X86ISelLowering.cpp revision c76d23f2e2550c60aaa26ec23711aecebea7f533
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
65
66  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
67
68  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
69    if (is64Bit) return new X8664_MachoTargetObjectFile();
70    return new TargetLoweringObjectFileMachO();
71  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
72    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
73    return new X8632_ELFTargetObjectFile(TM);
74  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
75    return new TargetLoweringObjectFileCOFF();
76  }
77  llvm_unreachable("unknown subtarget type");
78}
79
80X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
81  : TargetLowering(TM, createTLOF(TM)) {
82  Subtarget = &TM.getSubtarget<X86Subtarget>();
83  X86ScalarSSEf64 = Subtarget->hasSSE2();
84  X86ScalarSSEf32 = Subtarget->hasSSE1();
85  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
86
87  RegInfo = TM.getRegisterInfo();
88  TD = getTargetData();
89
90  // Set up the TargetLowering object.
91
92  // X86 is weird, it always uses i8 for shift amounts and setcc results.
93  setShiftAmountType(MVT::i8);
94  setBooleanContents(ZeroOrOneBooleanContent);
95  setSchedulingPreference(Sched::RegPressure);
96  setStackPointerRegisterToSaveRestore(X86StackPtr);
97
98  if (Subtarget->isTargetDarwin()) {
99    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
100    setUseUnderscoreSetJmp(false);
101    setUseUnderscoreLongJmp(false);
102  } else if (Subtarget->isTargetMingw()) {
103    // MS runtime is weird: it exports _setjmp, but longjmp!
104    setUseUnderscoreSetJmp(true);
105    setUseUnderscoreLongJmp(false);
106  } else {
107    setUseUnderscoreSetJmp(true);
108    setUseUnderscoreLongJmp(true);
109  }
110
111  // Set up the register classes.
112  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
113  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
123  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
124  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
125  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
126  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
127
128  // SETOEQ and SETUNE require checking two conditions.
129  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
130  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
131  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
132  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
133  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
135
136  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
137  // operation.
138  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
139  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
141
142  if (Subtarget->is64Bit()) {
143    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
144    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
145  } else if (!UseSoftFloat) {
146    // We have an algorithm for SSE2->double, and we turn this into a
147    // 64-bit FILD followed by conditional FADD for other targets.
148    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
149    // We have an algorithm for SSE2, and we turn this into a 64-bit
150    // FILD for other targets.
151    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
152  }
153
154  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
155  // this operation.
156  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
157  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
158
159  if (!UseSoftFloat) {
160    // SSE has no i16 to fp conversion, only i32
161    if (X86ScalarSSEf32) {
162      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
163      // f32 and f64 cases are Legal, f80 case is not
164      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
165    } else {
166      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    }
169  } else {
170    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
171    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
172  }
173
174  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
175  // are Legal, f80 is custom lowered.
176  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
177  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
178
179  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
180  // this operation.
181  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
182  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
183
184  if (X86ScalarSSEf32) {
185    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
186    // f32 and f64 cases are Legal, f80 case is not
187    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
188  } else {
189    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  }
192
193  // Handle FP_TO_UINT by promoting the destination to a larger signed
194  // conversion.
195  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
197  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
198
199  if (Subtarget->is64Bit()) {
200    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
201    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
202  } else if (!UseSoftFloat) {
203    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
204      // Expand FP_TO_UINT into a select.
205      // FIXME: We would like to use a Custom expander here eventually to do
206      // the optimal thing for SSE vs. the default expansion in the legalizer.
207      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
208    else
209      // With SSE3 we can use fisttpll to convert to a signed i64; without
210      // SSE, we're stuck with a fistpll.
211      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
212  }
213
214  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
215  if (!X86ScalarSSEf64) {
216    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
217    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
218    if (Subtarget->is64Bit()) {
219      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
220      // Without SSE, i64->f64 goes through memory; i64->MMX is Legal.
221      if (Subtarget->hasMMX() && !DisableMMX)
222        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Custom);
223      else
224        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
225    }
226  }
227
228  // Scalar integer divide and remainder are lowered to use operations that
229  // produce two results, to match the available instructions. This exposes
230  // the two-result form to trivial CSE, which is able to combine x/y and x%y
231  // into a single instruction.
232  //
233  // Scalar integer multiply-high is also lowered to use two-result
234  // operations, to match the available instructions. However, plain multiply
235  // (low) operations are left as Legal, as there are single-result
236  // instructions for this in x86. Using the two-result multiply instructions
237  // when both high and low results are needed must be arranged by dagcombine.
238  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
240  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
241  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
242  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
243  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
244  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
248  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
249  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
262
263  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
264  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
265  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
266  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
267  if (Subtarget->is64Bit())
268    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
269  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
270  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
271  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
272  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
273  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
274  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
275  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
276  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
277
278  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
279  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
280  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
281  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
282  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
283  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
301  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
302  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
303  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
305  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
306  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
307  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
309  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
310  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
313    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
314  }
315  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
316
317  // Darwin ABI issue.
318  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
319  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
320  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
321  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
322  if (Subtarget->is64Bit())
323    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
324  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
325  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
326  if (Subtarget->is64Bit()) {
327    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
328    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
329    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
330    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
331    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
332  }
333  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
334  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
335  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
336  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
337  if (Subtarget->is64Bit()) {
338    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
339    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
340    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
341  }
342
343  if (Subtarget->hasSSE1())
344    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
345
346  // We may not have a libcall for MEMBARRIER so we should lower this.
347  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
348
349  // On X86 and X86-64, atomic operations are lowered to locked instructions.
350  // Locked instructions, in turn, have implicit fence semantics (all memory
351  // operations are flushed before issuing the locked instruction, and they
352  // are not buffered), so we can fold away the common pattern of
353  // fence-atomic-fence.
354  setShouldFoldAtomicFences(true);
355
356  // Expand certain atomics
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
359  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
360  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
361
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
364  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
365  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
366
367  if (!Subtarget->is64Bit()) {
368    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
374    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
375  }
376
377  // FIXME - use subtarget debug flags
378  if (!Subtarget->isTargetDarwin() &&
379      !Subtarget->isTargetELF() &&
380      !Subtarget->isTargetCygMing()) {
381    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
382  }
383
384  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
385  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
388  if (Subtarget->is64Bit()) {
389    setExceptionPointerRegister(X86::RAX);
390    setExceptionSelectorRegister(X86::RDX);
391  } else {
392    setExceptionPointerRegister(X86::EAX);
393    setExceptionSelectorRegister(X86::EDX);
394  }
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
397
398  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
399
400  setOperationAction(ISD::TRAP, MVT::Other, Legal);
401
402  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
403  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
404  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
405  if (Subtarget->is64Bit()) {
406    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
407    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
408  } else {
409    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
410    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
411  }
412
413  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
414  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
415  if (Subtarget->is64Bit())
416    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
417  if (Subtarget->isTargetCygMing())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
419  else
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
421
422  if (!UseSoftFloat && X86ScalarSSEf64) {
423    // f32 and f64 use SSE.
424    // Set up the FP register classes.
425    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
426    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
427
428    // Use ANDPD to simulate FABS.
429    setOperationAction(ISD::FABS , MVT::f64, Custom);
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f64, Custom);
434    setOperationAction(ISD::FNEG , MVT::f32, Custom);
435
436    // Use ANDPD and ORPD to simulate FCOPYSIGN.
437    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
438    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
439
440    // We don't support sin/cos/fmod
441    setOperationAction(ISD::FSIN , MVT::f64, Expand);
442    setOperationAction(ISD::FCOS , MVT::f64, Expand);
443    setOperationAction(ISD::FSIN , MVT::f32, Expand);
444    setOperationAction(ISD::FCOS , MVT::f32, Expand);
445
446    // Expand FP immediates into loads from the stack, except for the special
447    // cases we handle.
448    addLegalFPImmediate(APFloat(+0.0)); // xorpd
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450  } else if (!UseSoftFloat && X86ScalarSSEf32) {
451    // Use SSE for f32, x87 for f64.
452    // Set up the FP register classes.
453    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
454    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
455
456    // Use ANDPS to simulate FABS.
457    setOperationAction(ISD::FABS , MVT::f32, Custom);
458
459    // Use XORP to simulate FNEG.
460    setOperationAction(ISD::FNEG , MVT::f32, Custom);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463
464    // Use ANDPS and ORPS to simulate FCOPYSIGN.
465    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
467
468    // We don't support sin/cos/fmod
469    setOperationAction(ISD::FSIN , MVT::f32, Expand);
470    setOperationAction(ISD::FCOS , MVT::f32, Expand);
471
472    // Special cases we handle for FP constants.
473    addLegalFPImmediate(APFloat(+0.0f)); // xorps
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478
479    if (!UnsafeFPMath) {
480      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
481      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
482    }
483  } else if (!UseSoftFloat) {
484    // f32 and f64 in x87.
485    // Set up the FP register classes.
486    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
487    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
488
489    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
490    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
493
494    if (!UnsafeFPMath) {
495      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
496      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
497    }
498    addLegalFPImmediate(APFloat(+0.0)); // FLD0
499    addLegalFPImmediate(APFloat(+1.0)); // FLD1
500    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
501    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
502    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
503    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
504    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
505    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
506  }
507
508  // Long double always uses X87.
509  if (!UseSoftFloat) {
510    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
511    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
512    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
513    {
514      bool ignored;
515      APFloat TmpFlt(+0.0);
516      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                     &ignored);
518      addLegalFPImmediate(TmpFlt);  // FLD0
519      TmpFlt.changeSign();
520      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
521      APFloat TmpFlt2(+1.0);
522      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
523                      &ignored);
524      addLegalFPImmediate(TmpFlt2);  // FLD1
525      TmpFlt2.changeSign();
526      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
527    }
528
529    if (!UnsafeFPMath) {
530      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
531      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
532    }
533  }
534
535  // Always use a library call for pow.
536  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
537  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
539
540  setOperationAction(ISD::FLOG, MVT::f80, Expand);
541  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
543  setOperationAction(ISD::FEXP, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
545
546  // First set operation action for all vector types to either promote
547  // (for widening) or expand (for scalarization). Then we will selectively
548  // turn on ones that can be effectively codegen'd.
549  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
550       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
551    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
566    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
600    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
604    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
605         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
606      setTruncStoreAction((MVT::SimpleValueType)VT,
607                          (MVT::SimpleValueType)InnerVT, Expand);
608    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
609    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
610    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
611  }
612
613  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
614  // with -msoft-float, disable use of MMX as well.
615  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
616    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass, false);
617    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false);
618    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false);
619
620    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false);
621
622    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
623    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
624    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
625    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
626
627    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
628    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
629    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
630    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
631
632    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
633    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
634
635    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
636    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
637    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
638    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
639    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
640    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
641    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
642
643    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
644    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
645    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
646    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
647    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
648    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
649    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
650
651    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
652    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
653    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
654    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
655    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
656    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
657    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
658
659    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
660    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
661    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
662    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
663    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
664    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
665    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
666
667    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
668    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
669    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
670    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
671
672    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
674    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
675    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
676
677    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
678    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
679    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
680
681    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
682
683    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
684    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
685    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
686    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
687    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
688    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
689    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
690
691    if (!X86ScalarSSEf64 && Subtarget->is64Bit()) {
692      setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Custom);
693      setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Custom);
694      setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Custom);
695      setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Custom);
696    }
697  }
698
699  if (!UseSoftFloat && Subtarget->hasSSE1()) {
700    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
701
702    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
703    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
704    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
705    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
706    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
707    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
708    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
709    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
710    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
711    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
712    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
713    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
714  }
715
716  if (!UseSoftFloat && Subtarget->hasSSE2()) {
717    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
718
719    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
720    // registers cannot be used even for integer operations.
721    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
722    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
723    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
724    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
725
726    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
727    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
728    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
729    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
730    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
731    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
732    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
733    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
734    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
735    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
736    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
737    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
738    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
739    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
740    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
741    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
742
743    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
744    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
745    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
746    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
747
748    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
749    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
750    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
751    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
752    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
753
754    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
755    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
756    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
757    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
758    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
759
760    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
761    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
762      EVT VT = (MVT::SimpleValueType)i;
763      // Do not attempt to custom lower non-power-of-2 vectors
764      if (!isPowerOf2_32(VT.getVectorNumElements()))
765        continue;
766      // Do not attempt to custom lower non-128-bit vectors
767      if (!VT.is128BitVector())
768        continue;
769      setOperationAction(ISD::BUILD_VECTOR,
770                         VT.getSimpleVT().SimpleTy, Custom);
771      setOperationAction(ISD::VECTOR_SHUFFLE,
772                         VT.getSimpleVT().SimpleTy, Custom);
773      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
774                         VT.getSimpleVT().SimpleTy, Custom);
775    }
776
777    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
778    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
779    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
780    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
781    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
782    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
783
784    if (Subtarget->is64Bit()) {
785      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
786      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
787    }
788
789    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
790    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
791      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
792      EVT VT = SVT;
793
794      // Do not attempt to promote non-128-bit vectors
795      if (!VT.is128BitVector())
796        continue;
797
798      setOperationAction(ISD::AND,    SVT, Promote);
799      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
800      setOperationAction(ISD::OR,     SVT, Promote);
801      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
802      setOperationAction(ISD::XOR,    SVT, Promote);
803      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
804      setOperationAction(ISD::LOAD,   SVT, Promote);
805      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
806      setOperationAction(ISD::SELECT, SVT, Promote);
807      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
808    }
809
810    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
811
812    // Custom lower v2i64 and v2f64 selects.
813    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
814    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
815    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
816    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
817
818    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
819    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
820    if (!DisableMMX && Subtarget->hasMMX()) {
821      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
822      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
823    }
824  }
825
826  if (Subtarget->hasSSE41()) {
827    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
828    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
829    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
830    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
831    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
832    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
833    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
834    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
835    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
836    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
837
838    // FIXME: Do we need to handle scalar-to-vector here?
839    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
840
841    // i8 and i16 vectors are custom , because the source register and source
842    // source memory operand types are not the same width.  f32 vectors are
843    // custom since the immediate controlling the insert encodes additional
844    // information.
845    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
846    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
847    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
848    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
849
850    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
851    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
852    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
853    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
854
855    if (Subtarget->is64Bit()) {
856      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
857      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
858    }
859  }
860
861  if (Subtarget->hasSSE42()) {
862    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
863  }
864
865  if (!UseSoftFloat && Subtarget->hasAVX()) {
866    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
867    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
868    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
869    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
870
871    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
872    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
873    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
874    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
875    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
876    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
877    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
878    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
879    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
880    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
881    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
882    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
883    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
884    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
885    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
886
887    // Operations to consider commented out -v16i16 v32i8
888    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
889    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
890    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
891    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
892    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
893    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
894    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
895    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
896    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
897    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
898    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
899    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
900    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
901    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
902
903    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
904    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
905    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
906    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
907
908    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
909    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
910    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
911    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
913
914    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
915    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
916    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
917    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
918    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
919    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
920
921#if 0
922    // Not sure we want to do this since there are no 256-bit integer
923    // operations in AVX
924
925    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
926    // This includes 256-bit vectors
927    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
928      EVT VT = (MVT::SimpleValueType)i;
929
930      // Do not attempt to custom lower non-power-of-2 vectors
931      if (!isPowerOf2_32(VT.getVectorNumElements()))
932        continue;
933
934      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
935      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
936      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
937    }
938
939    if (Subtarget->is64Bit()) {
940      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
941      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
942    }
943#endif
944
945#if 0
946    // Not sure we want to do this since there are no 256-bit integer
947    // operations in AVX
948
949    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
950    // Including 256-bit vectors
951    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
952      EVT VT = (MVT::SimpleValueType)i;
953
954      if (!VT.is256BitVector()) {
955        continue;
956      }
957      setOperationAction(ISD::AND,    VT, Promote);
958      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
959      setOperationAction(ISD::OR,     VT, Promote);
960      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
961      setOperationAction(ISD::XOR,    VT, Promote);
962      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
963      setOperationAction(ISD::LOAD,   VT, Promote);
964      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
965      setOperationAction(ISD::SELECT, VT, Promote);
966      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
967    }
968
969    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
970#endif
971  }
972
973  // We want to custom lower some of our intrinsics.
974  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
975
976  // Add/Sub/Mul with overflow operations are custom lowered.
977  setOperationAction(ISD::SADDO, MVT::i32, Custom);
978  setOperationAction(ISD::UADDO, MVT::i32, Custom);
979  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
980  setOperationAction(ISD::USUBO, MVT::i32, Custom);
981  setOperationAction(ISD::SMULO, MVT::i32, Custom);
982
983  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
984  // handle type legalization for these operations here.
985  //
986  // FIXME: We really should do custom legalization for addition and
987  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
988  // than generic legalization for 64-bit multiplication-with-overflow, though.
989  if (Subtarget->is64Bit()) {
990    setOperationAction(ISD::SADDO, MVT::i64, Custom);
991    setOperationAction(ISD::UADDO, MVT::i64, Custom);
992    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
993    setOperationAction(ISD::USUBO, MVT::i64, Custom);
994    setOperationAction(ISD::SMULO, MVT::i64, Custom);
995  }
996
997  if (!Subtarget->is64Bit()) {
998    // These libcalls are not available in 32-bit.
999    setLibcallName(RTLIB::SHL_I128, 0);
1000    setLibcallName(RTLIB::SRL_I128, 0);
1001    setLibcallName(RTLIB::SRA_I128, 0);
1002  }
1003
1004  // We have target-specific dag combine patterns for the following nodes:
1005  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1006  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1007  setTargetDAGCombine(ISD::BUILD_VECTOR);
1008  setTargetDAGCombine(ISD::SELECT);
1009  setTargetDAGCombine(ISD::SHL);
1010  setTargetDAGCombine(ISD::SRA);
1011  setTargetDAGCombine(ISD::SRL);
1012  setTargetDAGCombine(ISD::OR);
1013  setTargetDAGCombine(ISD::STORE);
1014  setTargetDAGCombine(ISD::ZERO_EXTEND);
1015  if (Subtarget->is64Bit())
1016    setTargetDAGCombine(ISD::MUL);
1017
1018  computeRegisterProperties();
1019
1020  // FIXME: These should be based on subtarget info. Plus, the values should
1021  // be smaller when we are in optimizing for size mode.
1022  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1023  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1024  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1025  setPrefLoopAlignment(16);
1026  benefitFromCodePlacementOpt = true;
1027}
1028
1029
1030MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1031  return MVT::i8;
1032}
1033
1034
1035/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1036/// the desired ByVal argument alignment.
1037static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1038  if (MaxAlign == 16)
1039    return;
1040  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1041    if (VTy->getBitWidth() == 128)
1042      MaxAlign = 16;
1043  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1044    unsigned EltAlign = 0;
1045    getMaxByValAlign(ATy->getElementType(), EltAlign);
1046    if (EltAlign > MaxAlign)
1047      MaxAlign = EltAlign;
1048  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1049    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1050      unsigned EltAlign = 0;
1051      getMaxByValAlign(STy->getElementType(i), EltAlign);
1052      if (EltAlign > MaxAlign)
1053        MaxAlign = EltAlign;
1054      if (MaxAlign == 16)
1055        break;
1056    }
1057  }
1058  return;
1059}
1060
1061/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1062/// function arguments in the caller parameter area. For X86, aggregates
1063/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1064/// are at 4-byte boundaries.
1065unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1066  if (Subtarget->is64Bit()) {
1067    // Max of 8 and alignment of type.
1068    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1069    if (TyAlign > 8)
1070      return TyAlign;
1071    return 8;
1072  }
1073
1074  unsigned Align = 4;
1075  if (Subtarget->hasSSE1())
1076    getMaxByValAlign(Ty, Align);
1077  return Align;
1078}
1079
1080/// getOptimalMemOpType - Returns the target specific optimal type for load
1081/// and store operations as a result of memset, memcpy, and memmove
1082/// lowering. If DstAlign is zero that means it's safe to destination
1083/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1084/// means there isn't a need to check it against alignment requirement,
1085/// probably because the source does not need to be loaded. If
1086/// 'NonScalarIntSafe' is true, that means it's safe to return a
1087/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1088/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1089/// constant so it does not need to be loaded.
1090/// It returns EVT::Other if the type should be determined using generic
1091/// target-independent logic.
1092EVT
1093X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1094                                       unsigned DstAlign, unsigned SrcAlign,
1095                                       bool NonScalarIntSafe,
1096                                       bool MemcpyStrSrc,
1097                                       MachineFunction &MF) const {
1098  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1099  // linux.  This is because the stack realignment code can't handle certain
1100  // cases like PR2962.  This should be removed when PR2962 is fixed.
1101  const Function *F = MF.getFunction();
1102  if (NonScalarIntSafe &&
1103      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1104    if (Size >= 16 &&
1105        (Subtarget->isUnalignedMemAccessFast() ||
1106         ((DstAlign == 0 || DstAlign >= 16) &&
1107          (SrcAlign == 0 || SrcAlign >= 16))) &&
1108        Subtarget->getStackAlignment() >= 16) {
1109      if (Subtarget->hasSSE2())
1110        return MVT::v4i32;
1111      if (Subtarget->hasSSE1())
1112        return MVT::v4f32;
1113    } else if (!MemcpyStrSrc && Size >= 8 &&
1114               !Subtarget->is64Bit() &&
1115               Subtarget->getStackAlignment() >= 8 &&
1116               Subtarget->hasSSE2()) {
1117      // Do not use f64 to lower memcpy if source is string constant. It's
1118      // better to use i32 to avoid the loads.
1119      return MVT::f64;
1120    }
1121  }
1122  if (Subtarget->is64Bit() && Size >= 8)
1123    return MVT::i64;
1124  return MVT::i32;
1125}
1126
1127/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1128/// current function.  The returned value is a member of the
1129/// MachineJumpTableInfo::JTEntryKind enum.
1130unsigned X86TargetLowering::getJumpTableEncoding() const {
1131  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1132  // symbol.
1133  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1134      Subtarget->isPICStyleGOT())
1135    return MachineJumpTableInfo::EK_Custom32;
1136
1137  // Otherwise, use the normal jump table encoding heuristics.
1138  return TargetLowering::getJumpTableEncoding();
1139}
1140
1141/// getPICBaseSymbol - Return the X86-32 PIC base.
1142MCSymbol *
1143X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1144                                    MCContext &Ctx) const {
1145  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1146  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1147                               Twine(MF->getFunctionNumber())+"$pb");
1148}
1149
1150
1151const MCExpr *
1152X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1153                                             const MachineBasicBlock *MBB,
1154                                             unsigned uid,MCContext &Ctx) const{
1155  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1156         Subtarget->isPICStyleGOT());
1157  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1158  // entries.
1159  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1160                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1161}
1162
1163/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1164/// jumptable.
1165SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1166                                                    SelectionDAG &DAG) const {
1167  if (!Subtarget->is64Bit())
1168    // This doesn't have DebugLoc associated with it, but is not really the
1169    // same as a Register.
1170    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1171  return Table;
1172}
1173
1174/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1175/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1176/// MCExpr.
1177const MCExpr *X86TargetLowering::
1178getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1179                             MCContext &Ctx) const {
1180  // X86-64 uses RIP relative addressing based on the jump table label.
1181  if (Subtarget->isPICStyleRIPRel())
1182    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1183
1184  // Otherwise, the reference is relative to the PIC base.
1185  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1186}
1187
1188/// getFunctionAlignment - Return the Log2 alignment of this function.
1189unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1190  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1191}
1192
1193bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1194                                               unsigned &Offset) const {
1195  if (!Subtarget->isTargetLinux())
1196    return false;
1197
1198  if (Subtarget->is64Bit()) {
1199    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1200    Offset = 0x28;
1201    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1202      AddressSpace = 256;
1203    else
1204      AddressSpace = 257;
1205  } else {
1206    // %gs:0x14 on i386
1207    Offset = 0x14;
1208    AddressSpace = 256;
1209  }
1210  return true;
1211}
1212
1213
1214//===----------------------------------------------------------------------===//
1215//               Return Value Calling Convention Implementation
1216//===----------------------------------------------------------------------===//
1217
1218#include "X86GenCallingConv.inc"
1219
1220bool
1221X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1222                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1223                        LLVMContext &Context) const {
1224  SmallVector<CCValAssign, 16> RVLocs;
1225  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1226                 RVLocs, Context);
1227  return CCInfo.CheckReturn(Outs, RetCC_X86);
1228}
1229
1230SDValue
1231X86TargetLowering::LowerReturn(SDValue Chain,
1232                               CallingConv::ID CallConv, bool isVarArg,
1233                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1234                               const SmallVectorImpl<SDValue> &OutVals,
1235                               DebugLoc dl, SelectionDAG &DAG) const {
1236  MachineFunction &MF = DAG.getMachineFunction();
1237  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1238
1239  SmallVector<CCValAssign, 16> RVLocs;
1240  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1241                 RVLocs, *DAG.getContext());
1242  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1243
1244  // Add the regs to the liveout set for the function.
1245  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1246  for (unsigned i = 0; i != RVLocs.size(); ++i)
1247    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1248      MRI.addLiveOut(RVLocs[i].getLocReg());
1249
1250  SDValue Flag;
1251
1252  SmallVector<SDValue, 6> RetOps;
1253  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1254  // Operand #1 = Bytes To Pop
1255  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1256                   MVT::i16));
1257
1258  // Copy the result values into the output registers.
1259  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1260    CCValAssign &VA = RVLocs[i];
1261    assert(VA.isRegLoc() && "Can only return in registers!");
1262    SDValue ValToCopy = OutVals[i];
1263    EVT ValVT = ValToCopy.getValueType();
1264
1265    // If this is x86-64, and we disabled SSE, we can't return FP values
1266    if ((ValVT == MVT::f32 || ValVT == MVT::f64) &&
1267        (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1268      report_fatal_error("SSE register return with SSE disabled");
1269    }
1270    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1271    // llvm-gcc has never done it right and no one has noticed, so this
1272    // should be OK for now.
1273    if (ValVT == MVT::f64 &&
1274        (Subtarget->is64Bit() && !Subtarget->hasSSE2())) {
1275      report_fatal_error("SSE2 register return with SSE2 disabled");
1276    }
1277
1278    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1279    // the RET instruction and handled by the FP Stackifier.
1280    if (VA.getLocReg() == X86::ST0 ||
1281        VA.getLocReg() == X86::ST1) {
1282      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1283      // change the value to the FP stack register class.
1284      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1285        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1286      RetOps.push_back(ValToCopy);
1287      // Don't emit a copytoreg.
1288      continue;
1289    }
1290
1291    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1292    // which is returned in RAX / RDX.
1293    if (Subtarget->is64Bit()) {
1294      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1295        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1296        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1297          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1298                                  ValToCopy);
1299      }
1300    }
1301
1302    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1303    Flag = Chain.getValue(1);
1304  }
1305
1306  // The x86-64 ABI for returning structs by value requires that we copy
1307  // the sret argument into %rax for the return. We saved the argument into
1308  // a virtual register in the entry block, so now we copy the value out
1309  // and into %rax.
1310  if (Subtarget->is64Bit() &&
1311      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1312    MachineFunction &MF = DAG.getMachineFunction();
1313    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1314    unsigned Reg = FuncInfo->getSRetReturnReg();
1315    assert(Reg &&
1316           "SRetReturnReg should have been set in LowerFormalArguments().");
1317    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1318
1319    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1320    Flag = Chain.getValue(1);
1321
1322    // RAX now acts like a return value.
1323    MRI.addLiveOut(X86::RAX);
1324  }
1325
1326  RetOps[0] = Chain;  // Update chain.
1327
1328  // Add the flag if we have it.
1329  if (Flag.getNode())
1330    RetOps.push_back(Flag);
1331
1332  return DAG.getNode(X86ISD::RET_FLAG, dl,
1333                     MVT::Other, &RetOps[0], RetOps.size());
1334}
1335
1336/// LowerCallResult - Lower the result values of a call into the
1337/// appropriate copies out of appropriate physical registers.
1338///
1339SDValue
1340X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1341                                   CallingConv::ID CallConv, bool isVarArg,
1342                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1343                                   DebugLoc dl, SelectionDAG &DAG,
1344                                   SmallVectorImpl<SDValue> &InVals) const {
1345
1346  // Assign locations to each value returned by this call.
1347  SmallVector<CCValAssign, 16> RVLocs;
1348  bool Is64Bit = Subtarget->is64Bit();
1349  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1350                 RVLocs, *DAG.getContext());
1351  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1352
1353  // Copy all of the result registers out of their specified physreg.
1354  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1355    CCValAssign &VA = RVLocs[i];
1356    EVT CopyVT = VA.getValVT();
1357
1358    // If this is x86-64, and we disabled SSE, we can't return FP values
1359    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1360        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1361      report_fatal_error("SSE register return with SSE disabled");
1362    }
1363
1364    SDValue Val;
1365
1366    // If this is a call to a function that returns an fp value on the floating
1367    // point stack, we must guarantee the the value is popped from the stack, so
1368    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1369    // if the return value is not used. We use the FpGET_ST0 instructions
1370    // instead.
1371    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1372      // If we prefer to use the value in xmm registers, copy it out as f80 and
1373      // use a truncate to move it from fp stack reg to xmm reg.
1374      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1375      bool isST0 = VA.getLocReg() == X86::ST0;
1376      unsigned Opc = 0;
1377      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1378      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1379      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1380      SDValue Ops[] = { Chain, InFlag };
1381      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1382                                         Ops, 2), 1);
1383      Val = Chain.getValue(0);
1384
1385      // Round the f80 to the right size, which also moves it to the appropriate
1386      // xmm register.
1387      if (CopyVT != VA.getValVT())
1388        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1389                          // This truncation won't change the value.
1390                          DAG.getIntPtrConstant(1));
1391    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1392      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1393      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1394        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1395                                   MVT::v2i64, InFlag).getValue(1);
1396        Val = Chain.getValue(0);
1397        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1398                          Val, DAG.getConstant(0, MVT::i64));
1399      } else {
1400        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1401                                   MVT::i64, InFlag).getValue(1);
1402        Val = Chain.getValue(0);
1403      }
1404      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1405    } else {
1406      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1407                                 CopyVT, InFlag).getValue(1);
1408      Val = Chain.getValue(0);
1409    }
1410    InFlag = Chain.getValue(2);
1411    InVals.push_back(Val);
1412  }
1413
1414  return Chain;
1415}
1416
1417
1418//===----------------------------------------------------------------------===//
1419//                C & StdCall & Fast Calling Convention implementation
1420//===----------------------------------------------------------------------===//
1421//  StdCall calling convention seems to be standard for many Windows' API
1422//  routines and around. It differs from C calling convention just a little:
1423//  callee should clean up the stack, not caller. Symbols should be also
1424//  decorated in some fancy way :) It doesn't support any vector arguments.
1425//  For info on fast calling convention see Fast Calling Convention (tail call)
1426//  implementation LowerX86_32FastCCCallTo.
1427
1428/// CallIsStructReturn - Determines whether a call uses struct return
1429/// semantics.
1430static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1431  if (Outs.empty())
1432    return false;
1433
1434  return Outs[0].Flags.isSRet();
1435}
1436
1437/// ArgsAreStructReturn - Determines whether a function uses struct
1438/// return semantics.
1439static bool
1440ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1441  if (Ins.empty())
1442    return false;
1443
1444  return Ins[0].Flags.isSRet();
1445}
1446
1447/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1448/// given CallingConvention value.
1449CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1450  if (Subtarget->is64Bit()) {
1451    if (CC == CallingConv::GHC)
1452      return CC_X86_64_GHC;
1453    else if (Subtarget->isTargetWin64())
1454      return CC_X86_Win64_C;
1455    else
1456      return CC_X86_64_C;
1457  }
1458
1459  if (CC == CallingConv::X86_FastCall)
1460    return CC_X86_32_FastCall;
1461  else if (CC == CallingConv::X86_ThisCall)
1462    return CC_X86_32_ThisCall;
1463  else if (CC == CallingConv::Fast)
1464    return CC_X86_32_FastCC;
1465  else if (CC == CallingConv::GHC)
1466    return CC_X86_32_GHC;
1467  else
1468    return CC_X86_32_C;
1469}
1470
1471/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1472/// by "Src" to address "Dst" with size and alignment information specified by
1473/// the specific parameter attribute. The copy will be passed as a byval
1474/// function parameter.
1475static SDValue
1476CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1477                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1478                          DebugLoc dl) {
1479  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1480  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1481                       /*isVolatile*/false, /*AlwaysInline=*/true,
1482                       NULL, 0, NULL, 0);
1483}
1484
1485/// IsTailCallConvention - Return true if the calling convention is one that
1486/// supports tail call optimization.
1487static bool IsTailCallConvention(CallingConv::ID CC) {
1488  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1489}
1490
1491/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1492/// a tailcall target by changing its ABI.
1493static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1494  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1495}
1496
1497SDValue
1498X86TargetLowering::LowerMemArgument(SDValue Chain,
1499                                    CallingConv::ID CallConv,
1500                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1501                                    DebugLoc dl, SelectionDAG &DAG,
1502                                    const CCValAssign &VA,
1503                                    MachineFrameInfo *MFI,
1504                                    unsigned i) const {
1505  // Create the nodes corresponding to a load from this parameter slot.
1506  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1507  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1508  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1509  EVT ValVT;
1510
1511  // If value is passed by pointer we have address passed instead of the value
1512  // itself.
1513  if (VA.getLocInfo() == CCValAssign::Indirect)
1514    ValVT = VA.getLocVT();
1515  else
1516    ValVT = VA.getValVT();
1517
1518  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1519  // changed with more analysis.
1520  // In case of tail call optimization mark all arguments mutable. Since they
1521  // could be overwritten by lowering of arguments in case of a tail call.
1522  if (Flags.isByVal()) {
1523    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1524                                    VA.getLocMemOffset(), isImmutable);
1525    return DAG.getFrameIndex(FI, getPointerTy());
1526  } else {
1527    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1528                                    VA.getLocMemOffset(), isImmutable);
1529    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1530    return DAG.getLoad(ValVT, dl, Chain, FIN,
1531                       PseudoSourceValue::getFixedStack(FI), 0,
1532                       false, false, 0);
1533  }
1534}
1535
1536SDValue
1537X86TargetLowering::LowerFormalArguments(SDValue Chain,
1538                                        CallingConv::ID CallConv,
1539                                        bool isVarArg,
1540                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1541                                        DebugLoc dl,
1542                                        SelectionDAG &DAG,
1543                                        SmallVectorImpl<SDValue> &InVals)
1544                                          const {
1545  MachineFunction &MF = DAG.getMachineFunction();
1546  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1547
1548  const Function* Fn = MF.getFunction();
1549  if (Fn->hasExternalLinkage() &&
1550      Subtarget->isTargetCygMing() &&
1551      Fn->getName() == "main")
1552    FuncInfo->setForceFramePointer(true);
1553
1554  MachineFrameInfo *MFI = MF.getFrameInfo();
1555  bool Is64Bit = Subtarget->is64Bit();
1556  bool IsWin64 = Subtarget->isTargetWin64();
1557
1558  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1559         "Var args not supported with calling convention fastcc or ghc");
1560
1561  // Assign locations to all of the incoming arguments.
1562  SmallVector<CCValAssign, 16> ArgLocs;
1563  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1564                 ArgLocs, *DAG.getContext());
1565  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1566
1567  unsigned LastVal = ~0U;
1568  SDValue ArgValue;
1569  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1570    CCValAssign &VA = ArgLocs[i];
1571    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1572    // places.
1573    assert(VA.getValNo() != LastVal &&
1574           "Don't support value assigned to multiple locs yet");
1575    LastVal = VA.getValNo();
1576
1577    if (VA.isRegLoc()) {
1578      EVT RegVT = VA.getLocVT();
1579      TargetRegisterClass *RC = NULL;
1580      if (RegVT == MVT::i32)
1581        RC = X86::GR32RegisterClass;
1582      else if (Is64Bit && RegVT == MVT::i64)
1583        RC = X86::GR64RegisterClass;
1584      else if (RegVT == MVT::f32)
1585        RC = X86::FR32RegisterClass;
1586      else if (RegVT == MVT::f64)
1587        RC = X86::FR64RegisterClass;
1588      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1589        RC = X86::VR128RegisterClass;
1590      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1591        RC = X86::VR64RegisterClass;
1592      else
1593        llvm_unreachable("Unknown argument type!");
1594
1595      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1596      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1597
1598      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1599      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1600      // right size.
1601      if (VA.getLocInfo() == CCValAssign::SExt)
1602        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1603                               DAG.getValueType(VA.getValVT()));
1604      else if (VA.getLocInfo() == CCValAssign::ZExt)
1605        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1606                               DAG.getValueType(VA.getValVT()));
1607      else if (VA.getLocInfo() == CCValAssign::BCvt)
1608        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1609
1610      if (VA.isExtInLoc()) {
1611        // Handle MMX values passed in XMM regs.
1612        if (RegVT.isVector()) {
1613          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1614                                 ArgValue, DAG.getConstant(0, MVT::i64));
1615          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1616        } else
1617          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1618      }
1619    } else {
1620      assert(VA.isMemLoc());
1621      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1622    }
1623
1624    // If value is passed via pointer - do a load.
1625    if (VA.getLocInfo() == CCValAssign::Indirect)
1626      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1627                             false, false, 0);
1628
1629    InVals.push_back(ArgValue);
1630  }
1631
1632  // The x86-64 ABI for returning structs by value requires that we copy
1633  // the sret argument into %rax for the return. Save the argument into
1634  // a virtual register so that we can access it from the return points.
1635  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1636    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1637    unsigned Reg = FuncInfo->getSRetReturnReg();
1638    if (!Reg) {
1639      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1640      FuncInfo->setSRetReturnReg(Reg);
1641    }
1642    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1643    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1644  }
1645
1646  unsigned StackSize = CCInfo.getNextStackOffset();
1647  // Align stack specially for tail calls.
1648  if (FuncIsMadeTailCallSafe(CallConv))
1649    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1650
1651  // If the function takes variable number of arguments, make a frame index for
1652  // the start of the first vararg value... for expansion of llvm.va_start.
1653  if (isVarArg) {
1654    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1655                    CallConv != CallingConv::X86_ThisCall)) {
1656      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1657    }
1658    if (Is64Bit) {
1659      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1660
1661      // FIXME: We should really autogenerate these arrays
1662      static const unsigned GPR64ArgRegsWin64[] = {
1663        X86::RCX, X86::RDX, X86::R8,  X86::R9
1664      };
1665      static const unsigned XMMArgRegsWin64[] = {
1666        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1667      };
1668      static const unsigned GPR64ArgRegs64Bit[] = {
1669        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1670      };
1671      static const unsigned XMMArgRegs64Bit[] = {
1672        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1673        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1674      };
1675      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1676
1677      if (IsWin64) {
1678        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1679        GPR64ArgRegs = GPR64ArgRegsWin64;
1680        XMMArgRegs = XMMArgRegsWin64;
1681      } else {
1682        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1683        GPR64ArgRegs = GPR64ArgRegs64Bit;
1684        XMMArgRegs = XMMArgRegs64Bit;
1685      }
1686      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1687                                                       TotalNumIntRegs);
1688      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1689                                                       TotalNumXMMRegs);
1690
1691      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1692      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1693             "SSE register cannot be used when SSE is disabled!");
1694      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1695             "SSE register cannot be used when SSE is disabled!");
1696      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1697        // Kernel mode asks for SSE to be disabled, so don't push them
1698        // on the stack.
1699        TotalNumXMMRegs = 0;
1700
1701      // For X86-64, if there are vararg parameters that are passed via
1702      // registers, then we must store them to their spots on the stack so they
1703      // may be loaded by deferencing the result of va_next.
1704      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1705      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1706      FuncInfo->setRegSaveFrameIndex(
1707        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1708                               false));
1709
1710      // Store the integer parameter registers.
1711      SmallVector<SDValue, 8> MemOps;
1712      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1713                                        getPointerTy());
1714      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1715      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1716        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1717                                  DAG.getIntPtrConstant(Offset));
1718        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1719                                     X86::GR64RegisterClass);
1720        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1721        SDValue Store =
1722          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1723                       PseudoSourceValue::getFixedStack(
1724                         FuncInfo->getRegSaveFrameIndex()),
1725                       Offset, false, false, 0);
1726        MemOps.push_back(Store);
1727        Offset += 8;
1728      }
1729
1730      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1731        // Now store the XMM (fp + vector) parameter registers.
1732        SmallVector<SDValue, 11> SaveXMMOps;
1733        SaveXMMOps.push_back(Chain);
1734
1735        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1736        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1737        SaveXMMOps.push_back(ALVal);
1738
1739        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1740                               FuncInfo->getRegSaveFrameIndex()));
1741        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1742                               FuncInfo->getVarArgsFPOffset()));
1743
1744        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1745          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1746                                       X86::VR128RegisterClass);
1747          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1748          SaveXMMOps.push_back(Val);
1749        }
1750        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1751                                     MVT::Other,
1752                                     &SaveXMMOps[0], SaveXMMOps.size()));
1753      }
1754
1755      if (!MemOps.empty())
1756        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1757                            &MemOps[0], MemOps.size());
1758    }
1759  }
1760
1761  // Some CCs need callee pop.
1762  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1763    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1764  } else {
1765    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1766    // If this is an sret function, the return should pop the hidden pointer.
1767    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1768      FuncInfo->setBytesToPopOnReturn(4);
1769  }
1770
1771  if (!Is64Bit) {
1772    // RegSaveFrameIndex is X86-64 only.
1773    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1774    if (CallConv == CallingConv::X86_FastCall ||
1775        CallConv == CallingConv::X86_ThisCall)
1776      // fastcc functions can't have varargs.
1777      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1778  }
1779
1780  return Chain;
1781}
1782
1783SDValue
1784X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1785                                    SDValue StackPtr, SDValue Arg,
1786                                    DebugLoc dl, SelectionDAG &DAG,
1787                                    const CCValAssign &VA,
1788                                    ISD::ArgFlagsTy Flags) const {
1789  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1790  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1791  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1792  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1793  if (Flags.isByVal()) {
1794    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1795  }
1796  return DAG.getStore(Chain, dl, Arg, PtrOff,
1797                      PseudoSourceValue::getStack(), LocMemOffset,
1798                      false, false, 0);
1799}
1800
1801/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1802/// optimization is performed and it is required.
1803SDValue
1804X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1805                                           SDValue &OutRetAddr, SDValue Chain,
1806                                           bool IsTailCall, bool Is64Bit,
1807                                           int FPDiff, DebugLoc dl) const {
1808  // Adjust the Return address stack slot.
1809  EVT VT = getPointerTy();
1810  OutRetAddr = getReturnAddressFrameIndex(DAG);
1811
1812  // Load the "old" Return address.
1813  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1814  return SDValue(OutRetAddr.getNode(), 1);
1815}
1816
1817/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1818/// optimization is performed and it is required (FPDiff!=0).
1819static SDValue
1820EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1821                         SDValue Chain, SDValue RetAddrFrIdx,
1822                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1823  // Store the return address to the appropriate stack slot.
1824  if (!FPDiff) return Chain;
1825  // Calculate the new stack slot for the return address.
1826  int SlotSize = Is64Bit ? 8 : 4;
1827  int NewReturnAddrFI =
1828    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1829  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1830  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1831  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1832                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1833                       false, false, 0);
1834  return Chain;
1835}
1836
1837SDValue
1838X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1839                             CallingConv::ID CallConv, bool isVarArg,
1840                             bool &isTailCall,
1841                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1842                             const SmallVectorImpl<SDValue> &OutVals,
1843                             const SmallVectorImpl<ISD::InputArg> &Ins,
1844                             DebugLoc dl, SelectionDAG &DAG,
1845                             SmallVectorImpl<SDValue> &InVals) const {
1846  MachineFunction &MF = DAG.getMachineFunction();
1847  bool Is64Bit        = Subtarget->is64Bit();
1848  bool IsStructRet    = CallIsStructReturn(Outs);
1849  bool IsSibcall      = false;
1850
1851  if (isTailCall) {
1852    // Check if it's really possible to do a tail call.
1853    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1854                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1855                                                   Outs, OutVals, Ins, DAG);
1856
1857    // Sibcalls are automatically detected tailcalls which do not require
1858    // ABI changes.
1859    if (!GuaranteedTailCallOpt && isTailCall)
1860      IsSibcall = true;
1861
1862    if (isTailCall)
1863      ++NumTailCalls;
1864  }
1865
1866  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1867         "Var args not supported with calling convention fastcc or ghc");
1868
1869  // Analyze operands of the call, assigning locations to each operand.
1870  SmallVector<CCValAssign, 16> ArgLocs;
1871  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1872                 ArgLocs, *DAG.getContext());
1873  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1874
1875  // Get a count of how many bytes are to be pushed on the stack.
1876  unsigned NumBytes = CCInfo.getNextStackOffset();
1877  if (IsSibcall)
1878    // This is a sibcall. The memory operands are available in caller's
1879    // own caller's stack.
1880    NumBytes = 0;
1881  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1882    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1883
1884  int FPDiff = 0;
1885  if (isTailCall && !IsSibcall) {
1886    // Lower arguments at fp - stackoffset + fpdiff.
1887    unsigned NumBytesCallerPushed =
1888      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1889    FPDiff = NumBytesCallerPushed - NumBytes;
1890
1891    // Set the delta of movement of the returnaddr stackslot.
1892    // But only set if delta is greater than previous delta.
1893    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1894      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1895  }
1896
1897  if (!IsSibcall)
1898    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1899
1900  SDValue RetAddrFrIdx;
1901  // Load return adress for tail calls.
1902  if (isTailCall && FPDiff)
1903    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1904                                    Is64Bit, FPDiff, dl);
1905
1906  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1907  SmallVector<SDValue, 8> MemOpChains;
1908  SDValue StackPtr;
1909
1910  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1911  // of tail call optimization arguments are handle later.
1912  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1913    CCValAssign &VA = ArgLocs[i];
1914    EVT RegVT = VA.getLocVT();
1915    SDValue Arg = OutVals[i];
1916    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1917    bool isByVal = Flags.isByVal();
1918
1919    // Promote the value if needed.
1920    switch (VA.getLocInfo()) {
1921    default: llvm_unreachable("Unknown loc info!");
1922    case CCValAssign::Full: break;
1923    case CCValAssign::SExt:
1924      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1925      break;
1926    case CCValAssign::ZExt:
1927      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1928      break;
1929    case CCValAssign::AExt:
1930      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1931        // Special case: passing MMX values in XMM registers.
1932        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1933        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1934        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1935      } else
1936        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1937      break;
1938    case CCValAssign::BCvt:
1939      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1940      break;
1941    case CCValAssign::Indirect: {
1942      // Store the argument.
1943      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1944      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1945      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1946                           PseudoSourceValue::getFixedStack(FI), 0,
1947                           false, false, 0);
1948      Arg = SpillSlot;
1949      break;
1950    }
1951    }
1952
1953    if (VA.isRegLoc()) {
1954      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1955    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1956      assert(VA.isMemLoc());
1957      if (StackPtr.getNode() == 0)
1958        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1959      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1960                                             dl, DAG, VA, Flags));
1961    }
1962  }
1963
1964  if (!MemOpChains.empty())
1965    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1966                        &MemOpChains[0], MemOpChains.size());
1967
1968  // Build a sequence of copy-to-reg nodes chained together with token chain
1969  // and flag operands which copy the outgoing args into registers.
1970  SDValue InFlag;
1971  // Tail call byval lowering might overwrite argument registers so in case of
1972  // tail call optimization the copies to registers are lowered later.
1973  if (!isTailCall)
1974    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1975      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1976                               RegsToPass[i].second, InFlag);
1977      InFlag = Chain.getValue(1);
1978    }
1979
1980  if (Subtarget->isPICStyleGOT()) {
1981    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1982    // GOT pointer.
1983    if (!isTailCall) {
1984      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1985                               DAG.getNode(X86ISD::GlobalBaseReg,
1986                                           DebugLoc(), getPointerTy()),
1987                               InFlag);
1988      InFlag = Chain.getValue(1);
1989    } else {
1990      // If we are tail calling and generating PIC/GOT style code load the
1991      // address of the callee into ECX. The value in ecx is used as target of
1992      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1993      // for tail calls on PIC/GOT architectures. Normally we would just put the
1994      // address of GOT into ebx and then call target@PLT. But for tail calls
1995      // ebx would be restored (since ebx is callee saved) before jumping to the
1996      // target@PLT.
1997
1998      // Note: The actual moving to ECX is done further down.
1999      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2000      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2001          !G->getGlobal()->hasProtectedVisibility())
2002        Callee = LowerGlobalAddress(Callee, DAG);
2003      else if (isa<ExternalSymbolSDNode>(Callee))
2004        Callee = LowerExternalSymbol(Callee, DAG);
2005    }
2006  }
2007
2008  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2009    // From AMD64 ABI document:
2010    // For calls that may call functions that use varargs or stdargs
2011    // (prototype-less calls or calls to functions containing ellipsis (...) in
2012    // the declaration) %al is used as hidden argument to specify the number
2013    // of SSE registers used. The contents of %al do not need to match exactly
2014    // the number of registers, but must be an ubound on the number of SSE
2015    // registers used and is in the range 0 - 8 inclusive.
2016
2017    // Count the number of XMM registers allocated.
2018    static const unsigned XMMArgRegs[] = {
2019      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2020      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2021    };
2022    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2023    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2024           && "SSE registers cannot be used when SSE is disabled");
2025
2026    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2027                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2028    InFlag = Chain.getValue(1);
2029  }
2030
2031
2032  // For tail calls lower the arguments to the 'real' stack slot.
2033  if (isTailCall) {
2034    // Force all the incoming stack arguments to be loaded from the stack
2035    // before any new outgoing arguments are stored to the stack, because the
2036    // outgoing stack slots may alias the incoming argument stack slots, and
2037    // the alias isn't otherwise explicit. This is slightly more conservative
2038    // than necessary, because it means that each store effectively depends
2039    // on every argument instead of just those arguments it would clobber.
2040    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2041
2042    SmallVector<SDValue, 8> MemOpChains2;
2043    SDValue FIN;
2044    int FI = 0;
2045    // Do not flag preceeding copytoreg stuff together with the following stuff.
2046    InFlag = SDValue();
2047    if (GuaranteedTailCallOpt) {
2048      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2049        CCValAssign &VA = ArgLocs[i];
2050        if (VA.isRegLoc())
2051          continue;
2052        assert(VA.isMemLoc());
2053        SDValue Arg = OutVals[i];
2054        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2055        // Create frame index.
2056        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2057        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2058        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2059        FIN = DAG.getFrameIndex(FI, getPointerTy());
2060
2061        if (Flags.isByVal()) {
2062          // Copy relative to framepointer.
2063          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2064          if (StackPtr.getNode() == 0)
2065            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2066                                          getPointerTy());
2067          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2068
2069          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2070                                                           ArgChain,
2071                                                           Flags, DAG, dl));
2072        } else {
2073          // Store relative to framepointer.
2074          MemOpChains2.push_back(
2075            DAG.getStore(ArgChain, dl, Arg, FIN,
2076                         PseudoSourceValue::getFixedStack(FI), 0,
2077                         false, false, 0));
2078        }
2079      }
2080    }
2081
2082    if (!MemOpChains2.empty())
2083      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2084                          &MemOpChains2[0], MemOpChains2.size());
2085
2086    // Copy arguments to their registers.
2087    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2088      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2089                               RegsToPass[i].second, InFlag);
2090      InFlag = Chain.getValue(1);
2091    }
2092    InFlag =SDValue();
2093
2094    // Store the return address to the appropriate stack slot.
2095    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2096                                     FPDiff, dl);
2097  }
2098
2099  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2100    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2101    // In the 64-bit large code model, we have to make all calls
2102    // through a register, since the call instruction's 32-bit
2103    // pc-relative offset may not be large enough to hold the whole
2104    // address.
2105  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2106    // If the callee is a GlobalAddress node (quite common, every direct call
2107    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2108    // it.
2109
2110    // We should use extra load for direct calls to dllimported functions in
2111    // non-JIT mode.
2112    const GlobalValue *GV = G->getGlobal();
2113    if (!GV->hasDLLImportLinkage()) {
2114      unsigned char OpFlags = 0;
2115
2116      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2117      // external symbols most go through the PLT in PIC mode.  If the symbol
2118      // has hidden or protected visibility, or if it is static or local, then
2119      // we don't need to use the PLT - we can directly call it.
2120      if (Subtarget->isTargetELF() &&
2121          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2122          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2123        OpFlags = X86II::MO_PLT;
2124      } else if (Subtarget->isPICStyleStubAny() &&
2125               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2126               Subtarget->getDarwinVers() < 9) {
2127        // PC-relative references to external symbols should go through $stub,
2128        // unless we're building with the leopard linker or later, which
2129        // automatically synthesizes these stubs.
2130        OpFlags = X86II::MO_DARWIN_STUB;
2131      }
2132
2133      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2134                                          G->getOffset(), OpFlags);
2135    }
2136  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2137    unsigned char OpFlags = 0;
2138
2139    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2140    // symbols should go through the PLT.
2141    if (Subtarget->isTargetELF() &&
2142        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2143      OpFlags = X86II::MO_PLT;
2144    } else if (Subtarget->isPICStyleStubAny() &&
2145             Subtarget->getDarwinVers() < 9) {
2146      // PC-relative references to external symbols should go through $stub,
2147      // unless we're building with the leopard linker or later, which
2148      // automatically synthesizes these stubs.
2149      OpFlags = X86II::MO_DARWIN_STUB;
2150    }
2151
2152    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2153                                         OpFlags);
2154  }
2155
2156  // Returns a chain & a flag for retval copy to use.
2157  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2158  SmallVector<SDValue, 8> Ops;
2159
2160  if (!IsSibcall && isTailCall) {
2161    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2162                           DAG.getIntPtrConstant(0, true), InFlag);
2163    InFlag = Chain.getValue(1);
2164  }
2165
2166  Ops.push_back(Chain);
2167  Ops.push_back(Callee);
2168
2169  if (isTailCall)
2170    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2171
2172  // Add argument registers to the end of the list so that they are known live
2173  // into the call.
2174  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2175    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2176                                  RegsToPass[i].second.getValueType()));
2177
2178  // Add an implicit use GOT pointer in EBX.
2179  if (!isTailCall && Subtarget->isPICStyleGOT())
2180    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2181
2182  // Add an implicit use of AL for x86 vararg functions.
2183  if (Is64Bit && isVarArg)
2184    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2185
2186  if (InFlag.getNode())
2187    Ops.push_back(InFlag);
2188
2189  if (isTailCall) {
2190    // We used to do:
2191    //// If this is the first return lowered for this function, add the regs
2192    //// to the liveout set for the function.
2193    // This isn't right, although it's probably harmless on x86; liveouts
2194    // should be computed from returns not tail calls.  Consider a void
2195    // function making a tail call to a function returning int.
2196    return DAG.getNode(X86ISD::TC_RETURN, dl,
2197                       NodeTys, &Ops[0], Ops.size());
2198  }
2199
2200  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2201  InFlag = Chain.getValue(1);
2202
2203  // Create the CALLSEQ_END node.
2204  unsigned NumBytesForCalleeToPush;
2205  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2206    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2207  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2208    // If this is a call to a struct-return function, the callee
2209    // pops the hidden struct pointer, so we have to push it back.
2210    // This is common for Darwin/X86, Linux & Mingw32 targets.
2211    NumBytesForCalleeToPush = 4;
2212  else
2213    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2214
2215  // Returns a flag for retval copy to use.
2216  if (!IsSibcall) {
2217    Chain = DAG.getCALLSEQ_END(Chain,
2218                               DAG.getIntPtrConstant(NumBytes, true),
2219                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2220                                                     true),
2221                               InFlag);
2222    InFlag = Chain.getValue(1);
2223  }
2224
2225  // Handle result values, copying them out of physregs into vregs that we
2226  // return.
2227  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2228                         Ins, dl, DAG, InVals);
2229}
2230
2231
2232//===----------------------------------------------------------------------===//
2233//                Fast Calling Convention (tail call) implementation
2234//===----------------------------------------------------------------------===//
2235
2236//  Like std call, callee cleans arguments, convention except that ECX is
2237//  reserved for storing the tail called function address. Only 2 registers are
2238//  free for argument passing (inreg). Tail call optimization is performed
2239//  provided:
2240//                * tailcallopt is enabled
2241//                * caller/callee are fastcc
2242//  On X86_64 architecture with GOT-style position independent code only local
2243//  (within module) calls are supported at the moment.
2244//  To keep the stack aligned according to platform abi the function
2245//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2246//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2247//  If a tail called function callee has more arguments than the caller the
2248//  caller needs to make sure that there is room to move the RETADDR to. This is
2249//  achieved by reserving an area the size of the argument delta right after the
2250//  original REtADDR, but before the saved framepointer or the spilled registers
2251//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2252//  stack layout:
2253//    arg1
2254//    arg2
2255//    RETADDR
2256//    [ new RETADDR
2257//      move area ]
2258//    (possible EBP)
2259//    ESI
2260//    EDI
2261//    local1 ..
2262
2263/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2264/// for a 16 byte align requirement.
2265unsigned
2266X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2267                                               SelectionDAG& DAG) const {
2268  MachineFunction &MF = DAG.getMachineFunction();
2269  const TargetMachine &TM = MF.getTarget();
2270  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2271  unsigned StackAlignment = TFI.getStackAlignment();
2272  uint64_t AlignMask = StackAlignment - 1;
2273  int64_t Offset = StackSize;
2274  uint64_t SlotSize = TD->getPointerSize();
2275  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2276    // Number smaller than 12 so just add the difference.
2277    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2278  } else {
2279    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2280    Offset = ((~AlignMask) & Offset) + StackAlignment +
2281      (StackAlignment-SlotSize);
2282  }
2283  return Offset;
2284}
2285
2286/// MatchingStackOffset - Return true if the given stack call argument is
2287/// already available in the same position (relatively) of the caller's
2288/// incoming argument stack.
2289static
2290bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2291                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2292                         const X86InstrInfo *TII) {
2293  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2294  int FI = INT_MAX;
2295  if (Arg.getOpcode() == ISD::CopyFromReg) {
2296    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2297    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2298      return false;
2299    MachineInstr *Def = MRI->getVRegDef(VR);
2300    if (!Def)
2301      return false;
2302    if (!Flags.isByVal()) {
2303      if (!TII->isLoadFromStackSlot(Def, FI))
2304        return false;
2305    } else {
2306      unsigned Opcode = Def->getOpcode();
2307      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2308          Def->getOperand(1).isFI()) {
2309        FI = Def->getOperand(1).getIndex();
2310        Bytes = Flags.getByValSize();
2311      } else
2312        return false;
2313    }
2314  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2315    if (Flags.isByVal())
2316      // ByVal argument is passed in as a pointer but it's now being
2317      // dereferenced. e.g.
2318      // define @foo(%struct.X* %A) {
2319      //   tail call @bar(%struct.X* byval %A)
2320      // }
2321      return false;
2322    SDValue Ptr = Ld->getBasePtr();
2323    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2324    if (!FINode)
2325      return false;
2326    FI = FINode->getIndex();
2327  } else
2328    return false;
2329
2330  assert(FI != INT_MAX);
2331  if (!MFI->isFixedObjectIndex(FI))
2332    return false;
2333  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2334}
2335
2336/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2337/// for tail call optimization. Targets which want to do tail call
2338/// optimization should implement this function.
2339bool
2340X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2341                                                     CallingConv::ID CalleeCC,
2342                                                     bool isVarArg,
2343                                                     bool isCalleeStructRet,
2344                                                     bool isCallerStructRet,
2345                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2346                                    const SmallVectorImpl<SDValue> &OutVals,
2347                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2348                                                     SelectionDAG& DAG) const {
2349  if (!IsTailCallConvention(CalleeCC) &&
2350      CalleeCC != CallingConv::C)
2351    return false;
2352
2353  // If -tailcallopt is specified, make fastcc functions tail-callable.
2354  const MachineFunction &MF = DAG.getMachineFunction();
2355  const Function *CallerF = DAG.getMachineFunction().getFunction();
2356  CallingConv::ID CallerCC = CallerF->getCallingConv();
2357  bool CCMatch = CallerCC == CalleeCC;
2358
2359  if (GuaranteedTailCallOpt) {
2360    if (IsTailCallConvention(CalleeCC) && CCMatch)
2361      return true;
2362    return false;
2363  }
2364
2365  // Look for obvious safe cases to perform tail call optimization that do not
2366  // require ABI changes. This is what gcc calls sibcall.
2367
2368  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2369  // emit a special epilogue.
2370  if (RegInfo->needsStackRealignment(MF))
2371    return false;
2372
2373  // Do not sibcall optimize vararg calls unless the call site is not passing
2374  // any arguments.
2375  if (isVarArg && !Outs.empty())
2376    return false;
2377
2378  // Also avoid sibcall optimization if either caller or callee uses struct
2379  // return semantics.
2380  if (isCalleeStructRet || isCallerStructRet)
2381    return false;
2382
2383  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2384  // Therefore if it's not used by the call it is not safe to optimize this into
2385  // a sibcall.
2386  bool Unused = false;
2387  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2388    if (!Ins[i].Used) {
2389      Unused = true;
2390      break;
2391    }
2392  }
2393  if (Unused) {
2394    SmallVector<CCValAssign, 16> RVLocs;
2395    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2396                   RVLocs, *DAG.getContext());
2397    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2398    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2399      CCValAssign &VA = RVLocs[i];
2400      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2401        return false;
2402    }
2403  }
2404
2405  // If the calling conventions do not match, then we'd better make sure the
2406  // results are returned in the same way as what the caller expects.
2407  if (!CCMatch) {
2408    SmallVector<CCValAssign, 16> RVLocs1;
2409    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2410                    RVLocs1, *DAG.getContext());
2411    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2412
2413    SmallVector<CCValAssign, 16> RVLocs2;
2414    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2415                    RVLocs2, *DAG.getContext());
2416    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2417
2418    if (RVLocs1.size() != RVLocs2.size())
2419      return false;
2420    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2421      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2422        return false;
2423      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2424        return false;
2425      if (RVLocs1[i].isRegLoc()) {
2426        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2427          return false;
2428      } else {
2429        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2430          return false;
2431      }
2432    }
2433  }
2434
2435  // If the callee takes no arguments then go on to check the results of the
2436  // call.
2437  if (!Outs.empty()) {
2438    // Check if stack adjustment is needed. For now, do not do this if any
2439    // argument is passed on the stack.
2440    SmallVector<CCValAssign, 16> ArgLocs;
2441    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2442                   ArgLocs, *DAG.getContext());
2443    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2444    if (CCInfo.getNextStackOffset()) {
2445      MachineFunction &MF = DAG.getMachineFunction();
2446      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2447        return false;
2448      if (Subtarget->isTargetWin64())
2449        // Win64 ABI has additional complications.
2450        return false;
2451
2452      // Check if the arguments are already laid out in the right way as
2453      // the caller's fixed stack objects.
2454      MachineFrameInfo *MFI = MF.getFrameInfo();
2455      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2456      const X86InstrInfo *TII =
2457        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2458      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2459        CCValAssign &VA = ArgLocs[i];
2460        SDValue Arg = OutVals[i];
2461        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2462        if (VA.getLocInfo() == CCValAssign::Indirect)
2463          return false;
2464        if (!VA.isRegLoc()) {
2465          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2466                                   MFI, MRI, TII))
2467            return false;
2468        }
2469      }
2470    }
2471
2472    // If the tailcall address may be in a register, then make sure it's
2473    // possible to register allocate for it. In 32-bit, the call address can
2474    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2475    // callee-saved registers are restored. These happen to be the same
2476    // registers used to pass 'inreg' arguments so watch out for those.
2477    if (!Subtarget->is64Bit() &&
2478        !isa<GlobalAddressSDNode>(Callee) &&
2479        !isa<ExternalSymbolSDNode>(Callee)) {
2480      unsigned NumInRegs = 0;
2481      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2482        CCValAssign &VA = ArgLocs[i];
2483        if (!VA.isRegLoc())
2484          continue;
2485        unsigned Reg = VA.getLocReg();
2486        switch (Reg) {
2487        default: break;
2488        case X86::EAX: case X86::EDX: case X86::ECX:
2489          if (++NumInRegs == 3)
2490            return false;
2491          break;
2492        }
2493      }
2494    }
2495  }
2496
2497  return true;
2498}
2499
2500FastISel *
2501X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2502  return X86::createFastISel(funcInfo);
2503}
2504
2505
2506//===----------------------------------------------------------------------===//
2507//                           Other Lowering Hooks
2508//===----------------------------------------------------------------------===//
2509
2510
2511SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2512  MachineFunction &MF = DAG.getMachineFunction();
2513  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2514  int ReturnAddrIndex = FuncInfo->getRAIndex();
2515
2516  if (ReturnAddrIndex == 0) {
2517    // Set up a frame object for the return address.
2518    uint64_t SlotSize = TD->getPointerSize();
2519    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2520                                                           false);
2521    FuncInfo->setRAIndex(ReturnAddrIndex);
2522  }
2523
2524  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2525}
2526
2527
2528bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2529                                       bool hasSymbolicDisplacement) {
2530  // Offset should fit into 32 bit immediate field.
2531  if (!isInt<32>(Offset))
2532    return false;
2533
2534  // If we don't have a symbolic displacement - we don't have any extra
2535  // restrictions.
2536  if (!hasSymbolicDisplacement)
2537    return true;
2538
2539  // FIXME: Some tweaks might be needed for medium code model.
2540  if (M != CodeModel::Small && M != CodeModel::Kernel)
2541    return false;
2542
2543  // For small code model we assume that latest object is 16MB before end of 31
2544  // bits boundary. We may also accept pretty large negative constants knowing
2545  // that all objects are in the positive half of address space.
2546  if (M == CodeModel::Small && Offset < 16*1024*1024)
2547    return true;
2548
2549  // For kernel code model we know that all object resist in the negative half
2550  // of 32bits address space. We may not accept negative offsets, since they may
2551  // be just off and we may accept pretty large positive ones.
2552  if (M == CodeModel::Kernel && Offset > 0)
2553    return true;
2554
2555  return false;
2556}
2557
2558/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2559/// specific condition code, returning the condition code and the LHS/RHS of the
2560/// comparison to make.
2561static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2562                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2563  if (!isFP) {
2564    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2565      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2566        // X > -1   -> X == 0, jump !sign.
2567        RHS = DAG.getConstant(0, RHS.getValueType());
2568        return X86::COND_NS;
2569      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2570        // X < 0   -> X == 0, jump on sign.
2571        return X86::COND_S;
2572      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2573        // X < 1   -> X <= 0
2574        RHS = DAG.getConstant(0, RHS.getValueType());
2575        return X86::COND_LE;
2576      }
2577    }
2578
2579    switch (SetCCOpcode) {
2580    default: llvm_unreachable("Invalid integer condition!");
2581    case ISD::SETEQ:  return X86::COND_E;
2582    case ISD::SETGT:  return X86::COND_G;
2583    case ISD::SETGE:  return X86::COND_GE;
2584    case ISD::SETLT:  return X86::COND_L;
2585    case ISD::SETLE:  return X86::COND_LE;
2586    case ISD::SETNE:  return X86::COND_NE;
2587    case ISD::SETULT: return X86::COND_B;
2588    case ISD::SETUGT: return X86::COND_A;
2589    case ISD::SETULE: return X86::COND_BE;
2590    case ISD::SETUGE: return X86::COND_AE;
2591    }
2592  }
2593
2594  // First determine if it is required or is profitable to flip the operands.
2595
2596  // If LHS is a foldable load, but RHS is not, flip the condition.
2597  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2598      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2599    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2600    std::swap(LHS, RHS);
2601  }
2602
2603  switch (SetCCOpcode) {
2604  default: break;
2605  case ISD::SETOLT:
2606  case ISD::SETOLE:
2607  case ISD::SETUGT:
2608  case ISD::SETUGE:
2609    std::swap(LHS, RHS);
2610    break;
2611  }
2612
2613  // On a floating point condition, the flags are set as follows:
2614  // ZF  PF  CF   op
2615  //  0 | 0 | 0 | X > Y
2616  //  0 | 0 | 1 | X < Y
2617  //  1 | 0 | 0 | X == Y
2618  //  1 | 1 | 1 | unordered
2619  switch (SetCCOpcode) {
2620  default: llvm_unreachable("Condcode should be pre-legalized away");
2621  case ISD::SETUEQ:
2622  case ISD::SETEQ:   return X86::COND_E;
2623  case ISD::SETOLT:              // flipped
2624  case ISD::SETOGT:
2625  case ISD::SETGT:   return X86::COND_A;
2626  case ISD::SETOLE:              // flipped
2627  case ISD::SETOGE:
2628  case ISD::SETGE:   return X86::COND_AE;
2629  case ISD::SETUGT:              // flipped
2630  case ISD::SETULT:
2631  case ISD::SETLT:   return X86::COND_B;
2632  case ISD::SETUGE:              // flipped
2633  case ISD::SETULE:
2634  case ISD::SETLE:   return X86::COND_BE;
2635  case ISD::SETONE:
2636  case ISD::SETNE:   return X86::COND_NE;
2637  case ISD::SETUO:   return X86::COND_P;
2638  case ISD::SETO:    return X86::COND_NP;
2639  case ISD::SETOEQ:
2640  case ISD::SETUNE:  return X86::COND_INVALID;
2641  }
2642}
2643
2644/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2645/// code. Current x86 isa includes the following FP cmov instructions:
2646/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2647static bool hasFPCMov(unsigned X86CC) {
2648  switch (X86CC) {
2649  default:
2650    return false;
2651  case X86::COND_B:
2652  case X86::COND_BE:
2653  case X86::COND_E:
2654  case X86::COND_P:
2655  case X86::COND_A:
2656  case X86::COND_AE:
2657  case X86::COND_NE:
2658  case X86::COND_NP:
2659    return true;
2660  }
2661}
2662
2663/// isFPImmLegal - Returns true if the target can instruction select the
2664/// specified FP immediate natively. If false, the legalizer will
2665/// materialize the FP immediate as a load from a constant pool.
2666bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2667  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2668    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2669      return true;
2670  }
2671  return false;
2672}
2673
2674/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2675/// the specified range (L, H].
2676static bool isUndefOrInRange(int Val, int Low, int Hi) {
2677  return (Val < 0) || (Val >= Low && Val < Hi);
2678}
2679
2680/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2681/// specified value.
2682static bool isUndefOrEqual(int Val, int CmpVal) {
2683  if (Val < 0 || Val == CmpVal)
2684    return true;
2685  return false;
2686}
2687
2688/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2689/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2690/// the second operand.
2691static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2692  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2693    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2694  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2695    return (Mask[0] < 2 && Mask[1] < 2);
2696  return false;
2697}
2698
2699bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2700  SmallVector<int, 8> M;
2701  N->getMask(M);
2702  return ::isPSHUFDMask(M, N->getValueType(0));
2703}
2704
2705/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2706/// is suitable for input to PSHUFHW.
2707static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2708  if (VT != MVT::v8i16)
2709    return false;
2710
2711  // Lower quadword copied in order or undef.
2712  for (int i = 0; i != 4; ++i)
2713    if (Mask[i] >= 0 && Mask[i] != i)
2714      return false;
2715
2716  // Upper quadword shuffled.
2717  for (int i = 4; i != 8; ++i)
2718    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2719      return false;
2720
2721  return true;
2722}
2723
2724bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2725  SmallVector<int, 8> M;
2726  N->getMask(M);
2727  return ::isPSHUFHWMask(M, N->getValueType(0));
2728}
2729
2730/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2731/// is suitable for input to PSHUFLW.
2732static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2733  if (VT != MVT::v8i16)
2734    return false;
2735
2736  // Upper quadword copied in order.
2737  for (int i = 4; i != 8; ++i)
2738    if (Mask[i] >= 0 && Mask[i] != i)
2739      return false;
2740
2741  // Lower quadword shuffled.
2742  for (int i = 0; i != 4; ++i)
2743    if (Mask[i] >= 4)
2744      return false;
2745
2746  return true;
2747}
2748
2749bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2750  SmallVector<int, 8> M;
2751  N->getMask(M);
2752  return ::isPSHUFLWMask(M, N->getValueType(0));
2753}
2754
2755/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2756/// is suitable for input to PALIGNR.
2757static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2758                          bool hasSSSE3) {
2759  int i, e = VT.getVectorNumElements();
2760
2761  // Do not handle v2i64 / v2f64 shuffles with palignr.
2762  if (e < 4 || !hasSSSE3)
2763    return false;
2764
2765  for (i = 0; i != e; ++i)
2766    if (Mask[i] >= 0)
2767      break;
2768
2769  // All undef, not a palignr.
2770  if (i == e)
2771    return false;
2772
2773  // Determine if it's ok to perform a palignr with only the LHS, since we
2774  // don't have access to the actual shuffle elements to see if RHS is undef.
2775  bool Unary = Mask[i] < (int)e;
2776  bool NeedsUnary = false;
2777
2778  int s = Mask[i] - i;
2779
2780  // Check the rest of the elements to see if they are consecutive.
2781  for (++i; i != e; ++i) {
2782    int m = Mask[i];
2783    if (m < 0)
2784      continue;
2785
2786    Unary = Unary && (m < (int)e);
2787    NeedsUnary = NeedsUnary || (m < s);
2788
2789    if (NeedsUnary && !Unary)
2790      return false;
2791    if (Unary && m != ((s+i) & (e-1)))
2792      return false;
2793    if (!Unary && m != (s+i))
2794      return false;
2795  }
2796  return true;
2797}
2798
2799bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2800  SmallVector<int, 8> M;
2801  N->getMask(M);
2802  return ::isPALIGNRMask(M, N->getValueType(0), true);
2803}
2804
2805/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2806/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2807static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2808  int NumElems = VT.getVectorNumElements();
2809  if (NumElems != 2 && NumElems != 4)
2810    return false;
2811
2812  int Half = NumElems / 2;
2813  for (int i = 0; i < Half; ++i)
2814    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2815      return false;
2816  for (int i = Half; i < NumElems; ++i)
2817    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2818      return false;
2819
2820  return true;
2821}
2822
2823bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2824  SmallVector<int, 8> M;
2825  N->getMask(M);
2826  return ::isSHUFPMask(M, N->getValueType(0));
2827}
2828
2829/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2830/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2831/// half elements to come from vector 1 (which would equal the dest.) and
2832/// the upper half to come from vector 2.
2833static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2834  int NumElems = VT.getVectorNumElements();
2835
2836  if (NumElems != 2 && NumElems != 4)
2837    return false;
2838
2839  int Half = NumElems / 2;
2840  for (int i = 0; i < Half; ++i)
2841    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2842      return false;
2843  for (int i = Half; i < NumElems; ++i)
2844    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2845      return false;
2846  return true;
2847}
2848
2849static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2850  SmallVector<int, 8> M;
2851  N->getMask(M);
2852  return isCommutedSHUFPMask(M, N->getValueType(0));
2853}
2854
2855/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2856/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2857bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2858  if (N->getValueType(0).getVectorNumElements() != 4)
2859    return false;
2860
2861  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2862  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2863         isUndefOrEqual(N->getMaskElt(1), 7) &&
2864         isUndefOrEqual(N->getMaskElt(2), 2) &&
2865         isUndefOrEqual(N->getMaskElt(3), 3);
2866}
2867
2868/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2869/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2870/// <2, 3, 2, 3>
2871bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2872  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2873
2874  if (NumElems != 4)
2875    return false;
2876
2877  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2878  isUndefOrEqual(N->getMaskElt(1), 3) &&
2879  isUndefOrEqual(N->getMaskElt(2), 2) &&
2880  isUndefOrEqual(N->getMaskElt(3), 3);
2881}
2882
2883/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2884/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2885bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2886  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2887
2888  if (NumElems != 2 && NumElems != 4)
2889    return false;
2890
2891  for (unsigned i = 0; i < NumElems/2; ++i)
2892    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2893      return false;
2894
2895  for (unsigned i = NumElems/2; i < NumElems; ++i)
2896    if (!isUndefOrEqual(N->getMaskElt(i), i))
2897      return false;
2898
2899  return true;
2900}
2901
2902/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2903/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2904bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2905  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2906
2907  if (NumElems != 2 && NumElems != 4)
2908    return false;
2909
2910  for (unsigned i = 0; i < NumElems/2; ++i)
2911    if (!isUndefOrEqual(N->getMaskElt(i), i))
2912      return false;
2913
2914  for (unsigned i = 0; i < NumElems/2; ++i)
2915    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2916      return false;
2917
2918  return true;
2919}
2920
2921/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2922/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2923static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2924                         bool V2IsSplat = false) {
2925  int NumElts = VT.getVectorNumElements();
2926  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2927    return false;
2928
2929  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2930    int BitI  = Mask[i];
2931    int BitI1 = Mask[i+1];
2932    if (!isUndefOrEqual(BitI, j))
2933      return false;
2934    if (V2IsSplat) {
2935      if (!isUndefOrEqual(BitI1, NumElts))
2936        return false;
2937    } else {
2938      if (!isUndefOrEqual(BitI1, j + NumElts))
2939        return false;
2940    }
2941  }
2942  return true;
2943}
2944
2945bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2946  SmallVector<int, 8> M;
2947  N->getMask(M);
2948  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2949}
2950
2951/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2952/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2953static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2954                         bool V2IsSplat = false) {
2955  int NumElts = VT.getVectorNumElements();
2956  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2957    return false;
2958
2959  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2960    int BitI  = Mask[i];
2961    int BitI1 = Mask[i+1];
2962    if (!isUndefOrEqual(BitI, j + NumElts/2))
2963      return false;
2964    if (V2IsSplat) {
2965      if (isUndefOrEqual(BitI1, NumElts))
2966        return false;
2967    } else {
2968      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2969        return false;
2970    }
2971  }
2972  return true;
2973}
2974
2975bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2976  SmallVector<int, 8> M;
2977  N->getMask(M);
2978  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2979}
2980
2981/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2982/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2983/// <0, 0, 1, 1>
2984static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2985  int NumElems = VT.getVectorNumElements();
2986  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2987    return false;
2988
2989  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2990    int BitI  = Mask[i];
2991    int BitI1 = Mask[i+1];
2992    if (!isUndefOrEqual(BitI, j))
2993      return false;
2994    if (!isUndefOrEqual(BitI1, j))
2995      return false;
2996  }
2997  return true;
2998}
2999
3000bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3001  SmallVector<int, 8> M;
3002  N->getMask(M);
3003  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3004}
3005
3006/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3007/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3008/// <2, 2, 3, 3>
3009static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3010  int NumElems = VT.getVectorNumElements();
3011  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3012    return false;
3013
3014  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3015    int BitI  = Mask[i];
3016    int BitI1 = Mask[i+1];
3017    if (!isUndefOrEqual(BitI, j))
3018      return false;
3019    if (!isUndefOrEqual(BitI1, j))
3020      return false;
3021  }
3022  return true;
3023}
3024
3025bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3026  SmallVector<int, 8> M;
3027  N->getMask(M);
3028  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3029}
3030
3031/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3032/// specifies a shuffle of elements that is suitable for input to MOVSS,
3033/// MOVSD, and MOVD, i.e. setting the lowest element.
3034static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3035  if (VT.getVectorElementType().getSizeInBits() < 32)
3036    return false;
3037
3038  int NumElts = VT.getVectorNumElements();
3039
3040  if (!isUndefOrEqual(Mask[0], NumElts))
3041    return false;
3042
3043  for (int i = 1; i < NumElts; ++i)
3044    if (!isUndefOrEqual(Mask[i], i))
3045      return false;
3046
3047  return true;
3048}
3049
3050bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3051  SmallVector<int, 8> M;
3052  N->getMask(M);
3053  return ::isMOVLMask(M, N->getValueType(0));
3054}
3055
3056/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3057/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3058/// element of vector 2 and the other elements to come from vector 1 in order.
3059static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3060                               bool V2IsSplat = false, bool V2IsUndef = false) {
3061  int NumOps = VT.getVectorNumElements();
3062  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3063    return false;
3064
3065  if (!isUndefOrEqual(Mask[0], 0))
3066    return false;
3067
3068  for (int i = 1; i < NumOps; ++i)
3069    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3070          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3071          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3072      return false;
3073
3074  return true;
3075}
3076
3077static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3078                           bool V2IsUndef = false) {
3079  SmallVector<int, 8> M;
3080  N->getMask(M);
3081  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3082}
3083
3084/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3085/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3086bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3087  if (N->getValueType(0).getVectorNumElements() != 4)
3088    return false;
3089
3090  // Expect 1, 1, 3, 3
3091  for (unsigned i = 0; i < 2; ++i) {
3092    int Elt = N->getMaskElt(i);
3093    if (Elt >= 0 && Elt != 1)
3094      return false;
3095  }
3096
3097  bool HasHi = false;
3098  for (unsigned i = 2; i < 4; ++i) {
3099    int Elt = N->getMaskElt(i);
3100    if (Elt >= 0 && Elt != 3)
3101      return false;
3102    if (Elt == 3)
3103      HasHi = true;
3104  }
3105  // Don't use movshdup if it can be done with a shufps.
3106  // FIXME: verify that matching u, u, 3, 3 is what we want.
3107  return HasHi;
3108}
3109
3110/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3111/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3112bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3113  if (N->getValueType(0).getVectorNumElements() != 4)
3114    return false;
3115
3116  // Expect 0, 0, 2, 2
3117  for (unsigned i = 0; i < 2; ++i)
3118    if (N->getMaskElt(i) > 0)
3119      return false;
3120
3121  bool HasHi = false;
3122  for (unsigned i = 2; i < 4; ++i) {
3123    int Elt = N->getMaskElt(i);
3124    if (Elt >= 0 && Elt != 2)
3125      return false;
3126    if (Elt == 2)
3127      HasHi = true;
3128  }
3129  // Don't use movsldup if it can be done with a shufps.
3130  return HasHi;
3131}
3132
3133/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3134/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3135bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3136  int e = N->getValueType(0).getVectorNumElements() / 2;
3137
3138  for (int i = 0; i < e; ++i)
3139    if (!isUndefOrEqual(N->getMaskElt(i), i))
3140      return false;
3141  for (int i = 0; i < e; ++i)
3142    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3143      return false;
3144  return true;
3145}
3146
3147/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3148/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3149unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3150  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3151  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3152
3153  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3154  unsigned Mask = 0;
3155  for (int i = 0; i < NumOperands; ++i) {
3156    int Val = SVOp->getMaskElt(NumOperands-i-1);
3157    if (Val < 0) Val = 0;
3158    if (Val >= NumOperands) Val -= NumOperands;
3159    Mask |= Val;
3160    if (i != NumOperands - 1)
3161      Mask <<= Shift;
3162  }
3163  return Mask;
3164}
3165
3166/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3167/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3168unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3169  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3170  unsigned Mask = 0;
3171  // 8 nodes, but we only care about the last 4.
3172  for (unsigned i = 7; i >= 4; --i) {
3173    int Val = SVOp->getMaskElt(i);
3174    if (Val >= 0)
3175      Mask |= (Val - 4);
3176    if (i != 4)
3177      Mask <<= 2;
3178  }
3179  return Mask;
3180}
3181
3182/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3183/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3184unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3185  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3186  unsigned Mask = 0;
3187  // 8 nodes, but we only care about the first 4.
3188  for (int i = 3; i >= 0; --i) {
3189    int Val = SVOp->getMaskElt(i);
3190    if (Val >= 0)
3191      Mask |= Val;
3192    if (i != 0)
3193      Mask <<= 2;
3194  }
3195  return Mask;
3196}
3197
3198/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3199/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3200unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3201  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3202  EVT VVT = N->getValueType(0);
3203  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3204  int Val = 0;
3205
3206  unsigned i, e;
3207  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3208    Val = SVOp->getMaskElt(i);
3209    if (Val >= 0)
3210      break;
3211  }
3212  return (Val - i) * EltSize;
3213}
3214
3215/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3216/// constant +0.0.
3217bool X86::isZeroNode(SDValue Elt) {
3218  return ((isa<ConstantSDNode>(Elt) &&
3219           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3220          (isa<ConstantFPSDNode>(Elt) &&
3221           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3222}
3223
3224/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3225/// their permute mask.
3226static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3227                                    SelectionDAG &DAG) {
3228  EVT VT = SVOp->getValueType(0);
3229  unsigned NumElems = VT.getVectorNumElements();
3230  SmallVector<int, 8> MaskVec;
3231
3232  for (unsigned i = 0; i != NumElems; ++i) {
3233    int idx = SVOp->getMaskElt(i);
3234    if (idx < 0)
3235      MaskVec.push_back(idx);
3236    else if (idx < (int)NumElems)
3237      MaskVec.push_back(idx + NumElems);
3238    else
3239      MaskVec.push_back(idx - NumElems);
3240  }
3241  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3242                              SVOp->getOperand(0), &MaskVec[0]);
3243}
3244
3245/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3246/// the two vector operands have swapped position.
3247static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3248  unsigned NumElems = VT.getVectorNumElements();
3249  for (unsigned i = 0; i != NumElems; ++i) {
3250    int idx = Mask[i];
3251    if (idx < 0)
3252      continue;
3253    else if (idx < (int)NumElems)
3254      Mask[i] = idx + NumElems;
3255    else
3256      Mask[i] = idx - NumElems;
3257  }
3258}
3259
3260/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3261/// match movhlps. The lower half elements should come from upper half of
3262/// V1 (and in order), and the upper half elements should come from the upper
3263/// half of V2 (and in order).
3264static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3265  if (Op->getValueType(0).getVectorNumElements() != 4)
3266    return false;
3267  for (unsigned i = 0, e = 2; i != e; ++i)
3268    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3269      return false;
3270  for (unsigned i = 2; i != 4; ++i)
3271    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3272      return false;
3273  return true;
3274}
3275
3276/// isScalarLoadToVector - Returns true if the node is a scalar load that
3277/// is promoted to a vector. It also returns the LoadSDNode by reference if
3278/// required.
3279static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3280  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3281    return false;
3282  N = N->getOperand(0).getNode();
3283  if (!ISD::isNON_EXTLoad(N))
3284    return false;
3285  if (LD)
3286    *LD = cast<LoadSDNode>(N);
3287  return true;
3288}
3289
3290/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3291/// match movlp{s|d}. The lower half elements should come from lower half of
3292/// V1 (and in order), and the upper half elements should come from the upper
3293/// half of V2 (and in order). And since V1 will become the source of the
3294/// MOVLP, it must be either a vector load or a scalar load to vector.
3295static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3296                               ShuffleVectorSDNode *Op) {
3297  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3298    return false;
3299  // Is V2 is a vector load, don't do this transformation. We will try to use
3300  // load folding shufps op.
3301  if (ISD::isNON_EXTLoad(V2))
3302    return false;
3303
3304  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3305
3306  if (NumElems != 2 && NumElems != 4)
3307    return false;
3308  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3309    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3310      return false;
3311  for (unsigned i = NumElems/2; i != NumElems; ++i)
3312    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3313      return false;
3314  return true;
3315}
3316
3317/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3318/// all the same.
3319static bool isSplatVector(SDNode *N) {
3320  if (N->getOpcode() != ISD::BUILD_VECTOR)
3321    return false;
3322
3323  SDValue SplatValue = N->getOperand(0);
3324  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3325    if (N->getOperand(i) != SplatValue)
3326      return false;
3327  return true;
3328}
3329
3330/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3331/// to an zero vector.
3332/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3333static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3334  SDValue V1 = N->getOperand(0);
3335  SDValue V2 = N->getOperand(1);
3336  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3337  for (unsigned i = 0; i != NumElems; ++i) {
3338    int Idx = N->getMaskElt(i);
3339    if (Idx >= (int)NumElems) {
3340      unsigned Opc = V2.getOpcode();
3341      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3342        continue;
3343      if (Opc != ISD::BUILD_VECTOR ||
3344          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3345        return false;
3346    } else if (Idx >= 0) {
3347      unsigned Opc = V1.getOpcode();
3348      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3349        continue;
3350      if (Opc != ISD::BUILD_VECTOR ||
3351          !X86::isZeroNode(V1.getOperand(Idx)))
3352        return false;
3353    }
3354  }
3355  return true;
3356}
3357
3358/// getZeroVector - Returns a vector of specified type with all zero elements.
3359///
3360static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3361                             DebugLoc dl) {
3362  assert(VT.isVector() && "Expected a vector type");
3363
3364  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3365  // type.  This ensures they get CSE'd.
3366  SDValue Vec;
3367  if (VT.getSizeInBits() == 64) { // MMX
3368    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3369    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3370  } else if (HasSSE2) {  // SSE2
3371    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3372    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3373  } else { // SSE1
3374    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3375    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3376  }
3377  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3378}
3379
3380/// getOnesVector - Returns a vector of specified type with all bits set.
3381///
3382static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3383  assert(VT.isVector() && "Expected a vector type");
3384
3385  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3386  // type.  This ensures they get CSE'd.
3387  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3388  SDValue Vec;
3389  if (VT.getSizeInBits() == 64)  // MMX
3390    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3391  else                                              // SSE
3392    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3393  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3394}
3395
3396
3397/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3398/// that point to V2 points to its first element.
3399static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3400  EVT VT = SVOp->getValueType(0);
3401  unsigned NumElems = VT.getVectorNumElements();
3402
3403  bool Changed = false;
3404  SmallVector<int, 8> MaskVec;
3405  SVOp->getMask(MaskVec);
3406
3407  for (unsigned i = 0; i != NumElems; ++i) {
3408    if (MaskVec[i] > (int)NumElems) {
3409      MaskVec[i] = NumElems;
3410      Changed = true;
3411    }
3412  }
3413  if (Changed)
3414    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3415                                SVOp->getOperand(1), &MaskVec[0]);
3416  return SDValue(SVOp, 0);
3417}
3418
3419/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3420/// operation of specified width.
3421static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3422                       SDValue V2) {
3423  unsigned NumElems = VT.getVectorNumElements();
3424  SmallVector<int, 8> Mask;
3425  Mask.push_back(NumElems);
3426  for (unsigned i = 1; i != NumElems; ++i)
3427    Mask.push_back(i);
3428  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3429}
3430
3431/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3432static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3433                          SDValue V2) {
3434  unsigned NumElems = VT.getVectorNumElements();
3435  SmallVector<int, 8> Mask;
3436  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3437    Mask.push_back(i);
3438    Mask.push_back(i + NumElems);
3439  }
3440  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3441}
3442
3443/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3444static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3445                          SDValue V2) {
3446  unsigned NumElems = VT.getVectorNumElements();
3447  unsigned Half = NumElems/2;
3448  SmallVector<int, 8> Mask;
3449  for (unsigned i = 0; i != Half; ++i) {
3450    Mask.push_back(i + Half);
3451    Mask.push_back(i + NumElems + Half);
3452  }
3453  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3454}
3455
3456/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3457static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3458                            bool HasSSE2) {
3459  if (SV->getValueType(0).getVectorNumElements() <= 4)
3460    return SDValue(SV, 0);
3461
3462  EVT PVT = MVT::v4f32;
3463  EVT VT = SV->getValueType(0);
3464  DebugLoc dl = SV->getDebugLoc();
3465  SDValue V1 = SV->getOperand(0);
3466  int NumElems = VT.getVectorNumElements();
3467  int EltNo = SV->getSplatIndex();
3468
3469  // unpack elements to the correct location
3470  while (NumElems > 4) {
3471    if (EltNo < NumElems/2) {
3472      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3473    } else {
3474      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3475      EltNo -= NumElems/2;
3476    }
3477    NumElems >>= 1;
3478  }
3479
3480  // Perform the splat.
3481  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3482  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3483  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3484  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3485}
3486
3487/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3488/// vector of zero or undef vector.  This produces a shuffle where the low
3489/// element of V2 is swizzled into the zero/undef vector, landing at element
3490/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3491static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3492                                             bool isZero, bool HasSSE2,
3493                                             SelectionDAG &DAG) {
3494  EVT VT = V2.getValueType();
3495  SDValue V1 = isZero
3496    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3497  unsigned NumElems = VT.getVectorNumElements();
3498  SmallVector<int, 16> MaskVec;
3499  for (unsigned i = 0; i != NumElems; ++i)
3500    // If this is the insertion idx, put the low elt of V2 here.
3501    MaskVec.push_back(i == Idx ? NumElems : i);
3502  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3503}
3504
3505/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3506/// a shuffle that is zero.
3507static
3508unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3509                                  bool Low, SelectionDAG &DAG) {
3510  unsigned NumZeros = 0;
3511  for (int i = 0; i < NumElems; ++i) {
3512    unsigned Index = Low ? i : NumElems-i-1;
3513    int Idx = SVOp->getMaskElt(Index);
3514    if (Idx < 0) {
3515      ++NumZeros;
3516      continue;
3517    }
3518    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3519    if (Elt.getNode() && X86::isZeroNode(Elt))
3520      ++NumZeros;
3521    else
3522      break;
3523  }
3524  return NumZeros;
3525}
3526
3527/// isVectorShift - Returns true if the shuffle can be implemented as a
3528/// logical left or right shift of a vector.
3529/// FIXME: split into pslldqi, psrldqi, palignr variants.
3530static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3531                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3532  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3533
3534  isLeft = true;
3535  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3536  if (!NumZeros) {
3537    isLeft = false;
3538    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3539    if (!NumZeros)
3540      return false;
3541  }
3542  bool SeenV1 = false;
3543  bool SeenV2 = false;
3544  for (unsigned i = NumZeros; i < NumElems; ++i) {
3545    unsigned Val = isLeft ? (i - NumZeros) : i;
3546    int Idx_ = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3547    if (Idx_ < 0)
3548      continue;
3549    unsigned Idx = (unsigned) Idx_;
3550    if (Idx < NumElems)
3551      SeenV1 = true;
3552    else {
3553      Idx -= NumElems;
3554      SeenV2 = true;
3555    }
3556    if (Idx != Val)
3557      return false;
3558  }
3559  if (SeenV1 && SeenV2)
3560    return false;
3561
3562  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3563  ShAmt = NumZeros;
3564  return true;
3565}
3566
3567
3568/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3569///
3570static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3571                                       unsigned NumNonZero, unsigned NumZero,
3572                                       SelectionDAG &DAG,
3573                                       const TargetLowering &TLI) {
3574  if (NumNonZero > 8)
3575    return SDValue();
3576
3577  DebugLoc dl = Op.getDebugLoc();
3578  SDValue V(0, 0);
3579  bool First = true;
3580  for (unsigned i = 0; i < 16; ++i) {
3581    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3582    if (ThisIsNonZero && First) {
3583      if (NumZero)
3584        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3585      else
3586        V = DAG.getUNDEF(MVT::v8i16);
3587      First = false;
3588    }
3589
3590    if ((i & 1) != 0) {
3591      SDValue ThisElt(0, 0), LastElt(0, 0);
3592      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3593      if (LastIsNonZero) {
3594        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3595                              MVT::i16, Op.getOperand(i-1));
3596      }
3597      if (ThisIsNonZero) {
3598        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3599        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3600                              ThisElt, DAG.getConstant(8, MVT::i8));
3601        if (LastIsNonZero)
3602          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3603      } else
3604        ThisElt = LastElt;
3605
3606      if (ThisElt.getNode())
3607        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3608                        DAG.getIntPtrConstant(i/2));
3609    }
3610  }
3611
3612  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3613}
3614
3615/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3616///
3617static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3618                                     unsigned NumNonZero, unsigned NumZero,
3619                                     SelectionDAG &DAG,
3620                                     const TargetLowering &TLI) {
3621  if (NumNonZero > 4)
3622    return SDValue();
3623
3624  DebugLoc dl = Op.getDebugLoc();
3625  SDValue V(0, 0);
3626  bool First = true;
3627  for (unsigned i = 0; i < 8; ++i) {
3628    bool isNonZero = (NonZeros & (1 << i)) != 0;
3629    if (isNonZero) {
3630      if (First) {
3631        if (NumZero)
3632          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3633        else
3634          V = DAG.getUNDEF(MVT::v8i16);
3635        First = false;
3636      }
3637      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3638                      MVT::v8i16, V, Op.getOperand(i),
3639                      DAG.getIntPtrConstant(i));
3640    }
3641  }
3642
3643  return V;
3644}
3645
3646/// getVShift - Return a vector logical shift node.
3647///
3648static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3649                         unsigned NumBits, SelectionDAG &DAG,
3650                         const TargetLowering &TLI, DebugLoc dl) {
3651  bool isMMX = VT.getSizeInBits() == 64;
3652  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3653  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3654  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3655  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3656                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3657                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3658}
3659
3660SDValue
3661X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3662                                          SelectionDAG &DAG) const {
3663
3664  // Check if the scalar load can be widened into a vector load. And if
3665  // the address is "base + cst" see if the cst can be "absorbed" into
3666  // the shuffle mask.
3667  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3668    SDValue Ptr = LD->getBasePtr();
3669    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3670      return SDValue();
3671    EVT PVT = LD->getValueType(0);
3672    if (PVT != MVT::i32 && PVT != MVT::f32)
3673      return SDValue();
3674
3675    int FI = -1;
3676    int64_t Offset = 0;
3677    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3678      FI = FINode->getIndex();
3679      Offset = 0;
3680    } else if (Ptr.getOpcode() == ISD::ADD &&
3681               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3682               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3683      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3684      Offset = Ptr.getConstantOperandVal(1);
3685      Ptr = Ptr.getOperand(0);
3686    } else {
3687      return SDValue();
3688    }
3689
3690    SDValue Chain = LD->getChain();
3691    // Make sure the stack object alignment is at least 16.
3692    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3693    if (DAG.InferPtrAlignment(Ptr) < 16) {
3694      if (MFI->isFixedObjectIndex(FI)) {
3695        // Can't change the alignment. FIXME: It's possible to compute
3696        // the exact stack offset and reference FI + adjust offset instead.
3697        // If someone *really* cares about this. That's the way to implement it.
3698        return SDValue();
3699      } else {
3700        MFI->setObjectAlignment(FI, 16);
3701      }
3702    }
3703
3704    // (Offset % 16) must be multiple of 4. Then address is then
3705    // Ptr + (Offset & ~15).
3706    if (Offset < 0)
3707      return SDValue();
3708    if ((Offset % 16) & 3)
3709      return SDValue();
3710    int64_t StartOffset = Offset & ~15;
3711    if (StartOffset)
3712      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3713                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3714
3715    int EltNo = (Offset - StartOffset) >> 2;
3716    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3717    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3718    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3719                             false, false, 0);
3720    // Canonicalize it to a v4i32 shuffle.
3721    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3722    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3723                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3724                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3725  }
3726
3727  return SDValue();
3728}
3729
3730/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3731/// vector of type 'VT', see if the elements can be replaced by a single large
3732/// load which has the same value as a build_vector whose operands are 'elts'.
3733///
3734/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3735///
3736/// FIXME: we'd also like to handle the case where the last elements are zero
3737/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3738/// There's even a handy isZeroNode for that purpose.
3739static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3740                                        DebugLoc &dl, SelectionDAG &DAG) {
3741  EVT EltVT = VT.getVectorElementType();
3742  unsigned NumElems = Elts.size();
3743
3744  LoadSDNode *LDBase = NULL;
3745  unsigned LastLoadedElt = -1U;
3746
3747  // For each element in the initializer, see if we've found a load or an undef.
3748  // If we don't find an initial load element, or later load elements are
3749  // non-consecutive, bail out.
3750  for (unsigned i = 0; i < NumElems; ++i) {
3751    SDValue Elt = Elts[i];
3752
3753    if (!Elt.getNode() ||
3754        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
3755      return SDValue();
3756    if (!LDBase) {
3757      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
3758        return SDValue();
3759      LDBase = cast<LoadSDNode>(Elt.getNode());
3760      LastLoadedElt = i;
3761      continue;
3762    }
3763    if (Elt.getOpcode() == ISD::UNDEF)
3764      continue;
3765
3766    LoadSDNode *LD = cast<LoadSDNode>(Elt);
3767    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
3768      return SDValue();
3769    LastLoadedElt = i;
3770  }
3771
3772  // If we have found an entire vector of loads and undefs, then return a large
3773  // load of the entire vector width starting at the base pointer.  If we found
3774  // consecutive loads for the low half, generate a vzext_load node.
3775  if (LastLoadedElt == NumElems - 1) {
3776    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
3777      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3778                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3779                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
3780    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3781                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3782                       LDBase->isVolatile(), LDBase->isNonTemporal(),
3783                       LDBase->getAlignment());
3784  } else if (NumElems == 4 && LastLoadedElt == 1) {
3785    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
3786    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
3787    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
3788    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
3789  }
3790  return SDValue();
3791}
3792
3793SDValue
3794X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
3795  DebugLoc dl = Op.getDebugLoc();
3796  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3797  if (ISD::isBuildVectorAllZeros(Op.getNode())
3798      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3799    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3800    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3801    // eliminated on x86-32 hosts.
3802    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3803      return Op;
3804
3805    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3806      return getOnesVector(Op.getValueType(), DAG, dl);
3807    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3808  }
3809
3810  EVT VT = Op.getValueType();
3811  EVT ExtVT = VT.getVectorElementType();
3812  unsigned EVTBits = ExtVT.getSizeInBits();
3813
3814  unsigned NumElems = Op.getNumOperands();
3815  unsigned NumZero  = 0;
3816  unsigned NumNonZero = 0;
3817  unsigned NonZeros = 0;
3818  bool IsAllConstants = true;
3819  SmallSet<SDValue, 8> Values;
3820  for (unsigned i = 0; i < NumElems; ++i) {
3821    SDValue Elt = Op.getOperand(i);
3822    if (Elt.getOpcode() == ISD::UNDEF)
3823      continue;
3824    Values.insert(Elt);
3825    if (Elt.getOpcode() != ISD::Constant &&
3826        Elt.getOpcode() != ISD::ConstantFP)
3827      IsAllConstants = false;
3828    if (X86::isZeroNode(Elt))
3829      NumZero++;
3830    else {
3831      NonZeros |= (1 << i);
3832      NumNonZero++;
3833    }
3834  }
3835
3836  if (NumNonZero == 0) {
3837    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3838    return DAG.getUNDEF(VT);
3839  }
3840
3841  // Special case for single non-zero, non-undef, element.
3842  if (NumNonZero == 1) {
3843    unsigned Idx = CountTrailingZeros_32(NonZeros);
3844    SDValue Item = Op.getOperand(Idx);
3845
3846    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3847    // the value are obviously zero, truncate the value to i32 and do the
3848    // insertion that way.  Only do this if the value is non-constant or if the
3849    // value is a constant being inserted into element 0.  It is cheaper to do
3850    // a constant pool load than it is to do a movd + shuffle.
3851    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3852        (!IsAllConstants || Idx == 0)) {
3853      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3854        // Handle MMX and SSE both.
3855        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3856        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3857
3858        // Truncate the value (which may itself be a constant) to i32, and
3859        // convert it to a vector with movd (S2V+shuffle to zero extend).
3860        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3861        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3862        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3863                                           Subtarget->hasSSE2(), DAG);
3864
3865        // Now we have our 32-bit value zero extended in the low element of
3866        // a vector.  If Idx != 0, swizzle it into place.
3867        if (Idx != 0) {
3868          SmallVector<int, 4> Mask;
3869          Mask.push_back(Idx);
3870          for (unsigned i = 1; i != VecElts; ++i)
3871            Mask.push_back(i);
3872          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3873                                      DAG.getUNDEF(Item.getValueType()),
3874                                      &Mask[0]);
3875        }
3876        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3877      }
3878    }
3879
3880    // If we have a constant or non-constant insertion into the low element of
3881    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3882    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3883    // depending on what the source datatype is.
3884    if (Idx == 0) {
3885      if (NumZero == 0) {
3886        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3887      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3888          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3889        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3890        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3891        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3892                                           DAG);
3893      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3894        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3895        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3896        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3897        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3898                                           Subtarget->hasSSE2(), DAG);
3899        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3900      }
3901    }
3902
3903    // Is it a vector logical left shift?
3904    if (NumElems == 2 && Idx == 1 &&
3905        X86::isZeroNode(Op.getOperand(0)) &&
3906        !X86::isZeroNode(Op.getOperand(1))) {
3907      unsigned NumBits = VT.getSizeInBits();
3908      return getVShift(true, VT,
3909                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3910                                   VT, Op.getOperand(1)),
3911                       NumBits/2, DAG, *this, dl);
3912    }
3913
3914    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3915      return SDValue();
3916
3917    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3918    // is a non-constant being inserted into an element other than the low one,
3919    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3920    // movd/movss) to move this into the low element, then shuffle it into
3921    // place.
3922    if (EVTBits == 32) {
3923      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3924
3925      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3926      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3927                                         Subtarget->hasSSE2(), DAG);
3928      SmallVector<int, 8> MaskVec;
3929      for (unsigned i = 0; i < NumElems; i++)
3930        MaskVec.push_back(i == Idx ? 0 : 1);
3931      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3932    }
3933  }
3934
3935  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3936  if (Values.size() == 1) {
3937    if (EVTBits == 32) {
3938      // Instead of a shuffle like this:
3939      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3940      // Check if it's possible to issue this instead.
3941      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3942      unsigned Idx = CountTrailingZeros_32(NonZeros);
3943      SDValue Item = Op.getOperand(Idx);
3944      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3945        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3946    }
3947    return SDValue();
3948  }
3949
3950  // A vector full of immediates; various special cases are already
3951  // handled, so this is best done with a single constant-pool load.
3952  if (IsAllConstants)
3953    return SDValue();
3954
3955  // Let legalizer expand 2-wide build_vectors.
3956  if (EVTBits == 64) {
3957    if (NumNonZero == 1) {
3958      // One half is zero or undef.
3959      unsigned Idx = CountTrailingZeros_32(NonZeros);
3960      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3961                                 Op.getOperand(Idx));
3962      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3963                                         Subtarget->hasSSE2(), DAG);
3964    }
3965    return SDValue();
3966  }
3967
3968  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3969  if (EVTBits == 8 && NumElems == 16) {
3970    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3971                                        *this);
3972    if (V.getNode()) return V;
3973  }
3974
3975  if (EVTBits == 16 && NumElems == 8) {
3976    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3977                                        *this);
3978    if (V.getNode()) return V;
3979  }
3980
3981  // If element VT is == 32 bits, turn it into a number of shuffles.
3982  SmallVector<SDValue, 8> V;
3983  V.resize(NumElems);
3984  if (NumElems == 4 && NumZero > 0) {
3985    for (unsigned i = 0; i < 4; ++i) {
3986      bool isZero = !(NonZeros & (1 << i));
3987      if (isZero)
3988        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3989      else
3990        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3991    }
3992
3993    for (unsigned i = 0; i < 2; ++i) {
3994      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3995        default: break;
3996        case 0:
3997          V[i] = V[i*2];  // Must be a zero vector.
3998          break;
3999        case 1:
4000          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4001          break;
4002        case 2:
4003          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4004          break;
4005        case 3:
4006          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4007          break;
4008      }
4009    }
4010
4011    SmallVector<int, 8> MaskVec;
4012    bool Reverse = (NonZeros & 0x3) == 2;
4013    for (unsigned i = 0; i < 2; ++i)
4014      MaskVec.push_back(Reverse ? 1-i : i);
4015    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4016    for (unsigned i = 0; i < 2; ++i)
4017      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4018    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4019  }
4020
4021  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4022    // Check for a build vector of consecutive loads.
4023    for (unsigned i = 0; i < NumElems; ++i)
4024      V[i] = Op.getOperand(i);
4025
4026    // Check for elements which are consecutive loads.
4027    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4028    if (LD.getNode())
4029      return LD;
4030
4031    // For SSE 4.1, use inserts into undef.
4032    if (getSubtarget()->hasSSE41()) {
4033      V[0] = DAG.getUNDEF(VT);
4034      for (unsigned i = 0; i < NumElems; ++i)
4035        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4036          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
4037                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4038      return V[0];
4039    }
4040
4041    // Otherwise, expand into a number of unpckl*
4042    // e.g. for v4f32
4043    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4044    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4045    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4046    for (unsigned i = 0; i < NumElems; ++i)
4047      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4048    NumElems >>= 1;
4049    while (NumElems != 0) {
4050      for (unsigned i = 0; i < NumElems; ++i)
4051        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
4052      NumElems >>= 1;
4053    }
4054    return V[0];
4055  }
4056  return SDValue();
4057}
4058
4059SDValue
4060X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4061  // We support concatenate two MMX registers and place them in a MMX
4062  // register.  This is better than doing a stack convert.
4063  DebugLoc dl = Op.getDebugLoc();
4064  EVT ResVT = Op.getValueType();
4065  assert(Op.getNumOperands() == 2);
4066  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4067         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4068  int Mask[2];
4069  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4070  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4071  InVec = Op.getOperand(1);
4072  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4073    unsigned NumElts = ResVT.getVectorNumElements();
4074    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4075    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4076                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4077  } else {
4078    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4079    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4080    Mask[0] = 0; Mask[1] = 2;
4081    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4082  }
4083  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4084}
4085
4086// v8i16 shuffles - Prefer shuffles in the following order:
4087// 1. [all]   pshuflw, pshufhw, optional move
4088// 2. [ssse3] 1 x pshufb
4089// 3. [ssse3] 2 x pshufb + 1 x por
4090// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4091static
4092SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
4093                                 SelectionDAG &DAG,
4094                                 const X86TargetLowering &TLI) {
4095  SDValue V1 = SVOp->getOperand(0);
4096  SDValue V2 = SVOp->getOperand(1);
4097  DebugLoc dl = SVOp->getDebugLoc();
4098  SmallVector<int, 8> MaskVals;
4099
4100  // Determine if more than 1 of the words in each of the low and high quadwords
4101  // of the result come from the same quadword of one of the two inputs.  Undef
4102  // mask values count as coming from any quadword, for better codegen.
4103  SmallVector<unsigned, 4> LoQuad(4);
4104  SmallVector<unsigned, 4> HiQuad(4);
4105  BitVector InputQuads(4);
4106  for (unsigned i = 0; i < 8; ++i) {
4107    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4108    int EltIdx = SVOp->getMaskElt(i);
4109    MaskVals.push_back(EltIdx);
4110    if (EltIdx < 0) {
4111      ++Quad[0];
4112      ++Quad[1];
4113      ++Quad[2];
4114      ++Quad[3];
4115      continue;
4116    }
4117    ++Quad[EltIdx / 4];
4118    InputQuads.set(EltIdx / 4);
4119  }
4120
4121  int BestLoQuad = -1;
4122  unsigned MaxQuad = 1;
4123  for (unsigned i = 0; i < 4; ++i) {
4124    if (LoQuad[i] > MaxQuad) {
4125      BestLoQuad = i;
4126      MaxQuad = LoQuad[i];
4127    }
4128  }
4129
4130  int BestHiQuad = -1;
4131  MaxQuad = 1;
4132  for (unsigned i = 0; i < 4; ++i) {
4133    if (HiQuad[i] > MaxQuad) {
4134      BestHiQuad = i;
4135      MaxQuad = HiQuad[i];
4136    }
4137  }
4138
4139  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4140  // of the two input vectors, shuffle them into one input vector so only a
4141  // single pshufb instruction is necessary. If There are more than 2 input
4142  // quads, disable the next transformation since it does not help SSSE3.
4143  bool V1Used = InputQuads[0] || InputQuads[1];
4144  bool V2Used = InputQuads[2] || InputQuads[3];
4145  if (TLI.getSubtarget()->hasSSSE3()) {
4146    if (InputQuads.count() == 2 && V1Used && V2Used) {
4147      BestLoQuad = InputQuads.find_first();
4148      BestHiQuad = InputQuads.find_next(BestLoQuad);
4149    }
4150    if (InputQuads.count() > 2) {
4151      BestLoQuad = -1;
4152      BestHiQuad = -1;
4153    }
4154  }
4155
4156  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4157  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4158  // words from all 4 input quadwords.
4159  SDValue NewV;
4160  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4161    SmallVector<int, 8> MaskV;
4162    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4163    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4164    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4165                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4166                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4167    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4168
4169    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4170    // source words for the shuffle, to aid later transformations.
4171    bool AllWordsInNewV = true;
4172    bool InOrder[2] = { true, true };
4173    for (unsigned i = 0; i != 8; ++i) {
4174      int idx = MaskVals[i];
4175      if (idx != (int)i)
4176        InOrder[i/4] = false;
4177      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4178        continue;
4179      AllWordsInNewV = false;
4180      break;
4181    }
4182
4183    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4184    if (AllWordsInNewV) {
4185      for (int i = 0; i != 8; ++i) {
4186        int idx = MaskVals[i];
4187        if (idx < 0)
4188          continue;
4189        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4190        if ((idx != i) && idx < 4)
4191          pshufhw = false;
4192        if ((idx != i) && idx > 3)
4193          pshuflw = false;
4194      }
4195      V1 = NewV;
4196      V2Used = false;
4197      BestLoQuad = 0;
4198      BestHiQuad = 1;
4199    }
4200
4201    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4202    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4203    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4204      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4205                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4206    }
4207  }
4208
4209  // If we have SSSE3, and all words of the result are from 1 input vector,
4210  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4211  // is present, fall back to case 4.
4212  if (TLI.getSubtarget()->hasSSSE3()) {
4213    SmallVector<SDValue,16> pshufbMask;
4214
4215    // If we have elements from both input vectors, set the high bit of the
4216    // shuffle mask element to zero out elements that come from V2 in the V1
4217    // mask, and elements that come from V1 in the V2 mask, so that the two
4218    // results can be OR'd together.
4219    bool TwoInputs = V1Used && V2Used;
4220    for (unsigned i = 0; i != 8; ++i) {
4221      int EltIdx = MaskVals[i] * 2;
4222      if (TwoInputs && (EltIdx >= 16)) {
4223        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4224        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4225        continue;
4226      }
4227      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4228      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4229    }
4230    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4231    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4232                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4233                                 MVT::v16i8, &pshufbMask[0], 16));
4234    if (!TwoInputs)
4235      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4236
4237    // Calculate the shuffle mask for the second input, shuffle it, and
4238    // OR it with the first shuffled input.
4239    pshufbMask.clear();
4240    for (unsigned i = 0; i != 8; ++i) {
4241      int EltIdx = MaskVals[i] * 2;
4242      if (EltIdx < 16) {
4243        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4244        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4245        continue;
4246      }
4247      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4248      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4249    }
4250    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4251    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4252                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4253                                 MVT::v16i8, &pshufbMask[0], 16));
4254    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4255    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4256  }
4257
4258  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4259  // and update MaskVals with new element order.
4260  BitVector InOrder(8);
4261  if (BestLoQuad >= 0) {
4262    SmallVector<int, 8> MaskV;
4263    for (int i = 0; i != 4; ++i) {
4264      int idx = MaskVals[i];
4265      if (idx < 0) {
4266        MaskV.push_back(-1);
4267        InOrder.set(i);
4268      } else if ((idx / 4) == BestLoQuad) {
4269        MaskV.push_back(idx & 3);
4270        InOrder.set(i);
4271      } else {
4272        MaskV.push_back(-1);
4273      }
4274    }
4275    for (unsigned i = 4; i != 8; ++i)
4276      MaskV.push_back(i);
4277    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4278                                &MaskV[0]);
4279  }
4280
4281  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4282  // and update MaskVals with the new element order.
4283  if (BestHiQuad >= 0) {
4284    SmallVector<int, 8> MaskV;
4285    for (unsigned i = 0; i != 4; ++i)
4286      MaskV.push_back(i);
4287    for (unsigned i = 4; i != 8; ++i) {
4288      int idx = MaskVals[i];
4289      if (idx < 0) {
4290        MaskV.push_back(-1);
4291        InOrder.set(i);
4292      } else if ((idx / 4) == BestHiQuad) {
4293        MaskV.push_back((idx & 3) + 4);
4294        InOrder.set(i);
4295      } else {
4296        MaskV.push_back(-1);
4297      }
4298    }
4299    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4300                                &MaskV[0]);
4301  }
4302
4303  // In case BestHi & BestLo were both -1, which means each quadword has a word
4304  // from each of the four input quadwords, calculate the InOrder bitvector now
4305  // before falling through to the insert/extract cleanup.
4306  if (BestLoQuad == -1 && BestHiQuad == -1) {
4307    NewV = V1;
4308    for (int i = 0; i != 8; ++i)
4309      if (MaskVals[i] < 0 || MaskVals[i] == i)
4310        InOrder.set(i);
4311  }
4312
4313  // The other elements are put in the right place using pextrw and pinsrw.
4314  for (unsigned i = 0; i != 8; ++i) {
4315    if (InOrder[i])
4316      continue;
4317    int EltIdx = MaskVals[i];
4318    if (EltIdx < 0)
4319      continue;
4320    SDValue ExtOp = (EltIdx < 8)
4321    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4322                  DAG.getIntPtrConstant(EltIdx))
4323    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4324                  DAG.getIntPtrConstant(EltIdx - 8));
4325    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4326                       DAG.getIntPtrConstant(i));
4327  }
4328  return NewV;
4329}
4330
4331// v16i8 shuffles - Prefer shuffles in the following order:
4332// 1. [ssse3] 1 x pshufb
4333// 2. [ssse3] 2 x pshufb + 1 x por
4334// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4335static
4336SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4337                                 SelectionDAG &DAG,
4338                                 const X86TargetLowering &TLI) {
4339  SDValue V1 = SVOp->getOperand(0);
4340  SDValue V2 = SVOp->getOperand(1);
4341  DebugLoc dl = SVOp->getDebugLoc();
4342  SmallVector<int, 16> MaskVals;
4343  SVOp->getMask(MaskVals);
4344
4345  // If we have SSSE3, case 1 is generated when all result bytes come from
4346  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4347  // present, fall back to case 3.
4348  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4349  bool V1Only = true;
4350  bool V2Only = true;
4351  for (unsigned i = 0; i < 16; ++i) {
4352    int EltIdx = MaskVals[i];
4353    if (EltIdx < 0)
4354      continue;
4355    if (EltIdx < 16)
4356      V2Only = false;
4357    else
4358      V1Only = false;
4359  }
4360
4361  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4362  if (TLI.getSubtarget()->hasSSSE3()) {
4363    SmallVector<SDValue,16> pshufbMask;
4364
4365    // If all result elements are from one input vector, then only translate
4366    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4367    //
4368    // Otherwise, we have elements from both input vectors, and must zero out
4369    // elements that come from V2 in the first mask, and V1 in the second mask
4370    // so that we can OR them together.
4371    bool TwoInputs = !(V1Only || V2Only);
4372    for (unsigned i = 0; i != 16; ++i) {
4373      int EltIdx = MaskVals[i];
4374      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4375        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4376        continue;
4377      }
4378      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4379    }
4380    // If all the elements are from V2, assign it to V1 and return after
4381    // building the first pshufb.
4382    if (V2Only)
4383      V1 = V2;
4384    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4385                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4386                                 MVT::v16i8, &pshufbMask[0], 16));
4387    if (!TwoInputs)
4388      return V1;
4389
4390    // Calculate the shuffle mask for the second input, shuffle it, and
4391    // OR it with the first shuffled input.
4392    pshufbMask.clear();
4393    for (unsigned i = 0; i != 16; ++i) {
4394      int EltIdx = MaskVals[i];
4395      if (EltIdx < 16) {
4396        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4397        continue;
4398      }
4399      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4400    }
4401    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4402                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4403                                 MVT::v16i8, &pshufbMask[0], 16));
4404    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4405  }
4406
4407  // No SSSE3 - Calculate in place words and then fix all out of place words
4408  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4409  // the 16 different words that comprise the two doublequadword input vectors.
4410  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4411  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4412  SDValue NewV = V2Only ? V2 : V1;
4413  for (int i = 0; i != 8; ++i) {
4414    int Elt0 = MaskVals[i*2];
4415    int Elt1 = MaskVals[i*2+1];
4416
4417    // This word of the result is all undef, skip it.
4418    if (Elt0 < 0 && Elt1 < 0)
4419      continue;
4420
4421    // This word of the result is already in the correct place, skip it.
4422    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4423      continue;
4424    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4425      continue;
4426
4427    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4428    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4429    SDValue InsElt;
4430
4431    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4432    // using a single extract together, load it and store it.
4433    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4434      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4435                           DAG.getIntPtrConstant(Elt1 / 2));
4436      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4437                        DAG.getIntPtrConstant(i));
4438      continue;
4439    }
4440
4441    // If Elt1 is defined, extract it from the appropriate source.  If the
4442    // source byte is not also odd, shift the extracted word left 8 bits
4443    // otherwise clear the bottom 8 bits if we need to do an or.
4444    if (Elt1 >= 0) {
4445      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4446                           DAG.getIntPtrConstant(Elt1 / 2));
4447      if ((Elt1 & 1) == 0)
4448        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4449                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4450      else if (Elt0 >= 0)
4451        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4452                             DAG.getConstant(0xFF00, MVT::i16));
4453    }
4454    // If Elt0 is defined, extract it from the appropriate source.  If the
4455    // source byte is not also even, shift the extracted word right 8 bits. If
4456    // Elt1 was also defined, OR the extracted values together before
4457    // inserting them in the result.
4458    if (Elt0 >= 0) {
4459      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4460                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4461      if ((Elt0 & 1) != 0)
4462        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4463                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4464      else if (Elt1 >= 0)
4465        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4466                             DAG.getConstant(0x00FF, MVT::i16));
4467      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4468                         : InsElt0;
4469    }
4470    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4471                       DAG.getIntPtrConstant(i));
4472  }
4473  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4474}
4475
4476/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4477/// ones, or rewriting v4i32 / v2i32 as 2 wide ones if possible. This can be
4478/// done when every pair / quad of shuffle mask elements point to elements in
4479/// the right sequence. e.g.
4480/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4481static
4482SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4483                                 SelectionDAG &DAG,
4484                                 const TargetLowering &TLI, DebugLoc dl) {
4485  EVT VT = SVOp->getValueType(0);
4486  SDValue V1 = SVOp->getOperand(0);
4487  SDValue V2 = SVOp->getOperand(1);
4488  unsigned NumElems = VT.getVectorNumElements();
4489  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4490  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4491  EVT NewVT = MaskVT;
4492  switch (VT.getSimpleVT().SimpleTy) {
4493  default: assert(false && "Unexpected!");
4494  case MVT::v4f32: NewVT = MVT::v2f64; break;
4495  case MVT::v4i32: NewVT = MVT::v2i64; break;
4496  case MVT::v8i16: NewVT = MVT::v4i32; break;
4497  case MVT::v16i8: NewVT = MVT::v4i32; break;
4498  }
4499
4500  if (NewWidth == 2) {
4501    if (VT.isInteger())
4502      NewVT = MVT::v2i64;
4503    else
4504      NewVT = MVT::v2f64;
4505  }
4506  int Scale = NumElems / NewWidth;
4507  SmallVector<int, 8> MaskVec;
4508  for (unsigned i = 0; i < NumElems; i += Scale) {
4509    int StartIdx = -1;
4510    for (int j = 0; j < Scale; ++j) {
4511      int EltIdx = SVOp->getMaskElt(i+j);
4512      if (EltIdx < 0)
4513        continue;
4514      if (StartIdx == -1)
4515        StartIdx = EltIdx - (EltIdx % Scale);
4516      if (EltIdx != StartIdx + j)
4517        return SDValue();
4518    }
4519    if (StartIdx == -1)
4520      MaskVec.push_back(-1);
4521    else
4522      MaskVec.push_back(StartIdx / Scale);
4523  }
4524
4525  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4526  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4527  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4528}
4529
4530/// getVZextMovL - Return a zero-extending vector move low node.
4531///
4532static SDValue getVZextMovL(EVT VT, EVT OpVT,
4533                            SDValue SrcOp, SelectionDAG &DAG,
4534                            const X86Subtarget *Subtarget, DebugLoc dl) {
4535  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4536    LoadSDNode *LD = NULL;
4537    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4538      LD = dyn_cast<LoadSDNode>(SrcOp);
4539    if (!LD) {
4540      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4541      // instead.
4542      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4543      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4544          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4545          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4546          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4547        // PR2108
4548        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4549        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4550                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4551                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4552                                                   OpVT,
4553                                                   SrcOp.getOperand(0)
4554                                                          .getOperand(0))));
4555      }
4556    }
4557  }
4558
4559  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4560                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4561                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4562                                             OpVT, SrcOp)));
4563}
4564
4565/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4566/// shuffles.
4567static SDValue
4568LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4569  SDValue V1 = SVOp->getOperand(0);
4570  SDValue V2 = SVOp->getOperand(1);
4571  DebugLoc dl = SVOp->getDebugLoc();
4572  EVT VT = SVOp->getValueType(0);
4573
4574  SmallVector<std::pair<int, int>, 8> Locs;
4575  Locs.resize(4);
4576  SmallVector<int, 8> Mask1(4U, -1);
4577  SmallVector<int, 8> PermMask;
4578  SVOp->getMask(PermMask);
4579
4580  unsigned NumHi = 0;
4581  unsigned NumLo = 0;
4582  for (unsigned i = 0; i != 4; ++i) {
4583    int Idx = PermMask[i];
4584    if (Idx < 0) {
4585      Locs[i] = std::make_pair(-1, -1);
4586    } else {
4587      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4588      if (Idx < 4) {
4589        Locs[i] = std::make_pair(0, NumLo);
4590        Mask1[NumLo] = Idx;
4591        NumLo++;
4592      } else {
4593        Locs[i] = std::make_pair(1, NumHi);
4594        if (2+NumHi < 4)
4595          Mask1[2+NumHi] = Idx;
4596        NumHi++;
4597      }
4598    }
4599  }
4600
4601  if (NumLo <= 2 && NumHi <= 2) {
4602    // If no more than two elements come from either vector. This can be
4603    // implemented with two shuffles. First shuffle gather the elements.
4604    // The second shuffle, which takes the first shuffle as both of its
4605    // vector operands, put the elements into the right order.
4606    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4607
4608    SmallVector<int, 8> Mask2(4U, -1);
4609
4610    for (unsigned i = 0; i != 4; ++i) {
4611      if (Locs[i].first == -1)
4612        continue;
4613      else {
4614        unsigned Idx = (i < 2) ? 0 : 4;
4615        Idx += Locs[i].first * 2 + Locs[i].second;
4616        Mask2[i] = Idx;
4617      }
4618    }
4619
4620    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4621  } else if (NumLo == 3 || NumHi == 3) {
4622    // Otherwise, we must have three elements from one vector, call it X, and
4623    // one element from the other, call it Y.  First, use a shufps to build an
4624    // intermediate vector with the one element from Y and the element from X
4625    // that will be in the same half in the final destination (the indexes don't
4626    // matter). Then, use a shufps to build the final vector, taking the half
4627    // containing the element from Y from the intermediate, and the other half
4628    // from X.
4629    if (NumHi == 3) {
4630      // Normalize it so the 3 elements come from V1.
4631      CommuteVectorShuffleMask(PermMask, VT);
4632      std::swap(V1, V2);
4633    }
4634
4635    // Find the element from V2.
4636    unsigned HiIndex;
4637    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4638      int Val = PermMask[HiIndex];
4639      if (Val < 0)
4640        continue;
4641      if (Val >= 4)
4642        break;
4643    }
4644
4645    Mask1[0] = PermMask[HiIndex];
4646    Mask1[1] = -1;
4647    Mask1[2] = PermMask[HiIndex^1];
4648    Mask1[3] = -1;
4649    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4650
4651    if (HiIndex >= 2) {
4652      Mask1[0] = PermMask[0];
4653      Mask1[1] = PermMask[1];
4654      Mask1[2] = HiIndex & 1 ? 6 : 4;
4655      Mask1[3] = HiIndex & 1 ? 4 : 6;
4656      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4657    } else {
4658      Mask1[0] = HiIndex & 1 ? 2 : 0;
4659      Mask1[1] = HiIndex & 1 ? 0 : 2;
4660      Mask1[2] = PermMask[2];
4661      Mask1[3] = PermMask[3];
4662      if (Mask1[2] >= 0)
4663        Mask1[2] += 4;
4664      if (Mask1[3] >= 0)
4665        Mask1[3] += 4;
4666      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4667    }
4668  }
4669
4670  // Break it into (shuffle shuffle_hi, shuffle_lo).
4671  Locs.clear();
4672  SmallVector<int,8> LoMask(4U, -1);
4673  SmallVector<int,8> HiMask(4U, -1);
4674
4675  SmallVector<int,8> *MaskPtr = &LoMask;
4676  unsigned MaskIdx = 0;
4677  unsigned LoIdx = 0;
4678  unsigned HiIdx = 2;
4679  for (unsigned i = 0; i != 4; ++i) {
4680    if (i == 2) {
4681      MaskPtr = &HiMask;
4682      MaskIdx = 1;
4683      LoIdx = 0;
4684      HiIdx = 2;
4685    }
4686    int Idx = PermMask[i];
4687    if (Idx < 0) {
4688      Locs[i] = std::make_pair(-1, -1);
4689    } else if (Idx < 4) {
4690      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4691      (*MaskPtr)[LoIdx] = Idx;
4692      LoIdx++;
4693    } else {
4694      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4695      (*MaskPtr)[HiIdx] = Idx;
4696      HiIdx++;
4697    }
4698  }
4699
4700  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4701  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4702  SmallVector<int, 8> MaskOps;
4703  for (unsigned i = 0; i != 4; ++i) {
4704    if (Locs[i].first == -1) {
4705      MaskOps.push_back(-1);
4706    } else {
4707      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4708      MaskOps.push_back(Idx);
4709    }
4710  }
4711  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4712}
4713
4714SDValue
4715X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
4716  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4717  SDValue V1 = Op.getOperand(0);
4718  SDValue V2 = Op.getOperand(1);
4719  EVT VT = Op.getValueType();
4720  DebugLoc dl = Op.getDebugLoc();
4721  unsigned NumElems = VT.getVectorNumElements();
4722  bool isMMX = VT.getSizeInBits() == 64;
4723  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4724  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4725  bool V1IsSplat = false;
4726  bool V2IsSplat = false;
4727
4728  if (isZeroShuffle(SVOp))
4729    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4730
4731  // Promote splats to v4f32.
4732  if (SVOp->isSplat()) {
4733    if (isMMX || NumElems < 4)
4734      return Op;
4735    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4736  }
4737
4738  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4739  // do it!
4740  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4741    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4742    if (NewOp.getNode())
4743      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4744                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4745  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4746    // FIXME: Figure out a cleaner way to do this.
4747    // Try to make use of movq to zero out the top part.
4748    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4749      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4750      if (NewOp.getNode()) {
4751        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4752          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4753                              DAG, Subtarget, dl);
4754      }
4755    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4756      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4757      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4758        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4759                            DAG, Subtarget, dl);
4760    }
4761  }
4762
4763  if (X86::isPSHUFDMask(SVOp))
4764    return Op;
4765
4766  // Check if this can be converted into a logical shift.
4767  bool isLeft = false;
4768  unsigned ShAmt = 0;
4769  SDValue ShVal;
4770  bool isShift = getSubtarget()->hasSSE2() &&
4771    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4772  if (isShift && ShVal.hasOneUse()) {
4773    // If the shifted value has multiple uses, it may be cheaper to use
4774    // v_set0 + movlhps or movhlps, etc.
4775    EVT EltVT = VT.getVectorElementType();
4776    ShAmt *= EltVT.getSizeInBits();
4777    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4778  }
4779
4780  if (X86::isMOVLMask(SVOp)) {
4781    if (V1IsUndef)
4782      return V2;
4783    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4784      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4785    if (!isMMX)
4786      return Op;
4787  }
4788
4789  // FIXME: fold these into legal mask.
4790  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4791                 X86::isMOVSLDUPMask(SVOp) ||
4792                 X86::isMOVHLPSMask(SVOp) ||
4793                 X86::isMOVLHPSMask(SVOp) ||
4794                 X86::isMOVLPMask(SVOp)))
4795    return Op;
4796
4797  if (ShouldXformToMOVHLPS(SVOp) ||
4798      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4799    return CommuteVectorShuffle(SVOp, DAG);
4800
4801  if (isShift) {
4802    // No better options. Use a vshl / vsrl.
4803    EVT EltVT = VT.getVectorElementType();
4804    ShAmt *= EltVT.getSizeInBits();
4805    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4806  }
4807
4808  bool Commuted = false;
4809  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4810  // 1,1,1,1 -> v8i16 though.
4811  V1IsSplat = isSplatVector(V1.getNode());
4812  V2IsSplat = isSplatVector(V2.getNode());
4813
4814  // Canonicalize the splat or undef, if present, to be on the RHS.
4815  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4816    Op = CommuteVectorShuffle(SVOp, DAG);
4817    SVOp = cast<ShuffleVectorSDNode>(Op);
4818    V1 = SVOp->getOperand(0);
4819    V2 = SVOp->getOperand(1);
4820    std::swap(V1IsSplat, V2IsSplat);
4821    std::swap(V1IsUndef, V2IsUndef);
4822    Commuted = true;
4823  }
4824
4825  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4826    // Shuffling low element of v1 into undef, just return v1.
4827    if (V2IsUndef)
4828      return V1;
4829    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4830    // the instruction selector will not match, so get a canonical MOVL with
4831    // swapped operands to undo the commute.
4832    return getMOVL(DAG, dl, VT, V2, V1);
4833  }
4834
4835  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4836      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4837      X86::isUNPCKLMask(SVOp) ||
4838      X86::isUNPCKHMask(SVOp))
4839    return Op;
4840
4841  if (V2IsSplat) {
4842    // Normalize mask so all entries that point to V2 points to its first
4843    // element then try to match unpck{h|l} again. If match, return a
4844    // new vector_shuffle with the corrected mask.
4845    SDValue NewMask = NormalizeMask(SVOp, DAG);
4846    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4847    if (NSVOp != SVOp) {
4848      if (X86::isUNPCKLMask(NSVOp, true)) {
4849        return NewMask;
4850      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4851        return NewMask;
4852      }
4853    }
4854  }
4855
4856  if (Commuted) {
4857    // Commute is back and try unpck* again.
4858    // FIXME: this seems wrong.
4859    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4860    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4861    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4862        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4863        X86::isUNPCKLMask(NewSVOp) ||
4864        X86::isUNPCKHMask(NewSVOp))
4865      return NewOp;
4866  }
4867
4868  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4869
4870  // Normalize the node to match x86 shuffle ops if needed
4871  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4872    return CommuteVectorShuffle(SVOp, DAG);
4873
4874  // Check for legal shuffle and return?
4875  SmallVector<int, 16> PermMask;
4876  SVOp->getMask(PermMask);
4877  if (isShuffleMaskLegal(PermMask, VT))
4878    return Op;
4879
4880  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4881  if (VT == MVT::v8i16) {
4882    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4883    if (NewOp.getNode())
4884      return NewOp;
4885  }
4886
4887  if (VT == MVT::v16i8) {
4888    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4889    if (NewOp.getNode())
4890      return NewOp;
4891  }
4892
4893  // Handle all 4 wide cases with a number of shuffles except for MMX.
4894  if (NumElems == 4 && !isMMX)
4895    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4896
4897  return SDValue();
4898}
4899
4900SDValue
4901X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4902                                                SelectionDAG &DAG) const {
4903  EVT VT = Op.getValueType();
4904  DebugLoc dl = Op.getDebugLoc();
4905  if (VT.getSizeInBits() == 8) {
4906    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4907                                    Op.getOperand(0), Op.getOperand(1));
4908    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4909                                    DAG.getValueType(VT));
4910    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4911  } else if (VT.getSizeInBits() == 16) {
4912    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4913    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4914    if (Idx == 0)
4915      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4916                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4917                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4918                                                 MVT::v4i32,
4919                                                 Op.getOperand(0)),
4920                                     Op.getOperand(1)));
4921    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4922                                    Op.getOperand(0), Op.getOperand(1));
4923    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4924                                    DAG.getValueType(VT));
4925    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4926  } else if (VT == MVT::f32) {
4927    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4928    // the result back to FR32 register. It's only worth matching if the
4929    // result has a single use which is a store or a bitcast to i32.  And in
4930    // the case of a store, it's not worth it if the index is a constant 0,
4931    // because a MOVSSmr can be used instead, which is smaller and faster.
4932    if (!Op.hasOneUse())
4933      return SDValue();
4934    SDNode *User = *Op.getNode()->use_begin();
4935    if ((User->getOpcode() != ISD::STORE ||
4936         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4937          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4938        (User->getOpcode() != ISD::BIT_CONVERT ||
4939         User->getValueType(0) != MVT::i32))
4940      return SDValue();
4941    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4942                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4943                                              Op.getOperand(0)),
4944                                              Op.getOperand(1));
4945    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4946  } else if (VT == MVT::i32) {
4947    // ExtractPS works with constant index.
4948    if (isa<ConstantSDNode>(Op.getOperand(1)))
4949      return Op;
4950  }
4951  return SDValue();
4952}
4953
4954
4955SDValue
4956X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
4957                                           SelectionDAG &DAG) const {
4958  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4959    return SDValue();
4960
4961  if (Subtarget->hasSSE41()) {
4962    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4963    if (Res.getNode())
4964      return Res;
4965  }
4966
4967  EVT VT = Op.getValueType();
4968  DebugLoc dl = Op.getDebugLoc();
4969  // TODO: handle v16i8.
4970  if (VT.getSizeInBits() == 16) {
4971    SDValue Vec = Op.getOperand(0);
4972    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4973    if (Idx == 0)
4974      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4975                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4976                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4977                                                 MVT::v4i32, Vec),
4978                                     Op.getOperand(1)));
4979    // Transform it so it match pextrw which produces a 32-bit result.
4980    EVT EltVT = MVT::i32;
4981    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4982                                    Op.getOperand(0), Op.getOperand(1));
4983    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4984                                    DAG.getValueType(VT));
4985    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4986  } else if (VT.getSizeInBits() == 32) {
4987    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4988    if (Idx == 0)
4989      return Op;
4990
4991    // SHUFPS the element to the lowest double word, then movss.
4992    int Mask[4] = { Idx, -1, -1, -1 };
4993    EVT VVT = Op.getOperand(0).getValueType();
4994    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4995                                       DAG.getUNDEF(VVT), Mask);
4996    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4997                       DAG.getIntPtrConstant(0));
4998  } else if (VT.getSizeInBits() == 64) {
4999    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5000    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5001    //        to match extract_elt for f64.
5002    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5003    if (Idx == 0)
5004      return Op;
5005
5006    // UNPCKHPD the element to the lowest double word, then movsd.
5007    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5008    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5009    int Mask[2] = { 1, -1 };
5010    EVT VVT = Op.getOperand(0).getValueType();
5011    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5012                                       DAG.getUNDEF(VVT), Mask);
5013    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5014                       DAG.getIntPtrConstant(0));
5015  }
5016
5017  return SDValue();
5018}
5019
5020SDValue
5021X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5022                                               SelectionDAG &DAG) const {
5023  EVT VT = Op.getValueType();
5024  EVT EltVT = VT.getVectorElementType();
5025  DebugLoc dl = Op.getDebugLoc();
5026
5027  SDValue N0 = Op.getOperand(0);
5028  SDValue N1 = Op.getOperand(1);
5029  SDValue N2 = Op.getOperand(2);
5030
5031  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5032      isa<ConstantSDNode>(N2)) {
5033    unsigned Opc;
5034    if (VT == MVT::v8i16)
5035      Opc = X86ISD::PINSRW;
5036    else if (VT == MVT::v4i16)
5037      Opc = X86ISD::MMX_PINSRW;
5038    else if (VT == MVT::v16i8)
5039      Opc = X86ISD::PINSRB;
5040    else
5041      Opc = X86ISD::PINSRB;
5042
5043    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5044    // argument.
5045    if (N1.getValueType() != MVT::i32)
5046      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5047    if (N2.getValueType() != MVT::i32)
5048      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5049    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5050  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5051    // Bits [7:6] of the constant are the source select.  This will always be
5052    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5053    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5054    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5055    // Bits [5:4] of the constant are the destination select.  This is the
5056    //  value of the incoming immediate.
5057    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5058    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5059    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5060    // Create this as a scalar to vector..
5061    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5062    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5063  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5064    // PINSR* works with constant index.
5065    return Op;
5066  }
5067  return SDValue();
5068}
5069
5070SDValue
5071X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5072  EVT VT = Op.getValueType();
5073  EVT EltVT = VT.getVectorElementType();
5074
5075  if (Subtarget->hasSSE41())
5076    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5077
5078  if (EltVT == MVT::i8)
5079    return SDValue();
5080
5081  DebugLoc dl = Op.getDebugLoc();
5082  SDValue N0 = Op.getOperand(0);
5083  SDValue N1 = Op.getOperand(1);
5084  SDValue N2 = Op.getOperand(2);
5085
5086  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5087    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5088    // as its second argument.
5089    if (N1.getValueType() != MVT::i32)
5090      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5091    if (N2.getValueType() != MVT::i32)
5092      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5093    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5094                       dl, VT, N0, N1, N2);
5095  }
5096  return SDValue();
5097}
5098
5099SDValue
5100X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5101  DebugLoc dl = Op.getDebugLoc();
5102
5103  if (Op.getValueType() == MVT::v1i64 &&
5104      Op.getOperand(0).getValueType() == MVT::i64)
5105    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5106
5107  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5108  EVT VT = MVT::v2i32;
5109  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5110  default: break;
5111  case MVT::v16i8:
5112  case MVT::v8i16:
5113    VT = MVT::v4i32;
5114    break;
5115  }
5116  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5117                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5118}
5119
5120// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5121// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5122// one of the above mentioned nodes. It has to be wrapped because otherwise
5123// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5124// be used to form addressing mode. These wrapped nodes will be selected
5125// into MOV32ri.
5126SDValue
5127X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5128  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5129
5130  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5131  // global base reg.
5132  unsigned char OpFlag = 0;
5133  unsigned WrapperKind = X86ISD::Wrapper;
5134  CodeModel::Model M = getTargetMachine().getCodeModel();
5135
5136  if (Subtarget->isPICStyleRIPRel() &&
5137      (M == CodeModel::Small || M == CodeModel::Kernel))
5138    WrapperKind = X86ISD::WrapperRIP;
5139  else if (Subtarget->isPICStyleGOT())
5140    OpFlag = X86II::MO_GOTOFF;
5141  else if (Subtarget->isPICStyleStubPIC())
5142    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5143
5144  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5145                                             CP->getAlignment(),
5146                                             CP->getOffset(), OpFlag);
5147  DebugLoc DL = CP->getDebugLoc();
5148  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5149  // With PIC, the address is actually $g + Offset.
5150  if (OpFlag) {
5151    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5152                         DAG.getNode(X86ISD::GlobalBaseReg,
5153                                     DebugLoc(), getPointerTy()),
5154                         Result);
5155  }
5156
5157  return Result;
5158}
5159
5160SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5161  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5162
5163  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5164  // global base reg.
5165  unsigned char OpFlag = 0;
5166  unsigned WrapperKind = X86ISD::Wrapper;
5167  CodeModel::Model M = getTargetMachine().getCodeModel();
5168
5169  if (Subtarget->isPICStyleRIPRel() &&
5170      (M == CodeModel::Small || M == CodeModel::Kernel))
5171    WrapperKind = X86ISD::WrapperRIP;
5172  else if (Subtarget->isPICStyleGOT())
5173    OpFlag = X86II::MO_GOTOFF;
5174  else if (Subtarget->isPICStyleStubPIC())
5175    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5176
5177  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5178                                          OpFlag);
5179  DebugLoc DL = JT->getDebugLoc();
5180  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5181
5182  // With PIC, the address is actually $g + Offset.
5183  if (OpFlag) {
5184    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5185                         DAG.getNode(X86ISD::GlobalBaseReg,
5186                                     DebugLoc(), getPointerTy()),
5187                         Result);
5188  }
5189
5190  return Result;
5191}
5192
5193SDValue
5194X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5195  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5196
5197  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5198  // global base reg.
5199  unsigned char OpFlag = 0;
5200  unsigned WrapperKind = X86ISD::Wrapper;
5201  CodeModel::Model M = getTargetMachine().getCodeModel();
5202
5203  if (Subtarget->isPICStyleRIPRel() &&
5204      (M == CodeModel::Small || M == CodeModel::Kernel))
5205    WrapperKind = X86ISD::WrapperRIP;
5206  else if (Subtarget->isPICStyleGOT())
5207    OpFlag = X86II::MO_GOTOFF;
5208  else if (Subtarget->isPICStyleStubPIC())
5209    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5210
5211  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5212
5213  DebugLoc DL = Op.getDebugLoc();
5214  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5215
5216
5217  // With PIC, the address is actually $g + Offset.
5218  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5219      !Subtarget->is64Bit()) {
5220    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5221                         DAG.getNode(X86ISD::GlobalBaseReg,
5222                                     DebugLoc(), getPointerTy()),
5223                         Result);
5224  }
5225
5226  return Result;
5227}
5228
5229SDValue
5230X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5231  // Create the TargetBlockAddressAddress node.
5232  unsigned char OpFlags =
5233    Subtarget->ClassifyBlockAddressReference();
5234  CodeModel::Model M = getTargetMachine().getCodeModel();
5235  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5236  DebugLoc dl = Op.getDebugLoc();
5237  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5238                                       /*isTarget=*/true, OpFlags);
5239
5240  if (Subtarget->isPICStyleRIPRel() &&
5241      (M == CodeModel::Small || M == CodeModel::Kernel))
5242    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5243  else
5244    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5245
5246  // With PIC, the address is actually $g + Offset.
5247  if (isGlobalRelativeToPICBase(OpFlags)) {
5248    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5249                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5250                         Result);
5251  }
5252
5253  return Result;
5254}
5255
5256SDValue
5257X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5258                                      int64_t Offset,
5259                                      SelectionDAG &DAG) const {
5260  // Create the TargetGlobalAddress node, folding in the constant
5261  // offset if it is legal.
5262  unsigned char OpFlags =
5263    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5264  CodeModel::Model M = getTargetMachine().getCodeModel();
5265  SDValue Result;
5266  if (OpFlags == X86II::MO_NO_FLAG &&
5267      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5268    // A direct static reference to a global.
5269    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5270    Offset = 0;
5271  } else {
5272    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5273  }
5274
5275  if (Subtarget->isPICStyleRIPRel() &&
5276      (M == CodeModel::Small || M == CodeModel::Kernel))
5277    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5278  else
5279    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5280
5281  // With PIC, the address is actually $g + Offset.
5282  if (isGlobalRelativeToPICBase(OpFlags)) {
5283    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5284                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5285                         Result);
5286  }
5287
5288  // For globals that require a load from a stub to get the address, emit the
5289  // load.
5290  if (isGlobalStubReference(OpFlags))
5291    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5292                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5293
5294  // If there was a non-zero offset that we didn't fold, create an explicit
5295  // addition for it.
5296  if (Offset != 0)
5297    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5298                         DAG.getConstant(Offset, getPointerTy()));
5299
5300  return Result;
5301}
5302
5303SDValue
5304X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
5305  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5306  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5307  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5308}
5309
5310static SDValue
5311GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5312           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5313           unsigned char OperandFlags) {
5314  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5315  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5316  DebugLoc dl = GA->getDebugLoc();
5317  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5318                                           GA->getValueType(0),
5319                                           GA->getOffset(),
5320                                           OperandFlags);
5321  if (InFlag) {
5322    SDValue Ops[] = { Chain,  TGA, *InFlag };
5323    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5324  } else {
5325    SDValue Ops[]  = { Chain, TGA };
5326    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5327  }
5328
5329  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5330  MFI->setAdjustsStack(true);
5331
5332  SDValue Flag = Chain.getValue(1);
5333  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5334}
5335
5336// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5337static SDValue
5338LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5339                                const EVT PtrVT) {
5340  SDValue InFlag;
5341  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5342  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5343                                     DAG.getNode(X86ISD::GlobalBaseReg,
5344                                                 DebugLoc(), PtrVT), InFlag);
5345  InFlag = Chain.getValue(1);
5346
5347  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5348}
5349
5350// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5351static SDValue
5352LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5353                                const EVT PtrVT) {
5354  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5355                    X86::RAX, X86II::MO_TLSGD);
5356}
5357
5358// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5359// "local exec" model.
5360static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5361                                   const EVT PtrVT, TLSModel::Model model,
5362                                   bool is64Bit) {
5363  DebugLoc dl = GA->getDebugLoc();
5364  // Get the Thread Pointer
5365  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5366                             DebugLoc(), PtrVT,
5367                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5368                                             MVT::i32));
5369
5370  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5371                                      NULL, 0, false, false, 0);
5372
5373  unsigned char OperandFlags = 0;
5374  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5375  // initialexec.
5376  unsigned WrapperKind = X86ISD::Wrapper;
5377  if (model == TLSModel::LocalExec) {
5378    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5379  } else if (is64Bit) {
5380    assert(model == TLSModel::InitialExec);
5381    OperandFlags = X86II::MO_GOTTPOFF;
5382    WrapperKind = X86ISD::WrapperRIP;
5383  } else {
5384    assert(model == TLSModel::InitialExec);
5385    OperandFlags = X86II::MO_INDNTPOFF;
5386  }
5387
5388  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5389  // exec)
5390  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5391                                           GA->getValueType(0),
5392                                           GA->getOffset(), OperandFlags);
5393  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5394
5395  if (model == TLSModel::InitialExec)
5396    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5397                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5398
5399  // The address of the thread local variable is the add of the thread
5400  // pointer with the offset of the variable.
5401  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5402}
5403
5404SDValue
5405X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
5406
5407  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5408  const GlobalValue *GV = GA->getGlobal();
5409
5410  if (Subtarget->isTargetELF()) {
5411    // TODO: implement the "local dynamic" model
5412    // TODO: implement the "initial exec"model for pic executables
5413
5414    // If GV is an alias then use the aliasee for determining
5415    // thread-localness.
5416    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5417      GV = GA->resolveAliasedGlobal(false);
5418
5419    TLSModel::Model model
5420      = getTLSModel(GV, getTargetMachine().getRelocationModel());
5421
5422    switch (model) {
5423      case TLSModel::GeneralDynamic:
5424      case TLSModel::LocalDynamic: // not implemented
5425        if (Subtarget->is64Bit())
5426          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5427        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5428
5429      case TLSModel::InitialExec:
5430      case TLSModel::LocalExec:
5431        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5432                                   Subtarget->is64Bit());
5433    }
5434  } else if (Subtarget->isTargetDarwin()) {
5435    // Darwin only has one model of TLS.  Lower to that.
5436    unsigned char OpFlag = 0;
5437    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
5438                           X86ISD::WrapperRIP : X86ISD::Wrapper;
5439
5440    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5441    // global base reg.
5442    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
5443                  !Subtarget->is64Bit();
5444    if (PIC32)
5445      OpFlag = X86II::MO_TLVP_PIC_BASE;
5446    else
5447      OpFlag = X86II::MO_TLVP;
5448    DebugLoc DL = Op.getDebugLoc();
5449    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
5450                                                getPointerTy(),
5451                                                GA->getOffset(), OpFlag);
5452    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5453
5454    // With PIC32, the address is actually $g + Offset.
5455    if (PIC32)
5456      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5457                           DAG.getNode(X86ISD::GlobalBaseReg,
5458                                       DebugLoc(), getPointerTy()),
5459                           Offset);
5460
5461    // Lowering the machine isd will make sure everything is in the right
5462    // location.
5463    SDValue Args[] = { Offset };
5464    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
5465
5466    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
5467    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5468    MFI->setAdjustsStack(true);
5469
5470    // And our return value (tls address) is in the standard call return value
5471    // location.
5472    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
5473    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
5474  }
5475
5476  assert(false &&
5477         "TLS not implemented for this target.");
5478
5479  llvm_unreachable("Unreachable");
5480  return SDValue();
5481}
5482
5483
5484/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5485/// take a 2 x i32 value to shift plus a shift amount.
5486SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
5487  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5488  EVT VT = Op.getValueType();
5489  unsigned VTBits = VT.getSizeInBits();
5490  DebugLoc dl = Op.getDebugLoc();
5491  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5492  SDValue ShOpLo = Op.getOperand(0);
5493  SDValue ShOpHi = Op.getOperand(1);
5494  SDValue ShAmt  = Op.getOperand(2);
5495  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5496                                     DAG.getConstant(VTBits - 1, MVT::i8))
5497                       : DAG.getConstant(0, VT);
5498
5499  SDValue Tmp2, Tmp3;
5500  if (Op.getOpcode() == ISD::SHL_PARTS) {
5501    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5502    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5503  } else {
5504    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5505    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5506  }
5507
5508  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5509                                DAG.getConstant(VTBits, MVT::i8));
5510  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5511                             AndNode, DAG.getConstant(0, MVT::i8));
5512
5513  SDValue Hi, Lo;
5514  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5515  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5516  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5517
5518  if (Op.getOpcode() == ISD::SHL_PARTS) {
5519    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5520    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5521  } else {
5522    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5523    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5524  }
5525
5526  SDValue Ops[2] = { Lo, Hi };
5527  return DAG.getMergeValues(Ops, 2, dl);
5528}
5529
5530SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
5531                                           SelectionDAG &DAG) const {
5532  EVT SrcVT = Op.getOperand(0).getValueType();
5533
5534  if (SrcVT.isVector()) {
5535    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5536      return Op;
5537    }
5538    return SDValue();
5539  }
5540
5541  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5542         "Unknown SINT_TO_FP to lower!");
5543
5544  // These are really Legal; return the operand so the caller accepts it as
5545  // Legal.
5546  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5547    return Op;
5548  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5549      Subtarget->is64Bit()) {
5550    return Op;
5551  }
5552
5553  DebugLoc dl = Op.getDebugLoc();
5554  unsigned Size = SrcVT.getSizeInBits()/8;
5555  MachineFunction &MF = DAG.getMachineFunction();
5556  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5557  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5558  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5559                               StackSlot,
5560                               PseudoSourceValue::getFixedStack(SSFI), 0,
5561                               false, false, 0);
5562  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5563}
5564
5565SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5566                                     SDValue StackSlot,
5567                                     SelectionDAG &DAG) const {
5568  // Build the FILD
5569  DebugLoc dl = Op.getDebugLoc();
5570  SDVTList Tys;
5571  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5572  if (useSSE)
5573    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5574  else
5575    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5576  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5577  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5578                               Tys, Ops, array_lengthof(Ops));
5579
5580  if (useSSE) {
5581    Chain = Result.getValue(1);
5582    SDValue InFlag = Result.getValue(2);
5583
5584    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5585    // shouldn't be necessary except that RFP cannot be live across
5586    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5587    MachineFunction &MF = DAG.getMachineFunction();
5588    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5589    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5590    Tys = DAG.getVTList(MVT::Other);
5591    SDValue Ops[] = {
5592      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5593    };
5594    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5595    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5596                         PseudoSourceValue::getFixedStack(SSFI), 0,
5597                         false, false, 0);
5598  }
5599
5600  return Result;
5601}
5602
5603// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5604SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
5605                                               SelectionDAG &DAG) const {
5606  // This algorithm is not obvious. Here it is in C code, more or less:
5607  /*
5608    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5609      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5610      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5611
5612      // Copy ints to xmm registers.
5613      __m128i xh = _mm_cvtsi32_si128( hi );
5614      __m128i xl = _mm_cvtsi32_si128( lo );
5615
5616      // Combine into low half of a single xmm register.
5617      __m128i x = _mm_unpacklo_epi32( xh, xl );
5618      __m128d d;
5619      double sd;
5620
5621      // Merge in appropriate exponents to give the integer bits the right
5622      // magnitude.
5623      x = _mm_unpacklo_epi32( x, exp );
5624
5625      // Subtract away the biases to deal with the IEEE-754 double precision
5626      // implicit 1.
5627      d = _mm_sub_pd( (__m128d) x, bias );
5628
5629      // All conversions up to here are exact. The correctly rounded result is
5630      // calculated using the current rounding mode using the following
5631      // horizontal add.
5632      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5633      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5634                                // store doesn't really need to be here (except
5635                                // maybe to zero the other double)
5636      return sd;
5637    }
5638  */
5639
5640  DebugLoc dl = Op.getDebugLoc();
5641  LLVMContext *Context = DAG.getContext();
5642
5643  // Build some magic constants.
5644  std::vector<Constant*> CV0;
5645  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5646  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5647  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5648  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5649  Constant *C0 = ConstantVector::get(CV0);
5650  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5651
5652  std::vector<Constant*> CV1;
5653  CV1.push_back(
5654    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5655  CV1.push_back(
5656    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5657  Constant *C1 = ConstantVector::get(CV1);
5658  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5659
5660  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5661                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5662                                        Op.getOperand(0),
5663                                        DAG.getIntPtrConstant(1)));
5664  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5665                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5666                                        Op.getOperand(0),
5667                                        DAG.getIntPtrConstant(0)));
5668  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5669  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5670                              PseudoSourceValue::getConstantPool(), 0,
5671                              false, false, 16);
5672  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5673  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5674  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5675                              PseudoSourceValue::getConstantPool(), 0,
5676                              false, false, 16);
5677  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5678
5679  // Add the halves; easiest way is to swap them into another reg first.
5680  int ShufMask[2] = { 1, -1 };
5681  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5682                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5683  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5684  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5685                     DAG.getIntPtrConstant(0));
5686}
5687
5688// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5689SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
5690                                               SelectionDAG &DAG) const {
5691  DebugLoc dl = Op.getDebugLoc();
5692  // FP constant to bias correct the final result.
5693  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5694                                   MVT::f64);
5695
5696  // Load the 32-bit value into an XMM register.
5697  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5698                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5699                                         Op.getOperand(0),
5700                                         DAG.getIntPtrConstant(0)));
5701
5702  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5703                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5704                     DAG.getIntPtrConstant(0));
5705
5706  // Or the load with the bias.
5707  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5708                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5709                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5710                                                   MVT::v2f64, Load)),
5711                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5712                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5713                                                   MVT::v2f64, Bias)));
5714  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5715                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5716                   DAG.getIntPtrConstant(0));
5717
5718  // Subtract the bias.
5719  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5720
5721  // Handle final rounding.
5722  EVT DestVT = Op.getValueType();
5723
5724  if (DestVT.bitsLT(MVT::f64)) {
5725    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5726                       DAG.getIntPtrConstant(0));
5727  } else if (DestVT.bitsGT(MVT::f64)) {
5728    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5729  }
5730
5731  // Handle final rounding.
5732  return Sub;
5733}
5734
5735SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
5736                                           SelectionDAG &DAG) const {
5737  SDValue N0 = Op.getOperand(0);
5738  DebugLoc dl = Op.getDebugLoc();
5739
5740  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
5741  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5742  // the optimization here.
5743  if (DAG.SignBitIsZero(N0))
5744    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5745
5746  EVT SrcVT = N0.getValueType();
5747  EVT DstVT = Op.getValueType();
5748  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
5749    return LowerUINT_TO_FP_i64(Op, DAG);
5750  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
5751    return LowerUINT_TO_FP_i32(Op, DAG);
5752
5753  // Make a 64-bit buffer, and use it to build an FILD.
5754  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5755  if (SrcVT == MVT::i32) {
5756    SDValue WordOff = DAG.getConstant(4, getPointerTy());
5757    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5758                                     getPointerTy(), StackSlot, WordOff);
5759    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5760                                  StackSlot, NULL, 0, false, false, 0);
5761    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5762                                  OffsetSlot, NULL, 0, false, false, 0);
5763    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5764    return Fild;
5765  }
5766
5767  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
5768  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5769                                StackSlot, NULL, 0, false, false, 0);
5770  // For i64 source, we need to add the appropriate power of 2 if the input
5771  // was negative.  This is the same as the optimization in
5772  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
5773  // we must be careful to do the computation in x87 extended precision, not
5774  // in SSE. (The generic code can't know it's OK to do this, or how to.)
5775  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
5776  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
5777  SDValue Fild = DAG.getNode(X86ISD::FILD, dl, Tys, Ops, 3);
5778
5779  APInt FF(32, 0x5F800000ULL);
5780
5781  // Check whether the sign bit is set.
5782  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
5783                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
5784                                 ISD::SETLT);
5785
5786  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
5787  SDValue FudgePtr = DAG.getConstantPool(
5788                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
5789                                         getPointerTy());
5790
5791  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
5792  SDValue Zero = DAG.getIntPtrConstant(0);
5793  SDValue Four = DAG.getIntPtrConstant(4);
5794  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
5795                               Zero, Four);
5796  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
5797
5798  // Load the value out, extending it from f32 to f80.
5799  // FIXME: Avoid the extend by constructing the right constant pool?
5800  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
5801                                 FudgePtr, PseudoSourceValue::getConstantPool(),
5802                                 0, MVT::f32, false, false, 4);
5803  // Extend everything to 80 bits to force it to be done on x87.
5804  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
5805  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
5806}
5807
5808std::pair<SDValue,SDValue> X86TargetLowering::
5809FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
5810  DebugLoc dl = Op.getDebugLoc();
5811
5812  EVT DstTy = Op.getValueType();
5813
5814  if (!IsSigned) {
5815    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5816    DstTy = MVT::i64;
5817  }
5818
5819  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5820         DstTy.getSimpleVT() >= MVT::i16 &&
5821         "Unknown FP_TO_SINT to lower!");
5822
5823  // These are really Legal.
5824  if (DstTy == MVT::i32 &&
5825      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5826    return std::make_pair(SDValue(), SDValue());
5827  if (Subtarget->is64Bit() &&
5828      DstTy == MVT::i64 &&
5829      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5830    return std::make_pair(SDValue(), SDValue());
5831
5832  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5833  // stack slot.
5834  MachineFunction &MF = DAG.getMachineFunction();
5835  unsigned MemSize = DstTy.getSizeInBits()/8;
5836  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5837  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5838
5839  unsigned Opc;
5840  switch (DstTy.getSimpleVT().SimpleTy) {
5841  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5842  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5843  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5844  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5845  }
5846
5847  SDValue Chain = DAG.getEntryNode();
5848  SDValue Value = Op.getOperand(0);
5849  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5850    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5851    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5852                         PseudoSourceValue::getFixedStack(SSFI), 0,
5853                         false, false, 0);
5854    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5855    SDValue Ops[] = {
5856      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5857    };
5858    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5859    Chain = Value.getValue(1);
5860    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5861    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5862  }
5863
5864  // Build the FP_TO_INT*_IN_MEM
5865  SDValue Ops[] = { Chain, Value, StackSlot };
5866  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5867
5868  return std::make_pair(FIST, StackSlot);
5869}
5870
5871SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
5872                                           SelectionDAG &DAG) const {
5873  if (Op.getValueType().isVector()) {
5874    if (Op.getValueType() == MVT::v2i32 &&
5875        Op.getOperand(0).getValueType() == MVT::v2f64) {
5876      return Op;
5877    }
5878    return SDValue();
5879  }
5880
5881  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5882  SDValue FIST = Vals.first, StackSlot = Vals.second;
5883  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5884  if (FIST.getNode() == 0) return Op;
5885
5886  // Load the result.
5887  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5888                     FIST, StackSlot, NULL, 0, false, false, 0);
5889}
5890
5891SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
5892                                           SelectionDAG &DAG) const {
5893  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5894  SDValue FIST = Vals.first, StackSlot = Vals.second;
5895  assert(FIST.getNode() && "Unexpected failure");
5896
5897  // Load the result.
5898  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5899                     FIST, StackSlot, NULL, 0, false, false, 0);
5900}
5901
5902SDValue X86TargetLowering::LowerFABS(SDValue Op,
5903                                     SelectionDAG &DAG) const {
5904  LLVMContext *Context = DAG.getContext();
5905  DebugLoc dl = Op.getDebugLoc();
5906  EVT VT = Op.getValueType();
5907  EVT EltVT = VT;
5908  if (VT.isVector())
5909    EltVT = VT.getVectorElementType();
5910  std::vector<Constant*> CV;
5911  if (EltVT == MVT::f64) {
5912    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5913    CV.push_back(C);
5914    CV.push_back(C);
5915  } else {
5916    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5917    CV.push_back(C);
5918    CV.push_back(C);
5919    CV.push_back(C);
5920    CV.push_back(C);
5921  }
5922  Constant *C = ConstantVector::get(CV);
5923  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5924  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5925                             PseudoSourceValue::getConstantPool(), 0,
5926                             false, false, 16);
5927  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5928}
5929
5930SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
5931  LLVMContext *Context = DAG.getContext();
5932  DebugLoc dl = Op.getDebugLoc();
5933  EVT VT = Op.getValueType();
5934  EVT EltVT = VT;
5935  if (VT.isVector())
5936    EltVT = VT.getVectorElementType();
5937  std::vector<Constant*> CV;
5938  if (EltVT == MVT::f64) {
5939    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5940    CV.push_back(C);
5941    CV.push_back(C);
5942  } else {
5943    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5944    CV.push_back(C);
5945    CV.push_back(C);
5946    CV.push_back(C);
5947    CV.push_back(C);
5948  }
5949  Constant *C = ConstantVector::get(CV);
5950  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5951  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5952                             PseudoSourceValue::getConstantPool(), 0,
5953                             false, false, 16);
5954  if (VT.isVector()) {
5955    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5956                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5957                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5958                                Op.getOperand(0)),
5959                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5960  } else {
5961    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5962  }
5963}
5964
5965SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
5966  LLVMContext *Context = DAG.getContext();
5967  SDValue Op0 = Op.getOperand(0);
5968  SDValue Op1 = Op.getOperand(1);
5969  DebugLoc dl = Op.getDebugLoc();
5970  EVT VT = Op.getValueType();
5971  EVT SrcVT = Op1.getValueType();
5972
5973  // If second operand is smaller, extend it first.
5974  if (SrcVT.bitsLT(VT)) {
5975    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5976    SrcVT = VT;
5977  }
5978  // And if it is bigger, shrink it first.
5979  if (SrcVT.bitsGT(VT)) {
5980    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5981    SrcVT = VT;
5982  }
5983
5984  // At this point the operands and the result should have the same
5985  // type, and that won't be f80 since that is not custom lowered.
5986
5987  // First get the sign bit of second operand.
5988  std::vector<Constant*> CV;
5989  if (SrcVT == MVT::f64) {
5990    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5991    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5992  } else {
5993    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5994    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5995    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5996    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5997  }
5998  Constant *C = ConstantVector::get(CV);
5999  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6000  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6001                              PseudoSourceValue::getConstantPool(), 0,
6002                              false, false, 16);
6003  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6004
6005  // Shift sign bit right or left if the two operands have different types.
6006  if (SrcVT.bitsGT(VT)) {
6007    // Op0 is MVT::f32, Op1 is MVT::f64.
6008    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6009    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6010                          DAG.getConstant(32, MVT::i32));
6011    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6012    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6013                          DAG.getIntPtrConstant(0));
6014  }
6015
6016  // Clear first operand sign bit.
6017  CV.clear();
6018  if (VT == MVT::f64) {
6019    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6020    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6021  } else {
6022    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6023    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6024    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6025    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6026  }
6027  C = ConstantVector::get(CV);
6028  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6029  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6030                              PseudoSourceValue::getConstantPool(), 0,
6031                              false, false, 16);
6032  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6033
6034  // Or the value with the sign bit.
6035  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6036}
6037
6038/// Emit nodes that will be selected as "test Op0,Op0", or something
6039/// equivalent.
6040SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6041                                    SelectionDAG &DAG) const {
6042  DebugLoc dl = Op.getDebugLoc();
6043
6044  // CF and OF aren't always set the way we want. Determine which
6045  // of these we need.
6046  bool NeedCF = false;
6047  bool NeedOF = false;
6048  switch (X86CC) {
6049  default: break;
6050  case X86::COND_A: case X86::COND_AE:
6051  case X86::COND_B: case X86::COND_BE:
6052    NeedCF = true;
6053    break;
6054  case X86::COND_G: case X86::COND_GE:
6055  case X86::COND_L: case X86::COND_LE:
6056  case X86::COND_O: case X86::COND_NO:
6057    NeedOF = true;
6058    break;
6059  }
6060
6061  // See if we can use the EFLAGS value from the operand instead of
6062  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6063  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6064  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6065    // Emit a CMP with 0, which is the TEST pattern.
6066    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6067                       DAG.getConstant(0, Op.getValueType()));
6068
6069  unsigned Opcode = 0;
6070  unsigned NumOperands = 0;
6071  switch (Op.getNode()->getOpcode()) {
6072  case ISD::ADD:
6073    // Due to an isel shortcoming, be conservative if this add is likely to be
6074    // selected as part of a load-modify-store instruction. When the root node
6075    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6076    // uses of other nodes in the match, such as the ADD in this case. This
6077    // leads to the ADD being left around and reselected, with the result being
6078    // two adds in the output.  Alas, even if none our users are stores, that
6079    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6080    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6081    // climbing the DAG back to the root, and it doesn't seem to be worth the
6082    // effort.
6083    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6084           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6085      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6086        goto default_case;
6087
6088    if (ConstantSDNode *C =
6089        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6090      // An add of one will be selected as an INC.
6091      if (C->getAPIntValue() == 1) {
6092        Opcode = X86ISD::INC;
6093        NumOperands = 1;
6094        break;
6095      }
6096
6097      // An add of negative one (subtract of one) will be selected as a DEC.
6098      if (C->getAPIntValue().isAllOnesValue()) {
6099        Opcode = X86ISD::DEC;
6100        NumOperands = 1;
6101        break;
6102      }
6103    }
6104
6105    // Otherwise use a regular EFLAGS-setting add.
6106    Opcode = X86ISD::ADD;
6107    NumOperands = 2;
6108    break;
6109  case ISD::AND: {
6110    // If the primary and result isn't used, don't bother using X86ISD::AND,
6111    // because a TEST instruction will be better.
6112    bool NonFlagUse = false;
6113    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6114           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6115      SDNode *User = *UI;
6116      unsigned UOpNo = UI.getOperandNo();
6117      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6118        // Look pass truncate.
6119        UOpNo = User->use_begin().getOperandNo();
6120        User = *User->use_begin();
6121      }
6122
6123      if (User->getOpcode() != ISD::BRCOND &&
6124          User->getOpcode() != ISD::SETCC &&
6125          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6126        NonFlagUse = true;
6127        break;
6128      }
6129    }
6130
6131    if (!NonFlagUse)
6132      break;
6133  }
6134    // FALL THROUGH
6135  case ISD::SUB:
6136  case ISD::OR:
6137  case ISD::XOR:
6138    // Due to the ISEL shortcoming noted above, be conservative if this op is
6139    // likely to be selected as part of a load-modify-store instruction.
6140    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6141           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6142      if (UI->getOpcode() == ISD::STORE)
6143        goto default_case;
6144
6145    // Otherwise use a regular EFLAGS-setting instruction.
6146    switch (Op.getNode()->getOpcode()) {
6147    default: llvm_unreachable("unexpected operator!");
6148    case ISD::SUB: Opcode = X86ISD::SUB; break;
6149    case ISD::OR:  Opcode = X86ISD::OR;  break;
6150    case ISD::XOR: Opcode = X86ISD::XOR; break;
6151    case ISD::AND: Opcode = X86ISD::AND; break;
6152    }
6153
6154    NumOperands = 2;
6155    break;
6156  case X86ISD::ADD:
6157  case X86ISD::SUB:
6158  case X86ISD::INC:
6159  case X86ISD::DEC:
6160  case X86ISD::OR:
6161  case X86ISD::XOR:
6162  case X86ISD::AND:
6163    return SDValue(Op.getNode(), 1);
6164  default:
6165  default_case:
6166    break;
6167  }
6168
6169  if (Opcode == 0)
6170    // Emit a CMP with 0, which is the TEST pattern.
6171    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6172                       DAG.getConstant(0, Op.getValueType()));
6173
6174  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6175  SmallVector<SDValue, 4> Ops;
6176  for (unsigned i = 0; i != NumOperands; ++i)
6177    Ops.push_back(Op.getOperand(i));
6178
6179  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6180  DAG.ReplaceAllUsesWith(Op, New);
6181  return SDValue(New.getNode(), 1);
6182}
6183
6184/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6185/// equivalent.
6186SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6187                                   SelectionDAG &DAG) const {
6188  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6189    if (C->getAPIntValue() == 0)
6190      return EmitTest(Op0, X86CC, DAG);
6191
6192  DebugLoc dl = Op0.getDebugLoc();
6193  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6194}
6195
6196/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6197/// if it's possible.
6198SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6199                                     DebugLoc dl, SelectionDAG &DAG) const {
6200  SDValue Op0 = And.getOperand(0);
6201  SDValue Op1 = And.getOperand(1);
6202  if (Op0.getOpcode() == ISD::TRUNCATE)
6203    Op0 = Op0.getOperand(0);
6204  if (Op1.getOpcode() == ISD::TRUNCATE)
6205    Op1 = Op1.getOperand(0);
6206
6207  SDValue LHS, RHS;
6208  if (Op1.getOpcode() == ISD::SHL)
6209    std::swap(Op0, Op1);
6210  if (Op0.getOpcode() == ISD::SHL) {
6211    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6212      if (And00C->getZExtValue() == 1) {
6213        // If we looked past a truncate, check that it's only truncating away
6214        // known zeros.
6215        unsigned BitWidth = Op0.getValueSizeInBits();
6216        unsigned AndBitWidth = And.getValueSizeInBits();
6217        if (BitWidth > AndBitWidth) {
6218          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6219          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6220          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6221            return SDValue();
6222        }
6223        LHS = Op1;
6224        RHS = Op0.getOperand(1);
6225      }
6226  } else if (Op1.getOpcode() == ISD::Constant) {
6227    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6228    SDValue AndLHS = Op0;
6229    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6230      LHS = AndLHS.getOperand(0);
6231      RHS = AndLHS.getOperand(1);
6232    }
6233  }
6234
6235  if (LHS.getNode()) {
6236    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6237    // instruction.  Since the shift amount is in-range-or-undefined, we know
6238    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6239    // the encoding for the i16 version is larger than the i32 version.
6240    // Also promote i16 to i32 for performance / code size reason.
6241    if (LHS.getValueType() == MVT::i8 ||
6242        LHS.getValueType() == MVT::i16)
6243      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6244
6245    // If the operand types disagree, extend the shift amount to match.  Since
6246    // BT ignores high bits (like shifts) we can use anyextend.
6247    if (LHS.getValueType() != RHS.getValueType())
6248      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6249
6250    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6251    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6252    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6253                       DAG.getConstant(Cond, MVT::i8), BT);
6254  }
6255
6256  return SDValue();
6257}
6258
6259SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6260  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6261  SDValue Op0 = Op.getOperand(0);
6262  SDValue Op1 = Op.getOperand(1);
6263  DebugLoc dl = Op.getDebugLoc();
6264  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6265
6266  // Optimize to BT if possible.
6267  // Lower (X & (1 << N)) == 0 to BT(X, N).
6268  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6269  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6270  if (Op0.getOpcode() == ISD::AND &&
6271      Op0.hasOneUse() &&
6272      Op1.getOpcode() == ISD::Constant &&
6273      cast<ConstantSDNode>(Op1)->isNullValue() &&
6274      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6275    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6276    if (NewSetCC.getNode())
6277      return NewSetCC;
6278  }
6279
6280  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6281  if (Op0.getOpcode() == X86ISD::SETCC &&
6282      Op1.getOpcode() == ISD::Constant &&
6283      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6284       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6285      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6286    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6287    bool Invert = (CC == ISD::SETNE) ^
6288      cast<ConstantSDNode>(Op1)->isNullValue();
6289    if (Invert)
6290      CCode = X86::GetOppositeBranchCondition(CCode);
6291    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6292                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6293  }
6294
6295  bool isFP = Op1.getValueType().isFloatingPoint();
6296  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6297  if (X86CC == X86::COND_INVALID)
6298    return SDValue();
6299
6300  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6301
6302  // Use sbb x, x to materialize carry bit into a GPR.
6303  if (X86CC == X86::COND_B)
6304    return DAG.getNode(ISD::AND, dl, MVT::i8,
6305                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6306                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6307                       DAG.getConstant(1, MVT::i8));
6308
6309  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6310                     DAG.getConstant(X86CC, MVT::i8), Cond);
6311}
6312
6313SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
6314  SDValue Cond;
6315  SDValue Op0 = Op.getOperand(0);
6316  SDValue Op1 = Op.getOperand(1);
6317  SDValue CC = Op.getOperand(2);
6318  EVT VT = Op.getValueType();
6319  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6320  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6321  DebugLoc dl = Op.getDebugLoc();
6322
6323  if (isFP) {
6324    unsigned SSECC = 8;
6325    EVT VT0 = Op0.getValueType();
6326    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6327    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6328    bool Swap = false;
6329
6330    switch (SetCCOpcode) {
6331    default: break;
6332    case ISD::SETOEQ:
6333    case ISD::SETEQ:  SSECC = 0; break;
6334    case ISD::SETOGT:
6335    case ISD::SETGT: Swap = true; // Fallthrough
6336    case ISD::SETLT:
6337    case ISD::SETOLT: SSECC = 1; break;
6338    case ISD::SETOGE:
6339    case ISD::SETGE: Swap = true; // Fallthrough
6340    case ISD::SETLE:
6341    case ISD::SETOLE: SSECC = 2; break;
6342    case ISD::SETUO:  SSECC = 3; break;
6343    case ISD::SETUNE:
6344    case ISD::SETNE:  SSECC = 4; break;
6345    case ISD::SETULE: Swap = true;
6346    case ISD::SETUGE: SSECC = 5; break;
6347    case ISD::SETULT: Swap = true;
6348    case ISD::SETUGT: SSECC = 6; break;
6349    case ISD::SETO:   SSECC = 7; break;
6350    }
6351    if (Swap)
6352      std::swap(Op0, Op1);
6353
6354    // In the two special cases we can't handle, emit two comparisons.
6355    if (SSECC == 8) {
6356      if (SetCCOpcode == ISD::SETUEQ) {
6357        SDValue UNORD, EQ;
6358        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6359        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6360        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6361      }
6362      else if (SetCCOpcode == ISD::SETONE) {
6363        SDValue ORD, NEQ;
6364        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6365        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6366        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6367      }
6368      llvm_unreachable("Illegal FP comparison");
6369    }
6370    // Handle all other FP comparisons here.
6371    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6372  }
6373
6374  // We are handling one of the integer comparisons here.  Since SSE only has
6375  // GT and EQ comparisons for integer, swapping operands and multiple
6376  // operations may be required for some comparisons.
6377  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6378  bool Swap = false, Invert = false, FlipSigns = false;
6379
6380  switch (VT.getSimpleVT().SimpleTy) {
6381  default: break;
6382  case MVT::v8i8:
6383  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6384  case MVT::v4i16:
6385  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6386  case MVT::v2i32:
6387  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6388  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6389  }
6390
6391  switch (SetCCOpcode) {
6392  default: break;
6393  case ISD::SETNE:  Invert = true;
6394  case ISD::SETEQ:  Opc = EQOpc; break;
6395  case ISD::SETLT:  Swap = true;
6396  case ISD::SETGT:  Opc = GTOpc; break;
6397  case ISD::SETGE:  Swap = true;
6398  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6399  case ISD::SETULT: Swap = true;
6400  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6401  case ISD::SETUGE: Swap = true;
6402  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6403  }
6404  if (Swap)
6405    std::swap(Op0, Op1);
6406
6407  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6408  // bits of the inputs before performing those operations.
6409  if (FlipSigns) {
6410    EVT EltVT = VT.getVectorElementType();
6411    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6412                                      EltVT);
6413    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6414    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6415                                    SignBits.size());
6416    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6417    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6418  }
6419
6420  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6421
6422  // If the logical-not of the result is required, perform that now.
6423  if (Invert)
6424    Result = DAG.getNOT(dl, Result, VT);
6425
6426  return Result;
6427}
6428
6429// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6430static bool isX86LogicalCmp(SDValue Op) {
6431  unsigned Opc = Op.getNode()->getOpcode();
6432  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6433    return true;
6434  if (Op.getResNo() == 1 &&
6435      (Opc == X86ISD::ADD ||
6436       Opc == X86ISD::SUB ||
6437       Opc == X86ISD::SMUL ||
6438       Opc == X86ISD::UMUL ||
6439       Opc == X86ISD::INC ||
6440       Opc == X86ISD::DEC ||
6441       Opc == X86ISD::OR ||
6442       Opc == X86ISD::XOR ||
6443       Opc == X86ISD::AND))
6444    return true;
6445
6446  return false;
6447}
6448
6449SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
6450  bool addTest = true;
6451  SDValue Cond  = Op.getOperand(0);
6452  DebugLoc dl = Op.getDebugLoc();
6453  SDValue CC;
6454
6455  if (Cond.getOpcode() == ISD::SETCC) {
6456    SDValue NewCond = LowerSETCC(Cond, DAG);
6457    if (NewCond.getNode())
6458      Cond = NewCond;
6459  }
6460
6461  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6462  SDValue Op1 = Op.getOperand(1);
6463  SDValue Op2 = Op.getOperand(2);
6464  if (Cond.getOpcode() == X86ISD::SETCC &&
6465      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6466    SDValue Cmp = Cond.getOperand(1);
6467    if (Cmp.getOpcode() == X86ISD::CMP) {
6468      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6469      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6470      ConstantSDNode *RHSC =
6471        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6472      if (N1C && N1C->isAllOnesValue() &&
6473          N2C && N2C->isNullValue() &&
6474          RHSC && RHSC->isNullValue()) {
6475        SDValue CmpOp0 = Cmp.getOperand(0);
6476        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6477                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6478        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6479                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6480      }
6481    }
6482  }
6483
6484  // Look pass (and (setcc_carry (cmp ...)), 1).
6485  if (Cond.getOpcode() == ISD::AND &&
6486      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6487    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6488    if (C && C->getAPIntValue() == 1)
6489      Cond = Cond.getOperand(0);
6490  }
6491
6492  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6493  // setting operand in place of the X86ISD::SETCC.
6494  if (Cond.getOpcode() == X86ISD::SETCC ||
6495      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6496    CC = Cond.getOperand(0);
6497
6498    SDValue Cmp = Cond.getOperand(1);
6499    unsigned Opc = Cmp.getOpcode();
6500    EVT VT = Op.getValueType();
6501
6502    bool IllegalFPCMov = false;
6503    if (VT.isFloatingPoint() && !VT.isVector() &&
6504        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6505      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6506
6507    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6508        Opc == X86ISD::BT) { // FIXME
6509      Cond = Cmp;
6510      addTest = false;
6511    }
6512  }
6513
6514  if (addTest) {
6515    // Look pass the truncate.
6516    if (Cond.getOpcode() == ISD::TRUNCATE)
6517      Cond = Cond.getOperand(0);
6518
6519    // We know the result of AND is compared against zero. Try to match
6520    // it to BT.
6521    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6522      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6523      if (NewSetCC.getNode()) {
6524        CC = NewSetCC.getOperand(0);
6525        Cond = NewSetCC.getOperand(1);
6526        addTest = false;
6527      }
6528    }
6529  }
6530
6531  if (addTest) {
6532    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6533    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6534  }
6535
6536  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6537  // condition is true.
6538  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6539  SDValue Ops[] = { Op2, Op1, CC, Cond };
6540  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6541}
6542
6543// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6544// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6545// from the AND / OR.
6546static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6547  Opc = Op.getOpcode();
6548  if (Opc != ISD::OR && Opc != ISD::AND)
6549    return false;
6550  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6551          Op.getOperand(0).hasOneUse() &&
6552          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6553          Op.getOperand(1).hasOneUse());
6554}
6555
6556// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6557// 1 and that the SETCC node has a single use.
6558static bool isXor1OfSetCC(SDValue Op) {
6559  if (Op.getOpcode() != ISD::XOR)
6560    return false;
6561  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6562  if (N1C && N1C->getAPIntValue() == 1) {
6563    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6564      Op.getOperand(0).hasOneUse();
6565  }
6566  return false;
6567}
6568
6569SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
6570  bool addTest = true;
6571  SDValue Chain = Op.getOperand(0);
6572  SDValue Cond  = Op.getOperand(1);
6573  SDValue Dest  = Op.getOperand(2);
6574  DebugLoc dl = Op.getDebugLoc();
6575  SDValue CC;
6576
6577  if (Cond.getOpcode() == ISD::SETCC) {
6578    SDValue NewCond = LowerSETCC(Cond, DAG);
6579    if (NewCond.getNode())
6580      Cond = NewCond;
6581  }
6582#if 0
6583  // FIXME: LowerXALUO doesn't handle these!!
6584  else if (Cond.getOpcode() == X86ISD::ADD  ||
6585           Cond.getOpcode() == X86ISD::SUB  ||
6586           Cond.getOpcode() == X86ISD::SMUL ||
6587           Cond.getOpcode() == X86ISD::UMUL)
6588    Cond = LowerXALUO(Cond, DAG);
6589#endif
6590
6591  // Look pass (and (setcc_carry (cmp ...)), 1).
6592  if (Cond.getOpcode() == ISD::AND &&
6593      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6594    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6595    if (C && C->getAPIntValue() == 1)
6596      Cond = Cond.getOperand(0);
6597  }
6598
6599  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6600  // setting operand in place of the X86ISD::SETCC.
6601  if (Cond.getOpcode() == X86ISD::SETCC ||
6602      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6603    CC = Cond.getOperand(0);
6604
6605    SDValue Cmp = Cond.getOperand(1);
6606    unsigned Opc = Cmp.getOpcode();
6607    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6608    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6609      Cond = Cmp;
6610      addTest = false;
6611    } else {
6612      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6613      default: break;
6614      case X86::COND_O:
6615      case X86::COND_B:
6616        // These can only come from an arithmetic instruction with overflow,
6617        // e.g. SADDO, UADDO.
6618        Cond = Cond.getNode()->getOperand(1);
6619        addTest = false;
6620        break;
6621      }
6622    }
6623  } else {
6624    unsigned CondOpc;
6625    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6626      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6627      if (CondOpc == ISD::OR) {
6628        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6629        // two branches instead of an explicit OR instruction with a
6630        // separate test.
6631        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6632            isX86LogicalCmp(Cmp)) {
6633          CC = Cond.getOperand(0).getOperand(0);
6634          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6635                              Chain, Dest, CC, Cmp);
6636          CC = Cond.getOperand(1).getOperand(0);
6637          Cond = Cmp;
6638          addTest = false;
6639        }
6640      } else { // ISD::AND
6641        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6642        // two branches instead of an explicit AND instruction with a
6643        // separate test. However, we only do this if this block doesn't
6644        // have a fall-through edge, because this requires an explicit
6645        // jmp when the condition is false.
6646        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6647            isX86LogicalCmp(Cmp) &&
6648            Op.getNode()->hasOneUse()) {
6649          X86::CondCode CCode =
6650            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6651          CCode = X86::GetOppositeBranchCondition(CCode);
6652          CC = DAG.getConstant(CCode, MVT::i8);
6653          SDNode *User = *Op.getNode()->use_begin();
6654          // Look for an unconditional branch following this conditional branch.
6655          // We need this because we need to reverse the successors in order
6656          // to implement FCMP_OEQ.
6657          if (User->getOpcode() == ISD::BR) {
6658            SDValue FalseBB = User->getOperand(1);
6659            SDNode *NewBR =
6660              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
6661            assert(NewBR == User);
6662            (void)NewBR;
6663            Dest = FalseBB;
6664
6665            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6666                                Chain, Dest, CC, Cmp);
6667            X86::CondCode CCode =
6668              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6669            CCode = X86::GetOppositeBranchCondition(CCode);
6670            CC = DAG.getConstant(CCode, MVT::i8);
6671            Cond = Cmp;
6672            addTest = false;
6673          }
6674        }
6675      }
6676    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6677      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6678      // It should be transformed during dag combiner except when the condition
6679      // is set by a arithmetics with overflow node.
6680      X86::CondCode CCode =
6681        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6682      CCode = X86::GetOppositeBranchCondition(CCode);
6683      CC = DAG.getConstant(CCode, MVT::i8);
6684      Cond = Cond.getOperand(0).getOperand(1);
6685      addTest = false;
6686    }
6687  }
6688
6689  if (addTest) {
6690    // Look pass the truncate.
6691    if (Cond.getOpcode() == ISD::TRUNCATE)
6692      Cond = Cond.getOperand(0);
6693
6694    // We know the result of AND is compared against zero. Try to match
6695    // it to BT.
6696    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6697      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6698      if (NewSetCC.getNode()) {
6699        CC = NewSetCC.getOperand(0);
6700        Cond = NewSetCC.getOperand(1);
6701        addTest = false;
6702      }
6703    }
6704  }
6705
6706  if (addTest) {
6707    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6708    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6709  }
6710  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6711                     Chain, Dest, CC, Cond);
6712}
6713
6714
6715// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6716// Calls to _alloca is needed to probe the stack when allocating more than 4k
6717// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6718// that the guard pages used by the OS virtual memory manager are allocated in
6719// correct sequence.
6720SDValue
6721X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6722                                           SelectionDAG &DAG) const {
6723  assert(Subtarget->isTargetCygMing() &&
6724         "This should be used only on Cygwin/Mingw targets");
6725  DebugLoc dl = Op.getDebugLoc();
6726
6727  // Get the inputs.
6728  SDValue Chain = Op.getOperand(0);
6729  SDValue Size  = Op.getOperand(1);
6730  // FIXME: Ensure alignment here
6731
6732  SDValue Flag;
6733
6734  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6735
6736  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6737  Flag = Chain.getValue(1);
6738
6739  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6740
6741  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6742  Flag = Chain.getValue(1);
6743
6744  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6745
6746  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6747  return DAG.getMergeValues(Ops1, 2, dl);
6748}
6749
6750SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
6751  MachineFunction &MF = DAG.getMachineFunction();
6752  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
6753
6754  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6755  DebugLoc dl = Op.getDebugLoc();
6756
6757  if (!Subtarget->is64Bit()) {
6758    // vastart just stores the address of the VarArgsFrameIndex slot into the
6759    // memory location argument.
6760    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6761                                   getPointerTy());
6762    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6763                        false, false, 0);
6764  }
6765
6766  // __va_list_tag:
6767  //   gp_offset         (0 - 6 * 8)
6768  //   fp_offset         (48 - 48 + 8 * 16)
6769  //   overflow_arg_area (point to parameters coming in memory).
6770  //   reg_save_area
6771  SmallVector<SDValue, 8> MemOps;
6772  SDValue FIN = Op.getOperand(1);
6773  // Store gp_offset
6774  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6775                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
6776                                               MVT::i32),
6777                               FIN, SV, 0, false, false, 0);
6778  MemOps.push_back(Store);
6779
6780  // Store fp_offset
6781  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6782                    FIN, DAG.getIntPtrConstant(4));
6783  Store = DAG.getStore(Op.getOperand(0), dl,
6784                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
6785                                       MVT::i32),
6786                       FIN, SV, 4, false, false, 0);
6787  MemOps.push_back(Store);
6788
6789  // Store ptr to overflow_arg_area
6790  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6791                    FIN, DAG.getIntPtrConstant(4));
6792  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6793                                    getPointerTy());
6794  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 8,
6795                       false, false, 0);
6796  MemOps.push_back(Store);
6797
6798  // Store ptr to reg_save_area.
6799  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6800                    FIN, DAG.getIntPtrConstant(8));
6801  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
6802                                    getPointerTy());
6803  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 16,
6804                       false, false, 0);
6805  MemOps.push_back(Store);
6806  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6807                     &MemOps[0], MemOps.size());
6808}
6809
6810SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
6811  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6812  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6813
6814  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
6815  return SDValue();
6816}
6817
6818SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
6819  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6820  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6821  SDValue Chain = Op.getOperand(0);
6822  SDValue DstPtr = Op.getOperand(1);
6823  SDValue SrcPtr = Op.getOperand(2);
6824  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6825  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6826  DebugLoc dl = Op.getDebugLoc();
6827
6828  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6829                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
6830                       false, DstSV, 0, SrcSV, 0);
6831}
6832
6833SDValue
6834X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
6835  DebugLoc dl = Op.getDebugLoc();
6836  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6837  switch (IntNo) {
6838  default: return SDValue();    // Don't custom lower most intrinsics.
6839  // Comparison intrinsics.
6840  case Intrinsic::x86_sse_comieq_ss:
6841  case Intrinsic::x86_sse_comilt_ss:
6842  case Intrinsic::x86_sse_comile_ss:
6843  case Intrinsic::x86_sse_comigt_ss:
6844  case Intrinsic::x86_sse_comige_ss:
6845  case Intrinsic::x86_sse_comineq_ss:
6846  case Intrinsic::x86_sse_ucomieq_ss:
6847  case Intrinsic::x86_sse_ucomilt_ss:
6848  case Intrinsic::x86_sse_ucomile_ss:
6849  case Intrinsic::x86_sse_ucomigt_ss:
6850  case Intrinsic::x86_sse_ucomige_ss:
6851  case Intrinsic::x86_sse_ucomineq_ss:
6852  case Intrinsic::x86_sse2_comieq_sd:
6853  case Intrinsic::x86_sse2_comilt_sd:
6854  case Intrinsic::x86_sse2_comile_sd:
6855  case Intrinsic::x86_sse2_comigt_sd:
6856  case Intrinsic::x86_sse2_comige_sd:
6857  case Intrinsic::x86_sse2_comineq_sd:
6858  case Intrinsic::x86_sse2_ucomieq_sd:
6859  case Intrinsic::x86_sse2_ucomilt_sd:
6860  case Intrinsic::x86_sse2_ucomile_sd:
6861  case Intrinsic::x86_sse2_ucomigt_sd:
6862  case Intrinsic::x86_sse2_ucomige_sd:
6863  case Intrinsic::x86_sse2_ucomineq_sd: {
6864    unsigned Opc = 0;
6865    ISD::CondCode CC = ISD::SETCC_INVALID;
6866    switch (IntNo) {
6867    default: break;
6868    case Intrinsic::x86_sse_comieq_ss:
6869    case Intrinsic::x86_sse2_comieq_sd:
6870      Opc = X86ISD::COMI;
6871      CC = ISD::SETEQ;
6872      break;
6873    case Intrinsic::x86_sse_comilt_ss:
6874    case Intrinsic::x86_sse2_comilt_sd:
6875      Opc = X86ISD::COMI;
6876      CC = ISD::SETLT;
6877      break;
6878    case Intrinsic::x86_sse_comile_ss:
6879    case Intrinsic::x86_sse2_comile_sd:
6880      Opc = X86ISD::COMI;
6881      CC = ISD::SETLE;
6882      break;
6883    case Intrinsic::x86_sse_comigt_ss:
6884    case Intrinsic::x86_sse2_comigt_sd:
6885      Opc = X86ISD::COMI;
6886      CC = ISD::SETGT;
6887      break;
6888    case Intrinsic::x86_sse_comige_ss:
6889    case Intrinsic::x86_sse2_comige_sd:
6890      Opc = X86ISD::COMI;
6891      CC = ISD::SETGE;
6892      break;
6893    case Intrinsic::x86_sse_comineq_ss:
6894    case Intrinsic::x86_sse2_comineq_sd:
6895      Opc = X86ISD::COMI;
6896      CC = ISD::SETNE;
6897      break;
6898    case Intrinsic::x86_sse_ucomieq_ss:
6899    case Intrinsic::x86_sse2_ucomieq_sd:
6900      Opc = X86ISD::UCOMI;
6901      CC = ISD::SETEQ;
6902      break;
6903    case Intrinsic::x86_sse_ucomilt_ss:
6904    case Intrinsic::x86_sse2_ucomilt_sd:
6905      Opc = X86ISD::UCOMI;
6906      CC = ISD::SETLT;
6907      break;
6908    case Intrinsic::x86_sse_ucomile_ss:
6909    case Intrinsic::x86_sse2_ucomile_sd:
6910      Opc = X86ISD::UCOMI;
6911      CC = ISD::SETLE;
6912      break;
6913    case Intrinsic::x86_sse_ucomigt_ss:
6914    case Intrinsic::x86_sse2_ucomigt_sd:
6915      Opc = X86ISD::UCOMI;
6916      CC = ISD::SETGT;
6917      break;
6918    case Intrinsic::x86_sse_ucomige_ss:
6919    case Intrinsic::x86_sse2_ucomige_sd:
6920      Opc = X86ISD::UCOMI;
6921      CC = ISD::SETGE;
6922      break;
6923    case Intrinsic::x86_sse_ucomineq_ss:
6924    case Intrinsic::x86_sse2_ucomineq_sd:
6925      Opc = X86ISD::UCOMI;
6926      CC = ISD::SETNE;
6927      break;
6928    }
6929
6930    SDValue LHS = Op.getOperand(1);
6931    SDValue RHS = Op.getOperand(2);
6932    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6933    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6934    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6935    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6936                                DAG.getConstant(X86CC, MVT::i8), Cond);
6937    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6938  }
6939  // ptest intrinsics. The intrinsic these come from are designed to return
6940  // an integer value, not just an instruction so lower it to the ptest
6941  // pattern and a setcc for the result.
6942  case Intrinsic::x86_sse41_ptestz:
6943  case Intrinsic::x86_sse41_ptestc:
6944  case Intrinsic::x86_sse41_ptestnzc:{
6945    unsigned X86CC = 0;
6946    switch (IntNo) {
6947    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6948    case Intrinsic::x86_sse41_ptestz:
6949      // ZF = 1
6950      X86CC = X86::COND_E;
6951      break;
6952    case Intrinsic::x86_sse41_ptestc:
6953      // CF = 1
6954      X86CC = X86::COND_B;
6955      break;
6956    case Intrinsic::x86_sse41_ptestnzc:
6957      // ZF and CF = 0
6958      X86CC = X86::COND_A;
6959      break;
6960    }
6961
6962    SDValue LHS = Op.getOperand(1);
6963    SDValue RHS = Op.getOperand(2);
6964    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6965    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6966    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6967    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6968  }
6969
6970  // Fix vector shift instructions where the last operand is a non-immediate
6971  // i32 value.
6972  case Intrinsic::x86_sse2_pslli_w:
6973  case Intrinsic::x86_sse2_pslli_d:
6974  case Intrinsic::x86_sse2_pslli_q:
6975  case Intrinsic::x86_sse2_psrli_w:
6976  case Intrinsic::x86_sse2_psrli_d:
6977  case Intrinsic::x86_sse2_psrli_q:
6978  case Intrinsic::x86_sse2_psrai_w:
6979  case Intrinsic::x86_sse2_psrai_d:
6980  case Intrinsic::x86_mmx_pslli_w:
6981  case Intrinsic::x86_mmx_pslli_d:
6982  case Intrinsic::x86_mmx_pslli_q:
6983  case Intrinsic::x86_mmx_psrli_w:
6984  case Intrinsic::x86_mmx_psrli_d:
6985  case Intrinsic::x86_mmx_psrli_q:
6986  case Intrinsic::x86_mmx_psrai_w:
6987  case Intrinsic::x86_mmx_psrai_d: {
6988    SDValue ShAmt = Op.getOperand(2);
6989    if (isa<ConstantSDNode>(ShAmt))
6990      return SDValue();
6991
6992    unsigned NewIntNo = 0;
6993    EVT ShAmtVT = MVT::v4i32;
6994    switch (IntNo) {
6995    case Intrinsic::x86_sse2_pslli_w:
6996      NewIntNo = Intrinsic::x86_sse2_psll_w;
6997      break;
6998    case Intrinsic::x86_sse2_pslli_d:
6999      NewIntNo = Intrinsic::x86_sse2_psll_d;
7000      break;
7001    case Intrinsic::x86_sse2_pslli_q:
7002      NewIntNo = Intrinsic::x86_sse2_psll_q;
7003      break;
7004    case Intrinsic::x86_sse2_psrli_w:
7005      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7006      break;
7007    case Intrinsic::x86_sse2_psrli_d:
7008      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7009      break;
7010    case Intrinsic::x86_sse2_psrli_q:
7011      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7012      break;
7013    case Intrinsic::x86_sse2_psrai_w:
7014      NewIntNo = Intrinsic::x86_sse2_psra_w;
7015      break;
7016    case Intrinsic::x86_sse2_psrai_d:
7017      NewIntNo = Intrinsic::x86_sse2_psra_d;
7018      break;
7019    default: {
7020      ShAmtVT = MVT::v2i32;
7021      switch (IntNo) {
7022      case Intrinsic::x86_mmx_pslli_w:
7023        NewIntNo = Intrinsic::x86_mmx_psll_w;
7024        break;
7025      case Intrinsic::x86_mmx_pslli_d:
7026        NewIntNo = Intrinsic::x86_mmx_psll_d;
7027        break;
7028      case Intrinsic::x86_mmx_pslli_q:
7029        NewIntNo = Intrinsic::x86_mmx_psll_q;
7030        break;
7031      case Intrinsic::x86_mmx_psrli_w:
7032        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7033        break;
7034      case Intrinsic::x86_mmx_psrli_d:
7035        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7036        break;
7037      case Intrinsic::x86_mmx_psrli_q:
7038        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7039        break;
7040      case Intrinsic::x86_mmx_psrai_w:
7041        NewIntNo = Intrinsic::x86_mmx_psra_w;
7042        break;
7043      case Intrinsic::x86_mmx_psrai_d:
7044        NewIntNo = Intrinsic::x86_mmx_psra_d;
7045        break;
7046      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7047      }
7048      break;
7049    }
7050    }
7051
7052    // The vector shift intrinsics with scalars uses 32b shift amounts but
7053    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7054    // to be zero.
7055    SDValue ShOps[4];
7056    ShOps[0] = ShAmt;
7057    ShOps[1] = DAG.getConstant(0, MVT::i32);
7058    if (ShAmtVT == MVT::v4i32) {
7059      ShOps[2] = DAG.getUNDEF(MVT::i32);
7060      ShOps[3] = DAG.getUNDEF(MVT::i32);
7061      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7062    } else {
7063      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7064    }
7065
7066    EVT VT = Op.getValueType();
7067    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7068    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7069                       DAG.getConstant(NewIntNo, MVT::i32),
7070                       Op.getOperand(1), ShAmt);
7071  }
7072  }
7073}
7074
7075SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7076                                           SelectionDAG &DAG) const {
7077  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7078  MFI->setReturnAddressIsTaken(true);
7079
7080  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7081  DebugLoc dl = Op.getDebugLoc();
7082
7083  if (Depth > 0) {
7084    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7085    SDValue Offset =
7086      DAG.getConstant(TD->getPointerSize(),
7087                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7088    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7089                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7090                                   FrameAddr, Offset),
7091                       NULL, 0, false, false, 0);
7092  }
7093
7094  // Just load the return address.
7095  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7096  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7097                     RetAddrFI, NULL, 0, false, false, 0);
7098}
7099
7100SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7101  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7102  MFI->setFrameAddressIsTaken(true);
7103
7104  EVT VT = Op.getValueType();
7105  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7106  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7107  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7108  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7109  while (Depth--)
7110    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7111                            false, false, 0);
7112  return FrameAddr;
7113}
7114
7115SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7116                                                     SelectionDAG &DAG) const {
7117  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7118}
7119
7120SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7121  MachineFunction &MF = DAG.getMachineFunction();
7122  SDValue Chain     = Op.getOperand(0);
7123  SDValue Offset    = Op.getOperand(1);
7124  SDValue Handler   = Op.getOperand(2);
7125  DebugLoc dl       = Op.getDebugLoc();
7126
7127  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7128                                  getPointerTy());
7129  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7130
7131  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
7132                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
7133  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7134  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7135  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7136  MF.getRegInfo().addLiveOut(StoreAddrReg);
7137
7138  return DAG.getNode(X86ISD::EH_RETURN, dl,
7139                     MVT::Other,
7140                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7141}
7142
7143SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7144                                             SelectionDAG &DAG) const {
7145  SDValue Root = Op.getOperand(0);
7146  SDValue Trmp = Op.getOperand(1); // trampoline
7147  SDValue FPtr = Op.getOperand(2); // nested function
7148  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7149  DebugLoc dl  = Op.getDebugLoc();
7150
7151  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7152
7153  if (Subtarget->is64Bit()) {
7154    SDValue OutChains[6];
7155
7156    // Large code-model.
7157    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7158    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7159
7160    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7161    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7162
7163    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7164
7165    // Load the pointer to the nested function into R11.
7166    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7167    SDValue Addr = Trmp;
7168    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7169                                Addr, TrmpAddr, 0, false, false, 0);
7170
7171    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7172                       DAG.getConstant(2, MVT::i64));
7173    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7174                                false, false, 2);
7175
7176    // Load the 'nest' parameter value into R10.
7177    // R10 is specified in X86CallingConv.td
7178    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7179    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7180                       DAG.getConstant(10, MVT::i64));
7181    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7182                                Addr, TrmpAddr, 10, false, false, 0);
7183
7184    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7185                       DAG.getConstant(12, MVT::i64));
7186    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7187                                false, false, 2);
7188
7189    // Jump to the nested function.
7190    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7191    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7192                       DAG.getConstant(20, MVT::i64));
7193    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7194                                Addr, TrmpAddr, 20, false, false, 0);
7195
7196    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7197    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7198                       DAG.getConstant(22, MVT::i64));
7199    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7200                                TrmpAddr, 22, false, false, 0);
7201
7202    SDValue Ops[] =
7203      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7204    return DAG.getMergeValues(Ops, 2, dl);
7205  } else {
7206    const Function *Func =
7207      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7208    CallingConv::ID CC = Func->getCallingConv();
7209    unsigned NestReg;
7210
7211    switch (CC) {
7212    default:
7213      llvm_unreachable("Unsupported calling convention");
7214    case CallingConv::C:
7215    case CallingConv::X86_StdCall: {
7216      // Pass 'nest' parameter in ECX.
7217      // Must be kept in sync with X86CallingConv.td
7218      NestReg = X86::ECX;
7219
7220      // Check that ECX wasn't needed by an 'inreg' parameter.
7221      const FunctionType *FTy = Func->getFunctionType();
7222      const AttrListPtr &Attrs = Func->getAttributes();
7223
7224      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7225        unsigned InRegCount = 0;
7226        unsigned Idx = 1;
7227
7228        for (FunctionType::param_iterator I = FTy->param_begin(),
7229             E = FTy->param_end(); I != E; ++I, ++Idx)
7230          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7231            // FIXME: should only count parameters that are lowered to integers.
7232            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7233
7234        if (InRegCount > 2) {
7235          report_fatal_error("Nest register in use - reduce number of inreg"
7236                             " parameters!");
7237        }
7238      }
7239      break;
7240    }
7241    case CallingConv::X86_FastCall:
7242    case CallingConv::X86_ThisCall:
7243    case CallingConv::Fast:
7244      // Pass 'nest' parameter in EAX.
7245      // Must be kept in sync with X86CallingConv.td
7246      NestReg = X86::EAX;
7247      break;
7248    }
7249
7250    SDValue OutChains[4];
7251    SDValue Addr, Disp;
7252
7253    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7254                       DAG.getConstant(10, MVT::i32));
7255    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7256
7257    // This is storing the opcode for MOV32ri.
7258    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7259    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7260    OutChains[0] = DAG.getStore(Root, dl,
7261                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7262                                Trmp, TrmpAddr, 0, false, false, 0);
7263
7264    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7265                       DAG.getConstant(1, MVT::i32));
7266    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7267                                false, false, 1);
7268
7269    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7270    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7271                       DAG.getConstant(5, MVT::i32));
7272    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7273                                TrmpAddr, 5, false, false, 1);
7274
7275    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7276                       DAG.getConstant(6, MVT::i32));
7277    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7278                                false, false, 1);
7279
7280    SDValue Ops[] =
7281      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7282    return DAG.getMergeValues(Ops, 2, dl);
7283  }
7284}
7285
7286SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7287                                            SelectionDAG &DAG) const {
7288  /*
7289   The rounding mode is in bits 11:10 of FPSR, and has the following
7290   settings:
7291     00 Round to nearest
7292     01 Round to -inf
7293     10 Round to +inf
7294     11 Round to 0
7295
7296  FLT_ROUNDS, on the other hand, expects the following:
7297    -1 Undefined
7298     0 Round to 0
7299     1 Round to nearest
7300     2 Round to +inf
7301     3 Round to -inf
7302
7303  To perform the conversion, we do:
7304    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7305  */
7306
7307  MachineFunction &MF = DAG.getMachineFunction();
7308  const TargetMachine &TM = MF.getTarget();
7309  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7310  unsigned StackAlignment = TFI.getStackAlignment();
7311  EVT VT = Op.getValueType();
7312  DebugLoc dl = Op.getDebugLoc();
7313
7314  // Save FP Control Word to stack slot
7315  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7316  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7317
7318  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7319                              DAG.getEntryNode(), StackSlot);
7320
7321  // Load FP Control Word from stack slot
7322  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7323                            false, false, 0);
7324
7325  // Transform as necessary
7326  SDValue CWD1 =
7327    DAG.getNode(ISD::SRL, dl, MVT::i16,
7328                DAG.getNode(ISD::AND, dl, MVT::i16,
7329                            CWD, DAG.getConstant(0x800, MVT::i16)),
7330                DAG.getConstant(11, MVT::i8));
7331  SDValue CWD2 =
7332    DAG.getNode(ISD::SRL, dl, MVT::i16,
7333                DAG.getNode(ISD::AND, dl, MVT::i16,
7334                            CWD, DAG.getConstant(0x400, MVT::i16)),
7335                DAG.getConstant(9, MVT::i8));
7336
7337  SDValue RetVal =
7338    DAG.getNode(ISD::AND, dl, MVT::i16,
7339                DAG.getNode(ISD::ADD, dl, MVT::i16,
7340                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7341                            DAG.getConstant(1, MVT::i16)),
7342                DAG.getConstant(3, MVT::i16));
7343
7344
7345  return DAG.getNode((VT.getSizeInBits() < 16 ?
7346                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7347}
7348
7349SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
7350  EVT VT = Op.getValueType();
7351  EVT OpVT = VT;
7352  unsigned NumBits = VT.getSizeInBits();
7353  DebugLoc dl = Op.getDebugLoc();
7354
7355  Op = Op.getOperand(0);
7356  if (VT == MVT::i8) {
7357    // Zero extend to i32 since there is not an i8 bsr.
7358    OpVT = MVT::i32;
7359    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7360  }
7361
7362  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7363  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7364  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7365
7366  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7367  SDValue Ops[] = {
7368    Op,
7369    DAG.getConstant(NumBits+NumBits-1, OpVT),
7370    DAG.getConstant(X86::COND_E, MVT::i8),
7371    Op.getValue(1)
7372  };
7373  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7374
7375  // Finally xor with NumBits-1.
7376  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7377
7378  if (VT == MVT::i8)
7379    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7380  return Op;
7381}
7382
7383SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
7384  EVT VT = Op.getValueType();
7385  EVT OpVT = VT;
7386  unsigned NumBits = VT.getSizeInBits();
7387  DebugLoc dl = Op.getDebugLoc();
7388
7389  Op = Op.getOperand(0);
7390  if (VT == MVT::i8) {
7391    OpVT = MVT::i32;
7392    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7393  }
7394
7395  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7396  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7397  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7398
7399  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7400  SDValue Ops[] = {
7401    Op,
7402    DAG.getConstant(NumBits, OpVT),
7403    DAG.getConstant(X86::COND_E, MVT::i8),
7404    Op.getValue(1)
7405  };
7406  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7407
7408  if (VT == MVT::i8)
7409    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7410  return Op;
7411}
7412
7413SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
7414  EVT VT = Op.getValueType();
7415  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7416  DebugLoc dl = Op.getDebugLoc();
7417
7418  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7419  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7420  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7421  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7422  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7423  //
7424  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7425  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7426  //  return AloBlo + AloBhi + AhiBlo;
7427
7428  SDValue A = Op.getOperand(0);
7429  SDValue B = Op.getOperand(1);
7430
7431  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7432                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7433                       A, DAG.getConstant(32, MVT::i32));
7434  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7435                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7436                       B, DAG.getConstant(32, MVT::i32));
7437  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7438                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7439                       A, B);
7440  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7441                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7442                       A, Bhi);
7443  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7444                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7445                       Ahi, B);
7446  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7447                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7448                       AloBhi, DAG.getConstant(32, MVT::i32));
7449  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7450                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7451                       AhiBlo, DAG.getConstant(32, MVT::i32));
7452  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7453  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7454  return Res;
7455}
7456
7457
7458SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
7459  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7460  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7461  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7462  // has only one use.
7463  SDNode *N = Op.getNode();
7464  SDValue LHS = N->getOperand(0);
7465  SDValue RHS = N->getOperand(1);
7466  unsigned BaseOp = 0;
7467  unsigned Cond = 0;
7468  DebugLoc dl = Op.getDebugLoc();
7469
7470  switch (Op.getOpcode()) {
7471  default: llvm_unreachable("Unknown ovf instruction!");
7472  case ISD::SADDO:
7473    // A subtract of one will be selected as a INC. Note that INC doesn't
7474    // set CF, so we can't do this for UADDO.
7475    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7476      if (C->getAPIntValue() == 1) {
7477        BaseOp = X86ISD::INC;
7478        Cond = X86::COND_O;
7479        break;
7480      }
7481    BaseOp = X86ISD::ADD;
7482    Cond = X86::COND_O;
7483    break;
7484  case ISD::UADDO:
7485    BaseOp = X86ISD::ADD;
7486    Cond = X86::COND_B;
7487    break;
7488  case ISD::SSUBO:
7489    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7490    // set CF, so we can't do this for USUBO.
7491    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7492      if (C->getAPIntValue() == 1) {
7493        BaseOp = X86ISD::DEC;
7494        Cond = X86::COND_O;
7495        break;
7496      }
7497    BaseOp = X86ISD::SUB;
7498    Cond = X86::COND_O;
7499    break;
7500  case ISD::USUBO:
7501    BaseOp = X86ISD::SUB;
7502    Cond = X86::COND_B;
7503    break;
7504  case ISD::SMULO:
7505    BaseOp = X86ISD::SMUL;
7506    Cond = X86::COND_O;
7507    break;
7508  case ISD::UMULO:
7509    BaseOp = X86ISD::UMUL;
7510    Cond = X86::COND_B;
7511    break;
7512  }
7513
7514  // Also sets EFLAGS.
7515  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7516  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7517
7518  SDValue SetCC =
7519    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7520                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7521
7522  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7523  return Sum;
7524}
7525
7526SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
7527  DebugLoc dl = Op.getDebugLoc();
7528
7529  if (!Subtarget->hasSSE2())
7530    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
7531                       DAG.getConstant(0, MVT::i32));
7532
7533  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7534  if(!isDev)
7535    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
7536  else {
7537    unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7538    unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
7539    unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7540    unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
7541
7542    // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
7543    if (!Op1 && !Op2 && !Op3 && Op4)
7544      return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
7545
7546    // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
7547    if (Op1 && !Op2 && !Op3 && !Op4)
7548      return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
7549
7550    // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
7551    //           (MFENCE)>;
7552    return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
7553  }
7554}
7555
7556SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
7557  EVT T = Op.getValueType();
7558  DebugLoc dl = Op.getDebugLoc();
7559  unsigned Reg = 0;
7560  unsigned size = 0;
7561  switch(T.getSimpleVT().SimpleTy) {
7562  default:
7563    assert(false && "Invalid value type!");
7564  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7565  case MVT::i16: Reg = X86::AX;  size = 2; break;
7566  case MVT::i32: Reg = X86::EAX; size = 4; break;
7567  case MVT::i64:
7568    assert(Subtarget->is64Bit() && "Node not type legal!");
7569    Reg = X86::RAX; size = 8;
7570    break;
7571  }
7572  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7573                                    Op.getOperand(2), SDValue());
7574  SDValue Ops[] = { cpIn.getValue(0),
7575                    Op.getOperand(1),
7576                    Op.getOperand(3),
7577                    DAG.getTargetConstant(size, MVT::i8),
7578                    cpIn.getValue(1) };
7579  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7580  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7581  SDValue cpOut =
7582    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7583  return cpOut;
7584}
7585
7586SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7587                                                 SelectionDAG &DAG) const {
7588  assert(Subtarget->is64Bit() && "Result not type legalized?");
7589  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7590  SDValue TheChain = Op.getOperand(0);
7591  DebugLoc dl = Op.getDebugLoc();
7592  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7593  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7594  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7595                                   rax.getValue(2));
7596  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7597                            DAG.getConstant(32, MVT::i8));
7598  SDValue Ops[] = {
7599    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7600    rdx.getValue(1)
7601  };
7602  return DAG.getMergeValues(Ops, 2, dl);
7603}
7604
7605SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
7606                                            SelectionDAG &DAG) const {
7607  EVT SrcVT = Op.getOperand(0).getValueType();
7608  EVT DstVT = Op.getValueType();
7609  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
7610          Subtarget->hasMMX() && !DisableMMX) &&
7611         "Unexpected custom BIT_CONVERT");
7612  assert((DstVT == MVT::i64 ||
7613          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
7614         "Unexpected custom BIT_CONVERT");
7615  // i64 <=> MMX conversions are Legal.
7616  if (SrcVT==MVT::i64 && DstVT.isVector())
7617    return Op;
7618  if (DstVT==MVT::i64 && SrcVT.isVector())
7619    return Op;
7620  // MMX <=> MMX conversions are Legal.
7621  if (SrcVT.isVector() && DstVT.isVector())
7622    return Op;
7623  // All other conversions need to be expanded.
7624  return SDValue();
7625}
7626SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
7627  SDNode *Node = Op.getNode();
7628  DebugLoc dl = Node->getDebugLoc();
7629  EVT T = Node->getValueType(0);
7630  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7631                              DAG.getConstant(0, T), Node->getOperand(2));
7632  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7633                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7634                       Node->getOperand(0),
7635                       Node->getOperand(1), negOp,
7636                       cast<AtomicSDNode>(Node)->getSrcValue(),
7637                       cast<AtomicSDNode>(Node)->getAlignment());
7638}
7639
7640/// LowerOperation - Provide custom lowering hooks for some operations.
7641///
7642SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7643  switch (Op.getOpcode()) {
7644  default: llvm_unreachable("Should not custom lower this!");
7645  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
7646  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7647  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7648  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7649  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7650  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7651  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7652  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7653  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7654  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7655  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7656  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7657  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7658  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7659  case ISD::SHL_PARTS:
7660  case ISD::SRA_PARTS:
7661  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7662  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7663  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7664  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7665  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7666  case ISD::FABS:               return LowerFABS(Op, DAG);
7667  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7668  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7669  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7670  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7671  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7672  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7673  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7674  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7675  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7676  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7677  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7678  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7679  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7680  case ISD::FRAME_TO_ARGS_OFFSET:
7681                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7682  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7683  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7684  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7685  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7686  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7687  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7688  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7689  case ISD::SADDO:
7690  case ISD::UADDO:
7691  case ISD::SSUBO:
7692  case ISD::USUBO:
7693  case ISD::SMULO:
7694  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7695  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7696  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
7697  }
7698}
7699
7700void X86TargetLowering::
7701ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7702                        SelectionDAG &DAG, unsigned NewOp) const {
7703  EVT T = Node->getValueType(0);
7704  DebugLoc dl = Node->getDebugLoc();
7705  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7706
7707  SDValue Chain = Node->getOperand(0);
7708  SDValue In1 = Node->getOperand(1);
7709  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7710                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7711  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7712                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7713  SDValue Ops[] = { Chain, In1, In2L, In2H };
7714  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7715  SDValue Result =
7716    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7717                            cast<MemSDNode>(Node)->getMemOperand());
7718  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7719  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7720  Results.push_back(Result.getValue(2));
7721}
7722
7723/// ReplaceNodeResults - Replace a node with an illegal result type
7724/// with a new node built out of custom code.
7725void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7726                                           SmallVectorImpl<SDValue>&Results,
7727                                           SelectionDAG &DAG) const {
7728  DebugLoc dl = N->getDebugLoc();
7729  switch (N->getOpcode()) {
7730  default:
7731    assert(false && "Do not know how to custom type legalize this operation!");
7732    return;
7733  case ISD::FP_TO_SINT: {
7734    std::pair<SDValue,SDValue> Vals =
7735        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7736    SDValue FIST = Vals.first, StackSlot = Vals.second;
7737    if (FIST.getNode() != 0) {
7738      EVT VT = N->getValueType(0);
7739      // Return a load from the stack slot.
7740      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7741                                    false, false, 0));
7742    }
7743    return;
7744  }
7745  case ISD::READCYCLECOUNTER: {
7746    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7747    SDValue TheChain = N->getOperand(0);
7748    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7749    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7750                                     rd.getValue(1));
7751    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7752                                     eax.getValue(2));
7753    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7754    SDValue Ops[] = { eax, edx };
7755    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7756    Results.push_back(edx.getValue(1));
7757    return;
7758  }
7759  case ISD::ATOMIC_CMP_SWAP: {
7760    EVT T = N->getValueType(0);
7761    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7762    SDValue cpInL, cpInH;
7763    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7764                        DAG.getConstant(0, MVT::i32));
7765    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7766                        DAG.getConstant(1, MVT::i32));
7767    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7768    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7769                             cpInL.getValue(1));
7770    SDValue swapInL, swapInH;
7771    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7772                          DAG.getConstant(0, MVT::i32));
7773    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7774                          DAG.getConstant(1, MVT::i32));
7775    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7776                               cpInH.getValue(1));
7777    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7778                               swapInL.getValue(1));
7779    SDValue Ops[] = { swapInH.getValue(0),
7780                      N->getOperand(1),
7781                      swapInH.getValue(1) };
7782    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7783    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7784    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7785                                        MVT::i32, Result.getValue(1));
7786    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7787                                        MVT::i32, cpOutL.getValue(2));
7788    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7789    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7790    Results.push_back(cpOutH.getValue(1));
7791    return;
7792  }
7793  case ISD::ATOMIC_LOAD_ADD:
7794    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7795    return;
7796  case ISD::ATOMIC_LOAD_AND:
7797    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7798    return;
7799  case ISD::ATOMIC_LOAD_NAND:
7800    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7801    return;
7802  case ISD::ATOMIC_LOAD_OR:
7803    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7804    return;
7805  case ISD::ATOMIC_LOAD_SUB:
7806    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7807    return;
7808  case ISD::ATOMIC_LOAD_XOR:
7809    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7810    return;
7811  case ISD::ATOMIC_SWAP:
7812    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7813    return;
7814  }
7815}
7816
7817const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7818  switch (Opcode) {
7819  default: return NULL;
7820  case X86ISD::BSF:                return "X86ISD::BSF";
7821  case X86ISD::BSR:                return "X86ISD::BSR";
7822  case X86ISD::SHLD:               return "X86ISD::SHLD";
7823  case X86ISD::SHRD:               return "X86ISD::SHRD";
7824  case X86ISD::FAND:               return "X86ISD::FAND";
7825  case X86ISD::FOR:                return "X86ISD::FOR";
7826  case X86ISD::FXOR:               return "X86ISD::FXOR";
7827  case X86ISD::FSRL:               return "X86ISD::FSRL";
7828  case X86ISD::FILD:               return "X86ISD::FILD";
7829  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7830  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7831  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7832  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7833  case X86ISD::FLD:                return "X86ISD::FLD";
7834  case X86ISD::FST:                return "X86ISD::FST";
7835  case X86ISD::CALL:               return "X86ISD::CALL";
7836  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7837  case X86ISD::BT:                 return "X86ISD::BT";
7838  case X86ISD::CMP:                return "X86ISD::CMP";
7839  case X86ISD::COMI:               return "X86ISD::COMI";
7840  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7841  case X86ISD::SETCC:              return "X86ISD::SETCC";
7842  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
7843  case X86ISD::CMOV:               return "X86ISD::CMOV";
7844  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7845  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7846  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7847  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7848  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7849  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7850  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7851  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7852  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7853  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7854  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7855  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7856  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
7857  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7858  case X86ISD::FMAX:               return "X86ISD::FMAX";
7859  case X86ISD::FMIN:               return "X86ISD::FMIN";
7860  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7861  case X86ISD::FRCP:               return "X86ISD::FRCP";
7862  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7863  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
7864  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7865  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7866  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7867  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7868  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7869  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7870  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7871  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7872  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7873  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7874  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7875  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7876  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7877  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7878  case X86ISD::VSHL:               return "X86ISD::VSHL";
7879  case X86ISD::VSRL:               return "X86ISD::VSRL";
7880  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7881  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7882  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7883  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7884  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7885  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7886  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7887  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7888  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7889  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7890  case X86ISD::ADD:                return "X86ISD::ADD";
7891  case X86ISD::SUB:                return "X86ISD::SUB";
7892  case X86ISD::SMUL:               return "X86ISD::SMUL";
7893  case X86ISD::UMUL:               return "X86ISD::UMUL";
7894  case X86ISD::INC:                return "X86ISD::INC";
7895  case X86ISD::DEC:                return "X86ISD::DEC";
7896  case X86ISD::OR:                 return "X86ISD::OR";
7897  case X86ISD::XOR:                return "X86ISD::XOR";
7898  case X86ISD::AND:                return "X86ISD::AND";
7899  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7900  case X86ISD::PTEST:              return "X86ISD::PTEST";
7901  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7902  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
7903  }
7904}
7905
7906// isLegalAddressingMode - Return true if the addressing mode represented
7907// by AM is legal for this target, for a load/store of the specified type.
7908bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7909                                              const Type *Ty) const {
7910  // X86 supports extremely general addressing modes.
7911  CodeModel::Model M = getTargetMachine().getCodeModel();
7912
7913  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7914  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7915    return false;
7916
7917  if (AM.BaseGV) {
7918    unsigned GVFlags =
7919      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7920
7921    // If a reference to this global requires an extra load, we can't fold it.
7922    if (isGlobalStubReference(GVFlags))
7923      return false;
7924
7925    // If BaseGV requires a register for the PIC base, we cannot also have a
7926    // BaseReg specified.
7927    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7928      return false;
7929
7930    // If lower 4G is not available, then we must use rip-relative addressing.
7931    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7932      return false;
7933  }
7934
7935  switch (AM.Scale) {
7936  case 0:
7937  case 1:
7938  case 2:
7939  case 4:
7940  case 8:
7941    // These scales always work.
7942    break;
7943  case 3:
7944  case 5:
7945  case 9:
7946    // These scales are formed with basereg+scalereg.  Only accept if there is
7947    // no basereg yet.
7948    if (AM.HasBaseReg)
7949      return false;
7950    break;
7951  default:  // Other stuff never works.
7952    return false;
7953  }
7954
7955  return true;
7956}
7957
7958
7959bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7960  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7961    return false;
7962  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7963  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7964  if (NumBits1 <= NumBits2)
7965    return false;
7966  return true;
7967}
7968
7969bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7970  if (!VT1.isInteger() || !VT2.isInteger())
7971    return false;
7972  unsigned NumBits1 = VT1.getSizeInBits();
7973  unsigned NumBits2 = VT2.getSizeInBits();
7974  if (NumBits1 <= NumBits2)
7975    return false;
7976  return true;
7977}
7978
7979bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7980  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7981  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
7982}
7983
7984bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7985  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7986  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7987}
7988
7989bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7990  // i16 instructions are longer (0x66 prefix) and potentially slower.
7991  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7992}
7993
7994/// isShuffleMaskLegal - Targets can use this to indicate that they only
7995/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7996/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7997/// are assumed to be legal.
7998bool
7999X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8000                                      EVT VT) const {
8001  // Very little shuffling can be done for 64-bit vectors right now.
8002  if (VT.getSizeInBits() == 64)
8003    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8004
8005  // FIXME: pshufb, blends, shifts.
8006  return (VT.getVectorNumElements() == 2 ||
8007          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8008          isMOVLMask(M, VT) ||
8009          isSHUFPMask(M, VT) ||
8010          isPSHUFDMask(M, VT) ||
8011          isPSHUFHWMask(M, VT) ||
8012          isPSHUFLWMask(M, VT) ||
8013          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
8014          isUNPCKLMask(M, VT) ||
8015          isUNPCKHMask(M, VT) ||
8016          isUNPCKL_v_undef_Mask(M, VT) ||
8017          isUNPCKH_v_undef_Mask(M, VT));
8018}
8019
8020bool
8021X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
8022                                          EVT VT) const {
8023  unsigned NumElts = VT.getVectorNumElements();
8024  // FIXME: This collection of masks seems suspect.
8025  if (NumElts == 2)
8026    return true;
8027  if (NumElts == 4 && VT.getSizeInBits() == 128) {
8028    return (isMOVLMask(Mask, VT)  ||
8029            isCommutedMOVLMask(Mask, VT, true) ||
8030            isSHUFPMask(Mask, VT) ||
8031            isCommutedSHUFPMask(Mask, VT));
8032  }
8033  return false;
8034}
8035
8036//===----------------------------------------------------------------------===//
8037//                           X86 Scheduler Hooks
8038//===----------------------------------------------------------------------===//
8039
8040// private utility function
8041MachineBasicBlock *
8042X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
8043                                                       MachineBasicBlock *MBB,
8044                                                       unsigned regOpc,
8045                                                       unsigned immOpc,
8046                                                       unsigned LoadOpc,
8047                                                       unsigned CXchgOpc,
8048                                                       unsigned notOpc,
8049                                                       unsigned EAXreg,
8050                                                       TargetRegisterClass *RC,
8051                                                       bool invSrc) const {
8052  // For the atomic bitwise operator, we generate
8053  //   thisMBB:
8054  //   newMBB:
8055  //     ld  t1 = [bitinstr.addr]
8056  //     op  t2 = t1, [bitinstr.val]
8057  //     mov EAX = t1
8058  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8059  //     bz  newMBB
8060  //     fallthrough -->nextMBB
8061  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8062  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8063  MachineFunction::iterator MBBIter = MBB;
8064  ++MBBIter;
8065
8066  /// First build the CFG
8067  MachineFunction *F = MBB->getParent();
8068  MachineBasicBlock *thisMBB = MBB;
8069  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8070  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8071  F->insert(MBBIter, newMBB);
8072  F->insert(MBBIter, nextMBB);
8073
8074  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8075  nextMBB->splice(nextMBB->begin(), thisMBB,
8076                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8077                  thisMBB->end());
8078  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8079
8080  // Update thisMBB to fall through to newMBB
8081  thisMBB->addSuccessor(newMBB);
8082
8083  // newMBB jumps to itself and fall through to nextMBB
8084  newMBB->addSuccessor(nextMBB);
8085  newMBB->addSuccessor(newMBB);
8086
8087  // Insert instructions into newMBB based on incoming instruction
8088  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8089         "unexpected number of operands");
8090  DebugLoc dl = bInstr->getDebugLoc();
8091  MachineOperand& destOper = bInstr->getOperand(0);
8092  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8093  int numArgs = bInstr->getNumOperands() - 1;
8094  for (int i=0; i < numArgs; ++i)
8095    argOpers[i] = &bInstr->getOperand(i+1);
8096
8097  // x86 address has 4 operands: base, index, scale, and displacement
8098  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8099  int valArgIndx = lastAddrIndx + 1;
8100
8101  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8102  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8103  for (int i=0; i <= lastAddrIndx; ++i)
8104    (*MIB).addOperand(*argOpers[i]);
8105
8106  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8107  if (invSrc) {
8108    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8109  }
8110  else
8111    tt = t1;
8112
8113  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8114  assert((argOpers[valArgIndx]->isReg() ||
8115          argOpers[valArgIndx]->isImm()) &&
8116         "invalid operand");
8117  if (argOpers[valArgIndx]->isReg())
8118    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8119  else
8120    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8121  MIB.addReg(tt);
8122  (*MIB).addOperand(*argOpers[valArgIndx]);
8123
8124  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
8125  MIB.addReg(t1);
8126
8127  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8128  for (int i=0; i <= lastAddrIndx; ++i)
8129    (*MIB).addOperand(*argOpers[i]);
8130  MIB.addReg(t2);
8131  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8132  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8133                    bInstr->memoperands_end());
8134
8135  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8136  MIB.addReg(EAXreg);
8137
8138  // insert branch
8139  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8140
8141  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8142  return nextMBB;
8143}
8144
8145// private utility function:  64 bit atomics on 32 bit host.
8146MachineBasicBlock *
8147X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8148                                                       MachineBasicBlock *MBB,
8149                                                       unsigned regOpcL,
8150                                                       unsigned regOpcH,
8151                                                       unsigned immOpcL,
8152                                                       unsigned immOpcH,
8153                                                       bool invSrc) const {
8154  // For the atomic bitwise operator, we generate
8155  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8156  //     ld t1,t2 = [bitinstr.addr]
8157  //   newMBB:
8158  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8159  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8160  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8161  //     mov ECX, EBX <- t5, t6
8162  //     mov EAX, EDX <- t1, t2
8163  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8164  //     mov t3, t4 <- EAX, EDX
8165  //     bz  newMBB
8166  //     result in out1, out2
8167  //     fallthrough -->nextMBB
8168
8169  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8170  const unsigned LoadOpc = X86::MOV32rm;
8171  const unsigned NotOpc = X86::NOT32r;
8172  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8173  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8174  MachineFunction::iterator MBBIter = MBB;
8175  ++MBBIter;
8176
8177  /// First build the CFG
8178  MachineFunction *F = MBB->getParent();
8179  MachineBasicBlock *thisMBB = MBB;
8180  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8181  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8182  F->insert(MBBIter, newMBB);
8183  F->insert(MBBIter, nextMBB);
8184
8185  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8186  nextMBB->splice(nextMBB->begin(), thisMBB,
8187                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8188                  thisMBB->end());
8189  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8190
8191  // Update thisMBB to fall through to newMBB
8192  thisMBB->addSuccessor(newMBB);
8193
8194  // newMBB jumps to itself and fall through to nextMBB
8195  newMBB->addSuccessor(nextMBB);
8196  newMBB->addSuccessor(newMBB);
8197
8198  DebugLoc dl = bInstr->getDebugLoc();
8199  // Insert instructions into newMBB based on incoming instruction
8200  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8201  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
8202         "unexpected number of operands");
8203  MachineOperand& dest1Oper = bInstr->getOperand(0);
8204  MachineOperand& dest2Oper = bInstr->getOperand(1);
8205  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8206  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
8207    argOpers[i] = &bInstr->getOperand(i+2);
8208
8209    // We use some of the operands multiple times, so conservatively just
8210    // clear any kill flags that might be present.
8211    if (argOpers[i]->isReg() && argOpers[i]->isUse())
8212      argOpers[i]->setIsKill(false);
8213  }
8214
8215  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8216  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8217
8218  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8219  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8220  for (int i=0; i <= lastAddrIndx; ++i)
8221    (*MIB).addOperand(*argOpers[i]);
8222  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8223  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8224  // add 4 to displacement.
8225  for (int i=0; i <= lastAddrIndx-2; ++i)
8226    (*MIB).addOperand(*argOpers[i]);
8227  MachineOperand newOp3 = *(argOpers[3]);
8228  if (newOp3.isImm())
8229    newOp3.setImm(newOp3.getImm()+4);
8230  else
8231    newOp3.setOffset(newOp3.getOffset()+4);
8232  (*MIB).addOperand(newOp3);
8233  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8234
8235  // t3/4 are defined later, at the bottom of the loop
8236  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8237  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8238  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8239    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8240  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8241    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8242
8243  // The subsequent operations should be using the destination registers of
8244  //the PHI instructions.
8245  if (invSrc) {
8246    t1 = F->getRegInfo().createVirtualRegister(RC);
8247    t2 = F->getRegInfo().createVirtualRegister(RC);
8248    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8249    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8250  } else {
8251    t1 = dest1Oper.getReg();
8252    t2 = dest2Oper.getReg();
8253  }
8254
8255  int valArgIndx = lastAddrIndx + 1;
8256  assert((argOpers[valArgIndx]->isReg() ||
8257          argOpers[valArgIndx]->isImm()) &&
8258         "invalid operand");
8259  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8260  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8261  if (argOpers[valArgIndx]->isReg())
8262    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8263  else
8264    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8265  if (regOpcL != X86::MOV32rr)
8266    MIB.addReg(t1);
8267  (*MIB).addOperand(*argOpers[valArgIndx]);
8268  assert(argOpers[valArgIndx + 1]->isReg() ==
8269         argOpers[valArgIndx]->isReg());
8270  assert(argOpers[valArgIndx + 1]->isImm() ==
8271         argOpers[valArgIndx]->isImm());
8272  if (argOpers[valArgIndx + 1]->isReg())
8273    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8274  else
8275    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8276  if (regOpcH != X86::MOV32rr)
8277    MIB.addReg(t2);
8278  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8279
8280  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8281  MIB.addReg(t1);
8282  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
8283  MIB.addReg(t2);
8284
8285  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
8286  MIB.addReg(t5);
8287  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
8288  MIB.addReg(t6);
8289
8290  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8291  for (int i=0; i <= lastAddrIndx; ++i)
8292    (*MIB).addOperand(*argOpers[i]);
8293
8294  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8295  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8296                    bInstr->memoperands_end());
8297
8298  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
8299  MIB.addReg(X86::EAX);
8300  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
8301  MIB.addReg(X86::EDX);
8302
8303  // insert branch
8304  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8305
8306  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8307  return nextMBB;
8308}
8309
8310// private utility function
8311MachineBasicBlock *
8312X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8313                                                      MachineBasicBlock *MBB,
8314                                                      unsigned cmovOpc) const {
8315  // For the atomic min/max operator, we generate
8316  //   thisMBB:
8317  //   newMBB:
8318  //     ld t1 = [min/max.addr]
8319  //     mov t2 = [min/max.val]
8320  //     cmp  t1, t2
8321  //     cmov[cond] t2 = t1
8322  //     mov EAX = t1
8323  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8324  //     bz   newMBB
8325  //     fallthrough -->nextMBB
8326  //
8327  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8328  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8329  MachineFunction::iterator MBBIter = MBB;
8330  ++MBBIter;
8331
8332  /// First build the CFG
8333  MachineFunction *F = MBB->getParent();
8334  MachineBasicBlock *thisMBB = MBB;
8335  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8336  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8337  F->insert(MBBIter, newMBB);
8338  F->insert(MBBIter, nextMBB);
8339
8340  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8341  nextMBB->splice(nextMBB->begin(), thisMBB,
8342                  llvm::next(MachineBasicBlock::iterator(mInstr)),
8343                  thisMBB->end());
8344  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8345
8346  // Update thisMBB to fall through to newMBB
8347  thisMBB->addSuccessor(newMBB);
8348
8349  // newMBB jumps to newMBB and fall through to nextMBB
8350  newMBB->addSuccessor(nextMBB);
8351  newMBB->addSuccessor(newMBB);
8352
8353  DebugLoc dl = mInstr->getDebugLoc();
8354  // Insert instructions into newMBB based on incoming instruction
8355  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8356         "unexpected number of operands");
8357  MachineOperand& destOper = mInstr->getOperand(0);
8358  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8359  int numArgs = mInstr->getNumOperands() - 1;
8360  for (int i=0; i < numArgs; ++i)
8361    argOpers[i] = &mInstr->getOperand(i+1);
8362
8363  // x86 address has 4 operands: base, index, scale, and displacement
8364  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8365  int valArgIndx = lastAddrIndx + 1;
8366
8367  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8368  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8369  for (int i=0; i <= lastAddrIndx; ++i)
8370    (*MIB).addOperand(*argOpers[i]);
8371
8372  // We only support register and immediate values
8373  assert((argOpers[valArgIndx]->isReg() ||
8374          argOpers[valArgIndx]->isImm()) &&
8375         "invalid operand");
8376
8377  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8378  if (argOpers[valArgIndx]->isReg())
8379    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
8380  else
8381    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8382  (*MIB).addOperand(*argOpers[valArgIndx]);
8383
8384  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8385  MIB.addReg(t1);
8386
8387  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8388  MIB.addReg(t1);
8389  MIB.addReg(t2);
8390
8391  // Generate movc
8392  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8393  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8394  MIB.addReg(t2);
8395  MIB.addReg(t1);
8396
8397  // Cmp and exchange if none has modified the memory location
8398  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8399  for (int i=0; i <= lastAddrIndx; ++i)
8400    (*MIB).addOperand(*argOpers[i]);
8401  MIB.addReg(t3);
8402  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8403  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8404                    mInstr->memoperands_end());
8405
8406  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8407  MIB.addReg(X86::EAX);
8408
8409  // insert branch
8410  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8411
8412  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
8413  return nextMBB;
8414}
8415
8416// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8417// all of this code can be replaced with that in the .td file.
8418MachineBasicBlock *
8419X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8420                            unsigned numArgs, bool memArg) const {
8421
8422  DebugLoc dl = MI->getDebugLoc();
8423  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8424
8425  unsigned Opc;
8426  if (memArg)
8427    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8428  else
8429    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8430
8431  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8432
8433  for (unsigned i = 0; i < numArgs; ++i) {
8434    MachineOperand &Op = MI->getOperand(i+1);
8435
8436    if (!(Op.isReg() && Op.isImplicit()))
8437      MIB.addOperand(Op);
8438  }
8439
8440  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8441    .addReg(X86::XMM0);
8442
8443  MI->eraseFromParent();
8444
8445  return BB;
8446}
8447
8448MachineBasicBlock *
8449X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8450                                                 MachineInstr *MI,
8451                                                 MachineBasicBlock *MBB) const {
8452  // Emit code to save XMM registers to the stack. The ABI says that the
8453  // number of registers to save is given in %al, so it's theoretically
8454  // possible to do an indirect jump trick to avoid saving all of them,
8455  // however this code takes a simpler approach and just executes all
8456  // of the stores if %al is non-zero. It's less code, and it's probably
8457  // easier on the hardware branch predictor, and stores aren't all that
8458  // expensive anyway.
8459
8460  // Create the new basic blocks. One block contains all the XMM stores,
8461  // and one block is the final destination regardless of whether any
8462  // stores were performed.
8463  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8464  MachineFunction *F = MBB->getParent();
8465  MachineFunction::iterator MBBIter = MBB;
8466  ++MBBIter;
8467  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8468  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8469  F->insert(MBBIter, XMMSaveMBB);
8470  F->insert(MBBIter, EndMBB);
8471
8472  // Transfer the remainder of MBB and its successor edges to EndMBB.
8473  EndMBB->splice(EndMBB->begin(), MBB,
8474                 llvm::next(MachineBasicBlock::iterator(MI)),
8475                 MBB->end());
8476  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
8477
8478  // The original block will now fall through to the XMM save block.
8479  MBB->addSuccessor(XMMSaveMBB);
8480  // The XMMSaveMBB will fall through to the end block.
8481  XMMSaveMBB->addSuccessor(EndMBB);
8482
8483  // Now add the instructions.
8484  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8485  DebugLoc DL = MI->getDebugLoc();
8486
8487  unsigned CountReg = MI->getOperand(0).getReg();
8488  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8489  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8490
8491  if (!Subtarget->isTargetWin64()) {
8492    // If %al is 0, branch around the XMM save block.
8493    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8494    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8495    MBB->addSuccessor(EndMBB);
8496  }
8497
8498  // In the XMM save block, save all the XMM argument registers.
8499  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8500    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8501    MachineMemOperand *MMO =
8502      F->getMachineMemOperand(
8503        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8504        MachineMemOperand::MOStore, Offset,
8505        /*Size=*/16, /*Align=*/16);
8506    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8507      .addFrameIndex(RegSaveFrameIndex)
8508      .addImm(/*Scale=*/1)
8509      .addReg(/*IndexReg=*/0)
8510      .addImm(/*Disp=*/Offset)
8511      .addReg(/*Segment=*/0)
8512      .addReg(MI->getOperand(i).getReg())
8513      .addMemOperand(MMO);
8514  }
8515
8516  MI->eraseFromParent();   // The pseudo instruction is gone now.
8517
8518  return EndMBB;
8519}
8520
8521MachineBasicBlock *
8522X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8523                                     MachineBasicBlock *BB) const {
8524  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8525  DebugLoc DL = MI->getDebugLoc();
8526
8527  // To "insert" a SELECT_CC instruction, we actually have to insert the
8528  // diamond control-flow pattern.  The incoming instruction knows the
8529  // destination vreg to set, the condition code register to branch on, the
8530  // true/false values to select between, and a branch opcode to use.
8531  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8532  MachineFunction::iterator It = BB;
8533  ++It;
8534
8535  //  thisMBB:
8536  //  ...
8537  //   TrueVal = ...
8538  //   cmpTY ccX, r1, r2
8539  //   bCC copy1MBB
8540  //   fallthrough --> copy0MBB
8541  MachineBasicBlock *thisMBB = BB;
8542  MachineFunction *F = BB->getParent();
8543  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8544  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8545  F->insert(It, copy0MBB);
8546  F->insert(It, sinkMBB);
8547
8548  // If the EFLAGS register isn't dead in the terminator, then claim that it's
8549  // live into the sink and copy blocks.
8550  const MachineFunction *MF = BB->getParent();
8551  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
8552  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
8553
8554  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
8555    const MachineOperand &MO = MI->getOperand(I);
8556    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
8557    unsigned Reg = MO.getReg();
8558    if (Reg != X86::EFLAGS) continue;
8559    copy0MBB->addLiveIn(Reg);
8560    sinkMBB->addLiveIn(Reg);
8561  }
8562
8563  // Transfer the remainder of BB and its successor edges to sinkMBB.
8564  sinkMBB->splice(sinkMBB->begin(), BB,
8565                  llvm::next(MachineBasicBlock::iterator(MI)),
8566                  BB->end());
8567  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8568
8569  // Add the true and fallthrough blocks as its successors.
8570  BB->addSuccessor(copy0MBB);
8571  BB->addSuccessor(sinkMBB);
8572
8573  // Create the conditional branch instruction.
8574  unsigned Opc =
8575    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8576  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8577
8578  //  copy0MBB:
8579  //   %FalseValue = ...
8580  //   # fallthrough to sinkMBB
8581  copy0MBB->addSuccessor(sinkMBB);
8582
8583  //  sinkMBB:
8584  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8585  //  ...
8586  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8587          TII->get(X86::PHI), MI->getOperand(0).getReg())
8588    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8589    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8590
8591  MI->eraseFromParent();   // The pseudo instruction is gone now.
8592  return sinkMBB;
8593}
8594
8595MachineBasicBlock *
8596X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8597                                          MachineBasicBlock *BB) const {
8598  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8599  DebugLoc DL = MI->getDebugLoc();
8600
8601  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8602  // non-trivial part is impdef of ESP.
8603  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8604  // mingw-w64.
8605
8606  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
8607    .addExternalSymbol("_alloca")
8608    .addReg(X86::EAX, RegState::Implicit)
8609    .addReg(X86::ESP, RegState::Implicit)
8610    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8611    .addReg(X86::ESP, RegState::Define | RegState::Implicit);
8612
8613  MI->eraseFromParent();   // The pseudo instruction is gone now.
8614  return BB;
8615}
8616
8617MachineBasicBlock *
8618X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
8619                                      MachineBasicBlock *BB) const {
8620  // This is pretty easy.  We're taking the value that we received from
8621  // our load from the relocation, sticking it in either RDI (x86-64)
8622  // or EAX and doing an indirect call.  The return value will then
8623  // be in the normal return register.
8624  const X86InstrInfo *TII
8625    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
8626  DebugLoc DL = MI->getDebugLoc();
8627  MachineFunction *F = BB->getParent();
8628
8629  assert(MI->getOperand(3).isGlobal() && "This should be a global");
8630
8631  if (Subtarget->is64Bit()) {
8632    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8633                                      TII->get(X86::MOV64rm), X86::RDI)
8634    .addReg(X86::RIP)
8635    .addImm(0).addReg(0)
8636    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8637                      MI->getOperand(3).getTargetFlags())
8638    .addReg(0);
8639    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
8640    addDirectMem(MIB, X86::RDI);
8641  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
8642    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8643                                      TII->get(X86::MOV32rm), X86::EAX)
8644    .addReg(0)
8645    .addImm(0).addReg(0)
8646    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8647                      MI->getOperand(3).getTargetFlags())
8648    .addReg(0);
8649    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
8650    addDirectMem(MIB, X86::EAX);
8651  } else {
8652    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8653                                      TII->get(X86::MOV32rm), X86::EAX)
8654    .addReg(TII->getGlobalBaseReg(F))
8655    .addImm(0).addReg(0)
8656    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8657                      MI->getOperand(3).getTargetFlags())
8658    .addReg(0);
8659    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
8660    addDirectMem(MIB, X86::EAX);
8661  }
8662
8663  MI->eraseFromParent(); // The pseudo instruction is gone now.
8664  return BB;
8665}
8666
8667MachineBasicBlock *
8668X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8669                                               MachineBasicBlock *BB) const {
8670  switch (MI->getOpcode()) {
8671  default: assert(false && "Unexpected instr type to insert");
8672  case X86::MINGW_ALLOCA:
8673    return EmitLoweredMingwAlloca(MI, BB);
8674  case X86::TLSCall_32:
8675  case X86::TLSCall_64:
8676    return EmitLoweredTLSCall(MI, BB);
8677  case X86::CMOV_GR8:
8678  case X86::CMOV_V1I64:
8679  case X86::CMOV_FR32:
8680  case X86::CMOV_FR64:
8681  case X86::CMOV_V4F32:
8682  case X86::CMOV_V2F64:
8683  case X86::CMOV_V2I64:
8684  case X86::CMOV_GR16:
8685  case X86::CMOV_GR32:
8686  case X86::CMOV_RFP32:
8687  case X86::CMOV_RFP64:
8688  case X86::CMOV_RFP80:
8689    return EmitLoweredSelect(MI, BB);
8690
8691  case X86::FP32_TO_INT16_IN_MEM:
8692  case X86::FP32_TO_INT32_IN_MEM:
8693  case X86::FP32_TO_INT64_IN_MEM:
8694  case X86::FP64_TO_INT16_IN_MEM:
8695  case X86::FP64_TO_INT32_IN_MEM:
8696  case X86::FP64_TO_INT64_IN_MEM:
8697  case X86::FP80_TO_INT16_IN_MEM:
8698  case X86::FP80_TO_INT32_IN_MEM:
8699  case X86::FP80_TO_INT64_IN_MEM: {
8700    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8701    DebugLoc DL = MI->getDebugLoc();
8702
8703    // Change the floating point control register to use "round towards zero"
8704    // mode when truncating to an integer value.
8705    MachineFunction *F = BB->getParent();
8706    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8707    addFrameReference(BuildMI(*BB, MI, DL,
8708                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
8709
8710    // Load the old value of the high byte of the control word...
8711    unsigned OldCW =
8712      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8713    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
8714                      CWFrameIdx);
8715
8716    // Set the high part to be round to zero...
8717    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8718      .addImm(0xC7F);
8719
8720    // Reload the modified control word now...
8721    addFrameReference(BuildMI(*BB, MI, DL,
8722                              TII->get(X86::FLDCW16m)), CWFrameIdx);
8723
8724    // Restore the memory image of control word to original value
8725    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8726      .addReg(OldCW);
8727
8728    // Get the X86 opcode to use.
8729    unsigned Opc;
8730    switch (MI->getOpcode()) {
8731    default: llvm_unreachable("illegal opcode!");
8732    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8733    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8734    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8735    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8736    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8737    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8738    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8739    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8740    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8741    }
8742
8743    X86AddressMode AM;
8744    MachineOperand &Op = MI->getOperand(0);
8745    if (Op.isReg()) {
8746      AM.BaseType = X86AddressMode::RegBase;
8747      AM.Base.Reg = Op.getReg();
8748    } else {
8749      AM.BaseType = X86AddressMode::FrameIndexBase;
8750      AM.Base.FrameIndex = Op.getIndex();
8751    }
8752    Op = MI->getOperand(1);
8753    if (Op.isImm())
8754      AM.Scale = Op.getImm();
8755    Op = MI->getOperand(2);
8756    if (Op.isImm())
8757      AM.IndexReg = Op.getImm();
8758    Op = MI->getOperand(3);
8759    if (Op.isGlobal()) {
8760      AM.GV = Op.getGlobal();
8761    } else {
8762      AM.Disp = Op.getImm();
8763    }
8764    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
8765                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
8766
8767    // Reload the original control word now.
8768    addFrameReference(BuildMI(*BB, MI, DL,
8769                              TII->get(X86::FLDCW16m)), CWFrameIdx);
8770
8771    MI->eraseFromParent();   // The pseudo instruction is gone now.
8772    return BB;
8773  }
8774    // String/text processing lowering.
8775  case X86::PCMPISTRM128REG:
8776    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8777  case X86::PCMPISTRM128MEM:
8778    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8779  case X86::PCMPESTRM128REG:
8780    return EmitPCMP(MI, BB, 5, false /* in mem */);
8781  case X86::PCMPESTRM128MEM:
8782    return EmitPCMP(MI, BB, 5, true /* in mem */);
8783
8784    // Atomic Lowering.
8785  case X86::ATOMAND32:
8786    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8787                                               X86::AND32ri, X86::MOV32rm,
8788                                               X86::LCMPXCHG32,
8789                                               X86::NOT32r, X86::EAX,
8790                                               X86::GR32RegisterClass);
8791  case X86::ATOMOR32:
8792    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8793                                               X86::OR32ri, X86::MOV32rm,
8794                                               X86::LCMPXCHG32,
8795                                               X86::NOT32r, X86::EAX,
8796                                               X86::GR32RegisterClass);
8797  case X86::ATOMXOR32:
8798    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8799                                               X86::XOR32ri, X86::MOV32rm,
8800                                               X86::LCMPXCHG32,
8801                                               X86::NOT32r, X86::EAX,
8802                                               X86::GR32RegisterClass);
8803  case X86::ATOMNAND32:
8804    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8805                                               X86::AND32ri, X86::MOV32rm,
8806                                               X86::LCMPXCHG32,
8807                                               X86::NOT32r, X86::EAX,
8808                                               X86::GR32RegisterClass, true);
8809  case X86::ATOMMIN32:
8810    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8811  case X86::ATOMMAX32:
8812    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8813  case X86::ATOMUMIN32:
8814    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8815  case X86::ATOMUMAX32:
8816    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8817
8818  case X86::ATOMAND16:
8819    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8820                                               X86::AND16ri, X86::MOV16rm,
8821                                               X86::LCMPXCHG16,
8822                                               X86::NOT16r, X86::AX,
8823                                               X86::GR16RegisterClass);
8824  case X86::ATOMOR16:
8825    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8826                                               X86::OR16ri, X86::MOV16rm,
8827                                               X86::LCMPXCHG16,
8828                                               X86::NOT16r, X86::AX,
8829                                               X86::GR16RegisterClass);
8830  case X86::ATOMXOR16:
8831    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8832                                               X86::XOR16ri, X86::MOV16rm,
8833                                               X86::LCMPXCHG16,
8834                                               X86::NOT16r, X86::AX,
8835                                               X86::GR16RegisterClass);
8836  case X86::ATOMNAND16:
8837    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8838                                               X86::AND16ri, X86::MOV16rm,
8839                                               X86::LCMPXCHG16,
8840                                               X86::NOT16r, X86::AX,
8841                                               X86::GR16RegisterClass, true);
8842  case X86::ATOMMIN16:
8843    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8844  case X86::ATOMMAX16:
8845    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8846  case X86::ATOMUMIN16:
8847    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8848  case X86::ATOMUMAX16:
8849    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8850
8851  case X86::ATOMAND8:
8852    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8853                                               X86::AND8ri, X86::MOV8rm,
8854                                               X86::LCMPXCHG8,
8855                                               X86::NOT8r, X86::AL,
8856                                               X86::GR8RegisterClass);
8857  case X86::ATOMOR8:
8858    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8859                                               X86::OR8ri, X86::MOV8rm,
8860                                               X86::LCMPXCHG8,
8861                                               X86::NOT8r, X86::AL,
8862                                               X86::GR8RegisterClass);
8863  case X86::ATOMXOR8:
8864    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8865                                               X86::XOR8ri, X86::MOV8rm,
8866                                               X86::LCMPXCHG8,
8867                                               X86::NOT8r, X86::AL,
8868                                               X86::GR8RegisterClass);
8869  case X86::ATOMNAND8:
8870    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8871                                               X86::AND8ri, X86::MOV8rm,
8872                                               X86::LCMPXCHG8,
8873                                               X86::NOT8r, X86::AL,
8874                                               X86::GR8RegisterClass, true);
8875  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8876  // This group is for 64-bit host.
8877  case X86::ATOMAND64:
8878    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8879                                               X86::AND64ri32, X86::MOV64rm,
8880                                               X86::LCMPXCHG64,
8881                                               X86::NOT64r, X86::RAX,
8882                                               X86::GR64RegisterClass);
8883  case X86::ATOMOR64:
8884    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8885                                               X86::OR64ri32, X86::MOV64rm,
8886                                               X86::LCMPXCHG64,
8887                                               X86::NOT64r, X86::RAX,
8888                                               X86::GR64RegisterClass);
8889  case X86::ATOMXOR64:
8890    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8891                                               X86::XOR64ri32, X86::MOV64rm,
8892                                               X86::LCMPXCHG64,
8893                                               X86::NOT64r, X86::RAX,
8894                                               X86::GR64RegisterClass);
8895  case X86::ATOMNAND64:
8896    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8897                                               X86::AND64ri32, X86::MOV64rm,
8898                                               X86::LCMPXCHG64,
8899                                               X86::NOT64r, X86::RAX,
8900                                               X86::GR64RegisterClass, true);
8901  case X86::ATOMMIN64:
8902    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8903  case X86::ATOMMAX64:
8904    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8905  case X86::ATOMUMIN64:
8906    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8907  case X86::ATOMUMAX64:
8908    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8909
8910  // This group does 64-bit operations on a 32-bit host.
8911  case X86::ATOMAND6432:
8912    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8913                                               X86::AND32rr, X86::AND32rr,
8914                                               X86::AND32ri, X86::AND32ri,
8915                                               false);
8916  case X86::ATOMOR6432:
8917    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8918                                               X86::OR32rr, X86::OR32rr,
8919                                               X86::OR32ri, X86::OR32ri,
8920                                               false);
8921  case X86::ATOMXOR6432:
8922    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8923                                               X86::XOR32rr, X86::XOR32rr,
8924                                               X86::XOR32ri, X86::XOR32ri,
8925                                               false);
8926  case X86::ATOMNAND6432:
8927    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8928                                               X86::AND32rr, X86::AND32rr,
8929                                               X86::AND32ri, X86::AND32ri,
8930                                               true);
8931  case X86::ATOMADD6432:
8932    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8933                                               X86::ADD32rr, X86::ADC32rr,
8934                                               X86::ADD32ri, X86::ADC32ri,
8935                                               false);
8936  case X86::ATOMSUB6432:
8937    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8938                                               X86::SUB32rr, X86::SBB32rr,
8939                                               X86::SUB32ri, X86::SBB32ri,
8940                                               false);
8941  case X86::ATOMSWAP6432:
8942    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8943                                               X86::MOV32rr, X86::MOV32rr,
8944                                               X86::MOV32ri, X86::MOV32ri,
8945                                               false);
8946  case X86::VASTART_SAVE_XMM_REGS:
8947    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8948  }
8949}
8950
8951//===----------------------------------------------------------------------===//
8952//                           X86 Optimization Hooks
8953//===----------------------------------------------------------------------===//
8954
8955void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8956                                                       const APInt &Mask,
8957                                                       APInt &KnownZero,
8958                                                       APInt &KnownOne,
8959                                                       const SelectionDAG &DAG,
8960                                                       unsigned Depth) const {
8961  unsigned Opc = Op.getOpcode();
8962  assert((Opc >= ISD::BUILTIN_OP_END ||
8963          Opc == ISD::INTRINSIC_WO_CHAIN ||
8964          Opc == ISD::INTRINSIC_W_CHAIN ||
8965          Opc == ISD::INTRINSIC_VOID) &&
8966         "Should use MaskedValueIsZero if you don't know whether Op"
8967         " is a target node!");
8968
8969  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8970  switch (Opc) {
8971  default: break;
8972  case X86ISD::ADD:
8973  case X86ISD::SUB:
8974  case X86ISD::SMUL:
8975  case X86ISD::UMUL:
8976  case X86ISD::INC:
8977  case X86ISD::DEC:
8978  case X86ISD::OR:
8979  case X86ISD::XOR:
8980  case X86ISD::AND:
8981    // These nodes' second result is a boolean.
8982    if (Op.getResNo() == 0)
8983      break;
8984    // Fallthrough
8985  case X86ISD::SETCC:
8986    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8987                                       Mask.getBitWidth() - 1);
8988    break;
8989  }
8990}
8991
8992/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8993/// node is a GlobalAddress + offset.
8994bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8995                                       const GlobalValue* &GA,
8996                                       int64_t &Offset) const {
8997  if (N->getOpcode() == X86ISD::Wrapper) {
8998    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8999      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
9000      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
9001      return true;
9002    }
9003  }
9004  return TargetLowering::isGAPlusOffset(N, GA, Offset);
9005}
9006
9007/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
9008/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
9009/// if the load addresses are consecutive, non-overlapping, and in the right
9010/// order.
9011static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
9012                                     const TargetLowering &TLI) {
9013  DebugLoc dl = N->getDebugLoc();
9014  EVT VT = N->getValueType(0);
9015  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9016
9017  if (VT.getSizeInBits() != 128)
9018    return SDValue();
9019
9020  SmallVector<SDValue, 16> Elts;
9021  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
9022    Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
9023
9024  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
9025}
9026
9027/// PerformShuffleCombine - Detect vector gather/scatter index generation
9028/// and convert it from being a bunch of shuffles and extracts to a simple
9029/// store and scalar loads to extract the elements.
9030static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
9031                                                const TargetLowering &TLI) {
9032  SDValue InputVector = N->getOperand(0);
9033
9034  // Only operate on vectors of 4 elements, where the alternative shuffling
9035  // gets to be more expensive.
9036  if (InputVector.getValueType() != MVT::v4i32)
9037    return SDValue();
9038
9039  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
9040  // single use which is a sign-extend or zero-extend, and all elements are
9041  // used.
9042  SmallVector<SDNode *, 4> Uses;
9043  unsigned ExtractedElements = 0;
9044  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
9045       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
9046    if (UI.getUse().getResNo() != InputVector.getResNo())
9047      return SDValue();
9048
9049    SDNode *Extract = *UI;
9050    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9051      return SDValue();
9052
9053    if (Extract->getValueType(0) != MVT::i32)
9054      return SDValue();
9055    if (!Extract->hasOneUse())
9056      return SDValue();
9057    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
9058        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
9059      return SDValue();
9060    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
9061      return SDValue();
9062
9063    // Record which element was extracted.
9064    ExtractedElements |=
9065      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
9066
9067    Uses.push_back(Extract);
9068  }
9069
9070  // If not all the elements were used, this may not be worthwhile.
9071  if (ExtractedElements != 15)
9072    return SDValue();
9073
9074  // Ok, we've now decided to do the transformation.
9075  DebugLoc dl = InputVector.getDebugLoc();
9076
9077  // Store the value to a temporary stack slot.
9078  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
9079  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL,
9080                            0, false, false, 0);
9081
9082  // Replace each use (extract) with a load of the appropriate element.
9083  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
9084       UE = Uses.end(); UI != UE; ++UI) {
9085    SDNode *Extract = *UI;
9086
9087    // Compute the element's address.
9088    SDValue Idx = Extract->getOperand(1);
9089    unsigned EltSize =
9090        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
9091    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
9092    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
9093
9094    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
9095                                     OffsetVal, StackPtr);
9096
9097    // Load the scalar.
9098    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
9099                                     ScalarAddr, NULL, 0, false, false, 0);
9100
9101    // Replace the exact with the load.
9102    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
9103  }
9104
9105  // The replacement was made in place; don't return anything.
9106  return SDValue();
9107}
9108
9109/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
9110static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9111                                    const X86Subtarget *Subtarget) {
9112  DebugLoc DL = N->getDebugLoc();
9113  SDValue Cond = N->getOperand(0);
9114  // Get the LHS/RHS of the select.
9115  SDValue LHS = N->getOperand(1);
9116  SDValue RHS = N->getOperand(2);
9117
9118  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9119  // instructions match the semantics of the common C idiom x<y?x:y but not
9120  // x<=y?x:y, because of how they handle negative zero (which can be
9121  // ignored in unsafe-math mode).
9122  if (Subtarget->hasSSE2() &&
9123      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9124      Cond.getOpcode() == ISD::SETCC) {
9125    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9126
9127    unsigned Opcode = 0;
9128    // Check for x CC y ? x : y.
9129    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9130        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9131      switch (CC) {
9132      default: break;
9133      case ISD::SETULT:
9134        // Converting this to a min would handle NaNs incorrectly, and swapping
9135        // the operands would cause it to handle comparisons between positive
9136        // and negative zero incorrectly.
9137        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9138          if (!UnsafeFPMath &&
9139              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9140            break;
9141          std::swap(LHS, RHS);
9142        }
9143        Opcode = X86ISD::FMIN;
9144        break;
9145      case ISD::SETOLE:
9146        // Converting this to a min would handle comparisons between positive
9147        // and negative zero incorrectly.
9148        if (!UnsafeFPMath &&
9149            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9150          break;
9151        Opcode = X86ISD::FMIN;
9152        break;
9153      case ISD::SETULE:
9154        // Converting this to a min would handle both negative zeros and NaNs
9155        // incorrectly, but we can swap the operands to fix both.
9156        std::swap(LHS, RHS);
9157      case ISD::SETOLT:
9158      case ISD::SETLT:
9159      case ISD::SETLE:
9160        Opcode = X86ISD::FMIN;
9161        break;
9162
9163      case ISD::SETOGE:
9164        // Converting this to a max would handle comparisons between positive
9165        // and negative zero incorrectly.
9166        if (!UnsafeFPMath &&
9167            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9168          break;
9169        Opcode = X86ISD::FMAX;
9170        break;
9171      case ISD::SETUGT:
9172        // Converting this to a max would handle NaNs incorrectly, and swapping
9173        // the operands would cause it to handle comparisons between positive
9174        // and negative zero incorrectly.
9175        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9176          if (!UnsafeFPMath &&
9177              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9178            break;
9179          std::swap(LHS, RHS);
9180        }
9181        Opcode = X86ISD::FMAX;
9182        break;
9183      case ISD::SETUGE:
9184        // Converting this to a max would handle both negative zeros and NaNs
9185        // incorrectly, but we can swap the operands to fix both.
9186        std::swap(LHS, RHS);
9187      case ISD::SETOGT:
9188      case ISD::SETGT:
9189      case ISD::SETGE:
9190        Opcode = X86ISD::FMAX;
9191        break;
9192      }
9193    // Check for x CC y ? y : x -- a min/max with reversed arms.
9194    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9195               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9196      switch (CC) {
9197      default: break;
9198      case ISD::SETOGE:
9199        // Converting this to a min would handle comparisons between positive
9200        // and negative zero incorrectly, and swapping the operands would
9201        // cause it to handle NaNs incorrectly.
9202        if (!UnsafeFPMath &&
9203            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9204          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9205            break;
9206          std::swap(LHS, RHS);
9207        }
9208        Opcode = X86ISD::FMIN;
9209        break;
9210      case ISD::SETUGT:
9211        // Converting this to a min would handle NaNs incorrectly.
9212        if (!UnsafeFPMath &&
9213            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9214          break;
9215        Opcode = X86ISD::FMIN;
9216        break;
9217      case ISD::SETUGE:
9218        // Converting this to a min would handle both negative zeros and NaNs
9219        // incorrectly, but we can swap the operands to fix both.
9220        std::swap(LHS, RHS);
9221      case ISD::SETOGT:
9222      case ISD::SETGT:
9223      case ISD::SETGE:
9224        Opcode = X86ISD::FMIN;
9225        break;
9226
9227      case ISD::SETULT:
9228        // Converting this to a max would handle NaNs incorrectly.
9229        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9230          break;
9231        Opcode = X86ISD::FMAX;
9232        break;
9233      case ISD::SETOLE:
9234        // Converting this to a max would handle comparisons between positive
9235        // and negative zero incorrectly, and swapping the operands would
9236        // cause it to handle NaNs incorrectly.
9237        if (!UnsafeFPMath &&
9238            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9239          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9240            break;
9241          std::swap(LHS, RHS);
9242        }
9243        Opcode = X86ISD::FMAX;
9244        break;
9245      case ISD::SETULE:
9246        // Converting this to a max would handle both negative zeros and NaNs
9247        // incorrectly, but we can swap the operands to fix both.
9248        std::swap(LHS, RHS);
9249      case ISD::SETOLT:
9250      case ISD::SETLT:
9251      case ISD::SETLE:
9252        Opcode = X86ISD::FMAX;
9253        break;
9254      }
9255    }
9256
9257    if (Opcode)
9258      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9259  }
9260
9261  // If this is a select between two integer constants, try to do some
9262  // optimizations.
9263  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9264    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9265      // Don't do this for crazy integer types.
9266      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9267        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9268        // so that TrueC (the true value) is larger than FalseC.
9269        bool NeedsCondInvert = false;
9270
9271        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9272            // Efficiently invertible.
9273            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9274             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9275              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9276          NeedsCondInvert = true;
9277          std::swap(TrueC, FalseC);
9278        }
9279
9280        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9281        if (FalseC->getAPIntValue() == 0 &&
9282            TrueC->getAPIntValue().isPowerOf2()) {
9283          if (NeedsCondInvert) // Invert the condition if needed.
9284            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9285                               DAG.getConstant(1, Cond.getValueType()));
9286
9287          // Zero extend the condition if needed.
9288          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9289
9290          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9291          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9292                             DAG.getConstant(ShAmt, MVT::i8));
9293        }
9294
9295        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9296        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9297          if (NeedsCondInvert) // Invert the condition if needed.
9298            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9299                               DAG.getConstant(1, Cond.getValueType()));
9300
9301          // Zero extend the condition if needed.
9302          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9303                             FalseC->getValueType(0), Cond);
9304          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9305                             SDValue(FalseC, 0));
9306        }
9307
9308        // Optimize cases that will turn into an LEA instruction.  This requires
9309        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9310        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9311          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9312          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9313
9314          bool isFastMultiplier = false;
9315          if (Diff < 10) {
9316            switch ((unsigned char)Diff) {
9317              default: break;
9318              case 1:  // result = add base, cond
9319              case 2:  // result = lea base(    , cond*2)
9320              case 3:  // result = lea base(cond, cond*2)
9321              case 4:  // result = lea base(    , cond*4)
9322              case 5:  // result = lea base(cond, cond*4)
9323              case 8:  // result = lea base(    , cond*8)
9324              case 9:  // result = lea base(cond, cond*8)
9325                isFastMultiplier = true;
9326                break;
9327            }
9328          }
9329
9330          if (isFastMultiplier) {
9331            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9332            if (NeedsCondInvert) // Invert the condition if needed.
9333              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9334                                 DAG.getConstant(1, Cond.getValueType()));
9335
9336            // Zero extend the condition if needed.
9337            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9338                               Cond);
9339            // Scale the condition by the difference.
9340            if (Diff != 1)
9341              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9342                                 DAG.getConstant(Diff, Cond.getValueType()));
9343
9344            // Add the base if non-zero.
9345            if (FalseC->getAPIntValue() != 0)
9346              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9347                                 SDValue(FalseC, 0));
9348            return Cond;
9349          }
9350        }
9351      }
9352  }
9353
9354  return SDValue();
9355}
9356
9357/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9358static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9359                                  TargetLowering::DAGCombinerInfo &DCI) {
9360  DebugLoc DL = N->getDebugLoc();
9361
9362  // If the flag operand isn't dead, don't touch this CMOV.
9363  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9364    return SDValue();
9365
9366  // If this is a select between two integer constants, try to do some
9367  // optimizations.  Note that the operands are ordered the opposite of SELECT
9368  // operands.
9369  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9370    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9371      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9372      // larger than FalseC (the false value).
9373      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9374
9375      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9376        CC = X86::GetOppositeBranchCondition(CC);
9377        std::swap(TrueC, FalseC);
9378      }
9379
9380      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9381      // This is efficient for any integer data type (including i8/i16) and
9382      // shift amount.
9383      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9384        SDValue Cond = N->getOperand(3);
9385        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9386                           DAG.getConstant(CC, MVT::i8), Cond);
9387
9388        // Zero extend the condition if needed.
9389        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9390
9391        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9392        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9393                           DAG.getConstant(ShAmt, MVT::i8));
9394        if (N->getNumValues() == 2)  // Dead flag value?
9395          return DCI.CombineTo(N, Cond, SDValue());
9396        return Cond;
9397      }
9398
9399      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9400      // for any integer data type, including i8/i16.
9401      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9402        SDValue Cond = N->getOperand(3);
9403        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9404                           DAG.getConstant(CC, MVT::i8), Cond);
9405
9406        // Zero extend the condition if needed.
9407        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9408                           FalseC->getValueType(0), Cond);
9409        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9410                           SDValue(FalseC, 0));
9411
9412        if (N->getNumValues() == 2)  // Dead flag value?
9413          return DCI.CombineTo(N, Cond, SDValue());
9414        return Cond;
9415      }
9416
9417      // Optimize cases that will turn into an LEA instruction.  This requires
9418      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9419      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9420        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9421        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9422
9423        bool isFastMultiplier = false;
9424        if (Diff < 10) {
9425          switch ((unsigned char)Diff) {
9426          default: break;
9427          case 1:  // result = add base, cond
9428          case 2:  // result = lea base(    , cond*2)
9429          case 3:  // result = lea base(cond, cond*2)
9430          case 4:  // result = lea base(    , cond*4)
9431          case 5:  // result = lea base(cond, cond*4)
9432          case 8:  // result = lea base(    , cond*8)
9433          case 9:  // result = lea base(cond, cond*8)
9434            isFastMultiplier = true;
9435            break;
9436          }
9437        }
9438
9439        if (isFastMultiplier) {
9440          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9441          SDValue Cond = N->getOperand(3);
9442          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9443                             DAG.getConstant(CC, MVT::i8), Cond);
9444          // Zero extend the condition if needed.
9445          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9446                             Cond);
9447          // Scale the condition by the difference.
9448          if (Diff != 1)
9449            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9450                               DAG.getConstant(Diff, Cond.getValueType()));
9451
9452          // Add the base if non-zero.
9453          if (FalseC->getAPIntValue() != 0)
9454            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9455                               SDValue(FalseC, 0));
9456          if (N->getNumValues() == 2)  // Dead flag value?
9457            return DCI.CombineTo(N, Cond, SDValue());
9458          return Cond;
9459        }
9460      }
9461    }
9462  }
9463  return SDValue();
9464}
9465
9466
9467/// PerformMulCombine - Optimize a single multiply with constant into two
9468/// in order to implement it with two cheaper instructions, e.g.
9469/// LEA + SHL, LEA + LEA.
9470static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9471                                 TargetLowering::DAGCombinerInfo &DCI) {
9472  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9473    return SDValue();
9474
9475  EVT VT = N->getValueType(0);
9476  if (VT != MVT::i64)
9477    return SDValue();
9478
9479  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9480  if (!C)
9481    return SDValue();
9482  uint64_t MulAmt = C->getZExtValue();
9483  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9484    return SDValue();
9485
9486  uint64_t MulAmt1 = 0;
9487  uint64_t MulAmt2 = 0;
9488  if ((MulAmt % 9) == 0) {
9489    MulAmt1 = 9;
9490    MulAmt2 = MulAmt / 9;
9491  } else if ((MulAmt % 5) == 0) {
9492    MulAmt1 = 5;
9493    MulAmt2 = MulAmt / 5;
9494  } else if ((MulAmt % 3) == 0) {
9495    MulAmt1 = 3;
9496    MulAmt2 = MulAmt / 3;
9497  }
9498  if (MulAmt2 &&
9499      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9500    DebugLoc DL = N->getDebugLoc();
9501
9502    if (isPowerOf2_64(MulAmt2) &&
9503        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9504      // If second multiplifer is pow2, issue it first. We want the multiply by
9505      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9506      // is an add.
9507      std::swap(MulAmt1, MulAmt2);
9508
9509    SDValue NewMul;
9510    if (isPowerOf2_64(MulAmt1))
9511      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9512                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9513    else
9514      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9515                           DAG.getConstant(MulAmt1, VT));
9516
9517    if (isPowerOf2_64(MulAmt2))
9518      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9519                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9520    else
9521      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9522                           DAG.getConstant(MulAmt2, VT));
9523
9524    // Do not add new nodes to DAG combiner worklist.
9525    DCI.CombineTo(N, NewMul, false);
9526  }
9527  return SDValue();
9528}
9529
9530static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9531  SDValue N0 = N->getOperand(0);
9532  SDValue N1 = N->getOperand(1);
9533  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9534  EVT VT = N0.getValueType();
9535
9536  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9537  // since the result of setcc_c is all zero's or all ones.
9538  if (N1C && N0.getOpcode() == ISD::AND &&
9539      N0.getOperand(1).getOpcode() == ISD::Constant) {
9540    SDValue N00 = N0.getOperand(0);
9541    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9542        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9543          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9544         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9545      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9546      APInt ShAmt = N1C->getAPIntValue();
9547      Mask = Mask.shl(ShAmt);
9548      if (Mask != 0)
9549        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9550                           N00, DAG.getConstant(Mask, VT));
9551    }
9552  }
9553
9554  return SDValue();
9555}
9556
9557/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9558///                       when possible.
9559static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9560                                   const X86Subtarget *Subtarget) {
9561  EVT VT = N->getValueType(0);
9562  if (!VT.isVector() && VT.isInteger() &&
9563      N->getOpcode() == ISD::SHL)
9564    return PerformSHLCombine(N, DAG);
9565
9566  // On X86 with SSE2 support, we can transform this to a vector shift if
9567  // all elements are shifted by the same amount.  We can't do this in legalize
9568  // because the a constant vector is typically transformed to a constant pool
9569  // so we have no knowledge of the shift amount.
9570  if (!Subtarget->hasSSE2())
9571    return SDValue();
9572
9573  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9574    return SDValue();
9575
9576  SDValue ShAmtOp = N->getOperand(1);
9577  EVT EltVT = VT.getVectorElementType();
9578  DebugLoc DL = N->getDebugLoc();
9579  SDValue BaseShAmt = SDValue();
9580  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9581    unsigned NumElts = VT.getVectorNumElements();
9582    unsigned i = 0;
9583    for (; i != NumElts; ++i) {
9584      SDValue Arg = ShAmtOp.getOperand(i);
9585      if (Arg.getOpcode() == ISD::UNDEF) continue;
9586      BaseShAmt = Arg;
9587      break;
9588    }
9589    for (; i != NumElts; ++i) {
9590      SDValue Arg = ShAmtOp.getOperand(i);
9591      if (Arg.getOpcode() == ISD::UNDEF) continue;
9592      if (Arg != BaseShAmt) {
9593        return SDValue();
9594      }
9595    }
9596  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9597             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9598    SDValue InVec = ShAmtOp.getOperand(0);
9599    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9600      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9601      unsigned i = 0;
9602      for (; i != NumElts; ++i) {
9603        SDValue Arg = InVec.getOperand(i);
9604        if (Arg.getOpcode() == ISD::UNDEF) continue;
9605        BaseShAmt = Arg;
9606        break;
9607      }
9608    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9609       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9610         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9611         if (C->getZExtValue() == SplatIdx)
9612           BaseShAmt = InVec.getOperand(1);
9613       }
9614    }
9615    if (BaseShAmt.getNode() == 0)
9616      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9617                              DAG.getIntPtrConstant(0));
9618  } else
9619    return SDValue();
9620
9621  // The shift amount is an i32.
9622  if (EltVT.bitsGT(MVT::i32))
9623    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9624  else if (EltVT.bitsLT(MVT::i32))
9625    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9626
9627  // The shift amount is identical so we can do a vector shift.
9628  SDValue  ValOp = N->getOperand(0);
9629  switch (N->getOpcode()) {
9630  default:
9631    llvm_unreachable("Unknown shift opcode!");
9632    break;
9633  case ISD::SHL:
9634    if (VT == MVT::v2i64)
9635      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9636                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9637                         ValOp, BaseShAmt);
9638    if (VT == MVT::v4i32)
9639      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9640                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9641                         ValOp, BaseShAmt);
9642    if (VT == MVT::v8i16)
9643      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9644                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9645                         ValOp, BaseShAmt);
9646    break;
9647  case ISD::SRA:
9648    if (VT == MVT::v4i32)
9649      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9650                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9651                         ValOp, BaseShAmt);
9652    if (VT == MVT::v8i16)
9653      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9654                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9655                         ValOp, BaseShAmt);
9656    break;
9657  case ISD::SRL:
9658    if (VT == MVT::v2i64)
9659      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9660                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9661                         ValOp, BaseShAmt);
9662    if (VT == MVT::v4i32)
9663      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9664                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9665                         ValOp, BaseShAmt);
9666    if (VT ==  MVT::v8i16)
9667      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9668                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9669                         ValOp, BaseShAmt);
9670    break;
9671  }
9672  return SDValue();
9673}
9674
9675static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9676                                TargetLowering::DAGCombinerInfo &DCI,
9677                                const X86Subtarget *Subtarget) {
9678  if (DCI.isBeforeLegalizeOps())
9679    return SDValue();
9680
9681  EVT VT = N->getValueType(0);
9682  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
9683    return SDValue();
9684
9685  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9686  SDValue N0 = N->getOperand(0);
9687  SDValue N1 = N->getOperand(1);
9688  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9689    std::swap(N0, N1);
9690  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9691    return SDValue();
9692  if (!N0.hasOneUse() || !N1.hasOneUse())
9693    return SDValue();
9694
9695  SDValue ShAmt0 = N0.getOperand(1);
9696  if (ShAmt0.getValueType() != MVT::i8)
9697    return SDValue();
9698  SDValue ShAmt1 = N1.getOperand(1);
9699  if (ShAmt1.getValueType() != MVT::i8)
9700    return SDValue();
9701  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9702    ShAmt0 = ShAmt0.getOperand(0);
9703  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9704    ShAmt1 = ShAmt1.getOperand(0);
9705
9706  DebugLoc DL = N->getDebugLoc();
9707  unsigned Opc = X86ISD::SHLD;
9708  SDValue Op0 = N0.getOperand(0);
9709  SDValue Op1 = N1.getOperand(0);
9710  if (ShAmt0.getOpcode() == ISD::SUB) {
9711    Opc = X86ISD::SHRD;
9712    std::swap(Op0, Op1);
9713    std::swap(ShAmt0, ShAmt1);
9714  }
9715
9716  unsigned Bits = VT.getSizeInBits();
9717  if (ShAmt1.getOpcode() == ISD::SUB) {
9718    SDValue Sum = ShAmt1.getOperand(0);
9719    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9720      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
9721      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
9722        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
9723      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
9724        return DAG.getNode(Opc, DL, VT,
9725                           Op0, Op1,
9726                           DAG.getNode(ISD::TRUNCATE, DL,
9727                                       MVT::i8, ShAmt0));
9728    }
9729  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9730    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9731    if (ShAmt0C &&
9732        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
9733      return DAG.getNode(Opc, DL, VT,
9734                         N0.getOperand(0), N1.getOperand(0),
9735                         DAG.getNode(ISD::TRUNCATE, DL,
9736                                       MVT::i8, ShAmt0));
9737  }
9738
9739  return SDValue();
9740}
9741
9742/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9743static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9744                                   const X86Subtarget *Subtarget) {
9745  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9746  // the FP state in cases where an emms may be missing.
9747  // A preferable solution to the general problem is to figure out the right
9748  // places to insert EMMS.  This qualifies as a quick hack.
9749
9750  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9751  StoreSDNode *St = cast<StoreSDNode>(N);
9752  EVT VT = St->getValue().getValueType();
9753  if (VT.getSizeInBits() != 64)
9754    return SDValue();
9755
9756  const Function *F = DAG.getMachineFunction().getFunction();
9757  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9758  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9759    && Subtarget->hasSSE2();
9760  if ((VT.isVector() ||
9761       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9762      isa<LoadSDNode>(St->getValue()) &&
9763      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9764      St->getChain().hasOneUse() && !St->isVolatile()) {
9765    SDNode* LdVal = St->getValue().getNode();
9766    LoadSDNode *Ld = 0;
9767    int TokenFactorIndex = -1;
9768    SmallVector<SDValue, 8> Ops;
9769    SDNode* ChainVal = St->getChain().getNode();
9770    // Must be a store of a load.  We currently handle two cases:  the load
9771    // is a direct child, and it's under an intervening TokenFactor.  It is
9772    // possible to dig deeper under nested TokenFactors.
9773    if (ChainVal == LdVal)
9774      Ld = cast<LoadSDNode>(St->getChain());
9775    else if (St->getValue().hasOneUse() &&
9776             ChainVal->getOpcode() == ISD::TokenFactor) {
9777      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9778        if (ChainVal->getOperand(i).getNode() == LdVal) {
9779          TokenFactorIndex = i;
9780          Ld = cast<LoadSDNode>(St->getValue());
9781        } else
9782          Ops.push_back(ChainVal->getOperand(i));
9783      }
9784    }
9785
9786    if (!Ld || !ISD::isNormalLoad(Ld))
9787      return SDValue();
9788
9789    // If this is not the MMX case, i.e. we are just turning i64 load/store
9790    // into f64 load/store, avoid the transformation if there are multiple
9791    // uses of the loaded value.
9792    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9793      return SDValue();
9794
9795    DebugLoc LdDL = Ld->getDebugLoc();
9796    DebugLoc StDL = N->getDebugLoc();
9797    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9798    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9799    // pair instead.
9800    if (Subtarget->is64Bit() || F64IsLegal) {
9801      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9802      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9803                                  Ld->getBasePtr(), Ld->getSrcValue(),
9804                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9805                                  Ld->isNonTemporal(), Ld->getAlignment());
9806      SDValue NewChain = NewLd.getValue(1);
9807      if (TokenFactorIndex != -1) {
9808        Ops.push_back(NewChain);
9809        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9810                               Ops.size());
9811      }
9812      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9813                          St->getSrcValue(), St->getSrcValueOffset(),
9814                          St->isVolatile(), St->isNonTemporal(),
9815                          St->getAlignment());
9816    }
9817
9818    // Otherwise, lower to two pairs of 32-bit loads / stores.
9819    SDValue LoAddr = Ld->getBasePtr();
9820    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9821                                 DAG.getConstant(4, MVT::i32));
9822
9823    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9824                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9825                               Ld->isVolatile(), Ld->isNonTemporal(),
9826                               Ld->getAlignment());
9827    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9828                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9829                               Ld->isVolatile(), Ld->isNonTemporal(),
9830                               MinAlign(Ld->getAlignment(), 4));
9831
9832    SDValue NewChain = LoLd.getValue(1);
9833    if (TokenFactorIndex != -1) {
9834      Ops.push_back(LoLd);
9835      Ops.push_back(HiLd);
9836      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9837                             Ops.size());
9838    }
9839
9840    LoAddr = St->getBasePtr();
9841    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9842                         DAG.getConstant(4, MVT::i32));
9843
9844    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9845                                St->getSrcValue(), St->getSrcValueOffset(),
9846                                St->isVolatile(), St->isNonTemporal(),
9847                                St->getAlignment());
9848    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9849                                St->getSrcValue(),
9850                                St->getSrcValueOffset() + 4,
9851                                St->isVolatile(),
9852                                St->isNonTemporal(),
9853                                MinAlign(St->getAlignment(), 4));
9854    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9855  }
9856  return SDValue();
9857}
9858
9859/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9860/// X86ISD::FXOR nodes.
9861static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9862  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9863  // F[X]OR(0.0, x) -> x
9864  // F[X]OR(x, 0.0) -> x
9865  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9866    if (C->getValueAPF().isPosZero())
9867      return N->getOperand(1);
9868  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9869    if (C->getValueAPF().isPosZero())
9870      return N->getOperand(0);
9871  return SDValue();
9872}
9873
9874/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9875static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9876  // FAND(0.0, x) -> 0.0
9877  // FAND(x, 0.0) -> 0.0
9878  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9879    if (C->getValueAPF().isPosZero())
9880      return N->getOperand(0);
9881  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9882    if (C->getValueAPF().isPosZero())
9883      return N->getOperand(1);
9884  return SDValue();
9885}
9886
9887static SDValue PerformBTCombine(SDNode *N,
9888                                SelectionDAG &DAG,
9889                                TargetLowering::DAGCombinerInfo &DCI) {
9890  // BT ignores high bits in the bit index operand.
9891  SDValue Op1 = N->getOperand(1);
9892  if (Op1.hasOneUse()) {
9893    unsigned BitWidth = Op1.getValueSizeInBits();
9894    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9895    APInt KnownZero, KnownOne;
9896    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
9897                                          !DCI.isBeforeLegalizeOps());
9898    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9899    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9900        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9901      DCI.CommitTargetLoweringOpt(TLO);
9902  }
9903  return SDValue();
9904}
9905
9906static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9907  SDValue Op = N->getOperand(0);
9908  if (Op.getOpcode() == ISD::BIT_CONVERT)
9909    Op = Op.getOperand(0);
9910  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9911  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9912      VT.getVectorElementType().getSizeInBits() ==
9913      OpVT.getVectorElementType().getSizeInBits()) {
9914    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9915  }
9916  return SDValue();
9917}
9918
9919static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
9920  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
9921  //           (and (i32 x86isd::setcc_carry), 1)
9922  // This eliminates the zext. This transformation is necessary because
9923  // ISD::SETCC is always legalized to i8.
9924  DebugLoc dl = N->getDebugLoc();
9925  SDValue N0 = N->getOperand(0);
9926  EVT VT = N->getValueType(0);
9927  if (N0.getOpcode() == ISD::AND &&
9928      N0.hasOneUse() &&
9929      N0.getOperand(0).hasOneUse()) {
9930    SDValue N00 = N0.getOperand(0);
9931    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
9932      return SDValue();
9933    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9934    if (!C || C->getZExtValue() != 1)
9935      return SDValue();
9936    return DAG.getNode(ISD::AND, dl, VT,
9937                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
9938                                   N00.getOperand(0), N00.getOperand(1)),
9939                       DAG.getConstant(1, VT));
9940  }
9941
9942  return SDValue();
9943}
9944
9945SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9946                                             DAGCombinerInfo &DCI) const {
9947  SelectionDAG &DAG = DCI.DAG;
9948  switch (N->getOpcode()) {
9949  default: break;
9950  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9951  case ISD::EXTRACT_VECTOR_ELT:
9952                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
9953  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9954  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9955  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9956  case ISD::SHL:
9957  case ISD::SRA:
9958  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9959  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
9960  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9961  case X86ISD::FXOR:
9962  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9963  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9964  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9965  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9966  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
9967  }
9968
9969  return SDValue();
9970}
9971
9972/// isTypeDesirableForOp - Return true if the target has native support for
9973/// the specified value type and it is 'desirable' to use the type for the
9974/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
9975/// instruction encodings are longer and some i16 instructions are slow.
9976bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
9977  if (!isTypeLegal(VT))
9978    return false;
9979  if (VT != MVT::i16)
9980    return true;
9981
9982  switch (Opc) {
9983  default:
9984    return true;
9985  case ISD::LOAD:
9986  case ISD::SIGN_EXTEND:
9987  case ISD::ZERO_EXTEND:
9988  case ISD::ANY_EXTEND:
9989  case ISD::SHL:
9990  case ISD::SRL:
9991  case ISD::SUB:
9992  case ISD::ADD:
9993  case ISD::MUL:
9994  case ISD::AND:
9995  case ISD::OR:
9996  case ISD::XOR:
9997    return false;
9998  }
9999}
10000
10001static bool MayFoldLoad(SDValue Op) {
10002  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
10003}
10004
10005static bool MayFoldIntoStore(SDValue Op) {
10006  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
10007}
10008
10009/// IsDesirableToPromoteOp - This method query the target whether it is
10010/// beneficial for dag combiner to promote the specified node. If true, it
10011/// should return the desired promotion type by reference.
10012bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
10013  EVT VT = Op.getValueType();
10014  if (VT != MVT::i16)
10015    return false;
10016
10017  bool Promote = false;
10018  bool Commute = false;
10019  switch (Op.getOpcode()) {
10020  default: break;
10021  case ISD::LOAD: {
10022    LoadSDNode *LD = cast<LoadSDNode>(Op);
10023    // If the non-extending load has a single use and it's not live out, then it
10024    // might be folded.
10025    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
10026                                                     Op.hasOneUse()*/) {
10027      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
10028             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
10029        // The only case where we'd want to promote LOAD (rather then it being
10030        // promoted as an operand is when it's only use is liveout.
10031        if (UI->getOpcode() != ISD::CopyToReg)
10032          return false;
10033      }
10034    }
10035    Promote = true;
10036    break;
10037  }
10038  case ISD::SIGN_EXTEND:
10039  case ISD::ZERO_EXTEND:
10040  case ISD::ANY_EXTEND:
10041    Promote = true;
10042    break;
10043  case ISD::SHL:
10044  case ISD::SRL: {
10045    SDValue N0 = Op.getOperand(0);
10046    // Look out for (store (shl (load), x)).
10047    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
10048      return false;
10049    Promote = true;
10050    break;
10051  }
10052  case ISD::ADD:
10053  case ISD::MUL:
10054  case ISD::AND:
10055  case ISD::OR:
10056  case ISD::XOR:
10057    Commute = true;
10058    // fallthrough
10059  case ISD::SUB: {
10060    SDValue N0 = Op.getOperand(0);
10061    SDValue N1 = Op.getOperand(1);
10062    if (!Commute && MayFoldLoad(N1))
10063      return false;
10064    // Avoid disabling potential load folding opportunities.
10065    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
10066      return false;
10067    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
10068      return false;
10069    Promote = true;
10070  }
10071  }
10072
10073  PVT = MVT::i32;
10074  return Promote;
10075}
10076
10077//===----------------------------------------------------------------------===//
10078//                           X86 Inline Assembly Support
10079//===----------------------------------------------------------------------===//
10080
10081static bool LowerToBSwap(CallInst *CI) {
10082  // FIXME: this should verify that we are targetting a 486 or better.  If not,
10083  // we will turn this bswap into something that will be lowered to logical ops
10084  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
10085  // so don't worry about this.
10086
10087  // Verify this is a simple bswap.
10088  if (CI->getNumArgOperands() != 1 ||
10089      CI->getType() != CI->getArgOperand(0)->getType() ||
10090      !CI->getType()->isIntegerTy())
10091    return false;
10092
10093  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10094  if (!Ty || Ty->getBitWidth() % 16 != 0)
10095    return false;
10096
10097  // Okay, we can do this xform, do so now.
10098  const Type *Tys[] = { Ty };
10099  Module *M = CI->getParent()->getParent()->getParent();
10100  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
10101
10102  Value *Op = CI->getArgOperand(0);
10103  Op = CallInst::Create(Int, Op, CI->getName(), CI);
10104
10105  CI->replaceAllUsesWith(Op);
10106  CI->eraseFromParent();
10107  return true;
10108}
10109
10110bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
10111  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10112  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
10113
10114  std::string AsmStr = IA->getAsmString();
10115
10116  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
10117  SmallVector<StringRef, 4> AsmPieces;
10118  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
10119
10120  switch (AsmPieces.size()) {
10121  default: return false;
10122  case 1:
10123    AsmStr = AsmPieces[0];
10124    AsmPieces.clear();
10125    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
10126
10127    // bswap $0
10128    if (AsmPieces.size() == 2 &&
10129        (AsmPieces[0] == "bswap" ||
10130         AsmPieces[0] == "bswapq" ||
10131         AsmPieces[0] == "bswapl") &&
10132        (AsmPieces[1] == "$0" ||
10133         AsmPieces[1] == "${0:q}")) {
10134      // No need to check constraints, nothing other than the equivalent of
10135      // "=r,0" would be valid here.
10136      return LowerToBSwap(CI);
10137    }
10138    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
10139    if (CI->getType()->isIntegerTy(16) &&
10140        AsmPieces.size() == 3 &&
10141        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
10142        AsmPieces[1] == "$$8," &&
10143        AsmPieces[2] == "${0:w}" &&
10144        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
10145      AsmPieces.clear();
10146      const std::string &Constraints = IA->getConstraintString();
10147      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
10148      std::sort(AsmPieces.begin(), AsmPieces.end());
10149      if (AsmPieces.size() == 4 &&
10150          AsmPieces[0] == "~{cc}" &&
10151          AsmPieces[1] == "~{dirflag}" &&
10152          AsmPieces[2] == "~{flags}" &&
10153          AsmPieces[3] == "~{fpsr}") {
10154        return LowerToBSwap(CI);
10155      }
10156    }
10157    break;
10158  case 3:
10159    if (CI->getType()->isIntegerTy(64) &&
10160        Constraints.size() >= 2 &&
10161        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
10162        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
10163      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
10164      SmallVector<StringRef, 4> Words;
10165      SplitString(AsmPieces[0], Words, " \t");
10166      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
10167        Words.clear();
10168        SplitString(AsmPieces[1], Words, " \t");
10169        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
10170          Words.clear();
10171          SplitString(AsmPieces[2], Words, " \t,");
10172          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10173              Words[2] == "%edx") {
10174            return LowerToBSwap(CI);
10175          }
10176        }
10177      }
10178    }
10179    break;
10180  }
10181  return false;
10182}
10183
10184
10185
10186/// getConstraintType - Given a constraint letter, return the type of
10187/// constraint it is for this target.
10188X86TargetLowering::ConstraintType
10189X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10190  if (Constraint.size() == 1) {
10191    switch (Constraint[0]) {
10192    case 'A':
10193      return C_Register;
10194    case 'f':
10195    case 'r':
10196    case 'R':
10197    case 'l':
10198    case 'q':
10199    case 'Q':
10200    case 'x':
10201    case 'y':
10202    case 'Y':
10203      return C_RegisterClass;
10204    case 'e':
10205    case 'Z':
10206      return C_Other;
10207    default:
10208      break;
10209    }
10210  }
10211  return TargetLowering::getConstraintType(Constraint);
10212}
10213
10214/// LowerXConstraint - try to replace an X constraint, which matches anything,
10215/// with another that has more specific requirements based on the type of the
10216/// corresponding operand.
10217const char *X86TargetLowering::
10218LowerXConstraint(EVT ConstraintVT) const {
10219  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10220  // 'f' like normal targets.
10221  if (ConstraintVT.isFloatingPoint()) {
10222    if (Subtarget->hasSSE2())
10223      return "Y";
10224    if (Subtarget->hasSSE1())
10225      return "x";
10226  }
10227
10228  return TargetLowering::LowerXConstraint(ConstraintVT);
10229}
10230
10231/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10232/// vector.  If it is invalid, don't add anything to Ops.
10233void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10234                                                     char Constraint,
10235                                                     std::vector<SDValue>&Ops,
10236                                                     SelectionDAG &DAG) const {
10237  SDValue Result(0, 0);
10238
10239  switch (Constraint) {
10240  default: break;
10241  case 'I':
10242    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10243      if (C->getZExtValue() <= 31) {
10244        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10245        break;
10246      }
10247    }
10248    return;
10249  case 'J':
10250    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10251      if (C->getZExtValue() <= 63) {
10252        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10253        break;
10254      }
10255    }
10256    return;
10257  case 'K':
10258    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10259      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10260        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10261        break;
10262      }
10263    }
10264    return;
10265  case 'N':
10266    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10267      if (C->getZExtValue() <= 255) {
10268        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10269        break;
10270      }
10271    }
10272    return;
10273  case 'e': {
10274    // 32-bit signed value
10275    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10276      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10277                                           C->getSExtValue())) {
10278        // Widen to 64 bits here to get it sign extended.
10279        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10280        break;
10281      }
10282    // FIXME gcc accepts some relocatable values here too, but only in certain
10283    // memory models; it's complicated.
10284    }
10285    return;
10286  }
10287  case 'Z': {
10288    // 32-bit unsigned value
10289    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10290      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10291                                           C->getZExtValue())) {
10292        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10293        break;
10294      }
10295    }
10296    // FIXME gcc accepts some relocatable values here too, but only in certain
10297    // memory models; it's complicated.
10298    return;
10299  }
10300  case 'i': {
10301    // Literal immediates are always ok.
10302    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10303      // Widen to 64 bits here to get it sign extended.
10304      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10305      break;
10306    }
10307
10308    // In any sort of PIC mode addresses need to be computed at runtime by
10309    // adding in a register or some sort of table lookup.  These can't
10310    // be used as immediates.
10311    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
10312      return;
10313
10314    // If we are in non-pic codegen mode, we allow the address of a global (with
10315    // an optional displacement) to be used with 'i'.
10316    GlobalAddressSDNode *GA = 0;
10317    int64_t Offset = 0;
10318
10319    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10320    while (1) {
10321      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10322        Offset += GA->getOffset();
10323        break;
10324      } else if (Op.getOpcode() == ISD::ADD) {
10325        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10326          Offset += C->getZExtValue();
10327          Op = Op.getOperand(0);
10328          continue;
10329        }
10330      } else if (Op.getOpcode() == ISD::SUB) {
10331        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10332          Offset += -C->getZExtValue();
10333          Op = Op.getOperand(0);
10334          continue;
10335        }
10336      }
10337
10338      // Otherwise, this isn't something we can handle, reject it.
10339      return;
10340    }
10341
10342    const GlobalValue *GV = GA->getGlobal();
10343    // If we require an extra load to get this address, as in PIC mode, we
10344    // can't accept it.
10345    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10346                                                        getTargetMachine())))
10347      return;
10348
10349    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
10350                                        GA->getValueType(0), Offset);
10351    break;
10352  }
10353  }
10354
10355  if (Result.getNode()) {
10356    Ops.push_back(Result);
10357    return;
10358  }
10359  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10360}
10361
10362std::vector<unsigned> X86TargetLowering::
10363getRegClassForInlineAsmConstraint(const std::string &Constraint,
10364                                  EVT VT) const {
10365  if (Constraint.size() == 1) {
10366    // FIXME: not handling fp-stack yet!
10367    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10368    default: break;  // Unknown constraint letter
10369    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10370      if (Subtarget->is64Bit()) {
10371        if (VT == MVT::i32)
10372          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10373                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10374                                       X86::R10D,X86::R11D,X86::R12D,
10375                                       X86::R13D,X86::R14D,X86::R15D,
10376                                       X86::EBP, X86::ESP, 0);
10377        else if (VT == MVT::i16)
10378          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10379                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10380                                       X86::R10W,X86::R11W,X86::R12W,
10381                                       X86::R13W,X86::R14W,X86::R15W,
10382                                       X86::BP,  X86::SP, 0);
10383        else if (VT == MVT::i8)
10384          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10385                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10386                                       X86::R10B,X86::R11B,X86::R12B,
10387                                       X86::R13B,X86::R14B,X86::R15B,
10388                                       X86::BPL, X86::SPL, 0);
10389
10390        else if (VT == MVT::i64)
10391          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10392                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10393                                       X86::R10, X86::R11, X86::R12,
10394                                       X86::R13, X86::R14, X86::R15,
10395                                       X86::RBP, X86::RSP, 0);
10396
10397        break;
10398      }
10399      // 32-bit fallthrough
10400    case 'Q':   // Q_REGS
10401      if (VT == MVT::i32)
10402        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10403      else if (VT == MVT::i16)
10404        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10405      else if (VT == MVT::i8)
10406        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10407      else if (VT == MVT::i64)
10408        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10409      break;
10410    }
10411  }
10412
10413  return std::vector<unsigned>();
10414}
10415
10416std::pair<unsigned, const TargetRegisterClass*>
10417X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10418                                                EVT VT) const {
10419  // First, see if this is a constraint that directly corresponds to an LLVM
10420  // register class.
10421  if (Constraint.size() == 1) {
10422    // GCC Constraint Letters
10423    switch (Constraint[0]) {
10424    default: break;
10425    case 'r':   // GENERAL_REGS
10426    case 'l':   // INDEX_REGS
10427      if (VT == MVT::i8)
10428        return std::make_pair(0U, X86::GR8RegisterClass);
10429      if (VT == MVT::i16)
10430        return std::make_pair(0U, X86::GR16RegisterClass);
10431      if (VT == MVT::i32 || !Subtarget->is64Bit())
10432        return std::make_pair(0U, X86::GR32RegisterClass);
10433      return std::make_pair(0U, X86::GR64RegisterClass);
10434    case 'R':   // LEGACY_REGS
10435      if (VT == MVT::i8)
10436        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10437      if (VT == MVT::i16)
10438        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10439      if (VT == MVT::i32 || !Subtarget->is64Bit())
10440        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10441      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10442    case 'f':  // FP Stack registers.
10443      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10444      // value to the correct fpstack register class.
10445      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10446        return std::make_pair(0U, X86::RFP32RegisterClass);
10447      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10448        return std::make_pair(0U, X86::RFP64RegisterClass);
10449      return std::make_pair(0U, X86::RFP80RegisterClass);
10450    case 'y':   // MMX_REGS if MMX allowed.
10451      if (!Subtarget->hasMMX()) break;
10452      return std::make_pair(0U, X86::VR64RegisterClass);
10453    case 'Y':   // SSE_REGS if SSE2 allowed
10454      if (!Subtarget->hasSSE2()) break;
10455      // FALL THROUGH.
10456    case 'x':   // SSE_REGS if SSE1 allowed
10457      if (!Subtarget->hasSSE1()) break;
10458
10459      switch (VT.getSimpleVT().SimpleTy) {
10460      default: break;
10461      // Scalar SSE types.
10462      case MVT::f32:
10463      case MVT::i32:
10464        return std::make_pair(0U, X86::FR32RegisterClass);
10465      case MVT::f64:
10466      case MVT::i64:
10467        return std::make_pair(0U, X86::FR64RegisterClass);
10468      // Vector types.
10469      case MVT::v16i8:
10470      case MVT::v8i16:
10471      case MVT::v4i32:
10472      case MVT::v2i64:
10473      case MVT::v4f32:
10474      case MVT::v2f64:
10475        return std::make_pair(0U, X86::VR128RegisterClass);
10476      }
10477      break;
10478    }
10479  }
10480
10481  // Use the default implementation in TargetLowering to convert the register
10482  // constraint into a member of a register class.
10483  std::pair<unsigned, const TargetRegisterClass*> Res;
10484  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10485
10486  // Not found as a standard register?
10487  if (Res.second == 0) {
10488    // Map st(0) -> st(7) -> ST0
10489    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10490        tolower(Constraint[1]) == 's' &&
10491        tolower(Constraint[2]) == 't' &&
10492        Constraint[3] == '(' &&
10493        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10494        Constraint[5] == ')' &&
10495        Constraint[6] == '}') {
10496
10497      Res.first = X86::ST0+Constraint[4]-'0';
10498      Res.second = X86::RFP80RegisterClass;
10499      return Res;
10500    }
10501
10502    // GCC allows "st(0)" to be called just plain "st".
10503    if (StringRef("{st}").equals_lower(Constraint)) {
10504      Res.first = X86::ST0;
10505      Res.second = X86::RFP80RegisterClass;
10506      return Res;
10507    }
10508
10509    // flags -> EFLAGS
10510    if (StringRef("{flags}").equals_lower(Constraint)) {
10511      Res.first = X86::EFLAGS;
10512      Res.second = X86::CCRRegisterClass;
10513      return Res;
10514    }
10515
10516    // 'A' means EAX + EDX.
10517    if (Constraint == "A") {
10518      Res.first = X86::EAX;
10519      Res.second = X86::GR32_ADRegisterClass;
10520      return Res;
10521    }
10522    return Res;
10523  }
10524
10525  // Otherwise, check to see if this is a register class of the wrong value
10526  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10527  // turn into {ax},{dx}.
10528  if (Res.second->hasType(VT))
10529    return Res;   // Correct type already, nothing to do.
10530
10531  // All of the single-register GCC register classes map their values onto
10532  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10533  // really want an 8-bit or 32-bit register, map to the appropriate register
10534  // class and return the appropriate register.
10535  if (Res.second == X86::GR16RegisterClass) {
10536    if (VT == MVT::i8) {
10537      unsigned DestReg = 0;
10538      switch (Res.first) {
10539      default: break;
10540      case X86::AX: DestReg = X86::AL; break;
10541      case X86::DX: DestReg = X86::DL; break;
10542      case X86::CX: DestReg = X86::CL; break;
10543      case X86::BX: DestReg = X86::BL; break;
10544      }
10545      if (DestReg) {
10546        Res.first = DestReg;
10547        Res.second = X86::GR8RegisterClass;
10548      }
10549    } else if (VT == MVT::i32) {
10550      unsigned DestReg = 0;
10551      switch (Res.first) {
10552      default: break;
10553      case X86::AX: DestReg = X86::EAX; break;
10554      case X86::DX: DestReg = X86::EDX; break;
10555      case X86::CX: DestReg = X86::ECX; break;
10556      case X86::BX: DestReg = X86::EBX; break;
10557      case X86::SI: DestReg = X86::ESI; break;
10558      case X86::DI: DestReg = X86::EDI; break;
10559      case X86::BP: DestReg = X86::EBP; break;
10560      case X86::SP: DestReg = X86::ESP; break;
10561      }
10562      if (DestReg) {
10563        Res.first = DestReg;
10564        Res.second = X86::GR32RegisterClass;
10565      }
10566    } else if (VT == MVT::i64) {
10567      unsigned DestReg = 0;
10568      switch (Res.first) {
10569      default: break;
10570      case X86::AX: DestReg = X86::RAX; break;
10571      case X86::DX: DestReg = X86::RDX; break;
10572      case X86::CX: DestReg = X86::RCX; break;
10573      case X86::BX: DestReg = X86::RBX; break;
10574      case X86::SI: DestReg = X86::RSI; break;
10575      case X86::DI: DestReg = X86::RDI; break;
10576      case X86::BP: DestReg = X86::RBP; break;
10577      case X86::SP: DestReg = X86::RSP; break;
10578      }
10579      if (DestReg) {
10580        Res.first = DestReg;
10581        Res.second = X86::GR64RegisterClass;
10582      }
10583    }
10584  } else if (Res.second == X86::FR32RegisterClass ||
10585             Res.second == X86::FR64RegisterClass ||
10586             Res.second == X86::VR128RegisterClass) {
10587    // Handle references to XMM physical registers that got mapped into the
10588    // wrong class.  This can happen with constraints like {xmm0} where the
10589    // target independent register mapper will just pick the first match it can
10590    // find, ignoring the required type.
10591    if (VT == MVT::f32)
10592      Res.second = X86::FR32RegisterClass;
10593    else if (VT == MVT::f64)
10594      Res.second = X86::FR64RegisterClass;
10595    else if (X86::VR128RegisterClass->hasType(VT))
10596      Res.second = X86::VR128RegisterClass;
10597  }
10598
10599  return Res;
10600}
10601