVLPMask(M, VT)) {
6928      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6929        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6930
6931      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6932        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6933    }
6934  }
6935
6936  // FIXME: fold these into legal mask.
6937  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
6938    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6939
6940  if (isMOVHLPSMask(M, VT))
6941    return getMOVHighToLow(Op, dl, DAG);
6942
6943  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6944    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6945
6946  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6947    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6948
6949  if (isMOVLPMask(M, VT))
6950    return getMOVLP(Op, dl, DAG, HasSSE2);
6951
6952  if (ShouldXformToMOVHLPS(M, VT) ||
6953      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6954    return CommuteVectorShuffle(SVOp, DAG);
6955
6956  if (isShift) {
6957    // No better options. Use a vshldq / vsrldq.
6958    MVT EltVT = VT.getVectorElementType();
6959    ShAmt *= EltVT.getSizeInBits();
6960    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6961  }
6962
6963  bool Commuted = false;
6964  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6965  // 1,1,1,1 -> v8i16 though.
6966  V1IsSplat = isSplatVector(V1.getNode());
6967  V2IsSplat = isSplatVector(V2.getNode());
6968
6969  // Canonicalize the splat or undef, if present, to be on the RHS.
6970  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6971    CommuteVectorShuffleMask(M, NumElems);
6972    std::swap(V1, V2);
6973    std::swap(V1IsSplat, V2IsSplat);
6974    Commuted = true;
6975  }
6976
6977  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6978    // Shuffling low element of v1 into undef, just return v1.
6979    if (V2IsUndef)
6980      return V1;
6981    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6982    // the instruction selector will not match, so get a canonical MOVL with
6983    // swapped operands to undo the commute.
6984    return getMOVL(DAG, dl, VT, V2, V1);
6985  }
6986
6987  if (isUNPCKLMask(M, VT, HasInt256))
6988    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6989
6990  if (isUNPCKHMask(M, VT, HasInt256))
6991    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6992
6993  if (V2IsSplat) {
6994    // Normalize mask so all entries that point to V2 points to its first
6995    // element then try to match unpck{h|l} again. If match, return a
6996    // new vector_shuffle with the corrected mask.p
6997    SmallVector<int, 8> NewMask(M.begin(), M.end());
6998    NormalizeMask(NewMask, NumElems);
6999    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
7000      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7001    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
7002      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7003  }
7004
7005  if (Commuted) {
7006    // Commute is back and try unpck* again.
7007    // FIXME: this seems wrong.
7008    CommuteVectorShuffleMask(M, NumElems);
7009    std::swap(V1, V2);
7010    std::swap(V1IsSplat, V2IsSplat);
7011    Commuted = false;
7012
7013    if (isUNPCKLMask(M, VT, HasInt256))
7014      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7015
7016    if (isUNPCKHMask(M, VT, HasInt256))
7017      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7018  }
7019
7020  // Normalize the node to match x86 shuffle ops if needed
7021  if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true)))
7022    return CommuteVectorShuffle(SVOp, DAG);
7023
7024  // The checks below are all present in isShuffleMaskLegal, but they are
7025  // inlined here right now to enable us to directly emit target specific
7026  // nodes, and remove one by one until they don't return Op anymore.
7027
7028  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
7029      SVOp->getSplatIndex() == 0 && V2IsUndef) {
7030    if (VT == MVT::v2f64 || VT == MVT::v2i64)
7031      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7032  }
7033
7034  if (isPSHUFHWMask(M, VT, HasInt256))
7035    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
7036                                getShufflePSHUFHWImmediate(SVOp),
7037                                DAG);
7038
7039  if (isPSHUFLWMask(M, VT, HasInt256))
7040    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
7041                                getShufflePSHUFLWImmediate(SVOp),
7042                                DAG);
7043
7044  if (isSHUFPMask(M, VT, HasFp256))
7045    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
7046                                getShuffleSHUFImmediate(SVOp), DAG);
7047
7048  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7049    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7050  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7051    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7052
7053  //===--------------------------------------------------------------------===//
7054  // Generate target specific nodes for 128 or 256-bit shuffles only
7055  // supported in the AVX instruction set.
7056  //
7057
7058  // Handle VMOVDDUPY permutations
7059  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
7060    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
7061
7062  // Handle VPERMILPS/D* permutations
7063  if (isVPERMILPMask(M, VT, HasFp256)) {
7064    if (HasInt256 && VT == MVT::v8i32)
7065      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
7066                                  getShuffleSHUFImmediate(SVOp), DAG);
7067    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
7068                                getShuffleSHUFImmediate(SVOp), DAG);
7069  }
7070
7071  // Handle VPERM2F128/VPERM2I128 permutations
7072  if (isVPERM2X128Mask(M, VT, HasFp256))
7073    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
7074                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
7075
7076  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
7077  if (BlendOp.getNode())
7078    return BlendOp;
7079
7080  if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
7081    SmallVector<SDValue, 8> permclMask;
7082    for (unsigned i = 0; i != 8; ++i) {
7083      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
7084    }
7085    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
7086                               &permclMask[0], 8);
7087    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
7088    return DAG.getNode(X86ISD::VPERMV, dl, VT,
7089                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
7090  }
7091
7092  if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64))
7093    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
7094                                getShuffleCLImmediate(SVOp), DAG);
7095
7096  //===--------------------------------------------------------------------===//
7097  // Since no target specific shuffle was selected for this generic one,
7098  // lower it into other known shuffles. FIXME: this isn't true yet, but
7099  // this is the plan.
7100  //
7101
7102  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7103  if (VT == MVT::v8i16) {
7104    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7105    if (NewOp.getNode())
7106      return NewOp;
7107  }
7108
7109  if (VT == MVT::v16i8) {
7110    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
7111    if (NewOp.getNode())
7112      return NewOp;
7113  }
7114
7115  if (VT == MVT::v32i8) {
7116    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7117    if (NewOp.getNode())
7118      return NewOp;
7119  }
7120
7121  // Handle all 128-bit wide vectors with 4 elements, and match them with
7122  // several different shuffle types.
7123  if (NumElems == 4 && VT.is128BitVector())
7124    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7125
7126  // Handle general 256-bit shuffles
7127  if (VT.is256BitVector())
7128    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7129
7130  return SDValue();
7131}
7132
7133static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7134  MVT VT = Op.getValueType().getSimpleVT();
7135  SDLoc dl(Op);
7136
7137  if (!Op.getOperand(0).getValueType().getSimpleVT().is128BitVector())
7138    return SDValue();
7139
7140  if (VT.getSizeInBits() == 8) {
7141    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7142                                  Op.getOperand(0), Op.getOperand(1));
7143    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7144                                  DAG.getValueType(VT));
7145    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7146  }
7147
7148  if (VT.getSizeInBits() == 16) {
7149    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7150    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7151    if (Idx == 0)
7152      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7153                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7154                                     DAG.getNode(ISD::BITCAST, dl,
7155                                                 MVT::v4i32,
7156                                                 Op.getOperand(0)),
7157                                     Op.getOperand(1)));
7158    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7159                                  Op.getOperand(0), Op.getOperand(1));
7160    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7161                                  DAG.getValueType(VT));
7162    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7163  }
7164
7165  if (VT == MVT::f32) {
7166    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7167    // the result back to FR32 register. It's only worth matching if the
7168    // result has a single use which is a store or a bitcast to i32.  And in
7169    // the case of a store, it's not worth it if the index is a constant 0,
7170    // because a MOVSSmr can be used instead, which is smaller and faster.
7171    if (!Op.hasOneUse())
7172      return SDValue();
7173    SDNode *User = *Op.getNode()->use_begin();
7174    if ((User->getOpcode() != ISD::STORE ||
7175         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7176          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7177        (User->getOpcode() != ISD::BITCAST ||
7178         User->getValueType(0) != MVT::i32))
7179      return SDValue();
7180    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7181                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7182                                              Op.getOperand(0)),
7183                                              Op.getOperand(1));
7184    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7185  }
7186
7187  if (VT == MVT::i32 || VT == MVT::i64) {
7188    // ExtractPS/pextrq works with constant index.
7189    if (isa<ConstantSDNode>(Op.getOperand(1)))
7190      return Op;
7191  }
7192  return SDValue();
7193}
7194
7195SDValue
7196X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7197                                           SelectionDAG &DAG) const {
7198  if (!isa<ConstantSDNode>(Op.getOperand(1)))
7199    return SDValue();
7200
7201  SDValue Vec = Op.getOperand(0);
7202  MVT VecVT = Vec.getValueType().getSimpleVT();
7203
7204  // If this is a 256-bit vector result, first extract the 128-bit vector and
7205  // then extract the element from the 128-bit vector.
7206  if (VecVT.is256BitVector()) {
7207    SDLoc dl(Op.getNode());
7208    unsigned NumElems = VecVT.getVectorNumElements();
7209    SDValue Idx = Op.getOperand(1);
7210    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7211
7212    // Get the 128-bit vector.
7213    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7214
7215    if (IdxVal >= NumElems/2)
7216      IdxVal -= NumElems/2;
7217    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7218                       DAG.getConstant(IdxVal, MVT::i32));
7219  }
7220
7221  assert(VecVT.is128BitVector() && "Unexpected vector length");
7222
7223  if (Subtarget->hasSSE41()) {
7224    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7225    if (Res.getNode())
7226      return Res;
7227  }
7228
7229  MVT VT = Op.getValueType().getSimpleVT();
7230  SDLoc dl(Op);
7231  // TODO: handle v16i8.
7232  if (VT.getSizeInBits() == 16) {
7233    SDValue Vec = Op.getOperand(0);
7234    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7235    if (Idx == 0)
7236      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7237                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7238                                     DAG.getNode(ISD::BITCAST, dl,
7239                                                 MVT::v4i32, Vec),
7240                                     Op.getOperand(1)));
7241    // Transform it so it match pextrw which produces a 32-bit result.
7242    MVT EltVT = MVT::i32;
7243    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7244                                  Op.getOperand(0), Op.getOperand(1));
7245    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7246                                  DAG.getValueType(VT));
7247    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7248  }
7249
7250  if (VT.getSizeInBits() == 32) {
7251    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7252    if (Idx == 0)
7253      return Op;
7254
7255    // SHUFPS the element to the lowest double word, then movss.
7256    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7257    MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
7258    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7259                                       DAG.getUNDEF(VVT), Mask);
7260    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7261                       DAG.getIntPtrConstant(0));
7262  }
7263
7264  if (VT.getSizeInBits() == 64) {
7265    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7266    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7267    //        to match extract_elt for f64.
7268    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7269    if (Idx == 0)
7270      return Op;
7271
7272    // UNPCKHPD the element to the lowest double word, then movsd.
7273    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7274    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7275    int Mask[2] = { 1, -1 };
7276    MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
7277    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7278                                       DAG.getUNDEF(VVT), Mask);
7279    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7280                       DAG.getIntPtrConstant(0));
7281  }
7282
7283  return SDValue();
7284}
7285
7286static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7287  MVT VT = Op.getValueType().getSimpleVT();
7288  MVT EltVT = VT.getVectorElementType();
7289  SDLoc dl(Op);
7290
7291  SDValue N0 = Op.getOperand(0);
7292  SDValue N1 = Op.getOperand(1);
7293  SDValue N2 = Op.getOperand(2);
7294
7295  if (!VT.is128BitVector())
7296    return SDValue();
7297
7298  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7299      isa<ConstantSDNode>(N2)) {
7300    unsigned Opc;
7301    if (VT == MVT::v8i16)
7302      Opc = X86ISD::PINSRW;
7303    else if (VT == MVT::v16i8)
7304      Opc = X86ISD::PINSRB;
7305    else
7306      Opc = X86ISD::PINSRB;
7307
7308    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7309    // argument.
7310    if (N1.getValueType() != MVT::i32)
7311      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7312    if (N2.getValueType() != MVT::i32)
7313      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7314    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7315  }
7316
7317  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7318    // Bits [7:6] of the constant are the source select.  This will always be
7319    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7320    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7321    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7322    // Bits [5:4] of the constant are the destination select.  This is the
7323    //  value of the incoming immediate.
7324    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7325    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7326    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7327    // Create this as a scalar to vector..
7328    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7329    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7330  }
7331
7332  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7333    // PINSR* works with constant index.
7334    return Op;
7335  }
7336  return SDValue();
7337}
7338
7339SDValue
7340X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7341  MVT VT = Op.getValueType().getSimpleVT();
7342  MVT EltVT = VT.getVectorElementType();
7343
7344  SDLoc dl(Op);
7345  SDValue N0 = Op.getOperand(0);
7346  SDValue N1 = Op.getOperand(1);
7347  SDValue N2 = Op.getOperand(2);
7348
7349  // If this is a 256-bit vector result, first extract the 128-bit vector,
7350  // insert the element into the extracted half and then place it back.
7351  if (VT.is256BitVector()) {
7352    if (!isa<ConstantSDNode>(N2))
7353      return SDValue();
7354
7355    // Get the desired 128-bit vector half.
7356    unsigned NumElems = VT.getVectorNumElements();
7357    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7358    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7359
7360    // Insert the element into the desired half.
7361    bool Upper = IdxVal >= NumElems/2;
7362    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7363                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7364
7365    // Insert the changed part back to the 256-bit vector
7366    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7367  }
7368
7369  if (Subtarget->hasSSE41())
7370    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7371
7372  if (EltVT == MVT::i8)
7373    return SDValue();
7374
7375  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7376    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7377    // as its second argument.
7378    if (N1.getValueType() != MVT::i32)
7379      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7380    if (N2.getValueType() != MVT::i32)
7381      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7382    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7383  }
7384  return SDValue();
7385}
7386
7387static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7388  LLVMContext *Context = DAG.getContext();
7389  SDLoc dl(Op);
7390  MVT OpVT = Op.getValueType().getSimpleVT();
7391
7392  // If this is a 256-bit vector result, first insert into a 128-bit
7393  // vector and then insert into the 256-bit vector.
7394  if (!OpVT.is128BitVector()) {
7395    // Insert into a 128-bit vector.
7396    EVT VT128 = EVT::getVectorVT(*Context,
7397                                 OpVT.getVectorElementType(),
7398                                 OpVT.getVectorNumElements() / 2);
7399
7400    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7401
7402    // Insert the 128-bit vector.
7403    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7404  }
7405
7406  if (OpVT == MVT::v1i64 &&
7407      Op.getOperand(0).getValueType() == MVT::i64)
7408    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7409
7410  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7411  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7412  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7413                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7414}
7415
7416// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7417// a simple subregister reference or explicit instructions to grab
7418// upper bits of a vector.
7419static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7420                                      SelectionDAG &DAG) {
7421  if (Subtarget->hasFp256()) {
7422    SDLoc dl(Op.getNode());
7423    SDValue Vec = Op.getNode()->getOperand(0);
7424    SDValue Idx = Op.getNode()->getOperand(1);
7425
7426    if (Op.getNode()->getValueType(0).is128BitVector() &&
7427        Vec.getNode()->getValueType(0).is256BitVector() &&
7428        isa<ConstantSDNode>(Idx)) {
7429      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7430      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7431    }
7432  }
7433  return SDValue();
7434}
7435
7436// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7437// simple superregister reference or explicit instructions to insert
7438// the upper bits of a vector.
7439static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7440                                     SelectionDAG &DAG) {
7441  if (Subtarget->hasFp256()) {
7442    SDLoc dl(Op.getNode());
7443    SDValue Vec = Op.getNode()->getOperand(0);
7444    SDValue SubVec = Op.getNode()->getOperand(1);
7445    SDValue Idx = Op.getNode()->getOperand(2);
7446
7447    if (Op.getNode()->getValueType(0).is256BitVector() &&
7448        SubVec.getNode()->getValueType(0).is128BitVector() &&
7449        isa<ConstantSDNode>(Idx)) {
7450      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7451      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7452    }
7453  }
7454  return SDValue();
7455}
7456
7457// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7458// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7459// one of the above mentioned nodes. It has to be wrapped because otherwise
7460// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7461// be used to form addressing mode. These wrapped nodes will be selected
7462// into MOV32ri.
7463SDValue
7464X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7465  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7466
7467  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7468  // global base reg.
7469  unsigned char OpFlag = 0;
7470  unsigned WrapperKind = X86ISD::Wrapper;
7471  CodeModel::Model M = getTargetMachine().getCodeModel();
7472
7473  if (Subtarget->isPICStyleRIPRel() &&
7474      (M == CodeModel::Small || M == CodeModel::Kernel))
7475    WrapperKind = X86ISD::WrapperRIP;
7476  else if (Subtarget->isPICStyleGOT())
7477    OpFlag = X86II::MO_GOTOFF;
7478  else if (Subtarget->isPICStyleStubPIC())
7479    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7480
7481  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7482                                             CP->getAlignment(),
7483                                             CP->getOffset(), OpFlag);
7484  SDLoc DL(CP);
7485  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7486  // With PIC, the address is actually $g + Offset.
7487  if (OpFlag) {
7488    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7489                         DAG.getNode(X86ISD::GlobalBaseReg,
7490                                     SDLoc(), getPointerTy()),
7491                         Result);
7492  }
7493
7494  return Result;
7495}
7496
7497SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7498  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7499
7500  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7501  // global base reg.
7502  unsigned char OpFlag = 0;
7503  unsigned WrapperKind = X86ISD::Wrapper;
7504  CodeModel::Model M = getTargetMachine().getCodeModel();
7505
7506  if (Subtarget->isPICStyleRIPRel() &&
7507      (M == CodeModel::Small || M == CodeModel::Kernel))
7508    WrapperKind = X86ISD::WrapperRIP;
7509  else if (Subtarget->isPICStyleGOT())
7510    OpFlag = X86II::MO_GOTOFF;
7511  else if (Subtarget->isPICStyleStubPIC())
7512    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7513
7514  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7515                                          OpFlag);
7516  SDLoc DL(JT);
7517  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7518
7519  // With PIC, the address is actually $g + Offset.
7520  if (OpFlag)
7521    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7522                         DAG.getNode(X86ISD::GlobalBaseReg,
7523                                     SDLoc(), getPointerTy()),
7524                         Result);
7525
7526  return Result;
7527}
7528
7529SDValue
7530X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7531  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7532
7533  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7534  // global base reg.
7535  unsigned char OpFlag = 0;
7536  unsigned WrapperKind = X86ISD::Wrapper;
7537  CodeModel::Model M = getTargetMachine().getCodeModel();
7538
7539  if (Subtarget->isPICStyleRIPRel() &&
7540      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7541    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7542      OpFlag = X86II::MO_GOTPCREL;
7543    WrapperKind = X86ISD::WrapperRIP;
7544  } else if (Subtarget->isPICStyleGOT()) {
7545    OpFlag = X86II::MO_GOT;
7546  } else if (Subtarget->isPICStyleStubPIC()) {
7547    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7548  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7549    OpFlag = X86II::MO_DARWIN_NONLAZY;
7550  }
7551
7552  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7553
7554  SDLoc DL(Op);
7555  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7556
7557  // With PIC, the address is actually $g + Offset.
7558  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7559      !Subtarget->is64Bit()) {
7560    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7561                         DAG.getNode(X86ISD::GlobalBaseReg,
7562                                     SDLoc(), getPointerTy()),
7563                         Result);
7564  }
7565
7566  // For symbols that require a load from a stub to get the address, emit the
7567  // load.
7568  if (isGlobalStubReference(OpFlag))
7569    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7570                         MachinePointerInfo::getGOT(), false, false, false, 0);
7571
7572  return Result;
7573}
7574
7575SDValue
7576X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7577  // Create the TargetBlockAddressAddress node.
7578  unsigned char OpFlags =
7579    Subtarget->ClassifyBlockAddressReference();
7580  CodeModel::Model M = getTargetMachine().getCodeModel();
7581  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7582  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7583  SDLoc dl(Op);
7584  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7585                                             OpFlags);
7586
7587  if (Subtarget->isPICStyleRIPRel() &&
7588      (M == CodeModel::Small || M == CodeModel::Kernel))
7589    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7590  else
7591    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7592
7593  // With PIC, the address is actually $g + Offset.
7594  if (isGlobalRelativeToPICBase(OpFlags)) {
7595    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7596                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7597                         Result);
7598  }
7599
7600  return Result;
7601}
7602
7603SDValue
7604X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
7605                                      int64_t Offset, SelectionDAG &DAG) const {
7606  // Create the TargetGlobalAddress node, folding in the constant
7607  // offset if it is legal.
7608  unsigned char OpFlags =
7609    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7610  CodeModel::Model M = getTargetMachine().getCodeModel();
7611  SDValue Result;
7612  if (OpFlags == X86II::MO_NO_FLAG &&
7613      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7614    // A direct static reference to a global.
7615    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7616    Offset = 0;
7617  } else {
7618    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7619  }
7620
7621  if (Subtarget->isPICStyleRIPRel() &&
7622      (M == CodeModel::Small || M == CodeModel::Kernel))
7623    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7624  else
7625    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7626
7627  // With PIC, the address is actually $g + Offset.
7628  if (isGlobalRelativeToPICBase(OpFlags)) {
7629    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7630                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7631                         Result);
7632  }
7633
7634  // For globals that require a load from a stub to get the address, emit the
7635  // load.
7636  if (isGlobalStubReference(OpFlags))
7637    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7638                         MachinePointerInfo::getGOT(), false, false, false, 0);
7639
7640  // If there was a non-zero offset that we didn't fold, create an explicit
7641  // addition for it.
7642  if (Offset != 0)
7643    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7644                         DAG.getConstant(Offset, getPointerTy()));
7645
7646  return Result;
7647}
7648
7649SDValue
7650X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7651  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7652  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7653  return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
7654}
7655
7656static SDValue
7657GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7658           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7659           unsigned char OperandFlags, bool LocalDynamic = false) {
7660  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7661  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7662  SDLoc dl(GA);
7663  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7664                                           GA->getValueType(0),
7665                                           GA->getOffset(),
7666                                           OperandFlags);
7667
7668  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7669                                           : X86ISD::TLSADDR;
7670
7671  if (InFlag) {
7672    SDValue Ops[] = { Chain,  TGA, *InFlag };
7673    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
7674  } else {
7675    SDValue Ops[]  = { Chain, TGA };
7676    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
7677  }
7678
7679  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7680  MFI->setAdjustsStack(true);
7681
7682  SDValue Flag = Chain.getValue(1);
7683  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7684}
7685
7686// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7687static SDValue
7688LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7689                                const EVT PtrVT) {
7690  SDValue InFlag;
7691  SDLoc dl(GA);  // ? function entry point might be better
7692  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7693                                   DAG.getNode(X86ISD::GlobalBaseReg,
7694                                               SDLoc(), PtrVT), InFlag);
7695  InFlag = Chain.getValue(1);
7696
7697  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7698}
7699
7700// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7701static SDValue
7702LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7703                                const EVT PtrVT) {
7704  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7705                    X86::RAX, X86II::MO_TLSGD);
7706}
7707
7708static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7709                                           SelectionDAG &DAG,
7710                                           const EVT PtrVT,
7711                                           bool is64Bit) {
7712  SDLoc dl(GA);
7713
7714  // Get the start address of the TLS block for this module.
7715  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7716      .getInfo<X86MachineFunctionInfo>();
7717  MFI->incNumLocalDynamicTLSAccesses();
7718
7719  SDValue Base;
7720  if (is64Bit) {
7721    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7722                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7723  } else {
7724    SDValue InFlag;
7725    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7726        DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
7727    InFlag = Chain.getValue(1);
7728    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7729                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7730  }
7731
7732  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7733  // of Base.
7734
7735  // Build x@dtpoff.
7736  unsigned char OperandFlags = X86II::MO_DTPOFF;
7737  unsigned WrapperKind = X86ISD::Wrapper;
7738  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7739                                           GA->getValueType(0),
7740                                           GA->getOffset(), OperandFlags);
7741  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7742
7743  // Add x@dtpoff with the base.
7744  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7745}
7746
7747// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7748static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7749                                   const EVT PtrVT, TLSModel::Model model,
7750                                   bool is64Bit, bool isPIC) {
7751  SDLoc dl(GA);
7752
7753  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7754  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7755                                                         is64Bit ? 257 : 256));
7756
7757  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7758                                      DAG.getIntPtrConstant(0),
7759                                      MachinePointerInfo(Ptr),
7760                                      false, false, false, 0);
7761
7762  unsigned char OperandFlags = 0;
7763  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7764  // initialexec.
7765  unsigned WrapperKind = X86ISD::Wrapper;
7766  if (model == TLSModel::LocalExec) {
7767    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7768  } else if (model == TLSModel::InitialExec) {
7769    if (is64Bit) {
7770      OperandFlags = X86II::MO_GOTTPOFF;
7771      WrapperKind = X86ISD::WrapperRIP;
7772    } else {
7773      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7774    }
7775  } else {
7776    llvm_unreachable("Unexpected model");
7777  }
7778
7779  // emit "addl x@ntpoff,%eax" (local exec)
7780  // or "addl x@indntpoff,%eax" (initial exec)
7781  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7782  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7783                                           GA->getValueType(0),
7784                                           GA->getOffset(), OperandFlags);
7785  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7786
7787  if (model == TLSModel::InitialExec) {
7788    if (isPIC && !is64Bit) {
7789      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7790                          DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
7791                           Offset);
7792    }
7793
7794    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7795                         MachinePointerInfo::getGOT(), false, false, false,
7796                         0);
7797  }
7798
7799  // The address of the thread local variable is the add of the thread
7800  // pointer with the offset of the variable.
7801  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7802}
7803
7804SDValue
7805X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7806
7807  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7808  const GlobalValue *GV = GA->getGlobal();
7809
7810  if (Subtarget->isTargetELF()) {
7811    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7812
7813    switch (model) {
7814      case TLSModel::GeneralDynamic:
7815        if (Subtarget->is64Bit())
7816          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7817        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7818      case TLSModel::LocalDynamic:
7819        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7820                                           Subtarget->is64Bit());
7821      case TLSModel::InitialExec:
7822      case TLSModel::LocalExec:
7823        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7824                                   Subtarget->is64Bit(),
7825                        getTargetMachine().getRelocationModel() == Reloc::PIC_);
7826    }
7827    llvm_unreachable("Unknown TLS model.");
7828  }
7829
7830  if (Subtarget->isTargetDarwin()) {
7831    // Darwin only has one model of TLS.  Lower to that.
7832    unsigned char OpFlag = 0;
7833    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7834                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7835
7836    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7837    // global base reg.
7838    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7839                  !Subtarget->is64Bit();
7840    if (PIC32)
7841      OpFlag = X86II::MO_TLVP_PIC_BASE;
7842    else
7843      OpFlag = X86II::MO_TLVP;
7844    SDLoc DL(Op);
7845    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7846                                                GA->getValueType(0),
7847                                                GA->getOffset(), OpFlag);
7848    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7849
7850    // With PIC32, the address is actually $g + Offset.
7851    if (PIC32)
7852      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7853                           DAG.getNode(X86ISD::GlobalBaseReg,
7854                                       SDLoc(), getPointerTy()),
7855                           Offset);
7856
7857    // Lowering the machine isd will make sure everything is in the right
7858    // location.
7859    SDValue Chain = DAG.getEntryNode();
7860    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7861    SDValue Args[] = { Chain, Offset };
7862    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7863
7864    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7865    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7866    MFI->setAdjustsStack(true);
7867
7868    // And our return value (tls address) is in the standard call return value
7869    // location.
7870    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7871    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7872                              Chain.getValue(1));
7873  }
7874
7875  if (Subtarget->isTargetWindows() || Subtarget->isTargetMingw()) {
7876    // Just use the implicit TLS architecture
7877    // Need to generate someting similar to:
7878    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7879    //                                  ; from TEB
7880    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7881    //   mov     rcx, qword [rdx+rcx*8]
7882    //   mov     eax, .tls$:tlsvar
7883    //   [rax+rcx] contains the address
7884    // Windows 64bit: gs:0x58
7885    // Windows 32bit: fs:__tls_array
7886
7887    // If GV is an alias then use the aliasee for determining
7888    // thread-localness.
7889    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7890      GV = GA->resolveAliasedGlobal(false);
7891    SDLoc dl(GA);
7892    SDValue Chain = DAG.getEntryNode();
7893
7894    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7895    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
7896    // use its literal value of 0x2C.
7897    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7898                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7899                                                             256)
7900                                        : Type::getInt32PtrTy(*DAG.getContext(),
7901                                                              257));
7902
7903    SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) :
7904      (Subtarget->isTargetMingw() ? DAG.getIntPtrConstant(0x2C) :
7905        DAG.getExternalSymbol("_tls_array", getPointerTy()));
7906
7907    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
7908                                        MachinePointerInfo(Ptr),
7909                                        false, false, false, 0);
7910
7911    // Load the _tls_index variable
7912    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7913    if (Subtarget->is64Bit())
7914      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7915                           IDX, MachinePointerInfo(), MVT::i32,
7916                           false, false, 0);
7917    else
7918      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7919                        false, false, false, 0);
7920
7921    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7922                                    getPointerTy());
7923    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7924
7925    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7926    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7927                      false, false, false, 0);
7928
7929    // Get the offset of start of .tls section
7930    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7931                                             GA->getValueType(0),
7932                                             GA->getOffset(), X86II::MO_SECREL);
7933    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7934
7935    // The address of the thread local variable is the add of the thread
7936    // pointer with the offset of the variable.
7937    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7938  }
7939
7940  llvm_unreachable("TLS not implemented for this target.");
7941}
7942
7943/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7944/// and take a 2 x i32 value to shift plus a shift amount.
7945SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7946  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7947  EVT VT = Op.getValueType();
7948  unsigned VTBits = VT.getSizeInBits();
7949  SDLoc dl(Op);
7950  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7951  SDValue ShOpLo = Op.getOperand(0);
7952  SDValue ShOpHi = Op.getOperand(1);
7953  SDValue ShAmt  = Op.getOperand(2);
7954  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7955                                     DAG.getConstant(VTBits - 1, MVT::i8))
7956                       : DAG.getConstant(0, VT);
7957
7958  SDValue Tmp2, Tmp3;
7959  if (Op.getOpcode() == ISD::SHL_PARTS) {
7960    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7961    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7962  } else {
7963    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7964    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7965  }
7966
7967  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7968                                DAG.getConstant(VTBits, MVT::i8));
7969  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7970                             AndNode, DAG.getConstant(0, MVT::i8));
7971
7972  SDValue Hi, Lo;
7973  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7974  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7975  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7976
7977  if (Op.getOpcode() == ISD::SHL_PARTS) {
7978    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7979    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7980  } else {
7981    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7982    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7983  }
7984
7985  SDValue Ops[2] = { Lo, Hi };
7986  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
7987}
7988
7989SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7990                                           SelectionDAG &DAG) const {
7991  EVT SrcVT = Op.getOperand(0).getValueType();
7992
7993  if (SrcVT.isVector())
7994    return SDValue();
7995
7996  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7997         "Unknown SINT_TO_FP to lower!");
7998
7999  // These are really Legal; return the operand so the caller accepts it as
8000  // Legal.
8001  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
8002    return Op;
8003  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
8004      Subtarget->is64Bit()) {
8005    return Op;
8006  }
8007
8008  SDLoc dl(Op);
8009  unsigned Size = SrcVT.getSizeInBits()/8;
8010  MachineFunction &MF = DAG.getMachineFunction();
8011  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
8012  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8013  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8014                               StackSlot,
8015                               MachinePointerInfo::getFixedStack(SSFI),
8016                               false, false, 0);
8017  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
8018}
8019
8020SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
8021                                     SDValue StackSlot,
8022                                     SelectionDAG &DAG) const {
8023  // Build the FILD
8024  SDLoc DL(Op);
8025  SDVTList Tys;
8026  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
8027  if (useSSE)
8028    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
8029  else
8030    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
8031
8032  unsigned ByteSize = SrcVT.getSizeInBits()/8;
8033
8034  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
8035  MachineMemOperand *MMO;
8036  if (FI) {
8037    int SSFI = FI->getIndex();
8038    MMO =
8039      DAG.getMachineFunction()
8040      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8041                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
8042  } else {
8043    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
8044    StackSlot = StackSlot.getOperand(1);
8045  }
8046  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
8047  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
8048                                           X86ISD::FILD, DL,
8049                                           Tys, Ops, array_lengthof(Ops),
8050                                           SrcVT, MMO);
8051
8052  if (useSSE) {
8053    Chain = Result.getValue(1);
8054    SDValue InFlag = Result.getValue(2);
8055
8056    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
8057    // shouldn't be necessary except that RFP cannot be live across
8058    // multiple blocks. When stackifier is fixed, they can be uncoupled.
8059    MachineFunction &MF = DAG.getMachineFunction();
8060    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
8061    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
8062    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8063    Tys = DAG.getVTList(MVT::Other);
8064    SDValue Ops[] = {
8065      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
8066    };
8067    MachineMemOperand *MMO =
8068      DAG.getMachineFunction()
8069      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8070                            MachineMemOperand::MOStore, SSFISize, SSFISize);
8071
8072    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
8073                                    Ops, array_lengthof(Ops),
8074                                    Op.getValueType(), MMO);
8075    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
8076                         MachinePointerInfo::getFixedStack(SSFI),
8077                         false, false, false, 0);
8078  }
8079
8080  return Result;
8081}
8082
8083// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
8084SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
8085                                               SelectionDAG &DAG) const {
8086  // This algorithm is not obvious. Here it is what we're trying to output:
8087  /*
8088     movq       %rax,  %xmm0
8089     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
8090     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
8091     #ifdef __SSE3__
8092       haddpd   %xmm0, %xmm0
8093     #else
8094       pshufd   $0x4e, %xmm0, %xmm1
8095       addpd    %xmm1, %xmm0
8096     #endif
8097  */
8098
8099  SDLoc dl(Op);
8100  LLVMContext *Context = DAG.getContext();
8101
8102  // Build some magic constants.
8103  static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8104  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8105  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8106
8107  SmallVector<Constant*,2> CV1;
8108  CV1.push_back(
8109    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8110                                      APInt(64, 0x4330000000000000ULL))));
8111  CV1.push_back(
8112    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8113                                      APInt(64, 0x4530000000000000ULL))));
8114  Constant *C1 = ConstantVector::get(CV1);
8115  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8116
8117  // Load the 64-bit value into an XMM register.
8118  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8119                            Op.getOperand(0));
8120  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8121                              MachinePointerInfo::getConstantPool(),
8122                              false, false, false, 16);
8123  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8124                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8125                              CLod0);
8126
8127  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8128                              MachinePointerInfo::getConstantPool(),
8129                              false, false, false, 16);
8130  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8131  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8132  SDValue Result;
8133
8134  if (Subtarget->hasSSE3()) {
8135    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8136    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8137  } else {
8138    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8139    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8140                                           S2F, 0x4E, DAG);
8141    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8142                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8143                         Sub);
8144  }
8145
8146  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8147                     DAG.getIntPtrConstant(0));
8148}
8149
8150// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8151SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8152                                               SelectionDAG &DAG) const {
8153  SDLoc dl(Op);
8154  // FP constant to bias correct the final result.
8155  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8156                                   MVT::f64);
8157
8158  // Load the 32-bit value into an XMM register.
8159  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8160                             Op.getOperand(0));
8161
8162  // Zero out the upper parts of the register.
8163  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8164
8165  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8166                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8167                     DAG.getIntPtrConstant(0));
8168
8169  // Or the load with the bias.
8170  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8171                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8172                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8173                                                   MVT::v2f64, Load)),
8174                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8175                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8176                                                   MVT::v2f64, Bias)));
8177  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8178                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8179                   DAG.getIntPtrConstant(0));
8180
8181  // Subtract the bias.
8182  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8183
8184  // Handle final rounding.
8185  EVT DestVT = Op.getValueType();
8186
8187  if (DestVT.bitsLT(MVT::f64))
8188    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8189                       DAG.getIntPtrConstant(0));
8190  if (DestVT.bitsGT(MVT::f64))
8191    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8192
8193  // Handle final rounding.
8194  return Sub;
8195}
8196
8197SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8198                                               SelectionDAG &DAG) const {
8199  SDValue N0 = Op.getOperand(0);
8200  EVT SVT = N0.getValueType();
8201  SDLoc dl(Op);
8202
8203  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8204          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8205         "Custom UINT_TO_FP is not supported!");
8206
8207  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
8208                             SVT.getVectorNumElements());
8209  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8210                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8211}
8212
8213SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8214                                           SelectionDAG &DAG) const {
8215  SDValue N0 = Op.getOperand(0);
8216  SDLoc dl(Op);
8217
8218  if (Op.getValueType().isVector())
8219    return lowerUINT_TO_FP_vec(Op, DAG);
8220
8221  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8222  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8223  // the optimization here.
8224  if (DAG.SignBitIsZero(N0))
8225    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8226
8227  EVT SrcVT = N0.getValueType();
8228  EVT DstVT = Op.getValueType();
8229  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8230    return LowerUINT_TO_FP_i64(Op, DAG);
8231  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8232    return LowerUINT_TO_FP_i32(Op, DAG);
8233  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8234    return SDValue();
8235
8236  // Make a 64-bit buffer, and use it to build an FILD.
8237  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8238  if (SrcVT == MVT::i32) {
8239    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8240    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8241                                     getPointerTy(), StackSlot, WordOff);
8242    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8243                                  StackSlot, MachinePointerInfo(),
8244                                  false, false, 0);
8245    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8246                                  OffsetSlot, MachinePointerInfo(),
8247                                  false, false, 0);
8248    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8249    return Fild;
8250  }
8251
8252  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8253  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8254                               StackSlot, MachinePointerInfo(),
8255                               false, false, 0);
8256  // For i64 source, we need to add the appropriate power of 2 if the input
8257  // was negative.  This is the same as the optimization in
8258  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8259  // we must be careful to do the computation in x87 extended precision, not
8260  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8261  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8262  MachineMemOperand *MMO =
8263    DAG.getMachineFunction()
8264    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8265                          MachineMemOperand::MOLoad, 8, 8);
8266
8267  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8268  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8269  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
8270                                         array_lengthof(Ops), MVT::i64, MMO);
8271
8272  APInt FF(32, 0x5F800000ULL);
8273
8274  // Check whether the sign bit is set.
8275  SDValue SignSet = DAG.getSetCC(dl,
8276                                 getSetCCResultType(*DAG.getContext(), MVT::i64),
8277                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8278                                 ISD::SETLT);
8279
8280  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8281  SDValue FudgePtr = DAG.getConstantPool(
8282                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8283                                         getPointerTy());
8284
8285  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8286  SDValue Zero = DAG.getIntPtrConstant(0);
8287  SDValue Four = DAG.getIntPtrConstant(4);
8288  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8289                               Zero, Four);
8290  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8291
8292  // Load the value out, extending it from f32 to f80.
8293  // FIXME: Avoid the extend by constructing the right constant pool?
8294  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8295                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8296                                 MVT::f32, false, false, 4);
8297  // Extend everything to 80 bits to force it to be done on x87.
8298  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8299  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8300}
8301
8302std::pair<SDValue,SDValue>
8303X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
8304                                    bool IsSigned, bool IsReplace) const {
8305  SDLoc DL(Op);
8306
8307  EVT DstTy = Op.getValueType();
8308
8309  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8310    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8311    DstTy = MVT::i64;
8312  }
8313
8314  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8315         DstTy.getSimpleVT() >= MVT::i16 &&
8316         "Unknown FP_TO_INT to lower!");
8317
8318  // These are really Legal.
8319  if (DstTy == MVT::i32 &&
8320      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8321    return std::make_pair(SDValue(), SDValue());
8322  if (Subtarget->is64Bit() &&
8323      DstTy == MVT::i64 &&
8324      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8325    return std::make_pair(SDValue(), SDValue());
8326
8327  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8328  // stack slot, or into the FTOL runtime function.
8329  MachineFunction &MF = DAG.getMachineFunction();
8330  unsigned MemSize = DstTy.getSizeInBits()/8;
8331  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8332  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8333
8334  unsigned Opc;
8335  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8336    Opc = X86ISD::WIN_FTOL;
8337  else
8338    switch (DstTy.getSimpleVT().SimpleTy) {
8339    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8340    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8341    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8342    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8343    }
8344
8345  SDValue Chain = DAG.getEntryNode();
8346  SDValue Value = Op.getOperand(0);
8347  EVT TheVT = Op.getOperand(0).getValueType();
8348  // FIXME This causes a redundant load/store if the SSE-class value is already
8349  // in memory, such as if it is on the callstack.
8350  if (isScalarFPTypeInSSEReg(TheVT)) {
8351    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8352    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8353                         MachinePointerInfo::getFixedStack(SSFI),
8354                         false, false, 0);
8355    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8356    SDValue Ops[] = {
8357      Chain, StackSlot, DAG.getValueType(TheVT)
8358    };
8359
8360    MachineMemOperand *MMO =
8361      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8362                              MachineMemOperand::MOLoad, MemSize, MemSize);
8363    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops,
8364                                    array_lengthof(Ops), DstTy, MMO);
8365    Chain = Value.getValue(1);
8366    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8367    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8368  }
8369
8370  MachineMemOperand *MMO =
8371    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8372                            MachineMemOperand::MOStore, MemSize, MemSize);
8373
8374  if (Opc != X86ISD::WIN_FTOL) {
8375    // Build the FP_TO_INT*_IN_MEM
8376    SDValue Ops[] = { Chain, Value, StackSlot };
8377    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8378                                           Ops, array_lengthof(Ops), DstTy,
8379                                           MMO);
8380    return std::make_pair(FIST, StackSlot);
8381  } else {
8382    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8383      DAG.getVTList(MVT::Other, MVT::Glue),
8384      Chain, Value);
8385    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8386      MVT::i32, ftol.getValue(1));
8387    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8388      MVT::i32, eax.getValue(2));
8389    SDValue Ops[] = { eax, edx };
8390    SDValue pair = IsReplace
8391      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, array_lengthof(Ops))
8392      : DAG.getMergeValues(Ops, array_lengthof(Ops), DL);
8393    return std::make_pair(pair, SDValue());
8394  }
8395}
8396
8397static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
8398                              const X86Subtarget *Subtarget) {
8399  MVT VT = Op->getValueType(0).getSimpleVT();
8400  SDValue In = Op->getOperand(0);
8401  MVT InVT = In.getValueType().getSimpleVT();
8402  SDLoc dl(Op);
8403
8404  // Optimize vectors in AVX mode:
8405  //
8406  //   v8i16 -> v8i32
8407  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
8408  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
8409  //   Concat upper and lower parts.
8410  //
8411  //   v4i32 -> v4i64
8412  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
8413  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
8414  //   Concat upper and lower parts.
8415  //
8416
8417  if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
8418      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
8419    return SDValue();
8420
8421  if (Subtarget->hasInt256())
8422    return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
8423
8424  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
8425  SDValue Undef = DAG.getUNDEF(InVT);
8426  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
8427  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8428  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8429
8430  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
8431                             VT.getVectorNumElements()/2);
8432
8433  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
8434  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
8435
8436  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
8437}
8438
8439SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op,
8440                                           SelectionDAG &DAG) const {
8441  if (Subtarget->hasFp256()) {
8442    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8443    if (Res.getNode())
8444      return Res;
8445  }
8446
8447  return SDValue();
8448}
8449SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op,
8450                                            SelectionDAG &DAG) const {
8451  SDLoc DL(Op);
8452  MVT VT = Op.getValueType().getSimpleVT();
8453  SDValue In = Op.getOperand(0);
8454  MVT SVT = In.getValueType().getSimpleVT();
8455
8456  if (Subtarget->hasFp256()) {
8457    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8458    if (Res.getNode())
8459      return Res;
8460  }
8461
8462  if (!VT.is256BitVector() || !SVT.is128BitVector() ||
8463      VT.getVectorNumElements() != SVT.getVectorNumElements())
8464    return SDValue();
8465
8466  assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
8467
8468  // AVX2 has better support of integer extending.
8469  if (Subtarget->hasInt256())
8470    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8471
8472  SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
8473  static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
8474  SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
8475                           DAG.getVectorShuffle(MVT::v8i16, DL, In,
8476                                                DAG.getUNDEF(MVT::v8i16),
8477                                                &Mask[0]));
8478
8479  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
8480}
8481
8482SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8483  SDLoc DL(Op);
8484  MVT VT = Op.getValueType().getSimpleVT();
8485  SDValue In = Op.getOperand(0);
8486  MVT SVT = In.getValueType().getSimpleVT();
8487
8488  if ((VT == MVT::v4i32) && (SVT == MVT::v4i64)) {
8489    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
8490    if (Subtarget->hasInt256()) {
8491      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
8492      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
8493      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
8494                                ShufMask);
8495      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
8496                         DAG.getIntPtrConstant(0));
8497    }
8498
8499    // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
8500    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8501                               DAG.getIntPtrConstant(0));
8502    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8503                               DAG.getIntPtrConstant(2));
8504
8505    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8506    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8507
8508    // The PSHUFD mask:
8509    static const int ShufMask1[] = {0, 2, 0, 0};
8510    SDValue Undef = DAG.getUNDEF(VT);
8511    OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
8512    OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
8513
8514    // The MOVLHPS mask:
8515    static const int ShufMask2[] = {0, 1, 4, 5};
8516    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
8517  }
8518
8519  if ((VT == MVT::v8i16) && (SVT == MVT::v8i32)) {
8520    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
8521    if (Subtarget->hasInt256()) {
8522      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
8523
8524      SmallVector<SDValue,32> pshufbMask;
8525      for (unsigned i = 0; i < 2; ++i) {
8526        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
8527        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
8528        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
8529        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
8530        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
8531        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
8532        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
8533        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
8534        for (unsigned j = 0; j < 8; ++j)
8535          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
8536      }
8537      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
8538                               &pshufbMask[0], 32);
8539      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
8540      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
8541
8542      static const int ShufMask[] = {0,  2,  -1,  -1};
8543      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
8544                                &ShufMask[0]);
8545      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8546                       DAG.getIntPtrConstant(0));
8547      return DAG.getNode(ISD::BITCAST, DL, VT, In);
8548    }
8549
8550    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8551                               DAG.getIntPtrConstant(0));
8552
8553    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8554                               DAG.getIntPtrConstant(4));
8555
8556    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
8557    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
8558
8559    // The PSHUFB mask:
8560    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
8561                                   -1, -1, -1, -1, -1, -1, -1, -1};
8562
8563    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
8564    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
8565    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
8566
8567    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8568    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8569
8570    // The MOVLHPS Mask:
8571    static const int ShufMask2[] = {0, 1, 4, 5};
8572    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
8573    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
8574  }
8575
8576  // Handle truncation of V256 to V128 using shuffles.
8577  if (!VT.is128BitVector() || !SVT.is256BitVector())
8578    return SDValue();
8579
8580  assert(VT.getVectorNumElements() != SVT.getVectorNumElements() &&
8581         "Invalid op");
8582  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
8583
8584  unsigned NumElems = VT.getVectorNumElements();
8585  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8586                             NumElems * 2);
8587
8588  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
8589  // Prepare truncation shuffle mask
8590  for (unsigned i = 0; i != NumElems; ++i)
8591    MaskVec[i] = i * 2;
8592  SDValue V = DAG.getVectorShuffle(NVT, DL,
8593                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
8594                                   DAG.getUNDEF(NVT), &MaskVec[0]);
8595  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
8596                     DAG.getIntPtrConstant(0));
8597}
8598
8599SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8600                                           SelectionDAG &DAG) const {
8601  MVT VT = Op.getValueType().getSimpleVT();
8602  if (VT.isVector()) {
8603    if (VT == MVT::v8i16)
8604      return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT,
8605                         DAG.getNode(ISD::FP_TO_SINT, SDLoc(Op),
8606                                     MVT::v8i32, Op.getOperand(0)));
8607    return SDValue();
8608  }
8609
8610  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8611    /*IsSigned=*/ true, /*IsReplace=*/ false);
8612  SDValue FIST = Vals.first, StackSlot = Vals.second;
8613  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8614  if (FIST.getNode() == 0) return Op;
8615
8616  if (StackSlot.getNode())
8617    // Load the result.
8618    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
8619                       FIST, StackSlot, MachinePointerInfo(),
8620                       false, false, false, 0);
8621
8622  // The node is the result.
8623  return FIST;
8624}
8625
8626SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8627                                           SelectionDAG &DAG) const {
8628  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8629    /*IsSigned=*/ false, /*IsReplace=*/ false);
8630  SDValue FIST = Vals.first, StackSlot = Vals.second;
8631  assert(FIST.getNode() && "Unexpected failure");
8632
8633  if (StackSlot.getNode())
8634    // Load the result.
8635    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
8636                       FIST, StackSlot, MachinePointerInfo(),
8637                       false, false, false, 0);
8638
8639  // The node is the result.
8640  return FIST;
8641}
8642
8643static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
8644  SDLoc DL(Op);
8645  MVT VT = Op.getValueType().getSimpleVT();
8646  SDValue In = Op.getOperand(0);
8647  MVT SVT = In.getValueType().getSimpleVT();
8648
8649  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
8650
8651  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
8652                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
8653                                 In, DAG.getUNDEF(SVT)));
8654}
8655
8656SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8657  LLVMContext *Context = DAG.getContext();
8658  SDLoc dl(Op);
8659  MVT VT = Op.getValueType().getSimpleVT();
8660  MVT EltVT = VT;
8661  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8662  if (VT.isVector()) {
8663    EltVT = VT.getVectorElementType();
8664    NumElts = VT.getVectorNumElements();
8665  }
8666  Constant *C;
8667  if (EltVT == MVT::f64)
8668    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8669                                          APInt(64, ~(1ULL << 63))));
8670  else
8671    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
8672                                          APInt(32, ~(1U << 31))));
8673  C = ConstantVector::getSplat(NumElts, C);
8674  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8675  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8676  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8677                             MachinePointerInfo::getConstantPool(),
8678                             false, false, false, Alignment);
8679  if (VT.isVector()) {
8680    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8681    return DAG.getNode(ISD::BITCAST, dl, VT,
8682                       DAG.getNode(ISD::AND, dl, ANDVT,
8683                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8684                                               Op.getOperand(0)),
8685                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8686  }
8687  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8688}
8689
8690SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8691  LLVMContext *Context = DAG.getContext();
8692  SDLoc dl(Op);
8693  MVT VT = Op.getValueType().getSimpleVT();
8694  MVT EltVT = VT;
8695  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8696  if (VT.isVector()) {
8697    EltVT = VT.getVectorElementType();
8698    NumElts = VT.getVectorNumElements();
8699  }
8700  Constant *C;
8701  if (EltVT == MVT::f64)
8702    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8703                                          APInt(64, 1ULL << 63)));
8704  else
8705    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
8706                                          APInt(32, 1U << 31)));
8707  C = ConstantVector::getSplat(NumElts, C);
8708  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8709  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8710  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8711                             MachinePointerInfo::getConstantPool(),
8712                             false, false, false, Alignment);
8713  if (VT.isVector()) {
8714    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8715    return DAG.getNode(ISD::BITCAST, dl, VT,
8716                       DAG.getNode(ISD::XOR, dl, XORVT,
8717                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8718                                               Op.getOperand(0)),
8719                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8720  }
8721
8722  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8723}
8724
8725SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8726  LLVMContext *Context = DAG.getContext();
8727  SDValue Op0 = Op.getOperand(0);
8728  SDValue Op1 = Op.getOperand(1);
8729  SDLoc dl(Op);
8730  MVT VT = Op.getValueType().getSimpleVT();
8731  MVT SrcVT = Op1.getValueType().getSimpleVT();
8732
8733  // If second operand is smaller, extend it first.
8734  if (SrcVT.bitsLT(VT)) {
8735    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8736    SrcVT = VT;
8737  }
8738  // And if it is bigger, shrink it first.
8739  if (SrcVT.bitsGT(VT)) {
8740    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8741    SrcVT = VT;
8742  }
8743
8744  // At this point the operands and the result should have the same
8745  // type, and that won't be f80 since that is not custom lowered.
8746
8747  // First get the sign bit of second operand.
8748  SmallVector<Constant*,4> CV;
8749  if (SrcVT == MVT::f64) {
8750    const fltSemantics &Sem = APFloat::IEEEdouble;
8751    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
8752    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
8753  } else {
8754    const fltSemantics &Sem = APFloat::IEEEsingle;
8755    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
8756    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8757    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8758    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8759  }
8760  Constant *C = ConstantVector::get(CV);
8761  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8762  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8763                              MachinePointerInfo::getConstantPool(),
8764                              false, false, false, 16);
8765  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8766
8767  // Shift sign bit right or left if the two operands have different types.
8768  if (SrcVT.bitsGT(VT)) {
8769    // Op0 is MVT::f32, Op1 is MVT::f64.
8770    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8771    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8772                          DAG.getConstant(32, MVT::i32));
8773    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8774    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8775                          DAG.getIntPtrConstant(0));
8776  }
8777
8778  // Clear first operand sign bit.
8779  CV.clear();
8780  if (VT == MVT::f64) {
8781    const fltSemantics &Sem = APFloat::IEEEdouble;
8782    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
8783                                                   APInt(64, ~(1ULL << 63)))));
8784    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
8785  } else {
8786    const fltSemantics &Sem = APFloat::IEEEsingle;
8787    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
8788                                                   APInt(32, ~(1U << 31)))));
8789    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8790    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8791    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
8792  }
8793  C = ConstantVector::get(CV);
8794  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8795  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8796                              MachinePointerInfo::getConstantPool(),
8797                              false, false, false, 16);
8798  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8799
8800  // Or the value with the sign bit.
8801  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8802}
8803
8804static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8805  SDValue N0 = Op.getOperand(0);
8806  SDLoc dl(Op);
8807  MVT VT = Op.getValueType().getSimpleVT();
8808
8809  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8810  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8811                                  DAG.getConstant(1, VT));
8812  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8813}
8814
8815// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8816//
8817SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op,
8818                                                  SelectionDAG &DAG) const {
8819  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8820
8821  if (!Subtarget->hasSSE41())
8822    return SDValue();
8823
8824  if (!Op->hasOneUse())
8825    return SDValue();
8826
8827  SDNode *N = Op.getNode();
8828  SDLoc DL(N);
8829
8830  SmallVector<SDValue, 8> Opnds;
8831  DenseMap<SDValue, unsigned> VecInMap;
8832  EVT VT = MVT::Other;
8833
8834  // Recognize a special case where a vector is casted into wide integer to
8835  // test all 0s.
8836  Opnds.push_back(N->getOperand(0));
8837  Opnds.push_back(N->getOperand(1));
8838
8839  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8840    SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
8841    // BFS traverse all OR'd operands.
8842    if (I->getOpcode() == ISD::OR) {
8843      Opnds.push_back(I->getOperand(0));
8844      Opnds.push_back(I->getOperand(1));
8845      // Re-evaluate the number of nodes to be traversed.
8846      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8847      continue;
8848    }
8849
8850    // Quit if a non-EXTRACT_VECTOR_ELT
8851    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8852      return SDValue();
8853
8854    // Quit if without a constant index.
8855    SDValue Idx = I->getOperand(1);
8856    if (!isa<ConstantSDNode>(Idx))
8857      return SDValue();
8858
8859    SDValue ExtractedFromVec = I->getOperand(0);
8860    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8861    if (M == VecInMap.end()) {
8862      VT = ExtractedFromVec.getValueType();
8863      // Quit if not 128/256-bit vector.
8864      if (!VT.is128BitVector() && !VT.is256BitVector())
8865        return SDValue();
8866      // Quit if not the same type.
8867      if (VecInMap.begin() != VecInMap.end() &&
8868          VT != VecInMap.begin()->first.getValueType())
8869        return SDValue();
8870      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8871    }
8872    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8873  }
8874
8875  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8876         "Not extracted from 128-/256-bit vector.");
8877
8878  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8879  SmallVector<SDValue, 8> VecIns;
8880
8881  for (DenseMap<SDValue, unsigned>::const_iterator
8882        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8883    // Quit if not all elements are used.
8884    if (I->second != FullMask)
8885      return SDValue();
8886    VecIns.push_back(I->first);
8887  }
8888
8889  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8890
8891  // Cast all vectors into TestVT for PTEST.
8892  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8893    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8894
8895  // If more than one full vectors are evaluated, OR them first before PTEST.
8896  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8897    // Each iteration will OR 2 nodes and append the result until there is only
8898    // 1 node left, i.e. the final OR'd value of all vectors.
8899    SDValue LHS = VecIns[Slot];
8900    SDValue RHS = VecIns[Slot + 1];
8901    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8902  }
8903
8904  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8905                     VecIns.back(), VecIns.back());
8906}
8907
8908/// Emit nodes that will be selected as "test Op0,Op0", or something
8909/// equivalent.
8910SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8911                                    SelectionDAG &DAG) const {
8912  SDLoc dl(Op);
8913
8914  // CF and OF aren't always set the way we want. Determine which
8915  // of these we need.
8916  bool NeedCF = false;
8917  bool NeedOF = false;
8918  switch (X86CC) {
8919  default: break;
8920  case X86::COND_A: case X86::COND_AE:
8921  case X86::COND_B: case X86::COND_BE:
8922    NeedCF = true;
8923    break;
8924  case X86::COND_G: case X86::COND_GE:
8925  case X86::COND_L: case X86::COND_LE:
8926  case X86::COND_O: case X86::COND_NO:
8927    NeedOF = true;
8928    break;
8929  }
8930
8931  // See if we can use the EFLAGS value from the operand instead of
8932  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8933  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8934  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8935    // Emit a CMP with 0, which is the TEST pattern.
8936    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8937                       DAG.getConstant(0, Op.getValueType()));
8938
8939  unsigned Opcode = 0;
8940  unsigned NumOperands = 0;
8941
8942  // Truncate operations may prevent the merge of the SETCC instruction
8943  // and the arithmetic intruction before it. Attempt to truncate the operands
8944  // of the arithmetic instruction and use a reduced bit-width instruction.
8945  bool NeedTruncation = false;
8946  SDValue ArithOp = Op;
8947  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8948    SDValue Arith = Op->getOperand(0);
8949    // Both the trunc and the arithmetic op need to have one user each.
8950    if (Arith->hasOneUse())
8951      switch (Arith.getOpcode()) {
8952        default: break;
8953        case ISD::ADD:
8954        case ISD::SUB:
8955        case ISD::AND:
8956        case ISD::OR:
8957        case ISD::XOR: {
8958          NeedTruncation = true;
8959          ArithOp = Arith;
8960        }
8961      }
8962  }
8963
8964  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8965  // which may be the result of a CAST.  We use the variable 'Op', which is the
8966  // non-casted variable when we check for possible users.
8967  switch (ArithOp.getOpcode()) {
8968  case ISD::ADD:
8969    // Due to an isel shortcoming, be conservative if this add is likely to be
8970    // selected as part of a load-modify-store instruction. When the root node
8971    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8972    // uses of other nodes in the match, such as the ADD in this case. This
8973    // leads to the ADD being left around and reselected, with the result being
8974    // two adds in the output.  Alas, even if none our users are stores, that
8975    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8976    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8977    // climbing the DAG back to the root, and it doesn't seem to be worth the
8978    // effort.
8979    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8980         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8981      if (UI->getOpcode() != ISD::CopyToReg &&
8982          UI->getOpcode() != ISD::SETCC &&
8983          UI->getOpcode() != ISD::STORE)
8984        goto default_case;
8985
8986    if (ConstantSDNode *C =
8987        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8988      // An add of one will be selected as an INC.
8989      if (C->getAPIntValue() == 1) {
8990        Opcode = X86ISD::INC;
8991        NumOperands = 1;
8992        break;
8993      }
8994
8995      // An add of negative one (subtract of one) will be selected as a DEC.
8996      if (C->getAPIntValue().isAllOnesValue()) {
8997        Opcode = X86ISD::DEC;
8998        NumOperands = 1;
8999        break;
9000      }
9001    }
9002
9003    // Otherwise use a regular EFLAGS-setting add.
9004    Opcode = X86ISD::ADD;
9005    NumOperands = 2;
9006    break;
9007  case ISD::AND: {
9008    // If the primary and result isn't used, don't bother using X86ISD::AND,
9009    // because a TEST instruction will be better.
9010    bool NonFlagUse = false;
9011    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9012           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
9013      SDNode *User = *UI;
9014      unsigned UOpNo = UI.getOperandNo();
9015      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
9016        // Look pass truncate.
9017        UOpNo = User->use_begin().getOperandNo();
9018        User = *User->use_begin();
9019      }
9020
9021      if (User->getOpcode() != ISD::BRCOND &&
9022          User->getOpcode() != ISD::SETCC &&
9023          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
9024        NonFlagUse = true;
9025        break;
9026      }
9027    }
9028
9029    if (!NonFlagUse)
9030      break;
9031  }
9032    // FALL THROUGH
9033  case ISD::SUB:
9034  case ISD::OR:
9035  case ISD::XOR:
9036    // Due to the ISEL shortcoming noted above, be conservative if this op is
9037    // likely to be selected as part of a load-modify-store instruction.
9038    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9039           UE = Op.getNode()->use_end(); UI != UE; ++UI)
9040      if (UI->getOpcode() == ISD::STORE)
9041        goto default_case;
9042
9043    // Otherwise use a regular EFLAGS-setting instruction.
9044    switch (ArithOp.getOpcode()) {
9045    default: llvm_unreachable("unexpected operator!");
9046    case ISD::SUB: Opcode = X86ISD::SUB; break;
9047    case ISD::XOR: Opcode = X86ISD::XOR; break;
9048    case ISD::AND: Opcode = X86ISD::AND; break;
9049    case ISD::OR: {
9050      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
9051        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
9052        if (EFLAGS.getNode())
9053          return EFLAGS;
9054      }
9055      Opcode = X86ISD::OR;
9056      break;
9057    }
9058    }
9059
9060    NumOperands = 2;
9061    break;
9062  case X86ISD::ADD:
9063  case X86ISD::SUB:
9064  case X86ISD::INC:
9065  case X86ISD::DEC:
9066  case X86ISD::OR:
9067  case X86ISD::XOR:
9068  case X86ISD::AND:
9069    return SDValue(Op.getNode(), 1);
9070  default:
9071  default_case:
9072    break;
9073  }
9074
9075  // If we found that truncation is beneficial, perform the truncation and
9076  // update 'Op'.
9077  if (NeedTruncation) {
9078    EVT VT = Op.getValueType();
9079    SDValue WideVal = Op->getOperand(0);
9080    EVT WideVT = WideVal.getValueType();
9081    unsigned ConvertedOp = 0;
9082    // Use a target machine opcode to prevent further DAGCombine
9083    // optimizations that may separate the arithmetic operations
9084    // from the setcc node.
9085    switch (WideVal.getOpcode()) {
9086      default: break;
9087      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
9088      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
9089      case ISD::AND: ConvertedOp = X86ISD::AND; break;
9090      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
9091      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
9092    }
9093
9094    if (ConvertedOp) {
9095      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9096      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
9097        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
9098        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
9099        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
9100      }
9101    }
9102  }
9103
9104  if (Opcode == 0)
9105    // Emit a CMP with 0, which is the TEST pattern.
9106    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9107                       DAG.getConstant(0, Op.getValueType()));
9108
9109  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9110  SmallVector<SDValue, 4> Ops;
9111  for (unsigned i = 0; i != NumOperands; ++i)
9112    Ops.push_back(Op.getOperand(i));
9113
9114  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
9115  DAG.ReplaceAllUsesWith(Op, New);
9116  return SDValue(New.getNode(), 1);
9117}
9118
9119/// Emit nodes that will be selected as "cmp Op0,Op1", or something
9120/// equivalent.
9121SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
9122                                   SelectionDAG &DAG) const {
9123  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
9124    if (C->getAPIntValue() == 0)
9125      return EmitTest(Op0, X86CC, DAG);
9126
9127  SDLoc dl(Op0);
9128  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
9129       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
9130    // Use SUB instead of CMP to enable CSE between SUB and CMP.
9131    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
9132    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
9133                              Op0, Op1);
9134    return SDValue(Sub.getNode(), 1);
9135  }
9136  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
9137}
9138
9139/// Convert a comparison if required by the subtarget.
9140SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
9141                                                 SelectionDAG &DAG) const {
9142  // If the subtarget does not support the FUCOMI instruction, floating-point
9143  // comparisons have to be converted.
9144  if (Subtarget->hasCMov() ||
9145      Cmp.getOpcode() != X86ISD::CMP ||
9146      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
9147      !Cmp.getOperand(1).getValueType().isFloatingPoint())
9148    return Cmp;
9149
9150  // The instruction selector will select an FUCOM instruction instead of
9151  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
9152  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
9153  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
9154  SDLoc dl(Cmp);
9155  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
9156  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
9157  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
9158                            DAG.getConstant(8, MVT::i8));
9159  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
9160  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
9161}
9162
9163static bool isAllOnes(SDValue V) {
9164  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9165  return C && C->isAllOnesValue();
9166}
9167
9168/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
9169/// if it's possible.
9170SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
9171                                     SDLoc dl, SelectionDAG &DAG) const {
9172  SDValue Op0 = And.getOperand(0);
9173  SDValue Op1 = And.getOperand(1);
9174  if (Op0.getOpcode() == ISD::TRUNCATE)
9175    Op0 = Op0.getOperand(0);
9176  if (Op1.getOpcode() == ISD::TRUNCATE)
9177    Op1 = Op1.getOperand(0);
9178
9179  SDValue LHS, RHS;
9180  if (Op1.getOpcode() == ISD::SHL)
9181    std::swap(Op0, Op1);
9182  if (Op0.getOpcode() == ISD::SHL) {
9183    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
9184      if (And00C->getZExtValue() == 1) {
9185        // If we looked past a truncate, check that it's only truncating away
9186        // known zeros.
9187        unsigned BitWidth = Op0.getValueSizeInBits();
9188        unsigned AndBitWidth = And.getValueSizeInBits();
9189        if (BitWidth > AndBitWidth) {
9190          APInt Zeros, Ones;
9191          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
9192          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
9193            return SDValue();
9194        }
9195        LHS = Op1;
9196        RHS = Op0.getOperand(1);
9197      }
9198  } else if (Op1.getOpcode() == ISD::Constant) {
9199    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
9200    uint64_t AndRHSVal = AndRHS->getZExtValue();
9201    SDValue AndLHS = Op0;
9202
9203    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
9204      LHS = AndLHS.getOperand(0);
9205      RHS = AndLHS.getOperand(1);
9206    }
9207
9208    // Use BT if the immediate can't be encoded in a TEST instruction.
9209    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
9210      LHS = AndLHS;
9211      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
9212    }
9213  }
9214
9215  if (LHS.getNode()) {
9216    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
9217    // instruction.  Since the shift amount is in-range-or-undefined, we know
9218    // that doing a bittest on the i32 value is ok.  We extend to i32 because
9219    // the encoding for the i16 version is larger than the i32 version.
9220    // Also promote i16 to i32 for performance / code size reason.
9221    if (LHS.getValueType() == MVT::i8 ||
9222        LHS.getValueType() == MVT::i16)
9223      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
9224
9225    // If the operand types disagree, extend the shift amount to match.  Since
9226    // BT ignores high bits (like shifts) we can use anyextend.
9227    if (LHS.getValueType() != RHS.getValueType())
9228      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
9229
9230    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
9231    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
9232    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9233                       DAG.getConstant(Cond, MVT::i8), BT);
9234  }
9235
9236  return SDValue();
9237}
9238
9239// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9240// ones, and then concatenate the result back.
9241static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9242  MVT VT = Op.getValueType().getSimpleVT();
9243
9244  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9245         "Unsupported value type for operation");
9246
9247  unsigned NumElems = VT.getVectorNumElements();
9248  SDLoc dl(Op);
9249  SDValue CC = Op.getOperand(2);
9250
9251  // Extract the LHS vectors
9252  SDValue LHS = Op.getOperand(0);
9253  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9254  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9255
9256  // Extract the RHS vectors
9257  SDValue RHS = Op.getOperand(1);
9258  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9259  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9260
9261  // Issue the operation on the smaller types and concatenate the result back
9262  MVT EltVT = VT.getVectorElementType();
9263  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9264  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9265                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9266                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9267}
9268
9269static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
9270                           SelectionDAG &DAG) {
9271  SDValue Cond;
9272  SDValue Op0 = Op.getOperand(0);
9273  SDValue Op1 = Op.getOperand(1);
9274  SDValue CC = Op.getOperand(2);
9275  MVT VT = Op.getValueType().getSimpleVT();
9276  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9277  bool isFP = Op.getOperand(1).getValueType().getSimpleVT().isFloatingPoint();
9278  SDLoc dl(Op);
9279
9280  if (isFP) {
9281#ifndef NDEBUG
9282    MVT EltVT = Op0.getValueType().getVectorElementType().getSimpleVT();
9283    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9284#endif
9285
9286    unsigned SSECC;
9287    bool Swap = false;
9288
9289    // SSE Condition code mapping:
9290    //  0 - EQ
9291    //  1 - LT
9292    //  2 - LE
9293    //  3 - UNORD
9294    //  4 - NEQ
9295    //  5 - NLT
9296    //  6 - NLE
9297    //  7 - ORD
9298    switch (SetCCOpcode) {
9299    default: llvm_unreachable("Unexpected SETCC condition");
9300    case ISD::SETOEQ:
9301    case ISD::SETEQ:  SSECC = 0; break;
9302    case ISD::SETOGT:
9303    case ISD::SETGT: Swap = true; // Fallthrough
9304    case ISD::SETLT:
9305    case ISD::SETOLT: SSECC = 1; break;
9306    case ISD::SETOGE:
9307    case ISD::SETGE: Swap = true; // Fallthrough
9308    case ISD::SETLE:
9309    case ISD::SETOLE: SSECC = 2; break;
9310    case ISD::SETUO:  SSECC = 3; break;
9311    case ISD::SETUNE:
9312    case ISD::SETNE:  SSECC = 4; break;
9313    case ISD::SETULE: Swap = true; // Fallthrough
9314    case ISD::SETUGE: SSECC = 5; break;
9315    case ISD::SETULT: Swap = true; // Fallthrough
9316    case ISD::SETUGT: SSECC = 6; break;
9317    case ISD::SETO:   SSECC = 7; break;
9318    case ISD::SETUEQ:
9319    case ISD::SETONE: SSECC = 8; break;
9320    }
9321    if (Swap)
9322      std::swap(Op0, Op1);
9323
9324    // In the two special cases we can't handle, emit two comparisons.
9325    if (SSECC == 8) {
9326      unsigned CC0, CC1;
9327      unsigned CombineOpc;
9328      if (SetCCOpcode == ISD::SETUEQ) {
9329        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9330      } else {
9331        assert(SetCCOpcode == ISD::SETONE);
9332        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9333      }
9334
9335      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9336                                 DAG.getConstant(CC0, MVT::i8));
9337      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9338                                 DAG.getConstant(CC1, MVT::i8));
9339      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9340    }
9341    // Handle all other FP comparisons here.
9342    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9343                       DAG.getConstant(SSECC, MVT::i8));
9344  }
9345
9346  // Break 256-bit integer vector compare into smaller ones.
9347  if (VT.is256BitVector() && !Subtarget->hasInt256())
9348    return Lower256IntVSETCC(Op, DAG);
9349
9350  // We are handling one of the integer comparisons here.  Since SSE only has
9351  // GT and EQ comparisons for integer, swapping operands and multiple
9352  // operations may be required for some comparisons.
9353  unsigned Opc;
9354  bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
9355
9356  switch (SetCCOpcode) {
9357  default: llvm_unreachable("Unexpected SETCC condition");
9358  case ISD::SETNE:  Invert = true;
9359  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
9360  case ISD::SETLT:  Swap = true;
9361  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
9362  case ISD::SETGE:  Swap = true;
9363  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
9364  case ISD::SETULT: Swap = true;
9365  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
9366  case ISD::SETUGE: Swap = true;
9367  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
9368  }
9369
9370  // Special case: Use min/max operations for SETULE/SETUGE
9371  MVT VET = VT.getVectorElementType();
9372  bool hasMinMax =
9373       (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
9374    || (Subtarget->hasSSE2()  && (VET == MVT::i8));
9375
9376  if (hasMinMax) {
9377    switch (SetCCOpcode) {
9378    default: break;
9379    case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
9380    case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
9381    }
9382
9383    if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
9384  }
9385
9386  if (Swap)
9387    std::swap(Op0, Op1);
9388
9389  // Check that the operation in question is available (most are plain SSE2,
9390  // but PCMPGTQ and PCMPEQQ have different requirements).
9391  if (VT == MVT::v2i64) {
9392    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
9393      assert(Subtarget->hasSSE2() && "Don't know how to lower!");
9394
9395      // First cast everything to the right type.
9396      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9397      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9398
9399      // Since SSE has no unsigned integer comparisons, we need to flip the sign
9400      // bits of the inputs before performing those operations. The lower
9401      // compare is always unsigned.
9402      SDValue SB;
9403      if (FlipSigns) {
9404        SB = DAG.getConstant(0x80000000U, MVT::v4i32);
9405      } else {
9406        SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
9407        SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
9408        SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
9409                         Sign, Zero, Sign, Zero);
9410      }
9411      Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
9412      Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
9413
9414      // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
9415      SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
9416      SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
9417
9418      // Create masks for only the low parts/high parts of the 64 bit integers.
9419      static const int MaskHi[] = { 1, 1, 3, 3 };
9420      static const int MaskLo[] = { 0, 0, 2, 2 };
9421      SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
9422      SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
9423      SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
9424
9425      SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
9426      Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
9427
9428      if (Invert)
9429        Result = DAG.getNOT(dl, Result, MVT::v4i32);
9430
9431      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9432    }
9433
9434    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
9435      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
9436      // pcmpeqd + pshufd + pand.
9437      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
9438
9439      // First cast everything to the right type.
9440      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9441      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9442
9443      // Do the compare.
9444      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
9445
9446      // Make sure the lower and upper halves are both all-ones.
9447      static const int Mask[] = { 1, 0, 3, 2 };
9448      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
9449      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
9450
9451      if (Invert)
9452        Result = DAG.getNOT(dl, Result, MVT::v4i32);
9453
9454      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9455    }
9456  }
9457
9458  // Since SSE has no unsigned integer comparisons, we need to flip the sign
9459  // bits of the inputs before performing those operations.
9460  if (FlipSigns) {
9461    EVT EltVT = VT.getVectorElementType();
9462    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
9463    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
9464    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
9465  }
9466
9467  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
9468
9469  // If the logical-not of the result is required, perform that now.
9470  if (Invert)
9471    Result = DAG.getNOT(dl, Result, VT);
9472
9473  if (MinMax)
9474    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
9475
9476  return Result;
9477}
9478
9479SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
9480
9481  MVT VT = Op.getValueType().getSimpleVT();
9482
9483  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
9484
9485  assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
9486  SDValue Op0 = Op.getOperand(0);
9487  SDValue Op1 = Op.getOperand(1);
9488  SDLoc dl(Op);
9489  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9490
9491  // Optimize to BT if possible.
9492  // Lower (X & (1 << N)) == 0 to BT(X, N).
9493  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
9494  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
9495  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
9496      Op1.getOpcode() == ISD::Constant &&
9497      cast<ConstantSDNode>(Op1)->isNullValue() &&
9498      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9499    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
9500    if (NewSetCC.getNode())
9501      return NewSetCC;
9502  }
9503
9504  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
9505  // these.
9506  if (Op1.getOpcode() == ISD::Constant &&
9507      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
9508       cast<ConstantSDNode>(Op1)->isNullValue()) &&
9509      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9510
9511    // If the input is a setcc, then reuse the input setcc or use a new one with
9512    // the inverted condition.
9513    if (Op0.getOpcode() == X86ISD::SETCC) {
9514      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
9515      bool Invert = (CC == ISD::SETNE) ^
9516        cast<ConstantSDNode>(Op1)->isNullValue();
9517      if (!Invert) return Op0;
9518
9519      CCode = X86::GetOppositeBranchCondition(CCode);
9520      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9521                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
9522    }
9523  }
9524
9525  bool isFP = Op1.getValueType().getSimpleVT().isFloatingPoint();
9526  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
9527  if (X86CC == X86::COND_INVALID)
9528    return SDValue();
9529
9530  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
9531  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
9532  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9533                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
9534}
9535
9536// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
9537static bool isX86LogicalCmp(SDValue Op) {
9538  unsigned Opc = Op.getNode()->getOpcode();
9539  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
9540      Opc == X86ISD::SAHF)
9541    return true;
9542  if (Op.getResNo() == 1 &&
9543      (Opc == X86ISD::ADD ||
9544       Opc == X86ISD::SUB ||
9545       Opc == X86ISD::ADC ||
9546       Opc == X86ISD::SBB ||
9547       Opc == X86ISD::SMUL ||
9548       Opc == X86ISD::UMUL ||
9549       Opc == X86ISD::INC ||
9550       Opc == X86ISD::DEC ||
9551       Opc == X86ISD::OR ||
9552       Opc == X86ISD::XOR ||
9553       Opc == X86ISD::AND))
9554    return true;
9555
9556  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9557    return true;
9558
9559  return false;
9560}
9561
9562static bool isZero(SDValue V) {
9563  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9564  return C && C->isNullValue();
9565}
9566
9567static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9568  if (V.getOpcode() != ISD::TRUNCATE)
9569    return false;
9570
9571  SDValue VOp0 = V.getOperand(0);
9572  unsigned InBits = VOp0.getValueSizeInBits();
9573  unsigned Bits = V.getValueSizeInBits();
9574  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9575}
9576
9577SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9578  bool addTest = true;
9579  SDValue Cond  = Op.getOperand(0);
9580  SDValue Op1 = Op.getOperand(1);
9581  SDValue Op2 = Op.getOperand(2);
9582  SDLoc DL(Op);
9583  SDValue CC;
9584
9585  if (Cond.getOpcode() == ISD::SETCC) {
9586    SDValue NewCond = LowerSETCC(Cond, DAG);
9587    if (NewCond.getNode())
9588      Cond = NewCond;
9589  }
9590
9591  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9592  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9593  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9594  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9595  if (Cond.getOpcode() == X86ISD::SETCC &&
9596      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9597      isZero(Cond.getOperand(1).getOperand(1))) {
9598    SDValue Cmp = Cond.getOperand(1);
9599
9600    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9601
9602    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9603        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9604      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9605
9606      SDValue CmpOp0 = Cmp.getOperand(0);
9607      // Apply further optimizations for special cases
9608      // (select (x != 0), -1, 0) -> neg & sbb
9609      // (select (x == 0), 0, -1) -> neg & sbb
9610      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9611        if (YC->isNullValue() &&
9612            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9613          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9614          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9615                                    DAG.getConstant(0, CmpOp0.getValueType()),
9616                                    CmpOp0);
9617          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9618                                    DAG.getConstant(X86::COND_B, MVT::i8),
9619                                    SDValue(Neg.getNode(), 1));
9620          return Res;
9621        }
9622
9623      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9624                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9625      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9626
9627      SDValue Res =   // Res = 0 or -1.
9628        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9629                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9630
9631      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9632        Res = DAG.getNOT(DL, Res, Res.getValueType());
9633
9634      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9635      if (N2C == 0 || !N2C->isNullValue())
9636        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9637      return Res;
9638    }
9639  }
9640
9641  // Look past (and (setcc_carry (cmp ...)), 1).
9642  if (Cond.getOpcode() == ISD::AND &&
9643      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9644    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9645    if (C && C->getAPIntValue() == 1)
9646      Cond = Cond.getOperand(0);
9647  }
9648
9649  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9650  // setting operand in place of the X86ISD::SETCC.
9651  unsigned CondOpcode = Cond.getOpcode();
9652  if (CondOpcode == X86ISD::SETCC ||
9653      CondOpcode == X86ISD::SETCC_CARRY) {
9654    CC = Cond.getOperand(0);
9655
9656    SDValue Cmp = Cond.getOperand(1);
9657    unsigned Opc = Cmp.getOpcode();
9658    MVT VT = Op.getValueType().getSimpleVT();
9659
9660    bool IllegalFPCMov = false;
9661    if (VT.isFloatingPoint() && !VT.isVector() &&
9662        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9663      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9664
9665    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9666        Opc == X86ISD::BT) { // FIXME
9667      Cond = Cmp;
9668      addTest = false;
9669    }
9670  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9671             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9672             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9673              Cond.getOperand(0).getValueType() != MVT::i8)) {
9674    SDValue LHS = Cond.getOperand(0);
9675    SDValue RHS = Cond.getOperand(1);
9676    unsigned X86Opcode;
9677    unsigned X86Cond;
9678    SDVTList VTs;
9679    switch (CondOpcode) {
9680    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9681    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9682    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9683    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9684    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9685    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9686    default: llvm_unreachable("unexpected overflowing operator");
9687    }
9688    if (CondOpcode == ISD::UMULO)
9689      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9690                          MVT::i32);
9691    else
9692      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9693
9694    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9695
9696    if (CondOpcode == ISD::UMULO)
9697      Cond = X86Op.getValue(2);
9698    else
9699      Cond = X86Op.getValue(1);
9700
9701    CC = DAG.getConstant(X86Cond, MVT::i8);
9702    addTest = false;
9703  }
9704
9705  if (addTest) {
9706    // Look pass the truncate if the high bits are known zero.
9707    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9708        Cond = Cond.getOperand(0);
9709
9710    // We know the result of AND is compared against zero. Try to match
9711    // it to BT.
9712    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9713      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9714      if (NewSetCC.getNode()) {
9715        CC = NewSetCC.getOperand(0);
9716        Cond = NewSetCC.getOperand(1);
9717        addTest = false;
9718      }
9719    }
9720  }
9721
9722  if (addTest) {
9723    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9724    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9725  }
9726
9727  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9728  // a <  b ?  0 : -1 -> RES = setcc_carry
9729  // a >= b ? -1 :  0 -> RES = setcc_carry
9730  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9731  if (Cond.getOpcode() == X86ISD::SUB) {
9732    Cond = ConvertCmpIfNecessary(Cond, DAG);
9733    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9734
9735    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9736        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9737      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9738                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9739      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9740        return DAG.getNOT(DL, Res, Res.getValueType());
9741      return Res;
9742    }
9743  }
9744
9745  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
9746  // widen the cmov and push the truncate through. This avoids introducing a new
9747  // branch during isel and doesn't add any extensions.
9748  if (Op.getValueType() == MVT::i8 &&
9749      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
9750    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
9751    if (T1.getValueType() == T2.getValueType() &&
9752        // Blacklist CopyFromReg to avoid partial register stalls.
9753        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
9754      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
9755      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
9756      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
9757    }
9758  }
9759
9760  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9761  // condition is true.
9762  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9763  SDValue Ops[] = { Op2, Op1, CC, Cond };
9764  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9765}
9766
9767SDValue X86TargetLowering::LowerSIGN_EXTEND(SDValue Op,
9768                                            SelectionDAG &DAG) const {
9769  MVT VT = Op->getValueType(0).getSimpleVT();
9770  SDValue In = Op->getOperand(0);
9771  MVT InVT = In.getValueType().getSimpleVT();
9772  SDLoc dl(Op);
9773
9774  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
9775      (VT != MVT::v8i32 || InVT != MVT::v8i16))
9776    return SDValue();
9777
9778  if (Subtarget->hasInt256())
9779    return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
9780
9781  // Optimize vectors in AVX mode
9782  // Sign extend  v8i16 to v8i32 and
9783  //              v4i32 to v4i64
9784  //
9785  // Divide input vector into two parts
9786  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
9787  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
9788  // concat the vectors to original VT
9789
9790  unsigned NumElems = InVT.getVectorNumElements();
9791  SDValue Undef = DAG.getUNDEF(InVT);
9792
9793  SmallVector<int,8> ShufMask1(NumElems, -1);
9794  for (unsigned i = 0; i != NumElems/2; ++i)
9795    ShufMask1[i] = i;
9796
9797  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
9798
9799  SmallVector<int,8> ShufMask2(NumElems, -1);
9800  for (unsigned i = 0; i != NumElems/2; ++i)
9801    ShufMask2[i] = i + NumElems/2;
9802
9803  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
9804
9805  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
9806                                VT.getVectorNumElements()/2);
9807
9808  OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
9809  OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
9810
9811  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
9812}
9813
9814// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9815// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9816// from the AND / OR.
9817static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9818  Opc = Op.getOpcode();
9819  if (Opc != ISD::OR && Opc != ISD::AND)
9820    return false;
9821  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9822          Op.getOperand(0).hasOneUse() &&
9823          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9824          Op.getOperand(1).hasOneUse());
9825}
9826
9827// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9828// 1 and that the SETCC node has a single use.
9829static bool isXor1OfSetCC(SDValue Op) {
9830  if (Op.getOpcode() != ISD::XOR)
9831    return false;
9832  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9833  if (N1C && N1C->getAPIntValue() == 1) {
9834    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9835      Op.getOperand(0).hasOneUse();
9836  }
9837  return false;
9838}
9839
9840SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9841  bool addTest = true;
9842  SDValue Chain = Op.getOperand(0);
9843  SDValue Cond  = Op.getOperand(1);
9844  SDValue Dest  = Op.getOperand(2);
9845  SDLoc dl(Op);
9846  SDValue CC;
9847  bool Inverted = false;
9848
9849  if (Cond.getOpcode() == ISD::SETCC) {
9850    // Check for setcc([su]{add,sub,mul}o == 0).
9851    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9852        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9853        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9854        Cond.getOperand(0).getResNo() == 1 &&
9855        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9856         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9857         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9858         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9859         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9860         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9861      Inverted = true;
9862      Cond = Cond.getOperand(0);
9863    } else {
9864      SDValue NewCond = LowerSETCC(Cond, DAG);
9865      if (NewCond.getNode())
9866        Cond = NewCond;
9867    }
9868  }
9869#if 0
9870  // FIXME: LowerXALUO doesn't handle these!!
9871  else if (Cond.getOpcode() == X86ISD::ADD  ||
9872           Cond.getOpcode() == X86ISD::SUB  ||
9873           Cond.getOpcode() == X86ISD::SMUL ||
9874           Cond.getOpcode() == X86ISD::UMUL)
9875    Cond = LowerXALUO(Cond, DAG);
9876#endif
9877
9878  // Look pass (and (setcc_carry (cmp ...)), 1).
9879  if (Cond.getOpcode() == ISD::AND &&
9880      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9881    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9882    if (C && C->getAPIntValue() == 1)
9883      Cond = Cond.getOperand(0);
9884  }
9885
9886  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9887  // setting operand in place of the X86ISD::SETCC.
9888  unsigned CondOpcode = Cond.getOpcode();
9889  if (CondOpcode == X86ISD::SETCC ||
9890      CondOpcode == X86ISD::SETCC_CARRY) {
9891    CC = Cond.getOperand(0);
9892
9893    SDValue Cmp = Cond.getOperand(1);
9894    unsigned Opc = Cmp.getOpcode();
9895    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9896    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9897      Cond = Cmp;
9898      addTest = false;
9899    } else {
9900      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9901      default: break;
9902      case X86::COND_O:
9903      case X86::COND_B:
9904        // These can only come from an arithmetic instruction with overflow,
9905        // e.g. SADDO, UADDO.
9906        Cond = Cond.getNode()->getOperand(1);
9907        addTest = false;
9908        break;
9909      }
9910    }
9911  }
9912  CondOpcode = Cond.getOpcode();
9913  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9914      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9915      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9916       Cond.getOperand(0).getValueType() != MVT::i8)) {
9917    SDValue LHS = Cond.getOperand(0);
9918    SDValue RHS = Cond.getOperand(1);
9919    unsigned X86Opcode;
9920    unsigned X86Cond;
9921    SDVTList VTs;
9922    switch (CondOpcode) {
9923    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9924    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9925    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9926    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9927    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9928    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9929    default: llvm_unreachable("unexpected overflowing operator");
9930    }
9931    if (Inverted)
9932      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9933    if (CondOpcode == ISD::UMULO)
9934      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9935                          MVT::i32);
9936    else
9937      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9938
9939    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9940
9941    if (CondOpcode == ISD::UMULO)
9942      Cond = X86Op.getValue(2);
9943    else
9944      Cond = X86Op.getValue(1);
9945
9946    CC = DAG.getConstant(X86Cond, MVT::i8);
9947    addTest = false;
9948  } else {
9949    unsigned CondOpc;
9950    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9951      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9952      if (CondOpc == ISD::OR) {
9953        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9954        // two branches instead of an explicit OR instruction with a
9955        // separate test.
9956        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9957            isX86LogicalCmp(Cmp)) {
9958          CC = Cond.getOperand(0).getOperand(0);
9959          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9960                              Chain, Dest, CC, Cmp);
9961          CC = Cond.getOperand(1).getOperand(0);
9962          Cond = Cmp;
9963          addTest = false;
9964        }
9965      } else { // ISD::AND
9966        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9967        // two branches instead of an explicit AND instruction with a
9968        // separate test. However, we only do this if this block doesn't
9969        // have a fall-through edge, because this requires an explicit
9970        // jmp when the condition is false.
9971        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9972            isX86LogicalCmp(Cmp) &&
9973            Op.getNode()->hasOneUse()) {
9974          X86::CondCode CCode =
9975            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9976          CCode = X86::GetOppositeBranchCondition(CCode);
9977          CC = DAG.getConstant(CCode, MVT::i8);
9978          SDNode *User = *Op.getNode()->use_begin();
9979          // Look for an unconditional branch following this conditional branch.
9980          // We need this because we need to reverse the successors in order
9981          // to implement FCMP_OEQ.
9982          if (User->getOpcode() == ISD::BR) {
9983            SDValue FalseBB = User->getOperand(1);
9984            SDNode *NewBR =
9985              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9986            assert(NewBR == User);
9987            (void)NewBR;
9988            Dest = FalseBB;
9989
9990            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9991                                Chain, Dest, CC, Cmp);
9992            X86::CondCode CCode =
9993              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9994            CCode = X86::GetOppositeBranchCondition(CCode);
9995            CC = DAG.getConstant(CCode, MVT::i8);
9996            Cond = Cmp;
9997            addTest = false;
9998          }
9999        }
10000      }
10001    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
10002      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
10003      // It should be transformed during dag combiner except when the condition
10004      // is set by a arithmetics with overflow node.
10005      X86::CondCode CCode =
10006        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
10007      CCode = X86::GetOppositeBranchCondition(CCode);
10008      CC = DAG.getConstant(CCode, MVT::i8);
10009      Cond = Cond.getOperand(0).getOperand(1);
10010      addTest = false;
10011    } else if (Cond.getOpcode() == ISD::SETCC &&
10012               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
10013      // For FCMP_OEQ, we can emit
10014      // two branches instead of an explicit AND instruction with a
10015      // separate test. However, we only do this if this block doesn't
10016      // have a fall-through edge, because this requires an explicit
10017      // jmp when the condition is false.
10018      if (Op.getNode()->hasOneUse()) {
10019        SDNode *User = *Op.getNode()->use_begin();
10020        // Look for an unconditional branch following this conditional branch.
10021        // We need this because we need to reverse the successors in order
10022        // to implement FCMP_OEQ.
10023        if (User->getOpcode() == ISD::BR) {
10024          SDValue FalseBB = User->getOperand(1);
10025          SDNode *NewBR =
10026            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10027          assert(NewBR == User);
10028          (void)NewBR;
10029          Dest = FalseBB;
10030
10031          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10032                                    Cond.getOperand(0), Cond.getOperand(1));
10033          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10034          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10035          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10036                              Chain, Dest, CC, Cmp);
10037          CC = DAG.getConstant(X86::COND_P, MVT::i8);
10038          Cond = Cmp;
10039          addTest = false;
10040        }
10041      }
10042    } else if (Cond.getOpcode() == ISD::SETCC &&
10043               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
10044      // For FCMP_UNE, we can emit
10045      // two branches instead of an explicit AND instruction with a
10046      // separate test. However, we only do this if this block doesn't
10047      // have a fall-through edge, because this requires an explicit
10048      // jmp when the condition is false.
10049      if (Op.getNode()->hasOneUse()) {
10050        SDNode *User = *Op.getNode()->use_begin();
10051        // Look for an unconditional branch following this conditional branch.
10052        // We need this because we need to reverse the successors in order
10053        // to implement FCMP_UNE.
10054        if (User->getOpcode() == ISD::BR) {
10055          SDValue FalseBB = User->getOperand(1);
10056          SDNode *NewBR =
10057            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10058          assert(NewBR == User);
10059          (void)NewBR;
10060
10061          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10062                                    Cond.getOperand(0), Cond.getOperand(1));
10063          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10064          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10065          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10066                              Chain, Dest, CC, Cmp);
10067          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
10068          Cond = Cmp;
10069          addTest = false;
10070          Dest = FalseBB;
10071        }
10072      }
10073    }
10074  }
10075
10076  if (addTest) {
10077    // Look pass the truncate if the high bits are known zero.
10078    if (isTruncWithZeroHighBitsInput(Cond, DAG))
10079        Cond = Cond.getOperand(0);
10080
10081    // We know the result of AND is compared against zero. Try to match
10082    // it to BT.
10083    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
10084      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
10085      if (NewSetCC.getNode()) {
10086        CC = NewSetCC.getOperand(0);
10087        Cond = NewSetCC.getOperand(1);
10088        addTest = false;
10089      }
10090    }
10091  }
10092
10093  if (addTest) {
10094    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10095    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10096  }
10097  Cond = ConvertCmpIfNecessary(Cond, DAG);
10098  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10099                     Chain, Dest, CC, Cond);
10100}
10101
10102// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
10103// Calls to _alloca is needed to probe the stack when allocating more than 4k
10104// bytes in one go. Touching the stack at 4K increments is necessary to ensure
10105// that the guard pages used by the OS virtual memory manager are allocated in
10106// correct sequence.
10107SDValue
10108X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
10109                                           SelectionDAG &DAG) const {
10110  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
10111          getTargetMachine().Options.EnableSegmentedStacks) &&
10112         "This should be used only on Windows targets or when segmented stacks "
10113         "are being used");
10114  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
10115  SDLoc dl(Op);
10116
10117  // Get the inputs.
10118  SDValue Chain = Op.getOperand(0);
10119  SDValue Size  = Op.getOperand(1);
10120  // FIXME: Ensure alignment here
10121
10122  bool Is64Bit = Subtarget->is64Bit();
10123  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
10124
10125  if (getTargetMachine().Options.EnableSegmentedStacks) {
10126    MachineFunction &MF = DAG.getMachineFunction();
10127    MachineRegisterInfo &MRI = MF.getRegInfo();
10128
10129    if (Is64Bit) {
10130      // The 64 bit implementation of segmented stacks needs to clobber both r10
10131      // r11. This makes it impossible to use it along with nested parameters.
10132      const Function *F = MF.getFunction();
10133
10134      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
10135           I != E; ++I)
10136        if (I->hasNestAttr())
10137          report_fatal_error("Cannot use segmented stacks with functions that "
10138                             "have nested arguments.");
10139    }
10140
10141    const TargetRegisterClass *AddrRegClass =
10142      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
10143    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
10144    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
10145    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
10146                                DAG.getRegister(Vreg, SPTy));
10147    SDValue Ops1[2] = { Value, Chain };
10148    return DAG.getMergeValues(Ops1, 2, dl);
10149  } else {
10150    SDValue Flag;
10151    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
10152
10153    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
10154    Flag = Chain.getValue(1);
10155    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10156
10157    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
10158    Flag = Chain.getValue(1);
10159
10160    const X86RegisterInfo *RegInfo =
10161      static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
10162    Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
10163                               SPTy).getValue(1);
10164
10165    SDValue Ops1[2] = { Chain.getValue(0), Chain };
10166    return DAG.getMergeValues(Ops1, 2, dl);
10167  }
10168}
10169
10170SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
10171  MachineFunction &MF = DAG.getMachineFunction();
10172  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
10173
10174  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10175  SDLoc DL(Op);
10176
10177  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
10178    // vastart just stores the address of the VarArgsFrameIndex slot into the
10179    // memory location argument.
10180    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10181                                   getPointerTy());
10182    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
10183                        MachinePointerInfo(SV), false, false, 0);
10184  }
10185
10186  // __va_list_tag:
10187  //   gp_offset         (0 - 6 * 8)
10188  //   fp_offset         (48 - 48 + 8 * 16)
10189  //   overflow_arg_area (point to parameters coming in memory).
10190  //   reg_save_area
10191  SmallVector<SDValue, 8> MemOps;
10192  SDValue FIN = Op.getOperand(1);
10193  // Store gp_offset
10194  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
10195                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
10196                                               MVT::i32),
10197                               FIN, MachinePointerInfo(SV), false, false, 0);
10198  MemOps.push_back(Store);
10199
10200  // Store fp_offset
10201  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10202                    FIN, DAG.getIntPtrConstant(4));
10203  Store = DAG.getStore(Op.getOperand(0), DL,
10204                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
10205                                       MVT::i32),
10206                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
10207  MemOps.push_back(Store);
10208
10209  // Store ptr to overflow_arg_area
10210  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10211                    FIN, DAG.getIntPtrConstant(4));
10212  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10213                                    getPointerTy());
10214  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
10215                       MachinePointerInfo(SV, 8),
10216                       false, false, 0);
10217  MemOps.push_back(Store);
10218
10219  // Store ptr to reg_save_area.
10220  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10221                    FIN, DAG.getIntPtrConstant(8));
10222  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
10223                                    getPointerTy());
10224  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
10225                       MachinePointerInfo(SV, 16), false, false, 0);
10226  MemOps.push_back(Store);
10227  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
10228                     &MemOps[0], MemOps.size());
10229}
10230
10231SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
10232  assert(Subtarget->is64Bit() &&
10233         "LowerVAARG only handles 64-bit va_arg!");
10234  assert((Subtarget->isTargetLinux() ||
10235          Subtarget->isTargetDarwin()) &&
10236          "Unhandled target in LowerVAARG");
10237  assert(Op.getNode()->getNumOperands() == 4);
10238  SDValue Chain = Op.getOperand(0);
10239  SDValue SrcPtr = Op.getOperand(1);
10240  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10241  unsigned Align = Op.getConstantOperandVal(3);
10242  SDLoc dl(Op);
10243
10244  EVT ArgVT = Op.getNode()->getValueType(0);
10245  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10246  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
10247  uint8_t ArgMode;
10248
10249  // Decide which area this value should be read from.
10250  // TODO: Implement the AMD64 ABI in its entirety. This simple
10251  // selection mechanism works only for the basic types.
10252  if (ArgVT == MVT::f80) {
10253    llvm_unreachable("va_arg for f80 not yet implemented");
10254  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
10255    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
10256  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
10257    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
10258  } else {
10259    llvm_unreachable("Unhandled argument type in LowerVAARG");
10260  }
10261
10262  if (ArgMode == 2) {
10263    // Sanity Check: Make sure using fp_offset makes sense.
10264    assert(!getTargetMachine().Options.UseSoftFloat &&
10265           !(DAG.getMachineFunction()
10266                .getFunction()->getAttributes()
10267                .hasAttribute(AttributeSet::FunctionIndex,
10268                              Attribute::NoImplicitFloat)) &&
10269           Subtarget->hasSSE1());
10270  }
10271
10272  // Insert VAARG_64 node into the DAG
10273  // VAARG_64 returns two values: Variable Argument Address, Chain
10274  SmallVector<SDValue, 11> InstOps;
10275  InstOps.push_back(Chain);
10276  InstOps.push_back(SrcPtr);
10277  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
10278  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
10279  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
10280  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
10281  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
10282                                          VTs, &InstOps[0], InstOps.size(),
10283                                          MVT::i64,
10284                                          MachinePointerInfo(SV),
10285                                          /*Align=*/0,
10286                                          /*Volatile=*/false,
10287                                          /*ReadMem=*/true,
10288                                          /*WriteMem=*/true);
10289  Chain = VAARG.getValue(1);
10290
10291  // Load the next argument and return it
10292  return DAG.getLoad(ArgVT, dl,
10293                     Chain,
10294                     VAARG,
10295                     MachinePointerInfo(),
10296                     false, false, false, 0);
10297}
10298
10299static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
10300                           SelectionDAG &DAG) {
10301  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
10302  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
10303  SDValue Chain = Op.getOperand(0);
10304  SDValue DstPtr = Op.getOperand(1);
10305  SDValue SrcPtr = Op.getOperand(2);
10306  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
10307  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10308  SDLoc DL(Op);
10309
10310  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
10311                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
10312                       false,
10313                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
10314}
10315
10316// getTargetVShiftNode - Handle vector element shifts where the shift amount
10317// may or may not be a constant. Takes immediate version of shift as input.
10318static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, EVT VT,
10319                                   SDValue SrcOp, SDValue ShAmt,
10320                                   SelectionDAG &DAG) {
10321  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
10322
10323  if (isa<ConstantSDNode>(ShAmt)) {
10324    // Constant may be a TargetConstant. Use a regular constant.
10325    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10326    switch (Opc) {
10327      default: llvm_unreachable("Unknown target vector shift node");
10328      case X86ISD::VSHLI:
10329      case X86ISD::VSRLI:
10330      case X86ISD::VSRAI:
10331        return DAG.getNode(Opc, dl, VT, SrcOp,
10332                           DAG.getConstant(ShiftAmt, MVT::i32));
10333    }
10334  }
10335
10336  // Change opcode to non-immediate version
10337  switch (Opc) {
10338    default: llvm_unreachable("Unknown target vector shift node");
10339    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
10340    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
10341    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
10342  }
10343
10344  // Need to build a vector containing shift amount
10345  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
10346  SDValue ShOps[4];
10347  ShOps[0] = ShAmt;
10348  ShOps[1] = DAG.getConstant(0, MVT::i32);
10349  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
10350  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
10351
10352  // The return type has to be a 128-bit type with the same element
10353  // type as the input type.
10354  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10355  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
10356
10357  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
10358  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
10359}
10360
10361static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
10362  SDLoc dl(Op);
10363  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10364  switch (IntNo) {
10365  default: return SDValue();    // Don't custom lower most intrinsics.
10366  // Comparison intrinsics.
10367  case Intrinsic::x86_sse_comieq_ss:
10368  case Intrinsic::x86_sse_comilt_ss:
10369  case Intrinsic::x86_sse_comile_ss:
10370  case Intrinsic::x86_sse_comigt_ss:
10371  case Intrinsic::x86_sse_comige_ss:
10372  case Intrinsic::x86_sse_comineq_ss:
10373  case Intrinsic::x86_sse_ucomieq_ss:
10374  case Intrinsic::x86_sse_ucomilt_ss:
10375  case Intrinsic::x86_sse_ucomile_ss:
10376  case Intrinsic::x86_sse_ucomigt_ss:
10377  case Intrinsic::x86_sse_ucomige_ss:
10378  case Intrinsic::x86_sse_ucomineq_ss:
10379  case Intrinsic::x86_sse2_comieq_sd:
10380  case Intrinsic::x86_sse2_comilt_sd:
10381  case Intrinsic::x86_sse2_comile_sd:
10382  case Intrinsic::x86_sse2_comigt_sd:
10383  case Intrinsic::x86_sse2_comige_sd:
10384  case Intrinsic::x86_sse2_comineq_sd:
10385  case Intrinsic::x86_sse2_ucomieq_sd:
10386  case Intrinsic::x86_sse2_ucomilt_sd:
10387  case Intrinsic::x86_sse2_ucomile_sd:
10388  case Intrinsic::x86_sse2_ucomigt_sd:
10389  case Intrinsic::x86_sse2_ucomige_sd:
10390  case Intrinsic::x86_sse2_ucomineq_sd: {
10391    unsigned Opc;
10392    ISD::CondCode CC;
10393    switch (IntNo) {
10394    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10395    case Intrinsic::x86_sse_comieq_ss:
10396    case Intrinsic::x86_sse2_comieq_sd:
10397      Opc = X86ISD::COMI;
10398      CC = ISD::SETEQ;
10399      break;
10400    case Intrinsic::x86_sse_comilt_ss:
10401    case Intrinsic::x86_sse2_comilt_sd:
10402      Opc = X86ISD::COMI;
10403      CC = ISD::SETLT;
10404      break;
10405    case Intrinsic::x86_sse_comile_ss:
10406    case Intrinsic::x86_sse2_comile_sd:
10407      Opc = X86ISD::COMI;
10408      CC = ISD::SETLE;
10409      break;
10410    case Intrinsic::x86_sse_comigt_ss:
10411    case Intrinsic::x86_sse2_comigt_sd:
10412      Opc = X86ISD::COMI;
10413      CC = ISD::SETGT;
10414      break;
10415    case Intrinsic::x86_sse_comige_ss:
10416    case Intrinsic::x86_sse2_comige_sd:
10417      Opc = X86ISD::COMI;
10418      CC = ISD::SETGE;
10419      break;
10420    case Intrinsic::x86_sse_comineq_ss:
10421    case Intrinsic::x86_sse2_comineq_sd:
10422      Opc = X86ISD::COMI;
10423      CC = ISD::SETNE;
10424      break;
10425    case Intrinsic::x86_sse_ucomieq_ss:
10426    case Intrinsic::x86_sse2_ucomieq_sd:
10427      Opc = X86ISD::UCOMI;
10428      CC = ISD::SETEQ;
10429      break;
10430    case Intrinsic::x86_sse_ucomilt_ss:
10431    case Intrinsic::x86_sse2_ucomilt_sd:
10432      Opc = X86ISD::UCOMI;
10433      CC = ISD::SETLT;
10434      break;
10435    case Intrinsic::x86_sse_ucomile_ss:
10436    case Intrinsic::x86_sse2_ucomile_sd:
10437      Opc = X86ISD::UCOMI;
10438      CC = ISD::SETLE;
10439      break;
10440    case Intrinsic::x86_sse_ucomigt_ss:
10441    case Intrinsic::x86_sse2_ucomigt_sd:
10442      Opc = X86ISD::UCOMI;
10443      CC = ISD::SETGT;
10444      break;
10445    case Intrinsic::x86_sse_ucomige_ss:
10446    case Intrinsic::x86_sse2_ucomige_sd:
10447      Opc = X86ISD::UCOMI;
10448      CC = ISD::SETGE;
10449      break;
10450    case Intrinsic::x86_sse_ucomineq_ss:
10451    case Intrinsic::x86_sse2_ucomineq_sd:
10452      Opc = X86ISD::UCOMI;
10453      CC = ISD::SETNE;
10454      break;
10455    }
10456
10457    SDValue LHS = Op.getOperand(1);
10458    SDValue RHS = Op.getOperand(2);
10459    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
10460    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
10461    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
10462    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10463                                DAG.getConstant(X86CC, MVT::i8), Cond);
10464    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10465  }
10466
10467  // Arithmetic intrinsics.
10468  case Intrinsic::x86_sse2_pmulu_dq:
10469  case Intrinsic::x86_avx2_pmulu_dq:
10470    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
10471                       Op.getOperand(1), Op.getOperand(2));
10472
10473  // SSE2/AVX2 sub with unsigned saturation intrinsics
10474  case Intrinsic::x86_sse2_psubus_b:
10475  case Intrinsic::x86_sse2_psubus_w:
10476  case Intrinsic::x86_avx2_psubus_b:
10477  case Intrinsic::x86_avx2_psubus_w:
10478    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
10479                       Op.getOperand(1), Op.getOperand(2));
10480
10481  // SSE3/AVX horizontal add/sub intrinsics
10482  case Intrinsic::x86_sse3_hadd_ps:
10483  case Intrinsic::x86_sse3_hadd_pd:
10484  case Intrinsic::x86_avx_hadd_ps_256:
10485  case Intrinsic::x86_avx_hadd_pd_256:
10486  case Intrinsic::x86_sse3_hsub_ps:
10487  case Intrinsic::x86_sse3_hsub_pd:
10488  case Intrinsic::x86_avx_hsub_ps_256:
10489  case Intrinsic::x86_avx_hsub_pd_256:
10490  case Intrinsic::x86_ssse3_phadd_w_128:
10491  case Intrinsic::x86_ssse3_phadd_d_128:
10492  case Intrinsic::x86_avx2_phadd_w:
10493  case Intrinsic::x86_avx2_phadd_d:
10494  case Intrinsic::x86_ssse3_phsub_w_128:
10495  case Intrinsic::x86_ssse3_phsub_d_128:
10496  case Intrinsic::x86_avx2_phsub_w:
10497  case Intrinsic::x86_avx2_phsub_d: {
10498    unsigned Opcode;
10499    switch (IntNo) {
10500    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10501    case Intrinsic::x86_sse3_hadd_ps:
10502    case Intrinsic::x86_sse3_hadd_pd:
10503    case Intrinsic::x86_avx_hadd_ps_256:
10504    case Intrinsic::x86_avx_hadd_pd_256:
10505      Opcode = X86ISD::FHADD;
10506      break;
10507    case Intrinsic::x86_sse3_hsub_ps:
10508    case Intrinsic::x86_sse3_hsub_pd:
10509    case Intrinsic::x86_avx_hsub_ps_256:
10510    case Intrinsic::x86_avx_hsub_pd_256:
10511      Opcode = X86ISD::FHSUB;
10512      break;
10513    case Intrinsic::x86_ssse3_phadd_w_128:
10514    case Intrinsic::x86_ssse3_phadd_d_128:
10515    case Intrinsic::x86_avx2_phadd_w:
10516    case Intrinsic::x86_avx2_phadd_d:
10517      Opcode = X86ISD::HADD;
10518      break;
10519    case Intrinsic::x86_ssse3_phsub_w_128:
10520    case Intrinsic::x86_ssse3_phsub_d_128:
10521    case Intrinsic::x86_avx2_phsub_w:
10522    case Intrinsic::x86_avx2_phsub_d:
10523      Opcode = X86ISD::HSUB;
10524      break;
10525    }
10526    return DAG.getNode(Opcode, dl, Op.getValueType(),
10527                       Op.getOperand(1), Op.getOperand(2));
10528  }
10529
10530  // SSE2/SSE41/AVX2 integer max/min intrinsics.
10531  case Intrinsic::x86_sse2_pmaxu_b:
10532  case Intrinsic::x86_sse41_pmaxuw:
10533  case Intrinsic::x86_sse41_pmaxud:
10534  case Intrinsic::x86_avx2_pmaxu_b:
10535  case Intrinsic::x86_avx2_pmaxu_w:
10536  case Intrinsic::x86_avx2_pmaxu_d:
10537  case Intrinsic::x86_sse2_pminu_b:
10538  case Intrinsic::x86_sse41_pminuw:
10539  case Intrinsic::x86_sse41_pminud:
10540  case Intrinsic::x86_avx2_pminu_b:
10541  case Intrinsic::x86_avx2_pminu_w:
10542  case Intrinsic::x86_avx2_pminu_d:
10543  case Intrinsic::x86_sse41_pmaxsb:
10544  case Intrinsic::x86_sse2_pmaxs_w:
10545  case Intrinsic::x86_sse41_pmaxsd:
10546  case Intrinsic::x86_avx2_pmaxs_b:
10547  case Intrinsic::x86_avx2_pmaxs_w:
10548  case Intrinsic::x86_avx2_pmaxs_d:
10549  case Intrinsic::x86_sse41_pminsb:
10550  case Intrinsic::x86_sse2_pmins_w:
10551  case Intrinsic::x86_sse41_pminsd:
10552  case Intrinsic::x86_avx2_pmins_b:
10553  case Intrinsic::x86_avx2_pmins_w:
10554  case Intrinsic::x86_avx2_pmins_d: {
10555    unsigned Opcode;
10556    switch (IntNo) {
10557    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10558    case Intrinsic::x86_sse2_pmaxu_b:
10559    case Intrinsic::x86_sse41_pmaxuw:
10560    case Intrinsic::x86_sse41_pmaxud:
10561    case Intrinsic::x86_avx2_pmaxu_b:
10562    case Intrinsic::x86_avx2_pmaxu_w:
10563    case Intrinsic::x86_avx2_pmaxu_d:
10564      Opcode = X86ISD::UMAX;
10565      break;
10566    case Intrinsic::x86_sse2_pminu_b:
10567    case Intrinsic::x86_sse41_pminuw:
10568    case Intrinsic::x86_sse41_pminud:
10569    case Intrinsic::x86_avx2_pminu_b:
10570    case Intrinsic::x86_avx2_pminu_w:
10571    case Intrinsic::x86_avx2_pminu_d:
10572      Opcode = X86ISD::UMIN;
10573      break;
10574    case Intrinsic::x86_sse41_pmaxsb:
10575    case Intrinsic::x86_sse2_pmaxs_w:
10576    case Intrinsic::x86_sse41_pmaxsd:
10577    case Intrinsic::x86_avx2_pmaxs_b:
10578    case Intrinsic::x86_avx2_pmaxs_w:
10579    case Intrinsic::x86_avx2_pmaxs_d:
10580      Opcode = X86ISD::SMAX;
10581      break;
10582    case Intrinsic::x86_sse41_pminsb:
10583    case Intrinsic::x86_sse2_pmins_w:
10584    case Intrinsic::x86_sse41_pminsd:
10585    case Intrinsic::x86_avx2_pmins_b:
10586    case Intrinsic::x86_avx2_pmins_w:
10587    case Intrinsic::x86_avx2_pmins_d:
10588      Opcode = X86ISD::SMIN;
10589      break;
10590    }
10591    return DAG.getNode(Opcode, dl, Op.getValueType(),
10592                       Op.getOperand(1), Op.getOperand(2));
10593  }
10594
10595  // SSE/SSE2/AVX floating point max/min intrinsics.
10596  case Intrinsic::x86_sse_max_ps:
10597  case Intrinsic::x86_sse2_max_pd:
10598  case Intrinsic::x86_avx_max_ps_256:
10599  case Intrinsic::x86_avx_max_pd_256:
10600  case Intrinsic::x86_sse_min_ps:
10601  case Intrinsic::x86_sse2_min_pd:
10602  case Intrinsic::x86_avx_min_ps_256:
10603  case Intrinsic::x86_avx_min_pd_256: {
10604    unsigned Opcode;
10605    switch (IntNo) {
10606    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10607    case Intrinsic::x86_sse_max_ps:
10608    case Intrinsic::x86_sse2_max_pd:
10609    case Intrinsic::x86_avx_max_ps_256:
10610    case Intrinsic::x86_avx_max_pd_256:
10611      Opcode = X86ISD::FMAX;
10612      break;
10613    case Intrinsic::x86_sse_min_ps:
10614    case Intrinsic::x86_sse2_min_pd:
10615    case Intrinsic::x86_avx_min_ps_256:
10616    case Intrinsic::x86_avx_min_pd_256:
10617      Opcode = X86ISD::FMIN;
10618      break;
10619    }
10620    return DAG.getNode(Opcode, dl, Op.getValueType(),
10621                       Op.getOperand(1), Op.getOperand(2));
10622  }
10623
10624  // AVX2 variable shift intrinsics
10625  case Intrinsic::x86_avx2_psllv_d:
10626  case Intrinsic::x86_avx2_psllv_q:
10627  case Intrinsic::x86_avx2_psllv_d_256:
10628  case Intrinsic::x86_avx2_psllv_q_256:
10629  case Intrinsic::x86_avx2_psrlv_d:
10630  case Intrinsic::x86_avx2_psrlv_q:
10631  case Intrinsic::x86_avx2_psrlv_d_256:
10632  case Intrinsic::x86_avx2_psrlv_q_256:
10633  case Intrinsic::x86_avx2_psrav_d:
10634  case Intrinsic::x86_avx2_psrav_d_256: {
10635    unsigned Opcode;
10636    switch (IntNo) {
10637    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10638    case Intrinsic::x86_avx2_psllv_d:
10639    case Intrinsic::x86_avx2_psllv_q:
10640    case Intrinsic::x86_avx2_psllv_d_256:
10641    case Intrinsic::x86_avx2_psllv_q_256:
10642      Opcode = ISD::SHL;
10643      break;
10644    case Intrinsic::x86_avx2_psrlv_d:
10645    case Intrinsic::x86_avx2_psrlv_q:
10646    case Intrinsic::x86_avx2_psrlv_d_256:
10647    case Intrinsic::x86_avx2_psrlv_q_256:
10648      Opcode = ISD::SRL;
10649      break;
10650    case Intrinsic::x86_avx2_psrav_d:
10651    case Intrinsic::x86_avx2_psrav_d_256:
10652      Opcode = ISD::SRA;
10653      break;
10654    }
10655    return DAG.getNode(Opcode, dl, Op.getValueType(),
10656                       Op.getOperand(1), Op.getOperand(2));
10657  }
10658
10659  case Intrinsic::x86_ssse3_pshuf_b_128:
10660  case Intrinsic::x86_avx2_pshuf_b:
10661    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
10662                       Op.getOperand(1), Op.getOperand(2));
10663
10664  case Intrinsic::x86_ssse3_psign_b_128:
10665  case Intrinsic::x86_ssse3_psign_w_128:
10666  case Intrinsic::x86_ssse3_psign_d_128:
10667  case Intrinsic::x86_avx2_psign_b:
10668  case Intrinsic::x86_avx2_psign_w:
10669  case Intrinsic::x86_avx2_psign_d:
10670    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
10671                       Op.getOperand(1), Op.getOperand(2));
10672
10673  case Intrinsic::x86_sse41_insertps:
10674    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
10675                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10676
10677  case Intrinsic::x86_avx_vperm2f128_ps_256:
10678  case Intrinsic::x86_avx_vperm2f128_pd_256:
10679  case Intrinsic::x86_avx_vperm2f128_si_256:
10680  case Intrinsic::x86_avx2_vperm2i128:
10681    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
10682                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10683
10684  case Intrinsic::x86_avx2_permd:
10685  case Intrinsic::x86_avx2_permps:
10686    // Operands intentionally swapped. Mask is last operand to intrinsic,
10687    // but second operand for node/intruction.
10688    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
10689                       Op.getOperand(2), Op.getOperand(1));
10690
10691  case Intrinsic::x86_sse_sqrt_ps:
10692  case Intrinsic::x86_sse2_sqrt_pd:
10693  case Intrinsic::x86_avx_sqrt_ps_256:
10694  case Intrinsic::x86_avx_sqrt_pd_256:
10695    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
10696
10697  // ptest and testp intrinsics. The intrinsic these come from are designed to
10698  // return an integer value, not just an instruction so lower it to the ptest
10699  // or testp pattern and a setcc for the result.
10700  case Intrinsic::x86_sse41_ptestz:
10701  case Intrinsic::x86_sse41_ptestc:
10702  case Intrinsic::x86_sse41_ptestnzc:
10703  case Intrinsic::x86_avx_ptestz_256:
10704  case Intrinsic::x86_avx_ptestc_256:
10705  case Intrinsic::x86_avx_ptestnzc_256:
10706  case Intrinsic::x86_avx_vtestz_ps:
10707  case Intrinsic::x86_avx_vtestc_ps:
10708  case Intrinsic::x86_avx_vtestnzc_ps:
10709  case Intrinsic::x86_avx_vtestz_pd:
10710  case Intrinsic::x86_avx_vtestc_pd:
10711  case Intrinsic::x86_avx_vtestnzc_pd:
10712  case Intrinsic::x86_avx_vtestz_ps_256:
10713  case Intrinsic::x86_avx_vtestc_ps_256:
10714  case Intrinsic::x86_avx_vtestnzc_ps_256:
10715  case Intrinsic::x86_avx_vtestz_pd_256:
10716  case Intrinsic::x86_avx_vtestc_pd_256:
10717  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10718    bool IsTestPacked = false;
10719    unsigned X86CC;
10720    switch (IntNo) {
10721    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10722    case Intrinsic::x86_avx_vtestz_ps:
10723    case Intrinsic::x86_avx_vtestz_pd:
10724    case Intrinsic::x86_avx_vtestz_ps_256:
10725    case Intrinsic::x86_avx_vtestz_pd_256:
10726      IsTestPacked = true; // Fallthrough
10727    case Intrinsic::x86_sse41_ptestz:
10728    case Intrinsic::x86_avx_ptestz_256:
10729      // ZF = 1
10730      X86CC = X86::COND_E;
10731      break;
10732    case Intrinsic::x86_avx_vtestc_ps:
10733    case Intrinsic::x86_avx_vtestc_pd:
10734    case Intrinsic::x86_avx_vtestc_ps_256:
10735    case Intrinsic::x86_avx_vtestc_pd_256:
10736      IsTestPacked = true; // Fallthrough
10737    case Intrinsic::x86_sse41_ptestc:
10738    case Intrinsic::x86_avx_ptestc_256:
10739      // CF = 1
10740      X86CC = X86::COND_B;
10741      break;
10742    case Intrinsic::x86_avx_vtestnzc_ps:
10743    case Intrinsic::x86_avx_vtestnzc_pd:
10744    case Intrinsic::x86_avx_vtestnzc_ps_256:
10745    case Intrinsic::x86_avx_vtestnzc_pd_256:
10746      IsTestPacked = true; // Fallthrough
10747    case Intrinsic::x86_sse41_ptestnzc:
10748    case Intrinsic::x86_avx_ptestnzc_256:
10749      // ZF and CF = 0
10750      X86CC = X86::COND_A;
10751      break;
10752    }
10753
10754    SDValue LHS = Op.getOperand(1);
10755    SDValue RHS = Op.getOperand(2);
10756    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10757    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10758    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10759    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10760    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10761  }
10762
10763  // SSE/AVX shift intrinsics
10764  case Intrinsic::x86_sse2_psll_w:
10765  case Intrinsic::x86_sse2_psll_d:
10766  case Intrinsic::x86_sse2_psll_q:
10767  case Intrinsic::x86_avx2_psll_w:
10768  case Intrinsic::x86_avx2_psll_d:
10769  case Intrinsic::x86_avx2_psll_q:
10770  case Intrinsic::x86_sse2_psrl_w:
10771  case Intrinsic::x86_sse2_psrl_d:
10772  case Intrinsic::x86_sse2_psrl_q:
10773  case Intrinsic::x86_avx2_psrl_w:
10774  case Intrinsic::x86_avx2_psrl_d:
10775  case Intrinsic::x86_avx2_psrl_q:
10776  case Intrinsic::x86_sse2_psra_w:
10777  case Intrinsic::x86_sse2_psra_d:
10778  case Intrinsic::x86_avx2_psra_w:
10779  case Intrinsic::x86_avx2_psra_d: {
10780    unsigned Opcode;
10781    switch (IntNo) {
10782    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10783    case Intrinsic::x86_sse2_psll_w:
10784    case Intrinsic::x86_sse2_psll_d:
10785    case Intrinsic::x86_sse2_psll_q:
10786    case Intrinsic::x86_avx2_psll_w:
10787    case Intrinsic::x86_avx2_psll_d:
10788    case Intrinsic::x86_avx2_psll_q:
10789      Opcode = X86ISD::VSHL;
10790      break;
10791    case Intrinsic::x86_sse2_psrl_w:
10792    case Intrinsic::x86_sse2_psrl_d:
10793    case Intrinsic::x86_sse2_psrl_q:
10794    case Intrinsic::x86_avx2_psrl_w:
10795    case Intrinsic::x86_avx2_psrl_d:
10796    case Intrinsic::x86_avx2_psrl_q:
10797      Opcode = X86ISD::VSRL;
10798      break;
10799    case Intrinsic::x86_sse2_psra_w:
10800    case Intrinsic::x86_sse2_psra_d:
10801    case Intrinsic::x86_avx2_psra_w:
10802    case Intrinsic::x86_avx2_psra_d:
10803      Opcode = X86ISD::VSRA;
10804      break;
10805    }
10806    return DAG.getNode(Opcode, dl, Op.getValueType(),
10807                       Op.getOperand(1), Op.getOperand(2));
10808  }
10809
10810  // SSE/AVX immediate shift intrinsics
10811  case Intrinsic::x86_sse2_pslli_w:
10812  case Intrinsic::x86_sse2_pslli_d:
10813  case Intrinsic::x86_sse2_pslli_q:
10814  case Intrinsic::x86_avx2_pslli_w:
10815  case Intrinsic::x86_avx2_pslli_d:
10816  case Intrinsic::x86_avx2_pslli_q:
10817  case Intrinsic::x86_sse2_psrli_w:
10818  case Intrinsic::x86_sse2_psrli_d:
10819  case Intrinsic::x86_sse2_psrli_q:
10820  case Intrinsic::x86_avx2_psrli_w:
10821  case Intrinsic::x86_avx2_psrli_d:
10822  case Intrinsic::x86_avx2_psrli_q:
10823  case Intrinsic::x86_sse2_psrai_w:
10824  case Intrinsic::x86_sse2_psrai_d:
10825  case Intrinsic::x86_avx2_psrai_w:
10826  case Intrinsic::x86_avx2_psrai_d: {
10827    unsigned Opcode;
10828    switch (IntNo) {
10829    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10830    case Intrinsic::x86_sse2_pslli_w:
10831    case Intrinsic::x86_sse2_pslli_d:
10832    case Intrinsic::x86_sse2_pslli_q:
10833    case Intrinsic::x86_avx2_pslli_w:
10834    case Intrinsic::x86_avx2_pslli_d:
10835    case Intrinsic::x86_avx2_pslli_q:
10836      Opcode = X86ISD::VSHLI;
10837      break;
10838    case Intrinsic::x86_sse2_psrli_w:
10839    case Intrinsic::x86_sse2_psrli_d:
10840    case Intrinsic::x86_sse2_psrli_q:
10841    case Intrinsic::x86_avx2_psrli_w:
10842    case Intrinsic::x86_avx2_psrli_d:
10843    case Intrinsic::x86_avx2_psrli_q:
10844      Opcode = X86ISD::VSRLI;
10845      break;
10846    case Intrinsic::x86_sse2_psrai_w:
10847    case Intrinsic::x86_sse2_psrai_d:
10848    case Intrinsic::x86_avx2_psrai_w:
10849    case Intrinsic::x86_avx2_psrai_d:
10850      Opcode = X86ISD::VSRAI;
10851      break;
10852    }
10853    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10854                               Op.getOperand(1), Op.getOperand(2), DAG);
10855  }
10856
10857  case Intrinsic::x86_sse42_pcmpistria128:
10858  case Intrinsic::x86_sse42_pcmpestria128:
10859  case Intrinsic::x86_sse42_pcmpistric128:
10860  case Intrinsic::x86_sse42_pcmpestric128:
10861  case Intrinsic::x86_sse42_pcmpistrio128:
10862  case Intrinsic::x86_sse42_pcmpestrio128:
10863  case Intrinsic::x86_sse42_pcmpistris128:
10864  case Intrinsic::x86_sse42_pcmpestris128:
10865  case Intrinsic::x86_sse42_pcmpistriz128:
10866  case Intrinsic::x86_sse42_pcmpestriz128: {
10867    unsigned Opcode;
10868    unsigned X86CC;
10869    switch (IntNo) {
10870    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10871    case Intrinsic::x86_sse42_pcmpistria128:
10872      Opcode = X86ISD::PCMPISTRI;
10873      X86CC = X86::COND_A;
10874      break;
10875    case Intrinsic::x86_sse42_pcmpestria128:
10876      Opcode = X86ISD::PCMPESTRI;
10877      X86CC = X86::COND_A;
10878      break;
10879    case Intrinsic::x86_sse42_pcmpistric128:
10880      Opcode = X86ISD::PCMPISTRI;
10881      X86CC = X86::COND_B;
10882      break;
10883    case Intrinsic::x86_sse42_pcmpestric128:
10884      Opcode = X86ISD::PCMPESTRI;
10885      X86CC = X86::COND_B;
10886      break;
10887    case Intrinsic::x86_sse42_pcmpistrio128:
10888      Opcode = X86ISD::PCMPISTRI;
10889      X86CC = X86::COND_O;
10890      break;
10891    case Intrinsic::x86_sse42_pcmpestrio128:
10892      Opcode = X86ISD::PCMPESTRI;
10893      X86CC = X86::COND_O;
10894      break;
10895    case Intrinsic::x86_sse42_pcmpistris128:
10896      Opcode = X86ISD::PCMPISTRI;
10897      X86CC = X86::COND_S;
10898      break;
10899    case Intrinsic::x86_sse42_pcmpestris128:
10900      Opcode = X86ISD::PCMPESTRI;
10901      X86CC = X86::COND_S;
10902      break;
10903    case Intrinsic::x86_sse42_pcmpistriz128:
10904      Opcode = X86ISD::PCMPISTRI;
10905      X86CC = X86::COND_E;
10906      break;
10907    case Intrinsic::x86_sse42_pcmpestriz128:
10908      Opcode = X86ISD::PCMPESTRI;
10909      X86CC = X86::COND_E;
10910      break;
10911    }
10912    SmallVector<SDValue, 5> NewOps;
10913    NewOps.append(Op->op_begin()+1, Op->op_end());
10914    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10915    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10916    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10917                                DAG.getConstant(X86CC, MVT::i8),
10918                                SDValue(PCMP.getNode(), 1));
10919    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10920  }
10921
10922  case Intrinsic::x86_sse42_pcmpistri128:
10923  case Intrinsic::x86_sse42_pcmpestri128: {
10924    unsigned Opcode;
10925    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10926      Opcode = X86ISD::PCMPISTRI;
10927    else
10928      Opcode = X86ISD::PCMPESTRI;
10929
10930    SmallVector<SDValue, 5> NewOps;
10931    NewOps.append(Op->op_begin()+1, Op->op_end());
10932    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10933    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10934  }
10935  case Intrinsic::x86_fma_vfmadd_ps:
10936  case Intrinsic::x86_fma_vfmadd_pd:
10937  case Intrinsic::x86_fma_vfmsub_ps:
10938  case Intrinsic::x86_fma_vfmsub_pd:
10939  case Intrinsic::x86_fma_vfnmadd_ps:
10940  case Intrinsic::x86_fma_vfnmadd_pd:
10941  case Intrinsic::x86_fma_vfnmsub_ps:
10942  case Intrinsic::x86_fma_vfnmsub_pd:
10943  case Intrinsic::x86_fma_vfmaddsub_ps:
10944  case Intrinsic::x86_fma_vfmaddsub_pd:
10945  case Intrinsic::x86_fma_vfmsubadd_ps:
10946  case Intrinsic::x86_fma_vfmsubadd_pd:
10947  case Intrinsic::x86_fma_vfmadd_ps_256:
10948  case Intrinsic::x86_fma_vfmadd_pd_256:
10949  case Intrinsic::x86_fma_vfmsub_ps_256:
10950  case Intrinsic::x86_fma_vfmsub_pd_256:
10951  case Intrinsic::x86_fma_vfnmadd_ps_256:
10952  case Intrinsic::x86_fma_vfnmadd_pd_256:
10953  case Intrinsic::x86_fma_vfnmsub_ps_256:
10954  case Intrinsic::x86_fma_vfnmsub_pd_256:
10955  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10956  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10957  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10958  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10959    unsigned Opc;
10960    switch (IntNo) {
10961    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10962    case Intrinsic::x86_fma_vfmadd_ps:
10963    case Intrinsic::x86_fma_vfmadd_pd:
10964    case Intrinsic::x86_fma_vfmadd_ps_256:
10965    case Intrinsic::x86_fma_vfmadd_pd_256:
10966      Opc = X86ISD::FMADD;
10967      break;
10968    case Intrinsic::x86_fma_vfmsub_ps:
10969    case Intrinsic::x86_fma_vfmsub_pd:
10970    case Intrinsic::x86_fma_vfmsub_ps_256:
10971    case Intrinsic::x86_fma_vfmsub_pd_256:
10972      Opc = X86ISD::FMSUB;
10973      break;
10974    case Intrinsic::x86_fma_vfnmadd_ps:
10975    case Intrinsic::x86_fma_vfnmadd_pd:
10976    case Intrinsic::x86_fma_vfnmadd_ps_256:
10977    case Intrinsic::x86_fma_vfnmadd_pd_256:
10978      Opc = X86ISD::FNMADD;
10979      break;
10980    case Intrinsic::x86_fma_vfnmsub_ps:
10981    case Intrinsic::x86_fma_vfnmsub_pd:
10982    case Intrinsic::x86_fma_vfnmsub_ps_256:
10983    case Intrinsic::x86_fma_vfnmsub_pd_256:
10984      Opc = X86ISD::FNMSUB;
10985      break;
10986    case Intrinsic::x86_fma_vfmaddsub_ps:
10987    case Intrinsic::x86_fma_vfmaddsub_pd:
10988    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10989    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10990      Opc = X86ISD::FMADDSUB;
10991      break;
10992    case Intrinsic::x86_fma_vfmsubadd_ps:
10993    case Intrinsic::x86_fma_vfmsubadd_pd:
10994    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10995    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10996      Opc = X86ISD::FMSUBADD;
10997      break;
10998    }
10999
11000    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
11001                       Op.getOperand(2), Op.getOperand(3));
11002  }
11003  }
11004}
11005
11006static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
11007  SDLoc dl(Op);
11008  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11009  switch (IntNo) {
11010  default: return SDValue();    // Don't custom lower most intrinsics.
11011
11012  // RDRAND/RDSEED intrinsics.
11013  case Intrinsic::x86_rdrand_16:
11014  case Intrinsic::x86_rdrand_32:
11015  case Intrinsic::x86_rdrand_64:
11016  case Intrinsic::x86_rdseed_16:
11017  case Intrinsic::x86_rdseed_32:
11018  case Intrinsic::x86_rdseed_64: {
11019    unsigned Opcode = (IntNo == Intrinsic::x86_rdseed_16 ||
11020                       IntNo == Intrinsic::x86_rdseed_32 ||
11021                       IntNo == Intrinsic::x86_rdseed_64) ? X86ISD::RDSEED :
11022                                                            X86ISD::RDRAND;
11023    // Emit the node with the right value type.
11024    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
11025    SDValue Result = DAG.getNode(Opcode, dl, VTs, Op.getOperand(0));
11026
11027    // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
11028    // Otherwise return the value from Rand, which is always 0, casted to i32.
11029    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
11030                      DAG.getConstant(1, Op->getValueType(1)),
11031                      DAG.getConstant(X86::COND_B, MVT::i32),
11032                      SDValue(Result.getNode(), 1) };
11033    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
11034                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
11035                                  Ops, array_lengthof(Ops));
11036
11037    // Return { result, isValid, chain }.
11038    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
11039                       SDValue(Result.getNode(), 2));
11040  }
11041
11042  // XTEST intrinsics.
11043  case Intrinsic::x86_xtest: {
11044    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
11045    SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0));
11046    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11047                                DAG.getConstant(X86::COND_NE, MVT::i8),
11048                                InTrans);
11049    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
11050    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
11051                       Ret, SDValue(InTrans.getNode(), 1));
11052  }
11053  }
11054}
11055
11056SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
11057                                           SelectionDAG &DAG) const {
11058  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11059  MFI->setReturnAddressIsTaken(true);
11060
11061  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11062  SDLoc dl(Op);
11063  EVT PtrVT = getPointerTy();
11064
11065  if (Depth > 0) {
11066    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
11067    const X86RegisterInfo *RegInfo =
11068      static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
11069    SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
11070    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11071                       DAG.getNode(ISD::ADD, dl, PtrVT,
11072                                   FrameAddr, Offset),
11073                       MachinePointerInfo(), false, false, false, 0);
11074  }
11075
11076  // Just load the return address.
11077  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
11078  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11079                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
11080}
11081
11082SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
11083  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11084  MFI->setFrameAddressIsTaken(true);
11085
11086  EVT VT = Op.getValueType();
11087  SDLoc dl(Op);  // FIXME probably not meaningful
11088  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11089  const X86RegisterInfo *RegInfo =
11090    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
11091  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
11092  assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
11093          (FrameReg == X86::EBP && VT == MVT::i32)) &&
11094         "Invalid Frame Register!");
11095  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
11096  while (Depth--)
11097    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
11098                            MachinePointerInfo(),
11099                            false, false, false, 0);
11100  return FrameAddr;
11101}
11102
11103SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
11104                                                     SelectionDAG &DAG) const {
11105  const X86RegisterInfo *RegInfo =
11106    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
11107  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
11108}
11109
11110SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
11111  SDValue Chain     = Op.getOperand(0);
11112  SDValue Offset    = Op.getOperand(1);
11113  SDValue Handler   = Op.getOperand(2);
11114  SDLoc dl      (Op);
11115
11116  EVT PtrVT = getPointerTy();
11117  const X86RegisterInfo *RegInfo =
11118    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
11119  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
11120  assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
11121          (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
11122         "Invalid Frame Register!");
11123  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
11124  unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
11125
11126  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
11127                                 DAG.getIntPtrConstant(RegInfo->getSlotSize()));
11128  StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
11129  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
11130                       false, false, 0);
11131  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
11132
11133  return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
11134                     DAG.getRegister(StoreAddrReg, PtrVT));
11135}
11136
11137SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
11138                                               SelectionDAG &DAG) const {
11139  SDLoc DL(Op);
11140  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
11141                     DAG.getVTList(MVT::i32, MVT::Other),
11142                     Op.getOperand(0), Op.getOperand(1));
11143}
11144
11145SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
11146                                                SelectionDAG &DAG) const {
11147  SDLoc DL(Op);
11148  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
11149                     Op.getOperand(0), Op.getOperand(1));
11150}
11151
11152static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
11153  return Op.getOperand(0);
11154}
11155
11156SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
11157                                                SelectionDAG &DAG) const {
11158  SDValue Root = Op.getOperand(0);
11159  SDValue Trmp = Op.getOperand(1); // trampoline
11160  SDValue FPtr = Op.getOperand(2); // nested function
11161  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
11162  SDLoc dl (Op);
11163
11164  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
11165  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
11166
11167  if (Subtarget->is64Bit()) {
11168    SDValue OutChains[6];
11169
11170    // Large code-model.
11171    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
11172    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
11173
11174    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
11175    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
11176
11177    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
11178
11179    // Load the pointer to the nested function into R11.
11180    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
11181    SDValue Addr = Trmp;
11182    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11183                                Addr, MachinePointerInfo(TrmpAddr),
11184                                false, false, 0);
11185
11186    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11187                       DAG.getConstant(2, MVT::i64));
11188    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
11189                                MachinePointerInfo(TrmpAddr, 2),
11190                                false, false, 2);
11191
11192    // Load the 'nest' parameter value into R10.
11193    // R10 is specified in X86CallingConv.td
11194    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
11195    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11196                       DAG.getConstant(10, MVT::i64));
11197    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11198                                Addr, MachinePointerInfo(TrmpAddr, 10),
11199                                false, false, 0);
11200
11201    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11202                       DAG.getConstant(12, MVT::i64));
11203    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
11204                                MachinePointerInfo(TrmpAddr, 12),
11205                                false, false, 2);
11206
11207    // Jump to the nested function.
11208    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
11209    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11210                       DAG.getConstant(20, MVT::i64));
11211    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11212                                Addr, MachinePointerInfo(TrmpAddr, 20),
11213                                false, false, 0);
11214
11215    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
11216    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11217                       DAG.getConstant(22, MVT::i64));
11218    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
11219                                MachinePointerInfo(TrmpAddr, 22),
11220                                false, false, 0);
11221
11222    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
11223  } else {
11224    const Function *Func =
11225      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
11226    CallingConv::ID CC = Func->getCallingConv();
11227    unsigned NestReg;
11228
11229    switch (CC) {
11230    default:
11231      llvm_unreachable("Unsupported calling convention");
11232    case CallingConv::C:
11233    case CallingConv::X86_StdCall: {
11234      // Pass 'nest' parameter in ECX.
11235      // Must be kept in sync with X86CallingConv.td
11236      NestReg = X86::ECX;
11237
11238      // Check that ECX wasn't needed by an 'inreg' parameter.
11239      FunctionType *FTy = Func->getFunctionType();
11240      const AttributeSet &Attrs = Func->getAttributes();
11241
11242      if (!Attrs.isEmpty() && !Func->isVarArg()) {
11243        unsigned InRegCount = 0;
11244        unsigned Idx = 1;
11245
11246        for (FunctionType::param_iterator I = FTy->param_begin(),
11247             E = FTy->param_end(); I != E; ++I, ++Idx)
11248          if (Attrs.hasAttribute(Idx, Attribute::InReg))
11249            // FIXME: should only count parameters that are lowered to integers.
11250            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
11251
11252        if (InRegCount > 2) {
11253          report_fatal_error("Nest register in use - reduce number of inreg"
11254                             " parameters!");
11255        }
11256      }
11257      break;
11258    }
11259    case CallingConv::X86_FastCall:
11260    case CallingConv::X86_ThisCall:
11261    case CallingConv::Fast:
11262      // Pass 'nest' parameter in EAX.
11263      // Must be kept in sync with X86CallingConv.td
11264      NestReg = X86::EAX;
11265      break;
11266    }
11267
11268    SDValue OutChains[4];
11269    SDValue Addr, Disp;
11270
11271    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11272                       DAG.getConstant(10, MVT::i32));
11273    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
11274
11275    // This is storing the opcode for MOV32ri.
11276    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
11277    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
11278    OutChains[0] = DAG.getStore(Root, dl,
11279                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
11280                                Trmp, MachinePointerInfo(TrmpAddr),
11281                                false, false, 0);
11282
11283    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11284                       DAG.getConstant(1, MVT::i32));
11285    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
11286                                MachinePointerInfo(TrmpAddr, 1),
11287                                false, false, 1);
11288
11289    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
11290    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11291                       DAG.getConstant(5, MVT::i32));
11292    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
11293                                MachinePointerInfo(TrmpAddr, 5),
11294                                false, false, 1);
11295
11296    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11297                       DAG.getConstant(6, MVT::i32));
11298    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
11299                                MachinePointerInfo(TrmpAddr, 6),
11300                                false, false, 1);
11301
11302    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
11303  }
11304}
11305
11306SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
11307                                            SelectionDAG &DAG) const {
11308  /*
11309   The rounding mode is in bits 11:10 of FPSR, and has the following
11310   settings:
11311     00 Round to nearest
11312     01 Round to -inf
11313     10 Round to +inf
11314     11 Round to 0
11315
11316  FLT_ROUNDS, on the other hand, expects the following:
11317    -1 Undefined
11318     0 Round to 0
11319     1 Round to nearest
11320     2 Round to +inf
11321     3 Round to -inf
11322
11323  To perform the conversion, we do:
11324    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
11325  */
11326
11327  MachineFunction &MF = DAG.getMachineFunction();
11328  const TargetMachine &TM = MF.getTarget();
11329  const TargetFrameLowering &TFI = *TM.getFrameLowering();
11330  unsigned StackAlignment = TFI.getStackAlignment();
11331  EVT VT = Op.getValueType();
11332  SDLoc DL(Op);
11333
11334  // Save FP Control Word to stack slot
11335  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
11336  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11337
11338  MachineMemOperand *MMO =
11339   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11340                           MachineMemOperand::MOStore, 2, 2);
11341
11342  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
11343  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
11344                                          DAG.getVTList(MVT::Other),
11345                                          Ops, array_lengthof(Ops), MVT::i16,
11346                                          MMO);
11347
11348  // Load FP Control Word from stack slot
11349  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
11350                            MachinePointerInfo(), false, false, false, 0);
11351
11352  // Transform as necessary
11353  SDValue CWD1 =
11354    DAG.getNode(ISD::SRL, DL, MVT::i16,
11355                DAG.getNode(ISD::AND, DL, MVT::i16,
11356                            CWD, DAG.getConstant(0x800, MVT::i16)),
11357                DAG.getConstant(11, MVT::i8));
11358  SDValue CWD2 =
11359    DAG.getNode(ISD::SRL, DL, MVT::i16,
11360                DAG.getNode(ISD::AND, DL, MVT::i16,
11361                            CWD, DAG.getConstant(0x400, MVT::i16)),
11362                DAG.getConstant(9, MVT::i8));
11363
11364  SDValue RetVal =
11365    DAG.getNode(ISD::AND, DL, MVT::i16,
11366                DAG.getNode(ISD::ADD, DL, MVT::i16,
11367                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
11368                            DAG.getConstant(1, MVT::i16)),
11369                DAG.getConstant(3, MVT::i16));
11370
11371  return DAG.getNode((VT.getSizeInBits() < 16 ?
11372                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
11373}
11374
11375static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
11376  EVT VT = Op.getValueType();
11377  EVT OpVT = VT;
11378  unsigned NumBits = VT.getSizeInBits();
11379  SDLoc dl(Op);
11380
11381  Op = Op.getOperand(0);
11382  if (VT == MVT::i8) {
11383    // Zero extend to i32 since there is not an i8 bsr.
11384    OpVT = MVT::i32;
11385    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11386  }
11387
11388  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
11389  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11390  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11391
11392  // If src is zero (i.e. bsr sets ZF), returns NumBits.
11393  SDValue Ops[] = {
11394    Op,
11395    DAG.getConstant(NumBits+NumBits-1, OpVT),
11396    DAG.getConstant(X86::COND_E, MVT::i8),
11397    Op.getValue(1)
11398  };
11399  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
11400
11401  // Finally xor with NumBits-1.
11402  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11403
11404  if (VT == MVT::i8)
11405    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11406  return Op;
11407}
11408
11409static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
11410  EVT VT = Op.getValueType();
11411  EVT OpVT = VT;
11412  unsigned NumBits = VT.getSizeInBits();
11413  SDLoc dl(Op);
11414
11415  Op = Op.getOperand(0);
11416  if (VT == MVT::i8) {
11417    // Zero extend to i32 since there is not an i8 bsr.
11418    OpVT = MVT::i32;
11419    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11420  }
11421
11422  // Issue a bsr (scan bits in reverse).
11423  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11424  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11425
11426  // And xor with NumBits-1.
11427  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11428
11429  if (VT == MVT::i8)
11430    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11431  return Op;
11432}
11433
11434static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
11435  EVT VT = Op.getValueType();
11436  unsigned NumBits = VT.getSizeInBits();
11437  SDLoc dl(Op);
11438  Op = Op.getOperand(0);
11439
11440  // Issue a bsf (scan bits forward) which also sets EFLAGS.
11441  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11442  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
11443
11444  // If src is zero (i.e. bsf sets ZF), returns NumBits.
11445  SDValue Ops[] = {
11446    Op,
11447    DAG.getConstant(NumBits, VT),
11448    DAG.getConstant(X86::COND_E, MVT::i8),
11449    Op.getValue(1)
11450  };
11451  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
11452}
11453
11454// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
11455// ones, and then concatenate the result back.
11456static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
11457  EVT VT = Op.getValueType();
11458
11459  assert(VT.is256BitVector() && VT.isInteger() &&
11460         "Unsupported value type for operation");
11461
11462  unsigned NumElems = VT.getVectorNumElements();
11463  SDLoc dl(Op);
11464
11465  // Extract the LHS vectors
11466  SDValue LHS = Op.getOperand(0);
11467  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11468  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11469
11470  // Extract the RHS vectors
11471  SDValue RHS = Op.getOperand(1);
11472  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
11473  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
11474
11475  MVT EltVT = VT.getVectorElementType().getSimpleVT();
11476  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11477
11478  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
11479                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
11480                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
11481}
11482
11483static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
11484  assert(Op.getValueType().is256BitVector() &&
11485         Op.getValueType().isInteger() &&
11486         "Only handle AVX 256-bit vector integer operation");
11487  return Lower256IntArith(Op, DAG);
11488}
11489
11490static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
11491  assert(Op.getValueType().is256BitVector() &&
11492         Op.getValueType().isInteger() &&
11493         "Only handle AVX 256-bit vector integer operation");
11494  return Lower256IntArith(Op, DAG);
11495}
11496
11497static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
11498                        SelectionDAG &DAG) {
11499  SDLoc dl(Op);
11500  EVT VT = Op.getValueType();
11501
11502  // Decompose 256-bit ops into smaller 128-bit ops.
11503  if (VT.is256BitVector() && !Subtarget->hasInt256())
11504    return Lower256IntArith(Op, DAG);
11505
11506  SDValue A = Op.getOperand(0);
11507  SDValue B = Op.getOperand(1);
11508
11509  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
11510  if (VT == MVT::v4i32) {
11511    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
11512           "Should not custom lower when pmuldq is available!");
11513
11514    // Extract the odd parts.
11515    static const int UnpackMask[] = { 1, -1, 3, -1 };
11516    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
11517    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
11518
11519    // Multiply the even parts.
11520    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
11521    // Now multiply odd parts.
11522    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
11523
11524    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
11525    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
11526
11527    // Merge the two vectors back together with a shuffle. This expands into 2
11528    // shuffles.
11529    static const int ShufMask[] = { 0, 4, 2, 6 };
11530    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
11531  }
11532
11533  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
11534         "Only know how to lower V2I64/V4I64 multiply");
11535
11536  //  Ahi = psrlqi(a, 32);
11537  //  Bhi = psrlqi(b, 32);
11538  //
11539  //  AloBlo = pmuludq(a, b);
11540  //  AloBhi = pmuludq(a, Bhi);
11541  //  AhiBlo = pmuludq(Ahi, b);
11542
11543  //  AloBhi = psllqi(AloBhi, 32);
11544  //  AhiBlo = psllqi(AhiBlo, 32);
11545  //  return AloBlo + AloBhi + AhiBlo;
11546
11547  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
11548
11549  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
11550  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
11551
11552  // Bit cast to 32-bit vectors for MULUDQ
11553  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
11554  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
11555  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
11556  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
11557  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
11558
11559  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
11560  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
11561  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
11562
11563  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
11564  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
11565
11566  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
11567  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
11568}
11569
11570SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
11571  EVT VT = Op.getValueType();
11572  EVT EltTy = VT.getVectorElementType();
11573  unsigned NumElts = VT.getVectorNumElements();
11574  SDValue N0 = Op.getOperand(0);
11575  SDLoc dl(Op);
11576
11577  // Lower sdiv X, pow2-const.
11578  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
11579  if (!C)
11580    return SDValue();
11581
11582  APInt SplatValue, SplatUndef;
11583  unsigned SplatBitSize;
11584  bool HasAnyUndefs;
11585  if (!C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
11586                          HasAnyUndefs) ||
11587      EltTy.getSizeInBits() < SplatBitSize)
11588    return SDValue();
11589
11590  if ((SplatValue != 0) &&
11591      (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
11592    unsigned lg2 = SplatValue.countTrailingZeros();
11593    // Splat the sign bit.
11594    SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32);
11595    SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG);
11596    // Add (N0 < 0) ? abs2 - 1 : 0;
11597    SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32);
11598    SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG);
11599    SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
11600    SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32);
11601    SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG);
11602
11603    // If we're dividing by a positive value, we're done.  Otherwise, we must
11604    // negate the result.
11605    if (SplatValue.isNonNegative())
11606      return SRA;
11607
11608    SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
11609    SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
11610    return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
11611  }
11612  return SDValue();
11613}
11614
11615static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
11616                                         const X86Subtarget *Subtarget) {
11617  EVT VT = Op.getValueType();
11618  SDLoc dl(Op);
11619  SDValue R = Op.getOperand(0);
11620  SDValue Amt = Op.getOperand(1);
11621
11622  // Optimize shl/srl/sra with constant shift amount.
11623  if (isSplatVector(Amt.getNode())) {
11624    SDValue SclrAmt = Amt->getOperand(0);
11625    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
11626      uint64_t ShiftAmt = C->getZExtValue();
11627
11628      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
11629          (Subtarget->hasInt256() &&
11630           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
11631        if (Op.getOpcode() == ISD::SHL)
11632          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11633                             DAG.getConstant(ShiftAmt, MVT::i32));
11634        if (Op.getOpcode() == ISD::SRL)
11635          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11636                             DAG.getConstant(ShiftAmt, MVT::i32));
11637        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
11638          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11639                             DAG.getConstant(ShiftAmt, MVT::i32));
11640      }
11641
11642      if (VT == MVT::v16i8) {
11643        if (Op.getOpcode() == ISD::SHL) {
11644          // Make a large shift.
11645          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
11646                                    DAG.getConstant(ShiftAmt, MVT::i32));
11647          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11648          // Zero out the rightmost bits.
11649          SmallVector<SDValue, 16> V(16,
11650                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11651                                                     MVT::i8));
11652          return DAG.getNode(ISD::AND, dl, VT, SHL,
11653                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11654        }
11655        if (Op.getOpcode() == ISD::SRL) {
11656          // Make a large shift.
11657          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
11658                                    DAG.getConstant(ShiftAmt, MVT::i32));
11659          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11660          // Zero out the leftmost bits.
11661          SmallVector<SDValue, 16> V(16,
11662                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11663                                                     MVT::i8));
11664          return DAG.getNode(ISD::AND, dl, VT, SRL,
11665                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11666        }
11667        if (Op.getOpcode() == ISD::SRA) {
11668          if (ShiftAmt == 7) {
11669            // R s>> 7  ===  R s< 0
11670            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11671            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11672          }
11673
11674          // R s>> a === ((R u>> a) ^ m) - m
11675          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11676          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
11677                                                         MVT::i8));
11678          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
11679          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11680          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11681          return Res;
11682        }
11683        llvm_unreachable("Unknown shift opcode.");
11684      }
11685
11686      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
11687        if (Op.getOpcode() == ISD::SHL) {
11688          // Make a large shift.
11689          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
11690                                    DAG.getConstant(ShiftAmt, MVT::i32));
11691          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11692          // Zero out the rightmost bits.
11693          SmallVector<SDValue, 32> V(32,
11694                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11695                                                     MVT::i8));
11696          return DAG.getNode(ISD::AND, dl, VT, SHL,
11697                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11698        }
11699        if (Op.getOpcode() == ISD::SRL) {
11700          // Make a large shift.
11701          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
11702                                    DAG.getConstant(ShiftAmt, MVT::i32));
11703          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11704          // Zero out the leftmost bits.
11705          SmallVector<SDValue, 32> V(32,
11706                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11707                                                     MVT::i8));
11708          return DAG.getNode(ISD::AND, dl, VT, SRL,
11709                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11710        }
11711        if (Op.getOpcode() == ISD::SRA) {
11712          if (ShiftAmt == 7) {
11713            // R s>> 7  ===  R s< 0
11714            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11715            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11716          }
11717
11718          // R s>> a === ((R u>> a) ^ m) - m
11719          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11720          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
11721                                                         MVT::i8));
11722          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
11723          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11724          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11725          return Res;
11726        }
11727        llvm_unreachable("Unknown shift opcode.");
11728      }
11729    }
11730  }
11731
11732  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
11733  if (!Subtarget->is64Bit() &&
11734      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
11735      Amt.getOpcode() == ISD::BITCAST &&
11736      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
11737    Amt = Amt.getOperand(0);
11738    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
11739                     VT.getVectorNumElements();
11740    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
11741    uint64_t ShiftAmt = 0;
11742    for (unsigned i = 0; i != Ratio; ++i) {
11743      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
11744      if (C == 0)
11745        return SDValue();
11746      // 6 == Log2(64)
11747      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
11748    }
11749    // Check remaining shift amounts.
11750    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
11751      uint64_t ShAmt = 0;
11752      for (unsigned j = 0; j != Ratio; ++j) {
11753        ConstantSDNode *C =
11754          dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
11755        if (C == 0)
11756          return SDValue();
11757        // 6 == Log2(64)
11758        ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
11759      }
11760      if (ShAmt != ShiftAmt)
11761        return SDValue();
11762    }
11763    switch (Op.getOpcode()) {
11764    default:
11765      llvm_unreachable("Unknown shift opcode!");
11766    case ISD::SHL:
11767      return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11768                         DAG.getConstant(ShiftAmt, MVT::i32));
11769    case ISD::SRL:
11770      return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11771                         DAG.getConstant(ShiftAmt, MVT::i32));
11772    case ISD::SRA:
11773      return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11774                         DAG.getConstant(ShiftAmt, MVT::i32));
11775    }
11776  }
11777
11778  return SDValue();
11779}
11780
11781static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
11782                                        const X86Subtarget* Subtarget) {
11783  EVT VT = Op.getValueType();
11784  SDLoc dl(Op);
11785  SDValue R = Op.getOperand(0);
11786  SDValue Amt = Op.getOperand(1);
11787
11788  if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
11789      VT == MVT::v4i32 || VT == MVT::v8i16 ||
11790      (Subtarget->hasInt256() &&
11791       ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
11792        VT == MVT::v8i32 || VT == MVT::v16i16))) {
11793    SDValue BaseShAmt;
11794    EVT EltVT = VT.getVectorElementType();
11795
11796    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11797      unsigned NumElts = VT.getVectorNumElements();
11798      unsigned i, j;
11799      for (i = 0; i != NumElts; ++i) {
11800        if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
11801          continue;
11802        break;
11803      }
11804      for (j = i; j != NumElts; ++j) {
11805        SDValue Arg = Amt.getOperand(j);
11806        if (Arg.getOpcode() == ISD::UNDEF) continue;
11807        if (Arg != Amt.getOperand(i))
11808          break;
11809      }
11810      if (i != NumElts && j == NumElts)
11811        BaseShAmt = Amt.getOperand(i);
11812    } else {
11813      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
11814        Amt = Amt.getOperand(0);
11815      if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
11816               cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
11817        SDValue InVec = Amt.getOperand(0);
11818        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11819          unsigned NumElts = InVec.getValueType().getVectorNumElements();
11820          unsigned i = 0;
11821          for (; i != NumElts; ++i) {
11822            SDValue Arg = InVec.getOperand(i);
11823            if (Arg.getOpcode() == ISD::UNDEF) continue;
11824            BaseShAmt = Arg;
11825            break;
11826          }
11827        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11828           if (ConstantSDNode *C =
11829               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11830             unsigned SplatIdx =
11831               cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
11832             if (C->getZExtValue() == SplatIdx)
11833               BaseShAmt = InVec.getOperand(1);
11834           }
11835        }
11836        if (BaseShAmt.getNode() == 0)
11837          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
11838                                  DAG.getIntPtrConstant(0));
11839      }
11840    }
11841
11842    if (BaseShAmt.getNode()) {
11843      if (EltVT.bitsGT(MVT::i32))
11844        BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
11845      else if (EltVT.bitsLT(MVT::i32))
11846        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
11847
11848      switch (Op.getOpcode()) {
11849      default:
11850        llvm_unreachable("Unknown shift opcode!");
11851      case ISD::SHL:
11852        switch (VT.getSimpleVT().SimpleTy) {
11853        default: return SDValue();
11854        case MVT::v2i64:
11855        case MVT::v4i32:
11856        case MVT::v8i16:
11857        case MVT::v4i64:
11858        case MVT::v8i32:
11859        case MVT::v16i16:
11860          return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
11861        }
11862      case ISD::SRA:
11863        switch (VT.getSimpleVT().SimpleTy) {
11864        default: return SDValue();
11865        case MVT::v4i32:
11866        case MVT::v8i16:
11867        case MVT::v8i32:
11868        case MVT::v16i16:
11869          return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
11870        }
11871      case ISD::SRL:
11872        switch (VT.getSimpleVT().SimpleTy) {
11873        default: return SDValue();
11874        case MVT::v2i64:
11875        case MVT::v4i32:
11876        case MVT::v8i16:
11877        case MVT::v4i64:
11878        case MVT::v8i32:
11879        case MVT::v16i16:
11880          return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
11881        }
11882      }
11883    }
11884  }
11885
11886  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
11887  if (!Subtarget->is64Bit() &&
11888      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
11889      Amt.getOpcode() == ISD::BITCAST &&
11890      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
11891    Amt = Amt.getOperand(0);
11892    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
11893                     VT.getVectorNumElements();
11894    std::vector<SDValue> Vals(Ratio);
11895    for (unsigned i = 0; i != Ratio; ++i)
11896      Vals[i] = Amt.getOperand(i);
11897    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
11898      for (unsigned j = 0; j != Ratio; ++j)
11899        if (Vals[j] != Amt.getOperand(i + j))
11900          return SDValue();
11901    }
11902    switch (Op.getOpcode()) {
11903    default:
11904      llvm_unreachable("Unknown shift opcode!");
11905    case ISD::SHL:
11906      return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
11907    case ISD::SRL:
11908      return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
11909    case ISD::SRA:
11910      return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
11911    }
11912  }
11913
11914  return SDValue();
11915}
11916
11917SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
11918
11919  EVT VT = Op.getValueType();
11920  SDLoc dl(Op);
11921  SDValue R = Op.getOperand(0);
11922  SDValue Amt = Op.getOperand(1);
11923  SDValue V;
11924
11925  if (!Subtarget->hasSSE2())
11926    return SDValue();
11927
11928  V = LowerScalarImmediateShift(Op, DAG, Subtarget);
11929  if (V.getNode())
11930    return V;
11931
11932  V = LowerScalarVariableShift(Op, DAG, Subtarget);
11933  if (V.getNode())
11934      return V;
11935
11936  // AVX2 has VPSLLV/VPSRAV/VPSRLV.
11937  if (Subtarget->hasInt256()) {
11938    if (Op.getOpcode() == ISD::SRL &&
11939        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
11940         VT == MVT::v4i64 || VT == MVT::v8i32))
11941      return Op;
11942    if (Op.getOpcode() == ISD::SHL &&
11943        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
11944         VT == MVT::v4i64 || VT == MVT::v8i32))
11945      return Op;
11946    if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
11947      return Op;
11948  }
11949
11950  // Lower SHL with variable shift amount.
11951  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
11952    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
11953
11954    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
11955    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
11956    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
11957    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
11958  }
11959  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
11960    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
11961
11962    // a = a << 5;
11963    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
11964    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
11965
11966    // Turn 'a' into a mask suitable for VSELECT
11967    SDValue VSelM = DAG.getConstant(0x80, VT);
11968    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11969    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11970
11971    SDValue CM1 = DAG.getConstant(0x0f, VT);
11972    SDValue CM2 = DAG.getConstant(0x3f, VT);
11973
11974    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
11975    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
11976    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11977                            DAG.getConstant(4, MVT::i32), DAG);
11978    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11979    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11980
11981    // a += a
11982    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11983    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11984    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11985
11986    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
11987    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
11988    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11989                            DAG.getConstant(2, MVT::i32), DAG);
11990    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11991    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11992
11993    // a += a
11994    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11995    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11996    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11997
11998    // return VSELECT(r, r+r, a);
11999    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
12000                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
12001    return R;
12002  }
12003
12004  // Decompose 256-bit shifts into smaller 128-bit shifts.
12005  if (VT.is256BitVector()) {
12006    unsigned NumElems = VT.getVectorNumElements();
12007    MVT EltVT = VT.getVectorElementType().getSimpleVT();
12008    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12009
12010    // Extract the two vectors
12011    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
12012    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
12013
12014    // Recreate the shift amount vectors
12015    SDValue Amt1, Amt2;
12016    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
12017      // Constant shift amount
12018      SmallVector<SDValue, 4> Amt1Csts;
12019      SmallVector<SDValue, 4> Amt2Csts;
12020      for (unsigned i = 0; i != NumElems/2; ++i)
12021        Amt1Csts.push_back(Amt->getOperand(i));
12022      for (unsigned i = NumElems/2; i != NumElems; ++i)
12023        Amt2Csts.push_back(Amt->getOperand(i));
12024
12025      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
12026                                 &Amt1Csts[0], NumElems/2);
12027      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
12028                                 &Amt2Csts[0], NumElems/2);
12029    } else {
12030      // Variable shift amount
12031      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
12032      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
12033    }
12034
12035    // Issue new vector shifts for the smaller types
12036    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
12037    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
12038
12039    // Concatenate the result back
12040    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
12041  }
12042
12043  return SDValue();
12044}
12045
12046static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
12047  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
12048  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
12049  // looks for this combo and may remove the "setcc" instruction if the "setcc"
12050  // has only one use.
12051  SDNode *N = Op.getNode();
12052  SDValue LHS = N->getOperand(0);
12053  SDValue RHS = N->getOperand(1);
12054  unsigned BaseOp = 0;
12055  unsigned Cond = 0;
12056  SDLoc DL(Op);
12057  switch (Op.getOpcode()) {
12058  default: llvm_unreachable("Unknown ovf instruction!");
12059  case ISD::SADDO:
12060    // A subtract of one will be selected as a INC. Note that INC doesn't
12061    // set CF, so we can't do this for UADDO.
12062    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
12063      if (C->isOne()) {
12064        BaseOp = X86ISD::INC;
12065        Cond = X86::COND_O;
12066        break;
12067      }
12068    BaseOp = X86ISD::ADD;
12069    Cond = X86::COND_O;
12070    break;
12071  case ISD::UADDO:
12072    BaseOp = X86ISD::ADD;
12073    Cond = X86::COND_B;
12074    break;
12075  case ISD::SSUBO:
12076    // A subtract of one will be selected as a DEC. Note that DEC doesn't
12077    // set CF, so we can't do this for USUBO.
12078    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
12079      if (C->isOne()) {
12080        BaseOp = X86ISD::DEC;
12081        Cond = X86::COND_O;
12082        break;
12083      }
12084    BaseOp = X86ISD::SUB;
12085    Cond = X86::COND_O;
12086    break;
12087  case ISD::USUBO:
12088    BaseOp = X86ISD::SUB;
12089    Cond = X86::COND_B;
12090    break;
12091  case ISD::SMULO:
12092    BaseOp = X86ISD::SMUL;
12093    Cond = X86::COND_O;
12094    break;
12095  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
12096    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
12097                                 MVT::i32);
12098    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
12099
12100    SDValue SetCC =
12101      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12102                  DAG.getConstant(X86::COND_O, MVT::i32),
12103                  SDValue(Sum.getNode(), 2));
12104
12105    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
12106  }
12107  }
12108
12109  // Also sets EFLAGS.
12110  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
12111  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
12112
12113  SDValue SetCC =
12114    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
12115                DAG.getConstant(Cond, MVT::i32),
12116                SDValue(Sum.getNode(), 1));
12117
12118  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
12119}
12120
12121SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
12122                                                  SelectionDAG &DAG) const {
12123  SDLoc dl(Op);
12124  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
12125  EVT VT = Op.getValueType();
12126
12127  if (!Subtarget->hasSSE2() || !VT.isVector())
12128    return SDValue();
12129
12130  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
12131                      ExtraVT.getScalarType().getSizeInBits();
12132  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
12133
12134  switch (VT.getSimpleVT().SimpleTy) {
12135    default: return SDValue();
12136    case MVT::v8i32:
12137    case MVT::v16i16:
12138      if (!Subtarget->hasFp256())
12139        return SDValue();
12140      if (!Subtarget->hasInt256()) {
12141        // needs to be split
12142        unsigned NumElems = VT.getVectorNumElements();
12143
12144        // Extract the LHS vectors
12145        SDValue LHS = Op.getOperand(0);
12146        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
12147        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
12148
12149        MVT EltVT = VT.getVectorElementType().getSimpleVT();
12150        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12151
12152        EVT ExtraEltVT = ExtraVT.getVectorElementType();
12153        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
12154        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
12155                                   ExtraNumElems/2);
12156        SDValue Extra = DAG.getValueType(ExtraVT);
12157
12158        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
12159        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
12160
12161        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
12162      }
12163      // fall through
12164    case MVT::v4i32:
12165    case MVT::v8i16: {
12166      // (sext (vzext x)) -> (vsext x)
12167      SDValue Op0 = Op.getOperand(0);
12168      SDValue Op00 = Op0.getOperand(0);
12169      SDValue Tmp1;
12170      // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
12171      if (Op0.getOpcode() == ISD::BITCAST &&
12172          Op00.getOpcode() == ISD::VECTOR_SHUFFLE)
12173        Tmp1 = LowerVectorIntExtend(Op00, DAG);
12174      if (Tmp1.getNode()) {
12175        SDValue Tmp1Op0 = Tmp1.getOperand(0);
12176        assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
12177               "This optimization is invalid without a VZEXT.");
12178        return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
12179      }
12180
12181      // If the above didn't work, then just use Shift-Left + Shift-Right.
12182      Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT, Op0, ShAmt, DAG);
12183      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
12184    }
12185  }
12186}
12187
12188static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
12189                                 SelectionDAG &DAG) {
12190  SDLoc dl(Op);
12191  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
12192    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
12193  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
12194    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
12195
12196  // The only fence that needs an instruction is a sequentially-consistent
12197  // cross-thread fence.
12198  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
12199    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
12200    // no-sse2). There isn't any reason to disable it if the target processor
12201    // supports it.
12202    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
12203      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
12204
12205    SDValue Chain = Op.getOperand(0);
12206    SDValue Zero = DAG.getConstant(0, MVT::i32);
12207    SDValue Ops[] = {
12208      DAG.getRegister(X86::ESP, MVT::i32), // Base
12209      DAG.getTargetConstant(1, MVT::i8),   // Scale
12210      DAG.getRegister(0, MVT::i32),        // Index
12211      DAG.getTargetConstant(0, MVT::i32),  // Disp
12212      DAG.getRegister(0, MVT::i32),        // Segment.
12213      Zero,
12214      Chain
12215    };
12216    SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
12217    return SDValue(Res, 0);
12218  }
12219
12220  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
12221  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
12222}
12223
12224static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
12225                             SelectionDAG &DAG) {
12226  EVT T = Op.getValueType();
12227  SDLoc DL(Op);
12228  unsigned Reg = 0;
12229  unsigned size = 0;
12230  switch(T.getSimpleVT().SimpleTy) {
12231  default: llvm_unreachable("Invalid value type!");
12232  case MVT::i8:  Reg = X86::AL;  size = 1; break;
12233  case MVT::i16: Reg = X86::AX;  size = 2; break;
12234  case MVT::i32: Reg = X86::EAX; size = 4; break;
12235  case MVT::i64:
12236    assert(Subtarget->is64Bit() && "Node not type legal!");
12237    Reg = X86::RAX; size = 8;
12238    break;
12239  }
12240  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
12241                                    Op.getOperand(2), SDValue());
12242  SDValue Ops[] = { cpIn.getValue(0),
12243                    Op.getOperand(1),
12244                    Op.getOperand(3),
12245                    DAG.getTargetConstant(size, MVT::i8),
12246                    cpIn.getValue(1) };
12247  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12248  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
12249  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
12250                                           Ops, array_lengthof(Ops), T, MMO);
12251  SDValue cpOut =
12252    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
12253  return cpOut;
12254}
12255
12256static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
12257                                     SelectionDAG &DAG) {
12258  assert(Subtarget->is64Bit() && "Result not type legalized?");
12259  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12260  SDValue TheChain = Op.getOperand(0);
12261  SDLoc dl(Op);
12262  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
12263  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
12264  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
12265                                   rax.getValue(2));
12266  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
12267                            DAG.getConstant(32, MVT::i8));
12268  SDValue Ops[] = {
12269    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
12270    rdx.getValue(1)
12271  };
12272  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
12273}
12274
12275SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
12276  EVT SrcVT = Op.getOperand(0).getValueType();
12277  EVT DstVT = Op.getValueType();
12278  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
12279         Subtarget->hasMMX() && "Unexpected custom BITCAST");
12280  assert((DstVT == MVT::i64 ||
12281          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
12282         "Unexpected custom BITCAST");
12283  // i64 <=> MMX conversions are Legal.
12284  if (SrcVT==MVT::i64 && DstVT.isVector())
12285    return Op;
12286  if (DstVT==MVT::i64 && SrcVT.isVector())
12287    return Op;
12288  // MMX <=> MMX conversions are Legal.
12289  if (SrcVT.isVector() && DstVT.isVector())
12290    return Op;
12291  // All other conversions need to be expanded.
12292  return SDValue();
12293}
12294
12295static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
12296  SDNode *Node = Op.getNode();
12297  SDLoc dl(Node);
12298  EVT T = Node->getValueType(0);
12299  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
12300                              DAG.getConstant(0, T), Node->getOperand(2));
12301  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
12302                       cast<AtomicSDNode>(Node)->getMemoryVT(),
12303                       Node->getOperand(0),
12304                       Node->getOperand(1), negOp,
12305                       cast<AtomicSDNode>(Node)->getSrcValue(),
12306                       cast<AtomicSDNode>(Node)->getAlignment(),
12307                       cast<AtomicSDNode>(Node)->getOrdering(),
12308                       cast<AtomicSDNode>(Node)->getSynchScope());
12309}
12310
12311static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
12312  SDNode *Node = Op.getNode();
12313  SDLoc dl(Node);
12314  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12315
12316  // Convert seq_cst store -> xchg
12317  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
12318  // FIXME: On 32-bit, store -> fist or movq would be more efficient
12319  //        (The only way to get a 16-byte store is cmpxchg16b)
12320  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
12321  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
12322      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12323    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
12324                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
12325                                 Node->getOperand(0),
12326                                 Node->getOperand(1), Node->getOperand(2),
12327                                 cast<AtomicSDNode>(Node)->getMemOperand(),
12328                                 cast<AtomicSDNode>(Node)->getOrdering(),
12329                                 cast<AtomicSDNode>(Node)->getSynchScope());
12330    return Swap.getValue(1);
12331  }
12332  // Other atomic stores have a simple pattern.
12333  return Op;
12334}
12335
12336static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
12337  EVT VT = Op.getNode()->getValueType(0);
12338
12339  // Let legalize expand this if it isn't a legal type yet.
12340  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12341    return SDValue();
12342
12343  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12344
12345  unsigned Opc;
12346  bool ExtraOp = false;
12347  switch (Op.getOpcode()) {
12348  default: llvm_unreachable("Invalid code");
12349  case ISD::ADDC: Opc = X86ISD::ADD; break;
12350  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
12351  case ISD::SUBC: Opc = X86ISD::SUB; break;
12352  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
12353  }
12354
12355  if (!ExtraOp)
12356    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
12357                       Op.getOperand(1));
12358  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
12359                     Op.getOperand(1), Op.getOperand(2));
12360}
12361
12362SDValue X86TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
12363  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
12364
12365  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
12366  // which returns the values as { float, float } (in XMM0) or
12367  // { double, double } (which is returned in XMM0, XMM1).
12368  SDLoc dl(Op);
12369  SDValue Arg = Op.getOperand(0);
12370  EVT ArgVT = Arg.getValueType();
12371  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
12372
12373  ArgListTy Args;
12374  ArgListEntry Entry;
12375
12376  Entry.Node = Arg;
12377  Entry.Ty = ArgTy;
12378  Entry.isSExt = false;
12379  Entry.isZExt = false;
12380  Args.push_back(Entry);
12381
12382  bool isF64 = ArgVT == MVT::f64;
12383  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
12384  // the small struct {f32, f32} is returned in (eax, edx). For f64,
12385  // the results are returned via SRet in memory.
12386  const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
12387  SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
12388
12389  Type *RetTy = isF64
12390    ? (Type*)StructType::get(ArgTy, ArgTy, NULL)
12391    : (Type*)VectorType::get(ArgTy, 4);
12392  TargetLowering::
12393    CallLoweringInfo CLI(DAG.getEntryNode(), RetTy,
12394                         false, false, false, false, 0,
12395                         CallingConv::C, /*isTaillCall=*/false,
12396                         /*doesNotRet=*/false, /*isReturnValueUsed*/true,
12397                         Callee, Args, DAG, dl);
12398  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
12399
12400  if (isF64)
12401    // Returned in xmm0 and xmm1.
12402    return CallResult.first;
12403
12404  // Returned in bits 0:31 and 32:64 xmm0.
12405  SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
12406                               CallResult.first, DAG.getIntPtrConstant(0));
12407  SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
12408                               CallResult.first, DAG.getIntPtrConstant(1));
12409  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
12410  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
12411}
12412
12413/// LowerOperation - Provide custom lowering hooks for some operations.
12414///
12415SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
12416  switch (Op.getOpcode()) {
12417  default: llvm_unreachable("Should not custom lower this!");
12418  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
12419  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
12420  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
12421  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
12422  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
12423  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
12424  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
12425  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
12426  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
12427  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
12428  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
12429  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
12430  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
12431  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
12432  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
12433  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
12434  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
12435  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
12436  case ISD::SHL_PARTS:
12437  case ISD::SRA_PARTS:
12438  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
12439  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
12440  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
12441  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
12442  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, DAG);
12443  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, DAG);
12444  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, DAG);
12445  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
12446  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
12447  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
12448  case ISD::FABS:               return LowerFABS(Op, DAG);
12449  case ISD::FNEG:               return LowerFNEG(Op, DAG);
12450  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
12451  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
12452  case ISD::SETCC:              return LowerSETCC(Op, DAG);
12453  case ISD::SELECT:             return LowerSELECT(Op, DAG);
12454  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
12455  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
12456  case ISD::VASTART:            return LowerVASTART(Op, DAG);
12457  case ISD::VAARG:              return LowerVAARG(Op, DAG);
12458  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
12459  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
12460  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
12461  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
12462  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
12463  case ISD::FRAME_TO_ARGS_OFFSET:
12464                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
12465  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
12466  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
12467  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
12468  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
12469  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
12470  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
12471  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
12472  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
12473  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
12474  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
12475  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
12476  case ISD::SRA:
12477  case ISD::SRL:
12478  case ISD::SHL:                return LowerShift(Op, DAG);
12479  case ISD::SADDO:
12480  case ISD::UADDO:
12481  case ISD::SSUBO:
12482  case ISD::USUBO:
12483  case ISD::SMULO:
12484  case ISD::UMULO:              return LowerXALUO(Op, DAG);
12485  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
12486  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
12487  case ISD::ADDC:
12488  case ISD::ADDE:
12489  case ISD::SUBC:
12490  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
12491  case ISD::ADD:                return LowerADD(Op, DAG);
12492  case ISD::SUB:                return LowerSUB(Op, DAG);
12493  case ISD::SDIV:               return LowerSDIV(Op, DAG);
12494  case ISD::FSINCOS:            return LowerFSINCOS(Op, DAG);
12495  }
12496}
12497
12498static void ReplaceATOMIC_LOAD(SDNode *Node,
12499                                  SmallVectorImpl<SDValue> &Results,
12500                                  SelectionDAG &DAG) {
12501  SDLoc dl(Node);
12502  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12503
12504  // Convert wide load -> cmpxchg8b/cmpxchg16b
12505  // FIXME: On 32-bit, load -> fild or movq would be more efficient
12506  //        (The only way to get a 16-byte load is cmpxchg16b)
12507  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
12508  SDValue Zero = DAG.getConstant(0, VT);
12509  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
12510                               Node->getOperand(0),
12511                               Node->getOperand(1), Zero, Zero,
12512                               cast<AtomicSDNode>(Node)->getMemOperand(),
12513                               cast<AtomicSDNode>(Node)->getOrdering(),
12514                               cast<AtomicSDNode>(Node)->getSynchScope());
12515  Results.push_back(Swap.getValue(0));
12516  Results.push_back(Swap.getValue(1));
12517}
12518
12519static void
12520ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
12521                        SelectionDAG &DAG, unsigned NewOp) {
12522  SDLoc dl(Node);
12523  assert (Node->getValueType(0) == MVT::i64 &&
12524          "Only know how to expand i64 atomics");
12525
12526  SDValue Chain = Node->getOperand(0);
12527  SDValue In1 = Node->getOperand(1);
12528  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12529                             Node->getOperand(2), DAG.getIntPtrConstant(0));
12530  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12531                             Node->getOperand(2), DAG.getIntPtrConstant(1));
12532  SDValue Ops[] = { Chain, In1, In2L, In2H };
12533  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
12534  SDValue Result =
12535    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, array_lengthof(Ops), MVT::i64,
12536                            cast<MemSDNode>(Node)->getMemOperand());
12537  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
12538  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
12539  Results.push_back(Result.getValue(2));
12540}
12541
12542/// ReplaceNodeResults - Replace a node with an illegal result type
12543/// with a new node built out of custom code.
12544void X86TargetLowering::ReplaceNodeResults(SDNode *N,
12545                                           SmallVectorImpl<SDValue>&Results,
12546                                           SelectionDAG &DAG) const {
12547  SDLoc dl(N);
12548  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12549  switch (N->getOpcode()) {
12550  default:
12551    llvm_unreachable("Do not know how to custom type legalize this operation!");
12552  case ISD::SIGN_EXTEND_INREG:
12553  case ISD::ADDC:
12554  case ISD::ADDE:
12555  case ISD::SUBC:
12556  case ISD::SUBE:
12557    // We don't want to expand or promote these.
12558    return;
12559  case ISD::FP_TO_SINT:
12560  case ISD::FP_TO_UINT: {
12561    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
12562
12563    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
12564      return;
12565
12566    std::pair<SDValue,SDValue> Vals =
12567        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
12568    SDValue FIST = Vals.first, StackSlot = Vals.second;
12569    if (FIST.getNode() != 0) {
12570      EVT VT = N->getValueType(0);
12571      // Return a load from the stack slot.
12572      if (StackSlot.getNode() != 0)
12573        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
12574                                      MachinePointerInfo(),
12575                                      false, false, false, 0));
12576      else
12577        Results.push_back(FIST);
12578    }
12579    return;
12580  }
12581  case ISD::UINT_TO_FP: {
12582    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
12583    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
12584        N->getValueType(0) != MVT::v2f32)
12585      return;
12586    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
12587                                 N->getOperand(0));
12588    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
12589                                     MVT::f64);
12590    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
12591    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
12592                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
12593    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
12594    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
12595    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
12596    return;
12597  }
12598  case ISD::FP_ROUND: {
12599    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
12600        return;
12601    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
12602    Results.push_back(V);
12603    return;
12604  }
12605  case ISD::READCYCLECOUNTER: {
12606    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12607    SDValue TheChain = N->getOperand(0);
12608    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
12609    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
12610                                     rd.getValue(1));
12611    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
12612                                     eax.getValue(2));
12613    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
12614    SDValue Ops[] = { eax, edx };
12615    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops,
12616                                  array_lengthof(Ops)));
12617    Results.push_back(edx.getValue(1));
12618    return;
12619  }
12620  case ISD::ATOMIC_CMP_SWAP: {
12621    EVT T = N->getValueType(0);
12622    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
12623    bool Regs64bit = T == MVT::i128;
12624    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
12625    SDValue cpInL, cpInH;
12626    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12627                        DAG.getConstant(0, HalfT));
12628    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12629                        DAG.getConstant(1, HalfT));
12630    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
12631                             Regs64bit ? X86::RAX : X86::EAX,
12632                             cpInL, SDValue());
12633    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
12634                             Regs64bit ? X86::RDX : X86::EDX,
12635                             cpInH, cpInL.getValue(1));
12636    SDValue swapInL, swapInH;
12637    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12638                          DAG.getConstant(0, HalfT));
12639    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12640                          DAG.getConstant(1, HalfT));
12641    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
12642                               Regs64bit ? X86::RBX : X86::EBX,
12643                               swapInL, cpInH.getValue(1));
12644    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
12645                               Regs64bit ? X86::RCX : X86::ECX,
12646                               swapInH, swapInL.getValue(1));
12647    SDValue Ops[] = { swapInH.getValue(0),
12648                      N->getOperand(1),
12649                      swapInH.getValue(1) };
12650    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12651    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
12652    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
12653                                  X86ISD::LCMPXCHG8_DAG;
12654    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
12655                                             Ops, array_lengthof(Ops), T, MMO);
12656    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
12657                                        Regs64bit ? X86::RAX : X86::EAX,
12658                                        HalfT, Result.getValue(1));
12659    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
12660                                        Regs64bit ? X86::RDX : X86::EDX,
12661                                        HalfT, cpOutL.getValue(2));
12662    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
12663    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
12664    Results.push_back(cpOutH.getValue(1));
12665    return;
12666  }
12667  case ISD::ATOMIC_LOAD_ADD:
12668  case ISD::ATOMIC_LOAD_AND:
12669  case ISD::ATOMIC_LOAD_NAND:
12670  case ISD::ATOMIC_LOAD_OR:
12671  case ISD::ATOMIC_LOAD_SUB:
12672  case ISD::ATOMIC_LOAD_XOR:
12673  case ISD::ATOMIC_LOAD_MAX:
12674  case ISD::ATOMIC_LOAD_MIN:
12675  case ISD::ATOMIC_LOAD_UMAX:
12676  case ISD::ATOMIC_LOAD_UMIN:
12677  case ISD::ATOMIC_SWAP: {
12678    unsigned Opc;
12679    switch (N->getOpcode()) {
12680    default: llvm_unreachable("Unexpected opcode");
12681    case ISD::ATOMIC_LOAD_ADD:
12682      Opc = X86ISD::ATOMADD64_DAG;
12683      break;
12684    case ISD::ATOMIC_LOAD_AND:
12685      Opc = X86ISD::ATOMAND64_DAG;
12686      break;
12687    case ISD::ATOMIC_LOAD_NAND:
12688      Opc = X86ISD::ATOMNAND64_DAG;
12689      break;
12690    case ISD::ATOMIC_LOAD_OR:
12691      Opc = X86ISD::ATOMOR64_DAG;
12692      break;
12693    case ISD::ATOMIC_LOAD_SUB:
12694      Opc = X86ISD::ATOMSUB64_DAG;
12695      break;
12696    case ISD::ATOMIC_LOAD_XOR:
12697      Opc = X86ISD::ATOMXOR64_DAG;
12698      break;
12699    case ISD::ATOMIC_LOAD_MAX:
12700      Opc = X86ISD::ATOMMAX64_DAG;
12701      break;
12702    case ISD::ATOMIC_LOAD_MIN:
12703      Opc = X86ISD::ATOMMIN64_DAG;
12704      break;
12705    case ISD::ATOMIC_LOAD_UMAX:
12706      Opc = X86ISD::ATOMUMAX64_DAG;
12707      break;
12708    case ISD::ATOMIC_LOAD_UMIN:
12709      Opc = X86ISD::ATOMUMIN64_DAG;
12710      break;
12711    case ISD::ATOMIC_SWAP:
12712      Opc = X86ISD::ATOMSWAP64_DAG;
12713      break;
12714    }
12715    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
12716    return;
12717  }
12718  case ISD::ATOMIC_LOAD:
12719    ReplaceATOMIC_LOAD(N, Results, DAG);
12720  }
12721}
12722
12723const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
12724  switch (Opcode) {
12725  default: return NULL;
12726  case X86ISD::BSF:                return "X86ISD::BSF";
12727  case X86ISD::BSR:                return "X86ISD::BSR";
12728  case X86ISD::SHLD:               return "X86ISD::SHLD";
12729  case X86ISD::SHRD:               return "X86ISD::SHRD";
12730  case X86ISD::FAND:               return "X86ISD::FAND";
12731  case X86ISD::FOR:                return "X86ISD::FOR";
12732  case X86ISD::FXOR:               return "X86ISD::FXOR";
12733  case X86ISD::FSRL:               return "X86ISD::FSRL";
12734  case X86ISD::FILD:               return "X86ISD::FILD";
12735  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
12736  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
12737  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
12738  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
12739  case X86ISD::FLD:                return "X86ISD::FLD";
12740  case X86ISD::FST:                return "X86ISD::FST";
12741  case X86ISD::CALL:               return "X86ISD::CALL";
12742  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
12743  case X86ISD::BT:                 return "X86ISD::BT";
12744  case X86ISD::CMP:                return "X86ISD::CMP";
12745  case X86ISD::COMI:               return "X86ISD::COMI";
12746  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
12747  case X86ISD::SETCC:              return "X86ISD::SETCC";
12748  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
12749  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
12750  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
12751  case X86ISD::CMOV:               return "X86ISD::CMOV";
12752  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
12753  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
12754  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
12755  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
12756  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
12757  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
12758  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
12759  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
12760  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
12761  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
12762  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
12763  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
12764  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
12765  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
12766  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
12767  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
12768  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
12769  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
12770  case X86ISD::HADD:               return "X86ISD::HADD";
12771  case X86ISD::HSUB:               return "X86ISD::HSUB";
12772  case X86ISD::FHADD:              return "X86ISD::FHADD";
12773  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
12774  case X86ISD::UMAX:               return "X86ISD::UMAX";
12775  case X86ISD::UMIN:               return "X86ISD::UMIN";
12776  case X86ISD::SMAX:               return "X86ISD::SMAX";
12777  case X86ISD::SMIN:               return "X86ISD::SMIN";
12778  case X86ISD::FMAX:               return "X86ISD::FMAX";
12779  case X86ISD::FMIN:               return "X86ISD::FMIN";
12780  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
12781  case X86ISD::FMINC:              return "X86ISD::FMINC";
12782  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
12783  case X86ISD::FRCP:               return "X86ISD::FRCP";
12784  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
12785  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
12786  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
12787  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
12788  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
12789  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
12790  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
12791  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
12792  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
12793  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
12794  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
12795  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
12796  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
12797  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
12798  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
12799  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
12800  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
12801  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
12802  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
12803  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
12804  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
12805  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
12806  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
12807  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
12808  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
12809  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
12810  case X86ISD::VSHL:               return "X86ISD::VSHL";
12811  case X86ISD::VSRL:               return "X86ISD::VSRL";
12812  case X86ISD::VSRA:               return "X86ISD::VSRA";
12813  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
12814  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
12815  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
12816  case X86ISD::CMPP:               return "X86ISD::CMPP";
12817  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
12818  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
12819  case X86ISD::ADD:                return "X86ISD::ADD";
12820  case X86ISD::SUB:                return "X86ISD::SUB";
12821  case X86ISD::ADC:                return "X86ISD::ADC";
12822  case X86ISD::SBB:                return "X86ISD::SBB";
12823  case X86ISD::SMUL:               return "X86ISD::SMUL";
12824  case X86ISD::UMUL:               return "X86ISD::UMUL";
12825  case X86ISD::INC:                return "X86ISD::INC";
12826  case X86ISD::DEC:                return "X86ISD::DEC";
12827  case X86ISD::OR:                 return "X86ISD::OR";
12828  case X86ISD::XOR:                return "X86ISD::XOR";
12829  case X86ISD::AND:                return "X86ISD::AND";
12830  case X86ISD::BLSI:               return "X86ISD::BLSI";
12831  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
12832  case X86ISD::BLSR:               return "X86ISD::BLSR";
12833  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
12834  case X86ISD::PTEST:              return "X86ISD::PTEST";
12835  case X86ISD::TESTP:              return "X86ISD::TESTP";
12836  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
12837  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
12838  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
12839  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
12840  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
12841  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
12842  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
12843  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
12844  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
12845  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
12846  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
12847  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
12848  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
12849  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
12850  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
12851  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
12852  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
12853  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
12854  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
12855  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
12856  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
12857  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
12858  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
12859  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
12860  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
12861  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
12862  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
12863  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
12864  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
12865  case X86ISD::SAHF:               return "X86ISD::SAHF";
12866  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
12867  case X86ISD::RDSEED:             return "X86ISD::RDSEED";
12868  case X86ISD::FMADD:              return "X86ISD::FMADD";
12869  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
12870  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
12871  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
12872  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
12873  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
12874  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
12875  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
12876  case X86ISD::XTEST:              return "X86ISD::XTEST";
12877  }
12878}
12879
12880// isLegalAddressingMode - Return true if the addressing mode represented
12881// by AM is legal for this target, for a load/store of the specified type.
12882bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
12883                                              Type *Ty) const {
12884  // X86 supports extremely general addressing modes.
12885  CodeModel::Model M = getTargetMachine().getCodeModel();
12886  Reloc::Model R = getTargetMachine().getRelocationModel();
12887
12888  // X86 allows a sign-extended 32-bit immediate field as a displacement.
12889  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
12890    return false;
12891
12892  if (AM.BaseGV) {
12893    unsigned GVFlags =
12894      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
12895
12896    // If a reference to this global requires an extra load, we can't fold it.
12897    if (isGlobalStubReference(GVFlags))
12898      return false;
12899
12900    // If BaseGV requires a register for the PIC base, we cannot also have a
12901    // BaseReg specified.
12902    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
12903      return false;
12904
12905    // If lower 4G is not available, then we must use rip-relative addressing.
12906    if ((M != CodeModel::Small || R != Reloc::Static) &&
12907        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
12908      return false;
12909  }
12910
12911  switch (AM.Scale) {
12912  case 0:
12913  case 1:
12914  case 2:
12915  case 4:
12916  case 8:
12917    // These scales always work.
12918    break;
12919  case 3:
12920  case 5:
12921  case 9:
12922    // These scales are formed with basereg+scalereg.  Only accept if there is
12923    // no basereg yet.
12924    if (AM.HasBaseReg)
12925      return false;
12926    break;
12927  default:  // Other stuff never works.
12928    return false;
12929  }
12930
12931  return true;
12932}
12933
12934bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
12935  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12936    return false;
12937  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
12938  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
12939  return NumBits1 > NumBits2;
12940}
12941
12942bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12943  return isInt<32>(Imm);
12944}
12945
12946bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
12947  // Can also use sub to handle negated immediates.
12948  return isInt<32>(Imm);
12949}
12950
12951bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
12952  if (!VT1.isInteger() || !VT2.isInteger())
12953    return false;
12954  unsigned NumBits1 = VT1.getSizeInBits();
12955  unsigned NumBits2 = VT2.getSizeInBits();
12956  return NumBits1 > NumBits2;
12957}
12958
12959bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
12960  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12961  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
12962}
12963
12964bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
12965  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12966  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
12967}
12968
12969bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12970  EVT VT1 = Val.getValueType();
12971  if (isZExtFree(VT1, VT2))
12972    return true;
12973
12974  if (Val.getOpcode() != ISD::LOAD)
12975    return false;
12976
12977  if (!VT1.isSimple() || !VT1.isInteger() ||
12978      !VT2.isSimple() || !VT2.isInteger())
12979    return false;
12980
12981  switch (VT1.getSimpleVT().SimpleTy) {
12982  default: break;
12983  case MVT::i8:
12984  case MVT::i16:
12985  case MVT::i32:
12986    // X86 has 8, 16, and 32-bit zero-extending loads.
12987    return true;
12988  }
12989
12990  return false;
12991}
12992
12993bool
12994X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
12995  if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
12996    return false;
12997
12998  VT = VT.getScalarType();
12999
13000  if (!VT.isSimple())
13001    return false;
13002
13003  switch (VT.getSimpleVT().SimpleTy) {
13004  case MVT::f32:
13005  case MVT::f64:
13006    return true;
13007  default:
13008    break;
13009  }
13010
13011  return false;
13012}
13013
13014bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
13015  // i16 instructions are longer (0x66 prefix) and potentially slower.
13016  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
13017}
13018
13019/// isShuffleMaskLegal - Targets can use this to indicate that they only
13020/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
13021/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
13022/// are assumed to be legal.
13023bool
13024X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
13025                                      EVT VT) const {
13026  // Very little shuffling can be done for 64-bit vectors right now.
13027  if (VT.getSizeInBits() == 64)
13028    return false;
13029
13030  // FIXME: pshufb, blends, shifts.
13031  return (VT.getVectorNumElements() == 2 ||
13032          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
13033          isMOVLMask(M, VT) ||
13034          isSHUFPMask(M, VT, Subtarget->hasFp256()) ||
13035          isPSHUFDMask(M, VT) ||
13036          isPSHUFHWMask(M, VT, Subtarget->hasInt256()) ||
13037          isPSHUFLWMask(M, VT, Subtarget->hasInt256()) ||
13038          isPALIGNRMask(M, VT, Subtarget) ||
13039          isUNPCKLMask(M, VT, Subtarget->hasInt256()) ||
13040          isUNPCKHMask(M, VT, Subtarget->hasInt256()) ||
13041          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) ||
13042          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256()));
13043}
13044
13045bool
13046X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
13047                                          EVT VT) const {
13048  unsigned NumElts = VT.getVectorNumElements();
13049  // FIXME: This collection of masks seems suspect.
13050  if (NumElts == 2)
13051    return true;
13052  if (NumElts == 4 && VT.is128BitVector()) {
13053    return (isMOVLMask(Mask, VT)  ||
13054            isCommutedMOVLMask(Mask, VT, true) ||
13055            isSHUFPMask(Mask, VT, Subtarget->hasFp256()) ||
13056            isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true));
13057  }
13058  return false;
13059}
13060
13061//===----------------------------------------------------------------------===//
13062//                           X86 Scheduler Hooks
13063//===----------------------------------------------------------------------===//
13064
13065/// Utility function to emit xbegin specifying the start of an RTM region.
13066static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
13067                                     const TargetInstrInfo *TII) {
13068  DebugLoc DL = MI->getDebugLoc();
13069
13070  const BasicBlock *BB = MBB->getBasicBlock();
13071  MachineFunction::iterator I = MBB;
13072  ++I;
13073
13074  // For the v = xbegin(), we generate
13075  //
13076  // thisMBB:
13077  //  xbegin sinkMBB
13078  //
13079  // mainMBB:
13080  //  eax = -1
13081  //
13082  // sinkMBB:
13083  //  v = eax
13084
13085  MachineBasicBlock *thisMBB = MBB;
13086  MachineFunction *MF = MBB->getParent();
13087  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13088  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13089  MF->insert(I, mainMBB);
13090  MF->insert(I, sinkMBB);
13091
13092  // Transfer the remainder of BB and its successor edges to sinkMBB.
13093  sinkMBB->splice(sinkMBB->begin(), MBB,
13094                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13095  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13096
13097  // thisMBB:
13098  //  xbegin sinkMBB
13099  //  # fallthrough to mainMBB
13100  //  # abortion to sinkMBB
13101  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
13102  thisMBB->addSuccessor(mainMBB);
13103  thisMBB->addSuccessor(sinkMBB);
13104
13105  // mainMBB:
13106  //  EAX = -1
13107  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
13108  mainMBB->addSuccessor(sinkMBB);
13109
13110  // sinkMBB:
13111  // EAX is live into the sinkMBB
13112  sinkMBB->addLiveIn(X86::EAX);
13113  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13114          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13115    .addReg(X86::EAX);
13116
13117  MI->eraseFromParent();
13118  return sinkMBB;
13119}
13120
13121// Get CMPXCHG opcode for the specified data type.
13122static unsigned getCmpXChgOpcode(EVT VT) {
13123  switch (VT.getSimpleVT().SimpleTy) {
13124  case MVT::i8:  return X86::LCMPXCHG8;
13125  case MVT::i16: return X86::LCMPXCHG16;
13126  case MVT::i32: return X86::LCMPXCHG32;
13127  case MVT::i64: return X86::LCMPXCHG64;
13128  default:
13129    break;
13130  }
13131  llvm_unreachable("Invalid operand size!");
13132}
13133
13134// Get LOAD opcode for the specified data type.
13135static unsigned getLoadOpcode(EVT VT) {
13136  switch (VT.getSimpleVT().SimpleTy) {
13137  case MVT::i8:  return X86::MOV8rm;
13138  case MVT::i16: return X86::MOV16rm;
13139  case MVT::i32: return X86::MOV32rm;
13140  case MVT::i64: return X86::MOV64rm;
13141  default:
13142    break;
13143  }
13144  llvm_unreachable("Invalid operand size!");
13145}
13146
13147// Get opcode of the non-atomic one from the specified atomic instruction.
13148static unsigned getNonAtomicOpcode(unsigned Opc) {
13149  switch (Opc) {
13150  case X86::ATOMAND8:  return X86::AND8rr;
13151  case X86::ATOMAND16: return X86::AND16rr;
13152  case X86::ATOMAND32: return X86::AND32rr;
13153  case X86::ATOMAND64: return X86::AND64rr;
13154  case X86::ATOMOR8:   return X86::OR8rr;
13155  case X86::ATOMOR16:  return X86::OR16rr;
13156  case X86::ATOMOR32:  return X86::OR32rr;
13157  case X86::ATOMOR64:  return X86::OR64rr;
13158  case X86::ATOMXOR8:  return X86::XOR8rr;
13159  case X86::ATOMXOR16: return X86::XOR16rr;
13160  case X86::ATOMXOR32: return X86::XOR32rr;
13161  case X86::ATOMXOR64: return X86::XOR64rr;
13162  }
13163  llvm_unreachable("Unhandled atomic-load-op opcode!");
13164}
13165
13166// Get opcode of the non-atomic one from the specified atomic instruction with
13167// extra opcode.
13168static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
13169                                               unsigned &ExtraOpc) {
13170  switch (Opc) {
13171  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
13172  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
13173  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
13174  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
13175  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
13176  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
13177  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
13178  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
13179  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
13180  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
13181  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
13182  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
13183  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
13184  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
13185  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
13186  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
13187  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
13188  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
13189  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
13190  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
13191  }
13192  llvm_unreachable("Unhandled atomic-load-op opcode!");
13193}
13194
13195// Get opcode of the non-atomic one from the specified atomic instruction for
13196// 64-bit data type on 32-bit target.
13197static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
13198  switch (Opc) {
13199  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
13200  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
13201  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
13202  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
13203  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
13204  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
13205  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
13206  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
13207  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
13208  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
13209  }
13210  llvm_unreachable("Unhandled atomic-load-op opcode!");
13211}
13212
13213// Get opcode of the non-atomic one from the specified atomic instruction for
13214// 64-bit data type on 32-bit target with extra opcode.
13215static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
13216                                                   unsigned &HiOpc,
13217                                                   unsigned &ExtraOpc) {
13218  switch (Opc) {
13219  case X86::ATOMNAND6432:
13220    ExtraOpc = X86::NOT32r;
13221    HiOpc = X86::AND32rr;
13222    return X86::AND32rr;
13223  }
13224  llvm_unreachable("Unhandled atomic-load-op opcode!");
13225}
13226
13227// Get pseudo CMOV opcode from the specified data type.
13228static unsigned getPseudoCMOVOpc(EVT VT) {
13229  switch (VT.getSimpleVT().SimpleTy) {
13230  case MVT::i8:  return X86::CMOV_GR8;
13231  case MVT::i16: return X86::CMOV_GR16;
13232  case MVT::i32: return X86::CMOV_GR32;
13233  default:
13234    break;
13235  }
13236  llvm_unreachable("Unknown CMOV opcode!");
13237}
13238
13239// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
13240// They will be translated into a spin-loop or compare-exchange loop from
13241//
13242//    ...
13243//    dst = atomic-fetch-op MI.addr, MI.val
13244//    ...
13245//
13246// to
13247//
13248//    ...
13249//    t1 = LOAD MI.addr
13250// loop:
13251//    t4 = phi(t1, t3 / loop)
13252//    t2 = OP MI.val, t4
13253//    EAX = t4
13254//    LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined]
13255//    t3 = EAX
13256//    JNE loop
13257// sink:
13258//    dst = t3
13259//    ...
13260MachineBasicBlock *
13261X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
13262                                       MachineBasicBlock *MBB) const {
13263  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13264  DebugLoc DL = MI->getDebugLoc();
13265
13266  MachineFunction *MF = MBB->getParent();
13267  MachineRegisterInfo &MRI = MF->getRegInfo();
13268
13269  const BasicBlock *BB = MBB->getBasicBlock();
13270  MachineFunction::iterator I = MBB;
13271  ++I;
13272
13273  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
13274         "Unexpected number of operands");
13275
13276  assert(MI->hasOneMemOperand() &&
13277         "Expected atomic-load-op to have one memoperand");
13278
13279  // Memory Reference
13280  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13281  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13282
13283  unsigned DstReg, SrcReg;
13284  unsigned MemOpndSlot;
13285
13286  unsigned CurOp = 0;
13287
13288  DstReg = MI->getOperand(CurOp++).getReg();
13289  MemOpndSlot = CurOp;
13290  CurOp += X86::AddrNumOperands;
13291  SrcReg = MI->getOperand(CurOp++).getReg();
13292
13293  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
13294  MVT::SimpleValueType VT = *RC->vt_begin();
13295  unsigned t1 = MRI.createVirtualRegister(RC);
13296  unsigned t2 = MRI.createVirtualRegister(RC);
13297  unsigned t3 = MRI.createVirtualRegister(RC);
13298  unsigned t4 = MRI.createVirtualRegister(RC);
13299  unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT);
13300
13301  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
13302  unsigned LOADOpc = getLoadOpcode(VT);
13303
13304  // For the atomic load-arith operator, we generate
13305  //
13306  //  thisMBB:
13307  //    t1 = LOAD [MI.addr]
13308  //  mainMBB:
13309  //    t4 = phi(t1 / thisMBB, t3 / mainMBB)
13310  //    t1 = OP MI.val, EAX
13311  //    EAX = t4
13312  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
13313  //    t3 = EAX
13314  //    JNE mainMBB
13315  //  sinkMBB:
13316  //    dst = t3
13317
13318  MachineBasicBlock *thisMBB = MBB;
13319  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13320  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13321  MF->insert(I, mainMBB);
13322  MF->insert(I, sinkMBB);
13323
13324  MachineInstrBuilder MIB;
13325
13326  // Transfer the remainder of BB and its successor edges to sinkMBB.
13327  sinkMBB->splice(sinkMBB->begin(), MBB,
13328                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13329  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13330
13331  // thisMBB:
13332  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1);
13333  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13334    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13335    if (NewMO.isReg())
13336      NewMO.setIsKill(false);
13337    MIB.addOperand(NewMO);
13338  }
13339  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
13340    unsigned flags = (*MMOI)->getFlags();
13341    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
13342    MachineMemOperand *MMO =
13343      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
13344                               (*MMOI)->getSize(),
13345                               (*MMOI)->getBaseAlignment(),
13346                               (*MMOI)->getTBAAInfo(),
13347                               (*MMOI)->getRanges());
13348    MIB.addMemOperand(MMO);
13349  }
13350
13351  thisMBB->addSuccessor(mainMBB);
13352
13353  // mainMBB:
13354  MachineBasicBlock *origMainMBB = mainMBB;
13355
13356  // Add a PHI.
13357  MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4)
13358                        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
13359
13360  unsigned Opc = MI->getOpcode();
13361  switch (Opc) {
13362  default:
13363    llvm_unreachable("Unhandled atomic-load-op opcode!");
13364  case X86::ATOMAND8:
13365  case X86::ATOMAND16:
13366  case X86::ATOMAND32:
13367  case X86::ATOMAND64:
13368  case X86::ATOMOR8:
13369  case X86::ATOMOR16:
13370  case X86::ATOMOR32:
13371  case X86::ATOMOR64:
13372  case X86::ATOMXOR8:
13373  case X86::ATOMXOR16:
13374  case X86::ATOMXOR32:
13375  case X86::ATOMXOR64: {
13376    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
13377    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg)
13378      .addReg(t4);
13379    break;
13380  }
13381  case X86::ATOMNAND8:
13382  case X86::ATOMNAND16:
13383  case X86::ATOMNAND32:
13384  case X86::ATOMNAND64: {
13385    unsigned Tmp = MRI.createVirtualRegister(RC);
13386    unsigned NOTOpc;
13387    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
13388    BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg)
13389      .addReg(t4);
13390    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp);
13391    break;
13392  }
13393  case X86::ATOMMAX8:
13394  case X86::ATOMMAX16:
13395  case X86::ATOMMAX32:
13396  case X86::ATOMMAX64:
13397  case X86::ATOMMIN8:
13398  case X86::ATOMMIN16:
13399  case X86::ATOMMIN32:
13400  case X86::ATOMMIN64:
13401  case X86::ATOMUMAX8:
13402  case X86::ATOMUMAX16:
13403  case X86::ATOMUMAX32:
13404  case X86::ATOMUMAX64:
13405  case X86::ATOMUMIN8:
13406  case X86::ATOMUMIN16:
13407  case X86::ATOMUMIN32:
13408  case X86::ATOMUMIN64: {
13409    unsigned CMPOpc;
13410    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
13411
13412    BuildMI(mainMBB, DL, TII->get(CMPOpc))
13413      .addReg(SrcReg)
13414      .addReg(t4);
13415
13416    if (Subtarget->hasCMov()) {
13417      if (VT != MVT::i8) {
13418        // Native support
13419        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
13420          .addReg(SrcReg)
13421          .addReg(t4);
13422      } else {
13423        // Promote i8 to i32 to use CMOV32
13424        const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13425        const TargetRegisterClass *RC32 =
13426          TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit);
13427        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
13428        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
13429        unsigned Tmp = MRI.createVirtualRegister(RC32);
13430
13431        unsigned Undef = MRI.createVirtualRegister(RC32);
13432        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
13433
13434        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
13435          .addReg(Undef)
13436          .addReg(SrcReg)
13437          .addImm(X86::sub_8bit);
13438        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
13439          .addReg(Undef)
13440          .addReg(t4)
13441          .addImm(X86::sub_8bit);
13442
13443        BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp)
13444          .addReg(SrcReg32)
13445          .addReg(AccReg32);
13446
13447        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2)
13448          .addReg(Tmp, 0, X86::sub_8bit);
13449      }
13450    } else {
13451      // Use pseudo select and lower them.
13452      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
13453             "Invalid atomic-load-op transformation!");
13454      unsigned SelOpc = getPseudoCMOVOpc(VT);
13455      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
13456      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
13457      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2)
13458              .addReg(SrcReg).addReg(t4)
13459              .addImm(CC);
13460      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13461      // Replace the original PHI node as mainMBB is changed after CMOV
13462      // lowering.
13463      BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4)
13464        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
13465      Phi->eraseFromParent();
13466    }
13467    break;
13468  }
13469  }
13470
13471  // Copy PhyReg back from virtual register.
13472  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg)
13473    .addReg(t4);
13474
13475  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13476  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13477    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13478    if (NewMO.isReg())
13479      NewMO.setIsKill(false);
13480    MIB.addOperand(NewMO);
13481  }
13482  MIB.addReg(t2);
13483  MIB.setMemRefs(MMOBegin, MMOEnd);
13484
13485  // Copy PhyReg back to virtual register.
13486  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3)
13487    .addReg(PhyReg);
13488
13489  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13490
13491  mainMBB->addSuccessor(origMainMBB);
13492  mainMBB->addSuccessor(sinkMBB);
13493
13494  // sinkMBB:
13495  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13496          TII->get(TargetOpcode::COPY), DstReg)
13497    .addReg(t3);
13498
13499  MI->eraseFromParent();
13500  return sinkMBB;
13501}
13502
13503// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
13504// instructions. They will be translated into a spin-loop or compare-exchange
13505// loop from
13506//
13507//    ...
13508//    dst = atomic-fetch-op MI.addr, MI.val
13509//    ...
13510//
13511// to
13512//
13513//    ...
13514//    t1L = LOAD [MI.addr + 0]
13515//    t1H = LOAD [MI.addr + 4]
13516// loop:
13517//    t4L = phi(t1L, t3L / loop)
13518//    t4H = phi(t1H, t3H / loop)
13519//    t2L = OP MI.val.lo, t4L
13520//    t2H = OP MI.val.hi, t4H
13521//    EAX = t4L
13522//    EDX = t4H
13523//    EBX = t2L
13524//    ECX = t2H
13525//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13526//    t3L = EAX
13527//    t3H = EDX
13528//    JNE loop
13529// sink:
13530//    dstL = t3L
13531//    dstH = t3H
13532//    ...
13533MachineBasicBlock *
13534X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
13535                                           MachineBasicBlock *MBB) const {
13536  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13537  DebugLoc DL = MI->getDebugLoc();
13538
13539  MachineFunction *MF = MBB->getParent();
13540  MachineRegisterInfo &MRI = MF->getRegInfo();
13541
13542  const BasicBlock *BB = MBB->getBasicBlock();
13543  MachineFunction::iterator I = MBB;
13544  ++I;
13545
13546  assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 &&
13547         "Unexpected number of operands");
13548
13549  assert(MI->hasOneMemOperand() &&
13550         "Expected atomic-load-op32 to have one memoperand");
13551
13552  // Memory Reference
13553  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13554  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13555
13556  unsigned DstLoReg, DstHiReg;
13557  unsigned SrcLoReg, SrcHiReg;
13558  unsigned MemOpndSlot;
13559
13560  unsigned CurOp = 0;
13561
13562  DstLoReg = MI->getOperand(CurOp++).getReg();
13563  DstHiReg = MI->getOperand(CurOp++).getReg();
13564  MemOpndSlot = CurOp;
13565  CurOp += X86::AddrNumOperands;
13566  SrcLoReg = MI->getOperand(CurOp++).getReg();
13567  SrcHiReg = MI->getOperand(CurOp++).getReg();
13568
13569  const TargetRegisterClass *RC = &X86::GR32RegClass;
13570  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
13571
13572  unsigned t1L = MRI.createVirtualRegister(RC);
13573  unsigned t1H = MRI.createVirtualRegister(RC);
13574  unsigned t2L = MRI.createVirtualRegister(RC);
13575  unsigned t2H = MRI.createVirtualRegister(RC);
13576  unsigned t3L = MRI.createVirtualRegister(RC);
13577  unsigned t3H = MRI.createVirtualRegister(RC);
13578  unsigned t4L = MRI.createVirtualRegister(RC);
13579  unsigned t4H = MRI.createVirtualRegister(RC);
13580
13581  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
13582  unsigned LOADOpc = X86::MOV32rm;
13583
13584  // For the atomic load-arith operator, we generate
13585  //
13586  //  thisMBB:
13587  //    t1L = LOAD [MI.addr + 0]
13588  //    t1H = LOAD [MI.addr + 4]
13589  //  mainMBB:
13590  //    t4L = phi(t1L / thisMBB, t3L / mainMBB)
13591  //    t4H = phi(t1H / thisMBB, t3H / mainMBB)
13592  //    t2L = OP MI.val.lo, t4L
13593  //    t2H = OP MI.val.hi, t4H
13594  //    EBX = t2L
13595  //    ECX = t2H
13596  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13597  //    t3L = EAX
13598  //    t3H = EDX
13599  //    JNE loop
13600  //  sinkMBB:
13601  //    dstL = t3L
13602  //    dstH = t3H
13603
13604  MachineBasicBlock *thisMBB = MBB;
13605  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13606  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13607  MF->insert(I, mainMBB);
13608  MF->insert(I, sinkMBB);
13609
13610  MachineInstrBuilder MIB;
13611
13612  // Transfer the remainder of BB and its successor edges to sinkMBB.
13613  sinkMBB->splice(sinkMBB->begin(), MBB,
13614                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13615  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13616
13617  // thisMBB:
13618  // Lo
13619  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L);
13620  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13621    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13622    if (NewMO.isReg())
13623      NewMO.setIsKill(false);
13624    MIB.addOperand(NewMO);
13625  }
13626  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
13627    unsigned flags = (*MMOI)->getFlags();
13628    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
13629    MachineMemOperand *MMO =
13630      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
13631                               (*MMOI)->getSize(),
13632                               (*MMOI)->getBaseAlignment(),
13633                               (*MMOI)->getTBAAInfo(),
13634                               (*MMOI)->getRanges());
13635    MIB.addMemOperand(MMO);
13636  };
13637  MachineInstr *LowMI = MIB;
13638
13639  // Hi
13640  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H);
13641  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13642    if (i == X86::AddrDisp) {
13643      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
13644    } else {
13645      MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13646      if (NewMO.isReg())
13647        NewMO.setIsKill(false);
13648      MIB.addOperand(NewMO);
13649    }
13650  }
13651  MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end());
13652
13653  thisMBB->addSuccessor(mainMBB);
13654
13655  // mainMBB:
13656  MachineBasicBlock *origMainMBB = mainMBB;
13657
13658  // Add PHIs.
13659  MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L)
13660                        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
13661  MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H)
13662                        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
13663
13664  unsigned Opc = MI->getOpcode();
13665  switch (Opc) {
13666  default:
13667    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
13668  case X86::ATOMAND6432:
13669  case X86::ATOMOR6432:
13670  case X86::ATOMXOR6432:
13671  case X86::ATOMADD6432:
13672  case X86::ATOMSUB6432: {
13673    unsigned HiOpc;
13674    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13675    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L)
13676      .addReg(SrcLoReg);
13677    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H)
13678      .addReg(SrcHiReg);
13679    break;
13680  }
13681  case X86::ATOMNAND6432: {
13682    unsigned HiOpc, NOTOpc;
13683    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
13684    unsigned TmpL = MRI.createVirtualRegister(RC);
13685    unsigned TmpH = MRI.createVirtualRegister(RC);
13686    BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg)
13687      .addReg(t4L);
13688    BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg)
13689      .addReg(t4H);
13690    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL);
13691    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH);
13692    break;
13693  }
13694  case X86::ATOMMAX6432:
13695  case X86::ATOMMIN6432:
13696  case X86::ATOMUMAX6432:
13697  case X86::ATOMUMIN6432: {
13698    unsigned HiOpc;
13699    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13700    unsigned cL = MRI.createVirtualRegister(RC8);
13701    unsigned cH = MRI.createVirtualRegister(RC8);
13702    unsigned cL32 = MRI.createVirtualRegister(RC);
13703    unsigned cH32 = MRI.createVirtualRegister(RC);
13704    unsigned cc = MRI.createVirtualRegister(RC);
13705    // cl := cmp src_lo, lo
13706    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13707      .addReg(SrcLoReg).addReg(t4L);
13708    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
13709    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
13710    // ch := cmp src_hi, hi
13711    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13712      .addReg(SrcHiReg).addReg(t4H);
13713    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
13714    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
13715    // cc := if (src_hi == hi) ? cl : ch;
13716    if (Subtarget->hasCMov()) {
13717      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
13718        .addReg(cH32).addReg(cL32);
13719    } else {
13720      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
13721              .addReg(cH32).addReg(cL32)
13722              .addImm(X86::COND_E);
13723      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13724    }
13725    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
13726    if (Subtarget->hasCMov()) {
13727      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L)
13728        .addReg(SrcLoReg).addReg(t4L);
13729      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H)
13730        .addReg(SrcHiReg).addReg(t4H);
13731    } else {
13732      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L)
13733              .addReg(SrcLoReg).addReg(t4L)
13734              .addImm(X86::COND_NE);
13735      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13736      // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the
13737      // 2nd CMOV lowering.
13738      mainMBB->addLiveIn(X86::EFLAGS);
13739      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H)
13740              .addReg(SrcHiReg).addReg(t4H)
13741              .addImm(X86::COND_NE);
13742      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13743      // Replace the original PHI node as mainMBB is changed after CMOV
13744      // lowering.
13745      BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L)
13746        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
13747      BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H)
13748        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
13749      PhiL->eraseFromParent();
13750      PhiH->eraseFromParent();
13751    }
13752    break;
13753  }
13754  case X86::ATOMSWAP6432: {
13755    unsigned HiOpc;
13756    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13757    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg);
13758    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg);
13759    break;
13760  }
13761  }
13762
13763  // Copy EDX:EAX back from HiReg:LoReg
13764  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L);
13765  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H);
13766  // Copy ECX:EBX from t1H:t1L
13767  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L);
13768  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H);
13769
13770  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13771  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13772    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
13773    if (NewMO.isReg())
13774      NewMO.setIsKill(false);
13775    MIB.addOperand(NewMO);
13776  }
13777  MIB.setMemRefs(MMOBegin, MMOEnd);
13778
13779  // Copy EDX:EAX back to t3H:t3L
13780  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX);
13781  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX);
13782
13783  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13784
13785  mainMBB->addSuccessor(origMainMBB);
13786  mainMBB->addSuccessor(sinkMBB);
13787
13788  // sinkMBB:
13789  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13790          TII->get(TargetOpcode::COPY), DstLoReg)
13791    .addReg(t3L);
13792  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13793          TII->get(TargetOpcode::COPY), DstHiReg)
13794    .addReg(t3H);
13795
13796  MI->eraseFromParent();
13797  return sinkMBB;
13798}
13799
13800// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
13801// or XMM0_V32I8 in AVX all of this code can be replaced with that
13802// in the .td file.
13803static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
13804                                       const TargetInstrInfo *TII) {
13805  unsigned Opc;
13806  switch (MI->getOpcode()) {
13807  default: llvm_unreachable("illegal opcode!");
13808  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
13809  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
13810  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
13811  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
13812  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
13813  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
13814  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
13815  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
13816  }
13817
13818  DebugLoc dl = MI->getDebugLoc();
13819  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13820
13821  unsigned NumArgs = MI->getNumOperands();
13822  for (unsigned i = 1; i < NumArgs; ++i) {
13823    MachineOperand &Op = MI->getOperand(i);
13824    if (!(Op.isReg() && Op.isImplicit()))
13825      MIB.addOperand(Op);
13826  }
13827  if (MI->hasOneMemOperand())
13828    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13829
13830  BuildMI(*BB, MI, dl,
13831    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13832    .addReg(X86::XMM0);
13833
13834  MI->eraseFromParent();
13835  return BB;
13836}
13837
13838// FIXME: Custom handling because TableGen doesn't support multiple implicit
13839// defs in an instruction pattern
13840static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
13841                                       const TargetInstrInfo *TII) {
13842  unsigned Opc;
13843  switch (MI->getOpcode()) {
13844  default: llvm_unreachable("illegal opcode!");
13845  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
13846  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
13847  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
13848  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
13849  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
13850  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
13851  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
13852  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
13853  }
13854
13855  DebugLoc dl = MI->getDebugLoc();
13856  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13857
13858  unsigned NumArgs = MI->getNumOperands(); // remove the results
13859  for (unsigned i = 1; i < NumArgs; ++i) {
13860    MachineOperand &Op = MI->getOperand(i);
13861    if (!(Op.isReg() && Op.isImplicit()))
13862      MIB.addOperand(Op);
13863  }
13864  if (MI->hasOneMemOperand())
13865    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13866
13867  BuildMI(*BB, MI, dl,
13868    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13869    .addReg(X86::ECX);
13870
13871  MI->eraseFromParent();
13872  return BB;
13873}
13874
13875static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
13876                                       const TargetInstrInfo *TII,
13877                                       const X86Subtarget* Subtarget) {
13878  DebugLoc dl = MI->getDebugLoc();
13879
13880  // Address into RAX/EAX, other two args into ECX, EDX.
13881  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
13882  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
13883  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
13884  for (int i = 0; i < X86::AddrNumOperands; ++i)
13885    MIB.addOperand(MI->getOperand(i));
13886
13887  unsigned ValOps = X86::AddrNumOperands;
13888  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
13889    .addReg(MI->getOperand(ValOps).getReg());
13890  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
13891    .addReg(MI->getOperand(ValOps+1).getReg());
13892
13893  // The instruction doesn't actually take any operands though.
13894  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
13895
13896  MI->eraseFromParent(); // The pseudo is gone now.
13897  return BB;
13898}
13899
13900MachineBasicBlock *
13901X86TargetLowering::EmitVAARG64WithCustomInserter(
13902                   MachineInstr *MI,
13903                   MachineBasicBlock *MBB) const {
13904  // Emit va_arg instruction on X86-64.
13905
13906  // Operands to this pseudo-instruction:
13907  // 0  ) Output        : destination address (reg)
13908  // 1-5) Input         : va_list address (addr, i64mem)
13909  // 6  ) ArgSize       : Size (in bytes) of vararg type
13910  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
13911  // 8  ) Align         : Alignment of type
13912  // 9  ) EFLAGS (implicit-def)
13913
13914  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
13915  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
13916
13917  unsigned DestReg = MI->getOperand(0).getReg();
13918  MachineOperand &Base = MI->getOperand(1);
13919  MachineOperand &Scale = MI->getOperand(2);
13920  MachineOperand &Index = MI->getOperand(3);
13921  MachineOperand &Disp = MI->getOperand(4);
13922  MachineOperand &Segment = MI->getOperand(5);
13923  unsigned ArgSize = MI->getOperand(6).getImm();
13924  unsigned ArgMode = MI->getOperand(7).getImm();
13925  unsigned Align = MI->getOperand(8).getImm();
13926
13927  // Memory Reference
13928  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
13929  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13930  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13931
13932  // Machine Information
13933  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13934  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
13935  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
13936  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
13937  DebugLoc DL = MI->getDebugLoc();
13938
13939  // struct va_list {
13940  //   i32   gp_offset
13941  //   i32   fp_offset
13942  //   i64   overflow_area (address)
13943  //   i64   reg_save_area (address)
13944  // }
13945  // sizeof(va_list) = 24
13946  // alignment(va_list) = 8
13947
13948  unsigned TotalNumIntRegs = 6;
13949  unsigned TotalNumXMMRegs = 8;
13950  bool UseGPOffset = (ArgMode == 1);
13951  bool UseFPOffset = (ArgMode == 2);
13952  unsigned MaxOffset = TotalNumIntRegs * 8 +
13953                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
13954
13955  /* Align ArgSize to a multiple of 8 */
13956  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
13957  bool NeedsAlign = (Align > 8);
13958
13959  MachineBasicBlock *thisMBB = MBB;
13960  MachineBasicBlock *overflowMBB;
13961  MachineBasicBlock *offsetMBB;
13962  MachineBasicBlock *endMBB;
13963
13964  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
13965  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
13966  unsigned OffsetReg = 0;
13967
13968  if (!UseGPOffset && !UseFPOffset) {
13969    // If we only pull from the overflow region, we don't create a branch.
13970    // We don't need to alter control flow.
13971    OffsetDestReg = 0; // unused
13972    OverflowDestReg = DestReg;
13973
13974    offsetMBB = NULL;
13975    overflowMBB = thisMBB;
13976    endMBB = thisMBB;
13977  } else {
13978    // First emit code to check if gp_offset (or fp_offset) is below the bound.
13979    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
13980    // If not, pull from overflow_area. (branch to overflowMBB)
13981    //
13982    //       thisMBB
13983    //         |     .
13984    //         |        .
13985    //     offsetMBB   overflowMBB
13986    //         |        .
13987    //         |     .
13988    //        endMBB
13989
13990    // Registers for the PHI in endMBB
13991    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
13992    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
13993
13994    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13995    MachineFunction *MF = MBB->getParent();
13996    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13997    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13998    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13999
14000    MachineFunction::iterator MBBIter = MBB;
14001    ++MBBIter;
14002
14003    // Insert the new basic blocks
14004    MF->insert(MBBIter, offsetMBB);
14005    MF->insert(MBBIter, overflowMBB);
14006    MF->insert(MBBIter, endMBB);
14007
14008    // Transfer the remainder of MBB and its successor edges to endMBB.
14009    endMBB->splice(endMBB->begin(), thisMBB,
14010                    llvm::next(MachineBasicBlock::iterator(MI)),
14011                    thisMBB->end());
14012    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
14013
14014    // Make offsetMBB and overflowMBB successors of thisMBB
14015    thisMBB->addSuccessor(offsetMBB);
14016    thisMBB->addSuccessor(overflowMBB);
14017
14018    // endMBB is a successor of both offsetMBB and overflowMBB
14019    offsetMBB->addSuccessor(endMBB);
14020    overflowMBB->addSuccessor(endMBB);
14021
14022    // Load the offset value into a register
14023    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
14024    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
14025      .addOperand(Base)
14026      .addOperand(Scale)
14027      .addOperand(Index)
14028      .addDisp(Disp, UseFPOffset ? 4 : 0)
14029      .addOperand(Segment)
14030      .setMemRefs(MMOBegin, MMOEnd);
14031
14032    // Check if there is enough room left to pull this argument.
14033    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
14034      .addReg(OffsetReg)
14035      .addImm(MaxOffset + 8 - ArgSizeA8);
14036
14037    // Branch to "overflowMBB" if offset >= max
14038    // Fall through to "offsetMBB" otherwise
14039    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
14040      .addMBB(overflowMBB);
14041  }
14042
14043  // In offsetMBB, emit code to use the reg_save_area.
14044  if (offsetMBB) {
14045    assert(OffsetReg != 0);
14046
14047    // Read the reg_save_area address.
14048    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
14049    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
14050      .addOperand(Base)
14051      .addOperand(Scale)
14052      .addOperand(Index)
14053      .addDisp(Disp, 16)
14054      .addOperand(Segment)
14055      .setMemRefs(MMOBegin, MMOEnd);
14056
14057    // Zero-extend the offset
14058    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
14059      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
14060        .addImm(0)
14061        .addReg(OffsetReg)
14062        .addImm(X86::sub_32bit);
14063
14064    // Add the offset to the reg_save_area to get the final address.
14065    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
14066      .addReg(OffsetReg64)
14067      .addReg(RegSaveReg);
14068
14069    // Compute the offset for the next argument
14070    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
14071    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
14072      .addReg(OffsetReg)
14073      .addImm(UseFPOffset ? 16 : 8);
14074
14075    // Store it back into the va_list.
14076    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
14077      .addOperand(Base)
14078      .addOperand(Scale)
14079      .addOperand(Index)
14080      .addDisp(Disp, UseFPOffset ? 4 : 0)
14081      .addOperand(Segment)
14082      .addReg(NextOffsetReg)
14083      .setMemRefs(MMOBegin, MMOEnd);
14084
14085    // Jump to endMBB
14086    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
14087      .addMBB(endMBB);
14088  }
14089
14090  //
14091  // Emit code to use overflow area
14092  //
14093
14094  // Load the overflow_area address into a register.
14095  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
14096  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
14097    .addOperand(Base)
14098    .addOperand(Scale)
14099    .addOperand(Index)
14100    .addDisp(Disp, 8)
14101    .addOperand(Segment)
14102    .setMemRefs(MMOBegin, MMOEnd);
14103
14104  // If we need to align it, do so. Otherwise, just copy the address
14105  // to OverflowDestReg.
14106  if (NeedsAlign) {
14107    // Align the overflow address
14108    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
14109    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
14110
14111    // aligned_addr = (addr + (align-1)) & ~(align-1)
14112    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
14113      .addReg(OverflowAddrReg)
14114      .addImm(Align-1);
14115
14116    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
14117      .addReg(TmpReg)
14118      .addImm(~(uint64_t)(Align-1));
14119  } else {
14120    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
14121      .addReg(OverflowAddrReg);
14122  }
14123
14124  // Compute the next overflow address after this argument.
14125  // (the overflow address should be kept 8-byte aligned)
14126  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
14127  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
14128    .addReg(OverflowDestReg)
14129    .addImm(ArgSizeA8);
14130
14131  // Store the new overflow address.
14132  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
14133    .addOperand(Base)
14134    .addOperand(Scale)
14135    .addOperand(Index)
14136    .addDisp(Disp, 8)
14137    .addOperand(Segment)
14138    .addReg(NextAddrReg)
14139    .setMemRefs(MMOBegin, MMOEnd);
14140
14141  // If we branched, emit the PHI to the front of endMBB.
14142  if (offsetMBB) {
14143    BuildMI(*endMBB, endMBB->begin(), DL,
14144            TII->get(X86::PHI), DestReg)
14145      .addReg(OffsetDestReg).addMBB(offsetMBB)
14146      .addReg(OverflowDestReg).addMBB(overflowMBB);
14147  }
14148
14149  // Erase the pseudo instruction
14150  MI->eraseFromParent();
14151
14152  return endMBB;
14153}
14154
14155MachineBasicBlock *
14156X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
14157                                                 MachineInstr *MI,
14158                                                 MachineBasicBlock *MBB) const {
14159  // Emit code to save XMM registers to the stack. The ABI says that the
14160  // number of registers to save is given in %al, so it's theoretically
14161  // possible to do an indirect jump trick to avoid saving all of them,
14162  // however this code takes a simpler approach and just executes all
14163  // of the stores if %al is non-zero. It's less code, and it's probably
14164  // easier on the hardware branch predictor, and stores aren't all that
14165  // expensive anyway.
14166
14167  // Create the new basic blocks. One block contains all the XMM stores,
14168  // and one block is the final destination regardless of whether any
14169  // stores were performed.
14170  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
14171  MachineFunction *F = MBB->getParent();
14172  MachineFunction::iterator MBBIter = MBB;
14173  ++MBBIter;
14174  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
14175  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
14176  F->insert(MBBIter, XMMSaveMBB);
14177  F->insert(MBBIter, EndMBB);
14178
14179  // Transfer the remainder of MBB and its successor edges to EndMBB.
14180  EndMBB->splice(EndMBB->begin(), MBB,
14181                 llvm::next(MachineBasicBlock::iterator(MI)),
14182                 MBB->end());
14183  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
14184
14185  // The original block will now fall through to the XMM save block.
14186  MBB->addSuccessor(XMMSaveMBB);
14187  // The XMMSaveMBB will fall through to the end block.
14188  XMMSaveMBB->addSuccessor(EndMBB);
14189
14190  // Now add the instructions.
14191  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14192  DebugLoc DL = MI->getDebugLoc();
14193
14194  unsigned CountReg = MI->getOperand(0).getReg();
14195  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
14196  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
14197
14198  if (!Subtarget->isTargetWin64()) {
14199    // If %al is 0, branch around the XMM save block.
14200    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
14201    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
14202    MBB->addSuccessor(EndMBB);
14203  }
14204
14205  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
14206  // In the XMM save block, save all the XMM argument registers.
14207  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
14208    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
14209    MachineMemOperand *MMO =
14210      F->getMachineMemOperand(
14211          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
14212        MachineMemOperand::MOStore,
14213        /*Size=*/16, /*Align=*/16);
14214    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
14215      .addFrameIndex(RegSaveFrameIndex)
14216      .addImm(/*Scale=*/1)
14217      .addReg(/*IndexReg=*/0)
14218      .addImm(/*Disp=*/Offset)
14219      .addReg(/*Segment=*/0)
14220      .addReg(MI->getOperand(i).getReg())
14221      .addMemOperand(MMO);
14222  }
14223
14224  MI->eraseFromParent();   // The pseudo instruction is gone now.
14225
14226  return EndMBB;
14227}
14228
14229// The EFLAGS operand of SelectItr might be missing a kill marker
14230// because there were multiple uses of EFLAGS, and ISel didn't know
14231// which to mark. Figure out whether SelectItr should have had a
14232// kill marker, and set it if it should. Returns the correct kill
14233// marker value.
14234static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
14235                                     MachineBasicBlock* BB,
14236                                     const TargetRegisterInfo* TRI) {
14237  // Scan forward through BB for a use/def of EFLAGS.
14238  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
14239  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
14240    const MachineInstr& mi = *miI;
14241    if (mi.readsRegister(X86::EFLAGS))
14242      return false;
14243    if (mi.definesRegister(X86::EFLAGS))
14244      break; // Should have kill-flag - update below.
14245  }
14246
14247  // If we hit the end of the block, check whether EFLAGS is live into a
14248  // successor.
14249  if (miI == BB->end()) {
14250    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
14251                                          sEnd = BB->succ_end();
14252         sItr != sEnd; ++sItr) {
14253      MachineBasicBlock* succ = *sItr;
14254      if (succ->isLiveIn(X86::EFLAGS))
14255        return false;
14256    }
14257  }
14258
14259  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
14260  // out. SelectMI should have a kill flag on EFLAGS.
14261  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
14262  return true;
14263}
14264
14265MachineBasicBlock *
14266X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
14267                                     MachineBasicBlock *BB) const {
14268  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14269  DebugLoc DL = MI->getDebugLoc();
14270
14271  // To "insert" a SELECT_CC instruction, we actually have to insert the
14272  // diamond control-flow pattern.  The incoming instruction knows the
14273  // destination vreg to set, the condition code register to branch on, the
14274  // true/false values to select between, and a branch opcode to use.
14275  const BasicBlock *LLVM_BB = BB->getBasicBlock();
14276  MachineFunction::iterator It = BB;
14277  ++It;
14278
14279  //  thisMBB:
14280  //  ...
14281  //   TrueVal = ...
14282  //   cmpTY ccX, r1, r2
14283  //   bCC copy1MBB
14284  //   fallthrough --> copy0MBB
14285  MachineBasicBlock *thisMBB = BB;
14286  MachineFunction *F = BB->getParent();
14287  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
14288  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
14289  F->insert(It, copy0MBB);
14290  F->insert(It, sinkMBB);
14291
14292  // If the EFLAGS register isn't dead in the terminator, then claim that it's
14293  // live into the sink and copy blocks.
14294  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
14295  if (!MI->killsRegister(X86::EFLAGS) &&
14296      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
14297    copy0MBB->addLiveIn(X86::EFLAGS);
14298    sinkMBB->addLiveIn(X86::EFLAGS);
14299  }
14300
14301  // Transfer the remainder of BB and its successor edges to sinkMBB.
14302  sinkMBB->splice(sinkMBB->begin(), BB,
14303                  llvm::next(MachineBasicBlock::iterator(MI)),
14304                  BB->end());
14305  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
14306
14307  // Add the true and fallthrough blocks as its successors.
14308  BB->addSuccessor(copy0MBB);
14309  BB->addSuccessor(sinkMBB);
14310
14311  // Create the conditional branch instruction.
14312  unsigned Opc =
14313    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
14314  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
14315
14316  //  copy0MBB:
14317  //   %FalseValue = ...
14318  //   # fallthrough to sinkMBB
14319  copy0MBB->addSuccessor(sinkMBB);
14320
14321  //  sinkMBB:
14322  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
14323  //  ...
14324  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14325          TII->get(X86::PHI), MI->getOperand(0).getReg())
14326    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
14327    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
14328
14329  MI->eraseFromParent();   // The pseudo instruction is gone now.
14330  return sinkMBB;
14331}
14332
14333MachineBasicBlock *
14334X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
14335                                        bool Is64Bit) const {
14336  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14337  DebugLoc DL = MI->getDebugLoc();
14338  MachineFunction *MF = BB->getParent();
14339  const BasicBlock *LLVM_BB = BB->getBasicBlock();
14340
14341  assert(getTargetMachine().Options.EnableSegmentedStacks);
14342
14343  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
14344  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
14345
14346  // BB:
14347  //  ... [Till the alloca]
14348  // If stacklet is not large enough, jump to mallocMBB
14349  //
14350  // bumpMBB:
14351  //  Allocate by subtracting from RSP
14352  //  Jump to continueMBB
14353  //
14354  // mallocMBB:
14355  //  Allocate by call to runtime
14356  //
14357  // continueMBB:
14358  //  ...
14359  //  [rest of original BB]
14360  //
14361
14362  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14363  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14364  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14365
14366  MachineRegisterInfo &MRI = MF->getRegInfo();
14367  const TargetRegisterClass *AddrRegClass =
14368    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
14369
14370  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
14371    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
14372    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
14373    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
14374    sizeVReg = MI->getOperand(1).getReg(),
14375    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
14376
14377  MachineFunction::iterator MBBIter = BB;
14378  ++MBBIter;
14379
14380  MF->insert(MBBIter, bumpMBB);
14381  MF->insert(MBBIter, mallocMBB);
14382  MF->insert(MBBIter, continueMBB);
14383
14384  continueMBB->splice(continueMBB->begin(), BB, llvm::next
14385                      (MachineBasicBlock::iterator(MI)), BB->end());
14386  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
14387
14388  // Add code to the main basic block to check if the stack limit has been hit,
14389  // and if so, jump to mallocMBB otherwise to bumpMBB.
14390  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
14391  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
14392    .addReg(tmpSPVReg).addReg(sizeVReg);
14393  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
14394    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
14395    .addReg(SPLimitVReg);
14396  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
14397
14398  // bumpMBB simply decreases the stack pointer, since we know the current
14399  // stacklet has enough space.
14400  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
14401    .addReg(SPLimitVReg);
14402  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
14403    .addReg(SPLimitVReg);
14404  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
14405
14406  // Calls into a routine in libgcc to allocate more space from the heap.
14407  const uint32_t *RegMask =
14408    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
14409  if (Is64Bit) {
14410    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
14411      .addReg(sizeVReg);
14412    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
14413      .addExternalSymbol("__morestack_allocate_stack_space")
14414      .addRegMask(RegMask)
14415      .addReg(X86::RDI, RegState::Implicit)
14416      .addReg(X86::RAX, RegState::ImplicitDefine);
14417  } else {
14418    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
14419      .addImm(12);
14420    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
14421    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
14422      .addExternalSymbol("__morestack_allocate_stack_space")
14423      .addRegMask(RegMask)
14424      .addReg(X86::EAX, RegState::ImplicitDefine);
14425  }
14426
14427  if (!Is64Bit)
14428    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
14429      .addImm(16);
14430
14431  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
14432    .addReg(Is64Bit ? X86::RAX : X86::EAX);
14433  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
14434
14435  // Set up the CFG correctly.
14436  BB->addSuccessor(bumpMBB);
14437  BB->addSuccessor(mallocMBB);
14438  mallocMBB->addSuccessor(continueMBB);
14439  bumpMBB->addSuccessor(continueMBB);
14440
14441  // Take care of the PHI nodes.
14442  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
14443          MI->getOperand(0).getReg())
14444    .addReg(mallocPtrVReg).addMBB(mallocMBB)
14445    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
14446
14447  // Delete the original pseudo instruction.
14448  MI->eraseFromParent();
14449
14450  // And we're done.
14451  return continueMBB;
14452}
14453
14454MachineBasicBlock *
14455X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
14456                                          MachineBasicBlock *BB) const {
14457  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14458  DebugLoc DL = MI->getDebugLoc();
14459
14460  assert(!Subtarget->isTargetEnvMacho());
14461
14462  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
14463  // non-trivial part is impdef of ESP.
14464
14465  if (Subtarget->isTargetWin64()) {
14466    if (Subtarget->isTargetCygMing()) {
14467      // ___chkstk(Mingw64):
14468      // Clobbers R10, R11, RAX and EFLAGS.
14469      // Updates RSP.
14470      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
14471        .addExternalSymbol("___chkstk")
14472        .addReg(X86::RAX, RegState::Implicit)
14473        .addReg(X86::RSP, RegState::Implicit)
14474        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
14475        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
14476        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14477    } else {
14478      // __chkstk(MSVCRT): does not update stack pointer.
14479      // Clobbers R10, R11 and EFLAGS.
14480      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
14481        .addExternalSymbol("__chkstk")
14482        .addReg(X86::RAX, RegState::Implicit)
14483        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14484      // RAX has the offset to be subtracted from RSP.
14485      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
14486        .addReg(X86::RSP)
14487        .addReg(X86::RAX);
14488    }
14489  } else {
14490    const char *StackProbeSymbol =
14491      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
14492
14493    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
14494      .addExternalSymbol(StackProbeSymbol)
14495      .addReg(X86::EAX, RegState::Implicit)
14496      .addReg(X86::ESP, RegState::Implicit)
14497      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
14498      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
14499      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
14500  }
14501
14502  MI->eraseFromParent();   // The pseudo instruction is gone now.
14503  return BB;
14504}
14505
14506MachineBasicBlock *
14507X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
14508                                      MachineBasicBlock *BB) const {
14509  // This is pretty easy.  We're taking the value that we received from
14510  // our load from the relocation, sticking it in either RDI (x86-64)
14511  // or EAX and doing an indirect call.  The return value will then
14512  // be in the normal return register.
14513  const X86InstrInfo *TII
14514    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
14515  DebugLoc DL = MI->getDebugLoc();
14516  MachineFunction *F = BB->getParent();
14517
14518  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
14519  assert(MI->getOperand(3).isGlobal() && "This should be a global");
14520
14521  // Get a register mask for the lowered call.
14522  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
14523  // proper register mask.
14524  const uint32_t *RegMask =
14525    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
14526  if (Subtarget->is64Bit()) {
14527    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14528                                      TII->get(X86::MOV64rm), X86::RDI)
14529    .addReg(X86::RIP)
14530    .addImm(0).addReg(0)
14531    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14532                      MI->getOperand(3).getTargetFlags())
14533    .addReg(0);
14534    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
14535    addDirectMem(MIB, X86::RDI);
14536    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
14537  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
14538    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14539                                      TII->get(X86::MOV32rm), X86::EAX)
14540    .addReg(0)
14541    .addImm(0).addReg(0)
14542    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14543                      MI->getOperand(3).getTargetFlags())
14544    .addReg(0);
14545    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14546    addDirectMem(MIB, X86::EAX);
14547    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14548  } else {
14549    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14550                                      TII->get(X86::MOV32rm), X86::EAX)
14551    .addReg(TII->getGlobalBaseReg(F))
14552    .addImm(0).addReg(0)
14553    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14554                      MI->getOperand(3).getTargetFlags())
14555    .addReg(0);
14556    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14557    addDirectMem(MIB, X86::EAX);
14558    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14559  }
14560
14561  MI->eraseFromParent(); // The pseudo instruction is gone now.
14562  return BB;
14563}
14564
14565MachineBasicBlock *
14566X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
14567                                    MachineBasicBlock *MBB) const {
14568  DebugLoc DL = MI->getDebugLoc();
14569  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14570
14571  MachineFunction *MF = MBB->getParent();
14572  MachineRegisterInfo &MRI = MF->getRegInfo();
14573
14574  const BasicBlock *BB = MBB->getBasicBlock();
14575  MachineFunction::iterator I = MBB;
14576  ++I;
14577
14578  // Memory Reference
14579  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14580  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14581
14582  unsigned DstReg;
14583  unsigned MemOpndSlot = 0;
14584
14585  unsigned CurOp = 0;
14586
14587  DstReg = MI->getOperand(CurOp++).getReg();
14588  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
14589  assert(RC->hasType(MVT::i32) && "Invalid destination!");
14590  unsigned mainDstReg = MRI.createVirtualRegister(RC);
14591  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
14592
14593  MemOpndSlot = CurOp;
14594
14595  MVT PVT = getPointerTy();
14596  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14597         "Invalid Pointer Size!");
14598
14599  // For v = setjmp(buf), we generate
14600  //
14601  // thisMBB:
14602  //  buf[LabelOffset] = restoreMBB
14603  //  SjLjSetup restoreMBB
14604  //
14605  // mainMBB:
14606  //  v_main = 0
14607  //
14608  // sinkMBB:
14609  //  v = phi(main, restore)
14610  //
14611  // restoreMBB:
14612  //  v_restore = 1
14613
14614  MachineBasicBlock *thisMBB = MBB;
14615  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14616  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14617  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
14618  MF->insert(I, mainMBB);
14619  MF->insert(I, sinkMBB);
14620  MF->push_back(restoreMBB);
14621
14622  MachineInstrBuilder MIB;
14623
14624  // Transfer the remainder of BB and its successor edges to sinkMBB.
14625  sinkMBB->splice(sinkMBB->begin(), MBB,
14626                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14627  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14628
14629  // thisMBB:
14630  unsigned PtrStoreOpc = 0;
14631  unsigned LabelReg = 0;
14632  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14633  Reloc::Model RM = getTargetMachine().getRelocationModel();
14634  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
14635                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
14636
14637  // Prepare IP either in reg or imm.
14638  if (!UseImmLabel) {
14639    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
14640    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
14641    LabelReg = MRI.createVirtualRegister(PtrRC);
14642    if (Subtarget->is64Bit()) {
14643      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
14644              .addReg(X86::RIP)
14645              .addImm(0)
14646              .addReg(0)
14647              .addMBB(restoreMBB)
14648              .addReg(0);
14649    } else {
14650      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
14651      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
14652              .addReg(XII->getGlobalBaseReg(MF))
14653              .addImm(0)
14654              .addReg(0)
14655              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
14656              .addReg(0);
14657    }
14658  } else
14659    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
14660  // Store IP
14661  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
14662  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14663    if (i == X86::AddrDisp)
14664      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
14665    else
14666      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
14667  }
14668  if (!UseImmLabel)
14669    MIB.addReg(LabelReg);
14670  else
14671    MIB.addMBB(restoreMBB);
14672  MIB.setMemRefs(MMOBegin, MMOEnd);
14673  // Setup
14674  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
14675          .addMBB(restoreMBB);
14676
14677  const X86RegisterInfo *RegInfo =
14678    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
14679  MIB.addRegMask(RegInfo->getNoPreservedMask());
14680  thisMBB->addSuccessor(mainMBB);
14681  thisMBB->addSuccessor(restoreMBB);
14682
14683  // mainMBB:
14684  //  EAX = 0
14685  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
14686  mainMBB->addSuccessor(sinkMBB);
14687
14688  // sinkMBB:
14689  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14690          TII->get(X86::PHI), DstReg)
14691    .addReg(mainDstReg).addMBB(mainMBB)
14692    .addReg(restoreDstReg).addMBB(restoreMBB);
14693
14694  // restoreMBB:
14695  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
14696  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
14697  restoreMBB->addSuccessor(sinkMBB);
14698
14699  MI->eraseFromParent();
14700  return sinkMBB;
14701}
14702
14703MachineBasicBlock *
14704X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
14705                                     MachineBasicBlock *MBB) const {
14706  DebugLoc DL = MI->getDebugLoc();
14707  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14708
14709  MachineFunction *MF = MBB->getParent();
14710  MachineRegisterInfo &MRI = MF->getRegInfo();
14711
14712  // Memory Reference
14713  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14714  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14715
14716  MVT PVT = getPointerTy();
14717  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14718         "Invalid Pointer Size!");
14719
14720  const TargetRegisterClass *RC =
14721    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
14722  unsigned Tmp = MRI.createVirtualRegister(RC);
14723  // Since FP is only updated here but NOT referenced, it's treated as GPR.
14724  const X86RegisterInfo *RegInfo =
14725    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
14726  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
14727  unsigned SP = RegInfo->getStackRegister();
14728
14729  MachineInstrBuilder MIB;
14730
14731  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14732  const int64_t SPOffset = 2 * PVT.getStoreSize();
14733
14734  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
14735  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
14736
14737  // Reload FP
14738  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
14739  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
14740    MIB.addOperand(MI->getOperand(i));
14741  MIB.setMemRefs(MMOBegin, MMOEnd);
14742  // Reload IP
14743  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
14744  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14745    if (i == X86::AddrDisp)
14746      MIB.addDisp(MI->getOperand(i), LabelOffset);
14747    else
14748      MIB.addOperand(MI->getOperand(i));
14749  }
14750  MIB.setMemRefs(MMOBegin, MMOEnd);
14751  // Reload SP
14752  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
14753  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14754    if (i == X86::AddrDisp)
14755      MIB.addDisp(MI->getOperand(i), SPOffset);
14756    else
14757      MIB.addOperand(MI->getOperand(i));
14758  }
14759  MIB.setMemRefs(MMOBegin, MMOEnd);
14760  // Jump
14761  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
14762
14763  MI->eraseFromParent();
14764  return MBB;
14765}
14766
14767MachineBasicBlock *
14768X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
14769                                               MachineBasicBlock *BB) const {
14770  switch (MI->getOpcode()) {
14771  default: llvm_unreachable("Unexpected instr type to insert");
14772  case X86::TAILJMPd64:
14773  case X86::TAILJMPr64:
14774  case X86::TAILJMPm64:
14775    llvm_unreachable("TAILJMP64 would not be touched here.");
14776  case X86::TCRETURNdi64:
14777  case X86::TCRETURNri64:
14778  case X86::TCRETURNmi64:
14779    return BB;
14780  case X86::WIN_ALLOCA:
14781    return EmitLoweredWinAlloca(MI, BB);
14782  case X86::SEG_ALLOCA_32:
14783    return EmitLoweredSegAlloca(MI, BB, false);
14784  case X86::SEG_ALLOCA_64:
14785    return EmitLoweredSegAlloca(MI, BB, true);
14786  case X86::TLSCall_32:
14787  case X86::TLSCall_64:
14788    return EmitLoweredTLSCall(MI, BB);
14789  case X86::CMOV_GR8:
14790  case X86::CMOV_FR32:
14791  case X86::CMOV_FR64:
14792  case X86::CMOV_V4F32:
14793  case X86::CMOV_V2F64:
14794  case X86::CMOV_V2I64:
14795  case X86::CMOV_V8F32:
14796  case X86::CMOV_V4F64:
14797  case X86::CMOV_V4I64:
14798  case X86::CMOV_GR16:
14799  case X86::CMOV_GR32:
14800  case X86::CMOV_RFP32:
14801  case X86::CMOV_RFP64:
14802  case X86::CMOV_RFP80:
14803    return EmitLoweredSelect(MI, BB);
14804
14805  case X86::FP32_TO_INT16_IN_MEM:
14806  case X86::FP32_TO_INT32_IN_MEM:
14807  case X86::FP32_TO_INT64_IN_MEM:
14808  case X86::FP64_TO_INT16_IN_MEM:
14809  case X86::FP64_TO_INT32_IN_MEM:
14810  case X86::FP64_TO_INT64_IN_MEM:
14811  case X86::FP80_TO_INT16_IN_MEM:
14812  case X86::FP80_TO_INT32_IN_MEM:
14813  case X86::FP80_TO_INT64_IN_MEM: {
14814    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14815    DebugLoc DL = MI->getDebugLoc();
14816
14817    // Change the floating point control register to use "round towards zero"
14818    // mode when truncating to an integer value.
14819    MachineFunction *F = BB->getParent();
14820    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
14821    addFrameReference(BuildMI(*BB, MI, DL,
14822                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
14823
14824    // Load the old value of the high byte of the control word...
14825    unsigned OldCW =
14826      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
14827    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
14828                      CWFrameIdx);
14829
14830    // Set the high part to be round to zero...
14831    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
14832      .addImm(0xC7F);
14833
14834    // Reload the modified control word now...
14835    addFrameReference(BuildMI(*BB, MI, DL,
14836                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14837
14838    // Restore the memory image of control word to original value
14839    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
14840      .addReg(OldCW);
14841
14842    // Get the X86 opcode to use.
14843    unsigned Opc;
14844    switch (MI->getOpcode()) {
14845    default: llvm_unreachable("illegal opcode!");
14846    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
14847    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
14848    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
14849    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
14850    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
14851    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
14852    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
14853    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
14854    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
14855    }
14856
14857    X86AddressMode AM;
14858    MachineOperand &Op = MI->getOperand(0);
14859    if (Op.isReg()) {
14860      AM.BaseType = X86AddressMode::RegBase;
14861      AM.Base.Reg = Op.getReg();
14862    } else {
14863      AM.BaseType = X86AddressMode::FrameIndexBase;
14864      AM.Base.FrameIndex = Op.getIndex();
14865    }
14866    Op = MI->getOperand(1);
14867    if (Op.isImm())
14868      AM.Scale = Op.getImm();
14869    Op = MI->getOperand(2);
14870    if (Op.isImm())
14871      AM.IndexReg = Op.getImm();
14872    Op = MI->getOperand(3);
14873    if (Op.isGlobal()) {
14874      AM.GV = Op.getGlobal();
14875    } else {
14876      AM.Disp = Op.getImm();
14877    }
14878    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
14879                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
14880
14881    // Reload the original control word now.
14882    addFrameReference(BuildMI(*BB, MI, DL,
14883                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14884
14885    MI->eraseFromParent();   // The pseudo instruction is gone now.
14886    return BB;
14887  }
14888    // String/text processing lowering.
14889  case X86::PCMPISTRM128REG:
14890  case X86::VPCMPISTRM128REG:
14891  case X86::PCMPISTRM128MEM:
14892  case X86::VPCMPISTRM128MEM:
14893  case X86::PCMPESTRM128REG:
14894  case X86::VPCMPESTRM128REG:
14895  case X86::PCMPESTRM128MEM:
14896  case X86::VPCMPESTRM128MEM:
14897    assert(Subtarget->hasSSE42() &&
14898           "Target must have SSE4.2 or AVX features enabled");
14899    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
14900
14901  // String/text processing lowering.
14902  case X86::PCMPISTRIREG:
14903  case X86::VPCMPISTRIREG:
14904  case X86::PCMPISTRIMEM:
14905  case X86::VPCMPISTRIMEM:
14906  case X86::PCMPESTRIREG:
14907  case X86::VPCMPESTRIREG:
14908  case X86::PCMPESTRIMEM:
14909  case X86::VPCMPESTRIMEM:
14910    assert(Subtarget->hasSSE42() &&
14911           "Target must have SSE4.2 or AVX features enabled");
14912    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
14913
14914  // Thread synchronization.
14915  case X86::MONITOR:
14916    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
14917
14918  // xbegin
14919  case X86::XBEGIN:
14920    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
14921
14922  // Atomic Lowering.
14923  case X86::ATOMAND8:
14924  case X86::ATOMAND16:
14925  case X86::ATOMAND32:
14926  case X86::ATOMAND64:
14927    // Fall through
14928  case X86::ATOMOR8:
14929  case X86::ATOMOR16:
14930  case X86::ATOMOR32:
14931  case X86::ATOMOR64:
14932    // Fall through
14933  case X86::ATOMXOR16:
14934  case X86::ATOMXOR8:
14935  case X86::ATOMXOR32:
14936  case X86::ATOMXOR64:
14937    // Fall through
14938  case X86::ATOMNAND8:
14939  case X86::ATOMNAND16:
14940  case X86::ATOMNAND32:
14941  case X86::ATOMNAND64:
14942    // Fall through
14943  case X86::ATOMMAX8:
14944  case X86::ATOMMAX16:
14945  case X86::ATOMMAX32:
14946  case X86::ATOMMAX64:
14947    // Fall through
14948  case X86::ATOMMIN8:
14949  case X86::ATOMMIN16:
14950  case X86::ATOMMIN32:
14951  case X86::ATOMMIN64:
14952    // Fall through
14953  case X86::ATOMUMAX8:
14954  case X86::ATOMUMAX16:
14955  case X86::ATOMUMAX32:
14956  case X86::ATOMUMAX64:
14957    // Fall through
14958  case X86::ATOMUMIN8:
14959  case X86::ATOMUMIN16:
14960  case X86::ATOMUMIN32:
14961  case X86::ATOMUMIN64:
14962    return EmitAtomicLoadArith(MI, BB);
14963
14964  // This group does 64-bit operations on a 32-bit host.
14965  case X86::ATOMAND6432:
14966  case X86::ATOMOR6432:
14967  case X86::ATOMXOR6432:
14968  case X86::ATOMNAND6432:
14969  case X86::ATOMADD6432:
14970  case X86::ATOMSUB6432:
14971  case X86::ATOMMAX6432:
14972  case X86::ATOMMIN6432:
14973  case X86::ATOMUMAX6432:
14974  case X86::ATOMUMIN6432:
14975  case X86::ATOMSWAP6432:
14976    return EmitAtomicLoadArith6432(MI, BB);
14977
14978  case X86::VASTART_SAVE_XMM_REGS:
14979    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
14980
14981  case X86::VAARG_64:
14982    return EmitVAARG64WithCustomInserter(MI, BB);
14983
14984  case X86::EH_SjLj_SetJmp32:
14985  case X86::EH_SjLj_SetJmp64:
14986    return emitEHSjLjSetJmp(MI, BB);
14987
14988  case X86::EH_SjLj_LongJmp32:
14989  case X86::EH_SjLj_LongJmp64:
14990    return emitEHSjLjLongJmp(MI, BB);
14991  }
14992}
14993
14994//===----------------------------------------------------------------------===//
14995//                           X86 Optimization Hooks
14996//===----------------------------------------------------------------------===//
14997
14998void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
14999                                                       APInt &KnownZero,
15000                                                       APInt &KnownOne,
15001                                                       const SelectionDAG &DAG,
15002                                                       unsigned Depth) const {
15003  unsigned BitWidth = KnownZero.getBitWidth();
15004  unsigned Opc = Op.getOpcode();
15005  assert((Opc >= ISD::BUILTIN_OP_END ||
15006          Opc == ISD::INTRINSIC_WO_CHAIN ||
15007          Opc == ISD::INTRINSIC_W_CHAIN ||
15008          Opc == ISD::INTRINSIC_VOID) &&
15009         "Should use MaskedValueIsZero if you don't know whether Op"
15010         " is a target node!");
15011
15012  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
15013  switch (Opc) {
15014  default: break;
15015  case X86ISD::ADD:
15016  case X86ISD::SUB:
15017  case X86ISD::ADC:
15018  case X86ISD::SBB:
15019  case X86ISD::SMUL:
15020  case X86ISD::UMUL:
15021  case X86ISD::INC:
15022  case X86ISD::DEC:
15023  case X86ISD::OR:
15024  case X86ISD::XOR:
15025  case X86ISD::AND:
15026    // These nodes' second result is a boolean.
15027    if (Op.getResNo() == 0)
15028      break;
15029    // Fallthrough
15030  case X86ISD::SETCC:
15031    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
15032    break;
15033  case ISD::INTRINSIC_WO_CHAIN: {
15034    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15035    unsigned NumLoBits = 0;
15036    switch (IntId) {
15037    default: break;
15038    case Intrinsic::x86_sse_movmsk_ps:
15039    case Intrinsic::x86_avx_movmsk_ps_256:
15040    case Intrinsic::x86_sse2_movmsk_pd:
15041    case Intrinsic::x86_avx_movmsk_pd_256:
15042    case Intrinsic::x86_mmx_pmovmskb:
15043    case Intrinsic::x86_sse2_pmovmskb_128:
15044    case Intrinsic::x86_avx2_pmovmskb: {
15045      // High bits of movmskp{s|d}, pmovmskb are known zero.
15046      switch (IntId) {
15047        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
15048        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
15049        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
15050        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
15051        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
15052        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
15053        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
15054        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
15055      }
15056      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
15057      break;
15058    }
15059    }
15060    break;
15061  }
15062  }
15063}
15064
15065unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
15066                                                         unsigned Depth) const {
15067  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
15068  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
15069    return Op.getValueType().getScalarType().getSizeInBits();
15070
15071  // Fallback case.
15072  return 1;
15073}
15074
15075/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
15076/// node is a GlobalAddress + offset.
15077bool X86TargetLowering::isGAPlusOffset(SDNode *N,
15078                                       const GlobalValue* &GA,
15079                                       int64_t &Offset) const {
15080  if (N->getOpcode() == X86ISD::Wrapper) {
15081    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
15082      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
15083      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
15084      return true;
15085    }
15086  }
15087  return TargetLowering::isGAPlusOffset(N, GA, Offset);
15088}
15089
15090/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
15091/// same as extracting the high 128-bit part of 256-bit vector and then
15092/// inserting the result into the low part of a new 256-bit vector
15093static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
15094  EVT VT = SVOp->getValueType(0);
15095  unsigned NumElems = VT.getVectorNumElements();
15096
15097  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
15098  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
15099    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
15100        SVOp->getMaskElt(j) >= 0)
15101      return false;
15102
15103  return true;
15104}
15105
15106/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
15107/// same as extracting the low 128-bit part of 256-bit vector and then
15108/// inserting the result into the high part of a new 256-bit vector
15109static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
15110  EVT VT = SVOp->getValueType(0);
15111  unsigned NumElems = VT.getVectorNumElements();
15112
15113  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
15114  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
15115    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
15116        SVOp->getMaskElt(j) >= 0)
15117      return false;
15118
15119  return true;
15120}
15121
15122/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
15123static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
15124                                        TargetLowering::DAGCombinerInfo &DCI,
15125                                        const X86Subtarget* Subtarget) {
15126  SDLoc dl(N);
15127  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
15128  SDValue V1 = SVOp->getOperand(0);
15129  SDValue V2 = SVOp->getOperand(1);
15130  EVT VT = SVOp->getValueType(0);
15131  unsigned NumElems = VT.getVectorNumElements();
15132
15133  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
15134      V2.getOpcode() == ISD::CONCAT_VECTORS) {
15135    //
15136    //                   0,0,0,...
15137    //                      |
15138    //    V      UNDEF    BUILD_VECTOR    UNDEF
15139    //     \      /           \           /
15140    //  CONCAT_VECTOR         CONCAT_VECTOR
15141    //         \                  /
15142    //          \                /
15143    //          RESULT: V + zero extended
15144    //
15145    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
15146        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
15147        V1.getOperand(1).getOpcode() != ISD::UNDEF)
15148      return SDValue();
15149
15150    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
15151      return SDValue();
15152
15153    // To match the shuffle mask, the first half of the mask should
15154    // be exactly the first vector, and all the rest a splat with the
15155    // first element of the second one.
15156    for (unsigned i = 0; i != NumElems/2; ++i)
15157      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
15158          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
15159        return SDValue();
15160
15161    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
15162    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
15163      if (Ld->hasNUsesOfValue(1, 0)) {
15164        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
15165        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
15166        SDValue ResNode =
15167          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
15168                                  array_lengthof(Ops),
15169                                  Ld->getMemoryVT(),
15170                                  Ld->getPointerInfo(),
15171                                  Ld->getAlignment(),
15172                                  false/*isVolatile*/, true/*ReadMem*/,
15173                                  false/*WriteMem*/);
15174
15175        // Make sure the newly-created LOAD is in the same position as Ld in
15176        // terms of dependency. We create a TokenFactor for Ld and ResNode,
15177        // and update uses of Ld's output chain to use the TokenFactor.
15178        if (Ld->hasAnyUseOfValue(1)) {
15179          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15180                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
15181          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
15182          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
15183                                 SDValue(ResNode.getNode(), 1));
15184        }
15185
15186        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
15187      }
15188    }
15189
15190    // Emit a zeroed vector and insert the desired subvector on its
15191    // first half.
15192    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
15193    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
15194    return DCI.CombineTo(N, InsV);
15195  }
15196
15197  //===--------------------------------------------------------------------===//
15198  // Combine some shuffles into subvector extracts and inserts:
15199  //
15200
15201  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
15202  if (isShuffleHigh128VectorInsertLow(SVOp)) {
15203    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
15204    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
15205    return DCI.CombineTo(N, InsV);
15206  }
15207
15208  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
15209  if (isShuffleLow128VectorInsertHigh(SVOp)) {
15210    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
15211    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
15212    return DCI.CombineTo(N, InsV);
15213  }
15214
15215  return SDValue();
15216}
15217
15218/// PerformShuffleCombine - Performs several different shuffle combines.
15219static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
15220                                     TargetLowering::DAGCombinerInfo &DCI,
15221                                     const X86Subtarget *Subtarget) {
15222  SDLoc dl(N);
15223  EVT VT = N->getValueType(0);
15224
15225  // Don't create instructions with illegal types after legalize types has run.
15226  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15227  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
15228    return SDValue();
15229
15230  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
15231  if (Subtarget->hasFp256() && VT.is256BitVector() &&
15232      N->getOpcode() == ISD::VECTOR_SHUFFLE)
15233    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
15234
15235  // Only handle 128 wide vector from here on.
15236  if (!VT.is128BitVector())
15237    return SDValue();
15238
15239  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
15240  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
15241  // consecutive, non-overlapping, and in the right order.
15242  SmallVector<SDValue, 16> Elts;
15243  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
15244    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
15245
15246  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
15247}
15248
15249/// PerformTruncateCombine - Converts truncate operation to
15250/// a sequence of vector shuffle operations.
15251/// It is possible when we truncate 256-bit vector to 128-bit vector
15252static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
15253                                      TargetLowering::DAGCombinerInfo &DCI,
15254                                      const X86Subtarget *Subtarget)  {
15255  return SDValue();
15256}
15257
15258/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
15259/// specific shuffle of a load can be folded into a single element load.
15260/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
15261/// shuffles have been customed lowered so we need to handle those here.
15262static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
15263                                         TargetLowering::DAGCombinerInfo &DCI) {
15264  if (DCI.isBeforeLegalizeOps())
15265    return SDValue();
15266
15267  SDValue InVec = N->getOperand(0);
15268  SDValue EltNo = N->getOperand(1);
15269
15270  if (!isa<ConstantSDNode>(EltNo))
15271    return SDValue();
15272
15273  EVT VT = InVec.getValueType();
15274
15275  bool HasShuffleIntoBitcast = false;
15276  if (InVec.getOpcode() == ISD::BITCAST) {
15277    // Don't duplicate a load with other uses.
15278    if (!InVec.hasOneUse())
15279      return SDValue();
15280    EVT BCVT = InVec.getOperand(0).getValueType();
15281    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
15282      return SDValue();
15283    InVec = InVec.getOperand(0);
15284    HasShuffleIntoBitcast = true;
15285  }
15286
15287  if (!isTargetShuffle(InVec.getOpcode()))
15288    return SDValue();
15289
15290  // Don't duplicate a load with other uses.
15291  if (!InVec.hasOneUse())
15292    return SDValue();
15293
15294  SmallVector<int, 16> ShuffleMask;
15295  bool UnaryShuffle;
15296  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
15297                            UnaryShuffle))
15298    return SDValue();
15299
15300  // Select the input vector, guarding against out of range extract vector.
15301  unsigned NumElems = VT.getVectorNumElements();
15302  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
15303  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
15304  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
15305                                         : InVec.getOperand(1);
15306
15307  // If inputs to shuffle are the same for both ops, then allow 2 uses
15308  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
15309
15310  if (LdNode.getOpcode() == ISD::BITCAST) {
15311    // Don't duplicate a load with other uses.
15312    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
15313      return SDValue();
15314
15315    AllowedUses = 1; // only allow 1 load use if we have a bitcast
15316    LdNode = LdNode.getOperand(0);
15317  }
15318
15319  if (!ISD::isNormalLoad(LdNode.getNode()))
15320    return SDValue();
15321
15322  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
15323
15324  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
15325    return SDValue();
15326
15327  if (HasShuffleIntoBitcast) {
15328    // If there's a bitcast before the shuffle, check if the load type and
15329    // alignment is valid.
15330    unsigned Align = LN0->getAlignment();
15331    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15332    unsigned NewAlign = TLI.getDataLayout()->
15333      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
15334
15335    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
15336      return SDValue();
15337  }
15338
15339  // All checks match so transform back to vector_shuffle so that DAG combiner
15340  // can finish the job
15341  SDLoc dl(N);
15342
15343  // Create shuffle node taking into account the case that its a unary shuffle
15344  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
15345  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
15346                                 InVec.getOperand(0), Shuffle,
15347                                 &ShuffleMask[0]);
15348  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
15349  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
15350                     EltNo);
15351}
15352
15353/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
15354/// generation and convert it from being a bunch of shuffles and extracts
15355/// to a simple store and scalar loads to extract the elements.
15356static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
15357                                         TargetLowering::DAGCombinerInfo &DCI) {
15358  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
15359  if (NewOp.getNode())
15360    return NewOp;
15361
15362  SDValue InputVector = N->getOperand(0);
15363  // Detect whether we are trying to convert from mmx to i32 and the bitcast
15364  // from mmx to v2i32 has a single usage.
15365  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
15366      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
15367      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
15368    return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
15369                       N->getValueType(0),
15370                       InputVector.getNode()->getOperand(0));
15371
15372  // Only operate on vectors of 4 elements, where the alternative shuffling
15373  // gets to be more expensive.
15374  if (InputVector.getValueType() != MVT::v4i32)
15375    return SDValue();
15376
15377  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
15378  // single use which is a sign-extend or zero-extend, and all elements are
15379  // used.
15380  SmallVector<SDNode *, 4> Uses;
15381  unsigned ExtractedElements = 0;
15382  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
15383       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
15384    if (UI.getUse().getResNo() != InputVector.getResNo())
15385      return SDValue();
15386
15387    SDNode *Extract = *UI;
15388    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
15389      return SDValue();
15390
15391    if (Extract->getValueType(0) != MVT::i32)
15392      return SDValue();
15393    if (!Extract->hasOneUse())
15394      return SDValue();
15395    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
15396        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
15397      return SDValue();
15398    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
15399      return SDValue();
15400
15401    // Record which element was extracted.
15402    ExtractedElements |=
15403      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
15404
15405    Uses.push_back(Extract);
15406  }
15407
15408  // If not all the elements were used, this may not be worthwhile.
15409  if (ExtractedElements != 15)
15410    return SDValue();
15411
15412  // Ok, we've now decided to do the transformation.
15413  SDLoc dl(InputVector);
15414
15415  // Store the value to a temporary stack slot.
15416  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
15417  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
15418                            MachinePointerInfo(), false, false, 0);
15419
15420  // Replace each use (extract) with a load of the appropriate element.
15421  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
15422       UE = Uses.end(); UI != UE; ++UI) {
15423    SDNode *Extract = *UI;
15424
15425    // cOMpute the element's address.
15426    SDValue Idx = Extract->getOperand(1);
15427    unsigned EltSize =
15428        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
15429    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
15430    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15431    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
15432
15433    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
15434                                     StackPtr, OffsetVal);
15435
15436    // Load the scalar.
15437    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
15438                                     ScalarAddr, MachinePointerInfo(),
15439                                     false, false, false, 0);
15440
15441    // Replace the exact with the load.
15442    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
15443  }
15444
15445  // The replacement was made in place; don't return anything.
15446  return SDValue();
15447}
15448
15449/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
15450static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
15451                                   SDValue RHS, SelectionDAG &DAG,
15452                                   const X86Subtarget *Subtarget) {
15453  if (!VT.isVector())
15454    return 0;
15455
15456  switch (VT.getSimpleVT().SimpleTy) {
15457  default: return 0;
15458  case MVT::v32i8:
15459  case MVT::v16i16:
15460  case MVT::v8i32:
15461    if (!Subtarget->hasAVX2())
15462      return 0;
15463  case MVT::v16i8:
15464  case MVT::v8i16:
15465  case MVT::v4i32:
15466    if (!Subtarget->hasSSE2())
15467      return 0;
15468  }
15469
15470  // SSE2 has only a small subset of the operations.
15471  bool hasUnsigned = Subtarget->hasSSE41() ||
15472                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
15473  bool hasSigned = Subtarget->hasSSE41() ||
15474                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
15475
15476  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15477
15478  // Check for x CC y ? x : y.
15479  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15480      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15481    switch (CC) {
15482    default: break;
15483    case ISD::SETULT:
15484    case ISD::SETULE:
15485      return hasUnsigned ? X86ISD::UMIN : 0;
15486    case ISD::SETUGT:
15487    case ISD::SETUGE:
15488      return hasUnsigned ? X86ISD::UMAX : 0;
15489    case ISD::SETLT:
15490    case ISD::SETLE:
15491      return hasSigned ? X86ISD::SMIN : 0;
15492    case ISD::SETGT:
15493    case ISD::SETGE:
15494      return hasSigned ? X86ISD::SMAX : 0;
15495    }
15496  // Check for x CC y ? y : x -- a min/max with reversed arms.
15497  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15498             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15499    switch (CC) {
15500    default: break;
15501    case ISD::SETULT:
15502    case ISD::SETULE:
15503      return hasUnsigned ? X86ISD::UMAX : 0;
15504    case ISD::SETUGT:
15505    case ISD::SETUGE:
15506      return hasUnsigned ? X86ISD::UMIN : 0;
15507    case ISD::SETLT:
15508    case ISD::SETLE:
15509      return hasSigned ? X86ISD::SMAX : 0;
15510    case ISD::SETGT:
15511    case ISD::SETGE:
15512      return hasSigned ? X86ISD::SMIN : 0;
15513    }
15514  }
15515
15516  return 0;
15517}
15518
15519/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
15520/// nodes.
15521static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
15522                                    TargetLowering::DAGCombinerInfo &DCI,
15523                                    const X86Subtarget *Subtarget) {
15524  SDLoc DL(N);
15525  SDValue Cond = N->getOperand(0);
15526  // Get the LHS/RHS of the select.
15527  SDValue LHS = N->getOperand(1);
15528  SDValue RHS = N->getOperand(2);
15529  EVT VT = LHS.getValueType();
15530
15531  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
15532  // instructions match the semantics of the common C idiom x<y?x:y but not
15533  // x<=y?x:y, because of how they handle negative zero (which can be
15534  // ignored in unsafe-math mode).
15535  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
15536      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
15537      (Subtarget->hasSSE2() ||
15538       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
15539    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15540
15541    unsigned Opcode = 0;
15542    // Check for x CC y ? x : y.
15543    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15544        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15545      switch (CC) {
15546      default: break;
15547      case ISD::SETULT:
15548        // Converting this to a min would handle NaNs incorrectly, and swapping
15549        // the operands would cause it to handle comparisons between positive
15550        // and negative zero incorrectly.
15551        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15552          if (!DAG.getTarget().Options.UnsafeFPMath &&
15553              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15554            break;
15555          std::swap(LHS, RHS);
15556        }
15557        Opcode = X86ISD::FMIN;
15558        break;
15559      case ISD::SETOLE:
15560        // Converting this to a min would handle comparisons between positive
15561        // and negative zero incorrectly.
15562        if (!DAG.getTarget().Options.UnsafeFPMath &&
15563            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15564          break;
15565        Opcode = X86ISD::FMIN;
15566        break;
15567      case ISD::SETULE:
15568        // Converting this to a min would handle both negative zeros and NaNs
15569        // incorrectly, but we can swap the operands to fix both.
15570        std::swap(LHS, RHS);
15571      case ISD::SETOLT:
15572      case ISD::SETLT:
15573      case ISD::SETLE:
15574        Opcode = X86ISD::FMIN;
15575        break;
15576
15577      case ISD::SETOGE:
15578        // Converting this to a max would handle comparisons between positive
15579        // and negative zero incorrectly.
15580        if (!DAG.getTarget().Options.UnsafeFPMath &&
15581            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15582          break;
15583        Opcode = X86ISD::FMAX;
15584        break;
15585      case ISD::SETUGT:
15586        // Converting this to a max would handle NaNs incorrectly, and swapping
15587        // the operands would cause it to handle comparisons between positive
15588        // and negative zero incorrectly.
15589        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15590          if (!DAG.getTarget().Options.UnsafeFPMath &&
15591              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15592            break;
15593          std::swap(LHS, RHS);
15594        }
15595        Opcode = X86ISD::FMAX;
15596        break;
15597      case ISD::SETUGE:
15598        // Converting this to a max would handle both negative zeros and NaNs
15599        // incorrectly, but we can swap the operands to fix both.
15600        std::swap(LHS, RHS);
15601      case ISD::SETOGT:
15602      case ISD::SETGT:
15603      case ISD::SETGE:
15604        Opcode = X86ISD::FMAX;
15605        break;
15606      }
15607    // Check for x CC y ? y : x -- a min/max with reversed arms.
15608    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15609               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15610      switch (CC) {
15611      default: break;
15612      case ISD::SETOGE:
15613        // Converting this to a min would handle comparisons between positive
15614        // and negative zero incorrectly, and swapping the operands would
15615        // cause it to handle NaNs incorrectly.
15616        if (!DAG.getTarget().Options.UnsafeFPMath &&
15617            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
15618          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15619            break;
15620          std::swap(LHS, RHS);
15621        }
15622        Opcode = X86ISD::FMIN;
15623        break;
15624      case ISD::SETUGT:
15625        // Converting this to a min would handle NaNs incorrectly.
15626        if (!DAG.getTarget().Options.UnsafeFPMath &&
15627            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
15628          break;
15629        Opcode = X86ISD::FMIN;
15630        break;
15631      case ISD::SETUGE:
15632        // Converting this to a min would handle both negative zeros and NaNs
15633        // incorrectly, but we can swap the operands to fix both.
15634        std::swap(LHS, RHS);
15635      case ISD::SETOGT:
15636      case ISD::SETGT:
15637      case ISD::SETGE:
15638        Opcode = X86ISD::FMIN;
15639        break;
15640
15641      case ISD::SETULT:
15642        // Converting this to a max would handle NaNs incorrectly.
15643        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15644          break;
15645        Opcode = X86ISD::FMAX;
15646        break;
15647      case ISD::SETOLE:
15648        // Converting this to a max would handle comparisons between positive
15649        // and negative zero incorrectly, and swapping the operands would
15650        // cause it to handle NaNs incorrectly.
15651        if (!DAG.getTarget().Options.UnsafeFPMath &&
15652            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
15653          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15654            break;
15655          std::swap(LHS, RHS);
15656        }
15657        Opcode = X86ISD::FMAX;
15658        break;
15659      case ISD::SETULE:
15660        // Converting this to a max would handle both negative zeros and NaNs
15661        // incorrectly, but we can swap the operands to fix both.
15662        std::swap(LHS, RHS);
15663      case ISD::SETOLT:
15664      case ISD::SETLT:
15665      case ISD::SETLE:
15666        Opcode = X86ISD::FMAX;
15667        break;
15668      }
15669    }
15670
15671    if (Opcode)
15672      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
15673  }
15674
15675  // If this is a select between two integer constants, try to do some
15676  // optimizations.
15677  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
15678    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
15679      // Don't do this for crazy integer types.
15680      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
15681        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
15682        // so that TrueC (the true value) is larger than FalseC.
15683        bool NeedsCondInvert = false;
15684
15685        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
15686            // Efficiently invertible.
15687            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
15688             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
15689              isa<ConstantSDNode>(Cond.getOperand(1))))) {
15690          NeedsCondInvert = true;
15691          std::swap(TrueC, FalseC);
15692        }
15693
15694        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
15695        if (FalseC->getAPIntValue() == 0 &&
15696            TrueC->getAPIntValue().isPowerOf2()) {
15697          if (NeedsCondInvert) // Invert the condition if needed.
15698            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15699                               DAG.getConstant(1, Cond.getValueType()));
15700
15701          // Zero extend the condition if needed.
15702          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
15703
15704          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15705          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
15706                             DAG.getConstant(ShAmt, MVT::i8));
15707        }
15708
15709        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
15710        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15711          if (NeedsCondInvert) // Invert the condition if needed.
15712            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15713                               DAG.getConstant(1, Cond.getValueType()));
15714
15715          // Zero extend the condition if needed.
15716          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15717                             FalseC->getValueType(0), Cond);
15718          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15719                             SDValue(FalseC, 0));
15720        }
15721
15722        // Optimize cases that will turn into an LEA instruction.  This requires
15723        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15724        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15725          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15726          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15727
15728          bool isFastMultiplier = false;
15729          if (Diff < 10) {
15730            switch ((unsigned char)Diff) {
15731              default: break;
15732              case 1:  // result = add base, cond
15733              case 2:  // result = lea base(    , cond*2)
15734              case 3:  // result = lea base(cond, cond*2)
15735              case 4:  // result = lea base(    , cond*4)
15736              case 5:  // result = lea base(cond, cond*4)
15737              case 8:  // result = lea base(    , cond*8)
15738              case 9:  // result = lea base(cond, cond*8)
15739                isFastMultiplier = true;
15740                break;
15741            }
15742          }
15743
15744          if (isFastMultiplier) {
15745            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15746            if (NeedsCondInvert) // Invert the condition if needed.
15747              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15748                                 DAG.getConstant(1, Cond.getValueType()));
15749
15750            // Zero extend the condition if needed.
15751            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15752                               Cond);
15753            // Scale the condition by the difference.
15754            if (Diff != 1)
15755              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15756                                 DAG.getConstant(Diff, Cond.getValueType()));
15757
15758            // Add the base if non-zero.
15759            if (FalseC->getAPIntValue() != 0)
15760              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15761                                 SDValue(FalseC, 0));
15762            return Cond;
15763          }
15764        }
15765      }
15766  }
15767
15768  // Canonicalize max and min:
15769  // (x > y) ? x : y -> (x >= y) ? x : y
15770  // (x < y) ? x : y -> (x <= y) ? x : y
15771  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
15772  // the need for an extra compare
15773  // against zero. e.g.
15774  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
15775  // subl   %esi, %edi
15776  // testl  %edi, %edi
15777  // movl   $0, %eax
15778  // cmovgl %edi, %eax
15779  // =>
15780  // xorl   %eax, %eax
15781  // subl   %esi, $edi
15782  // cmovsl %eax, %edi
15783  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
15784      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15785      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15786    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15787    switch (CC) {
15788    default: break;
15789    case ISD::SETLT:
15790    case ISD::SETGT: {
15791      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
15792      Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
15793                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
15794      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
15795    }
15796    }
15797  }
15798
15799  // Match VSELECTs into subs with unsigned saturation.
15800  if (!DCI.isBeforeLegalize() &&
15801      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
15802      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
15803      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
15804       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
15805    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15806
15807    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
15808    // left side invert the predicate to simplify logic below.
15809    SDValue Other;
15810    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
15811      Other = RHS;
15812      CC = ISD::getSetCCInverse(CC, true);
15813    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
15814      Other = LHS;
15815    }
15816
15817    if (Other.getNode() && Other->getNumOperands() == 2 &&
15818        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
15819      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
15820      SDValue CondRHS = Cond->getOperand(1);
15821
15822      // Look for a general sub with unsigned saturation first.
15823      // x >= y ? x-y : 0 --> subus x, y
15824      // x >  y ? x-y : 0 --> subus x, y
15825      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
15826          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
15827        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15828
15829      // If the RHS is a constant we have to reverse the const canonicalization.
15830      // x > C-1 ? x+-C : 0 --> subus x, C
15831      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
15832          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
15833        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15834        if (CondRHS.getConstantOperandVal(0) == -A-1)
15835          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
15836                             DAG.getConstant(-A, VT));
15837      }
15838
15839      // Another special case: If C was a sign bit, the sub has been
15840      // canonicalized into a xor.
15841      // FIXME: Would it be better to use ComputeMaskedBits to determine whether
15842      //        it's safe to decanonicalize the xor?
15843      // x s< 0 ? x^C : 0 --> subus x, C
15844      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
15845          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
15846          isSplatVector(OpRHS.getNode())) {
15847        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15848        if (A.isSignBit())
15849          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15850      }
15851    }
15852  }
15853
15854  // Try to match a min/max vector operation.
15855  if (!DCI.isBeforeLegalize() &&
15856      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC)
15857    if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget))
15858      return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS);
15859
15860  // Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
15861  if (!DCI.isBeforeLegalize() && N->getOpcode() == ISD::VSELECT &&
15862      Cond.getOpcode() == ISD::SETCC) {
15863
15864    assert(Cond.getValueType().isVector() &&
15865           "vector select expects a vector selector!");
15866
15867    EVT IntVT = Cond.getValueType();
15868    bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
15869    bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
15870
15871    if (!TValIsAllOnes && !FValIsAllZeros) {
15872      // Try invert the condition if true value is not all 1s and false value
15873      // is not all 0s.
15874      bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
15875      bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
15876
15877      if (TValIsAllZeros || FValIsAllOnes) {
15878        SDValue CC = Cond.getOperand(2);
15879        ISD::CondCode NewCC =
15880          ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
15881                               Cond.getOperand(0).getValueType().isInteger());
15882        Cond = DAG.getSetCC(DL, IntVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
15883        std::swap(LHS, RHS);
15884        TValIsAllOnes = FValIsAllOnes;
15885        FValIsAllZeros = TValIsAllZeros;
15886      }
15887    }
15888
15889    if (TValIsAllOnes || FValIsAllZeros) {
15890      SDValue Ret;
15891
15892      if (TValIsAllOnes && FValIsAllZeros)
15893        Ret = Cond;
15894      else if (TValIsAllOnes)
15895        Ret = DAG.getNode(ISD::OR, DL, IntVT, Cond,
15896                          DAG.getNode(ISD::BITCAST, DL, IntVT, RHS));
15897      else if (FValIsAllZeros)
15898        Ret = DAG.getNode(ISD::AND, DL, IntVT, Cond,
15899                          DAG.getNode(ISD::BITCAST, DL, IntVT, LHS));
15900
15901      return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
15902    }
15903  }
15904
15905  // If we know that this node is legal then we know that it is going to be
15906  // matched by one of the SSE/AVX BLEND instructions. These instructions only
15907  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
15908  // to simplify previous instructions.
15909  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15910  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
15911      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
15912    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
15913
15914    // Don't optimize vector selects that map to mask-registers.
15915    if (BitWidth == 1)
15916      return SDValue();
15917
15918    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
15919    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
15920
15921    APInt KnownZero, KnownOne;
15922    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
15923                                          DCI.isBeforeLegalizeOps());
15924    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
15925        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
15926      DCI.CommitTargetLoweringOpt(TLO);
15927  }
15928
15929  return SDValue();
15930}
15931
15932// Check whether a boolean test is testing a boolean value generated by
15933// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
15934// code.
15935//
15936// Simplify the following patterns:
15937// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
15938// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
15939// to (Op EFLAGS Cond)
15940//
15941// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
15942// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
15943// to (Op EFLAGS !Cond)
15944//
15945// where Op could be BRCOND or CMOV.
15946//
15947static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
15948  // Quit if not CMP and SUB with its value result used.
15949  if (Cmp.getOpcode() != X86ISD::CMP &&
15950      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
15951      return SDValue();
15952
15953  // Quit if not used as a boolean value.
15954  if (CC != X86::COND_E && CC != X86::COND_NE)
15955    return SDValue();
15956
15957  // Check CMP operands. One of them should be 0 or 1 and the other should be
15958  // an SetCC or extended from it.
15959  SDValue Op1 = Cmp.getOperand(0);
15960  SDValue Op2 = Cmp.getOperand(1);
15961
15962  SDValue SetCC;
15963  const ConstantSDNode* C = 0;
15964  bool needOppositeCond = (CC == X86::COND_E);
15965  bool checkAgainstTrue = false; // Is it a comparison against 1?
15966
15967  if ((C = dyn_cast<ConstantSDNode>(Op1)))
15968    SetCC = Op2;
15969  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
15970    SetCC = Op1;
15971  else // Quit if all operands are not constants.
15972    return SDValue();
15973
15974  if (C->getZExtValue() == 1) {
15975    needOppositeCond = !needOppositeCond;
15976    checkAgainstTrue = true;
15977  } else if (C->getZExtValue() != 0)
15978    // Quit if the constant is neither 0 or 1.
15979    return SDValue();
15980
15981  bool truncatedToBoolWithAnd = false;
15982  // Skip (zext $x), (trunc $x), or (and $x, 1) node.
15983  while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
15984         SetCC.getOpcode() == ISD::TRUNCATE ||
15985         SetCC.getOpcode() == ISD::AND) {
15986    if (SetCC.getOpcode() == ISD::AND) {
15987      int OpIdx = -1;
15988      ConstantSDNode *CS;
15989      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
15990          CS->getZExtValue() == 1)
15991        OpIdx = 1;
15992      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
15993          CS->getZExtValue() == 1)
15994        OpIdx = 0;
15995      if (OpIdx == -1)
15996        break;
15997      SetCC = SetCC.getOperand(OpIdx);
15998      truncatedToBoolWithAnd = true;
15999    } else
16000      SetCC = SetCC.getOperand(0);
16001  }
16002
16003  switch (SetCC.getOpcode()) {
16004  case X86ISD::SETCC_CARRY:
16005    // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
16006    // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
16007    // i.e. it's a comparison against true but the result of SETCC_CARRY is not
16008    // truncated to i1 using 'and'.
16009    if (checkAgainstTrue && !truncatedToBoolWithAnd)
16010      break;
16011    assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
16012           "Invalid use of SETCC_CARRY!");
16013    // FALL THROUGH
16014  case X86ISD::SETCC:
16015    // Set the condition code or opposite one if necessary.
16016    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
16017    if (needOppositeCond)
16018      CC = X86::GetOppositeBranchCondition(CC);
16019    return SetCC.getOperand(1);
16020  case X86ISD::CMOV: {
16021    // Check whether false/true value has canonical one, i.e. 0 or 1.
16022    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
16023    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
16024    // Quit if true value is not a constant.
16025    if (!TVal)
16026      return SDValue();
16027    // Quit if false value is not a constant.
16028    if (!FVal) {
16029      SDValue Op = SetCC.getOperand(0);
16030      // Skip 'zext' or 'trunc' node.
16031      if (Op.getOpcode() == ISD::ZERO_EXTEND ||
16032          Op.getOpcode() == ISD::TRUNCATE)
16033        Op = Op.getOperand(0);
16034      // A special case for rdrand/rdseed, where 0 is set if false cond is
16035      // found.
16036      if ((Op.getOpcode() != X86ISD::RDRAND &&
16037           Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
16038        return SDValue();
16039    }
16040    // Quit if false value is not the constant 0 or 1.
16041    bool FValIsFalse = true;
16042    if (FVal && FVal->getZExtValue() != 0) {
16043      if (FVal->getZExtValue() != 1)
16044        return SDValue();
16045      // If FVal is 1, opposite cond is needed.
16046      needOppositeCond = !needOppositeCond;
16047      FValIsFalse = false;
16048    }
16049    // Quit if TVal is not the constant opposite of FVal.
16050    if (FValIsFalse && TVal->getZExtValue() != 1)
16051      return SDValue();
16052    if (!FValIsFalse && TVal->getZExtValue() != 0)
16053      return SDValue();
16054    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
16055    if (needOppositeCond)
16056      CC = X86::GetOppositeBranchCondition(CC);
16057    return SetCC.getOperand(3);
16058  }
16059  }
16060
16061  return SDValue();
16062}
16063
16064/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
16065static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
16066                                  TargetLowering::DAGCombinerInfo &DCI,
16067                                  const X86Subtarget *Subtarget) {
16068  SDLoc DL(N);
16069
16070  // If the flag operand isn't dead, don't touch this CMOV.
16071  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
16072    return SDValue();
16073
16074  SDValue FalseOp = N->getOperand(0);
16075  SDValue TrueOp = N->getOperand(1);
16076  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
16077  SDValue Cond = N->getOperand(3);
16078
16079  if (CC == X86::COND_E || CC == X86::COND_NE) {
16080    switch (Cond.getOpcode()) {
16081    default: break;
16082    case X86ISD::BSR:
16083    case X86ISD::BSF:
16084      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
16085      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
16086        return (CC == X86::COND_E) ? FalseOp : TrueOp;
16087    }
16088  }
16089
16090  SDValue Flags;
16091
16092  Flags = checkBoolTestSetCCCombine(Cond, CC);
16093  if (Flags.getNode() &&
16094      // Extra check as FCMOV only supports a subset of X86 cond.
16095      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
16096    SDValue Ops[] = { FalseOp, TrueOp,
16097                      DAG.getConstant(CC, MVT::i8), Flags };
16098    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
16099                       Ops, array_lengthof(Ops));
16100  }
16101
16102  // If this is a select between two integer constants, try to do some
16103  // optimizations.  Note that the operands are ordered the opposite of SELECT
16104  // operands.
16105  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
16106    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
16107      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
16108      // larger than FalseC (the false value).
16109      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
16110        CC = X86::GetOppositeBranchCondition(CC);
16111        std::swap(TrueC, FalseC);
16112        std::swap(TrueOp, FalseOp);
16113      }
16114
16115      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
16116      // This is efficient for any integer data type (including i8/i16) and
16117      // shift amount.
16118      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
16119        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
16120                           DAG.getConstant(CC, MVT::i8), Cond);
16121
16122        // Zero extend the condition if needed.
16123        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
16124
16125        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
16126        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
16127                           DAG.getConstant(ShAmt, MVT::i8));
16128        if (N->getNumValues() == 2)  // Dead flag value?
16129          return DCI.CombineTo(N, Cond, SDValue());
16130        return Cond;
16131      }
16132
16133      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
16134      // for any integer data type, including i8/i16.
16135      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
16136        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
16137                           DAG.getConstant(CC, MVT::i8), Cond);
16138
16139        // Zero extend the condition if needed.
16140        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
16141                           FalseC->getValueType(0), Cond);
16142        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16143                           SDValue(FalseC, 0));
16144
16145        if (N->getNumValues() == 2)  // Dead flag value?
16146          return DCI.CombineTo(N, Cond, SDValue());
16147        return Cond;
16148      }
16149
16150      // Optimize cases that will turn into an LEA instruction.  This requires
16151      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
16152      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
16153        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
16154        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
16155
16156        bool isFastMultiplier = false;
16157        if (Diff < 10) {
16158          switch ((unsigned char)Diff) {
16159          default: break;
16160          case 1:  // result = add base, cond
16161          case 2:  // result = lea base(    , cond*2)
16162          case 3:  // result = lea base(cond, cond*2)
16163          case 4:  // result = lea base(    , cond*4)
16164          case 5:  // result = lea base(cond, cond*4)
16165          case 8:  // result = lea base(    , cond*8)
16166          case 9:  // result = lea base(cond, cond*8)
16167            isFastMultiplier = true;
16168            break;
16169          }
16170        }
16171
16172        if (isFastMultiplier) {
16173          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
16174          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
16175                             DAG.getConstant(CC, MVT::i8), Cond);
16176          // Zero extend the condition if needed.
16177          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
16178                             Cond);
16179          // Scale the condition by the difference.
16180          if (Diff != 1)
16181            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
16182                               DAG.getConstant(Diff, Cond.getValueType()));
16183
16184          // Add the base if non-zero.
16185          if (FalseC->getAPIntValue() != 0)
16186            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16187                               SDValue(FalseC, 0));
16188          if (N->getNumValues() == 2)  // Dead flag value?
16189            return DCI.CombineTo(N, Cond, SDValue());
16190          return Cond;
16191        }
16192      }
16193    }
16194  }
16195
16196  // Handle these cases:
16197  //   (select (x != c), e, c) -> select (x != c), e, x),
16198  //   (select (x == c), c, e) -> select (x == c), x, e)
16199  // where the c is an integer constant, and the "select" is the combination
16200  // of CMOV and CMP.
16201  //
16202  // The rationale for this change is that the conditional-move from a constant
16203  // needs two instructions, however, conditional-move from a register needs
16204  // only one instruction.
16205  //
16206  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
16207  //  some instruction-combining opportunities. This opt needs to be
16208  //  postponed as late as possible.
16209  //
16210  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
16211    // the DCI.xxxx conditions are provided to postpone the optimization as
16212    // late as possible.
16213
16214    ConstantSDNode *CmpAgainst = 0;
16215    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
16216        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
16217        !isa<ConstantSDNode>(Cond.getOperand(0))) {
16218
16219      if (CC == X86::COND_NE &&
16220          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
16221        CC = X86::GetOppositeBranchCondition(CC);
16222        std::swap(TrueOp, FalseOp);
16223      }
16224
16225      if (CC == X86::COND_E &&
16226          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
16227        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
16228                          DAG.getConstant(CC, MVT::i8), Cond };
16229        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
16230                           array_lengthof(Ops));
16231      }
16232    }
16233  }
16234
16235  return SDValue();
16236}
16237
16238/// PerformMulCombine - Optimize a single multiply with constant into two
16239/// in order to implement it with two cheaper instructions, e.g.
16240/// LEA + SHL, LEA + LEA.
16241static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
16242                                 TargetLowering::DAGCombinerInfo &DCI) {
16243  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
16244    return SDValue();
16245
16246  EVT VT = N->getValueType(0);
16247  if (VT != MVT::i64)
16248    return SDValue();
16249
16250  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
16251  if (!C)
16252    return SDValue();
16253  uint64_t MulAmt = C->getZExtValue();
16254  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
16255    return SDValue();
16256
16257  uint64_t MulAmt1 = 0;
16258  uint64_t MulAmt2 = 0;
16259  if ((MulAmt % 9) == 0) {
16260    MulAmt1 = 9;
16261    MulAmt2 = MulAmt / 9;
16262  } else if ((MulAmt % 5) == 0) {
16263    MulAmt1 = 5;
16264    MulAmt2 = MulAmt / 5;
16265  } else if ((MulAmt % 3) == 0) {
16266    MulAmt1 = 3;
16267    MulAmt2 = MulAmt / 3;
16268  }
16269  if (MulAmt2 &&
16270      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
16271    SDLoc DL(N);
16272
16273    if (isPowerOf2_64(MulAmt2) &&
16274        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
16275      // If second multiplifer is pow2, issue it first. We want the multiply by
16276      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
16277      // is an add.
16278      std::swap(MulAmt1, MulAmt2);
16279
16280    SDValue NewMul;
16281    if (isPowerOf2_64(MulAmt1))
16282      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16283                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
16284    else
16285      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
16286                           DAG.getConstant(MulAmt1, VT));
16287
16288    if (isPowerOf2_64(MulAmt2))
16289      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
16290                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
16291    else
16292      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
16293                           DAG.getConstant(MulAmt2, VT));
16294
16295    // Do not add new nodes to DAG combiner worklist.
16296    DCI.CombineTo(N, NewMul, false);
16297  }
16298  return SDValue();
16299}
16300
16301static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
16302  SDValue N0 = N->getOperand(0);
16303  SDValue N1 = N->getOperand(1);
16304  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
16305  EVT VT = N0.getValueType();
16306
16307  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
16308  // since the result of setcc_c is all zero's or all ones.
16309  if (VT.isInteger() && !VT.isVector() &&
16310      N1C && N0.getOpcode() == ISD::AND &&
16311      N0.getOperand(1).getOpcode() == ISD::Constant) {
16312    SDValue N00 = N0.getOperand(0);
16313    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
16314        ((N00.getOpcode() == ISD::ANY_EXTEND ||
16315          N00.getOpcode() == ISD::ZERO_EXTEND) &&
16316         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
16317      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
16318      APInt ShAmt = N1C->getAPIntValue();
16319      Mask = Mask.shl(ShAmt);
16320      if (Mask != 0)
16321        return DAG.getNode(ISD::AND, SDLoc(N), VT,
16322                           N00, DAG.getConstant(Mask, VT));
16323    }
16324  }
16325
16326  // Hardware support for vector shifts is sparse which makes us scalarize the
16327  // vector operations in many cases. Also, on sandybridge ADD is faster than
16328  // shl.
16329  // (shl V, 1) -> add V,V
16330  if (isSplatVector(N1.getNode())) {
16331    assert(N0.getValueType().isVector() && "Invalid vector shift type");
16332    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
16333    // We shift all of the values by one. In many cases we do not have
16334    // hardware support for this operation. This is better expressed as an ADD
16335    // of two values.
16336    if (N1C && (1 == N1C->getZExtValue())) {
16337      return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
16338    }
16339  }
16340
16341  return SDValue();
16342}
16343
16344/// \brief Returns a vector of 0s if the node in input is a vector logical
16345/// shift by a constant amount which is known to be bigger than or equal
16346/// to the vector element size in bits.
16347static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
16348                                      const X86Subtarget *Subtarget) {
16349  EVT VT = N->getValueType(0);
16350
16351  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
16352      (!Subtarget->hasInt256() ||
16353       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
16354    return SDValue();
16355
16356  SDValue Amt = N->getOperand(1);
16357  SDLoc DL(N);
16358  if (isSplatVector(Amt.getNode())) {
16359    SDValue SclrAmt = Amt->getOperand(0);
16360    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
16361      APInt ShiftAmt = C->getAPIntValue();
16362      unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
16363
16364      // SSE2/AVX2 logical shifts always return a vector of 0s
16365      // if the shift amount is bigger than or equal to
16366      // the element size. The constant shift amount will be
16367      // encoded as a 8-bit immediate.
16368      if (ShiftAmt.trunc(8).uge(MaxAmount))
16369        return getZeroVector(VT, Subtarget, DAG, DL);
16370    }
16371  }
16372
16373  return SDValue();
16374}
16375
16376/// PerformShiftCombine - Combine shifts.
16377static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
16378                                   TargetLowering::DAGCombinerInfo &DCI,
16379                                   const X86Subtarget *Subtarget) {
16380  if (N->getOpcode() == ISD::SHL) {
16381    SDValue V = PerformSHLCombine(N, DAG);
16382    if (V.getNode()) return V;
16383  }
16384
16385  if (N->getOpcode() != ISD::SRA) {
16386    // Try to fold this logical shift into a zero vector.
16387    SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
16388    if (V.getNode()) return V;
16389  }
16390
16391  return SDValue();
16392}
16393
16394// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
16395// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
16396// and friends.  Likewise for OR -> CMPNEQSS.
16397static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
16398                            TargetLowering::DAGCombinerInfo &DCI,
16399                            const X86Subtarget *Subtarget) {
16400  unsigned opcode;
16401
16402  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
16403  // we're requiring SSE2 for both.
16404  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
16405    SDValue N0 = N->getOperand(0);
16406    SDValue N1 = N->getOperand(1);
16407    SDValue CMP0 = N0->getOperand(1);
16408    SDValue CMP1 = N1->getOperand(1);
16409    SDLoc DL(N);
16410
16411    // The SETCCs should both refer to the same CMP.
16412    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
16413      return SDValue();
16414
16415    SDValue CMP00 = CMP0->getOperand(0);
16416    SDValue CMP01 = CMP0->getOperand(1);
16417    EVT     VT    = CMP00.getValueType();
16418
16419    if (VT == MVT::f32 || VT == MVT::f64) {
16420      bool ExpectingFlags = false;
16421      // Check for any users that want flags:
16422      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
16423           !ExpectingFlags && UI != UE; ++UI)
16424        switch (UI->getOpcode()) {
16425        default:
16426        case ISD::BR_CC:
16427        case ISD::BRCOND:
16428        case ISD::SELECT:
16429          ExpectingFlags = true;
16430          break;
16431        case ISD::CopyToReg:
16432        case ISD::SIGN_EXTEND:
16433        case ISD::ZERO_EXTEND:
16434        case ISD::ANY_EXTEND:
16435          break;
16436        }
16437
16438      if (!ExpectingFlags) {
16439        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
16440        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
16441
16442        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
16443          X86::CondCode tmp = cc0;
16444          cc0 = cc1;
16445          cc1 = tmp;
16446        }
16447
16448        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
16449            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
16450          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
16451          X86ISD::NodeType NTOperator = is64BitFP ?
16452            X86ISD::FSETCCsd : X86ISD::FSETCCss;
16453          // FIXME: need symbolic constants for these magic numbers.
16454          // See X86ATTInstPrinter.cpp:printSSECC().
16455          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
16456          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
16457                                              DAG.getConstant(x86cc, MVT::i8));
16458          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
16459                                              OnesOrZeroesF);
16460          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
16461                                      DAG.getConstant(1, MVT::i32));
16462          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
16463          return OneBitOfTruth;
16464        }
16465      }
16466    }
16467  }
16468  return SDValue();
16469}
16470
16471/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
16472/// so it can be folded inside ANDNP.
16473static bool CanFoldXORWithAllOnes(const SDNode *N) {
16474  EVT VT = N->getValueType(0);
16475
16476  // Match direct AllOnes for 128 and 256-bit vectors
16477  if (ISD::isBuildVectorAllOnes(N))
16478    return true;
16479
16480  // Look through a bit convert.
16481  if (N->getOpcode() == ISD::BITCAST)
16482    N = N->getOperand(0).getNode();
16483
16484  // Sometimes the operand may come from a insert_subvector building a 256-bit
16485  // allones vector
16486  if (VT.is256BitVector() &&
16487      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
16488    SDValue V1 = N->getOperand(0);
16489    SDValue V2 = N->getOperand(1);
16490
16491    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
16492        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
16493        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
16494        ISD::isBuildVectorAllOnes(V2.getNode()))
16495      return true;
16496  }
16497
16498  return false;
16499}
16500
16501// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
16502// register. In most cases we actually compare or select YMM-sized registers
16503// and mixing the two types creates horrible code. This method optimizes
16504// some of the transition sequences.
16505static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
16506                                 TargetLowering::DAGCombinerInfo &DCI,
16507                                 const X86Subtarget *Subtarget) {
16508  EVT VT = N->getValueType(0);
16509  if (!VT.is256BitVector())
16510    return SDValue();
16511
16512  assert((N->getOpcode() == ISD::ANY_EXTEND ||
16513          N->getOpcode() == ISD::ZERO_EXTEND ||
16514          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
16515
16516  SDValue Narrow = N->getOperand(0);
16517  EVT NarrowVT = Narrow->getValueType(0);
16518  if (!NarrowVT.is128BitVector())
16519    return SDValue();
16520
16521  if (Narrow->getOpcode() != ISD::XOR &&
16522      Narrow->getOpcode() != ISD::AND &&
16523      Narrow->getOpcode() != ISD::OR)
16524    return SDValue();
16525
16526  SDValue N0  = Narrow->getOperand(0);
16527  SDValue N1  = Narrow->getOperand(1);
16528  SDLoc DL(Narrow);
16529
16530  // The Left side has to be a trunc.
16531  if (N0.getOpcode() != ISD::TRUNCATE)
16532    return SDValue();
16533
16534  // The type of the truncated inputs.
16535  EVT WideVT = N0->getOperand(0)->getValueType(0);
16536  if (WideVT != VT)
16537    return SDValue();
16538
16539  // The right side has to be a 'trunc' or a constant vector.
16540  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
16541  bool RHSConst = (isSplatVector(N1.getNode()) &&
16542                   isa<ConstantSDNode>(N1->getOperand(0)));
16543  if (!RHSTrunc && !RHSConst)
16544    return SDValue();
16545
16546  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16547
16548  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
16549    return SDValue();
16550
16551  // Set N0 and N1 to hold the inputs to the new wide operation.
16552  N0 = N0->getOperand(0);
16553  if (RHSConst) {
16554    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
16555                     N1->getOperand(0));
16556    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
16557    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
16558  } else if (RHSTrunc) {
16559    N1 = N1->getOperand(0);
16560  }
16561
16562  // Generate the wide operation.
16563  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
16564  unsigned Opcode = N->getOpcode();
16565  switch (Opcode) {
16566  case ISD::ANY_EXTEND:
16567    return Op;
16568  case ISD::ZERO_EXTEND: {
16569    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
16570    APInt Mask = APInt::getAllOnesValue(InBits);
16571    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
16572    return DAG.getNode(ISD::AND, DL, VT,
16573                       Op, DAG.getConstant(Mask, VT));
16574  }
16575  case ISD::SIGN_EXTEND:
16576    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
16577                       Op, DAG.getValueType(NarrowVT));
16578  default:
16579    llvm_unreachable("Unexpected opcode");
16580  }
16581}
16582
16583static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
16584                                 TargetLowering::DAGCombinerInfo &DCI,
16585                                 const X86Subtarget *Subtarget) {
16586  EVT VT = N->getValueType(0);
16587  if (DCI.isBeforeLegalizeOps())
16588    return SDValue();
16589
16590  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16591  if (R.getNode())
16592    return R;
16593
16594  // Create BLSI, and BLSR instructions
16595  // BLSI is X & (-X)
16596  // BLSR is X & (X-1)
16597  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
16598    SDValue N0 = N->getOperand(0);
16599    SDValue N1 = N->getOperand(1);
16600    SDLoc DL(N);
16601
16602    // Check LHS for neg
16603    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
16604        isZero(N0.getOperand(0)))
16605      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
16606
16607    // Check RHS for neg
16608    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
16609        isZero(N1.getOperand(0)))
16610      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
16611
16612    // Check LHS for X-1
16613    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16614        isAllOnes(N0.getOperand(1)))
16615      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
16616
16617    // Check RHS for X-1
16618    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16619        isAllOnes(N1.getOperand(1)))
16620      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
16621
16622    return SDValue();
16623  }
16624
16625  // Want to form ANDNP nodes:
16626  // 1) In the hopes of then easily combining them with OR and AND nodes
16627  //    to form PBLEND/PSIGN.
16628  // 2) To match ANDN packed intrinsics
16629  if (VT != MVT::v2i64 && VT != MVT::v4i64)
16630    return SDValue();
16631
16632  SDValue N0 = N->getOperand(0);
16633  SDValue N1 = N->getOperand(1);
16634  SDLoc DL(N);
16635
16636  // Check LHS for vnot
16637  if (N0.getOpcode() == ISD::XOR &&
16638      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
16639      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
16640    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
16641
16642  // Check RHS for vnot
16643  if (N1.getOpcode() == ISD::XOR &&
16644      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
16645      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
16646    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
16647
16648  return SDValue();
16649}
16650
16651static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
16652                                TargetLowering::DAGCombinerInfo &DCI,
16653                                const X86Subtarget *Subtarget) {
16654  EVT VT = N->getValueType(0);
16655  if (DCI.isBeforeLegalizeOps())
16656    return SDValue();
16657
16658  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16659  if (R.getNode())
16660    return R;
16661
16662  SDValue N0 = N->getOperand(0);
16663  SDValue N1 = N->getOperand(1);
16664
16665  // look for psign/blend
16666  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
16667    if (!Subtarget->hasSSSE3() ||
16668        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
16669      return SDValue();
16670
16671    // Canonicalize pandn to RHS
16672    if (N0.getOpcode() == X86ISD::ANDNP)
16673      std::swap(N0, N1);
16674    // or (and (m, y), (pandn m, x))
16675    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
16676      SDValue Mask = N1.getOperand(0);
16677      SDValue X    = N1.getOperand(1);
16678      SDValue Y;
16679      if (N0.getOperand(0) == Mask)
16680        Y = N0.getOperand(1);
16681      if (N0.getOperand(1) == Mask)
16682        Y = N0.getOperand(0);
16683
16684      // Check to see if the mask appeared in both the AND and ANDNP and
16685      if (!Y.getNode())
16686        return SDValue();
16687
16688      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
16689      // Look through mask bitcast.
16690      if (Mask.getOpcode() == ISD::BITCAST)
16691        Mask = Mask.getOperand(0);
16692      if (X.getOpcode() == ISD::BITCAST)
16693        X = X.getOperand(0);
16694      if (Y.getOpcode() == ISD::BITCAST)
16695        Y = Y.getOperand(0);
16696
16697      EVT MaskVT = Mask.getValueType();
16698
16699      // Validate that the Mask operand is a vector sra node.
16700      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
16701      // there is no psrai.b
16702      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
16703      unsigned SraAmt = ~0;
16704      if (Mask.getOpcode() == ISD::SRA) {
16705        SDValue Amt = Mask.getOperand(1);
16706        if (isSplatVector(Amt.getNode())) {
16707          SDValue SclrAmt = Amt->getOperand(0);
16708          if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt))
16709            SraAmt = C->getZExtValue();
16710        }
16711      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
16712        SDValue SraC = Mask.getOperand(1);
16713        SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
16714      }
16715      if ((SraAmt + 1) != EltBits)
16716        return SDValue();
16717
16718      SDLoc DL(N);
16719
16720      // Now we know we at least have a plendvb with the mask val.  See if
16721      // we can form a psignb/w/d.
16722      // psign = x.type == y.type == mask.type && y = sub(0, x);
16723      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
16724          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
16725          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
16726        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
16727               "Unsupported VT for PSIGN");
16728        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
16729        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16730      }
16731      // PBLENDVB only available on SSE 4.1
16732      if (!Subtarget->hasSSE41())
16733        return SDValue();
16734
16735      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
16736
16737      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
16738      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
16739      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
16740      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
16741      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16742    }
16743  }
16744
16745  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
16746    return SDValue();
16747
16748  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
16749  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
16750    std::swap(N0, N1);
16751  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
16752    return SDValue();
16753  if (!N0.hasOneUse() || !N1.hasOneUse())
16754    return SDValue();
16755
16756  SDValue ShAmt0 = N0.getOperand(1);
16757  if (ShAmt0.getValueType() != MVT::i8)
16758    return SDValue();
16759  SDValue ShAmt1 = N1.getOperand(1);
16760  if (ShAmt1.getValueType() != MVT::i8)
16761    return SDValue();
16762  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
16763    ShAmt0 = ShAmt0.getOperand(0);
16764  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
16765    ShAmt1 = ShAmt1.getOperand(0);
16766
16767  SDLoc DL(N);
16768  unsigned Opc = X86ISD::SHLD;
16769  SDValue Op0 = N0.getOperand(0);
16770  SDValue Op1 = N1.getOperand(0);
16771  if (ShAmt0.getOpcode() == ISD::SUB) {
16772    Opc = X86ISD::SHRD;
16773    std::swap(Op0, Op1);
16774    std::swap(ShAmt0, ShAmt1);
16775  }
16776
16777  unsigned Bits = VT.getSizeInBits();
16778  if (ShAmt1.getOpcode() == ISD::SUB) {
16779    SDValue Sum = ShAmt1.getOperand(0);
16780    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
16781      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
16782      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
16783        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
16784      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
16785        return DAG.getNode(Opc, DL, VT,
16786                           Op0, Op1,
16787                           DAG.getNode(ISD::TRUNCATE, DL,
16788                                       MVT::i8, ShAmt0));
16789    }
16790  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
16791    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
16792    if (ShAmt0C &&
16793        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
16794      return DAG.getNode(Opc, DL, VT,
16795                         N0.getOperand(0), N1.getOperand(0),
16796                         DAG.getNode(ISD::TRUNCATE, DL,
16797                                       MVT::i8, ShAmt0));
16798  }
16799
16800  return SDValue();
16801}
16802
16803// Generate NEG and CMOV for integer abs.
16804static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
16805  EVT VT = N->getValueType(0);
16806
16807  // Since X86 does not have CMOV for 8-bit integer, we don't convert
16808  // 8-bit integer abs to NEG and CMOV.
16809  if (VT.isInteger() && VT.getSizeInBits() == 8)
16810    return SDValue();
16811
16812  SDValue N0 = N->getOperand(0);
16813  SDValue N1 = N->getOperand(1);
16814  SDLoc DL(N);
16815
16816  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
16817  // and change it to SUB and CMOV.
16818  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
16819      N0.getOpcode() == ISD::ADD &&
16820      N0.getOperand(1) == N1 &&
16821      N1.getOpcode() == ISD::SRA &&
16822      N1.getOperand(0) == N0.getOperand(0))
16823    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
16824      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
16825        // Generate SUB & CMOV.
16826        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
16827                                  DAG.getConstant(0, VT), N0.getOperand(0));
16828
16829        SDValue Ops[] = { N0.getOperand(0), Neg,
16830                          DAG.getConstant(X86::COND_GE, MVT::i8),
16831                          SDValue(Neg.getNode(), 1) };
16832        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
16833                           Ops, array_lengthof(Ops));
16834      }
16835  return SDValue();
16836}
16837
16838// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
16839static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
16840                                 TargetLowering::DAGCombinerInfo &DCI,
16841                                 const X86Subtarget *Subtarget) {
16842  EVT VT = N->getValueType(0);
16843  if (DCI.isBeforeLegalizeOps())
16844    return SDValue();
16845
16846  if (Subtarget->hasCMov()) {
16847    SDValue RV = performIntegerAbsCombine(N, DAG);
16848    if (RV.getNode())
16849      return RV;
16850  }
16851
16852  // Try forming BMI if it is available.
16853  if (!Subtarget->hasBMI())
16854    return SDValue();
16855
16856  if (VT != MVT::i32 && VT != MVT::i64)
16857    return SDValue();
16858
16859  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
16860
16861  // Create BLSMSK instructions by finding X ^ (X-1)
16862  SDValue N0 = N->getOperand(0);
16863  SDValue N1 = N->getOperand(1);
16864  SDLoc DL(N);
16865
16866  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16867      isAllOnes(N0.getOperand(1)))
16868    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
16869
16870  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16871      isAllOnes(N1.getOperand(1)))
16872    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
16873
16874  return SDValue();
16875}
16876
16877/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
16878static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
16879                                  TargetLowering::DAGCombinerInfo &DCI,
16880                                  const X86Subtarget *Subtarget) {
16881  LoadSDNode *Ld = cast<LoadSDNode>(N);
16882  EVT RegVT = Ld->getValueType(0);
16883  EVT MemVT = Ld->getMemoryVT();
16884  SDLoc dl(Ld);
16885  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16886  unsigned RegSz = RegVT.getSizeInBits();
16887
16888  // On Sandybridge unaligned 256bit loads are inefficient.
16889  ISD::LoadExtType Ext = Ld->getExtensionType();
16890  unsigned Alignment = Ld->getAlignment();
16891  bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
16892  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
16893      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
16894    unsigned NumElems = RegVT.getVectorNumElements();
16895    if (NumElems < 2)
16896      return SDValue();
16897
16898    SDValue Ptr = Ld->getBasePtr();
16899    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
16900
16901    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16902                                  NumElems/2);
16903    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16904                                Ld->getPointerInfo(), Ld->isVolatile(),
16905                                Ld->isNonTemporal(), Ld->isInvariant(),
16906                                Alignment);
16907    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16908    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
16909                                Ld->getPointerInfo(), Ld->isVolatile(),
16910                                Ld->isNonTemporal(), Ld->isInvariant(),
16911                                std::min(16U, Alignment));
16912    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16913                             Load1.getValue(1),
16914                             Load2.getValue(1));
16915
16916    SDValue NewVec = DAG.getUNDEF(RegVT);
16917    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
16918    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
16919    return DCI.CombineTo(N, NewVec, TF, true);
16920  }
16921
16922  // If this is a vector EXT Load then attempt to optimize it using a
16923  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
16924  // expansion is still better than scalar code.
16925  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
16926  // emit a shuffle and a arithmetic shift.
16927  // TODO: It is possible to support ZExt by zeroing the undef values
16928  // during the shuffle phase or after the shuffle.
16929  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
16930      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
16931    assert(MemVT != RegVT && "Cannot extend to the same type");
16932    assert(MemVT.isVector() && "Must load a vector from memory");
16933
16934    unsigned NumElems = RegVT.getVectorNumElements();
16935    unsigned MemSz = MemVT.getSizeInBits();
16936    assert(RegSz > MemSz && "Register size must be greater than the mem size");
16937
16938    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
16939      return SDValue();
16940
16941    // All sizes must be a power of two.
16942    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
16943      return SDValue();
16944
16945    // Attempt to load the original value using scalar loads.
16946    // Find the largest scalar type that divides the total loaded size.
16947    MVT SclrLoadTy = MVT::i8;
16948    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16949         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16950      MVT Tp = (MVT::SimpleValueType)tp;
16951      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
16952        SclrLoadTy = Tp;
16953      }
16954    }
16955
16956    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16957    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
16958        (64 <= MemSz))
16959      SclrLoadTy = MVT::f64;
16960
16961    // Calculate the number of scalar loads that we need to perform
16962    // in order to load our vector from memory.
16963    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
16964    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
16965      return SDValue();
16966
16967    unsigned loadRegZize = RegSz;
16968    if (Ext == ISD::SEXTLOAD && RegSz == 256)
16969      loadRegZize /= 2;
16970
16971    // Represent our vector as a sequence of elements which are the
16972    // largest scalar that we can load.
16973    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
16974      loadRegZize/SclrLoadTy.getSizeInBits());
16975
16976    // Represent the data using the same element type that is stored in
16977    // memory. In practice, we ''widen'' MemVT.
16978    EVT WideVecVT =
16979          EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16980                       loadRegZize/MemVT.getScalarType().getSizeInBits());
16981
16982    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
16983      "Invalid vector type");
16984
16985    // We can't shuffle using an illegal type.
16986    if (!TLI.isTypeLegal(WideVecVT))
16987      return SDValue();
16988
16989    SmallVector<SDValue, 8> Chains;
16990    SDValue Ptr = Ld->getBasePtr();
16991    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
16992                                        TLI.getPointerTy());
16993    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
16994
16995    for (unsigned i = 0; i < NumLoads; ++i) {
16996      // Perform a single load.
16997      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
16998                                       Ptr, Ld->getPointerInfo(),
16999                                       Ld->isVolatile(), Ld->isNonTemporal(),
17000                                       Ld->isInvariant(), Ld->getAlignment());
17001      Chains.push_back(ScalarLoad.getValue(1));
17002      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
17003      // another round of DAGCombining.
17004      if (i == 0)
17005        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
17006      else
17007        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
17008                          ScalarLoad, DAG.getIntPtrConstant(i));
17009
17010      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
17011    }
17012
17013    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
17014                               Chains.size());
17015
17016    // Bitcast the loaded value to a vector of the original element type, in
17017    // the size of the target vector type.
17018    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
17019    unsigned SizeRatio = RegSz/MemSz;
17020
17021    if (Ext == ISD::SEXTLOAD) {
17022      // If we have SSE4.1 we can directly emit a VSEXT node.
17023      if (Subtarget->hasSSE41()) {
17024        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
17025        return DCI.CombineTo(N, Sext, TF, true);
17026      }
17027
17028      // Otherwise we'll shuffle the small elements in the high bits of the
17029      // larger type and perform an arithmetic shift. If the shift is not legal
17030      // it's better to scalarize.
17031      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
17032        return SDValue();
17033
17034      // Redistribute the loaded elements into the different locations.
17035      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
17036      for (unsigned i = 0; i != NumElems; ++i)
17037        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
17038
17039      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
17040                                           DAG.getUNDEF(WideVecVT),
17041                                           &ShuffleVec[0]);
17042
17043      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
17044
17045      // Build the arithmetic shift.
17046      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
17047                     MemVT.getVectorElementType().getSizeInBits();
17048      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
17049                          DAG.getConstant(Amt, RegVT));
17050
17051      return DCI.CombineTo(N, Shuff, TF, true);
17052    }
17053
17054    // Redistribute the loaded elements into the different locations.
17055    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
17056    for (unsigned i = 0; i != NumElems; ++i)
17057      ShuffleVec[i*SizeRatio] = i;
17058
17059    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
17060                                         DAG.getUNDEF(WideVecVT),
17061                                         &ShuffleVec[0]);
17062
17063    // Bitcast to the requested type.
17064    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
17065    // Replace the original load with the new sequence
17066    // and return the new chain.
17067    return DCI.CombineTo(N, Shuff, TF, true);
17068  }
17069
17070  return SDValue();
17071}
17072
17073/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
17074static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
17075                                   const X86Subtarget *Subtarget) {
17076  StoreSDNode *St = cast<StoreSDNode>(N);
17077  EVT VT = St->getValue().getValueType();
17078  EVT StVT = St->getMemoryVT();
17079  SDLoc dl(St);
17080  SDValue StoredVal = St->getOperand(1);
17081  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17082
17083  // If we are saving a concatenation of two XMM registers, perform two stores.
17084  // On Sandy Bridge, 256-bit memory operations are executed by two
17085  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
17086  // memory  operation.
17087  unsigned Alignment = St->getAlignment();
17088  bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
17089  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
17090      StVT == VT && !IsAligned) {
17091    unsigned NumElems = VT.getVectorNumElements();
17092    if (NumElems < 2)
17093      return SDValue();
17094
17095    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
17096    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
17097
17098    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
17099    SDValue Ptr0 = St->getBasePtr();
17100    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
17101
17102    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
17103                                St->getPointerInfo(), St->isVolatile(),
17104                                St->isNonTemporal(), Alignment);
17105    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
17106                                St->getPointerInfo(), St->isVolatile(),
17107                                St->isNonTemporal(),
17108                                std::min(16U, Alignment));
17109    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
17110  }
17111
17112  // Optimize trunc store (of multiple scalars) to shuffle and store.
17113  // First, pack all of the elements in one place. Next, store to memory
17114  // in fewer chunks.
17115  if (St->isTruncatingStore() && VT.isVector()) {
17116    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17117    unsigned NumElems = VT.getVectorNumElements();
17118    assert(StVT != VT && "Cannot truncate to the same type");
17119    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
17120    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
17121
17122    // From, To sizes and ElemCount must be pow of two
17123    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
17124    // We are going to use the original vector elt for storing.
17125    // Accumulated smaller vector elements must be a multiple of the store size.
17126    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
17127
17128    unsigned SizeRatio  = FromSz / ToSz;
17129
17130    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
17131
17132    // Create a type on which we perform the shuffle
17133    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
17134            StVT.getScalarType(), NumElems*SizeRatio);
17135
17136    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
17137
17138    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
17139    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
17140    for (unsigned i = 0; i != NumElems; ++i)
17141      ShuffleVec[i] = i * SizeRatio;
17142
17143    // Can't shuffle using an illegal type.
17144    if (!TLI.isTypeLegal(WideVecVT))
17145      return SDValue();
17146
17147    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
17148                                         DAG.getUNDEF(WideVecVT),
17149                                         &ShuffleVec[0]);
17150    // At this point all of the data is stored at the bottom of the
17151    // register. We now need to save it to mem.
17152
17153    // Find the largest store unit
17154    MVT StoreType = MVT::i8;
17155    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
17156         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
17157      MVT Tp = (MVT::SimpleValueType)tp;
17158      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
17159        StoreType = Tp;
17160    }
17161
17162    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
17163    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
17164        (64 <= NumElems * ToSz))
17165      StoreType = MVT::f64;
17166
17167    // Bitcast the original vector into a vector of store-size units
17168    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
17169            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
17170    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
17171    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
17172    SmallVector<SDValue, 8> Chains;
17173    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
17174                                        TLI.getPointerTy());
17175    SDValue Ptr = St->getBasePtr();
17176
17177    // Perform one or more big stores into memory.
17178    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
17179      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
17180                                   StoreType, ShuffWide,
17181                                   DAG.getIntPtrConstant(i));
17182      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
17183                                St->getPointerInfo(), St->isVolatile(),
17184                                St->isNonTemporal(), St->getAlignment());
17185      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
17186      Chains.push_back(Ch);
17187    }
17188
17189    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
17190                               Chains.size());
17191  }
17192
17193  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
17194  // the FP state in cases where an emms may be missing.
17195  // A preferable solution to the general problem is to figure out the right
17196  // places to insert EMMS.  This qualifies as a quick hack.
17197
17198  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
17199  if (VT.getSizeInBits() != 64)
17200    return SDValue();
17201
17202  const Function *F = DAG.getMachineFunction().getFunction();
17203  bool NoImplicitFloatOps = F->getAttributes().
17204    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
17205  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
17206                     && Subtarget->hasSSE2();
17207  if ((VT.isVector() ||
17208       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
17209      isa<LoadSDNode>(St->getValue()) &&
17210      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
17211      St->getChain().hasOneUse() && !St->isVolatile()) {
17212    SDNode* LdVal = St->getValue().getNode();
17213    LoadSDNode *Ld = 0;
17214    int TokenFactorIndex = -1;
17215    SmallVector<SDValue, 8> Ops;
17216    SDNode* ChainVal = St->getChain().getNode();
17217    // Must be a store of a load.  We currently handle two cases:  the load
17218    // is a direct child, and it's under an intervening TokenFactor.  It is
17219    // possible to dig deeper under nested TokenFactors.
17220    if (ChainVal == LdVal)
17221      Ld = cast<LoadSDNode>(St->getChain());
17222    else if (St->getValue().hasOneUse() &&
17223             ChainVal->getOpcode() == ISD::TokenFactor) {
17224      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
17225        if (ChainVal->getOperand(i).getNode() == LdVal) {
17226          TokenFactorIndex = i;
17227          Ld = cast<LoadSDNode>(St->getValue());
17228        } else
17229          Ops.push_back(ChainVal->getOperand(i));
17230      }
17231    }
17232
17233    if (!Ld || !ISD::isNormalLoad(Ld))
17234      return SDValue();
17235
17236    // If this is not the MMX case, i.e. we are just turning i64 load/store
17237    // into f64 load/store, avoid the transformation if there are multiple
17238    // uses of the loaded value.
17239    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
17240      return SDValue();
17241
17242    SDLoc LdDL(Ld);
17243    SDLoc StDL(N);
17244    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
17245    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
17246    // pair instead.
17247    if (Subtarget->is64Bit() || F64IsLegal) {
17248      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
17249      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
17250                                  Ld->getPointerInfo(), Ld->isVolatile(),
17251                                  Ld->isNonTemporal(), Ld->isInvariant(),
17252                                  Ld->getAlignment());
17253      SDValue NewChain = NewLd.getValue(1);
17254      if (TokenFactorIndex != -1) {
17255        Ops.push_back(NewChain);
17256        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
17257                               Ops.size());
17258      }
17259      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
17260                          St->getPointerInfo(),
17261                          St->isVolatile(), St->isNonTemporal(),
17262                          St->getAlignment());
17263    }
17264
17265    // Otherwise, lower to two pairs of 32-bit loads / stores.
17266    SDValue LoAddr = Ld->getBasePtr();
17267    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
17268                                 DAG.getConstant(4, MVT::i32));
17269
17270    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
17271                               Ld->getPointerInfo(),
17272                               Ld->isVolatile(), Ld->isNonTemporal(),
17273                               Ld->isInvariant(), Ld->getAlignment());
17274    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
17275                               Ld->getPointerInfo().getWithOffset(4),
17276                               Ld->isVolatile(), Ld->isNonTemporal(),
17277                               Ld->isInvariant(),
17278                               MinAlign(Ld->getAlignment(), 4));
17279
17280    SDValue NewChain = LoLd.getValue(1);
17281    if (TokenFactorIndex != -1) {
17282      Ops.push_back(LoLd);
17283      Ops.push_back(HiLd);
17284      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
17285                             Ops.size());
17286    }
17287
17288    LoAddr = St->getBasePtr();
17289    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
17290                         DAG.getConstant(4, MVT::i32));
17291
17292    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
17293                                St->getPointerInfo(),
17294                                St->isVolatile(), St->isNonTemporal(),
17295                                St->getAlignment());
17296    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
17297                                St->getPointerInfo().getWithOffset(4),
17298                                St->isVolatile(),
17299                                St->isNonTemporal(),
17300                                MinAlign(St->getAlignment(), 4));
17301    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
17302  }
17303  return SDValue();
17304}
17305
17306/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
17307/// and return the operands for the horizontal operation in LHS and RHS.  A
17308/// horizontal operation performs the binary operation on successive elements
17309/// of its first operand, then on successive elements of its second operand,
17310/// returning the resulting values in a vector.  For example, if
17311///   A = < float a0, float a1, float a2, float a3 >
17312/// and
17313///   B = < float b0, float b1, float b2, float b3 >
17314/// then the result of doing a horizontal operation on A and B is
17315///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
17316/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
17317/// A horizontal-op B, for some already available A and B, and if so then LHS is
17318/// set to A, RHS to B, and the routine returns 'true'.
17319/// Note that the binary operation should have the property that if one of the
17320/// operands is UNDEF then the result is UNDEF.
17321static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
17322  // Look for the following pattern: if
17323  //   A = < float a0, float a1, float a2, float a3 >
17324  //   B = < float b0, float b1, float b2, float b3 >
17325  // and
17326  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
17327  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
17328  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
17329  // which is A horizontal-op B.
17330
17331  // At least one of the operands should be a vector shuffle.
17332  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
17333      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
17334    return false;
17335
17336  EVT VT = LHS.getValueType();
17337
17338  assert((VT.is128BitVector() || VT.is256BitVector()) &&
17339         "Unsupported vector type for horizontal add/sub");
17340
17341  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
17342  // operate independently on 128-bit lanes.
17343  unsigned NumElts = VT.getVectorNumElements();
17344  unsigned NumLanes = VT.getSizeInBits()/128;
17345  unsigned NumLaneElts = NumElts / NumLanes;
17346  assert((NumLaneElts % 2 == 0) &&
17347         "Vector type should have an even number of elements in each lane");
17348  unsigned HalfLaneElts = NumLaneElts/2;
17349
17350  // View LHS in the form
17351  //   LHS = VECTOR_SHUFFLE A, B, LMask
17352  // If LHS is not a shuffle then pretend it is the shuffle
17353  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
17354  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
17355  // type VT.
17356  SDValue A, B;
17357  SmallVector<int, 16> LMask(NumElts);
17358  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
17359    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
17360      A = LHS.getOperand(0);
17361    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
17362      B = LHS.getOperand(1);
17363    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
17364    std::copy(Mask.begin(), Mask.end(), LMask.begin());
17365  } else {
17366    if (LHS.getOpcode() != ISD::UNDEF)
17367      A = LHS;
17368    for (unsigned i = 0; i != NumElts; ++i)
17369      LMask[i] = i;
17370  }
17371
17372  // Likewise, view RHS in the form
17373  //   RHS = VECTOR_SHUFFLE C, D, RMask
17374  SDValue C, D;
17375  SmallVector<int, 16> RMask(NumElts);
17376  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
17377    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
17378      C = RHS.getOperand(0);
17379    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
17380      D = RHS.getOperand(1);
17381    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
17382    std::copy(Mask.begin(), Mask.end(), RMask.begin());
17383  } else {
17384    if (RHS.getOpcode() != ISD::UNDEF)
17385      C = RHS;
17386    for (unsigned i = 0; i != NumElts; ++i)
17387      RMask[i] = i;
17388  }
17389
17390  // Check that the shuffles are both shuffling the same vectors.
17391  if (!(A == C && B == D) && !(A == D && B == C))
17392    return false;
17393
17394  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
17395  if (!A.getNode() && !B.getNode())
17396    return false;
17397
17398  // If A and B occur in reverse order in RHS, then "swap" them (which means
17399  // rewriting the mask).
17400  if (A != C)
17401    CommuteVectorShuffleMask(RMask, NumElts);
17402
17403  // At this point LHS and RHS are equivalent to
17404  //   LHS = VECTOR_SHUFFLE A, B, LMask
17405  //   RHS = VECTOR_SHUFFLE A, B, RMask
17406  // Check that the masks correspond to performing a horizontal operation.
17407  for (unsigned i = 0; i != NumElts; ++i) {
17408    int LIdx = LMask[i], RIdx = RMask[i];
17409
17410    // Ignore any UNDEF components.
17411    if (LIdx < 0 || RIdx < 0 ||
17412        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
17413        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
17414      continue;
17415
17416    // Check that successive elements are being operated on.  If not, this is
17417    // not a horizontal operation.
17418    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
17419    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
17420    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
17421    if (!(LIdx == Index && RIdx == Index + 1) &&
17422        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
17423      return false;
17424  }
17425
17426  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
17427  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
17428  return true;
17429}
17430
17431/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
17432static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
17433                                  const X86Subtarget *Subtarget) {
17434  EVT VT = N->getValueType(0);
17435  SDValue LHS = N->getOperand(0);
17436  SDValue RHS = N->getOperand(1);
17437
17438  // Try to synthesize horizontal adds from adds of shuffles.
17439  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
17440       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
17441      isHorizontalBinOp(LHS, RHS, true))
17442    return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
17443  return SDValue();
17444}
17445
17446/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
17447static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
17448                                  const X86Subtarget *Subtarget) {
17449  EVT VT = N->getValueType(0);
17450  SDValue LHS = N->getOperand(0);
17451  SDValue RHS = N->getOperand(1);
17452
17453  // Try to synthesize horizontal subs from subs of shuffles.
17454  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
17455       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
17456      isHorizontalBinOp(LHS, RHS, false))
17457    return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
17458  return SDValue();
17459}
17460
17461/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
17462/// X86ISD::FXOR nodes.
17463static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
17464  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
17465  // F[X]OR(0.0, x) -> x
17466  // F[X]OR(x, 0.0) -> x
17467  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
17468    if (C->getValueAPF().isPosZero())
17469      return N->getOperand(1);
17470  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
17471    if (C->getValueAPF().isPosZero())
17472      return N->getOperand(0);
17473  return SDValue();
17474}
17475
17476/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
17477/// X86ISD::FMAX nodes.
17478static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
17479  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
17480
17481  // Only perform optimizations if UnsafeMath is used.
17482  if (!DAG.getTarget().Options.UnsafeFPMath)
17483    return SDValue();
17484
17485  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
17486  // into FMINC and FMAXC, which are Commutative operations.
17487  unsigned NewOp = 0;
17488  switch (N->getOpcode()) {
17489    default: llvm_unreachable("unknown opcode");
17490    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
17491    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
17492  }
17493
17494  return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
17495                     N->getOperand(0), N->getOperand(1));
17496}
17497
17498/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
17499static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
17500  // FAND(0.0, x) -> 0.0
17501  // FAND(x, 0.0) -> 0.0
17502  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
17503    if (C->getValueAPF().isPosZero())
17504      return N->getOperand(0);
17505  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
17506    if (C->getValueAPF().isPosZero())
17507      return N->getOperand(1);
17508  return SDValue();
17509}
17510
17511static SDValue PerformBTCombine(SDNode *N,
17512                                SelectionDAG &DAG,
17513                                TargetLowering::DAGCombinerInfo &DCI) {
17514  // BT ignores high bits in the bit index operand.
17515  SDValue Op1 = N->getOperand(1);
17516  if (Op1.hasOneUse()) {
17517    unsigned BitWidth = Op1.getValueSizeInBits();
17518    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
17519    APInt KnownZero, KnownOne;
17520    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
17521                                          !DCI.isBeforeLegalizeOps());
17522    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17523    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
17524        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
17525      DCI.CommitTargetLoweringOpt(TLO);
17526  }
17527  return SDValue();
17528}
17529
17530static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
17531  SDValue Op = N->getOperand(0);
17532  if (Op.getOpcode() == ISD::BITCAST)
17533    Op = Op.getOperand(0);
17534  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
17535  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
17536      VT.getVectorElementType().getSizeInBits() ==
17537      OpVT.getVectorElementType().getSizeInBits()) {
17538    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
17539  }
17540  return SDValue();
17541}
17542
17543static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
17544                                               const X86Subtarget *Subtarget) {
17545  EVT VT = N->getValueType(0);
17546  if (!VT.isVector())
17547    return SDValue();
17548
17549  SDValue N0 = N->getOperand(0);
17550  SDValue N1 = N->getOperand(1);
17551  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
17552  SDLoc dl(N);
17553
17554  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
17555  // both SSE and AVX2 since there is no sign-extended shift right
17556  // operation on a vector with 64-bit elements.
17557  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
17558  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
17559  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
17560      N0.getOpcode() == ISD::SIGN_EXTEND)) {
17561    SDValue N00 = N0.getOperand(0);
17562
17563    // EXTLOAD has a better solution on AVX2,
17564    // it may be replaced with X86ISD::VSEXT node.
17565    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
17566      if (!ISD::isNormalLoad(N00.getNode()))
17567        return SDValue();
17568
17569    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
17570        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
17571                                  N00, N1);
17572      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
17573    }
17574  }
17575  return SDValue();
17576}
17577
17578static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
17579                                  TargetLowering::DAGCombinerInfo &DCI,
17580                                  const X86Subtarget *Subtarget) {
17581  if (!DCI.isBeforeLegalizeOps())
17582    return SDValue();
17583
17584  if (!Subtarget->hasFp256())
17585    return SDValue();
17586
17587  EVT VT = N->getValueType(0);
17588  if (VT.isVector() && VT.getSizeInBits() == 256) {
17589    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17590    if (R.getNode())
17591      return R;
17592  }
17593
17594  return SDValue();
17595}
17596
17597static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
17598                                 const X86Subtarget* Subtarget) {
17599  SDLoc dl(N);
17600  EVT VT = N->getValueType(0);
17601
17602  // Let legalize expand this if it isn't a legal type yet.
17603  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
17604    return SDValue();
17605
17606  EVT ScalarVT = VT.getScalarType();
17607  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
17608      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
17609    return SDValue();
17610
17611  SDValue A = N->getOperand(0);
17612  SDValue B = N->getOperand(1);
17613  SDValue C = N->getOperand(2);
17614
17615  bool NegA = (A.getOpcode() == ISD::FNEG);
17616  bool NegB = (B.getOpcode() == ISD::FNEG);
17617  bool NegC = (C.getOpcode() == ISD::FNEG);
17618
17619  // Negative multiplication when NegA xor NegB
17620  bool NegMul = (NegA != NegB);
17621  if (NegA)
17622    A = A.getOperand(0);
17623  if (NegB)
17624    B = B.getOperand(0);
17625  if (NegC)
17626    C = C.getOperand(0);
17627
17628  unsigned Opcode;
17629  if (!NegMul)
17630    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
17631  else
17632    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
17633
17634  return DAG.getNode(Opcode, dl, VT, A, B, C);
17635}
17636
17637static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
17638                                  TargetLowering::DAGCombinerInfo &DCI,
17639                                  const X86Subtarget *Subtarget) {
17640  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
17641  //           (and (i32 x86isd::setcc_carry), 1)
17642  // This eliminates the zext. This transformation is necessary because
17643  // ISD::SETCC is always legalized to i8.
17644  SDLoc dl(N);
17645  SDValue N0 = N->getOperand(0);
17646  EVT VT = N->getValueType(0);
17647
17648  if (N0.getOpcode() == ISD::AND &&
17649      N0.hasOneUse() &&
17650      N0.getOperand(0).hasOneUse()) {
17651    SDValue N00 = N0.getOperand(0);
17652    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
17653      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
17654      if (!C || C->getZExtValue() != 1)
17655        return SDValue();
17656      return DAG.getNode(ISD::AND, dl, VT,
17657                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
17658                                     N00.getOperand(0), N00.getOperand(1)),
17659                         DAG.getConstant(1, VT));
17660    }
17661  }
17662
17663  if (VT.is256BitVector()) {
17664    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17665    if (R.getNode())
17666      return R;
17667  }
17668
17669  return SDValue();
17670}
17671
17672// Optimize x == -y --> x+y == 0
17673//          x != -y --> x+y != 0
17674static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
17675  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
17676  SDValue LHS = N->getOperand(0);
17677  SDValue RHS = N->getOperand(1);
17678
17679  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
17680    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
17681      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
17682        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
17683                                   LHS.getValueType(), RHS, LHS.getOperand(1));
17684        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
17685                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17686      }
17687  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
17688    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
17689      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
17690        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
17691                                   RHS.getValueType(), LHS, RHS.getOperand(1));
17692        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
17693                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17694      }
17695  return SDValue();
17696}
17697
17698// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
17699// as "sbb reg,reg", since it can be extended without zext and produces
17700// an all-ones bit which is more useful than 0/1 in some cases.
17701static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
17702  return DAG.getNode(ISD::AND, DL, MVT::i8,
17703                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
17704                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
17705                     DAG.getConstant(1, MVT::i8));
17706}
17707
17708// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
17709static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
17710                                   TargetLowering::DAGCombinerInfo &DCI,
17711                                   const X86Subtarget *Subtarget) {
17712  SDLoc DL(N);
17713  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
17714  SDValue EFLAGS = N->getOperand(1);
17715
17716  if (CC == X86::COND_A) {
17717    // Try to convert COND_A into COND_B in an attempt to facilitate
17718    // materializing "setb reg".
17719    //
17720    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
17721    // cannot take an immediate as its first operand.
17722    //
17723    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
17724        EFLAGS.getValueType().isInteger() &&
17725        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
17726      SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
17727                                   EFLAGS.getNode()->getVTList(),
17728                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
17729      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
17730      return MaterializeSETB(DL, NewEFLAGS, DAG);
17731    }
17732  }
17733
17734  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
17735  // a zext and produces an all-ones bit which is more useful than 0/1 in some
17736  // cases.
17737  if (CC == X86::COND_B)
17738    return MaterializeSETB(DL, EFLAGS, DAG);
17739
17740  SDValue Flags;
17741
17742  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17743  if (Flags.getNode()) {
17744    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17745    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
17746  }
17747
17748  return SDValue();
17749}
17750
17751// Optimize branch condition evaluation.
17752//
17753static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
17754                                    TargetLowering::DAGCombinerInfo &DCI,
17755                                    const X86Subtarget *Subtarget) {
17756  SDLoc DL(N);
17757  SDValue Chain = N->getOperand(0);
17758  SDValue Dest = N->getOperand(1);
17759  SDValue EFLAGS = N->getOperand(3);
17760  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
17761
17762  SDValue Flags;
17763
17764  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17765  if (Flags.getNode()) {
17766    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17767    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
17768                       Flags);
17769  }
17770
17771  return SDValue();
17772}
17773
17774static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
17775                                        const X86TargetLowering *XTLI) {
17776  SDValue Op0 = N->getOperand(0);
17777  EVT InVT = Op0->getValueType(0);
17778
17779  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
17780  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
17781    SDLoc dl(N);
17782    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
17783    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
17784    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
17785  }
17786
17787  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
17788  // a 32-bit target where SSE doesn't support i64->FP operations.
17789  if (Op0.getOpcode() == ISD::LOAD) {
17790    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
17791    EVT VT = Ld->getValueType(0);
17792    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
17793        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
17794        !XTLI->getSubtarget()->is64Bit() &&
17795        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
17796      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
17797                                          Ld->getChain(), Op0, DAG);
17798      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
17799      return FILDChain;
17800    }
17801  }
17802  return SDValue();
17803}
17804
17805// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
17806static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
17807                                 X86TargetLowering::DAGCombinerInfo &DCI) {
17808  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
17809  // the result is either zero or one (depending on the input carry bit).
17810  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
17811  if (X86::isZeroNode(N->getOperand(0)) &&
17812      X86::isZeroNode(N->getOperand(1)) &&
17813      // We don't have a good way to replace an EFLAGS use, so only do this when
17814      // dead right now.
17815      SDValue(N, 1).use_empty()) {
17816    SDLoc DL(N);
17817    EVT VT = N->getValueType(0);
17818    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
17819    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
17820                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
17821                                           DAG.getConstant(X86::COND_B,MVT::i8),
17822                                           N->getOperand(2)),
17823                               DAG.getConstant(1, VT));
17824    return DCI.CombineTo(N, Res1, CarryOut);
17825  }
17826
17827  return SDValue();
17828}
17829
17830// fold (add Y, (sete  X, 0)) -> adc  0, Y
17831//      (add Y, (setne X, 0)) -> sbb -1, Y
17832//      (sub (sete  X, 0), Y) -> sbb  0, Y
17833//      (sub (setne X, 0), Y) -> adc -1, Y
17834static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
17835  SDLoc DL(N);
17836
17837  // Look through ZExts.
17838  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
17839  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
17840    return SDValue();
17841
17842  SDValue SetCC = Ext.getOperand(0);
17843  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
17844    return SDValue();
17845
17846  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
17847  if (CC != X86::COND_E && CC != X86::COND_NE)
17848    return SDValue();
17849
17850  SDValue Cmp = SetCC.getOperand(1);
17851  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
17852      !X86::isZeroNode(Cmp.getOperand(1)) ||
17853      !Cmp.getOperand(0).getValueType().isInteger())
17854    return SDValue();
17855
17856  SDValue CmpOp0 = Cmp.getOperand(0);
17857  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
17858                               DAG.getConstant(1, CmpOp0.getValueType()));
17859
17860  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
17861  if (CC == X86::COND_NE)
17862    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
17863                       DL, OtherVal.getValueType(), OtherVal,
17864                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
17865  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
17866                     DL, OtherVal.getValueType(), OtherVal,
17867                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
17868}
17869
17870/// PerformADDCombine - Do target-specific dag combines on integer adds.
17871static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
17872                                 const X86Subtarget *Subtarget) {
17873  EVT VT = N->getValueType(0);
17874  SDValue Op0 = N->getOperand(0);
17875  SDValue Op1 = N->getOperand(1);
17876
17877  // Try to synthesize horizontal adds from adds of shuffles.
17878  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17879       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17880      isHorizontalBinOp(Op0, Op1, true))
17881    return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
17882
17883  return OptimizeConditionalInDecrement(N, DAG);
17884}
17885
17886static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
17887                                 const X86Subtarget *Subtarget) {
17888  SDValue Op0 = N->getOperand(0);
17889  SDValue Op1 = N->getOperand(1);
17890
17891  // X86 can't encode an immediate LHS of a sub. See if we can push the
17892  // negation into a preceding instruction.
17893  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
17894    // If the RHS of the sub is a XOR with one use and a constant, invert the
17895    // immediate. Then add one to the LHS of the sub so we can turn
17896    // X-Y -> X+~Y+1, saving one register.
17897    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
17898        isa<ConstantSDNode>(Op1.getOperand(1))) {
17899      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
17900      EVT VT = Op0.getValueType();
17901      SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
17902                                   Op1.getOperand(0),
17903                                   DAG.getConstant(~XorC, VT));
17904      return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
17905                         DAG.getConstant(C->getAPIntValue()+1, VT));
17906    }
17907  }
17908
17909  // Try to synthesize horizontal adds from adds of shuffles.
17910  EVT VT = N->getValueType(0);
17911  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17912       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17913      isHorizontalBinOp(Op0, Op1, true))
17914    return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
17915
17916  return OptimizeConditionalInDecrement(N, DAG);
17917}
17918
17919/// performVZEXTCombine - Performs build vector combines
17920static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
17921                                        TargetLowering::DAGCombinerInfo &DCI,
17922                                        const X86Subtarget *Subtarget) {
17923  // (vzext (bitcast (vzext (x)) -> (vzext x)
17924  SDValue In = N->getOperand(0);
17925  while (In.getOpcode() == ISD::BITCAST)
17926    In = In.getOperand(0);
17927
17928  if (In.getOpcode() != X86ISD::VZEXT)
17929    return SDValue();
17930
17931  return DAG.getNode(X86ISD::VZEXT, SDLoc(N), N->getValueType(0),
17932                     In.getOperand(0));
17933}
17934
17935SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
17936                                             DAGCombinerInfo &DCI) const {
17937  SelectionDAG &DAG = DCI.DAG;
17938  switch (N->getOpcode()) {
17939  default: break;
17940  case ISD::EXTRACT_VECTOR_ELT:
17941    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
17942  case ISD::VSELECT:
17943  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
17944  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
17945  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
17946  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
17947  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
17948  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
17949  case ISD::SHL:
17950  case ISD::SRA:
17951  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
17952  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
17953  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
17954  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
17955  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
17956  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
17957  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
17958  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
17959  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
17960  case X86ISD::FXOR:
17961  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
17962  case X86ISD::FMIN:
17963  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
17964  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
17965  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
17966  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
17967  case ISD::ANY_EXTEND:
17968  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
17969  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
17970  case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
17971  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
17972  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
17973  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
17974  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
17975  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
17976  case X86ISD::SHUFP:       // Handle all target specific shuffles
17977  case X86ISD::PALIGNR:
17978  case X86ISD::UNPCKH:
17979  case X86ISD::UNPCKL:
17980  case X86ISD::MOVHLPS:
17981  case X86ISD::MOVLHPS:
17982  case X86ISD::PSHUFD:
17983  case X86ISD::PSHUFHW:
17984  case X86ISD::PSHUFLW:
17985  case X86ISD::MOVSS:
17986  case X86ISD::MOVSD:
17987  case X86ISD::VPERMILP:
17988  case X86ISD::VPERM2X128:
17989  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
17990  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
17991  }
17992
17993  return SDValue();
17994}
17995
17996/// isTypeDesirableForOp - Return true if the target has native support for
17997/// the specified value type and it is 'desirable' to use the type for the
17998/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
17999/// instruction encodings are longer and some i16 instructions are slow.
18000bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
18001  if (!isTypeLegal(VT))
18002    return false;
18003  if (VT != MVT::i16)
18004    return true;
18005
18006  switch (Opc) {
18007  default:
18008    return true;
18009  case ISD::LOAD:
18010  case ISD::SIGN_EXTEND:
18011  case ISD::ZERO_EXTEND:
18012  case ISD::ANY_EXTEND:
18013  case ISD::SHL:
18014  case ISD::SRL:
18015  case ISD::SUB:
18016  case ISD::ADD:
18017  case ISD::MUL:
18018  case ISD::AND:
18019  case ISD::OR:
18020  case ISD::XOR:
18021    return false;
18022  }
18023}
18024
18025/// IsDesirableToPromoteOp - This method query the target whether it is
18026/// beneficial for dag combiner to promote the specified node. If true, it
18027/// should return the desired promotion type by reference.
18028bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
18029  EVT VT = Op.getValueType();
18030  if (VT != MVT::i16)
18031    return false;
18032
18033  bool Promote = false;
18034  bool Commute = false;
18035  switch (Op.getOpcode()) {
18036  default: break;
18037  case ISD::LOAD: {
18038    LoadSDNode *LD = cast<LoadSDNode>(Op);
18039    // If the non-extending load has a single use and it's not live out, then it
18040    // might be folded.
18041    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
18042                                                     Op.hasOneUse()*/) {
18043      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
18044             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
18045        // The only case where we'd want to promote LOAD (rather then it being
18046        // promoted as an operand is when it's only use is liveout.
18047        if (UI->getOpcode() != ISD::CopyToReg)
18048          return false;
18049      }
18050    }
18051    Promote = true;
18052    break;
18053  }
18054  case ISD::SIGN_EXTEND:
18055  case ISD::ZERO_EXTEND:
18056  case ISD::ANY_EXTEND:
18057    Promote = true;
18058    break;
18059  case ISD::SHL:
18060  case ISD::SRL: {
18061    SDValue N0 = Op.getOperand(0);
18062    // Look out for (store (shl (load), x)).
18063    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
18064      return false;
18065    Promote = true;
18066    break;
18067  }
18068  case ISD::ADD:
18069  case ISD::MUL:
18070  case ISD::AND:
18071  case ISD::OR:
18072  case ISD::XOR:
18073    Commute = true;
18074    // fallthrough
18075  case ISD::SUB: {
18076    SDValue N0 = Op.getOperand(0);
18077    SDValue N1 = Op.getOperand(1);
18078    if (!Commute && MayFoldLoad(N1))
18079      return false;
18080    // Avoid disabling potential load folding opportunities.
18081    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
18082      return false;
18083    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
18084      return false;
18085    Promote = true;
18086  }
18087  }
18088
18089  PVT = MVT::i32;
18090  return Promote;
18091}
18092
18093//===----------------------------------------------------------------------===//
18094//                           X86 Inline Assembly Support
18095//===----------------------------------------------------------------------===//
18096
18097namespace {
18098  // Helper to match a string separated by whitespace.
18099  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
18100    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
18101
18102    for (unsigned i = 0, e = args.size(); i != e; ++i) {
18103      StringRef piece(*args[i]);
18104      if (!s.startswith(piece)) // Check if the piece matches.
18105        return false;
18106
18107      s = s.substr(piece.size());
18108      StringRef::size_type pos = s.find_first_not_of(" \t");
18109      if (pos == 0) // We matched a prefix.
18110        return false;
18111
18112      s = s.substr(pos);
18113    }
18114
18115    return s.empty();
18116  }
18117  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
18118}
18119
18120bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
18121  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
18122
18123  std::string AsmStr = IA->getAsmString();
18124
18125  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
18126  if (!Ty || Ty->getBitWidth() % 16 != 0)
18127    return false;
18128
18129  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
18130  SmallVector<StringRef, 4> AsmPieces;
18131  SplitString(AsmStr, AsmPieces, ";\n");
18132
18133  switch (AsmPieces.size()) {
18134  default: return false;
18135  case 1:
18136    // FIXME: this should verify that we are targeting a 486 or better.  If not,
18137    // we will turn this bswap into something that will be lowered to logical
18138    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
18139    // lower so don't worry about this.
18140    // bswap $0
18141    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
18142        matchAsm(AsmPieces[0], "bswapl", "$0") ||
18143        matchAsm(AsmPieces[0], "bswapq", "$0") ||
18144        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
18145        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
18146        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
18147      // No need to check constraints, nothing other than the equivalent of
18148      // "=r,0" would be valid here.
18149      return IntrinsicLowering::LowerToByteSwap(CI);
18150    }
18151
18152    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
18153    if (CI->getType()->isIntegerTy(16) &&
18154        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
18155        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
18156         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
18157      AsmPieces.clear();
18158      const std::string &ConstraintsStr = IA->getConstraintString();
18159      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
18160      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
18161      if (AsmPieces.size() == 4 &&
18162          AsmPieces[0] == "~{cc}" &&
18163          AsmPieces[1] == "~{dirflag}" &&
18164          AsmPieces[2] == "~{flags}" &&
18165          AsmPieces[3] == "~{fpsr}")
18166      return IntrinsicLowering::LowerToByteSwap(CI);
18167    }
18168    break;
18169  case 3:
18170    if (CI->getType()->isIntegerTy(32) &&
18171        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
18172        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
18173        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
18174        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
18175      AsmPieces.clear();
18176      const std::string &ConstraintsStr = IA->getConstraintString();
18177      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
18178      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
18179      if (AsmPieces.size() == 4 &&
18180          AsmPieces[0] == "~{cc}" &&
18181          AsmPieces[1] == "~{dirflag}" &&
18182          AsmPieces[2] == "~{flags}" &&
18183          AsmPieces[3] == "~{fpsr}")
18184        return IntrinsicLowering::LowerToByteSwap(CI);
18185    }
18186
18187    if (CI->getType()->isIntegerTy(64)) {
18188      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
18189      if (Constraints.size() >= 2 &&
18190          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
18191          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
18192        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
18193        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
18194            matchAsm(AsmPieces[1], "bswap", "%edx") &&
18195            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
18196          return IntrinsicLowering::LowerToByteSwap(CI);
18197      }
18198    }
18199    break;
18200  }
18201  return false;
18202}
18203
18204/// getConstraintType - Given a constraint letter, return the type of
18205/// constraint it is for this target.
18206X86TargetLowering::ConstraintType
18207X86TargetLowering::getConstraintType(const std::string &Constraint) const {
18208  if (Constraint.size() == 1) {
18209    switch (Constraint[0]) {
18210    case 'R':
18211    case 'q':
18212    case 'Q':
18213    case 'f':
18214    case 't':
18215    case 'u':
18216    case 'y':
18217    case 'x':
18218    case 'Y':
18219    case 'l':
18220      return C_RegisterClass;
18221    case 'a':
18222    case 'b':
18223    case 'c':
18224    case 'd':
18225    case 'S':
18226    case 'D':
18227    case 'A':
18228      return C_Register;
18229    case 'I':
18230    case 'J':
18231    case 'K':
18232    case 'L':
18233    case 'M':
18234    case 'N':
18235    case 'G':
18236    case 'C':
18237    case 'e':
18238    case 'Z':
18239      return C_Other;
18240    default:
18241      break;
18242    }
18243  }
18244  return TargetLowering::getConstraintType(Constraint);
18245}
18246
18247/// Examine constraint type and operand type and determine a weight value.
18248/// This object must already have been set up with the operand type
18249/// and the current alternative constraint selected.
18250TargetLowering::ConstraintWeight
18251  X86TargetLowering::getSingleConstraintMatchWeight(
18252    AsmOperandInfo &info, const char *constraint) const {
18253  ConstraintWeight weight = CW_Invalid;
18254  Value *CallOperandVal = info.CallOperandVal;
18255    // If we don't have a value, we can't do a match,
18256    // but allow it at the lowest weight.
18257  if (CallOperandVal == NULL)
18258    return CW_Default;
18259  Type *type = CallOperandVal->getType();
18260  // Look at the constraint type.
18261  switch (*constraint) {
18262  default:
18263    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
18264  case 'R':
18265  case 'q':
18266  case 'Q':
18267  case 'a':
18268  case 'b':
18269  case 'c':
18270  case 'd':
18271  case 'S':
18272  case 'D':
18273  case 'A':
18274    if (CallOperandVal->getType()->isIntegerTy())
18275      weight = CW_SpecificReg;
18276    break;
18277  case 'f':
18278  case 't':
18279  case 'u':
18280    if (type->isFloatingPointTy())
18281      weight = CW_SpecificReg;
18282    break;
18283  case 'y':
18284    if (type->isX86_MMXTy() && Subtarget->hasMMX())
18285      weight = CW_SpecificReg;
18286    break;
18287  case 'x':
18288  case 'Y':
18289    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
18290        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
18291      weight = CW_Register;
18292    break;
18293  case 'I':
18294    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
18295      if (C->getZExtValue() <= 31)
18296        weight = CW_Constant;
18297    }
18298    break;
18299  case 'J':
18300    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18301      if (C->getZExtValue() <= 63)
18302        weight = CW_Constant;
18303    }
18304    break;
18305  case 'K':
18306    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18307      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
18308        weight = CW_Constant;
18309    }
18310    break;
18311  case 'L':
18312    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18313      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
18314        weight = CW_Constant;
18315    }
18316    break;
18317  case 'M':
18318    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18319      if (C->getZExtValue() <= 3)
18320        weight = CW_Constant;
18321    }
18322    break;
18323  case 'N':
18324    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18325      if (C->getZExtValue() <= 0xff)
18326        weight = CW_Constant;
18327    }
18328    break;
18329  case 'G':
18330  case 'C':
18331    if (dyn_cast<ConstantFP>(CallOperandVal)) {
18332      weight = CW_Constant;
18333    }
18334    break;
18335  case 'e':
18336    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18337      if ((C->getSExtValue() >= -0x80000000LL) &&
18338          (C->getSExtValue() <= 0x7fffffffLL))
18339        weight = CW_Constant;
18340    }
18341    break;
18342  case 'Z':
18343    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
18344      if (C->getZExtValue() <= 0xffffffff)
18345        weight = CW_Constant;
18346    }
18347    break;
18348  }
18349  return weight;
18350}
18351
18352/// LowerXConstraint - try to replace an X constraint, which matches anything,
18353/// with another that has more specific requirements based on the type of the
18354/// corresponding operand.
18355const char *X86TargetLowering::
18356LowerXConstraint(EVT ConstraintVT) const {
18357  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
18358  // 'f' like normal targets.
18359  if (ConstraintVT.isFloatingPoint()) {
18360    if (Subtarget->hasSSE2())
18361      return "Y";
18362    if (Subtarget->hasSSE1())
18363      return "x";
18364  }
18365
18366  return TargetLowering::LowerXConstraint(ConstraintVT);
18367}
18368
18369/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
18370/// vector.  If it is invalid, don't add anything to Ops.
18371void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
18372                                                     std::string &Constraint,
18373                                                     std::vector<SDValue>&Ops,
18374                                                     SelectionDAG &DAG) const {
18375  SDValue Result(0, 0);
18376
18377  // Only support length 1 constraints for now.
18378  if (Constraint.length() > 1) return;
18379
18380  char ConstraintLetter = Constraint[0];
18381  switch (ConstraintLetter) {
18382  default: break;
18383  case 'I':
18384    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18385      if (C->getZExtValue() <= 31) {
18386        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18387        break;
18388      }
18389    }
18390    return;
18391  case 'J':
18392    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18393      if (C->getZExtValue() <= 63) {
18394        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18395        break;
18396      }
18397    }
18398    return;
18399  case 'K':
18400    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18401      if (isInt<8>(C->getSExtValue())) {
18402        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18403        break;
18404      }
18405    }
18406    return;
18407  case 'N':
18408    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18409      if (C->getZExtValue() <= 255) {
18410        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18411        break;
18412      }
18413    }
18414    return;
18415  case 'e': {
18416    // 32-bit signed value
18417    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18418      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
18419                                           C->getSExtValue())) {
18420        // Widen to 64 bits here to get it sign extended.
18421        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
18422        break;
18423      }
18424    // FIXME gcc accepts some relocatable values here too, but only in certain
18425    // memory models; it's complicated.
18426    }
18427    return;
18428  }
18429  case 'Z': {
18430    // 32-bit unsigned value
18431    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
18432      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
18433                                           C->getZExtValue())) {
18434        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
18435        break;
18436      }
18437    }
18438    // FIXME gcc accepts some relocatable values here too, but only in certain
18439    // memory models; it's complicated.
18440    return;
18441  }
18442  case 'i': {
18443    // Literal immediates are always ok.
18444    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
18445      // Widen to 64 bits here to get it sign extended.
18446      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
18447      break;
18448    }
18449
18450    // In any sort of PIC mode addresses need to be computed at runtime by
18451    // adding in a register or some sort of table lookup.  These can't
18452    // be used as immediates.
18453    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
18454      return;
18455
18456    // If we are in non-pic codegen mode, we allow the address of a global (with
18457    // an optional displacement) to be used with 'i'.
18458    GlobalAddressSDNode *GA = 0;
18459    int64_t Offset = 0;
18460
18461    // Match either (GA), (GA+C), (GA+C1+C2), etc.
18462    while (1) {
18463      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
18464        Offset += GA->getOffset();
18465        break;
18466      } else if (Op.getOpcode() == ISD::ADD) {
18467        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
18468          Offset += C->getZExtValue();
18469          Op = Op.getOperand(0);
18470          continue;
18471        }
18472      } else if (Op.getOpcode() == ISD::SUB) {
18473        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
18474          Offset += -C->getZExtValue();
18475          Op = Op.getOperand(0);
18476          continue;
18477        }
18478      }
18479
18480      // Otherwise, this isn't something we can handle, reject it.
18481      return;
18482    }
18483
18484    const GlobalValue *GV = GA->getGlobal();
18485    // If we require an extra load to get this address, as in PIC mode, we
18486    // can't accept it.
18487    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
18488                                                        getTargetMachine())))
18489      return;
18490
18491    Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
18492                                        GA->getValueType(0), Offset);
18493    break;
18494  }
18495  }
18496
18497  if (Result.getNode()) {
18498    Ops.push_back(Result);
18499    return;
18500  }
18501  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
18502}
18503
18504std::pair<unsigned, const TargetRegisterClass*>
18505X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
18506                                                MVT VT) const {
18507  // First, see if this is a constraint that directly corresponds to an LLVM
18508  // register class.
18509  if (Constraint.size() == 1) {
18510    // GCC Constraint Letters
18511    switch (Constraint[0]) {
18512    default: break;
18513      // TODO: Slight differences here in allocation order and leaving
18514      // RIP in the class. Do they matter any more here than they do
18515      // in the normal allocation?
18516    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
18517      if (Subtarget->is64Bit()) {
18518        if (VT == MVT::i32 || VT == MVT::f32)
18519          return std::make_pair(0U, &X86::GR32RegClass);
18520        if (VT == MVT::i16)
18521          return std::make_pair(0U, &X86::GR16RegClass);
18522        if (VT == MVT::i8 || VT == MVT::i1)
18523          return std::make_pair(0U, &X86::GR8RegClass);
18524        if (VT == MVT::i64 || VT == MVT::f64)
18525          return std::make_pair(0U, &X86::GR64RegClass);
18526        break;
18527      }
18528      // 32-bit fallthrough
18529    case 'Q':   // Q_REGS
18530      if (VT == MVT::i32 || VT == MVT::f32)
18531        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
18532      if (VT == MVT::i16)
18533        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
18534      if (VT == MVT::i8 || VT == MVT::i1)
18535        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
18536      if (VT == MVT::i64)
18537        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
18538      break;
18539    case 'r':   // GENERAL_REGS
18540    case 'l':   // INDEX_REGS
18541      if (VT == MVT::i8 || VT == MVT::i1)
18542        return std::make_pair(0U, &X86::GR8RegClass);
18543      if (VT == MVT::i16)
18544        return std::make_pair(0U, &X86::GR16RegClass);
18545      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
18546        return std::make_pair(0U, &X86::GR32RegClass);
18547      return std::make_pair(0U, &X86::GR64RegClass);
18548    case 'R':   // LEGACY_REGS
18549      if (VT == MVT::i8 || VT == MVT::i1)
18550        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
18551      if (VT == MVT::i16)
18552        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
18553      if (VT == MVT::i32 || !Subtarget->is64Bit())
18554        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
18555      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
18556    case 'f':  // FP Stack registers.
18557      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
18558      // value to the correct fpstack register class.
18559      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
18560        return std::make_pair(0U, &X86::RFP32RegClass);
18561      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
18562        return std::make_pair(0U, &X86::RFP64RegClass);
18563      return std::make_pair(0U, &X86::RFP80RegClass);
18564    case 'y':   // MMX_REGS if MMX allowed.
18565      if (!Subtarget->hasMMX()) break;
18566      return std::make_pair(0U, &X86::VR64RegClass);
18567    case 'Y':   // SSE_REGS if SSE2 allowed
18568      if (!Subtarget->hasSSE2()) break;
18569      // FALL THROUGH.
18570    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
18571      if (!Subtarget->hasSSE1()) break;
18572
18573      switch (VT.SimpleTy) {
18574      default: break;
18575      // Scalar SSE types.
18576      case MVT::f32:
18577      case MVT::i32:
18578        return std::make_pair(0U, &X86::FR32RegClass);
18579      case MVT::f64:
18580      case MVT::i64:
18581        return std::make_pair(0U, &X86::FR64RegClass);
18582      // Vector types.
18583      case MVT::v16i8:
18584      case MVT::v8i16:
18585      case MVT::v4i32:
18586      case MVT::v2i64:
18587      case MVT::v4f32:
18588      case MVT::v2f64:
18589        return std::make_pair(0U, &X86::VR128RegClass);
18590      // AVX types.
18591      case MVT::v32i8:
18592      case MVT::v16i16:
18593      case MVT::v8i32:
18594      case MVT::v4i64:
18595      case MVT::v8f32:
18596      case MVT::v4f64:
18597        return std::make_pair(0U, &X86::VR256RegClass);
18598      case MVT::v8f64:
18599      case MVT::v16f32:
18600      case MVT::v16i32:
18601      case MVT::v8i64:
18602        return std::make_pair(0U, &X86::VR512RegClass);
18603      }
18604      break;
18605    }
18606  }
18607
18608  // Use the default implementation in TargetLowering to convert the register
18609  // constraint into a member of a register class.
18610  std::pair<unsigned, const TargetRegisterClass*> Res;
18611  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
18612
18613  // Not found as a standard register?
18614  if (Res.second == 0) {
18615    // Map st(0) -> st(7) -> ST0
18616    if (Constraint.size() == 7 && Constraint[0] == '{' &&
18617        tolower(Constraint[1]) == 's' &&
18618        tolower(Constraint[2]) == 't' &&
18619        Constraint[3] == '(' &&
18620        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
18621        Constraint[5] == ')' &&
18622        Constraint[6] == '}') {
18623
18624      Res.first = X86::ST0+Constraint[4]-'0';
18625      Res.second = &X86::RFP80RegClass;
18626      return Res;
18627    }
18628
18629    // GCC allows "st(0)" to be called just plain "st".
18630    if (StringRef("{st}").equals_lower(Constraint)) {
18631      Res.first = X86::ST0;
18632      Res.second = &X86::RFP80RegClass;
18633      return Res;
18634    }
18635
18636    // flags -> EFLAGS
18637    if (StringRef("{flags}").equals_lower(Constraint)) {
18638      Res.first = X86::EFLAGS;
18639      Res.second = &X86::CCRRegClass;
18640      return Res;
18641    }
18642
18643    // 'A' means EAX + EDX.
18644    if (Constraint == "A") {
18645      Res.first = X86::EAX;
18646      Res.second = &X86::GR32_ADRegClass;
18647      return Res;
18648    }
18649    return Res;
18650  }
18651
18652  // Otherwise, check to see if this is a register class of the wrong value
18653  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
18654  // turn into {ax},{dx}.
18655  if (Res.second->hasType(VT))
18656    return Res;   // Correct type already, nothing to do.
18657
18658  // All of the single-register GCC register classes map their values onto
18659  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
18660  // really want an 8-bit or 32-bit register, map to the appropriate register
18661  // class and return the appropriate register.
18662  if (Res.second == &X86::GR16RegClass) {
18663    if (VT == MVT::i8 || VT == MVT::i1) {
18664      unsigned DestReg = 0;
18665      switch (Res.first) {
18666      default: break;
18667      case X86::AX: DestReg = X86::AL; break;
18668      case X86::DX: DestReg = X86::DL; break;
18669      case X86::CX: DestReg = X86::CL; break;
18670      case X86::BX: DestReg = X86::BL; break;
18671      }
18672      if (DestReg) {
18673        Res.first = DestReg;
18674        Res.second = &X86::GR8RegClass;
18675      }
18676    } else if (VT == MVT::i32 || VT == MVT::f32) {
18677      unsigned DestReg = 0;
18678      switch (Res.first) {
18679      default: break;
18680      case X86::AX: DestReg = X86::EAX; break;
18681      case X86::DX: DestReg = X86::EDX; break;
18682      case X86::CX: DestReg = X86::ECX; break;
18683      case X86::BX: DestReg = X86::EBX; break;
18684      case X86::SI: DestReg = X86::ESI; break;
18685      case X86::DI: DestReg = X86::EDI; break;
18686      case X86::BP: DestReg = X86::EBP; break;
18687      case X86::SP: DestReg = X86::ESP; break;
18688      }
18689      if (DestReg) {
18690        Res.first = DestReg;
18691        Res.second = &X86::GR32RegClass;
18692      }
18693    } else if (VT == MVT::i64 || VT == MVT::f64) {
18694      unsigned DestReg = 0;
18695      switch (Res.first) {
18696      default: break;
18697      case X86::AX: DestReg = X86::RAX; break;
18698      case X86::DX: DestReg = X86::RDX; break;
18699      case X86::CX: DestReg = X86::RCX; break;
18700      case X86::BX: DestReg = X86::RBX; break;
18701      case X86::SI: DestReg = X86::RSI; break;
18702      case X86::DI: DestReg = X86::RDI; break;
18703      case X86::BP: DestReg = X86::RBP; break;
18704      case X86::SP: DestReg = X86::RSP; break;
18705      }
18706      if (DestReg) {
18707        Res.first = DestReg;
18708        Res.second = &X86::GR64RegClass;
18709      }
18710    }
18711  } else if (Res.second == &X86::FR32RegClass ||
18712             Res.second == &X86::FR64RegClass ||
18713             Res.second == &X86::VR128RegClass ||
18714             Res.second == &X86::VR256RegClass ||
18715             Res.second == &X86::FR32XRegClass ||
18716             Res.second == &X86::FR64XRegClass ||
18717             Res.second == &X86::VR128XRegClass ||
18718             Res.second == &X86::VR256XRegClass ||
18719             Res.second == &X86::VR512RegClass) {
18720    // Handle references to XMM physical registers that got mapped into the
18721    // wrong class.  This can happen with constraints like {xmm0} where the
18722    // target independent register mapper will just pick the first match it can
18723    // find, ignoring the required type.
18724
18725    if (VT == MVT::f32 || VT == MVT::i32)
18726      Res.second = &X86::FR32RegClass;
18727    else if (VT == MVT::f64 || VT == MVT::i64)
18728      Res.second = &X86::FR64RegClass;
18729    else if (X86::VR128RegClass.hasType(VT))
18730      Res.second = &X86::VR128RegClass;
18731    else if (X86::VR256RegClass.hasType(VT))
18732      Res.second = &X86::VR256RegClass;
18733    else if (X86::VR512RegClass.hasType(VT))
18734      Res.second = &X86::VR512RegClass;
18735  }
18736
18737  return Res;
18738}
18739