X86ISelLowering.cpp revision c82c20b315d47c124893ed1cb27c39b0050fd227
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Disable16Bit - 16-bit operations typically have a larger encoding than
61// corresponding 32-bit instructions, and 16-bit code is slow on some
62// processors. This is an experimental flag to disable 16-bit operations
63// (which forces them to be Legalized to 32-bit operations).
64static cl::opt<bool>
65Disable16Bit("disable-16bit", cl::Hidden,
66             cl::desc("Disable use of 16-bit instructions"));
67
68// Forward declarations.
69static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
70                       SDValue V2);
71
72static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
73  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
74  default: llvm_unreachable("unknown subtarget type");
75  case X86Subtarget::isDarwin:
76    if (TM.getSubtarget<X86Subtarget>().is64Bit())
77      return new X8664_MachoTargetObjectFile();
78    return new TargetLoweringObjectFileMachO();
79  case X86Subtarget::isELF:
80   if (TM.getSubtarget<X86Subtarget>().is64Bit())
81     return new X8664_ELFTargetObjectFile(TM);
82    return new X8632_ELFTargetObjectFile(TM);
83  case X86Subtarget::isMingw:
84  case X86Subtarget::isCygwin:
85  case X86Subtarget::isWindows:
86    return new TargetLoweringObjectFileCOFF();
87  }
88}
89
90X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
91  : TargetLowering(TM, createTLOF(TM)) {
92  Subtarget = &TM.getSubtarget<X86Subtarget>();
93  X86ScalarSSEf64 = Subtarget->hasSSE2();
94  X86ScalarSSEf32 = Subtarget->hasSSE1();
95  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
96
97  RegInfo = TM.getRegisterInfo();
98  TD = getTargetData();
99
100  // Set up the TargetLowering object.
101
102  // X86 is weird, it always uses i8 for shift amounts and setcc results.
103  setShiftAmountType(MVT::i8);
104  setBooleanContents(ZeroOrOneBooleanContent);
105  setSchedulingPreference(SchedulingForRegPressure);
106  setStackPointerRegisterToSaveRestore(X86StackPtr);
107
108  if (Subtarget->isTargetDarwin()) {
109    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
110    setUseUnderscoreSetJmp(false);
111    setUseUnderscoreLongJmp(false);
112  } else if (Subtarget->isTargetMingw()) {
113    // MS runtime is weird: it exports _setjmp, but longjmp!
114    setUseUnderscoreSetJmp(true);
115    setUseUnderscoreLongJmp(false);
116  } else {
117    setUseUnderscoreSetJmp(true);
118    setUseUnderscoreLongJmp(true);
119  }
120
121  // Set up the register classes.
122  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
123  if (!Disable16Bit)
124    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
125  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
126  if (Subtarget->is64Bit())
127    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
128
129  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
130
131  // We don't accept any truncstore of integer registers.
132  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
133  if (!Disable16Bit)
134    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
135  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
136  if (!Disable16Bit)
137    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
138  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
139  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
140
141  // SETOEQ and SETUNE require checking two conditions.
142  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
143  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
144  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
145  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
146  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
147  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
148
149  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
150  // operation.
151  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
152  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
153  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
154
155  if (Subtarget->is64Bit()) {
156    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
157    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
158  } else if (!UseSoftFloat) {
159    if (X86ScalarSSEf64) {
160      // We have an impenetrably clever algorithm for ui64->double only.
161      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
162    }
163    // We have an algorithm for SSE2, and we turn this into a 64-bit
164    // FILD for other targets.
165    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
166  }
167
168  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
169  // this operation.
170  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
171  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
172
173  if (!UseSoftFloat) {
174    // SSE has no i16 to fp conversion, only i32
175    if (X86ScalarSSEf32) {
176      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
177      // f32 and f64 cases are Legal, f80 case is not
178      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
179    } else {
180      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
181      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
182    }
183  } else {
184    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
185    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
186  }
187
188  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
189  // are Legal, f80 is custom lowered.
190  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
191  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
192
193  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
194  // this operation.
195  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
197
198  if (X86ScalarSSEf32) {
199    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
200    // f32 and f64 cases are Legal, f80 case is not
201    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
202  } else {
203    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
204    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
205  }
206
207  // Handle FP_TO_UINT by promoting the destination to a larger signed
208  // conversion.
209  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
210  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
211  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
212
213  if (Subtarget->is64Bit()) {
214    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
215    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
216  } else if (!UseSoftFloat) {
217    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
218      // Expand FP_TO_UINT into a select.
219      // FIXME: We would like to use a Custom expander here eventually to do
220      // the optimal thing for SSE vs. the default expansion in the legalizer.
221      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
222    else
223      // With SSE3 we can use fisttpll to convert to a signed i64; without
224      // SSE, we're stuck with a fistpll.
225      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
226  }
227
228  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
229  if (!X86ScalarSSEf64) {
230    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
231    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
232  }
233
234  // Scalar integer divide and remainder are lowered to use operations that
235  // produce two results, to match the available instructions. This exposes
236  // the two-result form to trivial CSE, which is able to combine x/y and x%y
237  // into a single instruction.
238  //
239  // Scalar integer multiply-high is also lowered to use two-result
240  // operations, to match the available instructions. However, plain multiply
241  // (low) operations are left as Legal, as there are single-result
242  // instructions for this in x86. Using the two-result multiply instructions
243  // when both high and low results are needed must be arranged by dagcombine.
244  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
248  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
249  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
262  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
263  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
264  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
265  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
266  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
267  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
268
269  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
270  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
271  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
272  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
273  if (Subtarget->is64Bit())
274    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
275  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
276  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
277  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
278  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
279  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
280  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
281  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
282  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
283
284  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
287  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
288  if (Disable16Bit) {
289    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
290    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
291  } else {
292    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
293    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
294  }
295  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
296  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
297  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
298  if (Subtarget->is64Bit()) {
299    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
300    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
301    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
302  }
303
304  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
305  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
306
307  // These should be promoted to a larger select which is supported.
308  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
309  // X86 wants to expand cmov itself.
310  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
311  if (Disable16Bit)
312    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
313  else
314    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
315  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
316  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
317  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
318  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
319  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
320  if (Disable16Bit)
321    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
322  else
323    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
324  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
325  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
326  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
327  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
328  if (Subtarget->is64Bit()) {
329    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
330    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
331  }
332  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
333
334  // Darwin ABI issue.
335  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
336  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
337  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
338  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
339  if (Subtarget->is64Bit())
340    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
341  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
342  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
343  if (Subtarget->is64Bit()) {
344    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
345    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
346    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
347    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
348    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
349  }
350  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
351  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
352  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
353  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
354  if (Subtarget->is64Bit()) {
355    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
356    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
357    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
358  }
359
360  if (Subtarget->hasSSE1())
361    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
362
363  if (!Subtarget->hasSSE2())
364    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
365
366  // Expand certain atomics
367  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
368  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
369  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
370  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
371
372  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
373  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
374  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
375  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
376
377  if (!Subtarget->is64Bit()) {
378    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
381    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
382    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
383    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
384    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
385  }
386
387  // FIXME - use subtarget debug flags
388  if (!Subtarget->isTargetDarwin() &&
389      !Subtarget->isTargetELF() &&
390      !Subtarget->isTargetCygMing()) {
391    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
392  }
393
394  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
395  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
396  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
397  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
398  if (Subtarget->is64Bit()) {
399    setExceptionPointerRegister(X86::RAX);
400    setExceptionSelectorRegister(X86::RDX);
401  } else {
402    setExceptionPointerRegister(X86::EAX);
403    setExceptionSelectorRegister(X86::EDX);
404  }
405  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
406  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
407
408  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
409
410  setOperationAction(ISD::TRAP, MVT::Other, Legal);
411
412  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
413  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
414  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
415  if (Subtarget->is64Bit()) {
416    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
417    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
418  } else {
419    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
420    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
421  }
422
423  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
424  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
425  if (Subtarget->is64Bit())
426    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
427  if (Subtarget->isTargetCygMing())
428    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
429  else
430    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
431
432  if (!UseSoftFloat && X86ScalarSSEf64) {
433    // f32 and f64 use SSE.
434    // Set up the FP register classes.
435    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
436    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
437
438    // Use ANDPD to simulate FABS.
439    setOperationAction(ISD::FABS , MVT::f64, Custom);
440    setOperationAction(ISD::FABS , MVT::f32, Custom);
441
442    // Use XORP to simulate FNEG.
443    setOperationAction(ISD::FNEG , MVT::f64, Custom);
444    setOperationAction(ISD::FNEG , MVT::f32, Custom);
445
446    // Use ANDPD and ORPD to simulate FCOPYSIGN.
447    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
448    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
449
450    // We don't support sin/cos/fmod
451    setOperationAction(ISD::FSIN , MVT::f64, Expand);
452    setOperationAction(ISD::FCOS , MVT::f64, Expand);
453    setOperationAction(ISD::FSIN , MVT::f32, Expand);
454    setOperationAction(ISD::FCOS , MVT::f32, Expand);
455
456    // Expand FP immediates into loads from the stack, except for the special
457    // cases we handle.
458    addLegalFPImmediate(APFloat(+0.0)); // xorpd
459    addLegalFPImmediate(APFloat(+0.0f)); // xorps
460  } else if (!UseSoftFloat && X86ScalarSSEf32) {
461    // Use SSE for f32, x87 for f64.
462    // Set up the FP register classes.
463    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
464    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
465
466    // Use ANDPS to simulate FABS.
467    setOperationAction(ISD::FABS , MVT::f32, Custom);
468
469    // Use XORP to simulate FNEG.
470    setOperationAction(ISD::FNEG , MVT::f32, Custom);
471
472    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
473
474    // Use ANDPS and ORPS to simulate FCOPYSIGN.
475    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
476    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
477
478    // We don't support sin/cos/fmod
479    setOperationAction(ISD::FSIN , MVT::f32, Expand);
480    setOperationAction(ISD::FCOS , MVT::f32, Expand);
481
482    // Special cases we handle for FP constants.
483    addLegalFPImmediate(APFloat(+0.0f)); // xorps
484    addLegalFPImmediate(APFloat(+0.0)); // FLD0
485    addLegalFPImmediate(APFloat(+1.0)); // FLD1
486    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
487    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
488
489    if (!UnsafeFPMath) {
490      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
491      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
492    }
493  } else if (!UseSoftFloat) {
494    // f32 and f64 in x87.
495    // Set up the FP register classes.
496    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
497    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
498
499    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
500    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
501    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
502    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
503
504    if (!UnsafeFPMath) {
505      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
506      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
507    }
508    addLegalFPImmediate(APFloat(+0.0)); // FLD0
509    addLegalFPImmediate(APFloat(+1.0)); // FLD1
510    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
511    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
512    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
513    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
514    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
515    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
516  }
517
518  // Long double always uses X87.
519  if (!UseSoftFloat) {
520    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
521    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
522    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
523    {
524      bool ignored;
525      APFloat TmpFlt(+0.0);
526      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
527                     &ignored);
528      addLegalFPImmediate(TmpFlt);  // FLD0
529      TmpFlt.changeSign();
530      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
531      APFloat TmpFlt2(+1.0);
532      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
533                      &ignored);
534      addLegalFPImmediate(TmpFlt2);  // FLD1
535      TmpFlt2.changeSign();
536      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
537    }
538
539    if (!UnsafeFPMath) {
540      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
541      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
542    }
543  }
544
545  // Always use a library call for pow.
546  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
547  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
548  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
549
550  setOperationAction(ISD::FLOG, MVT::f80, Expand);
551  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
552  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
553  setOperationAction(ISD::FEXP, MVT::f80, Expand);
554  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
555
556  // First set operation action for all vector types to either promote
557  // (for widening) or expand (for scalarization). Then we will selectively
558  // turn on ones that can be effectively codegen'd.
559  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
560       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
561    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
576    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
577    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
608    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
610    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
611    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
612    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
613    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
614    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
615         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
616      setTruncStoreAction((MVT::SimpleValueType)VT,
617                          (MVT::SimpleValueType)InnerVT, Expand);
618    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
619    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
620    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
621  }
622
623  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
624  // with -msoft-float, disable use of MMX as well.
625  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
626    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass, false);
627    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false);
628    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false);
629    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass, false);
630    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false);
631
632    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
633    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
634    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
635    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
636
637    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
638    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
639    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
640    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
641
642    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
643    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
644
645    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
646    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
647    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
648    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
649    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
650    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
651    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
652
653    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
654    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
655    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
656    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
657    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
658    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
659    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
660
661    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
662    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
663    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
664    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
665    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
666    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
667    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
668
669    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
670    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
671    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
672    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
673    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
674    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
675    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
676    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
677    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
678
679    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
680    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
681    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
682    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
683    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
684
685    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
686    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
687    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
688    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
689
690    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
691    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
692    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
693    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
694
695    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
696
697    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
698    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
699    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
700    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
701    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
702    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
703    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
704  }
705
706  if (!UseSoftFloat && Subtarget->hasSSE1()) {
707    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
708
709    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
710    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
711    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
712    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
713    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
714    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
715    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
716    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
717    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
718    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
719    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
720    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
721  }
722
723  if (!UseSoftFloat && Subtarget->hasSSE2()) {
724    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
725
726    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
727    // registers cannot be used even for integer operations.
728    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
729    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
730    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
731    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
732
733    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
734    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
735    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
736    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
737    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
738    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
739    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
740    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
741    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
742    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
743    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
744    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
745    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
746    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
747    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
748    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
749
750    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
751    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
752    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
753    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
754
755    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
756    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
757    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
758    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
759    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
760
761    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
762    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
763    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
764    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
765    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
766
767    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
768    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
769      EVT VT = (MVT::SimpleValueType)i;
770      // Do not attempt to custom lower non-power-of-2 vectors
771      if (!isPowerOf2_32(VT.getVectorNumElements()))
772        continue;
773      // Do not attempt to custom lower non-128-bit vectors
774      if (!VT.is128BitVector())
775        continue;
776      setOperationAction(ISD::BUILD_VECTOR,
777                         VT.getSimpleVT().SimpleTy, Custom);
778      setOperationAction(ISD::VECTOR_SHUFFLE,
779                         VT.getSimpleVT().SimpleTy, Custom);
780      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
781                         VT.getSimpleVT().SimpleTy, Custom);
782    }
783
784    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
785    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
786    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
787    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
788    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
789    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
790
791    if (Subtarget->is64Bit()) {
792      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
793      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
794    }
795
796    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
797    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
798      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
799      EVT VT = SVT;
800
801      // Do not attempt to promote non-128-bit vectors
802      if (!VT.is128BitVector()) {
803        continue;
804      }
805
806      setOperationAction(ISD::AND,    SVT, Promote);
807      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
808      setOperationAction(ISD::OR,     SVT, Promote);
809      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
810      setOperationAction(ISD::XOR,    SVT, Promote);
811      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
812      setOperationAction(ISD::LOAD,   SVT, Promote);
813      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
814      setOperationAction(ISD::SELECT, SVT, Promote);
815      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
816    }
817
818    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
819
820    // Custom lower v2i64 and v2f64 selects.
821    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
822    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
823    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
824    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
825
826    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
827    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
828    if (!DisableMMX && Subtarget->hasMMX()) {
829      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
830      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
831    }
832  }
833
834  if (Subtarget->hasSSE41()) {
835    // FIXME: Do we need to handle scalar-to-vector here?
836    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
837
838    // i8 and i16 vectors are custom , because the source register and source
839    // source memory operand types are not the same width.  f32 vectors are
840    // custom since the immediate controlling the insert encodes additional
841    // information.
842    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
843    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
844    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
845    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
846
847    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
848    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
849    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
850    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
851
852    if (Subtarget->is64Bit()) {
853      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
854      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
855    }
856  }
857
858  if (Subtarget->hasSSE42()) {
859    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
860  }
861
862  if (!UseSoftFloat && Subtarget->hasAVX()) {
863    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
864    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
865    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
866    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
867
868    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
869    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
870    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
871    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
872    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
873    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
874    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
875    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
876    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
877    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
878    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
879    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
880    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
881    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
882    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
883
884    // Operations to consider commented out -v16i16 v32i8
885    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
886    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
887    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
888    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
889    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
890    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
891    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
892    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
893    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
894    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
895    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
896    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
897    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
898    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
899
900    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
901    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
902    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
903    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
904
905    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
906    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
907    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
908    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
909    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
910
911    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
912    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
913    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
914    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
915    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
916    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
917
918#if 0
919    // Not sure we want to do this since there are no 256-bit integer
920    // operations in AVX
921
922    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
923    // This includes 256-bit vectors
924    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
925      EVT VT = (MVT::SimpleValueType)i;
926
927      // Do not attempt to custom lower non-power-of-2 vectors
928      if (!isPowerOf2_32(VT.getVectorNumElements()))
929        continue;
930
931      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
932      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
933      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
934    }
935
936    if (Subtarget->is64Bit()) {
937      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
938      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
939    }
940#endif
941
942#if 0
943    // Not sure we want to do this since there are no 256-bit integer
944    // operations in AVX
945
946    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
947    // Including 256-bit vectors
948    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
949      EVT VT = (MVT::SimpleValueType)i;
950
951      if (!VT.is256BitVector()) {
952        continue;
953      }
954      setOperationAction(ISD::AND,    VT, Promote);
955      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
956      setOperationAction(ISD::OR,     VT, Promote);
957      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
958      setOperationAction(ISD::XOR,    VT, Promote);
959      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
960      setOperationAction(ISD::LOAD,   VT, Promote);
961      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
962      setOperationAction(ISD::SELECT, VT, Promote);
963      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
964    }
965
966    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
967#endif
968  }
969
970  // We want to custom lower some of our intrinsics.
971  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
972
973  // Add/Sub/Mul with overflow operations are custom lowered.
974  setOperationAction(ISD::SADDO, MVT::i32, Custom);
975  setOperationAction(ISD::SADDO, MVT::i64, Custom);
976  setOperationAction(ISD::UADDO, MVT::i32, Custom);
977  setOperationAction(ISD::UADDO, MVT::i64, Custom);
978  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
979  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
980  setOperationAction(ISD::USUBO, MVT::i32, Custom);
981  setOperationAction(ISD::USUBO, MVT::i64, Custom);
982  setOperationAction(ISD::SMULO, MVT::i32, Custom);
983  setOperationAction(ISD::SMULO, MVT::i64, Custom);
984
985  if (!Subtarget->is64Bit()) {
986    // These libcalls are not available in 32-bit.
987    setLibcallName(RTLIB::SHL_I128, 0);
988    setLibcallName(RTLIB::SRL_I128, 0);
989    setLibcallName(RTLIB::SRA_I128, 0);
990  }
991
992  // We have target-specific dag combine patterns for the following nodes:
993  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
994  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
995  setTargetDAGCombine(ISD::BUILD_VECTOR);
996  setTargetDAGCombine(ISD::SELECT);
997  setTargetDAGCombine(ISD::SHL);
998  setTargetDAGCombine(ISD::SRA);
999  setTargetDAGCombine(ISD::SRL);
1000  setTargetDAGCombine(ISD::OR);
1001  setTargetDAGCombine(ISD::STORE);
1002  setTargetDAGCombine(ISD::MEMBARRIER);
1003  setTargetDAGCombine(ISD::ZERO_EXTEND);
1004  if (Subtarget->is64Bit())
1005    setTargetDAGCombine(ISD::MUL);
1006
1007  computeRegisterProperties();
1008
1009  // FIXME: These should be based on subtarget info. Plus, the values should
1010  // be smaller when we are in optimizing for size mode.
1011  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1012  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1013  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1014  setPrefLoopAlignment(16);
1015  benefitFromCodePlacementOpt = true;
1016}
1017
1018
1019MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1020  return MVT::i8;
1021}
1022
1023
1024/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1025/// the desired ByVal argument alignment.
1026static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1027  if (MaxAlign == 16)
1028    return;
1029  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1030    if (VTy->getBitWidth() == 128)
1031      MaxAlign = 16;
1032  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1033    unsigned EltAlign = 0;
1034    getMaxByValAlign(ATy->getElementType(), EltAlign);
1035    if (EltAlign > MaxAlign)
1036      MaxAlign = EltAlign;
1037  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1038    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1039      unsigned EltAlign = 0;
1040      getMaxByValAlign(STy->getElementType(i), EltAlign);
1041      if (EltAlign > MaxAlign)
1042        MaxAlign = EltAlign;
1043      if (MaxAlign == 16)
1044        break;
1045    }
1046  }
1047  return;
1048}
1049
1050/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1051/// function arguments in the caller parameter area. For X86, aggregates
1052/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1053/// are at 4-byte boundaries.
1054unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1055  if (Subtarget->is64Bit()) {
1056    // Max of 8 and alignment of type.
1057    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1058    if (TyAlign > 8)
1059      return TyAlign;
1060    return 8;
1061  }
1062
1063  unsigned Align = 4;
1064  if (Subtarget->hasSSE1())
1065    getMaxByValAlign(Ty, Align);
1066  return Align;
1067}
1068
1069/// getOptimalMemOpType - Returns the target specific optimal type for load
1070/// and store operations as a result of memset, memcpy, and memmove
1071/// lowering. If DstAlign is zero that means it's safe to destination
1072/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1073/// means there isn't a need to check it against alignment requirement,
1074/// probably because the source does not need to be loaded. If
1075/// 'NonScalarIntSafe' is true, that means it's safe to return a
1076/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1077/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1078/// constant so it does not need to be loaded.
1079/// It returns EVT::Other if the type should be determined using generic
1080/// target-independent logic.
1081EVT
1082X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1083                                       unsigned DstAlign, unsigned SrcAlign,
1084                                       bool NonScalarIntSafe,
1085                                       bool MemcpyStrSrc,
1086                                       MachineFunction &MF) const {
1087  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1088  // linux.  This is because the stack realignment code can't handle certain
1089  // cases like PR2962.  This should be removed when PR2962 is fixed.
1090  const Function *F = MF.getFunction();
1091  if (NonScalarIntSafe &&
1092      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1093    if (Size >= 16 &&
1094        (Subtarget->isUnalignedMemAccessFast() ||
1095         ((DstAlign == 0 || DstAlign >= 16) &&
1096          (SrcAlign == 0 || SrcAlign >= 16))) &&
1097        Subtarget->getStackAlignment() >= 16) {
1098      if (Subtarget->hasSSE2())
1099        return MVT::v4i32;
1100      if (Subtarget->hasSSE1())
1101        return MVT::v4f32;
1102    } else if (!MemcpyStrSrc && Size >= 8 &&
1103               !Subtarget->is64Bit() &&
1104               Subtarget->getStackAlignment() >= 8 &&
1105               Subtarget->hasSSE2()) {
1106      // Do not use f64 to lower memcpy if source is string constant. It's
1107      // better to use i32 to avoid the loads.
1108      return MVT::f64;
1109    }
1110  }
1111  if (Subtarget->is64Bit() && Size >= 8)
1112    return MVT::i64;
1113  return MVT::i32;
1114}
1115
1116/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1117/// current function.  The returned value is a member of the
1118/// MachineJumpTableInfo::JTEntryKind enum.
1119unsigned X86TargetLowering::getJumpTableEncoding() const {
1120  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1121  // symbol.
1122  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1123      Subtarget->isPICStyleGOT())
1124    return MachineJumpTableInfo::EK_Custom32;
1125
1126  // Otherwise, use the normal jump table encoding heuristics.
1127  return TargetLowering::getJumpTableEncoding();
1128}
1129
1130/// getPICBaseSymbol - Return the X86-32 PIC base.
1131MCSymbol *
1132X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1133                                    MCContext &Ctx) const {
1134  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1135  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1136                               Twine(MF->getFunctionNumber())+"$pb");
1137}
1138
1139
1140const MCExpr *
1141X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1142                                             const MachineBasicBlock *MBB,
1143                                             unsigned uid,MCContext &Ctx) const{
1144  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1145         Subtarget->isPICStyleGOT());
1146  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1147  // entries.
1148  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1149                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1150}
1151
1152/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1153/// jumptable.
1154SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1155                                                    SelectionDAG &DAG) const {
1156  if (!Subtarget->is64Bit())
1157    // This doesn't have DebugLoc associated with it, but is not really the
1158    // same as a Register.
1159    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1160  return Table;
1161}
1162
1163/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1164/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1165/// MCExpr.
1166const MCExpr *X86TargetLowering::
1167getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1168                             MCContext &Ctx) const {
1169  // X86-64 uses RIP relative addressing based on the jump table label.
1170  if (Subtarget->isPICStyleRIPRel())
1171    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1172
1173  // Otherwise, the reference is relative to the PIC base.
1174  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1175}
1176
1177/// getFunctionAlignment - Return the Log2 alignment of this function.
1178unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1179  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1180}
1181
1182//===----------------------------------------------------------------------===//
1183//               Return Value Calling Convention Implementation
1184//===----------------------------------------------------------------------===//
1185
1186#include "X86GenCallingConv.inc"
1187
1188bool
1189X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1190                        const SmallVectorImpl<EVT> &OutTys,
1191                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1192                        SelectionDAG &DAG) const {
1193  SmallVector<CCValAssign, 16> RVLocs;
1194  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1195                 RVLocs, *DAG.getContext());
1196  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1197}
1198
1199SDValue
1200X86TargetLowering::LowerReturn(SDValue Chain,
1201                               CallingConv::ID CallConv, bool isVarArg,
1202                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1203                               DebugLoc dl, SelectionDAG &DAG) const {
1204  MachineFunction &MF = DAG.getMachineFunction();
1205  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1206
1207  SmallVector<CCValAssign, 16> RVLocs;
1208  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1209                 RVLocs, *DAG.getContext());
1210  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1211
1212  // Add the regs to the liveout set for the function.
1213  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1214  for (unsigned i = 0; i != RVLocs.size(); ++i)
1215    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1216      MRI.addLiveOut(RVLocs[i].getLocReg());
1217
1218  SDValue Flag;
1219
1220  SmallVector<SDValue, 6> RetOps;
1221  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1222  // Operand #1 = Bytes To Pop
1223  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1224                   MVT::i16));
1225
1226  // Copy the result values into the output registers.
1227  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1228    CCValAssign &VA = RVLocs[i];
1229    assert(VA.isRegLoc() && "Can only return in registers!");
1230    SDValue ValToCopy = Outs[i].Val;
1231
1232    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1233    // the RET instruction and handled by the FP Stackifier.
1234    if (VA.getLocReg() == X86::ST0 ||
1235        VA.getLocReg() == X86::ST1) {
1236      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1237      // change the value to the FP stack register class.
1238      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1239        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1240      RetOps.push_back(ValToCopy);
1241      // Don't emit a copytoreg.
1242      continue;
1243    }
1244
1245    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1246    // which is returned in RAX / RDX.
1247    if (Subtarget->is64Bit()) {
1248      EVT ValVT = ValToCopy.getValueType();
1249      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1250        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1251        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1252          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1253      }
1254    }
1255
1256    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1257    Flag = Chain.getValue(1);
1258  }
1259
1260  // The x86-64 ABI for returning structs by value requires that we copy
1261  // the sret argument into %rax for the return. We saved the argument into
1262  // a virtual register in the entry block, so now we copy the value out
1263  // and into %rax.
1264  if (Subtarget->is64Bit() &&
1265      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1266    MachineFunction &MF = DAG.getMachineFunction();
1267    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1268    unsigned Reg = FuncInfo->getSRetReturnReg();
1269    if (!Reg) {
1270      Reg = MRI.createVirtualRegister(getRegClassFor(MVT::i64));
1271      FuncInfo->setSRetReturnReg(Reg);
1272    }
1273    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1274
1275    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1276    Flag = Chain.getValue(1);
1277
1278    // RAX now acts like a return value.
1279    MRI.addLiveOut(X86::RAX);
1280  }
1281
1282  RetOps[0] = Chain;  // Update chain.
1283
1284  // Add the flag if we have it.
1285  if (Flag.getNode())
1286    RetOps.push_back(Flag);
1287
1288  return DAG.getNode(X86ISD::RET_FLAG, dl,
1289                     MVT::Other, &RetOps[0], RetOps.size());
1290}
1291
1292/// LowerCallResult - Lower the result values of a call into the
1293/// appropriate copies out of appropriate physical registers.
1294///
1295SDValue
1296X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1297                                   CallingConv::ID CallConv, bool isVarArg,
1298                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1299                                   DebugLoc dl, SelectionDAG &DAG,
1300                                   SmallVectorImpl<SDValue> &InVals) const {
1301
1302  // Assign locations to each value returned by this call.
1303  SmallVector<CCValAssign, 16> RVLocs;
1304  bool Is64Bit = Subtarget->is64Bit();
1305  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1306                 RVLocs, *DAG.getContext());
1307  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1308
1309  // Copy all of the result registers out of their specified physreg.
1310  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1311    CCValAssign &VA = RVLocs[i];
1312    EVT CopyVT = VA.getValVT();
1313
1314    // If this is x86-64, and we disabled SSE, we can't return FP values
1315    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1316        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1317      report_fatal_error("SSE register return with SSE disabled");
1318    }
1319
1320    // If this is a call to a function that returns an fp value on the floating
1321    // point stack, but where we prefer to use the value in xmm registers, copy
1322    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1323    if ((VA.getLocReg() == X86::ST0 ||
1324         VA.getLocReg() == X86::ST1) &&
1325        isScalarFPTypeInSSEReg(VA.getValVT())) {
1326      CopyVT = MVT::f80;
1327    }
1328
1329    SDValue Val;
1330    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1331      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1332      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1333        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1334                                   MVT::v2i64, InFlag).getValue(1);
1335        Val = Chain.getValue(0);
1336        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1337                          Val, DAG.getConstant(0, MVT::i64));
1338      } else {
1339        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1340                                   MVT::i64, InFlag).getValue(1);
1341        Val = Chain.getValue(0);
1342      }
1343      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1344    } else {
1345      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1346                                 CopyVT, InFlag).getValue(1);
1347      Val = Chain.getValue(0);
1348    }
1349    InFlag = Chain.getValue(2);
1350
1351    if (CopyVT != VA.getValVT()) {
1352      // Round the F80 the right size, which also moves to the appropriate xmm
1353      // register.
1354      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1355                        // This truncation won't change the value.
1356                        DAG.getIntPtrConstant(1));
1357    }
1358
1359    InVals.push_back(Val);
1360  }
1361
1362  return Chain;
1363}
1364
1365
1366//===----------------------------------------------------------------------===//
1367//                C & StdCall & Fast Calling Convention implementation
1368//===----------------------------------------------------------------------===//
1369//  StdCall calling convention seems to be standard for many Windows' API
1370//  routines and around. It differs from C calling convention just a little:
1371//  callee should clean up the stack, not caller. Symbols should be also
1372//  decorated in some fancy way :) It doesn't support any vector arguments.
1373//  For info on fast calling convention see Fast Calling Convention (tail call)
1374//  implementation LowerX86_32FastCCCallTo.
1375
1376/// CallIsStructReturn - Determines whether a call uses struct return
1377/// semantics.
1378static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1379  if (Outs.empty())
1380    return false;
1381
1382  return Outs[0].Flags.isSRet();
1383}
1384
1385/// ArgsAreStructReturn - Determines whether a function uses struct
1386/// return semantics.
1387static bool
1388ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1389  if (Ins.empty())
1390    return false;
1391
1392  return Ins[0].Flags.isSRet();
1393}
1394
1395/// IsCalleePop - Determines whether the callee is required to pop its
1396/// own arguments. Callee pop is necessary to support tail calls.
1397bool X86TargetLowering::IsCalleePop(bool IsVarArg,
1398                                    CallingConv::ID CallingConv) const {
1399  if (IsVarArg)
1400    return false;
1401
1402  switch (CallingConv) {
1403  default:
1404    return false;
1405  case CallingConv::X86_StdCall:
1406    return !Subtarget->is64Bit();
1407  case CallingConv::X86_FastCall:
1408    return !Subtarget->is64Bit();
1409  case CallingConv::Fast:
1410    return GuaranteedTailCallOpt;
1411  case CallingConv::GHC:
1412    return GuaranteedTailCallOpt;
1413  }
1414}
1415
1416/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1417/// given CallingConvention value.
1418CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1419  if (Subtarget->is64Bit()) {
1420    if (CC == CallingConv::GHC)
1421      return CC_X86_64_GHC;
1422    else if (Subtarget->isTargetWin64())
1423      return CC_X86_Win64_C;
1424    else
1425      return CC_X86_64_C;
1426  }
1427
1428  if (CC == CallingConv::X86_FastCall)
1429    return CC_X86_32_FastCall;
1430  else if (CC == CallingConv::Fast)
1431    return CC_X86_32_FastCC;
1432  else if (CC == CallingConv::GHC)
1433    return CC_X86_32_GHC;
1434  else
1435    return CC_X86_32_C;
1436}
1437
1438/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1439/// by "Src" to address "Dst" with size and alignment information specified by
1440/// the specific parameter attribute. The copy will be passed as a byval
1441/// function parameter.
1442static SDValue
1443CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1444                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1445                          DebugLoc dl) {
1446  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1447  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1448                       /*isVolatile*/false, /*AlwaysInline=*/true,
1449                       NULL, 0, NULL, 0);
1450}
1451
1452/// IsTailCallConvention - Return true if the calling convention is one that
1453/// supports tail call optimization.
1454static bool IsTailCallConvention(CallingConv::ID CC) {
1455  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1456}
1457
1458/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1459/// a tailcall target by changing its ABI.
1460static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1461  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1462}
1463
1464SDValue
1465X86TargetLowering::LowerMemArgument(SDValue Chain,
1466                                    CallingConv::ID CallConv,
1467                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1468                                    DebugLoc dl, SelectionDAG &DAG,
1469                                    const CCValAssign &VA,
1470                                    MachineFrameInfo *MFI,
1471                                    unsigned i) const {
1472  // Create the nodes corresponding to a load from this parameter slot.
1473  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1474  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1475  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1476  EVT ValVT;
1477
1478  // If value is passed by pointer we have address passed instead of the value
1479  // itself.
1480  if (VA.getLocInfo() == CCValAssign::Indirect)
1481    ValVT = VA.getLocVT();
1482  else
1483    ValVT = VA.getValVT();
1484
1485  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1486  // changed with more analysis.
1487  // In case of tail call optimization mark all arguments mutable. Since they
1488  // could be overwritten by lowering of arguments in case of a tail call.
1489  if (Flags.isByVal()) {
1490    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1491                                    VA.getLocMemOffset(), isImmutable, false);
1492    return DAG.getFrameIndex(FI, getPointerTy());
1493  } else {
1494    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1495                                    VA.getLocMemOffset(), isImmutable, false);
1496    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1497    return DAG.getLoad(ValVT, dl, Chain, FIN,
1498                       PseudoSourceValue::getFixedStack(FI), 0,
1499                       false, false, 0);
1500  }
1501}
1502
1503SDValue
1504X86TargetLowering::LowerFormalArguments(SDValue Chain,
1505                                        CallingConv::ID CallConv,
1506                                        bool isVarArg,
1507                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1508                                        DebugLoc dl,
1509                                        SelectionDAG &DAG,
1510                                        SmallVectorImpl<SDValue> &InVals)
1511                                          const {
1512  MachineFunction &MF = DAG.getMachineFunction();
1513  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1514
1515  const Function* Fn = MF.getFunction();
1516  if (Fn->hasExternalLinkage() &&
1517      Subtarget->isTargetCygMing() &&
1518      Fn->getName() == "main")
1519    FuncInfo->setForceFramePointer(true);
1520
1521  MachineFrameInfo *MFI = MF.getFrameInfo();
1522  bool Is64Bit = Subtarget->is64Bit();
1523  bool IsWin64 = Subtarget->isTargetWin64();
1524
1525  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1526         "Var args not supported with calling convention fastcc or ghc");
1527
1528  // Assign locations to all of the incoming arguments.
1529  SmallVector<CCValAssign, 16> ArgLocs;
1530  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1531                 ArgLocs, *DAG.getContext());
1532  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1533
1534  unsigned LastVal = ~0U;
1535  SDValue ArgValue;
1536  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1537    CCValAssign &VA = ArgLocs[i];
1538    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1539    // places.
1540    assert(VA.getValNo() != LastVal &&
1541           "Don't support value assigned to multiple locs yet");
1542    LastVal = VA.getValNo();
1543
1544    if (VA.isRegLoc()) {
1545      EVT RegVT = VA.getLocVT();
1546      TargetRegisterClass *RC = NULL;
1547      if (RegVT == MVT::i32)
1548        RC = X86::GR32RegisterClass;
1549      else if (Is64Bit && RegVT == MVT::i64)
1550        RC = X86::GR64RegisterClass;
1551      else if (RegVT == MVT::f32)
1552        RC = X86::FR32RegisterClass;
1553      else if (RegVT == MVT::f64)
1554        RC = X86::FR64RegisterClass;
1555      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1556        RC = X86::VR128RegisterClass;
1557      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1558        RC = X86::VR64RegisterClass;
1559      else
1560        llvm_unreachable("Unknown argument type!");
1561
1562      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1563      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1564
1565      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1566      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1567      // right size.
1568      if (VA.getLocInfo() == CCValAssign::SExt)
1569        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1570                               DAG.getValueType(VA.getValVT()));
1571      else if (VA.getLocInfo() == CCValAssign::ZExt)
1572        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1573                               DAG.getValueType(VA.getValVT()));
1574      else if (VA.getLocInfo() == CCValAssign::BCvt)
1575        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1576
1577      if (VA.isExtInLoc()) {
1578        // Handle MMX values passed in XMM regs.
1579        if (RegVT.isVector()) {
1580          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1581                                 ArgValue, DAG.getConstant(0, MVT::i64));
1582          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1583        } else
1584          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1585      }
1586    } else {
1587      assert(VA.isMemLoc());
1588      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1589    }
1590
1591    // If value is passed via pointer - do a load.
1592    if (VA.getLocInfo() == CCValAssign::Indirect)
1593      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1594                             false, false, 0);
1595
1596    InVals.push_back(ArgValue);
1597  }
1598
1599  // The x86-64 ABI for returning structs by value requires that we copy
1600  // the sret argument into %rax for the return. Save the argument into
1601  // a virtual register so that we can access it from the return points.
1602  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1603    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1604    unsigned Reg = FuncInfo->getSRetReturnReg();
1605    if (!Reg) {
1606      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1607      FuncInfo->setSRetReturnReg(Reg);
1608    }
1609    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1610    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1611  }
1612
1613  unsigned StackSize = CCInfo.getNextStackOffset();
1614  // Align stack specially for tail calls.
1615  if (FuncIsMadeTailCallSafe(CallConv))
1616    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1617
1618  // If the function takes variable number of arguments, make a frame index for
1619  // the start of the first vararg value... for expansion of llvm.va_start.
1620  if (isVarArg) {
1621    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1622      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,
1623                                                            true, false));
1624    }
1625    if (Is64Bit) {
1626      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1627
1628      // FIXME: We should really autogenerate these arrays
1629      static const unsigned GPR64ArgRegsWin64[] = {
1630        X86::RCX, X86::RDX, X86::R8,  X86::R9
1631      };
1632      static const unsigned XMMArgRegsWin64[] = {
1633        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1634      };
1635      static const unsigned GPR64ArgRegs64Bit[] = {
1636        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1637      };
1638      static const unsigned XMMArgRegs64Bit[] = {
1639        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1640        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1641      };
1642      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1643
1644      if (IsWin64) {
1645        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1646        GPR64ArgRegs = GPR64ArgRegsWin64;
1647        XMMArgRegs = XMMArgRegsWin64;
1648      } else {
1649        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1650        GPR64ArgRegs = GPR64ArgRegs64Bit;
1651        XMMArgRegs = XMMArgRegs64Bit;
1652      }
1653      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1654                                                       TotalNumIntRegs);
1655      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1656                                                       TotalNumXMMRegs);
1657
1658      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1659      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1660             "SSE register cannot be used when SSE is disabled!");
1661      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1662             "SSE register cannot be used when SSE is disabled!");
1663      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1664        // Kernel mode asks for SSE to be disabled, so don't push them
1665        // on the stack.
1666        TotalNumXMMRegs = 0;
1667
1668      // For X86-64, if there are vararg parameters that are passed via
1669      // registers, then we must store them to their spots on the stack so they
1670      // may be loaded by deferencing the result of va_next.
1671      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1672      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1673      FuncInfo->setRegSaveFrameIndex(
1674        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1675                               false));
1676
1677      // Store the integer parameter registers.
1678      SmallVector<SDValue, 8> MemOps;
1679      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1680                                        getPointerTy());
1681      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1682      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1683        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1684                                  DAG.getIntPtrConstant(Offset));
1685        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1686                                     X86::GR64RegisterClass);
1687        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1688        SDValue Store =
1689          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1690                       PseudoSourceValue::getFixedStack(
1691                         FuncInfo->getRegSaveFrameIndex()),
1692                       Offset, false, false, 0);
1693        MemOps.push_back(Store);
1694        Offset += 8;
1695      }
1696
1697      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1698        // Now store the XMM (fp + vector) parameter registers.
1699        SmallVector<SDValue, 11> SaveXMMOps;
1700        SaveXMMOps.push_back(Chain);
1701
1702        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1703        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1704        SaveXMMOps.push_back(ALVal);
1705
1706        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1707                               FuncInfo->getRegSaveFrameIndex()));
1708        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1709                               FuncInfo->getVarArgsFPOffset()));
1710
1711        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1712          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1713                                       X86::VR128RegisterClass);
1714          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1715          SaveXMMOps.push_back(Val);
1716        }
1717        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1718                                     MVT::Other,
1719                                     &SaveXMMOps[0], SaveXMMOps.size()));
1720      }
1721
1722      if (!MemOps.empty())
1723        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1724                            &MemOps[0], MemOps.size());
1725    }
1726  }
1727
1728  // Some CCs need callee pop.
1729  if (IsCalleePop(isVarArg, CallConv)) {
1730    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1731  } else {
1732    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1733    // If this is an sret function, the return should pop the hidden pointer.
1734    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1735      FuncInfo->setBytesToPopOnReturn(4);
1736  }
1737
1738  if (!Is64Bit) {
1739    // RegSaveFrameIndex is X86-64 only.
1740    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1741    if (CallConv == CallingConv::X86_FastCall)
1742      // fastcc functions can't have varargs.
1743      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1744  }
1745
1746  return Chain;
1747}
1748
1749SDValue
1750X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1751                                    SDValue StackPtr, SDValue Arg,
1752                                    DebugLoc dl, SelectionDAG &DAG,
1753                                    const CCValAssign &VA,
1754                                    ISD::ArgFlagsTy Flags) const {
1755  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1756  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1757  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1758  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1759  if (Flags.isByVal()) {
1760    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1761  }
1762  return DAG.getStore(Chain, dl, Arg, PtrOff,
1763                      PseudoSourceValue::getStack(), LocMemOffset,
1764                      false, false, 0);
1765}
1766
1767/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1768/// optimization is performed and it is required.
1769SDValue
1770X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1771                                           SDValue &OutRetAddr, SDValue Chain,
1772                                           bool IsTailCall, bool Is64Bit,
1773                                           int FPDiff, DebugLoc dl) const {
1774  // Adjust the Return address stack slot.
1775  EVT VT = getPointerTy();
1776  OutRetAddr = getReturnAddressFrameIndex(DAG);
1777
1778  // Load the "old" Return address.
1779  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1780  return SDValue(OutRetAddr.getNode(), 1);
1781}
1782
1783/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1784/// optimization is performed and it is required (FPDiff!=0).
1785static SDValue
1786EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1787                         SDValue Chain, SDValue RetAddrFrIdx,
1788                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1789  // Store the return address to the appropriate stack slot.
1790  if (!FPDiff) return Chain;
1791  // Calculate the new stack slot for the return address.
1792  int SlotSize = Is64Bit ? 8 : 4;
1793  int NewReturnAddrFI =
1794    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false, false);
1795  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1796  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1797  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1798                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1799                       false, false, 0);
1800  return Chain;
1801}
1802
1803SDValue
1804X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1805                             CallingConv::ID CallConv, bool isVarArg,
1806                             bool &isTailCall,
1807                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1808                             const SmallVectorImpl<ISD::InputArg> &Ins,
1809                             DebugLoc dl, SelectionDAG &DAG,
1810                             SmallVectorImpl<SDValue> &InVals) const {
1811  MachineFunction &MF = DAG.getMachineFunction();
1812  bool Is64Bit        = Subtarget->is64Bit();
1813  bool IsStructRet    = CallIsStructReturn(Outs);
1814  bool IsSibcall      = false;
1815
1816  if (isTailCall) {
1817    // Check if it's really possible to do a tail call.
1818    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1819                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1820                                                   Outs, Ins, DAG);
1821
1822    // Sibcalls are automatically detected tailcalls which do not require
1823    // ABI changes.
1824    if (!GuaranteedTailCallOpt && isTailCall)
1825      IsSibcall = true;
1826
1827    if (isTailCall)
1828      ++NumTailCalls;
1829  }
1830
1831  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1832         "Var args not supported with calling convention fastcc or ghc");
1833
1834  // Analyze operands of the call, assigning locations to each operand.
1835  SmallVector<CCValAssign, 16> ArgLocs;
1836  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1837                 ArgLocs, *DAG.getContext());
1838  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1839
1840  // Get a count of how many bytes are to be pushed on the stack.
1841  unsigned NumBytes = CCInfo.getNextStackOffset();
1842  if (IsSibcall)
1843    // This is a sibcall. The memory operands are available in caller's
1844    // own caller's stack.
1845    NumBytes = 0;
1846  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1847    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1848
1849  int FPDiff = 0;
1850  if (isTailCall && !IsSibcall) {
1851    // Lower arguments at fp - stackoffset + fpdiff.
1852    unsigned NumBytesCallerPushed =
1853      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1854    FPDiff = NumBytesCallerPushed - NumBytes;
1855
1856    // Set the delta of movement of the returnaddr stackslot.
1857    // But only set if delta is greater than previous delta.
1858    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1859      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1860  }
1861
1862  if (!IsSibcall)
1863    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1864
1865  SDValue RetAddrFrIdx;
1866  // Load return adress for tail calls.
1867  if (isTailCall && FPDiff)
1868    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1869                                    Is64Bit, FPDiff, dl);
1870
1871  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1872  SmallVector<SDValue, 8> MemOpChains;
1873  SDValue StackPtr;
1874
1875  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1876  // of tail call optimization arguments are handle later.
1877  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1878    CCValAssign &VA = ArgLocs[i];
1879    EVT RegVT = VA.getLocVT();
1880    SDValue Arg = Outs[i].Val;
1881    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1882    bool isByVal = Flags.isByVal();
1883
1884    // Promote the value if needed.
1885    switch (VA.getLocInfo()) {
1886    default: llvm_unreachable("Unknown loc info!");
1887    case CCValAssign::Full: break;
1888    case CCValAssign::SExt:
1889      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1890      break;
1891    case CCValAssign::ZExt:
1892      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1893      break;
1894    case CCValAssign::AExt:
1895      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1896        // Special case: passing MMX values in XMM registers.
1897        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1898        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1899        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1900      } else
1901        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1902      break;
1903    case CCValAssign::BCvt:
1904      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1905      break;
1906    case CCValAssign::Indirect: {
1907      // Store the argument.
1908      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1909      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1910      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1911                           PseudoSourceValue::getFixedStack(FI), 0,
1912                           false, false, 0);
1913      Arg = SpillSlot;
1914      break;
1915    }
1916    }
1917
1918    if (VA.isRegLoc()) {
1919      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1920    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1921      assert(VA.isMemLoc());
1922      if (StackPtr.getNode() == 0)
1923        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1924      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1925                                             dl, DAG, VA, Flags));
1926    }
1927  }
1928
1929  if (!MemOpChains.empty())
1930    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1931                        &MemOpChains[0], MemOpChains.size());
1932
1933  // Build a sequence of copy-to-reg nodes chained together with token chain
1934  // and flag operands which copy the outgoing args into registers.
1935  SDValue InFlag;
1936  // Tail call byval lowering might overwrite argument registers so in case of
1937  // tail call optimization the copies to registers are lowered later.
1938  if (!isTailCall)
1939    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1940      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1941                               RegsToPass[i].second, InFlag);
1942      InFlag = Chain.getValue(1);
1943    }
1944
1945  if (Subtarget->isPICStyleGOT()) {
1946    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1947    // GOT pointer.
1948    if (!isTailCall) {
1949      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1950                               DAG.getNode(X86ISD::GlobalBaseReg,
1951                                           DebugLoc(), getPointerTy()),
1952                               InFlag);
1953      InFlag = Chain.getValue(1);
1954    } else {
1955      // If we are tail calling and generating PIC/GOT style code load the
1956      // address of the callee into ECX. The value in ecx is used as target of
1957      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1958      // for tail calls on PIC/GOT architectures. Normally we would just put the
1959      // address of GOT into ebx and then call target@PLT. But for tail calls
1960      // ebx would be restored (since ebx is callee saved) before jumping to the
1961      // target@PLT.
1962
1963      // Note: The actual moving to ECX is done further down.
1964      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1965      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1966          !G->getGlobal()->hasProtectedVisibility())
1967        Callee = LowerGlobalAddress(Callee, DAG);
1968      else if (isa<ExternalSymbolSDNode>(Callee))
1969        Callee = LowerExternalSymbol(Callee, DAG);
1970    }
1971  }
1972
1973  if (Is64Bit && isVarArg) {
1974    // From AMD64 ABI document:
1975    // For calls that may call functions that use varargs or stdargs
1976    // (prototype-less calls or calls to functions containing ellipsis (...) in
1977    // the declaration) %al is used as hidden argument to specify the number
1978    // of SSE registers used. The contents of %al do not need to match exactly
1979    // the number of registers, but must be an ubound on the number of SSE
1980    // registers used and is in the range 0 - 8 inclusive.
1981
1982    // FIXME: Verify this on Win64
1983    // Count the number of XMM registers allocated.
1984    static const unsigned XMMArgRegs[] = {
1985      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1986      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1987    };
1988    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1989    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1990           && "SSE registers cannot be used when SSE is disabled");
1991
1992    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1993                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1994    InFlag = Chain.getValue(1);
1995  }
1996
1997
1998  // For tail calls lower the arguments to the 'real' stack slot.
1999  if (isTailCall) {
2000    // Force all the incoming stack arguments to be loaded from the stack
2001    // before any new outgoing arguments are stored to the stack, because the
2002    // outgoing stack slots may alias the incoming argument stack slots, and
2003    // the alias isn't otherwise explicit. This is slightly more conservative
2004    // than necessary, because it means that each store effectively depends
2005    // on every argument instead of just those arguments it would clobber.
2006    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2007
2008    SmallVector<SDValue, 8> MemOpChains2;
2009    SDValue FIN;
2010    int FI = 0;
2011    // Do not flag preceeding copytoreg stuff together with the following stuff.
2012    InFlag = SDValue();
2013    if (GuaranteedTailCallOpt) {
2014      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2015        CCValAssign &VA = ArgLocs[i];
2016        if (VA.isRegLoc())
2017          continue;
2018        assert(VA.isMemLoc());
2019        SDValue Arg = Outs[i].Val;
2020        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2021        // Create frame index.
2022        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2023        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2024        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
2025        FIN = DAG.getFrameIndex(FI, getPointerTy());
2026
2027        if (Flags.isByVal()) {
2028          // Copy relative to framepointer.
2029          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2030          if (StackPtr.getNode() == 0)
2031            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2032                                          getPointerTy());
2033          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2034
2035          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2036                                                           ArgChain,
2037                                                           Flags, DAG, dl));
2038        } else {
2039          // Store relative to framepointer.
2040          MemOpChains2.push_back(
2041            DAG.getStore(ArgChain, dl, Arg, FIN,
2042                         PseudoSourceValue::getFixedStack(FI), 0,
2043                         false, false, 0));
2044        }
2045      }
2046    }
2047
2048    if (!MemOpChains2.empty())
2049      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2050                          &MemOpChains2[0], MemOpChains2.size());
2051
2052    // Copy arguments to their registers.
2053    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2054      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2055                               RegsToPass[i].second, InFlag);
2056      InFlag = Chain.getValue(1);
2057    }
2058    InFlag =SDValue();
2059
2060    // Store the return address to the appropriate stack slot.
2061    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2062                                     FPDiff, dl);
2063  }
2064
2065  bool WasGlobalOrExternal = false;
2066  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2067    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2068    // In the 64-bit large code model, we have to make all calls
2069    // through a register, since the call instruction's 32-bit
2070    // pc-relative offset may not be large enough to hold the whole
2071    // address.
2072  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2073    WasGlobalOrExternal = true;
2074    // If the callee is a GlobalAddress node (quite common, every direct call
2075    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2076    // it.
2077
2078    // We should use extra load for direct calls to dllimported functions in
2079    // non-JIT mode.
2080    const GlobalValue *GV = G->getGlobal();
2081    if (!GV->hasDLLImportLinkage()) {
2082      unsigned char OpFlags = 0;
2083
2084      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2085      // external symbols most go through the PLT in PIC mode.  If the symbol
2086      // has hidden or protected visibility, or if it is static or local, then
2087      // we don't need to use the PLT - we can directly call it.
2088      if (Subtarget->isTargetELF() &&
2089          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2090          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2091        OpFlags = X86II::MO_PLT;
2092      } else if (Subtarget->isPICStyleStubAny() &&
2093               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2094               Subtarget->getDarwinVers() < 9) {
2095        // PC-relative references to external symbols should go through $stub,
2096        // unless we're building with the leopard linker or later, which
2097        // automatically synthesizes these stubs.
2098        OpFlags = X86II::MO_DARWIN_STUB;
2099      }
2100
2101      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
2102                                          G->getOffset(), OpFlags);
2103    }
2104  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2105    WasGlobalOrExternal = true;
2106    unsigned char OpFlags = 0;
2107
2108    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2109    // symbols should go through the PLT.
2110    if (Subtarget->isTargetELF() &&
2111        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2112      OpFlags = X86II::MO_PLT;
2113    } else if (Subtarget->isPICStyleStubAny() &&
2114             Subtarget->getDarwinVers() < 9) {
2115      // PC-relative references to external symbols should go through $stub,
2116      // unless we're building with the leopard linker or later, which
2117      // automatically synthesizes these stubs.
2118      OpFlags = X86II::MO_DARWIN_STUB;
2119    }
2120
2121    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2122                                         OpFlags);
2123  }
2124
2125  // Returns a chain & a flag for retval copy to use.
2126  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2127  SmallVector<SDValue, 8> Ops;
2128
2129  if (!IsSibcall && isTailCall) {
2130    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2131                           DAG.getIntPtrConstant(0, true), InFlag);
2132    InFlag = Chain.getValue(1);
2133  }
2134
2135  Ops.push_back(Chain);
2136  Ops.push_back(Callee);
2137
2138  if (isTailCall)
2139    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2140
2141  // Add argument registers to the end of the list so that they are known live
2142  // into the call.
2143  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2144    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2145                                  RegsToPass[i].second.getValueType()));
2146
2147  // Add an implicit use GOT pointer in EBX.
2148  if (!isTailCall && Subtarget->isPICStyleGOT())
2149    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2150
2151  // Add an implicit use of AL for x86 vararg functions.
2152  if (Is64Bit && isVarArg)
2153    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2154
2155  if (InFlag.getNode())
2156    Ops.push_back(InFlag);
2157
2158  if (isTailCall) {
2159    // If this is the first return lowered for this function, add the regs
2160    // to the liveout set for the function.
2161    if (MF.getRegInfo().liveout_empty()) {
2162      SmallVector<CCValAssign, 16> RVLocs;
2163      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2164                     *DAG.getContext());
2165      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2166      for (unsigned i = 0; i != RVLocs.size(); ++i)
2167        if (RVLocs[i].isRegLoc())
2168          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2169    }
2170    return DAG.getNode(X86ISD::TC_RETURN, dl,
2171                       NodeTys, &Ops[0], Ops.size());
2172  }
2173
2174  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2175  InFlag = Chain.getValue(1);
2176
2177  // Create the CALLSEQ_END node.
2178  unsigned NumBytesForCalleeToPush;
2179  if (IsCalleePop(isVarArg, CallConv))
2180    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2181  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2182    // If this is a call to a struct-return function, the callee
2183    // pops the hidden struct pointer, so we have to push it back.
2184    // This is common for Darwin/X86, Linux & Mingw32 targets.
2185    NumBytesForCalleeToPush = 4;
2186  else
2187    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2188
2189  // Returns a flag for retval copy to use.
2190  if (!IsSibcall) {
2191    Chain = DAG.getCALLSEQ_END(Chain,
2192                               DAG.getIntPtrConstant(NumBytes, true),
2193                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2194                                                     true),
2195                               InFlag);
2196    InFlag = Chain.getValue(1);
2197  }
2198
2199  // Handle result values, copying them out of physregs into vregs that we
2200  // return.
2201  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2202                         Ins, dl, DAG, InVals);
2203}
2204
2205
2206//===----------------------------------------------------------------------===//
2207//                Fast Calling Convention (tail call) implementation
2208//===----------------------------------------------------------------------===//
2209
2210//  Like std call, callee cleans arguments, convention except that ECX is
2211//  reserved for storing the tail called function address. Only 2 registers are
2212//  free for argument passing (inreg). Tail call optimization is performed
2213//  provided:
2214//                * tailcallopt is enabled
2215//                * caller/callee are fastcc
2216//  On X86_64 architecture with GOT-style position independent code only local
2217//  (within module) calls are supported at the moment.
2218//  To keep the stack aligned according to platform abi the function
2219//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2220//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2221//  If a tail called function callee has more arguments than the caller the
2222//  caller needs to make sure that there is room to move the RETADDR to. This is
2223//  achieved by reserving an area the size of the argument delta right after the
2224//  original REtADDR, but before the saved framepointer or the spilled registers
2225//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2226//  stack layout:
2227//    arg1
2228//    arg2
2229//    RETADDR
2230//    [ new RETADDR
2231//      move area ]
2232//    (possible EBP)
2233//    ESI
2234//    EDI
2235//    local1 ..
2236
2237/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2238/// for a 16 byte align requirement.
2239unsigned
2240X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2241                                               SelectionDAG& DAG) const {
2242  MachineFunction &MF = DAG.getMachineFunction();
2243  const TargetMachine &TM = MF.getTarget();
2244  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2245  unsigned StackAlignment = TFI.getStackAlignment();
2246  uint64_t AlignMask = StackAlignment - 1;
2247  int64_t Offset = StackSize;
2248  uint64_t SlotSize = TD->getPointerSize();
2249  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2250    // Number smaller than 12 so just add the difference.
2251    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2252  } else {
2253    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2254    Offset = ((~AlignMask) & Offset) + StackAlignment +
2255      (StackAlignment-SlotSize);
2256  }
2257  return Offset;
2258}
2259
2260/// MatchingStackOffset - Return true if the given stack call argument is
2261/// already available in the same position (relatively) of the caller's
2262/// incoming argument stack.
2263static
2264bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2265                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2266                         const X86InstrInfo *TII) {
2267  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2268  int FI = INT_MAX;
2269  if (Arg.getOpcode() == ISD::CopyFromReg) {
2270    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2271    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2272      return false;
2273    MachineInstr *Def = MRI->getVRegDef(VR);
2274    if (!Def)
2275      return false;
2276    if (!Flags.isByVal()) {
2277      if (!TII->isLoadFromStackSlot(Def, FI))
2278        return false;
2279    } else {
2280      unsigned Opcode = Def->getOpcode();
2281      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2282          Def->getOperand(1).isFI()) {
2283        FI = Def->getOperand(1).getIndex();
2284        Bytes = Flags.getByValSize();
2285      } else
2286        return false;
2287    }
2288  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2289    if (Flags.isByVal())
2290      // ByVal argument is passed in as a pointer but it's now being
2291      // dereferenced. e.g.
2292      // define @foo(%struct.X* %A) {
2293      //   tail call @bar(%struct.X* byval %A)
2294      // }
2295      return false;
2296    SDValue Ptr = Ld->getBasePtr();
2297    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2298    if (!FINode)
2299      return false;
2300    FI = FINode->getIndex();
2301  } else
2302    return false;
2303
2304  assert(FI != INT_MAX);
2305  if (!MFI->isFixedObjectIndex(FI))
2306    return false;
2307  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2308}
2309
2310/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2311/// for tail call optimization. Targets which want to do tail call
2312/// optimization should implement this function.
2313bool
2314X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2315                                                     CallingConv::ID CalleeCC,
2316                                                     bool isVarArg,
2317                                                     bool isCalleeStructRet,
2318                                                     bool isCallerStructRet,
2319                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2320                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2321                                                     SelectionDAG& DAG) const {
2322  if (!IsTailCallConvention(CalleeCC) &&
2323      CalleeCC != CallingConv::C)
2324    return false;
2325
2326  // If -tailcallopt is specified, make fastcc functions tail-callable.
2327  const MachineFunction &MF = DAG.getMachineFunction();
2328  const Function *CallerF = DAG.getMachineFunction().getFunction();
2329  if (GuaranteedTailCallOpt) {
2330    if (IsTailCallConvention(CalleeCC) &&
2331        CallerF->getCallingConv() == CalleeCC)
2332      return true;
2333    return false;
2334  }
2335
2336  // Look for obvious safe cases to perform tail call optimization that does not
2337  // requite ABI changes. This is what gcc calls sibcall.
2338
2339  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2340  // emit a special epilogue.
2341  if (RegInfo->needsStackRealignment(MF))
2342    return false;
2343
2344  // Do not sibcall optimize vararg calls unless the call site is not passing any
2345  // arguments.
2346  if (isVarArg && !Outs.empty())
2347    return false;
2348
2349  // Also avoid sibcall optimization if either caller or callee uses struct
2350  // return semantics.
2351  if (isCalleeStructRet || isCallerStructRet)
2352    return false;
2353
2354  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2355  // Therefore if it's not used by the call it is not safe to optimize this into
2356  // a sibcall.
2357  bool Unused = false;
2358  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2359    if (!Ins[i].Used) {
2360      Unused = true;
2361      break;
2362    }
2363  }
2364  if (Unused) {
2365    SmallVector<CCValAssign, 16> RVLocs;
2366    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2367                   RVLocs, *DAG.getContext());
2368    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2369    for (unsigned i = 0; i != RVLocs.size(); ++i) {
2370      CCValAssign &VA = RVLocs[i];
2371      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2372        return false;
2373    }
2374  }
2375
2376  // If the callee takes no arguments then go on to check the results of the
2377  // call.
2378  if (!Outs.empty()) {
2379    // Check if stack adjustment is needed. For now, do not do this if any
2380    // argument is passed on the stack.
2381    SmallVector<CCValAssign, 16> ArgLocs;
2382    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2383                   ArgLocs, *DAG.getContext());
2384    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2385    if (CCInfo.getNextStackOffset()) {
2386      MachineFunction &MF = DAG.getMachineFunction();
2387      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2388        return false;
2389      if (Subtarget->isTargetWin64())
2390        // Win64 ABI has additional complications.
2391        return false;
2392
2393      // Check if the arguments are already laid out in the right way as
2394      // the caller's fixed stack objects.
2395      MachineFrameInfo *MFI = MF.getFrameInfo();
2396      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2397      const X86InstrInfo *TII =
2398        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2399      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2400        CCValAssign &VA = ArgLocs[i];
2401        EVT RegVT = VA.getLocVT();
2402        SDValue Arg = Outs[i].Val;
2403        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2404        if (VA.getLocInfo() == CCValAssign::Indirect)
2405          return false;
2406        if (!VA.isRegLoc()) {
2407          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2408                                   MFI, MRI, TII))
2409            return false;
2410        }
2411      }
2412    }
2413  }
2414
2415  return true;
2416}
2417
2418FastISel *
2419X86TargetLowering::createFastISel(MachineFunction &mf,
2420                            DenseMap<const Value *, unsigned> &vm,
2421                            DenseMap<const BasicBlock*, MachineBasicBlock*> &bm,
2422                            DenseMap<const AllocaInst *, int> &am,
2423                            std::vector<std::pair<MachineInstr*, unsigned> > &pn
2424#ifndef NDEBUG
2425                          , SmallSet<const Instruction *, 8> &cil
2426#endif
2427                                  ) const {
2428  return X86::createFastISel(mf, vm, bm, am, pn
2429#ifndef NDEBUG
2430                             , cil
2431#endif
2432                             );
2433}
2434
2435
2436//===----------------------------------------------------------------------===//
2437//                           Other Lowering Hooks
2438//===----------------------------------------------------------------------===//
2439
2440
2441SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2442  MachineFunction &MF = DAG.getMachineFunction();
2443  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2444  int ReturnAddrIndex = FuncInfo->getRAIndex();
2445
2446  if (ReturnAddrIndex == 0) {
2447    // Set up a frame object for the return address.
2448    uint64_t SlotSize = TD->getPointerSize();
2449    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2450                                                           false, false);
2451    FuncInfo->setRAIndex(ReturnAddrIndex);
2452  }
2453
2454  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2455}
2456
2457
2458bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2459                                       bool hasSymbolicDisplacement) {
2460  // Offset should fit into 32 bit immediate field.
2461  if (!isInt<32>(Offset))
2462    return false;
2463
2464  // If we don't have a symbolic displacement - we don't have any extra
2465  // restrictions.
2466  if (!hasSymbolicDisplacement)
2467    return true;
2468
2469  // FIXME: Some tweaks might be needed for medium code model.
2470  if (M != CodeModel::Small && M != CodeModel::Kernel)
2471    return false;
2472
2473  // For small code model we assume that latest object is 16MB before end of 31
2474  // bits boundary. We may also accept pretty large negative constants knowing
2475  // that all objects are in the positive half of address space.
2476  if (M == CodeModel::Small && Offset < 16*1024*1024)
2477    return true;
2478
2479  // For kernel code model we know that all object resist in the negative half
2480  // of 32bits address space. We may not accept negative offsets, since they may
2481  // be just off and we may accept pretty large positive ones.
2482  if (M == CodeModel::Kernel && Offset > 0)
2483    return true;
2484
2485  return false;
2486}
2487
2488/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2489/// specific condition code, returning the condition code and the LHS/RHS of the
2490/// comparison to make.
2491static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2492                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2493  if (!isFP) {
2494    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2495      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2496        // X > -1   -> X == 0, jump !sign.
2497        RHS = DAG.getConstant(0, RHS.getValueType());
2498        return X86::COND_NS;
2499      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2500        // X < 0   -> X == 0, jump on sign.
2501        return X86::COND_S;
2502      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2503        // X < 1   -> X <= 0
2504        RHS = DAG.getConstant(0, RHS.getValueType());
2505        return X86::COND_LE;
2506      }
2507    }
2508
2509    switch (SetCCOpcode) {
2510    default: llvm_unreachable("Invalid integer condition!");
2511    case ISD::SETEQ:  return X86::COND_E;
2512    case ISD::SETGT:  return X86::COND_G;
2513    case ISD::SETGE:  return X86::COND_GE;
2514    case ISD::SETLT:  return X86::COND_L;
2515    case ISD::SETLE:  return X86::COND_LE;
2516    case ISD::SETNE:  return X86::COND_NE;
2517    case ISD::SETULT: return X86::COND_B;
2518    case ISD::SETUGT: return X86::COND_A;
2519    case ISD::SETULE: return X86::COND_BE;
2520    case ISD::SETUGE: return X86::COND_AE;
2521    }
2522  }
2523
2524  // First determine if it is required or is profitable to flip the operands.
2525
2526  // If LHS is a foldable load, but RHS is not, flip the condition.
2527  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2528      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2529    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2530    std::swap(LHS, RHS);
2531  }
2532
2533  switch (SetCCOpcode) {
2534  default: break;
2535  case ISD::SETOLT:
2536  case ISD::SETOLE:
2537  case ISD::SETUGT:
2538  case ISD::SETUGE:
2539    std::swap(LHS, RHS);
2540    break;
2541  }
2542
2543  // On a floating point condition, the flags are set as follows:
2544  // ZF  PF  CF   op
2545  //  0 | 0 | 0 | X > Y
2546  //  0 | 0 | 1 | X < Y
2547  //  1 | 0 | 0 | X == Y
2548  //  1 | 1 | 1 | unordered
2549  switch (SetCCOpcode) {
2550  default: llvm_unreachable("Condcode should be pre-legalized away");
2551  case ISD::SETUEQ:
2552  case ISD::SETEQ:   return X86::COND_E;
2553  case ISD::SETOLT:              // flipped
2554  case ISD::SETOGT:
2555  case ISD::SETGT:   return X86::COND_A;
2556  case ISD::SETOLE:              // flipped
2557  case ISD::SETOGE:
2558  case ISD::SETGE:   return X86::COND_AE;
2559  case ISD::SETUGT:              // flipped
2560  case ISD::SETULT:
2561  case ISD::SETLT:   return X86::COND_B;
2562  case ISD::SETUGE:              // flipped
2563  case ISD::SETULE:
2564  case ISD::SETLE:   return X86::COND_BE;
2565  case ISD::SETONE:
2566  case ISD::SETNE:   return X86::COND_NE;
2567  case ISD::SETUO:   return X86::COND_P;
2568  case ISD::SETO:    return X86::COND_NP;
2569  case ISD::SETOEQ:
2570  case ISD::SETUNE:  return X86::COND_INVALID;
2571  }
2572}
2573
2574/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2575/// code. Current x86 isa includes the following FP cmov instructions:
2576/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2577static bool hasFPCMov(unsigned X86CC) {
2578  switch (X86CC) {
2579  default:
2580    return false;
2581  case X86::COND_B:
2582  case X86::COND_BE:
2583  case X86::COND_E:
2584  case X86::COND_P:
2585  case X86::COND_A:
2586  case X86::COND_AE:
2587  case X86::COND_NE:
2588  case X86::COND_NP:
2589    return true;
2590  }
2591}
2592
2593/// isFPImmLegal - Returns true if the target can instruction select the
2594/// specified FP immediate natively. If false, the legalizer will
2595/// materialize the FP immediate as a load from a constant pool.
2596bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2597  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2598    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2599      return true;
2600  }
2601  return false;
2602}
2603
2604/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2605/// the specified range (L, H].
2606static bool isUndefOrInRange(int Val, int Low, int Hi) {
2607  return (Val < 0) || (Val >= Low && Val < Hi);
2608}
2609
2610/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2611/// specified value.
2612static bool isUndefOrEqual(int Val, int CmpVal) {
2613  if (Val < 0 || Val == CmpVal)
2614    return true;
2615  return false;
2616}
2617
2618/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2619/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2620/// the second operand.
2621static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2622  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2623    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2624  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2625    return (Mask[0] < 2 && Mask[1] < 2);
2626  return false;
2627}
2628
2629bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2630  SmallVector<int, 8> M;
2631  N->getMask(M);
2632  return ::isPSHUFDMask(M, N->getValueType(0));
2633}
2634
2635/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2636/// is suitable for input to PSHUFHW.
2637static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2638  if (VT != MVT::v8i16)
2639    return false;
2640
2641  // Lower quadword copied in order or undef.
2642  for (int i = 0; i != 4; ++i)
2643    if (Mask[i] >= 0 && Mask[i] != i)
2644      return false;
2645
2646  // Upper quadword shuffled.
2647  for (int i = 4; i != 8; ++i)
2648    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2649      return false;
2650
2651  return true;
2652}
2653
2654bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2655  SmallVector<int, 8> M;
2656  N->getMask(M);
2657  return ::isPSHUFHWMask(M, N->getValueType(0));
2658}
2659
2660/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2661/// is suitable for input to PSHUFLW.
2662static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2663  if (VT != MVT::v8i16)
2664    return false;
2665
2666  // Upper quadword copied in order.
2667  for (int i = 4; i != 8; ++i)
2668    if (Mask[i] >= 0 && Mask[i] != i)
2669      return false;
2670
2671  // Lower quadword shuffled.
2672  for (int i = 0; i != 4; ++i)
2673    if (Mask[i] >= 4)
2674      return false;
2675
2676  return true;
2677}
2678
2679bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2680  SmallVector<int, 8> M;
2681  N->getMask(M);
2682  return ::isPSHUFLWMask(M, N->getValueType(0));
2683}
2684
2685/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2686/// is suitable for input to PALIGNR.
2687static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2688                          bool hasSSSE3) {
2689  int i, e = VT.getVectorNumElements();
2690
2691  // Do not handle v2i64 / v2f64 shuffles with palignr.
2692  if (e < 4 || !hasSSSE3)
2693    return false;
2694
2695  for (i = 0; i != e; ++i)
2696    if (Mask[i] >= 0)
2697      break;
2698
2699  // All undef, not a palignr.
2700  if (i == e)
2701    return false;
2702
2703  // Determine if it's ok to perform a palignr with only the LHS, since we
2704  // don't have access to the actual shuffle elements to see if RHS is undef.
2705  bool Unary = Mask[i] < (int)e;
2706  bool NeedsUnary = false;
2707
2708  int s = Mask[i] - i;
2709
2710  // Check the rest of the elements to see if they are consecutive.
2711  for (++i; i != e; ++i) {
2712    int m = Mask[i];
2713    if (m < 0)
2714      continue;
2715
2716    Unary = Unary && (m < (int)e);
2717    NeedsUnary = NeedsUnary || (m < s);
2718
2719    if (NeedsUnary && !Unary)
2720      return false;
2721    if (Unary && m != ((s+i) & (e-1)))
2722      return false;
2723    if (!Unary && m != (s+i))
2724      return false;
2725  }
2726  return true;
2727}
2728
2729bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2730  SmallVector<int, 8> M;
2731  N->getMask(M);
2732  return ::isPALIGNRMask(M, N->getValueType(0), true);
2733}
2734
2735/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2736/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2737static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2738  int NumElems = VT.getVectorNumElements();
2739  if (NumElems != 2 && NumElems != 4)
2740    return false;
2741
2742  int Half = NumElems / 2;
2743  for (int i = 0; i < Half; ++i)
2744    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2745      return false;
2746  for (int i = Half; i < NumElems; ++i)
2747    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2748      return false;
2749
2750  return true;
2751}
2752
2753bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2754  SmallVector<int, 8> M;
2755  N->getMask(M);
2756  return ::isSHUFPMask(M, N->getValueType(0));
2757}
2758
2759/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2760/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2761/// half elements to come from vector 1 (which would equal the dest.) and
2762/// the upper half to come from vector 2.
2763static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2764  int NumElems = VT.getVectorNumElements();
2765
2766  if (NumElems != 2 && NumElems != 4)
2767    return false;
2768
2769  int Half = NumElems / 2;
2770  for (int i = 0; i < Half; ++i)
2771    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2772      return false;
2773  for (int i = Half; i < NumElems; ++i)
2774    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2775      return false;
2776  return true;
2777}
2778
2779static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2780  SmallVector<int, 8> M;
2781  N->getMask(M);
2782  return isCommutedSHUFPMask(M, N->getValueType(0));
2783}
2784
2785/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2786/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2787bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2788  if (N->getValueType(0).getVectorNumElements() != 4)
2789    return false;
2790
2791  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2792  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2793         isUndefOrEqual(N->getMaskElt(1), 7) &&
2794         isUndefOrEqual(N->getMaskElt(2), 2) &&
2795         isUndefOrEqual(N->getMaskElt(3), 3);
2796}
2797
2798/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2799/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2800/// <2, 3, 2, 3>
2801bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2802  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2803
2804  if (NumElems != 4)
2805    return false;
2806
2807  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2808  isUndefOrEqual(N->getMaskElt(1), 3) &&
2809  isUndefOrEqual(N->getMaskElt(2), 2) &&
2810  isUndefOrEqual(N->getMaskElt(3), 3);
2811}
2812
2813/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2814/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2815bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2816  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2817
2818  if (NumElems != 2 && NumElems != 4)
2819    return false;
2820
2821  for (unsigned i = 0; i < NumElems/2; ++i)
2822    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2823      return false;
2824
2825  for (unsigned i = NumElems/2; i < NumElems; ++i)
2826    if (!isUndefOrEqual(N->getMaskElt(i), i))
2827      return false;
2828
2829  return true;
2830}
2831
2832/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2833/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2834bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2835  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2836
2837  if (NumElems != 2 && NumElems != 4)
2838    return false;
2839
2840  for (unsigned i = 0; i < NumElems/2; ++i)
2841    if (!isUndefOrEqual(N->getMaskElt(i), i))
2842      return false;
2843
2844  for (unsigned i = 0; i < NumElems/2; ++i)
2845    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2846      return false;
2847
2848  return true;
2849}
2850
2851/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2852/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2853static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2854                         bool V2IsSplat = false) {
2855  int NumElts = VT.getVectorNumElements();
2856  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2857    return false;
2858
2859  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2860    int BitI  = Mask[i];
2861    int BitI1 = Mask[i+1];
2862    if (!isUndefOrEqual(BitI, j))
2863      return false;
2864    if (V2IsSplat) {
2865      if (!isUndefOrEqual(BitI1, NumElts))
2866        return false;
2867    } else {
2868      if (!isUndefOrEqual(BitI1, j + NumElts))
2869        return false;
2870    }
2871  }
2872  return true;
2873}
2874
2875bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2876  SmallVector<int, 8> M;
2877  N->getMask(M);
2878  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2879}
2880
2881/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2882/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2883static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2884                         bool V2IsSplat = false) {
2885  int NumElts = VT.getVectorNumElements();
2886  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2887    return false;
2888
2889  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2890    int BitI  = Mask[i];
2891    int BitI1 = Mask[i+1];
2892    if (!isUndefOrEqual(BitI, j + NumElts/2))
2893      return false;
2894    if (V2IsSplat) {
2895      if (isUndefOrEqual(BitI1, NumElts))
2896        return false;
2897    } else {
2898      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2899        return false;
2900    }
2901  }
2902  return true;
2903}
2904
2905bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2906  SmallVector<int, 8> M;
2907  N->getMask(M);
2908  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2909}
2910
2911/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2912/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2913/// <0, 0, 1, 1>
2914static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2915  int NumElems = VT.getVectorNumElements();
2916  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2917    return false;
2918
2919  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2920    int BitI  = Mask[i];
2921    int BitI1 = Mask[i+1];
2922    if (!isUndefOrEqual(BitI, j))
2923      return false;
2924    if (!isUndefOrEqual(BitI1, j))
2925      return false;
2926  }
2927  return true;
2928}
2929
2930bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2931  SmallVector<int, 8> M;
2932  N->getMask(M);
2933  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2934}
2935
2936/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2937/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2938/// <2, 2, 3, 3>
2939static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2940  int NumElems = VT.getVectorNumElements();
2941  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2942    return false;
2943
2944  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2945    int BitI  = Mask[i];
2946    int BitI1 = Mask[i+1];
2947    if (!isUndefOrEqual(BitI, j))
2948      return false;
2949    if (!isUndefOrEqual(BitI1, j))
2950      return false;
2951  }
2952  return true;
2953}
2954
2955bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2956  SmallVector<int, 8> M;
2957  N->getMask(M);
2958  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2959}
2960
2961/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2962/// specifies a shuffle of elements that is suitable for input to MOVSS,
2963/// MOVSD, and MOVD, i.e. setting the lowest element.
2964static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2965  if (VT.getVectorElementType().getSizeInBits() < 32)
2966    return false;
2967
2968  int NumElts = VT.getVectorNumElements();
2969
2970  if (!isUndefOrEqual(Mask[0], NumElts))
2971    return false;
2972
2973  for (int i = 1; i < NumElts; ++i)
2974    if (!isUndefOrEqual(Mask[i], i))
2975      return false;
2976
2977  return true;
2978}
2979
2980bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2981  SmallVector<int, 8> M;
2982  N->getMask(M);
2983  return ::isMOVLMask(M, N->getValueType(0));
2984}
2985
2986/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2987/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2988/// element of vector 2 and the other elements to come from vector 1 in order.
2989static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2990                               bool V2IsSplat = false, bool V2IsUndef = false) {
2991  int NumOps = VT.getVectorNumElements();
2992  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2993    return false;
2994
2995  if (!isUndefOrEqual(Mask[0], 0))
2996    return false;
2997
2998  for (int i = 1; i < NumOps; ++i)
2999    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3000          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3001          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3002      return false;
3003
3004  return true;
3005}
3006
3007static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3008                           bool V2IsUndef = false) {
3009  SmallVector<int, 8> M;
3010  N->getMask(M);
3011  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3012}
3013
3014/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3015/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3016bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3017  if (N->getValueType(0).getVectorNumElements() != 4)
3018    return false;
3019
3020  // Expect 1, 1, 3, 3
3021  for (unsigned i = 0; i < 2; ++i) {
3022    int Elt = N->getMaskElt(i);
3023    if (Elt >= 0 && Elt != 1)
3024      return false;
3025  }
3026
3027  bool HasHi = false;
3028  for (unsigned i = 2; i < 4; ++i) {
3029    int Elt = N->getMaskElt(i);
3030    if (Elt >= 0 && Elt != 3)
3031      return false;
3032    if (Elt == 3)
3033      HasHi = true;
3034  }
3035  // Don't use movshdup if it can be done with a shufps.
3036  // FIXME: verify that matching u, u, 3, 3 is what we want.
3037  return HasHi;
3038}
3039
3040/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3041/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3042bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3043  if (N->getValueType(0).getVectorNumElements() != 4)
3044    return false;
3045
3046  // Expect 0, 0, 2, 2
3047  for (unsigned i = 0; i < 2; ++i)
3048    if (N->getMaskElt(i) > 0)
3049      return false;
3050
3051  bool HasHi = false;
3052  for (unsigned i = 2; i < 4; ++i) {
3053    int Elt = N->getMaskElt(i);
3054    if (Elt >= 0 && Elt != 2)
3055      return false;
3056    if (Elt == 2)
3057      HasHi = true;
3058  }
3059  // Don't use movsldup if it can be done with a shufps.
3060  return HasHi;
3061}
3062
3063/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3064/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3065bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3066  int e = N->getValueType(0).getVectorNumElements() / 2;
3067
3068  for (int i = 0; i < e; ++i)
3069    if (!isUndefOrEqual(N->getMaskElt(i), i))
3070      return false;
3071  for (int i = 0; i < e; ++i)
3072    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3073      return false;
3074  return true;
3075}
3076
3077/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3078/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3079unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3080  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3081  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3082
3083  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3084  unsigned Mask = 0;
3085  for (int i = 0; i < NumOperands; ++i) {
3086    int Val = SVOp->getMaskElt(NumOperands-i-1);
3087    if (Val < 0) Val = 0;
3088    if (Val >= NumOperands) Val -= NumOperands;
3089    Mask |= Val;
3090    if (i != NumOperands - 1)
3091      Mask <<= Shift;
3092  }
3093  return Mask;
3094}
3095
3096/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3097/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3098unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3099  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3100  unsigned Mask = 0;
3101  // 8 nodes, but we only care about the last 4.
3102  for (unsigned i = 7; i >= 4; --i) {
3103    int Val = SVOp->getMaskElt(i);
3104    if (Val >= 0)
3105      Mask |= (Val - 4);
3106    if (i != 4)
3107      Mask <<= 2;
3108  }
3109  return Mask;
3110}
3111
3112/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3113/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3114unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3115  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3116  unsigned Mask = 0;
3117  // 8 nodes, but we only care about the first 4.
3118  for (int i = 3; i >= 0; --i) {
3119    int Val = SVOp->getMaskElt(i);
3120    if (Val >= 0)
3121      Mask |= Val;
3122    if (i != 0)
3123      Mask <<= 2;
3124  }
3125  return Mask;
3126}
3127
3128/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3129/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3130unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3131  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3132  EVT VVT = N->getValueType(0);
3133  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3134  int Val = 0;
3135
3136  unsigned i, e;
3137  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3138    Val = SVOp->getMaskElt(i);
3139    if (Val >= 0)
3140      break;
3141  }
3142  return (Val - i) * EltSize;
3143}
3144
3145/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3146/// constant +0.0.
3147bool X86::isZeroNode(SDValue Elt) {
3148  return ((isa<ConstantSDNode>(Elt) &&
3149           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
3150          (isa<ConstantFPSDNode>(Elt) &&
3151           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3152}
3153
3154/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3155/// their permute mask.
3156static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3157                                    SelectionDAG &DAG) {
3158  EVT VT = SVOp->getValueType(0);
3159  unsigned NumElems = VT.getVectorNumElements();
3160  SmallVector<int, 8> MaskVec;
3161
3162  for (unsigned i = 0; i != NumElems; ++i) {
3163    int idx = SVOp->getMaskElt(i);
3164    if (idx < 0)
3165      MaskVec.push_back(idx);
3166    else if (idx < (int)NumElems)
3167      MaskVec.push_back(idx + NumElems);
3168    else
3169      MaskVec.push_back(idx - NumElems);
3170  }
3171  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3172                              SVOp->getOperand(0), &MaskVec[0]);
3173}
3174
3175/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3176/// the two vector operands have swapped position.
3177static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3178  unsigned NumElems = VT.getVectorNumElements();
3179  for (unsigned i = 0; i != NumElems; ++i) {
3180    int idx = Mask[i];
3181    if (idx < 0)
3182      continue;
3183    else if (idx < (int)NumElems)
3184      Mask[i] = idx + NumElems;
3185    else
3186      Mask[i] = idx - NumElems;
3187  }
3188}
3189
3190/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3191/// match movhlps. The lower half elements should come from upper half of
3192/// V1 (and in order), and the upper half elements should come from the upper
3193/// half of V2 (and in order).
3194static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3195  if (Op->getValueType(0).getVectorNumElements() != 4)
3196    return false;
3197  for (unsigned i = 0, e = 2; i != e; ++i)
3198    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3199      return false;
3200  for (unsigned i = 2; i != 4; ++i)
3201    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3202      return false;
3203  return true;
3204}
3205
3206/// isScalarLoadToVector - Returns true if the node is a scalar load that
3207/// is promoted to a vector. It also returns the LoadSDNode by reference if
3208/// required.
3209static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3210  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3211    return false;
3212  N = N->getOperand(0).getNode();
3213  if (!ISD::isNON_EXTLoad(N))
3214    return false;
3215  if (LD)
3216    *LD = cast<LoadSDNode>(N);
3217  return true;
3218}
3219
3220/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3221/// match movlp{s|d}. The lower half elements should come from lower half of
3222/// V1 (and in order), and the upper half elements should come from the upper
3223/// half of V2 (and in order). And since V1 will become the source of the
3224/// MOVLP, it must be either a vector load or a scalar load to vector.
3225static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3226                               ShuffleVectorSDNode *Op) {
3227  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3228    return false;
3229  // Is V2 is a vector load, don't do this transformation. We will try to use
3230  // load folding shufps op.
3231  if (ISD::isNON_EXTLoad(V2))
3232    return false;
3233
3234  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3235
3236  if (NumElems != 2 && NumElems != 4)
3237    return false;
3238  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3239    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3240      return false;
3241  for (unsigned i = NumElems/2; i != NumElems; ++i)
3242    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3243      return false;
3244  return true;
3245}
3246
3247/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3248/// all the same.
3249static bool isSplatVector(SDNode *N) {
3250  if (N->getOpcode() != ISD::BUILD_VECTOR)
3251    return false;
3252
3253  SDValue SplatValue = N->getOperand(0);
3254  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3255    if (N->getOperand(i) != SplatValue)
3256      return false;
3257  return true;
3258}
3259
3260/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3261/// to an zero vector.
3262/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3263static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3264  SDValue V1 = N->getOperand(0);
3265  SDValue V2 = N->getOperand(1);
3266  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3267  for (unsigned i = 0; i != NumElems; ++i) {
3268    int Idx = N->getMaskElt(i);
3269    if (Idx >= (int)NumElems) {
3270      unsigned Opc = V2.getOpcode();
3271      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3272        continue;
3273      if (Opc != ISD::BUILD_VECTOR ||
3274          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3275        return false;
3276    } else if (Idx >= 0) {
3277      unsigned Opc = V1.getOpcode();
3278      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3279        continue;
3280      if (Opc != ISD::BUILD_VECTOR ||
3281          !X86::isZeroNode(V1.getOperand(Idx)))
3282        return false;
3283    }
3284  }
3285  return true;
3286}
3287
3288/// getZeroVector - Returns a vector of specified type with all zero elements.
3289///
3290static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3291                             DebugLoc dl) {
3292  assert(VT.isVector() && "Expected a vector type");
3293
3294  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3295  // type.  This ensures they get CSE'd.
3296  SDValue Vec;
3297  if (VT.getSizeInBits() == 64) { // MMX
3298    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3299    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3300  } else if (HasSSE2) {  // SSE2
3301    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3302    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3303  } else { // SSE1
3304    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3305    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3306  }
3307  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3308}
3309
3310/// getOnesVector - Returns a vector of specified type with all bits set.
3311///
3312static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3313  assert(VT.isVector() && "Expected a vector type");
3314
3315  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3316  // type.  This ensures they get CSE'd.
3317  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3318  SDValue Vec;
3319  if (VT.getSizeInBits() == 64)  // MMX
3320    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3321  else                                              // SSE
3322    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3323  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3324}
3325
3326
3327/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3328/// that point to V2 points to its first element.
3329static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3330  EVT VT = SVOp->getValueType(0);
3331  unsigned NumElems = VT.getVectorNumElements();
3332
3333  bool Changed = false;
3334  SmallVector<int, 8> MaskVec;
3335  SVOp->getMask(MaskVec);
3336
3337  for (unsigned i = 0; i != NumElems; ++i) {
3338    if (MaskVec[i] > (int)NumElems) {
3339      MaskVec[i] = NumElems;
3340      Changed = true;
3341    }
3342  }
3343  if (Changed)
3344    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3345                                SVOp->getOperand(1), &MaskVec[0]);
3346  return SDValue(SVOp, 0);
3347}
3348
3349/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3350/// operation of specified width.
3351static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3352                       SDValue V2) {
3353  unsigned NumElems = VT.getVectorNumElements();
3354  SmallVector<int, 8> Mask;
3355  Mask.push_back(NumElems);
3356  for (unsigned i = 1; i != NumElems; ++i)
3357    Mask.push_back(i);
3358  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3359}
3360
3361/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3362static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3363                          SDValue V2) {
3364  unsigned NumElems = VT.getVectorNumElements();
3365  SmallVector<int, 8> Mask;
3366  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3367    Mask.push_back(i);
3368    Mask.push_back(i + NumElems);
3369  }
3370  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3371}
3372
3373/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3374static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3375                          SDValue V2) {
3376  unsigned NumElems = VT.getVectorNumElements();
3377  unsigned Half = NumElems/2;
3378  SmallVector<int, 8> Mask;
3379  for (unsigned i = 0; i != Half; ++i) {
3380    Mask.push_back(i + Half);
3381    Mask.push_back(i + NumElems + Half);
3382  }
3383  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3384}
3385
3386/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3387static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3388                            bool HasSSE2) {
3389  if (SV->getValueType(0).getVectorNumElements() <= 4)
3390    return SDValue(SV, 0);
3391
3392  EVT PVT = MVT::v4f32;
3393  EVT VT = SV->getValueType(0);
3394  DebugLoc dl = SV->getDebugLoc();
3395  SDValue V1 = SV->getOperand(0);
3396  int NumElems = VT.getVectorNumElements();
3397  int EltNo = SV->getSplatIndex();
3398
3399  // unpack elements to the correct location
3400  while (NumElems > 4) {
3401    if (EltNo < NumElems/2) {
3402      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3403    } else {
3404      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3405      EltNo -= NumElems/2;
3406    }
3407    NumElems >>= 1;
3408  }
3409
3410  // Perform the splat.
3411  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3412  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3413  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3414  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3415}
3416
3417/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3418/// vector of zero or undef vector.  This produces a shuffle where the low
3419/// element of V2 is swizzled into the zero/undef vector, landing at element
3420/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3421static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3422                                             bool isZero, bool HasSSE2,
3423                                             SelectionDAG &DAG) {
3424  EVT VT = V2.getValueType();
3425  SDValue V1 = isZero
3426    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3427  unsigned NumElems = VT.getVectorNumElements();
3428  SmallVector<int, 16> MaskVec;
3429  for (unsigned i = 0; i != NumElems; ++i)
3430    // If this is the insertion idx, put the low elt of V2 here.
3431    MaskVec.push_back(i == Idx ? NumElems : i);
3432  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3433}
3434
3435/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3436/// a shuffle that is zero.
3437static
3438unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3439                                  bool Low, SelectionDAG &DAG) {
3440  unsigned NumZeros = 0;
3441  for (int i = 0; i < NumElems; ++i) {
3442    unsigned Index = Low ? i : NumElems-i-1;
3443    int Idx = SVOp->getMaskElt(Index);
3444    if (Idx < 0) {
3445      ++NumZeros;
3446      continue;
3447    }
3448    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3449    if (Elt.getNode() && X86::isZeroNode(Elt))
3450      ++NumZeros;
3451    else
3452      break;
3453  }
3454  return NumZeros;
3455}
3456
3457/// isVectorShift - Returns true if the shuffle can be implemented as a
3458/// logical left or right shift of a vector.
3459/// FIXME: split into pslldqi, psrldqi, palignr variants.
3460static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3461                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3462  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3463
3464  isLeft = true;
3465  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3466  if (!NumZeros) {
3467    isLeft = false;
3468    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3469    if (!NumZeros)
3470      return false;
3471  }
3472  bool SeenV1 = false;
3473  bool SeenV2 = false;
3474  for (unsigned i = NumZeros; i < NumElems; ++i) {
3475    unsigned Val = isLeft ? (i - NumZeros) : i;
3476    int Idx_ = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3477    if (Idx_ < 0)
3478      continue;
3479    unsigned Idx = (unsigned) Idx_;
3480    if (Idx < NumElems)
3481      SeenV1 = true;
3482    else {
3483      Idx -= NumElems;
3484      SeenV2 = true;
3485    }
3486    if (Idx != Val)
3487      return false;
3488  }
3489  if (SeenV1 && SeenV2)
3490    return false;
3491
3492  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3493  ShAmt = NumZeros;
3494  return true;
3495}
3496
3497
3498/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3499///
3500static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3501                                       unsigned NumNonZero, unsigned NumZero,
3502                                       SelectionDAG &DAG,
3503                                       const TargetLowering &TLI) {
3504  if (NumNonZero > 8)
3505    return SDValue();
3506
3507  DebugLoc dl = Op.getDebugLoc();
3508  SDValue V(0, 0);
3509  bool First = true;
3510  for (unsigned i = 0; i < 16; ++i) {
3511    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3512    if (ThisIsNonZero && First) {
3513      if (NumZero)
3514        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3515      else
3516        V = DAG.getUNDEF(MVT::v8i16);
3517      First = false;
3518    }
3519
3520    if ((i & 1) != 0) {
3521      SDValue ThisElt(0, 0), LastElt(0, 0);
3522      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3523      if (LastIsNonZero) {
3524        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3525                              MVT::i16, Op.getOperand(i-1));
3526      }
3527      if (ThisIsNonZero) {
3528        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3529        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3530                              ThisElt, DAG.getConstant(8, MVT::i8));
3531        if (LastIsNonZero)
3532          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3533      } else
3534        ThisElt = LastElt;
3535
3536      if (ThisElt.getNode())
3537        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3538                        DAG.getIntPtrConstant(i/2));
3539    }
3540  }
3541
3542  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3543}
3544
3545/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3546///
3547static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3548                                     unsigned NumNonZero, unsigned NumZero,
3549                                     SelectionDAG &DAG,
3550                                     const TargetLowering &TLI) {
3551  if (NumNonZero > 4)
3552    return SDValue();
3553
3554  DebugLoc dl = Op.getDebugLoc();
3555  SDValue V(0, 0);
3556  bool First = true;
3557  for (unsigned i = 0; i < 8; ++i) {
3558    bool isNonZero = (NonZeros & (1 << i)) != 0;
3559    if (isNonZero) {
3560      if (First) {
3561        if (NumZero)
3562          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3563        else
3564          V = DAG.getUNDEF(MVT::v8i16);
3565        First = false;
3566      }
3567      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3568                      MVT::v8i16, V, Op.getOperand(i),
3569                      DAG.getIntPtrConstant(i));
3570    }
3571  }
3572
3573  return V;
3574}
3575
3576/// getVShift - Return a vector logical shift node.
3577///
3578static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3579                         unsigned NumBits, SelectionDAG &DAG,
3580                         const TargetLowering &TLI, DebugLoc dl) {
3581  bool isMMX = VT.getSizeInBits() == 64;
3582  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3583  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3584  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3585  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3586                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3587                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3588}
3589
3590SDValue
3591X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3592                                          SelectionDAG &DAG) const {
3593
3594  // Check if the scalar load can be widened into a vector load. And if
3595  // the address is "base + cst" see if the cst can be "absorbed" into
3596  // the shuffle mask.
3597  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3598    SDValue Ptr = LD->getBasePtr();
3599    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3600      return SDValue();
3601    EVT PVT = LD->getValueType(0);
3602    if (PVT != MVT::i32 && PVT != MVT::f32)
3603      return SDValue();
3604
3605    int FI = -1;
3606    int64_t Offset = 0;
3607    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3608      FI = FINode->getIndex();
3609      Offset = 0;
3610    } else if (Ptr.getOpcode() == ISD::ADD &&
3611               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3612               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3613      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3614      Offset = Ptr.getConstantOperandVal(1);
3615      Ptr = Ptr.getOperand(0);
3616    } else {
3617      return SDValue();
3618    }
3619
3620    SDValue Chain = LD->getChain();
3621    // Make sure the stack object alignment is at least 16.
3622    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3623    if (DAG.InferPtrAlignment(Ptr) < 16) {
3624      if (MFI->isFixedObjectIndex(FI)) {
3625        // Can't change the alignment. FIXME: It's possible to compute
3626        // the exact stack offset and reference FI + adjust offset instead.
3627        // If someone *really* cares about this. That's the way to implement it.
3628        return SDValue();
3629      } else {
3630        MFI->setObjectAlignment(FI, 16);
3631      }
3632    }
3633
3634    // (Offset % 16) must be multiple of 4. Then address is then
3635    // Ptr + (Offset & ~15).
3636    if (Offset < 0)
3637      return SDValue();
3638    if ((Offset % 16) & 3)
3639      return SDValue();
3640    int64_t StartOffset = Offset & ~15;
3641    if (StartOffset)
3642      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3643                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3644
3645    int EltNo = (Offset - StartOffset) >> 2;
3646    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3647    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3648    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3649                             false, false, 0);
3650    // Canonicalize it to a v4i32 shuffle.
3651    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3652    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3653                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3654                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3655  }
3656
3657  return SDValue();
3658}
3659
3660/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3661/// vector of type 'VT', see if the elements can be replaced by a single large
3662/// load which has the same value as a build_vector whose operands are 'elts'.
3663///
3664/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3665///
3666/// FIXME: we'd also like to handle the case where the last elements are zero
3667/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3668/// There's even a handy isZeroNode for that purpose.
3669static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3670                                        DebugLoc &dl, SelectionDAG &DAG) {
3671  EVT EltVT = VT.getVectorElementType();
3672  unsigned NumElems = Elts.size();
3673
3674  LoadSDNode *LDBase = NULL;
3675  unsigned LastLoadedElt = -1U;
3676
3677  // For each element in the initializer, see if we've found a load or an undef.
3678  // If we don't find an initial load element, or later load elements are
3679  // non-consecutive, bail out.
3680  for (unsigned i = 0; i < NumElems; ++i) {
3681    SDValue Elt = Elts[i];
3682
3683    if (!Elt.getNode() ||
3684        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
3685      return SDValue();
3686    if (!LDBase) {
3687      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
3688        return SDValue();
3689      LDBase = cast<LoadSDNode>(Elt.getNode());
3690      LastLoadedElt = i;
3691      continue;
3692    }
3693    if (Elt.getOpcode() == ISD::UNDEF)
3694      continue;
3695
3696    LoadSDNode *LD = cast<LoadSDNode>(Elt);
3697    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
3698      return SDValue();
3699    LastLoadedElt = i;
3700  }
3701
3702  // If we have found an entire vector of loads and undefs, then return a large
3703  // load of the entire vector width starting at the base pointer.  If we found
3704  // consecutive loads for the low half, generate a vzext_load node.
3705  if (LastLoadedElt == NumElems - 1) {
3706    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
3707      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3708                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3709                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
3710    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3711                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3712                       LDBase->isVolatile(), LDBase->isNonTemporal(),
3713                       LDBase->getAlignment());
3714  } else if (NumElems == 4 && LastLoadedElt == 1) {
3715    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
3716    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
3717    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
3718    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
3719  }
3720  return SDValue();
3721}
3722
3723SDValue
3724X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
3725  DebugLoc dl = Op.getDebugLoc();
3726  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3727  if (ISD::isBuildVectorAllZeros(Op.getNode())
3728      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3729    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3730    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3731    // eliminated on x86-32 hosts.
3732    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3733      return Op;
3734
3735    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3736      return getOnesVector(Op.getValueType(), DAG, dl);
3737    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3738  }
3739
3740  EVT VT = Op.getValueType();
3741  EVT ExtVT = VT.getVectorElementType();
3742  unsigned EVTBits = ExtVT.getSizeInBits();
3743
3744  unsigned NumElems = Op.getNumOperands();
3745  unsigned NumZero  = 0;
3746  unsigned NumNonZero = 0;
3747  unsigned NonZeros = 0;
3748  bool IsAllConstants = true;
3749  SmallSet<SDValue, 8> Values;
3750  for (unsigned i = 0; i < NumElems; ++i) {
3751    SDValue Elt = Op.getOperand(i);
3752    if (Elt.getOpcode() == ISD::UNDEF)
3753      continue;
3754    Values.insert(Elt);
3755    if (Elt.getOpcode() != ISD::Constant &&
3756        Elt.getOpcode() != ISD::ConstantFP)
3757      IsAllConstants = false;
3758    if (X86::isZeroNode(Elt))
3759      NumZero++;
3760    else {
3761      NonZeros |= (1 << i);
3762      NumNonZero++;
3763    }
3764  }
3765
3766  if (NumNonZero == 0) {
3767    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3768    return DAG.getUNDEF(VT);
3769  }
3770
3771  // Special case for single non-zero, non-undef, element.
3772  if (NumNonZero == 1) {
3773    unsigned Idx = CountTrailingZeros_32(NonZeros);
3774    SDValue Item = Op.getOperand(Idx);
3775
3776    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3777    // the value are obviously zero, truncate the value to i32 and do the
3778    // insertion that way.  Only do this if the value is non-constant or if the
3779    // value is a constant being inserted into element 0.  It is cheaper to do
3780    // a constant pool load than it is to do a movd + shuffle.
3781    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3782        (!IsAllConstants || Idx == 0)) {
3783      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3784        // Handle MMX and SSE both.
3785        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3786        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3787
3788        // Truncate the value (which may itself be a constant) to i32, and
3789        // convert it to a vector with movd (S2V+shuffle to zero extend).
3790        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3791        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3792        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3793                                           Subtarget->hasSSE2(), DAG);
3794
3795        // Now we have our 32-bit value zero extended in the low element of
3796        // a vector.  If Idx != 0, swizzle it into place.
3797        if (Idx != 0) {
3798          SmallVector<int, 4> Mask;
3799          Mask.push_back(Idx);
3800          for (unsigned i = 1; i != VecElts; ++i)
3801            Mask.push_back(i);
3802          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3803                                      DAG.getUNDEF(Item.getValueType()),
3804                                      &Mask[0]);
3805        }
3806        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3807      }
3808    }
3809
3810    // If we have a constant or non-constant insertion into the low element of
3811    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3812    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3813    // depending on what the source datatype is.
3814    if (Idx == 0) {
3815      if (NumZero == 0) {
3816        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3817      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3818          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3819        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3820        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3821        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3822                                           DAG);
3823      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3824        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3825        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3826        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3827        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3828                                           Subtarget->hasSSE2(), DAG);
3829        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3830      }
3831    }
3832
3833    // Is it a vector logical left shift?
3834    if (NumElems == 2 && Idx == 1 &&
3835        X86::isZeroNode(Op.getOperand(0)) &&
3836        !X86::isZeroNode(Op.getOperand(1))) {
3837      unsigned NumBits = VT.getSizeInBits();
3838      return getVShift(true, VT,
3839                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3840                                   VT, Op.getOperand(1)),
3841                       NumBits/2, DAG, *this, dl);
3842    }
3843
3844    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3845      return SDValue();
3846
3847    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3848    // is a non-constant being inserted into an element other than the low one,
3849    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3850    // movd/movss) to move this into the low element, then shuffle it into
3851    // place.
3852    if (EVTBits == 32) {
3853      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3854
3855      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3856      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3857                                         Subtarget->hasSSE2(), DAG);
3858      SmallVector<int, 8> MaskVec;
3859      for (unsigned i = 0; i < NumElems; i++)
3860        MaskVec.push_back(i == Idx ? 0 : 1);
3861      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3862    }
3863  }
3864
3865  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3866  if (Values.size() == 1) {
3867    if (EVTBits == 32) {
3868      // Instead of a shuffle like this:
3869      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3870      // Check if it's possible to issue this instead.
3871      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3872      unsigned Idx = CountTrailingZeros_32(NonZeros);
3873      SDValue Item = Op.getOperand(Idx);
3874      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3875        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3876    }
3877    return SDValue();
3878  }
3879
3880  // A vector full of immediates; various special cases are already
3881  // handled, so this is best done with a single constant-pool load.
3882  if (IsAllConstants)
3883    return SDValue();
3884
3885  // Let legalizer expand 2-wide build_vectors.
3886  if (EVTBits == 64) {
3887    if (NumNonZero == 1) {
3888      // One half is zero or undef.
3889      unsigned Idx = CountTrailingZeros_32(NonZeros);
3890      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3891                                 Op.getOperand(Idx));
3892      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3893                                         Subtarget->hasSSE2(), DAG);
3894    }
3895    return SDValue();
3896  }
3897
3898  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3899  if (EVTBits == 8 && NumElems == 16) {
3900    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3901                                        *this);
3902    if (V.getNode()) return V;
3903  }
3904
3905  if (EVTBits == 16 && NumElems == 8) {
3906    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3907                                        *this);
3908    if (V.getNode()) return V;
3909  }
3910
3911  // If element VT is == 32 bits, turn it into a number of shuffles.
3912  SmallVector<SDValue, 8> V;
3913  V.resize(NumElems);
3914  if (NumElems == 4 && NumZero > 0) {
3915    for (unsigned i = 0; i < 4; ++i) {
3916      bool isZero = !(NonZeros & (1 << i));
3917      if (isZero)
3918        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3919      else
3920        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3921    }
3922
3923    for (unsigned i = 0; i < 2; ++i) {
3924      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3925        default: break;
3926        case 0:
3927          V[i] = V[i*2];  // Must be a zero vector.
3928          break;
3929        case 1:
3930          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3931          break;
3932        case 2:
3933          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3934          break;
3935        case 3:
3936          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3937          break;
3938      }
3939    }
3940
3941    SmallVector<int, 8> MaskVec;
3942    bool Reverse = (NonZeros & 0x3) == 2;
3943    for (unsigned i = 0; i < 2; ++i)
3944      MaskVec.push_back(Reverse ? 1-i : i);
3945    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3946    for (unsigned i = 0; i < 2; ++i)
3947      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3948    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3949  }
3950
3951  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
3952    // Check for a build vector of consecutive loads.
3953    for (unsigned i = 0; i < NumElems; ++i)
3954      V[i] = Op.getOperand(i);
3955
3956    // Check for elements which are consecutive loads.
3957    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
3958    if (LD.getNode())
3959      return LD;
3960
3961    // For SSE 4.1, use inserts into undef.
3962    if (getSubtarget()->hasSSE41()) {
3963      V[0] = DAG.getUNDEF(VT);
3964      for (unsigned i = 0; i < NumElems; ++i)
3965        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3966          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3967                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3968      return V[0];
3969    }
3970
3971    // Otherwise, expand into a number of unpckl*
3972    // e.g. for v4f32
3973    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3974    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3975    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3976    for (unsigned i = 0; i < NumElems; ++i)
3977      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3978    NumElems >>= 1;
3979    while (NumElems != 0) {
3980      for (unsigned i = 0; i < NumElems; ++i)
3981        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3982      NumElems >>= 1;
3983    }
3984    return V[0];
3985  }
3986  return SDValue();
3987}
3988
3989SDValue
3990X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
3991  // We support concatenate two MMX registers and place them in a MMX
3992  // register.  This is better than doing a stack convert.
3993  DebugLoc dl = Op.getDebugLoc();
3994  EVT ResVT = Op.getValueType();
3995  assert(Op.getNumOperands() == 2);
3996  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
3997         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
3998  int Mask[2];
3999  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4000  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4001  InVec = Op.getOperand(1);
4002  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4003    unsigned NumElts = ResVT.getVectorNumElements();
4004    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4005    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4006                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4007  } else {
4008    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4009    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4010    Mask[0] = 0; Mask[1] = 2;
4011    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4012  }
4013  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4014}
4015
4016// v8i16 shuffles - Prefer shuffles in the following order:
4017// 1. [all]   pshuflw, pshufhw, optional move
4018// 2. [ssse3] 1 x pshufb
4019// 3. [ssse3] 2 x pshufb + 1 x por
4020// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4021static
4022SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
4023                                 SelectionDAG &DAG,
4024                                 const X86TargetLowering &TLI) {
4025  SDValue V1 = SVOp->getOperand(0);
4026  SDValue V2 = SVOp->getOperand(1);
4027  DebugLoc dl = SVOp->getDebugLoc();
4028  SmallVector<int, 8> MaskVals;
4029
4030  // Determine if more than 1 of the words in each of the low and high quadwords
4031  // of the result come from the same quadword of one of the two inputs.  Undef
4032  // mask values count as coming from any quadword, for better codegen.
4033  SmallVector<unsigned, 4> LoQuad(4);
4034  SmallVector<unsigned, 4> HiQuad(4);
4035  BitVector InputQuads(4);
4036  for (unsigned i = 0; i < 8; ++i) {
4037    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4038    int EltIdx = SVOp->getMaskElt(i);
4039    MaskVals.push_back(EltIdx);
4040    if (EltIdx < 0) {
4041      ++Quad[0];
4042      ++Quad[1];
4043      ++Quad[2];
4044      ++Quad[3];
4045      continue;
4046    }
4047    ++Quad[EltIdx / 4];
4048    InputQuads.set(EltIdx / 4);
4049  }
4050
4051  int BestLoQuad = -1;
4052  unsigned MaxQuad = 1;
4053  for (unsigned i = 0; i < 4; ++i) {
4054    if (LoQuad[i] > MaxQuad) {
4055      BestLoQuad = i;
4056      MaxQuad = LoQuad[i];
4057    }
4058  }
4059
4060  int BestHiQuad = -1;
4061  MaxQuad = 1;
4062  for (unsigned i = 0; i < 4; ++i) {
4063    if (HiQuad[i] > MaxQuad) {
4064      BestHiQuad = i;
4065      MaxQuad = HiQuad[i];
4066    }
4067  }
4068
4069  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4070  // of the two input vectors, shuffle them into one input vector so only a
4071  // single pshufb instruction is necessary. If There are more than 2 input
4072  // quads, disable the next transformation since it does not help SSSE3.
4073  bool V1Used = InputQuads[0] || InputQuads[1];
4074  bool V2Used = InputQuads[2] || InputQuads[3];
4075  if (TLI.getSubtarget()->hasSSSE3()) {
4076    if (InputQuads.count() == 2 && V1Used && V2Used) {
4077      BestLoQuad = InputQuads.find_first();
4078      BestHiQuad = InputQuads.find_next(BestLoQuad);
4079    }
4080    if (InputQuads.count() > 2) {
4081      BestLoQuad = -1;
4082      BestHiQuad = -1;
4083    }
4084  }
4085
4086  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4087  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4088  // words from all 4 input quadwords.
4089  SDValue NewV;
4090  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4091    SmallVector<int, 8> MaskV;
4092    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4093    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4094    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4095                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4096                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4097    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4098
4099    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4100    // source words for the shuffle, to aid later transformations.
4101    bool AllWordsInNewV = true;
4102    bool InOrder[2] = { true, true };
4103    for (unsigned i = 0; i != 8; ++i) {
4104      int idx = MaskVals[i];
4105      if (idx != (int)i)
4106        InOrder[i/4] = false;
4107      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4108        continue;
4109      AllWordsInNewV = false;
4110      break;
4111    }
4112
4113    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4114    if (AllWordsInNewV) {
4115      for (int i = 0; i != 8; ++i) {
4116        int idx = MaskVals[i];
4117        if (idx < 0)
4118          continue;
4119        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4120        if ((idx != i) && idx < 4)
4121          pshufhw = false;
4122        if ((idx != i) && idx > 3)
4123          pshuflw = false;
4124      }
4125      V1 = NewV;
4126      V2Used = false;
4127      BestLoQuad = 0;
4128      BestHiQuad = 1;
4129    }
4130
4131    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4132    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4133    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4134      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4135                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4136    }
4137  }
4138
4139  // If we have SSSE3, and all words of the result are from 1 input vector,
4140  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4141  // is present, fall back to case 4.
4142  if (TLI.getSubtarget()->hasSSSE3()) {
4143    SmallVector<SDValue,16> pshufbMask;
4144
4145    // If we have elements from both input vectors, set the high bit of the
4146    // shuffle mask element to zero out elements that come from V2 in the V1
4147    // mask, and elements that come from V1 in the V2 mask, so that the two
4148    // results can be OR'd together.
4149    bool TwoInputs = V1Used && V2Used;
4150    for (unsigned i = 0; i != 8; ++i) {
4151      int EltIdx = MaskVals[i] * 2;
4152      if (TwoInputs && (EltIdx >= 16)) {
4153        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4154        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4155        continue;
4156      }
4157      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4158      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4159    }
4160    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4161    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4162                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4163                                 MVT::v16i8, &pshufbMask[0], 16));
4164    if (!TwoInputs)
4165      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4166
4167    // Calculate the shuffle mask for the second input, shuffle it, and
4168    // OR it with the first shuffled input.
4169    pshufbMask.clear();
4170    for (unsigned i = 0; i != 8; ++i) {
4171      int EltIdx = MaskVals[i] * 2;
4172      if (EltIdx < 16) {
4173        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4174        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4175        continue;
4176      }
4177      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4178      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4179    }
4180    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4181    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4182                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4183                                 MVT::v16i8, &pshufbMask[0], 16));
4184    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4185    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4186  }
4187
4188  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4189  // and update MaskVals with new element order.
4190  BitVector InOrder(8);
4191  if (BestLoQuad >= 0) {
4192    SmallVector<int, 8> MaskV;
4193    for (int i = 0; i != 4; ++i) {
4194      int idx = MaskVals[i];
4195      if (idx < 0) {
4196        MaskV.push_back(-1);
4197        InOrder.set(i);
4198      } else if ((idx / 4) == BestLoQuad) {
4199        MaskV.push_back(idx & 3);
4200        InOrder.set(i);
4201      } else {
4202        MaskV.push_back(-1);
4203      }
4204    }
4205    for (unsigned i = 4; i != 8; ++i)
4206      MaskV.push_back(i);
4207    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4208                                &MaskV[0]);
4209  }
4210
4211  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4212  // and update MaskVals with the new element order.
4213  if (BestHiQuad >= 0) {
4214    SmallVector<int, 8> MaskV;
4215    for (unsigned i = 0; i != 4; ++i)
4216      MaskV.push_back(i);
4217    for (unsigned i = 4; i != 8; ++i) {
4218      int idx = MaskVals[i];
4219      if (idx < 0) {
4220        MaskV.push_back(-1);
4221        InOrder.set(i);
4222      } else if ((idx / 4) == BestHiQuad) {
4223        MaskV.push_back((idx & 3) + 4);
4224        InOrder.set(i);
4225      } else {
4226        MaskV.push_back(-1);
4227      }
4228    }
4229    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4230                                &MaskV[0]);
4231  }
4232
4233  // In case BestHi & BestLo were both -1, which means each quadword has a word
4234  // from each of the four input quadwords, calculate the InOrder bitvector now
4235  // before falling through to the insert/extract cleanup.
4236  if (BestLoQuad == -1 && BestHiQuad == -1) {
4237    NewV = V1;
4238    for (int i = 0; i != 8; ++i)
4239      if (MaskVals[i] < 0 || MaskVals[i] == i)
4240        InOrder.set(i);
4241  }
4242
4243  // The other elements are put in the right place using pextrw and pinsrw.
4244  for (unsigned i = 0; i != 8; ++i) {
4245    if (InOrder[i])
4246      continue;
4247    int EltIdx = MaskVals[i];
4248    if (EltIdx < 0)
4249      continue;
4250    SDValue ExtOp = (EltIdx < 8)
4251    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4252                  DAG.getIntPtrConstant(EltIdx))
4253    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4254                  DAG.getIntPtrConstant(EltIdx - 8));
4255    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4256                       DAG.getIntPtrConstant(i));
4257  }
4258  return NewV;
4259}
4260
4261// v16i8 shuffles - Prefer shuffles in the following order:
4262// 1. [ssse3] 1 x pshufb
4263// 2. [ssse3] 2 x pshufb + 1 x por
4264// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4265static
4266SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4267                                 SelectionDAG &DAG,
4268                                 const X86TargetLowering &TLI) {
4269  SDValue V1 = SVOp->getOperand(0);
4270  SDValue V2 = SVOp->getOperand(1);
4271  DebugLoc dl = SVOp->getDebugLoc();
4272  SmallVector<int, 16> MaskVals;
4273  SVOp->getMask(MaskVals);
4274
4275  // If we have SSSE3, case 1 is generated when all result bytes come from
4276  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4277  // present, fall back to case 3.
4278  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4279  bool V1Only = true;
4280  bool V2Only = true;
4281  for (unsigned i = 0; i < 16; ++i) {
4282    int EltIdx = MaskVals[i];
4283    if (EltIdx < 0)
4284      continue;
4285    if (EltIdx < 16)
4286      V2Only = false;
4287    else
4288      V1Only = false;
4289  }
4290
4291  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4292  if (TLI.getSubtarget()->hasSSSE3()) {
4293    SmallVector<SDValue,16> pshufbMask;
4294
4295    // If all result elements are from one input vector, then only translate
4296    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4297    //
4298    // Otherwise, we have elements from both input vectors, and must zero out
4299    // elements that come from V2 in the first mask, and V1 in the second mask
4300    // so that we can OR them together.
4301    bool TwoInputs = !(V1Only || V2Only);
4302    for (unsigned i = 0; i != 16; ++i) {
4303      int EltIdx = MaskVals[i];
4304      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4305        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4306        continue;
4307      }
4308      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4309    }
4310    // If all the elements are from V2, assign it to V1 and return after
4311    // building the first pshufb.
4312    if (V2Only)
4313      V1 = V2;
4314    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4315                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4316                                 MVT::v16i8, &pshufbMask[0], 16));
4317    if (!TwoInputs)
4318      return V1;
4319
4320    // Calculate the shuffle mask for the second input, shuffle it, and
4321    // OR it with the first shuffled input.
4322    pshufbMask.clear();
4323    for (unsigned i = 0; i != 16; ++i) {
4324      int EltIdx = MaskVals[i];
4325      if (EltIdx < 16) {
4326        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4327        continue;
4328      }
4329      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4330    }
4331    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4332                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4333                                 MVT::v16i8, &pshufbMask[0], 16));
4334    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4335  }
4336
4337  // No SSSE3 - Calculate in place words and then fix all out of place words
4338  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4339  // the 16 different words that comprise the two doublequadword input vectors.
4340  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4341  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4342  SDValue NewV = V2Only ? V2 : V1;
4343  for (int i = 0; i != 8; ++i) {
4344    int Elt0 = MaskVals[i*2];
4345    int Elt1 = MaskVals[i*2+1];
4346
4347    // This word of the result is all undef, skip it.
4348    if (Elt0 < 0 && Elt1 < 0)
4349      continue;
4350
4351    // This word of the result is already in the correct place, skip it.
4352    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4353      continue;
4354    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4355      continue;
4356
4357    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4358    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4359    SDValue InsElt;
4360
4361    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4362    // using a single extract together, load it and store it.
4363    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4364      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4365                           DAG.getIntPtrConstant(Elt1 / 2));
4366      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4367                        DAG.getIntPtrConstant(i));
4368      continue;
4369    }
4370
4371    // If Elt1 is defined, extract it from the appropriate source.  If the
4372    // source byte is not also odd, shift the extracted word left 8 bits
4373    // otherwise clear the bottom 8 bits if we need to do an or.
4374    if (Elt1 >= 0) {
4375      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4376                           DAG.getIntPtrConstant(Elt1 / 2));
4377      if ((Elt1 & 1) == 0)
4378        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4379                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4380      else if (Elt0 >= 0)
4381        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4382                             DAG.getConstant(0xFF00, MVT::i16));
4383    }
4384    // If Elt0 is defined, extract it from the appropriate source.  If the
4385    // source byte is not also even, shift the extracted word right 8 bits. If
4386    // Elt1 was also defined, OR the extracted values together before
4387    // inserting them in the result.
4388    if (Elt0 >= 0) {
4389      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4390                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4391      if ((Elt0 & 1) != 0)
4392        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4393                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4394      else if (Elt1 >= 0)
4395        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4396                             DAG.getConstant(0x00FF, MVT::i16));
4397      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4398                         : InsElt0;
4399    }
4400    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4401                       DAG.getIntPtrConstant(i));
4402  }
4403  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4404}
4405
4406/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4407/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
4408/// done when every pair / quad of shuffle mask elements point to elements in
4409/// the right sequence. e.g.
4410/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4411static
4412SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4413                                 SelectionDAG &DAG,
4414                                 const TargetLowering &TLI, DebugLoc dl) {
4415  EVT VT = SVOp->getValueType(0);
4416  SDValue V1 = SVOp->getOperand(0);
4417  SDValue V2 = SVOp->getOperand(1);
4418  unsigned NumElems = VT.getVectorNumElements();
4419  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4420  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4421  EVT MaskEltVT = MaskVT.getVectorElementType();
4422  EVT NewVT = MaskVT;
4423  switch (VT.getSimpleVT().SimpleTy) {
4424  default: assert(false && "Unexpected!");
4425  case MVT::v4f32: NewVT = MVT::v2f64; break;
4426  case MVT::v4i32: NewVT = MVT::v2i64; break;
4427  case MVT::v8i16: NewVT = MVT::v4i32; break;
4428  case MVT::v16i8: NewVT = MVT::v4i32; break;
4429  }
4430
4431  if (NewWidth == 2) {
4432    if (VT.isInteger())
4433      NewVT = MVT::v2i64;
4434    else
4435      NewVT = MVT::v2f64;
4436  }
4437  int Scale = NumElems / NewWidth;
4438  SmallVector<int, 8> MaskVec;
4439  for (unsigned i = 0; i < NumElems; i += Scale) {
4440    int StartIdx = -1;
4441    for (int j = 0; j < Scale; ++j) {
4442      int EltIdx = SVOp->getMaskElt(i+j);
4443      if (EltIdx < 0)
4444        continue;
4445      if (StartIdx == -1)
4446        StartIdx = EltIdx - (EltIdx % Scale);
4447      if (EltIdx != StartIdx + j)
4448        return SDValue();
4449    }
4450    if (StartIdx == -1)
4451      MaskVec.push_back(-1);
4452    else
4453      MaskVec.push_back(StartIdx / Scale);
4454  }
4455
4456  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4457  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4458  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4459}
4460
4461/// getVZextMovL - Return a zero-extending vector move low node.
4462///
4463static SDValue getVZextMovL(EVT VT, EVT OpVT,
4464                            SDValue SrcOp, SelectionDAG &DAG,
4465                            const X86Subtarget *Subtarget, DebugLoc dl) {
4466  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4467    LoadSDNode *LD = NULL;
4468    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4469      LD = dyn_cast<LoadSDNode>(SrcOp);
4470    if (!LD) {
4471      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4472      // instead.
4473      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4474      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4475          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4476          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4477          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4478        // PR2108
4479        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4480        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4481                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4482                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4483                                                   OpVT,
4484                                                   SrcOp.getOperand(0)
4485                                                          .getOperand(0))));
4486      }
4487    }
4488  }
4489
4490  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4491                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4492                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4493                                             OpVT, SrcOp)));
4494}
4495
4496/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4497/// shuffles.
4498static SDValue
4499LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4500  SDValue V1 = SVOp->getOperand(0);
4501  SDValue V2 = SVOp->getOperand(1);
4502  DebugLoc dl = SVOp->getDebugLoc();
4503  EVT VT = SVOp->getValueType(0);
4504
4505  SmallVector<std::pair<int, int>, 8> Locs;
4506  Locs.resize(4);
4507  SmallVector<int, 8> Mask1(4U, -1);
4508  SmallVector<int, 8> PermMask;
4509  SVOp->getMask(PermMask);
4510
4511  unsigned NumHi = 0;
4512  unsigned NumLo = 0;
4513  for (unsigned i = 0; i != 4; ++i) {
4514    int Idx = PermMask[i];
4515    if (Idx < 0) {
4516      Locs[i] = std::make_pair(-1, -1);
4517    } else {
4518      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4519      if (Idx < 4) {
4520        Locs[i] = std::make_pair(0, NumLo);
4521        Mask1[NumLo] = Idx;
4522        NumLo++;
4523      } else {
4524        Locs[i] = std::make_pair(1, NumHi);
4525        if (2+NumHi < 4)
4526          Mask1[2+NumHi] = Idx;
4527        NumHi++;
4528      }
4529    }
4530  }
4531
4532  if (NumLo <= 2 && NumHi <= 2) {
4533    // If no more than two elements come from either vector. This can be
4534    // implemented with two shuffles. First shuffle gather the elements.
4535    // The second shuffle, which takes the first shuffle as both of its
4536    // vector operands, put the elements into the right order.
4537    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4538
4539    SmallVector<int, 8> Mask2(4U, -1);
4540
4541    for (unsigned i = 0; i != 4; ++i) {
4542      if (Locs[i].first == -1)
4543        continue;
4544      else {
4545        unsigned Idx = (i < 2) ? 0 : 4;
4546        Idx += Locs[i].first * 2 + Locs[i].second;
4547        Mask2[i] = Idx;
4548      }
4549    }
4550
4551    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4552  } else if (NumLo == 3 || NumHi == 3) {
4553    // Otherwise, we must have three elements from one vector, call it X, and
4554    // one element from the other, call it Y.  First, use a shufps to build an
4555    // intermediate vector with the one element from Y and the element from X
4556    // that will be in the same half in the final destination (the indexes don't
4557    // matter). Then, use a shufps to build the final vector, taking the half
4558    // containing the element from Y from the intermediate, and the other half
4559    // from X.
4560    if (NumHi == 3) {
4561      // Normalize it so the 3 elements come from V1.
4562      CommuteVectorShuffleMask(PermMask, VT);
4563      std::swap(V1, V2);
4564    }
4565
4566    // Find the element from V2.
4567    unsigned HiIndex;
4568    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4569      int Val = PermMask[HiIndex];
4570      if (Val < 0)
4571        continue;
4572      if (Val >= 4)
4573        break;
4574    }
4575
4576    Mask1[0] = PermMask[HiIndex];
4577    Mask1[1] = -1;
4578    Mask1[2] = PermMask[HiIndex^1];
4579    Mask1[3] = -1;
4580    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4581
4582    if (HiIndex >= 2) {
4583      Mask1[0] = PermMask[0];
4584      Mask1[1] = PermMask[1];
4585      Mask1[2] = HiIndex & 1 ? 6 : 4;
4586      Mask1[3] = HiIndex & 1 ? 4 : 6;
4587      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4588    } else {
4589      Mask1[0] = HiIndex & 1 ? 2 : 0;
4590      Mask1[1] = HiIndex & 1 ? 0 : 2;
4591      Mask1[2] = PermMask[2];
4592      Mask1[3] = PermMask[3];
4593      if (Mask1[2] >= 0)
4594        Mask1[2] += 4;
4595      if (Mask1[3] >= 0)
4596        Mask1[3] += 4;
4597      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4598    }
4599  }
4600
4601  // Break it into (shuffle shuffle_hi, shuffle_lo).
4602  Locs.clear();
4603  SmallVector<int,8> LoMask(4U, -1);
4604  SmallVector<int,8> HiMask(4U, -1);
4605
4606  SmallVector<int,8> *MaskPtr = &LoMask;
4607  unsigned MaskIdx = 0;
4608  unsigned LoIdx = 0;
4609  unsigned HiIdx = 2;
4610  for (unsigned i = 0; i != 4; ++i) {
4611    if (i == 2) {
4612      MaskPtr = &HiMask;
4613      MaskIdx = 1;
4614      LoIdx = 0;
4615      HiIdx = 2;
4616    }
4617    int Idx = PermMask[i];
4618    if (Idx < 0) {
4619      Locs[i] = std::make_pair(-1, -1);
4620    } else if (Idx < 4) {
4621      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4622      (*MaskPtr)[LoIdx] = Idx;
4623      LoIdx++;
4624    } else {
4625      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4626      (*MaskPtr)[HiIdx] = Idx;
4627      HiIdx++;
4628    }
4629  }
4630
4631  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4632  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4633  SmallVector<int, 8> MaskOps;
4634  for (unsigned i = 0; i != 4; ++i) {
4635    if (Locs[i].first == -1) {
4636      MaskOps.push_back(-1);
4637    } else {
4638      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4639      MaskOps.push_back(Idx);
4640    }
4641  }
4642  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4643}
4644
4645SDValue
4646X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
4647  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4648  SDValue V1 = Op.getOperand(0);
4649  SDValue V2 = Op.getOperand(1);
4650  EVT VT = Op.getValueType();
4651  DebugLoc dl = Op.getDebugLoc();
4652  unsigned NumElems = VT.getVectorNumElements();
4653  bool isMMX = VT.getSizeInBits() == 64;
4654  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4655  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4656  bool V1IsSplat = false;
4657  bool V2IsSplat = false;
4658
4659  if (isZeroShuffle(SVOp))
4660    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4661
4662  // Promote splats to v4f32.
4663  if (SVOp->isSplat()) {
4664    if (isMMX || NumElems < 4)
4665      return Op;
4666    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4667  }
4668
4669  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4670  // do it!
4671  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4672    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4673    if (NewOp.getNode())
4674      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4675                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4676  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4677    // FIXME: Figure out a cleaner way to do this.
4678    // Try to make use of movq to zero out the top part.
4679    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4680      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4681      if (NewOp.getNode()) {
4682        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4683          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4684                              DAG, Subtarget, dl);
4685      }
4686    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4687      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4688      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4689        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4690                            DAG, Subtarget, dl);
4691    }
4692  }
4693
4694  if (X86::isPSHUFDMask(SVOp))
4695    return Op;
4696
4697  // Check if this can be converted into a logical shift.
4698  bool isLeft = false;
4699  unsigned ShAmt = 0;
4700  SDValue ShVal;
4701  bool isShift = getSubtarget()->hasSSE2() &&
4702    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4703  if (isShift && ShVal.hasOneUse()) {
4704    // If the shifted value has multiple uses, it may be cheaper to use
4705    // v_set0 + movlhps or movhlps, etc.
4706    EVT EltVT = VT.getVectorElementType();
4707    ShAmt *= EltVT.getSizeInBits();
4708    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4709  }
4710
4711  if (X86::isMOVLMask(SVOp)) {
4712    if (V1IsUndef)
4713      return V2;
4714    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4715      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4716    if (!isMMX)
4717      return Op;
4718  }
4719
4720  // FIXME: fold these into legal mask.
4721  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4722                 X86::isMOVSLDUPMask(SVOp) ||
4723                 X86::isMOVHLPSMask(SVOp) ||
4724                 X86::isMOVLHPSMask(SVOp) ||
4725                 X86::isMOVLPMask(SVOp)))
4726    return Op;
4727
4728  if (ShouldXformToMOVHLPS(SVOp) ||
4729      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4730    return CommuteVectorShuffle(SVOp, DAG);
4731
4732  if (isShift) {
4733    // No better options. Use a vshl / vsrl.
4734    EVT EltVT = VT.getVectorElementType();
4735    ShAmt *= EltVT.getSizeInBits();
4736    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4737  }
4738
4739  bool Commuted = false;
4740  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4741  // 1,1,1,1 -> v8i16 though.
4742  V1IsSplat = isSplatVector(V1.getNode());
4743  V2IsSplat = isSplatVector(V2.getNode());
4744
4745  // Canonicalize the splat or undef, if present, to be on the RHS.
4746  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4747    Op = CommuteVectorShuffle(SVOp, DAG);
4748    SVOp = cast<ShuffleVectorSDNode>(Op);
4749    V1 = SVOp->getOperand(0);
4750    V2 = SVOp->getOperand(1);
4751    std::swap(V1IsSplat, V2IsSplat);
4752    std::swap(V1IsUndef, V2IsUndef);
4753    Commuted = true;
4754  }
4755
4756  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4757    // Shuffling low element of v1 into undef, just return v1.
4758    if (V2IsUndef)
4759      return V1;
4760    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4761    // the instruction selector will not match, so get a canonical MOVL with
4762    // swapped operands to undo the commute.
4763    return getMOVL(DAG, dl, VT, V2, V1);
4764  }
4765
4766  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4767      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4768      X86::isUNPCKLMask(SVOp) ||
4769      X86::isUNPCKHMask(SVOp))
4770    return Op;
4771
4772  if (V2IsSplat) {
4773    // Normalize mask so all entries that point to V2 points to its first
4774    // element then try to match unpck{h|l} again. If match, return a
4775    // new vector_shuffle with the corrected mask.
4776    SDValue NewMask = NormalizeMask(SVOp, DAG);
4777    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4778    if (NSVOp != SVOp) {
4779      if (X86::isUNPCKLMask(NSVOp, true)) {
4780        return NewMask;
4781      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4782        return NewMask;
4783      }
4784    }
4785  }
4786
4787  if (Commuted) {
4788    // Commute is back and try unpck* again.
4789    // FIXME: this seems wrong.
4790    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4791    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4792    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4793        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4794        X86::isUNPCKLMask(NewSVOp) ||
4795        X86::isUNPCKHMask(NewSVOp))
4796      return NewOp;
4797  }
4798
4799  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4800
4801  // Normalize the node to match x86 shuffle ops if needed
4802  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4803    return CommuteVectorShuffle(SVOp, DAG);
4804
4805  // Check for legal shuffle and return?
4806  SmallVector<int, 16> PermMask;
4807  SVOp->getMask(PermMask);
4808  if (isShuffleMaskLegal(PermMask, VT))
4809    return Op;
4810
4811  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4812  if (VT == MVT::v8i16) {
4813    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4814    if (NewOp.getNode())
4815      return NewOp;
4816  }
4817
4818  if (VT == MVT::v16i8) {
4819    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4820    if (NewOp.getNode())
4821      return NewOp;
4822  }
4823
4824  // Handle all 4 wide cases with a number of shuffles except for MMX.
4825  if (NumElems == 4 && !isMMX)
4826    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4827
4828  return SDValue();
4829}
4830
4831SDValue
4832X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4833                                                SelectionDAG &DAG) const {
4834  EVT VT = Op.getValueType();
4835  DebugLoc dl = Op.getDebugLoc();
4836  if (VT.getSizeInBits() == 8) {
4837    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4838                                    Op.getOperand(0), Op.getOperand(1));
4839    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4840                                    DAG.getValueType(VT));
4841    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4842  } else if (VT.getSizeInBits() == 16) {
4843    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4844    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4845    if (Idx == 0)
4846      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4847                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4848                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4849                                                 MVT::v4i32,
4850                                                 Op.getOperand(0)),
4851                                     Op.getOperand(1)));
4852    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4853                                    Op.getOperand(0), Op.getOperand(1));
4854    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4855                                    DAG.getValueType(VT));
4856    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4857  } else if (VT == MVT::f32) {
4858    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4859    // the result back to FR32 register. It's only worth matching if the
4860    // result has a single use which is a store or a bitcast to i32.  And in
4861    // the case of a store, it's not worth it if the index is a constant 0,
4862    // because a MOVSSmr can be used instead, which is smaller and faster.
4863    if (!Op.hasOneUse())
4864      return SDValue();
4865    SDNode *User = *Op.getNode()->use_begin();
4866    if ((User->getOpcode() != ISD::STORE ||
4867         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4868          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4869        (User->getOpcode() != ISD::BIT_CONVERT ||
4870         User->getValueType(0) != MVT::i32))
4871      return SDValue();
4872    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4873                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4874                                              Op.getOperand(0)),
4875                                              Op.getOperand(1));
4876    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4877  } else if (VT == MVT::i32) {
4878    // ExtractPS works with constant index.
4879    if (isa<ConstantSDNode>(Op.getOperand(1)))
4880      return Op;
4881  }
4882  return SDValue();
4883}
4884
4885
4886SDValue
4887X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
4888                                           SelectionDAG &DAG) const {
4889  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4890    return SDValue();
4891
4892  if (Subtarget->hasSSE41()) {
4893    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4894    if (Res.getNode())
4895      return Res;
4896  }
4897
4898  EVT VT = Op.getValueType();
4899  DebugLoc dl = Op.getDebugLoc();
4900  // TODO: handle v16i8.
4901  if (VT.getSizeInBits() == 16) {
4902    SDValue Vec = Op.getOperand(0);
4903    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4904    if (Idx == 0)
4905      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4906                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4907                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4908                                                 MVT::v4i32, Vec),
4909                                     Op.getOperand(1)));
4910    // Transform it so it match pextrw which produces a 32-bit result.
4911    EVT EltVT = MVT::i32;
4912    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4913                                    Op.getOperand(0), Op.getOperand(1));
4914    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4915                                    DAG.getValueType(VT));
4916    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4917  } else if (VT.getSizeInBits() == 32) {
4918    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4919    if (Idx == 0)
4920      return Op;
4921
4922    // SHUFPS the element to the lowest double word, then movss.
4923    int Mask[4] = { Idx, -1, -1, -1 };
4924    EVT VVT = Op.getOperand(0).getValueType();
4925    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4926                                       DAG.getUNDEF(VVT), Mask);
4927    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4928                       DAG.getIntPtrConstant(0));
4929  } else if (VT.getSizeInBits() == 64) {
4930    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4931    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4932    //        to match extract_elt for f64.
4933    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4934    if (Idx == 0)
4935      return Op;
4936
4937    // UNPCKHPD the element to the lowest double word, then movsd.
4938    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4939    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4940    int Mask[2] = { 1, -1 };
4941    EVT VVT = Op.getOperand(0).getValueType();
4942    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4943                                       DAG.getUNDEF(VVT), Mask);
4944    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4945                       DAG.getIntPtrConstant(0));
4946  }
4947
4948  return SDValue();
4949}
4950
4951SDValue
4952X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
4953                                               SelectionDAG &DAG) const {
4954  EVT VT = Op.getValueType();
4955  EVT EltVT = VT.getVectorElementType();
4956  DebugLoc dl = Op.getDebugLoc();
4957
4958  SDValue N0 = Op.getOperand(0);
4959  SDValue N1 = Op.getOperand(1);
4960  SDValue N2 = Op.getOperand(2);
4961
4962  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4963      isa<ConstantSDNode>(N2)) {
4964    unsigned Opc;
4965    if (VT == MVT::v8i16)
4966      Opc = X86ISD::PINSRW;
4967    else if (VT == MVT::v4i16)
4968      Opc = X86ISD::MMX_PINSRW;
4969    else if (VT == MVT::v16i8)
4970      Opc = X86ISD::PINSRB;
4971    else
4972      Opc = X86ISD::PINSRB;
4973
4974    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4975    // argument.
4976    if (N1.getValueType() != MVT::i32)
4977      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4978    if (N2.getValueType() != MVT::i32)
4979      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4980    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4981  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4982    // Bits [7:6] of the constant are the source select.  This will always be
4983    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4984    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4985    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4986    // Bits [5:4] of the constant are the destination select.  This is the
4987    //  value of the incoming immediate.
4988    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4989    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4990    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4991    // Create this as a scalar to vector..
4992    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4993    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4994  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4995    // PINSR* works with constant index.
4996    return Op;
4997  }
4998  return SDValue();
4999}
5000
5001SDValue
5002X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5003  EVT VT = Op.getValueType();
5004  EVT EltVT = VT.getVectorElementType();
5005
5006  if (Subtarget->hasSSE41())
5007    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5008
5009  if (EltVT == MVT::i8)
5010    return SDValue();
5011
5012  DebugLoc dl = Op.getDebugLoc();
5013  SDValue N0 = Op.getOperand(0);
5014  SDValue N1 = Op.getOperand(1);
5015  SDValue N2 = Op.getOperand(2);
5016
5017  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5018    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5019    // as its second argument.
5020    if (N1.getValueType() != MVT::i32)
5021      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5022    if (N2.getValueType() != MVT::i32)
5023      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5024    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5025                       dl, VT, N0, N1, N2);
5026  }
5027  return SDValue();
5028}
5029
5030SDValue
5031X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5032  DebugLoc dl = Op.getDebugLoc();
5033  if (Op.getValueType() == MVT::v2f32)
5034    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
5035                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
5036                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
5037                                               Op.getOperand(0))));
5038
5039  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
5040    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5041
5042  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5043  EVT VT = MVT::v2i32;
5044  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5045  default: break;
5046  case MVT::v16i8:
5047  case MVT::v8i16:
5048    VT = MVT::v4i32;
5049    break;
5050  }
5051  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5052                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5053}
5054
5055// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5056// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5057// one of the above mentioned nodes. It has to be wrapped because otherwise
5058// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5059// be used to form addressing mode. These wrapped nodes will be selected
5060// into MOV32ri.
5061SDValue
5062X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5063  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5064
5065  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5066  // global base reg.
5067  unsigned char OpFlag = 0;
5068  unsigned WrapperKind = X86ISD::Wrapper;
5069  CodeModel::Model M = getTargetMachine().getCodeModel();
5070
5071  if (Subtarget->isPICStyleRIPRel() &&
5072      (M == CodeModel::Small || M == CodeModel::Kernel))
5073    WrapperKind = X86ISD::WrapperRIP;
5074  else if (Subtarget->isPICStyleGOT())
5075    OpFlag = X86II::MO_GOTOFF;
5076  else if (Subtarget->isPICStyleStubPIC())
5077    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5078
5079  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5080                                             CP->getAlignment(),
5081                                             CP->getOffset(), OpFlag);
5082  DebugLoc DL = CP->getDebugLoc();
5083  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5084  // With PIC, the address is actually $g + Offset.
5085  if (OpFlag) {
5086    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5087                         DAG.getNode(X86ISD::GlobalBaseReg,
5088                                     DebugLoc(), getPointerTy()),
5089                         Result);
5090  }
5091
5092  return Result;
5093}
5094
5095SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5096  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5097
5098  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5099  // global base reg.
5100  unsigned char OpFlag = 0;
5101  unsigned WrapperKind = X86ISD::Wrapper;
5102  CodeModel::Model M = getTargetMachine().getCodeModel();
5103
5104  if (Subtarget->isPICStyleRIPRel() &&
5105      (M == CodeModel::Small || M == CodeModel::Kernel))
5106    WrapperKind = X86ISD::WrapperRIP;
5107  else if (Subtarget->isPICStyleGOT())
5108    OpFlag = X86II::MO_GOTOFF;
5109  else if (Subtarget->isPICStyleStubPIC())
5110    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5111
5112  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5113                                          OpFlag);
5114  DebugLoc DL = JT->getDebugLoc();
5115  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5116
5117  // With PIC, the address is actually $g + Offset.
5118  if (OpFlag) {
5119    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5120                         DAG.getNode(X86ISD::GlobalBaseReg,
5121                                     DebugLoc(), getPointerTy()),
5122                         Result);
5123  }
5124
5125  return Result;
5126}
5127
5128SDValue
5129X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5130  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5131
5132  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5133  // global base reg.
5134  unsigned char OpFlag = 0;
5135  unsigned WrapperKind = X86ISD::Wrapper;
5136  CodeModel::Model M = getTargetMachine().getCodeModel();
5137
5138  if (Subtarget->isPICStyleRIPRel() &&
5139      (M == CodeModel::Small || M == CodeModel::Kernel))
5140    WrapperKind = X86ISD::WrapperRIP;
5141  else if (Subtarget->isPICStyleGOT())
5142    OpFlag = X86II::MO_GOTOFF;
5143  else if (Subtarget->isPICStyleStubPIC())
5144    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5145
5146  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5147
5148  DebugLoc DL = Op.getDebugLoc();
5149  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5150
5151
5152  // With PIC, the address is actually $g + Offset.
5153  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5154      !Subtarget->is64Bit()) {
5155    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5156                         DAG.getNode(X86ISD::GlobalBaseReg,
5157                                     DebugLoc(), getPointerTy()),
5158                         Result);
5159  }
5160
5161  return Result;
5162}
5163
5164SDValue
5165X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5166  // Create the TargetBlockAddressAddress node.
5167  unsigned char OpFlags =
5168    Subtarget->ClassifyBlockAddressReference();
5169  CodeModel::Model M = getTargetMachine().getCodeModel();
5170  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5171  DebugLoc dl = Op.getDebugLoc();
5172  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5173                                       /*isTarget=*/true, OpFlags);
5174
5175  if (Subtarget->isPICStyleRIPRel() &&
5176      (M == CodeModel::Small || M == CodeModel::Kernel))
5177    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5178  else
5179    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5180
5181  // With PIC, the address is actually $g + Offset.
5182  if (isGlobalRelativeToPICBase(OpFlags)) {
5183    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5184                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5185                         Result);
5186  }
5187
5188  return Result;
5189}
5190
5191SDValue
5192X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5193                                      int64_t Offset,
5194                                      SelectionDAG &DAG) const {
5195  // Create the TargetGlobalAddress node, folding in the constant
5196  // offset if it is legal.
5197  unsigned char OpFlags =
5198    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5199  CodeModel::Model M = getTargetMachine().getCodeModel();
5200  SDValue Result;
5201  if (OpFlags == X86II::MO_NO_FLAG &&
5202      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5203    // A direct static reference to a global.
5204    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
5205    Offset = 0;
5206  } else {
5207    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
5208  }
5209
5210  if (Subtarget->isPICStyleRIPRel() &&
5211      (M == CodeModel::Small || M == CodeModel::Kernel))
5212    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5213  else
5214    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5215
5216  // With PIC, the address is actually $g + Offset.
5217  if (isGlobalRelativeToPICBase(OpFlags)) {
5218    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5219                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5220                         Result);
5221  }
5222
5223  // For globals that require a load from a stub to get the address, emit the
5224  // load.
5225  if (isGlobalStubReference(OpFlags))
5226    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5227                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5228
5229  // If there was a non-zero offset that we didn't fold, create an explicit
5230  // addition for it.
5231  if (Offset != 0)
5232    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5233                         DAG.getConstant(Offset, getPointerTy()));
5234
5235  return Result;
5236}
5237
5238SDValue
5239X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
5240  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5241  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5242  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5243}
5244
5245static SDValue
5246GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5247           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5248           unsigned char OperandFlags) {
5249  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5250  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5251  DebugLoc dl = GA->getDebugLoc();
5252  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
5253                                           GA->getValueType(0),
5254                                           GA->getOffset(),
5255                                           OperandFlags);
5256  if (InFlag) {
5257    SDValue Ops[] = { Chain,  TGA, *InFlag };
5258    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5259  } else {
5260    SDValue Ops[]  = { Chain, TGA };
5261    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5262  }
5263
5264  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5265  MFI->setHasCalls(true);
5266
5267  SDValue Flag = Chain.getValue(1);
5268  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5269}
5270
5271// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5272static SDValue
5273LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5274                                const EVT PtrVT) {
5275  SDValue InFlag;
5276  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5277  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5278                                     DAG.getNode(X86ISD::GlobalBaseReg,
5279                                                 DebugLoc(), PtrVT), InFlag);
5280  InFlag = Chain.getValue(1);
5281
5282  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5283}
5284
5285// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5286static SDValue
5287LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5288                                const EVT PtrVT) {
5289  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5290                    X86::RAX, X86II::MO_TLSGD);
5291}
5292
5293// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5294// "local exec" model.
5295static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5296                                   const EVT PtrVT, TLSModel::Model model,
5297                                   bool is64Bit) {
5298  DebugLoc dl = GA->getDebugLoc();
5299  // Get the Thread Pointer
5300  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5301                             DebugLoc(), PtrVT,
5302                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5303                                             MVT::i32));
5304
5305  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5306                                      NULL, 0, false, false, 0);
5307
5308  unsigned char OperandFlags = 0;
5309  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5310  // initialexec.
5311  unsigned WrapperKind = X86ISD::Wrapper;
5312  if (model == TLSModel::LocalExec) {
5313    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5314  } else if (is64Bit) {
5315    assert(model == TLSModel::InitialExec);
5316    OperandFlags = X86II::MO_GOTTPOFF;
5317    WrapperKind = X86ISD::WrapperRIP;
5318  } else {
5319    assert(model == TLSModel::InitialExec);
5320    OperandFlags = X86II::MO_INDNTPOFF;
5321  }
5322
5323  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5324  // exec)
5325  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5326                                           GA->getOffset(), OperandFlags);
5327  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5328
5329  if (model == TLSModel::InitialExec)
5330    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5331                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5332
5333  // The address of the thread local variable is the add of the thread
5334  // pointer with the offset of the variable.
5335  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5336}
5337
5338SDValue
5339X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
5340  // TODO: implement the "local dynamic" model
5341  // TODO: implement the "initial exec"model for pic executables
5342  assert(Subtarget->isTargetELF() &&
5343         "TLS not implemented for non-ELF targets");
5344  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5345  const GlobalValue *GV = GA->getGlobal();
5346
5347  // If GV is an alias then use the aliasee for determining
5348  // thread-localness.
5349  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5350    GV = GA->resolveAliasedGlobal(false);
5351
5352  TLSModel::Model model = getTLSModel(GV,
5353                                      getTargetMachine().getRelocationModel());
5354
5355  switch (model) {
5356  case TLSModel::GeneralDynamic:
5357  case TLSModel::LocalDynamic: // not implemented
5358    if (Subtarget->is64Bit())
5359      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5360    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5361
5362  case TLSModel::InitialExec:
5363  case TLSModel::LocalExec:
5364    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5365                               Subtarget->is64Bit());
5366  }
5367
5368  llvm_unreachable("Unreachable");
5369  return SDValue();
5370}
5371
5372
5373/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5374/// take a 2 x i32 value to shift plus a shift amount.
5375SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
5376  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5377  EVT VT = Op.getValueType();
5378  unsigned VTBits = VT.getSizeInBits();
5379  DebugLoc dl = Op.getDebugLoc();
5380  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5381  SDValue ShOpLo = Op.getOperand(0);
5382  SDValue ShOpHi = Op.getOperand(1);
5383  SDValue ShAmt  = Op.getOperand(2);
5384  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5385                                     DAG.getConstant(VTBits - 1, MVT::i8))
5386                       : DAG.getConstant(0, VT);
5387
5388  SDValue Tmp2, Tmp3;
5389  if (Op.getOpcode() == ISD::SHL_PARTS) {
5390    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5391    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5392  } else {
5393    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5394    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5395  }
5396
5397  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5398                                DAG.getConstant(VTBits, MVT::i8));
5399  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5400                             AndNode, DAG.getConstant(0, MVT::i8));
5401
5402  SDValue Hi, Lo;
5403  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5404  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5405  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5406
5407  if (Op.getOpcode() == ISD::SHL_PARTS) {
5408    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5409    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5410  } else {
5411    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5412    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5413  }
5414
5415  SDValue Ops[2] = { Lo, Hi };
5416  return DAG.getMergeValues(Ops, 2, dl);
5417}
5418
5419SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
5420                                           SelectionDAG &DAG) const {
5421  EVT SrcVT = Op.getOperand(0).getValueType();
5422
5423  if (SrcVT.isVector()) {
5424    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5425      return Op;
5426    }
5427    return SDValue();
5428  }
5429
5430  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5431         "Unknown SINT_TO_FP to lower!");
5432
5433  // These are really Legal; return the operand so the caller accepts it as
5434  // Legal.
5435  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5436    return Op;
5437  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5438      Subtarget->is64Bit()) {
5439    return Op;
5440  }
5441
5442  DebugLoc dl = Op.getDebugLoc();
5443  unsigned Size = SrcVT.getSizeInBits()/8;
5444  MachineFunction &MF = DAG.getMachineFunction();
5445  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5446  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5447  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5448                               StackSlot,
5449                               PseudoSourceValue::getFixedStack(SSFI), 0,
5450                               false, false, 0);
5451  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5452}
5453
5454SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5455                                     SDValue StackSlot,
5456                                     SelectionDAG &DAG) const {
5457  // Build the FILD
5458  DebugLoc dl = Op.getDebugLoc();
5459  SDVTList Tys;
5460  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5461  if (useSSE)
5462    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5463  else
5464    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5465  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5466  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5467                               Tys, Ops, array_lengthof(Ops));
5468
5469  if (useSSE) {
5470    Chain = Result.getValue(1);
5471    SDValue InFlag = Result.getValue(2);
5472
5473    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5474    // shouldn't be necessary except that RFP cannot be live across
5475    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5476    MachineFunction &MF = DAG.getMachineFunction();
5477    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5478    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5479    Tys = DAG.getVTList(MVT::Other);
5480    SDValue Ops[] = {
5481      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5482    };
5483    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5484    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5485                         PseudoSourceValue::getFixedStack(SSFI), 0,
5486                         false, false, 0);
5487  }
5488
5489  return Result;
5490}
5491
5492// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5493SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
5494                                               SelectionDAG &DAG) const {
5495  // This algorithm is not obvious. Here it is in C code, more or less:
5496  /*
5497    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5498      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5499      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5500
5501      // Copy ints to xmm registers.
5502      __m128i xh = _mm_cvtsi32_si128( hi );
5503      __m128i xl = _mm_cvtsi32_si128( lo );
5504
5505      // Combine into low half of a single xmm register.
5506      __m128i x = _mm_unpacklo_epi32( xh, xl );
5507      __m128d d;
5508      double sd;
5509
5510      // Merge in appropriate exponents to give the integer bits the right
5511      // magnitude.
5512      x = _mm_unpacklo_epi32( x, exp );
5513
5514      // Subtract away the biases to deal with the IEEE-754 double precision
5515      // implicit 1.
5516      d = _mm_sub_pd( (__m128d) x, bias );
5517
5518      // All conversions up to here are exact. The correctly rounded result is
5519      // calculated using the current rounding mode using the following
5520      // horizontal add.
5521      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5522      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5523                                // store doesn't really need to be here (except
5524                                // maybe to zero the other double)
5525      return sd;
5526    }
5527  */
5528
5529  DebugLoc dl = Op.getDebugLoc();
5530  LLVMContext *Context = DAG.getContext();
5531
5532  // Build some magic constants.
5533  std::vector<Constant*> CV0;
5534  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5535  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5536  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5537  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5538  Constant *C0 = ConstantVector::get(CV0);
5539  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5540
5541  std::vector<Constant*> CV1;
5542  CV1.push_back(
5543    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5544  CV1.push_back(
5545    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5546  Constant *C1 = ConstantVector::get(CV1);
5547  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5548
5549  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5550                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5551                                        Op.getOperand(0),
5552                                        DAG.getIntPtrConstant(1)));
5553  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5554                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5555                                        Op.getOperand(0),
5556                                        DAG.getIntPtrConstant(0)));
5557  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5558  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5559                              PseudoSourceValue::getConstantPool(), 0,
5560                              false, false, 16);
5561  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5562  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5563  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5564                              PseudoSourceValue::getConstantPool(), 0,
5565                              false, false, 16);
5566  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5567
5568  // Add the halves; easiest way is to swap them into another reg first.
5569  int ShufMask[2] = { 1, -1 };
5570  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5571                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5572  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5573  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5574                     DAG.getIntPtrConstant(0));
5575}
5576
5577// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5578SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
5579                                               SelectionDAG &DAG) const {
5580  DebugLoc dl = Op.getDebugLoc();
5581  // FP constant to bias correct the final result.
5582  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5583                                   MVT::f64);
5584
5585  // Load the 32-bit value into an XMM register.
5586  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5587                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5588                                         Op.getOperand(0),
5589                                         DAG.getIntPtrConstant(0)));
5590
5591  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5592                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5593                     DAG.getIntPtrConstant(0));
5594
5595  // Or the load with the bias.
5596  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5597                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5598                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5599                                                   MVT::v2f64, Load)),
5600                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5601                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5602                                                   MVT::v2f64, Bias)));
5603  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5604                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5605                   DAG.getIntPtrConstant(0));
5606
5607  // Subtract the bias.
5608  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5609
5610  // Handle final rounding.
5611  EVT DestVT = Op.getValueType();
5612
5613  if (DestVT.bitsLT(MVT::f64)) {
5614    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5615                       DAG.getIntPtrConstant(0));
5616  } else if (DestVT.bitsGT(MVT::f64)) {
5617    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5618  }
5619
5620  // Handle final rounding.
5621  return Sub;
5622}
5623
5624SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
5625                                           SelectionDAG &DAG) const {
5626  SDValue N0 = Op.getOperand(0);
5627  DebugLoc dl = Op.getDebugLoc();
5628
5629  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5630  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5631  // the optimization here.
5632  if (DAG.SignBitIsZero(N0))
5633    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5634
5635  EVT SrcVT = N0.getValueType();
5636  if (SrcVT == MVT::i64) {
5637    // We only handle SSE2 f64 target here; caller can expand the rest.
5638    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5639      return SDValue();
5640
5641    return LowerUINT_TO_FP_i64(Op, DAG);
5642  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5643    return LowerUINT_TO_FP_i32(Op, DAG);
5644  }
5645
5646  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5647
5648  // Make a 64-bit buffer, and use it to build an FILD.
5649  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5650  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5651  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5652                                   getPointerTy(), StackSlot, WordOff);
5653  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5654                                StackSlot, NULL, 0, false, false, 0);
5655  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5656                                OffsetSlot, NULL, 0, false, false, 0);
5657  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5658}
5659
5660std::pair<SDValue,SDValue> X86TargetLowering::
5661FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
5662  DebugLoc dl = Op.getDebugLoc();
5663
5664  EVT DstTy = Op.getValueType();
5665
5666  if (!IsSigned) {
5667    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5668    DstTy = MVT::i64;
5669  }
5670
5671  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5672         DstTy.getSimpleVT() >= MVT::i16 &&
5673         "Unknown FP_TO_SINT to lower!");
5674
5675  // These are really Legal.
5676  if (DstTy == MVT::i32 &&
5677      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5678    return std::make_pair(SDValue(), SDValue());
5679  if (Subtarget->is64Bit() &&
5680      DstTy == MVT::i64 &&
5681      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5682    return std::make_pair(SDValue(), SDValue());
5683
5684  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5685  // stack slot.
5686  MachineFunction &MF = DAG.getMachineFunction();
5687  unsigned MemSize = DstTy.getSizeInBits()/8;
5688  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5689  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5690
5691  unsigned Opc;
5692  switch (DstTy.getSimpleVT().SimpleTy) {
5693  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5694  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5695  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5696  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5697  }
5698
5699  SDValue Chain = DAG.getEntryNode();
5700  SDValue Value = Op.getOperand(0);
5701  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5702    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5703    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5704                         PseudoSourceValue::getFixedStack(SSFI), 0,
5705                         false, false, 0);
5706    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5707    SDValue Ops[] = {
5708      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5709    };
5710    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5711    Chain = Value.getValue(1);
5712    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5713    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5714  }
5715
5716  // Build the FP_TO_INT*_IN_MEM
5717  SDValue Ops[] = { Chain, Value, StackSlot };
5718  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5719
5720  return std::make_pair(FIST, StackSlot);
5721}
5722
5723SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
5724                                           SelectionDAG &DAG) const {
5725  if (Op.getValueType().isVector()) {
5726    if (Op.getValueType() == MVT::v2i32 &&
5727        Op.getOperand(0).getValueType() == MVT::v2f64) {
5728      return Op;
5729    }
5730    return SDValue();
5731  }
5732
5733  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5734  SDValue FIST = Vals.first, StackSlot = Vals.second;
5735  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5736  if (FIST.getNode() == 0) return Op;
5737
5738  // Load the result.
5739  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5740                     FIST, StackSlot, NULL, 0, false, false, 0);
5741}
5742
5743SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
5744                                           SelectionDAG &DAG) const {
5745  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5746  SDValue FIST = Vals.first, StackSlot = Vals.second;
5747  assert(FIST.getNode() && "Unexpected failure");
5748
5749  // Load the result.
5750  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5751                     FIST, StackSlot, NULL, 0, false, false, 0);
5752}
5753
5754SDValue X86TargetLowering::LowerFABS(SDValue Op,
5755                                     SelectionDAG &DAG) const {
5756  LLVMContext *Context = DAG.getContext();
5757  DebugLoc dl = Op.getDebugLoc();
5758  EVT VT = Op.getValueType();
5759  EVT EltVT = VT;
5760  if (VT.isVector())
5761    EltVT = VT.getVectorElementType();
5762  std::vector<Constant*> CV;
5763  if (EltVT == MVT::f64) {
5764    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5765    CV.push_back(C);
5766    CV.push_back(C);
5767  } else {
5768    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5769    CV.push_back(C);
5770    CV.push_back(C);
5771    CV.push_back(C);
5772    CV.push_back(C);
5773  }
5774  Constant *C = ConstantVector::get(CV);
5775  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5776  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5777                             PseudoSourceValue::getConstantPool(), 0,
5778                             false, false, 16);
5779  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5780}
5781
5782SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
5783  LLVMContext *Context = DAG.getContext();
5784  DebugLoc dl = Op.getDebugLoc();
5785  EVT VT = Op.getValueType();
5786  EVT EltVT = VT;
5787  if (VT.isVector())
5788    EltVT = VT.getVectorElementType();
5789  std::vector<Constant*> CV;
5790  if (EltVT == MVT::f64) {
5791    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5792    CV.push_back(C);
5793    CV.push_back(C);
5794  } else {
5795    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5796    CV.push_back(C);
5797    CV.push_back(C);
5798    CV.push_back(C);
5799    CV.push_back(C);
5800  }
5801  Constant *C = ConstantVector::get(CV);
5802  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5803  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5804                             PseudoSourceValue::getConstantPool(), 0,
5805                             false, false, 16);
5806  if (VT.isVector()) {
5807    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5808                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5809                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5810                                Op.getOperand(0)),
5811                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5812  } else {
5813    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5814  }
5815}
5816
5817SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
5818  LLVMContext *Context = DAG.getContext();
5819  SDValue Op0 = Op.getOperand(0);
5820  SDValue Op1 = Op.getOperand(1);
5821  DebugLoc dl = Op.getDebugLoc();
5822  EVT VT = Op.getValueType();
5823  EVT SrcVT = Op1.getValueType();
5824
5825  // If second operand is smaller, extend it first.
5826  if (SrcVT.bitsLT(VT)) {
5827    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5828    SrcVT = VT;
5829  }
5830  // And if it is bigger, shrink it first.
5831  if (SrcVT.bitsGT(VT)) {
5832    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5833    SrcVT = VT;
5834  }
5835
5836  // At this point the operands and the result should have the same
5837  // type, and that won't be f80 since that is not custom lowered.
5838
5839  // First get the sign bit of second operand.
5840  std::vector<Constant*> CV;
5841  if (SrcVT == MVT::f64) {
5842    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5843    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5844  } else {
5845    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5846    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5847    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5848    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5849  }
5850  Constant *C = ConstantVector::get(CV);
5851  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5852  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5853                              PseudoSourceValue::getConstantPool(), 0,
5854                              false, false, 16);
5855  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5856
5857  // Shift sign bit right or left if the two operands have different types.
5858  if (SrcVT.bitsGT(VT)) {
5859    // Op0 is MVT::f32, Op1 is MVT::f64.
5860    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5861    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5862                          DAG.getConstant(32, MVT::i32));
5863    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5864    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5865                          DAG.getIntPtrConstant(0));
5866  }
5867
5868  // Clear first operand sign bit.
5869  CV.clear();
5870  if (VT == MVT::f64) {
5871    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5872    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5873  } else {
5874    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5875    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5876    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5877    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5878  }
5879  C = ConstantVector::get(CV);
5880  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5881  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5882                              PseudoSourceValue::getConstantPool(), 0,
5883                              false, false, 16);
5884  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5885
5886  // Or the value with the sign bit.
5887  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5888}
5889
5890// getSetCCPromoteOpcode - Return the opcode that should be used to promote
5891// operands of a setcc. FIXME: See DAGTypeLegalizer::PromoteSetCCOperands.
5892static unsigned getSetCCPromoteOpcode(ISD::CondCode CC) {
5893  switch (CC) {
5894  default: return 0;
5895  case ISD::SETEQ:
5896  case ISD::SETNE:
5897  case ISD::SETUGE:
5898  case ISD::SETUGT:
5899  case ISD::SETULE:
5900  case ISD::SETULT:
5901    // ALL of these operations will work if we either sign or zero extend
5902    // the operands (including the unsigned comparisons!).  Zero extend is
5903    // usually a simpler/cheaper operation, so prefer it.
5904    return ISD::ZERO_EXTEND;
5905  case ISD::SETGE:
5906  case ISD::SETGT:
5907  case ISD::SETLT:
5908  case ISD::SETLE:
5909    return ISD::SIGN_EXTEND;
5910  }
5911}
5912
5913/// Emit nodes that will be selected as "test Op0,Op0", or something
5914/// equivalent.
5915SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5916                                    ISD::CondCode CC, SelectionDAG &DAG) const {
5917  DebugLoc dl = Op.getDebugLoc();
5918
5919  // CF and OF aren't always set the way we want. Determine which
5920  // of these we need.
5921  bool NeedCF = false;
5922  bool NeedOF = false;
5923  switch (X86CC) {
5924  case X86::COND_A: case X86::COND_AE:
5925  case X86::COND_B: case X86::COND_BE:
5926    NeedCF = true;
5927    break;
5928  case X86::COND_G: case X86::COND_GE:
5929  case X86::COND_L: case X86::COND_LE:
5930  case X86::COND_O: case X86::COND_NO:
5931    NeedOF = true;
5932    break;
5933  default: break;
5934  }
5935
5936  // See if we can use the EFLAGS value from the operand instead of
5937  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5938  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5939  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5940    unsigned Opcode = 0;
5941    unsigned NumOperands = 0;
5942    switch (Op.getNode()->getOpcode()) {
5943    case ISD::ADD:
5944      // Due to an isel shortcoming, be conservative if this add is likely to
5945      // be selected as part of a load-modify-store instruction. When the root
5946      // node in a match is a store, isel doesn't know how to remap non-chain
5947      // non-flag uses of other nodes in the match, such as the ADD in this
5948      // case. This leads to the ADD being left around and reselected, with
5949      // the result being two adds in the output.
5950      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5951           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5952        if (UI->getOpcode() == ISD::STORE)
5953          goto default_case;
5954      if (ConstantSDNode *C =
5955            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5956        // An add of one will be selected as an INC.
5957        if (C->getAPIntValue() == 1) {
5958          Opcode = X86ISD::INC;
5959          NumOperands = 1;
5960          break;
5961        }
5962        // An add of negative one (subtract of one) will be selected as a DEC.
5963        if (C->getAPIntValue().isAllOnesValue()) {
5964          Opcode = X86ISD::DEC;
5965          NumOperands = 1;
5966          break;
5967        }
5968      }
5969      // Otherwise use a regular EFLAGS-setting add.
5970      Opcode = X86ISD::ADD;
5971      NumOperands = 2;
5972      break;
5973    case ISD::AND: {
5974      // If the primary and result isn't used, don't bother using X86ISD::AND,
5975      // because a TEST instruction will be better.
5976      bool NonFlagUse = false;
5977      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5978             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
5979        SDNode *User = *UI;
5980        unsigned UOpNo = UI.getOperandNo();
5981        if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
5982          // Look pass truncate.
5983          UOpNo = User->use_begin().getOperandNo();
5984          User = *User->use_begin();
5985        }
5986        if (User->getOpcode() != ISD::BRCOND &&
5987            User->getOpcode() != ISD::SETCC &&
5988            (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
5989          NonFlagUse = true;
5990          break;
5991        }
5992      }
5993      if (!NonFlagUse)
5994        break;
5995    }
5996    // FALL THROUGH
5997    case ISD::SUB:
5998    case ISD::OR:
5999    case ISD::XOR:
6000      // Due to the ISEL shortcoming noted above, be conservative if this op is
6001      // likely to be selected as part of a load-modify-store instruction.
6002      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6003           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6004        if (UI->getOpcode() == ISD::STORE)
6005          goto default_case;
6006      // Otherwise use a regular EFLAGS-setting instruction.
6007      switch (Op.getNode()->getOpcode()) {
6008      case ISD::SUB: Opcode = X86ISD::SUB; break;
6009      case ISD::OR:  Opcode = X86ISD::OR;  break;
6010      case ISD::XOR: Opcode = X86ISD::XOR; break;
6011      case ISD::AND: Opcode = X86ISD::AND; break;
6012      default: llvm_unreachable("unexpected operator!");
6013      }
6014      NumOperands = 2;
6015      break;
6016    case X86ISD::ADD:
6017    case X86ISD::SUB:
6018    case X86ISD::INC:
6019    case X86ISD::DEC:
6020    case X86ISD::OR:
6021    case X86ISD::XOR:
6022    case X86ISD::AND:
6023      return SDValue(Op.getNode(), 1);
6024    default:
6025    default_case:
6026      break;
6027    }
6028    if (Opcode != 0) {
6029      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6030      SmallVector<SDValue, 4> Ops;
6031      for (unsigned i = 0; i != NumOperands; ++i)
6032        Ops.push_back(Op.getOperand(i));
6033      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6034      DAG.ReplaceAllUsesWith(Op, New);
6035      return SDValue(New.getNode(), 1);
6036    }
6037  }
6038
6039  // Otherwise just emit a CMP with 0, which is the TEST pattern.
6040  EVT PVT;
6041  if (Subtarget->shouldPromote16Bit() && Op.getValueType() == MVT::i16 &&
6042      (isa<ConstantSDNode>(Op) || IsDesirableToPromoteOp(Op, PVT))) {
6043    unsigned POpc = getSetCCPromoteOpcode(CC);
6044    if (POpc)
6045      Op = DAG.getNode(POpc, Op.getDebugLoc(), MVT::i32, Op);
6046  }
6047  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6048                     DAG.getConstant(0, Op.getValueType()));
6049}
6050
6051/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6052/// equivalent.
6053SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6054                                   ISD::CondCode CC, SelectionDAG &DAG) const {
6055  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6056    if (C->getAPIntValue() == 0)
6057      return EmitTest(Op0, X86CC, CC, DAG);
6058
6059  DebugLoc dl = Op0.getDebugLoc();
6060  EVT PVT;
6061  if (Subtarget->shouldPromote16Bit() && Op0.getValueType() == MVT::i16 &&
6062      (isa<ConstantSDNode>(Op0) || IsDesirableToPromoteOp(Op0, PVT)) &&
6063      (isa<ConstantSDNode>(Op1) || IsDesirableToPromoteOp(Op1, PVT))) {
6064    unsigned POpc = getSetCCPromoteOpcode(CC);
6065    if (POpc) {
6066      Op0 = DAG.getNode(POpc, Op0.getDebugLoc(), MVT::i32, Op0);
6067      Op1 = DAG.getNode(POpc, Op1.getDebugLoc(), MVT::i32, Op1);
6068    }
6069  }
6070  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6071}
6072
6073/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6074/// if it's possible.
6075SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6076                                     DebugLoc dl, SelectionDAG &DAG) const {
6077  SDValue Op0 = And.getOperand(0);
6078  SDValue Op1 = And.getOperand(1);
6079  if (Op0.getOpcode() == ISD::TRUNCATE)
6080    Op0 = Op0.getOperand(0);
6081  if (Op1.getOpcode() == ISD::TRUNCATE)
6082    Op1 = Op1.getOperand(0);
6083
6084  SDValue LHS, RHS;
6085  if (Op1.getOpcode() == ISD::SHL) {
6086    if (ConstantSDNode *And10C = dyn_cast<ConstantSDNode>(Op1.getOperand(0)))
6087      if (And10C->getZExtValue() == 1) {
6088        LHS = Op0;
6089        RHS = Op1.getOperand(1);
6090      }
6091  } else if (Op0.getOpcode() == ISD::SHL) {
6092    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6093      if (And00C->getZExtValue() == 1) {
6094        LHS = Op1;
6095        RHS = Op0.getOperand(1);
6096      }
6097  } else if (Op1.getOpcode() == ISD::Constant) {
6098    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6099    SDValue AndLHS = Op0;
6100    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6101      LHS = AndLHS.getOperand(0);
6102      RHS = AndLHS.getOperand(1);
6103    }
6104  }
6105
6106  if (LHS.getNode()) {
6107    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6108    // instruction.  Since the shift amount is in-range-or-undefined, we know
6109    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6110    // the encoding for the i16 version is larger than the i32 version.
6111    // Also promote i16 to i32 for performance / code size reason.
6112    if (LHS.getValueType() == MVT::i8 ||
6113        (Subtarget->shouldPromote16Bit() && LHS.getValueType() == MVT::i16))
6114      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6115
6116    // If the operand types disagree, extend the shift amount to match.  Since
6117    // BT ignores high bits (like shifts) we can use anyextend.
6118    if (LHS.getValueType() != RHS.getValueType())
6119      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6120
6121    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6122    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6123    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6124                       DAG.getConstant(Cond, MVT::i8), BT);
6125  }
6126
6127  return SDValue();
6128}
6129
6130SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6131  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6132  SDValue Op0 = Op.getOperand(0);
6133  SDValue Op1 = Op.getOperand(1);
6134  DebugLoc dl = Op.getDebugLoc();
6135  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6136
6137  // Optimize to BT if possible.
6138  // Lower (X & (1 << N)) == 0 to BT(X, N).
6139  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6140  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6141  if (Op0.getOpcode() == ISD::AND &&
6142      Op0.hasOneUse() &&
6143      Op1.getOpcode() == ISD::Constant &&
6144      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
6145      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6146    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6147    if (NewSetCC.getNode())
6148      return NewSetCC;
6149  }
6150
6151  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6152  if (Op0.getOpcode() == X86ISD::SETCC &&
6153      Op1.getOpcode() == ISD::Constant &&
6154      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6155       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6156      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6157    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6158    bool Invert = (CC == ISD::SETNE) ^
6159      cast<ConstantSDNode>(Op1)->isNullValue();
6160    if (Invert)
6161      CCode = X86::GetOppositeBranchCondition(CCode);
6162    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6163                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6164  }
6165
6166  bool isFP = Op1.getValueType().isFloatingPoint();
6167  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6168  if (X86CC == X86::COND_INVALID)
6169    return SDValue();
6170
6171  SDValue Cond = EmitCmp(Op0, Op1, X86CC, CC, DAG);
6172
6173  // Use sbb x, x to materialize carry bit into a GPR.
6174  if (X86CC == X86::COND_B)
6175    return DAG.getNode(ISD::AND, dl, MVT::i8,
6176                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6177                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6178                       DAG.getConstant(1, MVT::i8));
6179
6180  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6181                     DAG.getConstant(X86CC, MVT::i8), Cond);
6182}
6183
6184SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
6185  SDValue Cond;
6186  SDValue Op0 = Op.getOperand(0);
6187  SDValue Op1 = Op.getOperand(1);
6188  SDValue CC = Op.getOperand(2);
6189  EVT VT = Op.getValueType();
6190  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6191  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6192  DebugLoc dl = Op.getDebugLoc();
6193
6194  if (isFP) {
6195    unsigned SSECC = 8;
6196    EVT VT0 = Op0.getValueType();
6197    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6198    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6199    bool Swap = false;
6200
6201    switch (SetCCOpcode) {
6202    default: break;
6203    case ISD::SETOEQ:
6204    case ISD::SETEQ:  SSECC = 0; break;
6205    case ISD::SETOGT:
6206    case ISD::SETGT: Swap = true; // Fallthrough
6207    case ISD::SETLT:
6208    case ISD::SETOLT: SSECC = 1; break;
6209    case ISD::SETOGE:
6210    case ISD::SETGE: Swap = true; // Fallthrough
6211    case ISD::SETLE:
6212    case ISD::SETOLE: SSECC = 2; break;
6213    case ISD::SETUO:  SSECC = 3; break;
6214    case ISD::SETUNE:
6215    case ISD::SETNE:  SSECC = 4; break;
6216    case ISD::SETULE: Swap = true;
6217    case ISD::SETUGE: SSECC = 5; break;
6218    case ISD::SETULT: Swap = true;
6219    case ISD::SETUGT: SSECC = 6; break;
6220    case ISD::SETO:   SSECC = 7; break;
6221    }
6222    if (Swap)
6223      std::swap(Op0, Op1);
6224
6225    // In the two special cases we can't handle, emit two comparisons.
6226    if (SSECC == 8) {
6227      if (SetCCOpcode == ISD::SETUEQ) {
6228        SDValue UNORD, EQ;
6229        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6230        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6231        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6232      }
6233      else if (SetCCOpcode == ISD::SETONE) {
6234        SDValue ORD, NEQ;
6235        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6236        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6237        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6238      }
6239      llvm_unreachable("Illegal FP comparison");
6240    }
6241    // Handle all other FP comparisons here.
6242    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6243  }
6244
6245  // We are handling one of the integer comparisons here.  Since SSE only has
6246  // GT and EQ comparisons for integer, swapping operands and multiple
6247  // operations may be required for some comparisons.
6248  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6249  bool Swap = false, Invert = false, FlipSigns = false;
6250
6251  switch (VT.getSimpleVT().SimpleTy) {
6252  default: break;
6253  case MVT::v8i8:
6254  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6255  case MVT::v4i16:
6256  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6257  case MVT::v2i32:
6258  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6259  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6260  }
6261
6262  switch (SetCCOpcode) {
6263  default: break;
6264  case ISD::SETNE:  Invert = true;
6265  case ISD::SETEQ:  Opc = EQOpc; break;
6266  case ISD::SETLT:  Swap = true;
6267  case ISD::SETGT:  Opc = GTOpc; break;
6268  case ISD::SETGE:  Swap = true;
6269  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6270  case ISD::SETULT: Swap = true;
6271  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6272  case ISD::SETUGE: Swap = true;
6273  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6274  }
6275  if (Swap)
6276    std::swap(Op0, Op1);
6277
6278  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6279  // bits of the inputs before performing those operations.
6280  if (FlipSigns) {
6281    EVT EltVT = VT.getVectorElementType();
6282    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6283                                      EltVT);
6284    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6285    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6286                                    SignBits.size());
6287    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6288    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6289  }
6290
6291  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6292
6293  // If the logical-not of the result is required, perform that now.
6294  if (Invert)
6295    Result = DAG.getNOT(dl, Result, VT);
6296
6297  return Result;
6298}
6299
6300// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6301static bool isX86LogicalCmp(SDValue Op) {
6302  unsigned Opc = Op.getNode()->getOpcode();
6303  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6304    return true;
6305  if (Op.getResNo() == 1 &&
6306      (Opc == X86ISD::ADD ||
6307       Opc == X86ISD::SUB ||
6308       Opc == X86ISD::SMUL ||
6309       Opc == X86ISD::UMUL ||
6310       Opc == X86ISD::INC ||
6311       Opc == X86ISD::DEC ||
6312       Opc == X86ISD::OR ||
6313       Opc == X86ISD::XOR ||
6314       Opc == X86ISD::AND))
6315    return true;
6316
6317  return false;
6318}
6319
6320SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
6321  bool addTest = true;
6322  SDValue Cond  = Op.getOperand(0);
6323  DebugLoc dl = Op.getDebugLoc();
6324  SDValue CC;
6325
6326  if (Cond.getOpcode() == ISD::SETCC) {
6327    SDValue NewCond = LowerSETCC(Cond, DAG);
6328    if (NewCond.getNode())
6329      Cond = NewCond;
6330  }
6331
6332  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6333  SDValue Op1 = Op.getOperand(1);
6334  SDValue Op2 = Op.getOperand(2);
6335  if (Cond.getOpcode() == X86ISD::SETCC &&
6336      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6337    SDValue Cmp = Cond.getOperand(1);
6338    if (Cmp.getOpcode() == X86ISD::CMP) {
6339      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6340      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6341      ConstantSDNode *RHSC =
6342        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6343      if (N1C && N1C->isAllOnesValue() &&
6344          N2C && N2C->isNullValue() &&
6345          RHSC && RHSC->isNullValue()) {
6346        SDValue CmpOp0 = Cmp.getOperand(0);
6347        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6348                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6349        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6350                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6351      }
6352    }
6353  }
6354
6355  // Look pass (and (setcc_carry (cmp ...)), 1).
6356  if (Cond.getOpcode() == ISD::AND &&
6357      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6358    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6359    if (C && C->getAPIntValue() == 1)
6360      Cond = Cond.getOperand(0);
6361  }
6362
6363  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6364  // setting operand in place of the X86ISD::SETCC.
6365  if (Cond.getOpcode() == X86ISD::SETCC ||
6366      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6367    CC = Cond.getOperand(0);
6368
6369    SDValue Cmp = Cond.getOperand(1);
6370    unsigned Opc = Cmp.getOpcode();
6371    EVT VT = Op.getValueType();
6372
6373    bool IllegalFPCMov = false;
6374    if (VT.isFloatingPoint() && !VT.isVector() &&
6375        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6376      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6377
6378    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6379        Opc == X86ISD::BT) { // FIXME
6380      Cond = Cmp;
6381      addTest = false;
6382    }
6383  }
6384
6385  if (addTest) {
6386    // Look pass the truncate.
6387    if (Cond.getOpcode() == ISD::TRUNCATE)
6388      Cond = Cond.getOperand(0);
6389
6390    // We know the result of AND is compared against zero. Try to match
6391    // it to BT.
6392    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6393      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6394      if (NewSetCC.getNode()) {
6395        CC = NewSetCC.getOperand(0);
6396        Cond = NewSetCC.getOperand(1);
6397        addTest = false;
6398      }
6399    }
6400  }
6401
6402  if (addTest) {
6403    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6404    Cond = EmitTest(Cond, X86::COND_NE, ISD::SETNE, DAG);
6405  }
6406
6407  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6408  // condition is true.
6409  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6410  SDValue Ops[] = { Op2, Op1, CC, Cond };
6411  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6412}
6413
6414// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6415// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6416// from the AND / OR.
6417static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6418  Opc = Op.getOpcode();
6419  if (Opc != ISD::OR && Opc != ISD::AND)
6420    return false;
6421  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6422          Op.getOperand(0).hasOneUse() &&
6423          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6424          Op.getOperand(1).hasOneUse());
6425}
6426
6427// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6428// 1 and that the SETCC node has a single use.
6429static bool isXor1OfSetCC(SDValue Op) {
6430  if (Op.getOpcode() != ISD::XOR)
6431    return false;
6432  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6433  if (N1C && N1C->getAPIntValue() == 1) {
6434    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6435      Op.getOperand(0).hasOneUse();
6436  }
6437  return false;
6438}
6439
6440SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
6441  bool addTest = true;
6442  SDValue Chain = Op.getOperand(0);
6443  SDValue Cond  = Op.getOperand(1);
6444  SDValue Dest  = Op.getOperand(2);
6445  DebugLoc dl = Op.getDebugLoc();
6446  SDValue CC;
6447
6448  if (Cond.getOpcode() == ISD::SETCC) {
6449    SDValue NewCond = LowerSETCC(Cond, DAG);
6450    if (NewCond.getNode())
6451      Cond = NewCond;
6452  }
6453#if 0
6454  // FIXME: LowerXALUO doesn't handle these!!
6455  else if (Cond.getOpcode() == X86ISD::ADD  ||
6456           Cond.getOpcode() == X86ISD::SUB  ||
6457           Cond.getOpcode() == X86ISD::SMUL ||
6458           Cond.getOpcode() == X86ISD::UMUL)
6459    Cond = LowerXALUO(Cond, DAG);
6460#endif
6461
6462  // Look pass (and (setcc_carry (cmp ...)), 1).
6463  if (Cond.getOpcode() == ISD::AND &&
6464      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6465    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6466    if (C && C->getAPIntValue() == 1)
6467      Cond = Cond.getOperand(0);
6468  }
6469
6470  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6471  // setting operand in place of the X86ISD::SETCC.
6472  if (Cond.getOpcode() == X86ISD::SETCC ||
6473      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6474    CC = Cond.getOperand(0);
6475
6476    SDValue Cmp = Cond.getOperand(1);
6477    unsigned Opc = Cmp.getOpcode();
6478    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6479    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6480      Cond = Cmp;
6481      addTest = false;
6482    } else {
6483      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6484      default: break;
6485      case X86::COND_O:
6486      case X86::COND_B:
6487        // These can only come from an arithmetic instruction with overflow,
6488        // e.g. SADDO, UADDO.
6489        Cond = Cond.getNode()->getOperand(1);
6490        addTest = false;
6491        break;
6492      }
6493    }
6494  } else {
6495    unsigned CondOpc;
6496    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6497      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6498      if (CondOpc == ISD::OR) {
6499        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6500        // two branches instead of an explicit OR instruction with a
6501        // separate test.
6502        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6503            isX86LogicalCmp(Cmp)) {
6504          CC = Cond.getOperand(0).getOperand(0);
6505          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6506                              Chain, Dest, CC, Cmp);
6507          CC = Cond.getOperand(1).getOperand(0);
6508          Cond = Cmp;
6509          addTest = false;
6510        }
6511      } else { // ISD::AND
6512        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6513        // two branches instead of an explicit AND instruction with a
6514        // separate test. However, we only do this if this block doesn't
6515        // have a fall-through edge, because this requires an explicit
6516        // jmp when the condition is false.
6517        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6518            isX86LogicalCmp(Cmp) &&
6519            Op.getNode()->hasOneUse()) {
6520          X86::CondCode CCode =
6521            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6522          CCode = X86::GetOppositeBranchCondition(CCode);
6523          CC = DAG.getConstant(CCode, MVT::i8);
6524          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
6525          // Look for an unconditional branch following this conditional branch.
6526          // We need this because we need to reverse the successors in order
6527          // to implement FCMP_OEQ.
6528          if (User.getOpcode() == ISD::BR) {
6529            SDValue FalseBB = User.getOperand(1);
6530            SDValue NewBR =
6531              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
6532            assert(NewBR == User);
6533            Dest = FalseBB;
6534
6535            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6536                                Chain, Dest, CC, Cmp);
6537            X86::CondCode CCode =
6538              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6539            CCode = X86::GetOppositeBranchCondition(CCode);
6540            CC = DAG.getConstant(CCode, MVT::i8);
6541            Cond = Cmp;
6542            addTest = false;
6543          }
6544        }
6545      }
6546    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6547      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6548      // It should be transformed during dag combiner except when the condition
6549      // is set by a arithmetics with overflow node.
6550      X86::CondCode CCode =
6551        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6552      CCode = X86::GetOppositeBranchCondition(CCode);
6553      CC = DAG.getConstant(CCode, MVT::i8);
6554      Cond = Cond.getOperand(0).getOperand(1);
6555      addTest = false;
6556    }
6557  }
6558
6559  if (addTest) {
6560    // Look pass the truncate.
6561    if (Cond.getOpcode() == ISD::TRUNCATE)
6562      Cond = Cond.getOperand(0);
6563
6564    // We know the result of AND is compared against zero. Try to match
6565    // it to BT.
6566    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6567      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6568      if (NewSetCC.getNode()) {
6569        CC = NewSetCC.getOperand(0);
6570        Cond = NewSetCC.getOperand(1);
6571        addTest = false;
6572      }
6573    }
6574  }
6575
6576  if (addTest) {
6577    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6578    Cond = EmitTest(Cond, X86::COND_NE, ISD::SETNE, DAG);
6579  }
6580  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6581                     Chain, Dest, CC, Cond);
6582}
6583
6584
6585// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6586// Calls to _alloca is needed to probe the stack when allocating more than 4k
6587// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6588// that the guard pages used by the OS virtual memory manager are allocated in
6589// correct sequence.
6590SDValue
6591X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6592                                           SelectionDAG &DAG) const {
6593  assert(Subtarget->isTargetCygMing() &&
6594         "This should be used only on Cygwin/Mingw targets");
6595  DebugLoc dl = Op.getDebugLoc();
6596
6597  // Get the inputs.
6598  SDValue Chain = Op.getOperand(0);
6599  SDValue Size  = Op.getOperand(1);
6600  // FIXME: Ensure alignment here
6601
6602  SDValue Flag;
6603
6604  EVT IntPtr = getPointerTy();
6605  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6606
6607  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6608  Flag = Chain.getValue(1);
6609
6610  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6611
6612  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6613  Flag = Chain.getValue(1);
6614
6615  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6616
6617  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6618  return DAG.getMergeValues(Ops1, 2, dl);
6619}
6620
6621SDValue
6622X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6623                                           SDValue Chain,
6624                                           SDValue Dst, SDValue Src,
6625                                           SDValue Size, unsigned Align,
6626                                           bool isVolatile,
6627                                           const Value *DstSV,
6628                                           uint64_t DstSVOff) const {
6629  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6630
6631  // If not DWORD aligned or size is more than the threshold, call the library.
6632  // The libc version is likely to be faster for these cases. It can use the
6633  // address value and run time information about the CPU.
6634  if ((Align & 3) != 0 ||
6635      !ConstantSize ||
6636      ConstantSize->getZExtValue() >
6637        getSubtarget()->getMaxInlineSizeThreshold()) {
6638    SDValue InFlag(0, 0);
6639
6640    // Check to see if there is a specialized entry-point for memory zeroing.
6641    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6642
6643    if (const char *bzeroEntry =  V &&
6644        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6645      EVT IntPtr = getPointerTy();
6646      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6647      TargetLowering::ArgListTy Args;
6648      TargetLowering::ArgListEntry Entry;
6649      Entry.Node = Dst;
6650      Entry.Ty = IntPtrTy;
6651      Args.push_back(Entry);
6652      Entry.Node = Size;
6653      Args.push_back(Entry);
6654      std::pair<SDValue,SDValue> CallResult =
6655        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6656                    false, false, false, false,
6657                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6658                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
6659      return CallResult.second;
6660    }
6661
6662    // Otherwise have the target-independent code call memset.
6663    return SDValue();
6664  }
6665
6666  uint64_t SizeVal = ConstantSize->getZExtValue();
6667  SDValue InFlag(0, 0);
6668  EVT AVT;
6669  SDValue Count;
6670  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6671  unsigned BytesLeft = 0;
6672  bool TwoRepStos = false;
6673  if (ValC) {
6674    unsigned ValReg;
6675    uint64_t Val = ValC->getZExtValue() & 255;
6676
6677    // If the value is a constant, then we can potentially use larger sets.
6678    switch (Align & 3) {
6679    case 2:   // WORD aligned
6680      AVT = MVT::i16;
6681      ValReg = X86::AX;
6682      Val = (Val << 8) | Val;
6683      break;
6684    case 0:  // DWORD aligned
6685      AVT = MVT::i32;
6686      ValReg = X86::EAX;
6687      Val = (Val << 8)  | Val;
6688      Val = (Val << 16) | Val;
6689      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6690        AVT = MVT::i64;
6691        ValReg = X86::RAX;
6692        Val = (Val << 32) | Val;
6693      }
6694      break;
6695    default:  // Byte aligned
6696      AVT = MVT::i8;
6697      ValReg = X86::AL;
6698      Count = DAG.getIntPtrConstant(SizeVal);
6699      break;
6700    }
6701
6702    if (AVT.bitsGT(MVT::i8)) {
6703      unsigned UBytes = AVT.getSizeInBits() / 8;
6704      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6705      BytesLeft = SizeVal % UBytes;
6706    }
6707
6708    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6709                              InFlag);
6710    InFlag = Chain.getValue(1);
6711  } else {
6712    AVT = MVT::i8;
6713    Count  = DAG.getIntPtrConstant(SizeVal);
6714    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6715    InFlag = Chain.getValue(1);
6716  }
6717
6718  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6719                                                              X86::ECX,
6720                            Count, InFlag);
6721  InFlag = Chain.getValue(1);
6722  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6723                                                              X86::EDI,
6724                            Dst, InFlag);
6725  InFlag = Chain.getValue(1);
6726
6727  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6728  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6729  Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6730
6731  if (TwoRepStos) {
6732    InFlag = Chain.getValue(1);
6733    Count  = Size;
6734    EVT CVT = Count.getValueType();
6735    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6736                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6737    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6738                                                             X86::ECX,
6739                              Left, InFlag);
6740    InFlag = Chain.getValue(1);
6741    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6742    SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
6743    Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6744  } else if (BytesLeft) {
6745    // Handle the last 1 - 7 bytes.
6746    unsigned Offset = SizeVal - BytesLeft;
6747    EVT AddrVT = Dst.getValueType();
6748    EVT SizeVT = Size.getValueType();
6749
6750    Chain = DAG.getMemset(Chain, dl,
6751                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6752                                      DAG.getConstant(Offset, AddrVT)),
6753                          Src,
6754                          DAG.getConstant(BytesLeft, SizeVT),
6755                          Align, isVolatile, DstSV, DstSVOff + Offset);
6756  }
6757
6758  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6759  return Chain;
6760}
6761
6762SDValue
6763X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6764                                      SDValue Chain, SDValue Dst, SDValue Src,
6765                                      SDValue Size, unsigned Align,
6766                                      bool isVolatile, bool AlwaysInline,
6767                                      const Value *DstSV,
6768                                      uint64_t DstSVOff,
6769                                      const Value *SrcSV,
6770                                      uint64_t SrcSVOff) const {
6771  // This requires the copy size to be a constant, preferrably
6772  // within a subtarget-specific limit.
6773  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6774  if (!ConstantSize)
6775    return SDValue();
6776  uint64_t SizeVal = ConstantSize->getZExtValue();
6777  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6778    return SDValue();
6779
6780  /// If not DWORD aligned, call the library.
6781  if ((Align & 3) != 0)
6782    return SDValue();
6783
6784  // DWORD aligned
6785  EVT AVT = MVT::i32;
6786  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6787    AVT = MVT::i64;
6788
6789  unsigned UBytes = AVT.getSizeInBits() / 8;
6790  unsigned CountVal = SizeVal / UBytes;
6791  SDValue Count = DAG.getIntPtrConstant(CountVal);
6792  unsigned BytesLeft = SizeVal % UBytes;
6793
6794  SDValue InFlag(0, 0);
6795  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6796                                                              X86::ECX,
6797                            Count, InFlag);
6798  InFlag = Chain.getValue(1);
6799  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6800                                                              X86::EDI,
6801                            Dst, InFlag);
6802  InFlag = Chain.getValue(1);
6803  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6804                                                              X86::ESI,
6805                            Src, InFlag);
6806  InFlag = Chain.getValue(1);
6807
6808  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6809  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6810  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
6811                                array_lengthof(Ops));
6812
6813  SmallVector<SDValue, 4> Results;
6814  Results.push_back(RepMovs);
6815  if (BytesLeft) {
6816    // Handle the last 1 - 7 bytes.
6817    unsigned Offset = SizeVal - BytesLeft;
6818    EVT DstVT = Dst.getValueType();
6819    EVT SrcVT = Src.getValueType();
6820    EVT SizeVT = Size.getValueType();
6821    Results.push_back(DAG.getMemcpy(Chain, dl,
6822                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6823                                                DAG.getConstant(Offset, DstVT)),
6824                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6825                                                DAG.getConstant(Offset, SrcVT)),
6826                                    DAG.getConstant(BytesLeft, SizeVT),
6827                                    Align, isVolatile, AlwaysInline,
6828                                    DstSV, DstSVOff + Offset,
6829                                    SrcSV, SrcSVOff + Offset));
6830  }
6831
6832  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6833                     &Results[0], Results.size());
6834}
6835
6836SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
6837  MachineFunction &MF = DAG.getMachineFunction();
6838  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
6839
6840  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6841  DebugLoc dl = Op.getDebugLoc();
6842
6843  if (!Subtarget->is64Bit()) {
6844    // vastart just stores the address of the VarArgsFrameIndex slot into the
6845    // memory location argument.
6846    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6847                                   getPointerTy());
6848    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6849                        false, false, 0);
6850  }
6851
6852  // __va_list_tag:
6853  //   gp_offset         (0 - 6 * 8)
6854  //   fp_offset         (48 - 48 + 8 * 16)
6855  //   overflow_arg_area (point to parameters coming in memory).
6856  //   reg_save_area
6857  SmallVector<SDValue, 8> MemOps;
6858  SDValue FIN = Op.getOperand(1);
6859  // Store gp_offset
6860  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6861                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
6862                                               MVT::i32),
6863                               FIN, SV, 0, false, false, 0);
6864  MemOps.push_back(Store);
6865
6866  // Store fp_offset
6867  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6868                    FIN, DAG.getIntPtrConstant(4));
6869  Store = DAG.getStore(Op.getOperand(0), dl,
6870                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
6871                                       MVT::i32),
6872                       FIN, SV, 0, false, false, 0);
6873  MemOps.push_back(Store);
6874
6875  // Store ptr to overflow_arg_area
6876  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6877                    FIN, DAG.getIntPtrConstant(4));
6878  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6879                                    getPointerTy());
6880  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0,
6881                       false, false, 0);
6882  MemOps.push_back(Store);
6883
6884  // Store ptr to reg_save_area.
6885  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6886                    FIN, DAG.getIntPtrConstant(8));
6887  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
6888                                    getPointerTy());
6889  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0,
6890                       false, false, 0);
6891  MemOps.push_back(Store);
6892  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6893                     &MemOps[0], MemOps.size());
6894}
6895
6896SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
6897  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6898  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6899  SDValue Chain = Op.getOperand(0);
6900  SDValue SrcPtr = Op.getOperand(1);
6901  SDValue SrcSV = Op.getOperand(2);
6902
6903  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
6904  return SDValue();
6905}
6906
6907SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
6908  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6909  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6910  SDValue Chain = Op.getOperand(0);
6911  SDValue DstPtr = Op.getOperand(1);
6912  SDValue SrcPtr = Op.getOperand(2);
6913  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6914  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6915  DebugLoc dl = Op.getDebugLoc();
6916
6917  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6918                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
6919                       false, DstSV, 0, SrcSV, 0);
6920}
6921
6922SDValue
6923X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
6924  DebugLoc dl = Op.getDebugLoc();
6925  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6926  switch (IntNo) {
6927  default: return SDValue();    // Don't custom lower most intrinsics.
6928  // Comparison intrinsics.
6929  case Intrinsic::x86_sse_comieq_ss:
6930  case Intrinsic::x86_sse_comilt_ss:
6931  case Intrinsic::x86_sse_comile_ss:
6932  case Intrinsic::x86_sse_comigt_ss:
6933  case Intrinsic::x86_sse_comige_ss:
6934  case Intrinsic::x86_sse_comineq_ss:
6935  case Intrinsic::x86_sse_ucomieq_ss:
6936  case Intrinsic::x86_sse_ucomilt_ss:
6937  case Intrinsic::x86_sse_ucomile_ss:
6938  case Intrinsic::x86_sse_ucomigt_ss:
6939  case Intrinsic::x86_sse_ucomige_ss:
6940  case Intrinsic::x86_sse_ucomineq_ss:
6941  case Intrinsic::x86_sse2_comieq_sd:
6942  case Intrinsic::x86_sse2_comilt_sd:
6943  case Intrinsic::x86_sse2_comile_sd:
6944  case Intrinsic::x86_sse2_comigt_sd:
6945  case Intrinsic::x86_sse2_comige_sd:
6946  case Intrinsic::x86_sse2_comineq_sd:
6947  case Intrinsic::x86_sse2_ucomieq_sd:
6948  case Intrinsic::x86_sse2_ucomilt_sd:
6949  case Intrinsic::x86_sse2_ucomile_sd:
6950  case Intrinsic::x86_sse2_ucomigt_sd:
6951  case Intrinsic::x86_sse2_ucomige_sd:
6952  case Intrinsic::x86_sse2_ucomineq_sd: {
6953    unsigned Opc = 0;
6954    ISD::CondCode CC = ISD::SETCC_INVALID;
6955    switch (IntNo) {
6956    default: break;
6957    case Intrinsic::x86_sse_comieq_ss:
6958    case Intrinsic::x86_sse2_comieq_sd:
6959      Opc = X86ISD::COMI;
6960      CC = ISD::SETEQ;
6961      break;
6962    case Intrinsic::x86_sse_comilt_ss:
6963    case Intrinsic::x86_sse2_comilt_sd:
6964      Opc = X86ISD::COMI;
6965      CC = ISD::SETLT;
6966      break;
6967    case Intrinsic::x86_sse_comile_ss:
6968    case Intrinsic::x86_sse2_comile_sd:
6969      Opc = X86ISD::COMI;
6970      CC = ISD::SETLE;
6971      break;
6972    case Intrinsic::x86_sse_comigt_ss:
6973    case Intrinsic::x86_sse2_comigt_sd:
6974      Opc = X86ISD::COMI;
6975      CC = ISD::SETGT;
6976      break;
6977    case Intrinsic::x86_sse_comige_ss:
6978    case Intrinsic::x86_sse2_comige_sd:
6979      Opc = X86ISD::COMI;
6980      CC = ISD::SETGE;
6981      break;
6982    case Intrinsic::x86_sse_comineq_ss:
6983    case Intrinsic::x86_sse2_comineq_sd:
6984      Opc = X86ISD::COMI;
6985      CC = ISD::SETNE;
6986      break;
6987    case Intrinsic::x86_sse_ucomieq_ss:
6988    case Intrinsic::x86_sse2_ucomieq_sd:
6989      Opc = X86ISD::UCOMI;
6990      CC = ISD::SETEQ;
6991      break;
6992    case Intrinsic::x86_sse_ucomilt_ss:
6993    case Intrinsic::x86_sse2_ucomilt_sd:
6994      Opc = X86ISD::UCOMI;
6995      CC = ISD::SETLT;
6996      break;
6997    case Intrinsic::x86_sse_ucomile_ss:
6998    case Intrinsic::x86_sse2_ucomile_sd:
6999      Opc = X86ISD::UCOMI;
7000      CC = ISD::SETLE;
7001      break;
7002    case Intrinsic::x86_sse_ucomigt_ss:
7003    case Intrinsic::x86_sse2_ucomigt_sd:
7004      Opc = X86ISD::UCOMI;
7005      CC = ISD::SETGT;
7006      break;
7007    case Intrinsic::x86_sse_ucomige_ss:
7008    case Intrinsic::x86_sse2_ucomige_sd:
7009      Opc = X86ISD::UCOMI;
7010      CC = ISD::SETGE;
7011      break;
7012    case Intrinsic::x86_sse_ucomineq_ss:
7013    case Intrinsic::x86_sse2_ucomineq_sd:
7014      Opc = X86ISD::UCOMI;
7015      CC = ISD::SETNE;
7016      break;
7017    }
7018
7019    SDValue LHS = Op.getOperand(1);
7020    SDValue RHS = Op.getOperand(2);
7021    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7022    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7023    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7024    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7025                                DAG.getConstant(X86CC, MVT::i8), Cond);
7026    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7027  }
7028  // ptest intrinsics. The intrinsic these come from are designed to return
7029  // an integer value, not just an instruction so lower it to the ptest
7030  // pattern and a setcc for the result.
7031  case Intrinsic::x86_sse41_ptestz:
7032  case Intrinsic::x86_sse41_ptestc:
7033  case Intrinsic::x86_sse41_ptestnzc:{
7034    unsigned X86CC = 0;
7035    switch (IntNo) {
7036    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7037    case Intrinsic::x86_sse41_ptestz:
7038      // ZF = 1
7039      X86CC = X86::COND_E;
7040      break;
7041    case Intrinsic::x86_sse41_ptestc:
7042      // CF = 1
7043      X86CC = X86::COND_B;
7044      break;
7045    case Intrinsic::x86_sse41_ptestnzc:
7046      // ZF and CF = 0
7047      X86CC = X86::COND_A;
7048      break;
7049    }
7050
7051    SDValue LHS = Op.getOperand(1);
7052    SDValue RHS = Op.getOperand(2);
7053    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
7054    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7055    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7056    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7057  }
7058
7059  // Fix vector shift instructions where the last operand is a non-immediate
7060  // i32 value.
7061  case Intrinsic::x86_sse2_pslli_w:
7062  case Intrinsic::x86_sse2_pslli_d:
7063  case Intrinsic::x86_sse2_pslli_q:
7064  case Intrinsic::x86_sse2_psrli_w:
7065  case Intrinsic::x86_sse2_psrli_d:
7066  case Intrinsic::x86_sse2_psrli_q:
7067  case Intrinsic::x86_sse2_psrai_w:
7068  case Intrinsic::x86_sse2_psrai_d:
7069  case Intrinsic::x86_mmx_pslli_w:
7070  case Intrinsic::x86_mmx_pslli_d:
7071  case Intrinsic::x86_mmx_pslli_q:
7072  case Intrinsic::x86_mmx_psrli_w:
7073  case Intrinsic::x86_mmx_psrli_d:
7074  case Intrinsic::x86_mmx_psrli_q:
7075  case Intrinsic::x86_mmx_psrai_w:
7076  case Intrinsic::x86_mmx_psrai_d: {
7077    SDValue ShAmt = Op.getOperand(2);
7078    if (isa<ConstantSDNode>(ShAmt))
7079      return SDValue();
7080
7081    unsigned NewIntNo = 0;
7082    EVT ShAmtVT = MVT::v4i32;
7083    switch (IntNo) {
7084    case Intrinsic::x86_sse2_pslli_w:
7085      NewIntNo = Intrinsic::x86_sse2_psll_w;
7086      break;
7087    case Intrinsic::x86_sse2_pslli_d:
7088      NewIntNo = Intrinsic::x86_sse2_psll_d;
7089      break;
7090    case Intrinsic::x86_sse2_pslli_q:
7091      NewIntNo = Intrinsic::x86_sse2_psll_q;
7092      break;
7093    case Intrinsic::x86_sse2_psrli_w:
7094      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7095      break;
7096    case Intrinsic::x86_sse2_psrli_d:
7097      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7098      break;
7099    case Intrinsic::x86_sse2_psrli_q:
7100      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7101      break;
7102    case Intrinsic::x86_sse2_psrai_w:
7103      NewIntNo = Intrinsic::x86_sse2_psra_w;
7104      break;
7105    case Intrinsic::x86_sse2_psrai_d:
7106      NewIntNo = Intrinsic::x86_sse2_psra_d;
7107      break;
7108    default: {
7109      ShAmtVT = MVT::v2i32;
7110      switch (IntNo) {
7111      case Intrinsic::x86_mmx_pslli_w:
7112        NewIntNo = Intrinsic::x86_mmx_psll_w;
7113        break;
7114      case Intrinsic::x86_mmx_pslli_d:
7115        NewIntNo = Intrinsic::x86_mmx_psll_d;
7116        break;
7117      case Intrinsic::x86_mmx_pslli_q:
7118        NewIntNo = Intrinsic::x86_mmx_psll_q;
7119        break;
7120      case Intrinsic::x86_mmx_psrli_w:
7121        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7122        break;
7123      case Intrinsic::x86_mmx_psrli_d:
7124        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7125        break;
7126      case Intrinsic::x86_mmx_psrli_q:
7127        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7128        break;
7129      case Intrinsic::x86_mmx_psrai_w:
7130        NewIntNo = Intrinsic::x86_mmx_psra_w;
7131        break;
7132      case Intrinsic::x86_mmx_psrai_d:
7133        NewIntNo = Intrinsic::x86_mmx_psra_d;
7134        break;
7135      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7136      }
7137      break;
7138    }
7139    }
7140
7141    // The vector shift intrinsics with scalars uses 32b shift amounts but
7142    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7143    // to be zero.
7144    SDValue ShOps[4];
7145    ShOps[0] = ShAmt;
7146    ShOps[1] = DAG.getConstant(0, MVT::i32);
7147    if (ShAmtVT == MVT::v4i32) {
7148      ShOps[2] = DAG.getUNDEF(MVT::i32);
7149      ShOps[3] = DAG.getUNDEF(MVT::i32);
7150      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7151    } else {
7152      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7153    }
7154
7155    EVT VT = Op.getValueType();
7156    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7157    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7158                       DAG.getConstant(NewIntNo, MVT::i32),
7159                       Op.getOperand(1), ShAmt);
7160  }
7161  }
7162}
7163
7164SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7165                                           SelectionDAG &DAG) const {
7166  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7167  DebugLoc dl = Op.getDebugLoc();
7168
7169  if (Depth > 0) {
7170    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7171    SDValue Offset =
7172      DAG.getConstant(TD->getPointerSize(),
7173                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7174    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7175                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7176                                   FrameAddr, Offset),
7177                       NULL, 0, false, false, 0);
7178  }
7179
7180  // Just load the return address.
7181  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7182  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7183                     RetAddrFI, NULL, 0, false, false, 0);
7184}
7185
7186SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7187  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7188  MFI->setFrameAddressIsTaken(true);
7189  EVT VT = Op.getValueType();
7190  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7191  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7192  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7193  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7194  while (Depth--)
7195    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7196                            false, false, 0);
7197  return FrameAddr;
7198}
7199
7200SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7201                                                     SelectionDAG &DAG) const {
7202  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7203}
7204
7205SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7206  MachineFunction &MF = DAG.getMachineFunction();
7207  SDValue Chain     = Op.getOperand(0);
7208  SDValue Offset    = Op.getOperand(1);
7209  SDValue Handler   = Op.getOperand(2);
7210  DebugLoc dl       = Op.getDebugLoc();
7211
7212  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7213                                  getPointerTy());
7214  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7215
7216  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
7217                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
7218  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7219  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7220  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7221  MF.getRegInfo().addLiveOut(StoreAddrReg);
7222
7223  return DAG.getNode(X86ISD::EH_RETURN, dl,
7224                     MVT::Other,
7225                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7226}
7227
7228SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7229                                             SelectionDAG &DAG) const {
7230  SDValue Root = Op.getOperand(0);
7231  SDValue Trmp = Op.getOperand(1); // trampoline
7232  SDValue FPtr = Op.getOperand(2); // nested function
7233  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7234  DebugLoc dl  = Op.getDebugLoc();
7235
7236  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7237
7238  if (Subtarget->is64Bit()) {
7239    SDValue OutChains[6];
7240
7241    // Large code-model.
7242    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7243    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7244
7245    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7246    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7247
7248    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7249
7250    // Load the pointer to the nested function into R11.
7251    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7252    SDValue Addr = Trmp;
7253    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7254                                Addr, TrmpAddr, 0, false, false, 0);
7255
7256    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7257                       DAG.getConstant(2, MVT::i64));
7258    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7259                                false, false, 2);
7260
7261    // Load the 'nest' parameter value into R10.
7262    // R10 is specified in X86CallingConv.td
7263    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7264    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7265                       DAG.getConstant(10, MVT::i64));
7266    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7267                                Addr, TrmpAddr, 10, false, false, 0);
7268
7269    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7270                       DAG.getConstant(12, MVT::i64));
7271    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7272                                false, false, 2);
7273
7274    // Jump to the nested function.
7275    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7276    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7277                       DAG.getConstant(20, MVT::i64));
7278    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7279                                Addr, TrmpAddr, 20, false, false, 0);
7280
7281    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7282    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7283                       DAG.getConstant(22, MVT::i64));
7284    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7285                                TrmpAddr, 22, false, false, 0);
7286
7287    SDValue Ops[] =
7288      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7289    return DAG.getMergeValues(Ops, 2, dl);
7290  } else {
7291    const Function *Func =
7292      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7293    CallingConv::ID CC = Func->getCallingConv();
7294    unsigned NestReg;
7295
7296    switch (CC) {
7297    default:
7298      llvm_unreachable("Unsupported calling convention");
7299    case CallingConv::C:
7300    case CallingConv::X86_StdCall: {
7301      // Pass 'nest' parameter in ECX.
7302      // Must be kept in sync with X86CallingConv.td
7303      NestReg = X86::ECX;
7304
7305      // Check that ECX wasn't needed by an 'inreg' parameter.
7306      const FunctionType *FTy = Func->getFunctionType();
7307      const AttrListPtr &Attrs = Func->getAttributes();
7308
7309      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7310        unsigned InRegCount = 0;
7311        unsigned Idx = 1;
7312
7313        for (FunctionType::param_iterator I = FTy->param_begin(),
7314             E = FTy->param_end(); I != E; ++I, ++Idx)
7315          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7316            // FIXME: should only count parameters that are lowered to integers.
7317            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7318
7319        if (InRegCount > 2) {
7320          report_fatal_error("Nest register in use - reduce number of inreg parameters!");
7321        }
7322      }
7323      break;
7324    }
7325    case CallingConv::X86_FastCall:
7326    case CallingConv::Fast:
7327      // Pass 'nest' parameter in EAX.
7328      // Must be kept in sync with X86CallingConv.td
7329      NestReg = X86::EAX;
7330      break;
7331    }
7332
7333    SDValue OutChains[4];
7334    SDValue Addr, Disp;
7335
7336    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7337                       DAG.getConstant(10, MVT::i32));
7338    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7339
7340    // This is storing the opcode for MOV32ri.
7341    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7342    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7343    OutChains[0] = DAG.getStore(Root, dl,
7344                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7345                                Trmp, TrmpAddr, 0, false, false, 0);
7346
7347    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7348                       DAG.getConstant(1, MVT::i32));
7349    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7350                                false, false, 1);
7351
7352    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7353    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7354                       DAG.getConstant(5, MVT::i32));
7355    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7356                                TrmpAddr, 5, false, false, 1);
7357
7358    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7359                       DAG.getConstant(6, MVT::i32));
7360    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7361                                false, false, 1);
7362
7363    SDValue Ops[] =
7364      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7365    return DAG.getMergeValues(Ops, 2, dl);
7366  }
7367}
7368
7369SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7370                                            SelectionDAG &DAG) const {
7371  /*
7372   The rounding mode is in bits 11:10 of FPSR, and has the following
7373   settings:
7374     00 Round to nearest
7375     01 Round to -inf
7376     10 Round to +inf
7377     11 Round to 0
7378
7379  FLT_ROUNDS, on the other hand, expects the following:
7380    -1 Undefined
7381     0 Round to 0
7382     1 Round to nearest
7383     2 Round to +inf
7384     3 Round to -inf
7385
7386  To perform the conversion, we do:
7387    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7388  */
7389
7390  MachineFunction &MF = DAG.getMachineFunction();
7391  const TargetMachine &TM = MF.getTarget();
7392  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7393  unsigned StackAlignment = TFI.getStackAlignment();
7394  EVT VT = Op.getValueType();
7395  DebugLoc dl = Op.getDebugLoc();
7396
7397  // Save FP Control Word to stack slot
7398  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7399  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7400
7401  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7402                              DAG.getEntryNode(), StackSlot);
7403
7404  // Load FP Control Word from stack slot
7405  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7406                            false, false, 0);
7407
7408  // Transform as necessary
7409  SDValue CWD1 =
7410    DAG.getNode(ISD::SRL, dl, MVT::i16,
7411                DAG.getNode(ISD::AND, dl, MVT::i16,
7412                            CWD, DAG.getConstant(0x800, MVT::i16)),
7413                DAG.getConstant(11, MVT::i8));
7414  SDValue CWD2 =
7415    DAG.getNode(ISD::SRL, dl, MVT::i16,
7416                DAG.getNode(ISD::AND, dl, MVT::i16,
7417                            CWD, DAG.getConstant(0x400, MVT::i16)),
7418                DAG.getConstant(9, MVT::i8));
7419
7420  SDValue RetVal =
7421    DAG.getNode(ISD::AND, dl, MVT::i16,
7422                DAG.getNode(ISD::ADD, dl, MVT::i16,
7423                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7424                            DAG.getConstant(1, MVT::i16)),
7425                DAG.getConstant(3, MVT::i16));
7426
7427
7428  return DAG.getNode((VT.getSizeInBits() < 16 ?
7429                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7430}
7431
7432SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
7433  EVT VT = Op.getValueType();
7434  EVT OpVT = VT;
7435  unsigned NumBits = VT.getSizeInBits();
7436  DebugLoc dl = Op.getDebugLoc();
7437
7438  Op = Op.getOperand(0);
7439  if (VT == MVT::i8) {
7440    // Zero extend to i32 since there is not an i8 bsr.
7441    OpVT = MVT::i32;
7442    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7443  }
7444
7445  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7446  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7447  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7448
7449  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7450  SDValue Ops[] = {
7451    Op,
7452    DAG.getConstant(NumBits+NumBits-1, OpVT),
7453    DAG.getConstant(X86::COND_E, MVT::i8),
7454    Op.getValue(1)
7455  };
7456  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7457
7458  // Finally xor with NumBits-1.
7459  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7460
7461  if (VT == MVT::i8)
7462    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7463  return Op;
7464}
7465
7466SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
7467  EVT VT = Op.getValueType();
7468  EVT OpVT = VT;
7469  unsigned NumBits = VT.getSizeInBits();
7470  DebugLoc dl = Op.getDebugLoc();
7471
7472  Op = Op.getOperand(0);
7473  if (VT == MVT::i8) {
7474    OpVT = MVT::i32;
7475    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7476  }
7477
7478  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7479  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7480  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7481
7482  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7483  SDValue Ops[] = {
7484    Op,
7485    DAG.getConstant(NumBits, OpVT),
7486    DAG.getConstant(X86::COND_E, MVT::i8),
7487    Op.getValue(1)
7488  };
7489  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7490
7491  if (VT == MVT::i8)
7492    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7493  return Op;
7494}
7495
7496SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
7497  EVT VT = Op.getValueType();
7498  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7499  DebugLoc dl = Op.getDebugLoc();
7500
7501  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7502  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7503  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7504  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7505  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7506  //
7507  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7508  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7509  //  return AloBlo + AloBhi + AhiBlo;
7510
7511  SDValue A = Op.getOperand(0);
7512  SDValue B = Op.getOperand(1);
7513
7514  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7515                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7516                       A, DAG.getConstant(32, MVT::i32));
7517  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7518                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7519                       B, DAG.getConstant(32, MVT::i32));
7520  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7521                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7522                       A, B);
7523  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7524                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7525                       A, Bhi);
7526  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7527                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7528                       Ahi, B);
7529  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7530                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7531                       AloBhi, DAG.getConstant(32, MVT::i32));
7532  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7533                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7534                       AhiBlo, DAG.getConstant(32, MVT::i32));
7535  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7536  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7537  return Res;
7538}
7539
7540
7541SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
7542  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7543  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7544  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7545  // has only one use.
7546  SDNode *N = Op.getNode();
7547  SDValue LHS = N->getOperand(0);
7548  SDValue RHS = N->getOperand(1);
7549  unsigned BaseOp = 0;
7550  unsigned Cond = 0;
7551  DebugLoc dl = Op.getDebugLoc();
7552
7553  switch (Op.getOpcode()) {
7554  default: llvm_unreachable("Unknown ovf instruction!");
7555  case ISD::SADDO:
7556    // A subtract of one will be selected as a INC. Note that INC doesn't
7557    // set CF, so we can't do this for UADDO.
7558    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7559      if (C->getAPIntValue() == 1) {
7560        BaseOp = X86ISD::INC;
7561        Cond = X86::COND_O;
7562        break;
7563      }
7564    BaseOp = X86ISD::ADD;
7565    Cond = X86::COND_O;
7566    break;
7567  case ISD::UADDO:
7568    BaseOp = X86ISD::ADD;
7569    Cond = X86::COND_B;
7570    break;
7571  case ISD::SSUBO:
7572    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7573    // set CF, so we can't do this for USUBO.
7574    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7575      if (C->getAPIntValue() == 1) {
7576        BaseOp = X86ISD::DEC;
7577        Cond = X86::COND_O;
7578        break;
7579      }
7580    BaseOp = X86ISD::SUB;
7581    Cond = X86::COND_O;
7582    break;
7583  case ISD::USUBO:
7584    BaseOp = X86ISD::SUB;
7585    Cond = X86::COND_B;
7586    break;
7587  case ISD::SMULO:
7588    BaseOp = X86ISD::SMUL;
7589    Cond = X86::COND_O;
7590    break;
7591  case ISD::UMULO:
7592    BaseOp = X86ISD::UMUL;
7593    Cond = X86::COND_B;
7594    break;
7595  }
7596
7597  // Also sets EFLAGS.
7598  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7599  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7600
7601  SDValue SetCC =
7602    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7603                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7604
7605  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7606  return Sum;
7607}
7608
7609SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
7610  EVT T = Op.getValueType();
7611  DebugLoc dl = Op.getDebugLoc();
7612  unsigned Reg = 0;
7613  unsigned size = 0;
7614  switch(T.getSimpleVT().SimpleTy) {
7615  default:
7616    assert(false && "Invalid value type!");
7617  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7618  case MVT::i16: Reg = X86::AX;  size = 2; break;
7619  case MVT::i32: Reg = X86::EAX; size = 4; break;
7620  case MVT::i64:
7621    assert(Subtarget->is64Bit() && "Node not type legal!");
7622    Reg = X86::RAX; size = 8;
7623    break;
7624  }
7625  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7626                                    Op.getOperand(2), SDValue());
7627  SDValue Ops[] = { cpIn.getValue(0),
7628                    Op.getOperand(1),
7629                    Op.getOperand(3),
7630                    DAG.getTargetConstant(size, MVT::i8),
7631                    cpIn.getValue(1) };
7632  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7633  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7634  SDValue cpOut =
7635    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7636  return cpOut;
7637}
7638
7639SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7640                                                 SelectionDAG &DAG) const {
7641  assert(Subtarget->is64Bit() && "Result not type legalized?");
7642  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7643  SDValue TheChain = Op.getOperand(0);
7644  DebugLoc dl = Op.getDebugLoc();
7645  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7646  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7647  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7648                                   rax.getValue(2));
7649  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7650                            DAG.getConstant(32, MVT::i8));
7651  SDValue Ops[] = {
7652    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7653    rdx.getValue(1)
7654  };
7655  return DAG.getMergeValues(Ops, 2, dl);
7656}
7657
7658SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
7659  SDNode *Node = Op.getNode();
7660  DebugLoc dl = Node->getDebugLoc();
7661  EVT T = Node->getValueType(0);
7662  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7663                              DAG.getConstant(0, T), Node->getOperand(2));
7664  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7665                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7666                       Node->getOperand(0),
7667                       Node->getOperand(1), negOp,
7668                       cast<AtomicSDNode>(Node)->getSrcValue(),
7669                       cast<AtomicSDNode>(Node)->getAlignment());
7670}
7671
7672/// LowerOperation - Provide custom lowering hooks for some operations.
7673///
7674SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7675  switch (Op.getOpcode()) {
7676  default: llvm_unreachable("Should not custom lower this!");
7677  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7678  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7679  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7680  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7681  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7682  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7683  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7684  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7685  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7686  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7687  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7688  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7689  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7690  case ISD::SHL_PARTS:
7691  case ISD::SRA_PARTS:
7692  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7693  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7694  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7695  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7696  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7697  case ISD::FABS:               return LowerFABS(Op, DAG);
7698  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7699  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7700  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7701  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7702  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7703  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7704  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7705  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7706  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7707  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7708  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7709  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7710  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7711  case ISD::FRAME_TO_ARGS_OFFSET:
7712                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7713  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7714  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7715  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7716  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7717  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7718  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7719  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7720  case ISD::SADDO:
7721  case ISD::UADDO:
7722  case ISD::SSUBO:
7723  case ISD::USUBO:
7724  case ISD::SMULO:
7725  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7726  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7727  }
7728}
7729
7730void X86TargetLowering::
7731ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7732                        SelectionDAG &DAG, unsigned NewOp) const {
7733  EVT T = Node->getValueType(0);
7734  DebugLoc dl = Node->getDebugLoc();
7735  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7736
7737  SDValue Chain = Node->getOperand(0);
7738  SDValue In1 = Node->getOperand(1);
7739  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7740                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7741  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7742                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7743  SDValue Ops[] = { Chain, In1, In2L, In2H };
7744  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7745  SDValue Result =
7746    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7747                            cast<MemSDNode>(Node)->getMemOperand());
7748  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7749  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7750  Results.push_back(Result.getValue(2));
7751}
7752
7753/// ReplaceNodeResults - Replace a node with an illegal result type
7754/// with a new node built out of custom code.
7755void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7756                                           SmallVectorImpl<SDValue>&Results,
7757                                           SelectionDAG &DAG) const {
7758  DebugLoc dl = N->getDebugLoc();
7759  switch (N->getOpcode()) {
7760  default:
7761    assert(false && "Do not know how to custom type legalize this operation!");
7762    return;
7763  case ISD::FP_TO_SINT: {
7764    std::pair<SDValue,SDValue> Vals =
7765        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7766    SDValue FIST = Vals.first, StackSlot = Vals.second;
7767    if (FIST.getNode() != 0) {
7768      EVT VT = N->getValueType(0);
7769      // Return a load from the stack slot.
7770      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7771                                    false, false, 0));
7772    }
7773    return;
7774  }
7775  case ISD::READCYCLECOUNTER: {
7776    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7777    SDValue TheChain = N->getOperand(0);
7778    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7779    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7780                                     rd.getValue(1));
7781    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7782                                     eax.getValue(2));
7783    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7784    SDValue Ops[] = { eax, edx };
7785    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7786    Results.push_back(edx.getValue(1));
7787    return;
7788  }
7789  case ISD::ATOMIC_CMP_SWAP: {
7790    EVT T = N->getValueType(0);
7791    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7792    SDValue cpInL, cpInH;
7793    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7794                        DAG.getConstant(0, MVT::i32));
7795    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7796                        DAG.getConstant(1, MVT::i32));
7797    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7798    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7799                             cpInL.getValue(1));
7800    SDValue swapInL, swapInH;
7801    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7802                          DAG.getConstant(0, MVT::i32));
7803    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7804                          DAG.getConstant(1, MVT::i32));
7805    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7806                               cpInH.getValue(1));
7807    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7808                               swapInL.getValue(1));
7809    SDValue Ops[] = { swapInH.getValue(0),
7810                      N->getOperand(1),
7811                      swapInH.getValue(1) };
7812    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7813    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7814    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7815                                        MVT::i32, Result.getValue(1));
7816    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7817                                        MVT::i32, cpOutL.getValue(2));
7818    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7819    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7820    Results.push_back(cpOutH.getValue(1));
7821    return;
7822  }
7823  case ISD::ATOMIC_LOAD_ADD:
7824    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7825    return;
7826  case ISD::ATOMIC_LOAD_AND:
7827    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7828    return;
7829  case ISD::ATOMIC_LOAD_NAND:
7830    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7831    return;
7832  case ISD::ATOMIC_LOAD_OR:
7833    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7834    return;
7835  case ISD::ATOMIC_LOAD_SUB:
7836    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7837    return;
7838  case ISD::ATOMIC_LOAD_XOR:
7839    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7840    return;
7841  case ISD::ATOMIC_SWAP:
7842    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7843    return;
7844  }
7845}
7846
7847const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7848  switch (Opcode) {
7849  default: return NULL;
7850  case X86ISD::BSF:                return "X86ISD::BSF";
7851  case X86ISD::BSR:                return "X86ISD::BSR";
7852  case X86ISD::SHLD:               return "X86ISD::SHLD";
7853  case X86ISD::SHRD:               return "X86ISD::SHRD";
7854  case X86ISD::FAND:               return "X86ISD::FAND";
7855  case X86ISD::FOR:                return "X86ISD::FOR";
7856  case X86ISD::FXOR:               return "X86ISD::FXOR";
7857  case X86ISD::FSRL:               return "X86ISD::FSRL";
7858  case X86ISD::FILD:               return "X86ISD::FILD";
7859  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7860  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7861  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7862  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7863  case X86ISD::FLD:                return "X86ISD::FLD";
7864  case X86ISD::FST:                return "X86ISD::FST";
7865  case X86ISD::CALL:               return "X86ISD::CALL";
7866  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7867  case X86ISD::BT:                 return "X86ISD::BT";
7868  case X86ISD::CMP:                return "X86ISD::CMP";
7869  case X86ISD::COMI:               return "X86ISD::COMI";
7870  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7871  case X86ISD::SETCC:              return "X86ISD::SETCC";
7872  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
7873  case X86ISD::CMOV:               return "X86ISD::CMOV";
7874  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7875  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7876  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7877  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7878  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7879  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7880  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7881  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7882  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7883  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7884  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7885  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7886  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
7887  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7888  case X86ISD::FMAX:               return "X86ISD::FMAX";
7889  case X86ISD::FMIN:               return "X86ISD::FMIN";
7890  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7891  case X86ISD::FRCP:               return "X86ISD::FRCP";
7892  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7893  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7894  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7895  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7896  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7897  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7898  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7899  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7900  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7901  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7902  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7903  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7904  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7905  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7906  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7907  case X86ISD::VSHL:               return "X86ISD::VSHL";
7908  case X86ISD::VSRL:               return "X86ISD::VSRL";
7909  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7910  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7911  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7912  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7913  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7914  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7915  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7916  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7917  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7918  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7919  case X86ISD::ADD:                return "X86ISD::ADD";
7920  case X86ISD::SUB:                return "X86ISD::SUB";
7921  case X86ISD::SMUL:               return "X86ISD::SMUL";
7922  case X86ISD::UMUL:               return "X86ISD::UMUL";
7923  case X86ISD::INC:                return "X86ISD::INC";
7924  case X86ISD::DEC:                return "X86ISD::DEC";
7925  case X86ISD::OR:                 return "X86ISD::OR";
7926  case X86ISD::XOR:                return "X86ISD::XOR";
7927  case X86ISD::AND:                return "X86ISD::AND";
7928  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7929  case X86ISD::PTEST:              return "X86ISD::PTEST";
7930  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7931  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
7932  }
7933}
7934
7935// isLegalAddressingMode - Return true if the addressing mode represented
7936// by AM is legal for this target, for a load/store of the specified type.
7937bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7938                                              const Type *Ty) const {
7939  // X86 supports extremely general addressing modes.
7940  CodeModel::Model M = getTargetMachine().getCodeModel();
7941
7942  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7943  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7944    return false;
7945
7946  if (AM.BaseGV) {
7947    unsigned GVFlags =
7948      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7949
7950    // If a reference to this global requires an extra load, we can't fold it.
7951    if (isGlobalStubReference(GVFlags))
7952      return false;
7953
7954    // If BaseGV requires a register for the PIC base, we cannot also have a
7955    // BaseReg specified.
7956    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7957      return false;
7958
7959    // If lower 4G is not available, then we must use rip-relative addressing.
7960    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7961      return false;
7962  }
7963
7964  switch (AM.Scale) {
7965  case 0:
7966  case 1:
7967  case 2:
7968  case 4:
7969  case 8:
7970    // These scales always work.
7971    break;
7972  case 3:
7973  case 5:
7974  case 9:
7975    // These scales are formed with basereg+scalereg.  Only accept if there is
7976    // no basereg yet.
7977    if (AM.HasBaseReg)
7978      return false;
7979    break;
7980  default:  // Other stuff never works.
7981    return false;
7982  }
7983
7984  return true;
7985}
7986
7987
7988bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7989  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7990    return false;
7991  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7992  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7993  if (NumBits1 <= NumBits2)
7994    return false;
7995  return true;
7996}
7997
7998bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7999  if (!VT1.isInteger() || !VT2.isInteger())
8000    return false;
8001  unsigned NumBits1 = VT1.getSizeInBits();
8002  unsigned NumBits2 = VT2.getSizeInBits();
8003  if (NumBits1 <= NumBits2)
8004    return false;
8005  return true;
8006}
8007
8008bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8009  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8010  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8011}
8012
8013bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8014  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8015  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8016}
8017
8018bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8019  // i16 instructions are longer (0x66 prefix) and potentially slower.
8020  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8021}
8022
8023/// isShuffleMaskLegal - Targets can use this to indicate that they only
8024/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8025/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8026/// are assumed to be legal.
8027bool
8028X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8029                                      EVT VT) const {
8030  // Very little shuffling can be done for 64-bit vectors right now.
8031  if (VT.getSizeInBits() == 64)
8032    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8033
8034  // FIXME: pshufb, blends, shifts.
8035  return (VT.getVectorNumElements() == 2 ||
8036          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8037          isMOVLMask(M, VT) ||
8038          isSHUFPMask(M, VT) ||
8039          isPSHUFDMask(M, VT) ||
8040          isPSHUFHWMask(M, VT) ||
8041          isPSHUFLWMask(M, VT) ||
8042          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
8043          isUNPCKLMask(M, VT) ||
8044          isUNPCKHMask(M, VT) ||
8045          isUNPCKL_v_undef_Mask(M, VT) ||
8046          isUNPCKH_v_undef_Mask(M, VT));
8047}
8048
8049bool
8050X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
8051                                          EVT VT) const {
8052  unsigned NumElts = VT.getVectorNumElements();
8053  // FIXME: This collection of masks seems suspect.
8054  if (NumElts == 2)
8055    return true;
8056  if (NumElts == 4 && VT.getSizeInBits() == 128) {
8057    return (isMOVLMask(Mask, VT)  ||
8058            isCommutedMOVLMask(Mask, VT, true) ||
8059            isSHUFPMask(Mask, VT) ||
8060            isCommutedSHUFPMask(Mask, VT));
8061  }
8062  return false;
8063}
8064
8065//===----------------------------------------------------------------------===//
8066//                           X86 Scheduler Hooks
8067//===----------------------------------------------------------------------===//
8068
8069// private utility function
8070MachineBasicBlock *
8071X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
8072                                                       MachineBasicBlock *MBB,
8073                                                       unsigned regOpc,
8074                                                       unsigned immOpc,
8075                                                       unsigned LoadOpc,
8076                                                       unsigned CXchgOpc,
8077                                                       unsigned copyOpc,
8078                                                       unsigned notOpc,
8079                                                       unsigned EAXreg,
8080                                                       TargetRegisterClass *RC,
8081                                                       bool invSrc) const {
8082  // For the atomic bitwise operator, we generate
8083  //   thisMBB:
8084  //   newMBB:
8085  //     ld  t1 = [bitinstr.addr]
8086  //     op  t2 = t1, [bitinstr.val]
8087  //     mov EAX = t1
8088  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8089  //     bz  newMBB
8090  //     fallthrough -->nextMBB
8091  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8092  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8093  MachineFunction::iterator MBBIter = MBB;
8094  ++MBBIter;
8095
8096  /// First build the CFG
8097  MachineFunction *F = MBB->getParent();
8098  MachineBasicBlock *thisMBB = MBB;
8099  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8100  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8101  F->insert(MBBIter, newMBB);
8102  F->insert(MBBIter, nextMBB);
8103
8104  // Move all successors to thisMBB to nextMBB
8105  nextMBB->transferSuccessors(thisMBB);
8106
8107  // Update thisMBB to fall through to newMBB
8108  thisMBB->addSuccessor(newMBB);
8109
8110  // newMBB jumps to itself and fall through to nextMBB
8111  newMBB->addSuccessor(nextMBB);
8112  newMBB->addSuccessor(newMBB);
8113
8114  // Insert instructions into newMBB based on incoming instruction
8115  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8116         "unexpected number of operands");
8117  DebugLoc dl = bInstr->getDebugLoc();
8118  MachineOperand& destOper = bInstr->getOperand(0);
8119  MachineOperand* argOpers[2 + X86AddrNumOperands];
8120  int numArgs = bInstr->getNumOperands() - 1;
8121  for (int i=0; i < numArgs; ++i)
8122    argOpers[i] = &bInstr->getOperand(i+1);
8123
8124  // x86 address has 4 operands: base, index, scale, and displacement
8125  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8126  int valArgIndx = lastAddrIndx + 1;
8127
8128  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8129  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8130  for (int i=0; i <= lastAddrIndx; ++i)
8131    (*MIB).addOperand(*argOpers[i]);
8132
8133  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8134  if (invSrc) {
8135    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8136  }
8137  else
8138    tt = t1;
8139
8140  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8141  assert((argOpers[valArgIndx]->isReg() ||
8142          argOpers[valArgIndx]->isImm()) &&
8143         "invalid operand");
8144  if (argOpers[valArgIndx]->isReg())
8145    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8146  else
8147    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8148  MIB.addReg(tt);
8149  (*MIB).addOperand(*argOpers[valArgIndx]);
8150
8151  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
8152  MIB.addReg(t1);
8153
8154  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8155  for (int i=0; i <= lastAddrIndx; ++i)
8156    (*MIB).addOperand(*argOpers[i]);
8157  MIB.addReg(t2);
8158  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8159  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8160                    bInstr->memoperands_end());
8161
8162  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
8163  MIB.addReg(EAXreg);
8164
8165  // insert branch
8166  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8167
8168  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8169  return nextMBB;
8170}
8171
8172// private utility function:  64 bit atomics on 32 bit host.
8173MachineBasicBlock *
8174X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8175                                                       MachineBasicBlock *MBB,
8176                                                       unsigned regOpcL,
8177                                                       unsigned regOpcH,
8178                                                       unsigned immOpcL,
8179                                                       unsigned immOpcH,
8180                                                       bool invSrc) const {
8181  // For the atomic bitwise operator, we generate
8182  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8183  //     ld t1,t2 = [bitinstr.addr]
8184  //   newMBB:
8185  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8186  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8187  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8188  //     mov ECX, EBX <- t5, t6
8189  //     mov EAX, EDX <- t1, t2
8190  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8191  //     mov t3, t4 <- EAX, EDX
8192  //     bz  newMBB
8193  //     result in out1, out2
8194  //     fallthrough -->nextMBB
8195
8196  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8197  const unsigned LoadOpc = X86::MOV32rm;
8198  const unsigned copyOpc = X86::MOV32rr;
8199  const unsigned NotOpc = X86::NOT32r;
8200  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8201  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8202  MachineFunction::iterator MBBIter = MBB;
8203  ++MBBIter;
8204
8205  /// First build the CFG
8206  MachineFunction *F = MBB->getParent();
8207  MachineBasicBlock *thisMBB = MBB;
8208  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8209  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8210  F->insert(MBBIter, newMBB);
8211  F->insert(MBBIter, nextMBB);
8212
8213  // Move all successors to thisMBB to nextMBB
8214  nextMBB->transferSuccessors(thisMBB);
8215
8216  // Update thisMBB to fall through to newMBB
8217  thisMBB->addSuccessor(newMBB);
8218
8219  // newMBB jumps to itself and fall through to nextMBB
8220  newMBB->addSuccessor(nextMBB);
8221  newMBB->addSuccessor(newMBB);
8222
8223  DebugLoc dl = bInstr->getDebugLoc();
8224  // Insert instructions into newMBB based on incoming instruction
8225  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8226  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
8227         "unexpected number of operands");
8228  MachineOperand& dest1Oper = bInstr->getOperand(0);
8229  MachineOperand& dest2Oper = bInstr->getOperand(1);
8230  MachineOperand* argOpers[2 + X86AddrNumOperands];
8231  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
8232    argOpers[i] = &bInstr->getOperand(i+2);
8233
8234  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8235  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8236
8237  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8238  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8239  for (int i=0; i <= lastAddrIndx; ++i)
8240    (*MIB).addOperand(*argOpers[i]);
8241  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8242  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8243  // add 4 to displacement.
8244  for (int i=0; i <= lastAddrIndx-2; ++i)
8245    (*MIB).addOperand(*argOpers[i]);
8246  MachineOperand newOp3 = *(argOpers[3]);
8247  if (newOp3.isImm())
8248    newOp3.setImm(newOp3.getImm()+4);
8249  else
8250    newOp3.setOffset(newOp3.getOffset()+4);
8251  (*MIB).addOperand(newOp3);
8252  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8253
8254  // t3/4 are defined later, at the bottom of the loop
8255  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8256  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8257  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8258    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8259  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8260    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8261
8262  // The subsequent operations should be using the destination registers of
8263  //the PHI instructions.
8264  if (invSrc) {
8265    t1 = F->getRegInfo().createVirtualRegister(RC);
8266    t2 = F->getRegInfo().createVirtualRegister(RC);
8267    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8268    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8269  } else {
8270    t1 = dest1Oper.getReg();
8271    t2 = dest2Oper.getReg();
8272  }
8273
8274  int valArgIndx = lastAddrIndx + 1;
8275  assert((argOpers[valArgIndx]->isReg() ||
8276          argOpers[valArgIndx]->isImm()) &&
8277         "invalid operand");
8278  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8279  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8280  if (argOpers[valArgIndx]->isReg())
8281    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8282  else
8283    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8284  if (regOpcL != X86::MOV32rr)
8285    MIB.addReg(t1);
8286  (*MIB).addOperand(*argOpers[valArgIndx]);
8287  assert(argOpers[valArgIndx + 1]->isReg() ==
8288         argOpers[valArgIndx]->isReg());
8289  assert(argOpers[valArgIndx + 1]->isImm() ==
8290         argOpers[valArgIndx]->isImm());
8291  if (argOpers[valArgIndx + 1]->isReg())
8292    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8293  else
8294    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8295  if (regOpcH != X86::MOV32rr)
8296    MIB.addReg(t2);
8297  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8298
8299  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
8300  MIB.addReg(t1);
8301  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
8302  MIB.addReg(t2);
8303
8304  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
8305  MIB.addReg(t5);
8306  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
8307  MIB.addReg(t6);
8308
8309  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8310  for (int i=0; i <= lastAddrIndx; ++i)
8311    (*MIB).addOperand(*argOpers[i]);
8312
8313  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8314  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8315                    bInstr->memoperands_end());
8316
8317  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
8318  MIB.addReg(X86::EAX);
8319  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
8320  MIB.addReg(X86::EDX);
8321
8322  // insert branch
8323  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8324
8325  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8326  return nextMBB;
8327}
8328
8329// private utility function
8330MachineBasicBlock *
8331X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8332                                                      MachineBasicBlock *MBB,
8333                                                      unsigned cmovOpc) const {
8334  // For the atomic min/max operator, we generate
8335  //   thisMBB:
8336  //   newMBB:
8337  //     ld t1 = [min/max.addr]
8338  //     mov t2 = [min/max.val]
8339  //     cmp  t1, t2
8340  //     cmov[cond] t2 = t1
8341  //     mov EAX = t1
8342  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8343  //     bz   newMBB
8344  //     fallthrough -->nextMBB
8345  //
8346  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8347  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8348  MachineFunction::iterator MBBIter = MBB;
8349  ++MBBIter;
8350
8351  /// First build the CFG
8352  MachineFunction *F = MBB->getParent();
8353  MachineBasicBlock *thisMBB = MBB;
8354  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8355  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8356  F->insert(MBBIter, newMBB);
8357  F->insert(MBBIter, nextMBB);
8358
8359  // Move all successors of thisMBB to nextMBB
8360  nextMBB->transferSuccessors(thisMBB);
8361
8362  // Update thisMBB to fall through to newMBB
8363  thisMBB->addSuccessor(newMBB);
8364
8365  // newMBB jumps to newMBB and fall through to nextMBB
8366  newMBB->addSuccessor(nextMBB);
8367  newMBB->addSuccessor(newMBB);
8368
8369  DebugLoc dl = mInstr->getDebugLoc();
8370  // Insert instructions into newMBB based on incoming instruction
8371  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8372         "unexpected number of operands");
8373  MachineOperand& destOper = mInstr->getOperand(0);
8374  MachineOperand* argOpers[2 + X86AddrNumOperands];
8375  int numArgs = mInstr->getNumOperands() - 1;
8376  for (int i=0; i < numArgs; ++i)
8377    argOpers[i] = &mInstr->getOperand(i+1);
8378
8379  // x86 address has 4 operands: base, index, scale, and displacement
8380  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8381  int valArgIndx = lastAddrIndx + 1;
8382
8383  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8384  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8385  for (int i=0; i <= lastAddrIndx; ++i)
8386    (*MIB).addOperand(*argOpers[i]);
8387
8388  // We only support register and immediate values
8389  assert((argOpers[valArgIndx]->isReg() ||
8390          argOpers[valArgIndx]->isImm()) &&
8391         "invalid operand");
8392
8393  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8394  if (argOpers[valArgIndx]->isReg())
8395    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8396  else
8397    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8398  (*MIB).addOperand(*argOpers[valArgIndx]);
8399
8400  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
8401  MIB.addReg(t1);
8402
8403  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8404  MIB.addReg(t1);
8405  MIB.addReg(t2);
8406
8407  // Generate movc
8408  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8409  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8410  MIB.addReg(t2);
8411  MIB.addReg(t1);
8412
8413  // Cmp and exchange if none has modified the memory location
8414  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8415  for (int i=0; i <= lastAddrIndx; ++i)
8416    (*MIB).addOperand(*argOpers[i]);
8417  MIB.addReg(t3);
8418  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8419  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8420                    mInstr->memoperands_end());
8421
8422  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
8423  MIB.addReg(X86::EAX);
8424
8425  // insert branch
8426  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8427
8428  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
8429  return nextMBB;
8430}
8431
8432// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8433// all of this code can be replaced with that in the .td file.
8434MachineBasicBlock *
8435X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8436                            unsigned numArgs, bool memArg) const {
8437
8438  MachineFunction *F = BB->getParent();
8439  DebugLoc dl = MI->getDebugLoc();
8440  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8441
8442  unsigned Opc;
8443  if (memArg)
8444    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8445  else
8446    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8447
8448  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8449
8450  for (unsigned i = 0; i < numArgs; ++i) {
8451    MachineOperand &Op = MI->getOperand(i+1);
8452
8453    if (!(Op.isReg() && Op.isImplicit()))
8454      MIB.addOperand(Op);
8455  }
8456
8457  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8458    .addReg(X86::XMM0);
8459
8460  F->DeleteMachineInstr(MI);
8461
8462  return BB;
8463}
8464
8465MachineBasicBlock *
8466X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8467                                                 MachineInstr *MI,
8468                                                 MachineBasicBlock *MBB) const {
8469  // Emit code to save XMM registers to the stack. The ABI says that the
8470  // number of registers to save is given in %al, so it's theoretically
8471  // possible to do an indirect jump trick to avoid saving all of them,
8472  // however this code takes a simpler approach and just executes all
8473  // of the stores if %al is non-zero. It's less code, and it's probably
8474  // easier on the hardware branch predictor, and stores aren't all that
8475  // expensive anyway.
8476
8477  // Create the new basic blocks. One block contains all the XMM stores,
8478  // and one block is the final destination regardless of whether any
8479  // stores were performed.
8480  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8481  MachineFunction *F = MBB->getParent();
8482  MachineFunction::iterator MBBIter = MBB;
8483  ++MBBIter;
8484  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8485  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8486  F->insert(MBBIter, XMMSaveMBB);
8487  F->insert(MBBIter, EndMBB);
8488
8489  // Set up the CFG.
8490  // Move any original successors of MBB to the end block.
8491  EndMBB->transferSuccessors(MBB);
8492  // The original block will now fall through to the XMM save block.
8493  MBB->addSuccessor(XMMSaveMBB);
8494  // The XMMSaveMBB will fall through to the end block.
8495  XMMSaveMBB->addSuccessor(EndMBB);
8496
8497  // Now add the instructions.
8498  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8499  DebugLoc DL = MI->getDebugLoc();
8500
8501  unsigned CountReg = MI->getOperand(0).getReg();
8502  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8503  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8504
8505  if (!Subtarget->isTargetWin64()) {
8506    // If %al is 0, branch around the XMM save block.
8507    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8508    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8509    MBB->addSuccessor(EndMBB);
8510  }
8511
8512  // In the XMM save block, save all the XMM argument registers.
8513  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8514    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8515    MachineMemOperand *MMO =
8516      F->getMachineMemOperand(
8517        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8518        MachineMemOperand::MOStore, Offset,
8519        /*Size=*/16, /*Align=*/16);
8520    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8521      .addFrameIndex(RegSaveFrameIndex)
8522      .addImm(/*Scale=*/1)
8523      .addReg(/*IndexReg=*/0)
8524      .addImm(/*Disp=*/Offset)
8525      .addReg(/*Segment=*/0)
8526      .addReg(MI->getOperand(i).getReg())
8527      .addMemOperand(MMO);
8528  }
8529
8530  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8531
8532  return EndMBB;
8533}
8534
8535MachineBasicBlock *
8536X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8537                                     MachineBasicBlock *BB,
8538                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8539  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8540  DebugLoc DL = MI->getDebugLoc();
8541
8542  // To "insert" a SELECT_CC instruction, we actually have to insert the
8543  // diamond control-flow pattern.  The incoming instruction knows the
8544  // destination vreg to set, the condition code register to branch on, the
8545  // true/false values to select between, and a branch opcode to use.
8546  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8547  MachineFunction::iterator It = BB;
8548  ++It;
8549
8550  //  thisMBB:
8551  //  ...
8552  //   TrueVal = ...
8553  //   cmpTY ccX, r1, r2
8554  //   bCC copy1MBB
8555  //   fallthrough --> copy0MBB
8556  MachineBasicBlock *thisMBB = BB;
8557  MachineFunction *F = BB->getParent();
8558  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8559  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8560  unsigned Opc =
8561    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8562  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8563  F->insert(It, copy0MBB);
8564  F->insert(It, sinkMBB);
8565  // Update machine-CFG edges by first adding all successors of the current
8566  // block to the new block which will contain the Phi node for the select.
8567  // Also inform sdisel of the edge changes.
8568  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
8569         E = BB->succ_end(); I != E; ++I) {
8570    EM->insert(std::make_pair(*I, sinkMBB));
8571    sinkMBB->addSuccessor(*I);
8572  }
8573  // Next, remove all successors of the current block, and add the true
8574  // and fallthrough blocks as its successors.
8575  while (!BB->succ_empty())
8576    BB->removeSuccessor(BB->succ_begin());
8577  // Add the true and fallthrough blocks as its successors.
8578  BB->addSuccessor(copy0MBB);
8579  BB->addSuccessor(sinkMBB);
8580
8581  //  copy0MBB:
8582  //   %FalseValue = ...
8583  //   # fallthrough to sinkMBB
8584  BB = copy0MBB;
8585
8586  // Update machine-CFG edges
8587  BB->addSuccessor(sinkMBB);
8588
8589  //  sinkMBB:
8590  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8591  //  ...
8592  BB = sinkMBB;
8593  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
8594    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8595    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8596
8597  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8598  return BB;
8599}
8600
8601MachineBasicBlock *
8602X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8603                                          MachineBasicBlock *BB,
8604                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8605  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8606  DebugLoc DL = MI->getDebugLoc();
8607  MachineFunction *F = BB->getParent();
8608
8609  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8610  // non-trivial part is impdef of ESP.
8611  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8612  // mingw-w64.
8613
8614  BuildMI(BB, DL, TII->get(X86::CALLpcrel32))
8615    .addExternalSymbol("_alloca")
8616    .addReg(X86::EAX, RegState::Implicit)
8617    .addReg(X86::ESP, RegState::Implicit)
8618    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8619    .addReg(X86::ESP, RegState::Define | RegState::Implicit);
8620
8621  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8622  return BB;
8623}
8624
8625MachineBasicBlock *
8626X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8627                                               MachineBasicBlock *BB,
8628                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8629  switch (MI->getOpcode()) {
8630  default: assert(false && "Unexpected instr type to insert");
8631  case X86::MINGW_ALLOCA:
8632    return EmitLoweredMingwAlloca(MI, BB, EM);
8633  case X86::CMOV_GR8:
8634  case X86::CMOV_V1I64:
8635  case X86::CMOV_FR32:
8636  case X86::CMOV_FR64:
8637  case X86::CMOV_V4F32:
8638  case X86::CMOV_V2F64:
8639  case X86::CMOV_V2I64:
8640  case X86::CMOV_GR16:
8641  case X86::CMOV_GR32:
8642  case X86::CMOV_RFP32:
8643  case X86::CMOV_RFP64:
8644  case X86::CMOV_RFP80:
8645    return EmitLoweredSelect(MI, BB, EM);
8646
8647  case X86::FP32_TO_INT16_IN_MEM:
8648  case X86::FP32_TO_INT32_IN_MEM:
8649  case X86::FP32_TO_INT64_IN_MEM:
8650  case X86::FP64_TO_INT16_IN_MEM:
8651  case X86::FP64_TO_INT32_IN_MEM:
8652  case X86::FP64_TO_INT64_IN_MEM:
8653  case X86::FP80_TO_INT16_IN_MEM:
8654  case X86::FP80_TO_INT32_IN_MEM:
8655  case X86::FP80_TO_INT64_IN_MEM: {
8656    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8657    DebugLoc DL = MI->getDebugLoc();
8658
8659    // Change the floating point control register to use "round towards zero"
8660    // mode when truncating to an integer value.
8661    MachineFunction *F = BB->getParent();
8662    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8663    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8664
8665    // Load the old value of the high byte of the control word...
8666    unsigned OldCW =
8667      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8668    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8669                      CWFrameIdx);
8670
8671    // Set the high part to be round to zero...
8672    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8673      .addImm(0xC7F);
8674
8675    // Reload the modified control word now...
8676    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8677
8678    // Restore the memory image of control word to original value
8679    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8680      .addReg(OldCW);
8681
8682    // Get the X86 opcode to use.
8683    unsigned Opc;
8684    switch (MI->getOpcode()) {
8685    default: llvm_unreachable("illegal opcode!");
8686    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8687    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8688    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8689    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8690    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8691    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8692    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8693    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8694    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8695    }
8696
8697    X86AddressMode AM;
8698    MachineOperand &Op = MI->getOperand(0);
8699    if (Op.isReg()) {
8700      AM.BaseType = X86AddressMode::RegBase;
8701      AM.Base.Reg = Op.getReg();
8702    } else {
8703      AM.BaseType = X86AddressMode::FrameIndexBase;
8704      AM.Base.FrameIndex = Op.getIndex();
8705    }
8706    Op = MI->getOperand(1);
8707    if (Op.isImm())
8708      AM.Scale = Op.getImm();
8709    Op = MI->getOperand(2);
8710    if (Op.isImm())
8711      AM.IndexReg = Op.getImm();
8712    Op = MI->getOperand(3);
8713    if (Op.isGlobal()) {
8714      AM.GV = Op.getGlobal();
8715    } else {
8716      AM.Disp = Op.getImm();
8717    }
8718    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8719                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8720
8721    // Reload the original control word now.
8722    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8723
8724    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8725    return BB;
8726  }
8727    // DBG_VALUE.  Only the frame index case is done here.
8728  case X86::DBG_VALUE: {
8729    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8730    DebugLoc DL = MI->getDebugLoc();
8731    X86AddressMode AM;
8732    MachineFunction *F = BB->getParent();
8733    AM.BaseType = X86AddressMode::FrameIndexBase;
8734    AM.Base.FrameIndex = MI->getOperand(0).getImm();
8735    addFullAddress(BuildMI(BB, DL, TII->get(X86::DBG_VALUE)), AM).
8736      addImm(MI->getOperand(1).getImm()).
8737      addMetadata(MI->getOperand(2).getMetadata());
8738    F->DeleteMachineInstr(MI);      // Remove pseudo.
8739    return BB;
8740  }
8741
8742    // String/text processing lowering.
8743  case X86::PCMPISTRM128REG:
8744    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8745  case X86::PCMPISTRM128MEM:
8746    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8747  case X86::PCMPESTRM128REG:
8748    return EmitPCMP(MI, BB, 5, false /* in mem */);
8749  case X86::PCMPESTRM128MEM:
8750    return EmitPCMP(MI, BB, 5, true /* in mem */);
8751
8752    // Atomic Lowering.
8753  case X86::ATOMAND32:
8754    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8755                                               X86::AND32ri, X86::MOV32rm,
8756                                               X86::LCMPXCHG32, X86::MOV32rr,
8757                                               X86::NOT32r, X86::EAX,
8758                                               X86::GR32RegisterClass);
8759  case X86::ATOMOR32:
8760    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8761                                               X86::OR32ri, X86::MOV32rm,
8762                                               X86::LCMPXCHG32, X86::MOV32rr,
8763                                               X86::NOT32r, X86::EAX,
8764                                               X86::GR32RegisterClass);
8765  case X86::ATOMXOR32:
8766    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8767                                               X86::XOR32ri, X86::MOV32rm,
8768                                               X86::LCMPXCHG32, X86::MOV32rr,
8769                                               X86::NOT32r, X86::EAX,
8770                                               X86::GR32RegisterClass);
8771  case X86::ATOMNAND32:
8772    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8773                                               X86::AND32ri, X86::MOV32rm,
8774                                               X86::LCMPXCHG32, X86::MOV32rr,
8775                                               X86::NOT32r, X86::EAX,
8776                                               X86::GR32RegisterClass, true);
8777  case X86::ATOMMIN32:
8778    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8779  case X86::ATOMMAX32:
8780    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8781  case X86::ATOMUMIN32:
8782    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8783  case X86::ATOMUMAX32:
8784    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8785
8786  case X86::ATOMAND16:
8787    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8788                                               X86::AND16ri, X86::MOV16rm,
8789                                               X86::LCMPXCHG16, X86::MOV16rr,
8790                                               X86::NOT16r, X86::AX,
8791                                               X86::GR16RegisterClass);
8792  case X86::ATOMOR16:
8793    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8794                                               X86::OR16ri, X86::MOV16rm,
8795                                               X86::LCMPXCHG16, X86::MOV16rr,
8796                                               X86::NOT16r, X86::AX,
8797                                               X86::GR16RegisterClass);
8798  case X86::ATOMXOR16:
8799    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8800                                               X86::XOR16ri, X86::MOV16rm,
8801                                               X86::LCMPXCHG16, X86::MOV16rr,
8802                                               X86::NOT16r, X86::AX,
8803                                               X86::GR16RegisterClass);
8804  case X86::ATOMNAND16:
8805    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8806                                               X86::AND16ri, X86::MOV16rm,
8807                                               X86::LCMPXCHG16, X86::MOV16rr,
8808                                               X86::NOT16r, X86::AX,
8809                                               X86::GR16RegisterClass, true);
8810  case X86::ATOMMIN16:
8811    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8812  case X86::ATOMMAX16:
8813    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8814  case X86::ATOMUMIN16:
8815    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8816  case X86::ATOMUMAX16:
8817    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8818
8819  case X86::ATOMAND8:
8820    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8821                                               X86::AND8ri, X86::MOV8rm,
8822                                               X86::LCMPXCHG8, X86::MOV8rr,
8823                                               X86::NOT8r, X86::AL,
8824                                               X86::GR8RegisterClass);
8825  case X86::ATOMOR8:
8826    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8827                                               X86::OR8ri, X86::MOV8rm,
8828                                               X86::LCMPXCHG8, X86::MOV8rr,
8829                                               X86::NOT8r, X86::AL,
8830                                               X86::GR8RegisterClass);
8831  case X86::ATOMXOR8:
8832    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8833                                               X86::XOR8ri, X86::MOV8rm,
8834                                               X86::LCMPXCHG8, X86::MOV8rr,
8835                                               X86::NOT8r, X86::AL,
8836                                               X86::GR8RegisterClass);
8837  case X86::ATOMNAND8:
8838    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8839                                               X86::AND8ri, X86::MOV8rm,
8840                                               X86::LCMPXCHG8, X86::MOV8rr,
8841                                               X86::NOT8r, X86::AL,
8842                                               X86::GR8RegisterClass, true);
8843  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8844  // This group is for 64-bit host.
8845  case X86::ATOMAND64:
8846    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8847                                               X86::AND64ri32, X86::MOV64rm,
8848                                               X86::LCMPXCHG64, X86::MOV64rr,
8849                                               X86::NOT64r, X86::RAX,
8850                                               X86::GR64RegisterClass);
8851  case X86::ATOMOR64:
8852    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8853                                               X86::OR64ri32, X86::MOV64rm,
8854                                               X86::LCMPXCHG64, X86::MOV64rr,
8855                                               X86::NOT64r, X86::RAX,
8856                                               X86::GR64RegisterClass);
8857  case X86::ATOMXOR64:
8858    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8859                                               X86::XOR64ri32, X86::MOV64rm,
8860                                               X86::LCMPXCHG64, X86::MOV64rr,
8861                                               X86::NOT64r, X86::RAX,
8862                                               X86::GR64RegisterClass);
8863  case X86::ATOMNAND64:
8864    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8865                                               X86::AND64ri32, X86::MOV64rm,
8866                                               X86::LCMPXCHG64, X86::MOV64rr,
8867                                               X86::NOT64r, X86::RAX,
8868                                               X86::GR64RegisterClass, true);
8869  case X86::ATOMMIN64:
8870    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8871  case X86::ATOMMAX64:
8872    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8873  case X86::ATOMUMIN64:
8874    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8875  case X86::ATOMUMAX64:
8876    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8877
8878  // This group does 64-bit operations on a 32-bit host.
8879  case X86::ATOMAND6432:
8880    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8881                                               X86::AND32rr, X86::AND32rr,
8882                                               X86::AND32ri, X86::AND32ri,
8883                                               false);
8884  case X86::ATOMOR6432:
8885    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8886                                               X86::OR32rr, X86::OR32rr,
8887                                               X86::OR32ri, X86::OR32ri,
8888                                               false);
8889  case X86::ATOMXOR6432:
8890    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8891                                               X86::XOR32rr, X86::XOR32rr,
8892                                               X86::XOR32ri, X86::XOR32ri,
8893                                               false);
8894  case X86::ATOMNAND6432:
8895    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8896                                               X86::AND32rr, X86::AND32rr,
8897                                               X86::AND32ri, X86::AND32ri,
8898                                               true);
8899  case X86::ATOMADD6432:
8900    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8901                                               X86::ADD32rr, X86::ADC32rr,
8902                                               X86::ADD32ri, X86::ADC32ri,
8903                                               false);
8904  case X86::ATOMSUB6432:
8905    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8906                                               X86::SUB32rr, X86::SBB32rr,
8907                                               X86::SUB32ri, X86::SBB32ri,
8908                                               false);
8909  case X86::ATOMSWAP6432:
8910    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8911                                               X86::MOV32rr, X86::MOV32rr,
8912                                               X86::MOV32ri, X86::MOV32ri,
8913                                               false);
8914  case X86::VASTART_SAVE_XMM_REGS:
8915    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8916  }
8917}
8918
8919//===----------------------------------------------------------------------===//
8920//                           X86 Optimization Hooks
8921//===----------------------------------------------------------------------===//
8922
8923void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8924                                                       const APInt &Mask,
8925                                                       APInt &KnownZero,
8926                                                       APInt &KnownOne,
8927                                                       const SelectionDAG &DAG,
8928                                                       unsigned Depth) const {
8929  unsigned Opc = Op.getOpcode();
8930  assert((Opc >= ISD::BUILTIN_OP_END ||
8931          Opc == ISD::INTRINSIC_WO_CHAIN ||
8932          Opc == ISD::INTRINSIC_W_CHAIN ||
8933          Opc == ISD::INTRINSIC_VOID) &&
8934         "Should use MaskedValueIsZero if you don't know whether Op"
8935         " is a target node!");
8936
8937  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8938  switch (Opc) {
8939  default: break;
8940  case X86ISD::ADD:
8941  case X86ISD::SUB:
8942  case X86ISD::SMUL:
8943  case X86ISD::UMUL:
8944  case X86ISD::INC:
8945  case X86ISD::DEC:
8946  case X86ISD::OR:
8947  case X86ISD::XOR:
8948  case X86ISD::AND:
8949    // These nodes' second result is a boolean.
8950    if (Op.getResNo() == 0)
8951      break;
8952    // Fallthrough
8953  case X86ISD::SETCC:
8954    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8955                                       Mask.getBitWidth() - 1);
8956    break;
8957  }
8958}
8959
8960/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8961/// node is a GlobalAddress + offset.
8962bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8963                                       const GlobalValue* &GA,
8964                                       int64_t &Offset) const {
8965  if (N->getOpcode() == X86ISD::Wrapper) {
8966    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8967      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8968      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8969      return true;
8970    }
8971  }
8972  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8973}
8974
8975/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8976/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8977/// if the load addresses are consecutive, non-overlapping, and in the right
8978/// order.
8979static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8980                                     const TargetLowering &TLI) {
8981  DebugLoc dl = N->getDebugLoc();
8982  EVT VT = N->getValueType(0);
8983  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8984
8985  if (VT.getSizeInBits() != 128)
8986    return SDValue();
8987
8988  SmallVector<SDValue, 16> Elts;
8989  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
8990    Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
8991
8992  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
8993}
8994
8995/// PerformShuffleCombine - Detect vector gather/scatter index generation
8996/// and convert it from being a bunch of shuffles and extracts to a simple
8997/// store and scalar loads to extract the elements.
8998static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
8999                                                const TargetLowering &TLI) {
9000  SDValue InputVector = N->getOperand(0);
9001
9002  // Only operate on vectors of 4 elements, where the alternative shuffling
9003  // gets to be more expensive.
9004  if (InputVector.getValueType() != MVT::v4i32)
9005    return SDValue();
9006
9007  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
9008  // single use which is a sign-extend or zero-extend, and all elements are
9009  // used.
9010  SmallVector<SDNode *, 4> Uses;
9011  unsigned ExtractedElements = 0;
9012  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
9013       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
9014    if (UI.getUse().getResNo() != InputVector.getResNo())
9015      return SDValue();
9016
9017    SDNode *Extract = *UI;
9018    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9019      return SDValue();
9020
9021    if (Extract->getValueType(0) != MVT::i32)
9022      return SDValue();
9023    if (!Extract->hasOneUse())
9024      return SDValue();
9025    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
9026        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
9027      return SDValue();
9028    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
9029      return SDValue();
9030
9031    // Record which element was extracted.
9032    ExtractedElements |=
9033      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
9034
9035    Uses.push_back(Extract);
9036  }
9037
9038  // If not all the elements were used, this may not be worthwhile.
9039  if (ExtractedElements != 15)
9040    return SDValue();
9041
9042  // Ok, we've now decided to do the transformation.
9043  DebugLoc dl = InputVector.getDebugLoc();
9044
9045  // Store the value to a temporary stack slot.
9046  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
9047  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL, 0,
9048                            false, false, 0);
9049
9050  // Replace each use (extract) with a load of the appropriate element.
9051  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
9052       UE = Uses.end(); UI != UE; ++UI) {
9053    SDNode *Extract = *UI;
9054
9055    // Compute the element's address.
9056    SDValue Idx = Extract->getOperand(1);
9057    unsigned EltSize =
9058        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
9059    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
9060    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
9061
9062    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), OffsetVal, StackPtr);
9063
9064    // Load the scalar.
9065    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, ScalarAddr,
9066                          NULL, 0, false, false, 0);
9067
9068    // Replace the exact with the load.
9069    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
9070  }
9071
9072  // The replacement was made in place; don't return anything.
9073  return SDValue();
9074}
9075
9076/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
9077static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9078                                    const X86Subtarget *Subtarget) {
9079  DebugLoc DL = N->getDebugLoc();
9080  SDValue Cond = N->getOperand(0);
9081  // Get the LHS/RHS of the select.
9082  SDValue LHS = N->getOperand(1);
9083  SDValue RHS = N->getOperand(2);
9084
9085  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9086  // instructions match the semantics of the common C idiom x<y?x:y but not
9087  // x<=y?x:y, because of how they handle negative zero (which can be
9088  // ignored in unsafe-math mode).
9089  if (Subtarget->hasSSE2() &&
9090      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9091      Cond.getOpcode() == ISD::SETCC) {
9092    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9093
9094    unsigned Opcode = 0;
9095    // Check for x CC y ? x : y.
9096    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9097        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9098      switch (CC) {
9099      default: break;
9100      case ISD::SETULT:
9101        // Converting this to a min would handle NaNs incorrectly, and swapping
9102        // the operands would cause it to handle comparisons between positive
9103        // and negative zero incorrectly.
9104        if (!FiniteOnlyFPMath() &&
9105            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
9106          if (!UnsafeFPMath &&
9107              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9108            break;
9109          std::swap(LHS, RHS);
9110        }
9111        Opcode = X86ISD::FMIN;
9112        break;
9113      case ISD::SETOLE:
9114        // Converting this to a min would handle comparisons between positive
9115        // and negative zero incorrectly.
9116        if (!UnsafeFPMath &&
9117            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9118          break;
9119        Opcode = X86ISD::FMIN;
9120        break;
9121      case ISD::SETULE:
9122        // Converting this to a min would handle both negative zeros and NaNs
9123        // incorrectly, but we can swap the operands to fix both.
9124        std::swap(LHS, RHS);
9125      case ISD::SETOLT:
9126      case ISD::SETLT:
9127      case ISD::SETLE:
9128        Opcode = X86ISD::FMIN;
9129        break;
9130
9131      case ISD::SETOGE:
9132        // Converting this to a max would handle comparisons between positive
9133        // and negative zero incorrectly.
9134        if (!UnsafeFPMath &&
9135            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9136          break;
9137        Opcode = X86ISD::FMAX;
9138        break;
9139      case ISD::SETUGT:
9140        // Converting this to a max would handle NaNs incorrectly, and swapping
9141        // the operands would cause it to handle comparisons between positive
9142        // and negative zero incorrectly.
9143        if (!FiniteOnlyFPMath() &&
9144            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
9145          if (!UnsafeFPMath &&
9146              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9147            break;
9148          std::swap(LHS, RHS);
9149        }
9150        Opcode = X86ISD::FMAX;
9151        break;
9152      case ISD::SETUGE:
9153        // Converting this to a max would handle both negative zeros and NaNs
9154        // incorrectly, but we can swap the operands to fix both.
9155        std::swap(LHS, RHS);
9156      case ISD::SETOGT:
9157      case ISD::SETGT:
9158      case ISD::SETGE:
9159        Opcode = X86ISD::FMAX;
9160        break;
9161      }
9162    // Check for x CC y ? y : x -- a min/max with reversed arms.
9163    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9164               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9165      switch (CC) {
9166      default: break;
9167      case ISD::SETOGE:
9168        // Converting this to a min would handle comparisons between positive
9169        // and negative zero incorrectly, and swapping the operands would
9170        // cause it to handle NaNs incorrectly.
9171        if (!UnsafeFPMath &&
9172            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9173          if (!FiniteOnlyFPMath() &&
9174              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9175            break;
9176          std::swap(LHS, RHS);
9177        }
9178        Opcode = X86ISD::FMIN;
9179        break;
9180      case ISD::SETUGT:
9181        // Converting this to a min would handle NaNs incorrectly.
9182        if (!UnsafeFPMath &&
9183            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9184          break;
9185        Opcode = X86ISD::FMIN;
9186        break;
9187      case ISD::SETUGE:
9188        // Converting this to a min would handle both negative zeros and NaNs
9189        // incorrectly, but we can swap the operands to fix both.
9190        std::swap(LHS, RHS);
9191      case ISD::SETOGT:
9192      case ISD::SETGT:
9193      case ISD::SETGE:
9194        Opcode = X86ISD::FMIN;
9195        break;
9196
9197      case ISD::SETULT:
9198        // Converting this to a max would handle NaNs incorrectly.
9199        if (!FiniteOnlyFPMath() &&
9200            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9201          break;
9202        Opcode = X86ISD::FMAX;
9203        break;
9204      case ISD::SETOLE:
9205        // Converting this to a max would handle comparisons between positive
9206        // and negative zero incorrectly, and swapping the operands would
9207        // cause it to handle NaNs incorrectly.
9208        if (!UnsafeFPMath &&
9209            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9210          if (!FiniteOnlyFPMath() &&
9211              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9212            break;
9213          std::swap(LHS, RHS);
9214        }
9215        Opcode = X86ISD::FMAX;
9216        break;
9217      case ISD::SETULE:
9218        // Converting this to a max would handle both negative zeros and NaNs
9219        // incorrectly, but we can swap the operands to fix both.
9220        std::swap(LHS, RHS);
9221      case ISD::SETOLT:
9222      case ISD::SETLT:
9223      case ISD::SETLE:
9224        Opcode = X86ISD::FMAX;
9225        break;
9226      }
9227    }
9228
9229    if (Opcode)
9230      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9231  }
9232
9233  // If this is a select between two integer constants, try to do some
9234  // optimizations.
9235  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9236    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9237      // Don't do this for crazy integer types.
9238      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9239        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9240        // so that TrueC (the true value) is larger than FalseC.
9241        bool NeedsCondInvert = false;
9242
9243        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9244            // Efficiently invertible.
9245            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9246             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9247              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9248          NeedsCondInvert = true;
9249          std::swap(TrueC, FalseC);
9250        }
9251
9252        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9253        if (FalseC->getAPIntValue() == 0 &&
9254            TrueC->getAPIntValue().isPowerOf2()) {
9255          if (NeedsCondInvert) // Invert the condition if needed.
9256            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9257                               DAG.getConstant(1, Cond.getValueType()));
9258
9259          // Zero extend the condition if needed.
9260          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9261
9262          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9263          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9264                             DAG.getConstant(ShAmt, MVT::i8));
9265        }
9266
9267        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9268        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9269          if (NeedsCondInvert) // Invert the condition if needed.
9270            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9271                               DAG.getConstant(1, Cond.getValueType()));
9272
9273          // Zero extend the condition if needed.
9274          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9275                             FalseC->getValueType(0), Cond);
9276          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9277                             SDValue(FalseC, 0));
9278        }
9279
9280        // Optimize cases that will turn into an LEA instruction.  This requires
9281        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9282        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9283          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9284          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9285
9286          bool isFastMultiplier = false;
9287          if (Diff < 10) {
9288            switch ((unsigned char)Diff) {
9289              default: break;
9290              case 1:  // result = add base, cond
9291              case 2:  // result = lea base(    , cond*2)
9292              case 3:  // result = lea base(cond, cond*2)
9293              case 4:  // result = lea base(    , cond*4)
9294              case 5:  // result = lea base(cond, cond*4)
9295              case 8:  // result = lea base(    , cond*8)
9296              case 9:  // result = lea base(cond, cond*8)
9297                isFastMultiplier = true;
9298                break;
9299            }
9300          }
9301
9302          if (isFastMultiplier) {
9303            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9304            if (NeedsCondInvert) // Invert the condition if needed.
9305              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9306                                 DAG.getConstant(1, Cond.getValueType()));
9307
9308            // Zero extend the condition if needed.
9309            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9310                               Cond);
9311            // Scale the condition by the difference.
9312            if (Diff != 1)
9313              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9314                                 DAG.getConstant(Diff, Cond.getValueType()));
9315
9316            // Add the base if non-zero.
9317            if (FalseC->getAPIntValue() != 0)
9318              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9319                                 SDValue(FalseC, 0));
9320            return Cond;
9321          }
9322        }
9323      }
9324  }
9325
9326  return SDValue();
9327}
9328
9329/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9330static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9331                                  TargetLowering::DAGCombinerInfo &DCI) {
9332  DebugLoc DL = N->getDebugLoc();
9333
9334  // If the flag operand isn't dead, don't touch this CMOV.
9335  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9336    return SDValue();
9337
9338  // If this is a select between two integer constants, try to do some
9339  // optimizations.  Note that the operands are ordered the opposite of SELECT
9340  // operands.
9341  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9342    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9343      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9344      // larger than FalseC (the false value).
9345      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9346
9347      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9348        CC = X86::GetOppositeBranchCondition(CC);
9349        std::swap(TrueC, FalseC);
9350      }
9351
9352      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9353      // This is efficient for any integer data type (including i8/i16) and
9354      // shift amount.
9355      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9356        SDValue Cond = N->getOperand(3);
9357        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9358                           DAG.getConstant(CC, MVT::i8), Cond);
9359
9360        // Zero extend the condition if needed.
9361        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9362
9363        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9364        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9365                           DAG.getConstant(ShAmt, MVT::i8));
9366        if (N->getNumValues() == 2)  // Dead flag value?
9367          return DCI.CombineTo(N, Cond, SDValue());
9368        return Cond;
9369      }
9370
9371      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9372      // for any integer data type, including i8/i16.
9373      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9374        SDValue Cond = N->getOperand(3);
9375        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9376                           DAG.getConstant(CC, MVT::i8), Cond);
9377
9378        // Zero extend the condition if needed.
9379        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9380                           FalseC->getValueType(0), Cond);
9381        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9382                           SDValue(FalseC, 0));
9383
9384        if (N->getNumValues() == 2)  // Dead flag value?
9385          return DCI.CombineTo(N, Cond, SDValue());
9386        return Cond;
9387      }
9388
9389      // Optimize cases that will turn into an LEA instruction.  This requires
9390      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9391      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9392        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9393        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9394
9395        bool isFastMultiplier = false;
9396        if (Diff < 10) {
9397          switch ((unsigned char)Diff) {
9398          default: break;
9399          case 1:  // result = add base, cond
9400          case 2:  // result = lea base(    , cond*2)
9401          case 3:  // result = lea base(cond, cond*2)
9402          case 4:  // result = lea base(    , cond*4)
9403          case 5:  // result = lea base(cond, cond*4)
9404          case 8:  // result = lea base(    , cond*8)
9405          case 9:  // result = lea base(cond, cond*8)
9406            isFastMultiplier = true;
9407            break;
9408          }
9409        }
9410
9411        if (isFastMultiplier) {
9412          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9413          SDValue Cond = N->getOperand(3);
9414          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9415                             DAG.getConstant(CC, MVT::i8), Cond);
9416          // Zero extend the condition if needed.
9417          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9418                             Cond);
9419          // Scale the condition by the difference.
9420          if (Diff != 1)
9421            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9422                               DAG.getConstant(Diff, Cond.getValueType()));
9423
9424          // Add the base if non-zero.
9425          if (FalseC->getAPIntValue() != 0)
9426            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9427                               SDValue(FalseC, 0));
9428          if (N->getNumValues() == 2)  // Dead flag value?
9429            return DCI.CombineTo(N, Cond, SDValue());
9430          return Cond;
9431        }
9432      }
9433    }
9434  }
9435  return SDValue();
9436}
9437
9438
9439/// PerformMulCombine - Optimize a single multiply with constant into two
9440/// in order to implement it with two cheaper instructions, e.g.
9441/// LEA + SHL, LEA + LEA.
9442static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9443                                 TargetLowering::DAGCombinerInfo &DCI) {
9444  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9445    return SDValue();
9446
9447  EVT VT = N->getValueType(0);
9448  if (VT != MVT::i64)
9449    return SDValue();
9450
9451  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9452  if (!C)
9453    return SDValue();
9454  uint64_t MulAmt = C->getZExtValue();
9455  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9456    return SDValue();
9457
9458  uint64_t MulAmt1 = 0;
9459  uint64_t MulAmt2 = 0;
9460  if ((MulAmt % 9) == 0) {
9461    MulAmt1 = 9;
9462    MulAmt2 = MulAmt / 9;
9463  } else if ((MulAmt % 5) == 0) {
9464    MulAmt1 = 5;
9465    MulAmt2 = MulAmt / 5;
9466  } else if ((MulAmt % 3) == 0) {
9467    MulAmt1 = 3;
9468    MulAmt2 = MulAmt / 3;
9469  }
9470  if (MulAmt2 &&
9471      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9472    DebugLoc DL = N->getDebugLoc();
9473
9474    if (isPowerOf2_64(MulAmt2) &&
9475        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9476      // If second multiplifer is pow2, issue it first. We want the multiply by
9477      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9478      // is an add.
9479      std::swap(MulAmt1, MulAmt2);
9480
9481    SDValue NewMul;
9482    if (isPowerOf2_64(MulAmt1))
9483      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9484                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9485    else
9486      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9487                           DAG.getConstant(MulAmt1, VT));
9488
9489    if (isPowerOf2_64(MulAmt2))
9490      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9491                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9492    else
9493      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9494                           DAG.getConstant(MulAmt2, VT));
9495
9496    // Do not add new nodes to DAG combiner worklist.
9497    DCI.CombineTo(N, NewMul, false);
9498  }
9499  return SDValue();
9500}
9501
9502static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9503  SDValue N0 = N->getOperand(0);
9504  SDValue N1 = N->getOperand(1);
9505  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9506  EVT VT = N0.getValueType();
9507
9508  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9509  // since the result of setcc_c is all zero's or all ones.
9510  if (N1C && N0.getOpcode() == ISD::AND &&
9511      N0.getOperand(1).getOpcode() == ISD::Constant) {
9512    SDValue N00 = N0.getOperand(0);
9513    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9514        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9515          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9516         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9517      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9518      APInt ShAmt = N1C->getAPIntValue();
9519      Mask = Mask.shl(ShAmt);
9520      if (Mask != 0)
9521        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9522                           N00, DAG.getConstant(Mask, VT));
9523    }
9524  }
9525
9526  return SDValue();
9527}
9528
9529/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9530///                       when possible.
9531static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9532                                   const X86Subtarget *Subtarget) {
9533  EVT VT = N->getValueType(0);
9534  if (!VT.isVector() && VT.isInteger() &&
9535      N->getOpcode() == ISD::SHL)
9536    return PerformSHLCombine(N, DAG);
9537
9538  // On X86 with SSE2 support, we can transform this to a vector shift if
9539  // all elements are shifted by the same amount.  We can't do this in legalize
9540  // because the a constant vector is typically transformed to a constant pool
9541  // so we have no knowledge of the shift amount.
9542  if (!Subtarget->hasSSE2())
9543    return SDValue();
9544
9545  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9546    return SDValue();
9547
9548  SDValue ShAmtOp = N->getOperand(1);
9549  EVT EltVT = VT.getVectorElementType();
9550  DebugLoc DL = N->getDebugLoc();
9551  SDValue BaseShAmt = SDValue();
9552  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9553    unsigned NumElts = VT.getVectorNumElements();
9554    unsigned i = 0;
9555    for (; i != NumElts; ++i) {
9556      SDValue Arg = ShAmtOp.getOperand(i);
9557      if (Arg.getOpcode() == ISD::UNDEF) continue;
9558      BaseShAmt = Arg;
9559      break;
9560    }
9561    for (; i != NumElts; ++i) {
9562      SDValue Arg = ShAmtOp.getOperand(i);
9563      if (Arg.getOpcode() == ISD::UNDEF) continue;
9564      if (Arg != BaseShAmt) {
9565        return SDValue();
9566      }
9567    }
9568  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9569             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9570    SDValue InVec = ShAmtOp.getOperand(0);
9571    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9572      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9573      unsigned i = 0;
9574      for (; i != NumElts; ++i) {
9575        SDValue Arg = InVec.getOperand(i);
9576        if (Arg.getOpcode() == ISD::UNDEF) continue;
9577        BaseShAmt = Arg;
9578        break;
9579      }
9580    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9581       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9582         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9583         if (C->getZExtValue() == SplatIdx)
9584           BaseShAmt = InVec.getOperand(1);
9585       }
9586    }
9587    if (BaseShAmt.getNode() == 0)
9588      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9589                              DAG.getIntPtrConstant(0));
9590  } else
9591    return SDValue();
9592
9593  // The shift amount is an i32.
9594  if (EltVT.bitsGT(MVT::i32))
9595    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9596  else if (EltVT.bitsLT(MVT::i32))
9597    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9598
9599  // The shift amount is identical so we can do a vector shift.
9600  SDValue  ValOp = N->getOperand(0);
9601  switch (N->getOpcode()) {
9602  default:
9603    llvm_unreachable("Unknown shift opcode!");
9604    break;
9605  case ISD::SHL:
9606    if (VT == MVT::v2i64)
9607      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9608                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9609                         ValOp, BaseShAmt);
9610    if (VT == MVT::v4i32)
9611      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9612                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9613                         ValOp, BaseShAmt);
9614    if (VT == MVT::v8i16)
9615      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9616                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9617                         ValOp, BaseShAmt);
9618    break;
9619  case ISD::SRA:
9620    if (VT == MVT::v4i32)
9621      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9622                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9623                         ValOp, BaseShAmt);
9624    if (VT == MVT::v8i16)
9625      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9626                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9627                         ValOp, BaseShAmt);
9628    break;
9629  case ISD::SRL:
9630    if (VT == MVT::v2i64)
9631      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9632                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9633                         ValOp, BaseShAmt);
9634    if (VT == MVT::v4i32)
9635      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9636                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9637                         ValOp, BaseShAmt);
9638    if (VT ==  MVT::v8i16)
9639      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9640                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9641                         ValOp, BaseShAmt);
9642    break;
9643  }
9644  return SDValue();
9645}
9646
9647static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9648                                const X86Subtarget *Subtarget) {
9649  EVT VT = N->getValueType(0);
9650  if (VT != MVT::i64 || !Subtarget->is64Bit())
9651    return SDValue();
9652
9653  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9654  SDValue N0 = N->getOperand(0);
9655  SDValue N1 = N->getOperand(1);
9656  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9657    std::swap(N0, N1);
9658  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9659    return SDValue();
9660
9661  SDValue ShAmt0 = N0.getOperand(1);
9662  if (ShAmt0.getValueType() != MVT::i8)
9663    return SDValue();
9664  SDValue ShAmt1 = N1.getOperand(1);
9665  if (ShAmt1.getValueType() != MVT::i8)
9666    return SDValue();
9667  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9668    ShAmt0 = ShAmt0.getOperand(0);
9669  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9670    ShAmt1 = ShAmt1.getOperand(0);
9671
9672  DebugLoc DL = N->getDebugLoc();
9673  unsigned Opc = X86ISD::SHLD;
9674  SDValue Op0 = N0.getOperand(0);
9675  SDValue Op1 = N1.getOperand(0);
9676  if (ShAmt0.getOpcode() == ISD::SUB) {
9677    Opc = X86ISD::SHRD;
9678    std::swap(Op0, Op1);
9679    std::swap(ShAmt0, ShAmt1);
9680  }
9681
9682  if (ShAmt1.getOpcode() == ISD::SUB) {
9683    SDValue Sum = ShAmt1.getOperand(0);
9684    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9685      if (SumC->getSExtValue() == 64 &&
9686          ShAmt1.getOperand(1) == ShAmt0)
9687        return DAG.getNode(Opc, DL, VT,
9688                           Op0, Op1,
9689                           DAG.getNode(ISD::TRUNCATE, DL,
9690                                       MVT::i8, ShAmt0));
9691    }
9692  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9693    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9694    if (ShAmt0C &&
9695        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64)
9696      return DAG.getNode(Opc, DL, VT,
9697                         N0.getOperand(0), N1.getOperand(0),
9698                         DAG.getNode(ISD::TRUNCATE, DL,
9699                                       MVT::i8, ShAmt0));
9700  }
9701
9702  return SDValue();
9703}
9704
9705/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9706static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9707                                   const X86Subtarget *Subtarget) {
9708  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9709  // the FP state in cases where an emms may be missing.
9710  // A preferable solution to the general problem is to figure out the right
9711  // places to insert EMMS.  This qualifies as a quick hack.
9712
9713  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9714  StoreSDNode *St = cast<StoreSDNode>(N);
9715  EVT VT = St->getValue().getValueType();
9716  if (VT.getSizeInBits() != 64)
9717    return SDValue();
9718
9719  const Function *F = DAG.getMachineFunction().getFunction();
9720  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9721  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9722    && Subtarget->hasSSE2();
9723  if ((VT.isVector() ||
9724       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9725      isa<LoadSDNode>(St->getValue()) &&
9726      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9727      St->getChain().hasOneUse() && !St->isVolatile()) {
9728    SDNode* LdVal = St->getValue().getNode();
9729    LoadSDNode *Ld = 0;
9730    int TokenFactorIndex = -1;
9731    SmallVector<SDValue, 8> Ops;
9732    SDNode* ChainVal = St->getChain().getNode();
9733    // Must be a store of a load.  We currently handle two cases:  the load
9734    // is a direct child, and it's under an intervening TokenFactor.  It is
9735    // possible to dig deeper under nested TokenFactors.
9736    if (ChainVal == LdVal)
9737      Ld = cast<LoadSDNode>(St->getChain());
9738    else if (St->getValue().hasOneUse() &&
9739             ChainVal->getOpcode() == ISD::TokenFactor) {
9740      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9741        if (ChainVal->getOperand(i).getNode() == LdVal) {
9742          TokenFactorIndex = i;
9743          Ld = cast<LoadSDNode>(St->getValue());
9744        } else
9745          Ops.push_back(ChainVal->getOperand(i));
9746      }
9747    }
9748
9749    if (!Ld || !ISD::isNormalLoad(Ld))
9750      return SDValue();
9751
9752    // If this is not the MMX case, i.e. we are just turning i64 load/store
9753    // into f64 load/store, avoid the transformation if there are multiple
9754    // uses of the loaded value.
9755    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9756      return SDValue();
9757
9758    DebugLoc LdDL = Ld->getDebugLoc();
9759    DebugLoc StDL = N->getDebugLoc();
9760    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9761    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9762    // pair instead.
9763    if (Subtarget->is64Bit() || F64IsLegal) {
9764      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9765      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9766                                  Ld->getBasePtr(), Ld->getSrcValue(),
9767                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9768                                  Ld->isNonTemporal(), Ld->getAlignment());
9769      SDValue NewChain = NewLd.getValue(1);
9770      if (TokenFactorIndex != -1) {
9771        Ops.push_back(NewChain);
9772        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9773                               Ops.size());
9774      }
9775      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9776                          St->getSrcValue(), St->getSrcValueOffset(),
9777                          St->isVolatile(), St->isNonTemporal(),
9778                          St->getAlignment());
9779    }
9780
9781    // Otherwise, lower to two pairs of 32-bit loads / stores.
9782    SDValue LoAddr = Ld->getBasePtr();
9783    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9784                                 DAG.getConstant(4, MVT::i32));
9785
9786    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9787                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9788                               Ld->isVolatile(), Ld->isNonTemporal(),
9789                               Ld->getAlignment());
9790    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9791                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9792                               Ld->isVolatile(), Ld->isNonTemporal(),
9793                               MinAlign(Ld->getAlignment(), 4));
9794
9795    SDValue NewChain = LoLd.getValue(1);
9796    if (TokenFactorIndex != -1) {
9797      Ops.push_back(LoLd);
9798      Ops.push_back(HiLd);
9799      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9800                             Ops.size());
9801    }
9802
9803    LoAddr = St->getBasePtr();
9804    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9805                         DAG.getConstant(4, MVT::i32));
9806
9807    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9808                                St->getSrcValue(), St->getSrcValueOffset(),
9809                                St->isVolatile(), St->isNonTemporal(),
9810                                St->getAlignment());
9811    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9812                                St->getSrcValue(),
9813                                St->getSrcValueOffset() + 4,
9814                                St->isVolatile(),
9815                                St->isNonTemporal(),
9816                                MinAlign(St->getAlignment(), 4));
9817    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9818  }
9819  return SDValue();
9820}
9821
9822/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9823/// X86ISD::FXOR nodes.
9824static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9825  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9826  // F[X]OR(0.0, x) -> x
9827  // F[X]OR(x, 0.0) -> x
9828  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9829    if (C->getValueAPF().isPosZero())
9830      return N->getOperand(1);
9831  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9832    if (C->getValueAPF().isPosZero())
9833      return N->getOperand(0);
9834  return SDValue();
9835}
9836
9837/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9838static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9839  // FAND(0.0, x) -> 0.0
9840  // FAND(x, 0.0) -> 0.0
9841  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9842    if (C->getValueAPF().isPosZero())
9843      return N->getOperand(0);
9844  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9845    if (C->getValueAPF().isPosZero())
9846      return N->getOperand(1);
9847  return SDValue();
9848}
9849
9850static SDValue PerformBTCombine(SDNode *N,
9851                                SelectionDAG &DAG,
9852                                TargetLowering::DAGCombinerInfo &DCI) {
9853  // BT ignores high bits in the bit index operand.
9854  SDValue Op1 = N->getOperand(1);
9855  if (Op1.hasOneUse()) {
9856    unsigned BitWidth = Op1.getValueSizeInBits();
9857    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9858    APInt KnownZero, KnownOne;
9859    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
9860                                          !DCI.isBeforeLegalizeOps());
9861    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9862    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9863        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9864      DCI.CommitTargetLoweringOpt(TLO);
9865  }
9866  return SDValue();
9867}
9868
9869static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9870  SDValue Op = N->getOperand(0);
9871  if (Op.getOpcode() == ISD::BIT_CONVERT)
9872    Op = Op.getOperand(0);
9873  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9874  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9875      VT.getVectorElementType().getSizeInBits() ==
9876      OpVT.getVectorElementType().getSizeInBits()) {
9877    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9878  }
9879  return SDValue();
9880}
9881
9882// On X86 and X86-64, atomic operations are lowered to locked instructions.
9883// Locked instructions, in turn, have implicit fence semantics (all memory
9884// operations are flushed before issuing the locked instruction, and the
9885// are not buffered), so we can fold away the common pattern of
9886// fence-atomic-fence.
9887static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9888  SDValue atomic = N->getOperand(0);
9889  switch (atomic.getOpcode()) {
9890    case ISD::ATOMIC_CMP_SWAP:
9891    case ISD::ATOMIC_SWAP:
9892    case ISD::ATOMIC_LOAD_ADD:
9893    case ISD::ATOMIC_LOAD_SUB:
9894    case ISD::ATOMIC_LOAD_AND:
9895    case ISD::ATOMIC_LOAD_OR:
9896    case ISD::ATOMIC_LOAD_XOR:
9897    case ISD::ATOMIC_LOAD_NAND:
9898    case ISD::ATOMIC_LOAD_MIN:
9899    case ISD::ATOMIC_LOAD_MAX:
9900    case ISD::ATOMIC_LOAD_UMIN:
9901    case ISD::ATOMIC_LOAD_UMAX:
9902      break;
9903    default:
9904      return SDValue();
9905  }
9906
9907  SDValue fence = atomic.getOperand(0);
9908  if (fence.getOpcode() != ISD::MEMBARRIER)
9909    return SDValue();
9910
9911  switch (atomic.getOpcode()) {
9912    case ISD::ATOMIC_CMP_SWAP:
9913      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9914                                    atomic.getOperand(1), atomic.getOperand(2),
9915                                    atomic.getOperand(3));
9916    case ISD::ATOMIC_SWAP:
9917    case ISD::ATOMIC_LOAD_ADD:
9918    case ISD::ATOMIC_LOAD_SUB:
9919    case ISD::ATOMIC_LOAD_AND:
9920    case ISD::ATOMIC_LOAD_OR:
9921    case ISD::ATOMIC_LOAD_XOR:
9922    case ISD::ATOMIC_LOAD_NAND:
9923    case ISD::ATOMIC_LOAD_MIN:
9924    case ISD::ATOMIC_LOAD_MAX:
9925    case ISD::ATOMIC_LOAD_UMIN:
9926    case ISD::ATOMIC_LOAD_UMAX:
9927      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9928                                    atomic.getOperand(1), atomic.getOperand(2));
9929    default:
9930      return SDValue();
9931  }
9932}
9933
9934static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
9935  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
9936  //           (and (i32 x86isd::setcc_carry), 1)
9937  // This eliminates the zext. This transformation is necessary because
9938  // ISD::SETCC is always legalized to i8.
9939  DebugLoc dl = N->getDebugLoc();
9940  SDValue N0 = N->getOperand(0);
9941  EVT VT = N->getValueType(0);
9942  if (N0.getOpcode() == ISD::AND &&
9943      N0.hasOneUse() &&
9944      N0.getOperand(0).hasOneUse()) {
9945    SDValue N00 = N0.getOperand(0);
9946    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
9947      return SDValue();
9948    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9949    if (!C || C->getZExtValue() != 1)
9950      return SDValue();
9951    return DAG.getNode(ISD::AND, dl, VT,
9952                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
9953                                   N00.getOperand(0), N00.getOperand(1)),
9954                       DAG.getConstant(1, VT));
9955  }
9956
9957  return SDValue();
9958}
9959
9960SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9961                                             DAGCombinerInfo &DCI) const {
9962  SelectionDAG &DAG = DCI.DAG;
9963  switch (N->getOpcode()) {
9964  default: break;
9965  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9966  case ISD::EXTRACT_VECTOR_ELT:
9967                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
9968  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9969  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9970  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9971  case ISD::SHL:
9972  case ISD::SRA:
9973  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9974  case ISD::OR:             return PerformOrCombine(N, DAG, Subtarget);
9975  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9976  case X86ISD::FXOR:
9977  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9978  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9979  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9980  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9981  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9982  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
9983  }
9984
9985  return SDValue();
9986}
9987
9988/// isTypeDesirableForOp - Return true if the target has native support for
9989/// the specified value type and it is 'desirable' to use the type for the
9990/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
9991/// instruction encodings are longer and some i16 instructions are slow.
9992bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
9993  if (!isTypeLegal(VT))
9994    return false;
9995  if (!Subtarget->shouldPromote16Bit() || VT != MVT::i16)
9996    return true;
9997
9998  switch (Opc) {
9999  default:
10000    return true;
10001  case ISD::LOAD:
10002  case ISD::SIGN_EXTEND:
10003  case ISD::ZERO_EXTEND:
10004  case ISD::ANY_EXTEND:
10005  case ISD::SHL:
10006  case ISD::SRA:
10007  case ISD::SRL:
10008  case ISD::SUB:
10009  case ISD::ADD:
10010  case ISD::MUL:
10011  case ISD::AND:
10012  case ISD::OR:
10013  case ISD::XOR:
10014    return false;
10015  }
10016}
10017
10018static bool MayFoldLoad(SDValue Op) {
10019  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
10020}
10021
10022static bool MayFoldIntoStore(SDValue Op) {
10023  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
10024}
10025
10026/// IsDesirableToPromoteOp - This method query the target whether it is
10027/// beneficial for dag combiner to promote the specified node. If true, it
10028/// should return the desired promotion type by reference.
10029bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
10030  if (!Subtarget->shouldPromote16Bit())
10031    return false;
10032
10033  EVT VT = Op.getValueType();
10034  if (VT != MVT::i16)
10035    return false;
10036
10037  bool Promote = false;
10038  bool Commute = false;
10039  switch (Op.getOpcode()) {
10040  default: break;
10041  case ISD::LOAD: {
10042    LoadSDNode *LD = cast<LoadSDNode>(Op);
10043    // If the non-extending load has a single use and it's not live out, then it
10044    // might be folded.
10045    if (LD->getExtensionType() == ISD::NON_EXTLOAD &&
10046        Op.hasOneUse() &&
10047        Op.getNode()->use_begin()->getOpcode() != ISD::CopyToReg)
10048      return false;
10049    Promote = true;
10050    break;
10051  }
10052  case ISD::SIGN_EXTEND:
10053  case ISD::ZERO_EXTEND:
10054  case ISD::ANY_EXTEND:
10055    Promote = true;
10056    break;
10057  case ISD::SHL:
10058  case ISD::SRA:
10059  case ISD::SRL: {
10060    SDValue N0 = Op.getOperand(0);
10061    // Look out for (store (shl (load), x)).
10062    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
10063      return false;
10064    Promote = true;
10065    break;
10066  }
10067  case ISD::ADD:
10068  case ISD::MUL:
10069  case ISD::AND:
10070  case ISD::OR:
10071  case ISD::XOR:
10072    Commute = true;
10073    // fallthrough
10074  case ISD::SUB: {
10075    SDValue N0 = Op.getOperand(0);
10076    SDValue N1 = Op.getOperand(1);
10077    if (!Commute && MayFoldLoad(N1))
10078      return false;
10079    // Avoid disabling potential load folding opportunities.
10080    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
10081      return false;
10082    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
10083      return false;
10084    Promote = true;
10085  }
10086  }
10087
10088  PVT = MVT::i32;
10089  return Promote;
10090}
10091
10092//===----------------------------------------------------------------------===//
10093//                           X86 Inline Assembly Support
10094//===----------------------------------------------------------------------===//
10095
10096static bool LowerToBSwap(CallInst *CI) {
10097  // FIXME: this should verify that we are targetting a 486 or better.  If not,
10098  // we will turn this bswap into something that will be lowered to logical ops
10099  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
10100  // so don't worry about this.
10101
10102  // Verify this is a simple bswap.
10103  if (CI->getNumOperands() != 2 ||
10104      CI->getType() != CI->getOperand(1)->getType() ||
10105      !CI->getType()->isIntegerTy())
10106    return false;
10107
10108  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10109  if (!Ty || Ty->getBitWidth() % 16 != 0)
10110    return false;
10111
10112  // Okay, we can do this xform, do so now.
10113  const Type *Tys[] = { Ty };
10114  Module *M = CI->getParent()->getParent()->getParent();
10115  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
10116
10117  Value *Op = CI->getOperand(1);
10118  Op = CallInst::Create(Int, Op, CI->getName(), CI);
10119
10120  CI->replaceAllUsesWith(Op);
10121  CI->eraseFromParent();
10122  return true;
10123}
10124
10125bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
10126  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10127  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
10128
10129  std::string AsmStr = IA->getAsmString();
10130
10131  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
10132  SmallVector<StringRef, 4> AsmPieces;
10133  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
10134
10135  switch (AsmPieces.size()) {
10136  default: return false;
10137  case 1:
10138    AsmStr = AsmPieces[0];
10139    AsmPieces.clear();
10140    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
10141
10142    // bswap $0
10143    if (AsmPieces.size() == 2 &&
10144        (AsmPieces[0] == "bswap" ||
10145         AsmPieces[0] == "bswapq" ||
10146         AsmPieces[0] == "bswapl") &&
10147        (AsmPieces[1] == "$0" ||
10148         AsmPieces[1] == "${0:q}")) {
10149      // No need to check constraints, nothing other than the equivalent of
10150      // "=r,0" would be valid here.
10151      return LowerToBSwap(CI);
10152    }
10153    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
10154    if (CI->getType()->isIntegerTy(16) &&
10155        AsmPieces.size() == 3 &&
10156        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
10157        AsmPieces[1] == "$$8," &&
10158        AsmPieces[2] == "${0:w}" &&
10159        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
10160      AsmPieces.clear();
10161      const std::string &Constraints = IA->getConstraintString();
10162      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
10163      std::sort(AsmPieces.begin(), AsmPieces.end());
10164      if (AsmPieces.size() == 4 &&
10165          AsmPieces[0] == "~{cc}" &&
10166          AsmPieces[1] == "~{dirflag}" &&
10167          AsmPieces[2] == "~{flags}" &&
10168          AsmPieces[3] == "~{fpsr}") {
10169        return LowerToBSwap(CI);
10170      }
10171    }
10172    break;
10173  case 3:
10174    if (CI->getType()->isIntegerTy(64) &&
10175        Constraints.size() >= 2 &&
10176        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
10177        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
10178      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
10179      SmallVector<StringRef, 4> Words;
10180      SplitString(AsmPieces[0], Words, " \t");
10181      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
10182        Words.clear();
10183        SplitString(AsmPieces[1], Words, " \t");
10184        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
10185          Words.clear();
10186          SplitString(AsmPieces[2], Words, " \t,");
10187          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10188              Words[2] == "%edx") {
10189            return LowerToBSwap(CI);
10190          }
10191        }
10192      }
10193    }
10194    break;
10195  }
10196  return false;
10197}
10198
10199
10200
10201/// getConstraintType - Given a constraint letter, return the type of
10202/// constraint it is for this target.
10203X86TargetLowering::ConstraintType
10204X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10205  if (Constraint.size() == 1) {
10206    switch (Constraint[0]) {
10207    case 'A':
10208      return C_Register;
10209    case 'f':
10210    case 'r':
10211    case 'R':
10212    case 'l':
10213    case 'q':
10214    case 'Q':
10215    case 'x':
10216    case 'y':
10217    case 'Y':
10218      return C_RegisterClass;
10219    case 'e':
10220    case 'Z':
10221      return C_Other;
10222    default:
10223      break;
10224    }
10225  }
10226  return TargetLowering::getConstraintType(Constraint);
10227}
10228
10229/// LowerXConstraint - try to replace an X constraint, which matches anything,
10230/// with another that has more specific requirements based on the type of the
10231/// corresponding operand.
10232const char *X86TargetLowering::
10233LowerXConstraint(EVT ConstraintVT) const {
10234  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10235  // 'f' like normal targets.
10236  if (ConstraintVT.isFloatingPoint()) {
10237    if (Subtarget->hasSSE2())
10238      return "Y";
10239    if (Subtarget->hasSSE1())
10240      return "x";
10241  }
10242
10243  return TargetLowering::LowerXConstraint(ConstraintVT);
10244}
10245
10246/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10247/// vector.  If it is invalid, don't add anything to Ops.
10248void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10249                                                     char Constraint,
10250                                                     bool hasMemory,
10251                                                     std::vector<SDValue>&Ops,
10252                                                     SelectionDAG &DAG) const {
10253  SDValue Result(0, 0);
10254
10255  switch (Constraint) {
10256  default: break;
10257  case 'I':
10258    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10259      if (C->getZExtValue() <= 31) {
10260        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10261        break;
10262      }
10263    }
10264    return;
10265  case 'J':
10266    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10267      if (C->getZExtValue() <= 63) {
10268        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10269        break;
10270      }
10271    }
10272    return;
10273  case 'K':
10274    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10275      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10276        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10277        break;
10278      }
10279    }
10280    return;
10281  case 'N':
10282    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10283      if (C->getZExtValue() <= 255) {
10284        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10285        break;
10286      }
10287    }
10288    return;
10289  case 'e': {
10290    // 32-bit signed value
10291    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10292      const ConstantInt *CI = C->getConstantIntValue();
10293      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10294                                  C->getSExtValue())) {
10295        // Widen to 64 bits here to get it sign extended.
10296        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10297        break;
10298      }
10299    // FIXME gcc accepts some relocatable values here too, but only in certain
10300    // memory models; it's complicated.
10301    }
10302    return;
10303  }
10304  case 'Z': {
10305    // 32-bit unsigned value
10306    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10307      const ConstantInt *CI = C->getConstantIntValue();
10308      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10309                                  C->getZExtValue())) {
10310        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10311        break;
10312      }
10313    }
10314    // FIXME gcc accepts some relocatable values here too, but only in certain
10315    // memory models; it's complicated.
10316    return;
10317  }
10318  case 'i': {
10319    // Literal immediates are always ok.
10320    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10321      // Widen to 64 bits here to get it sign extended.
10322      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10323      break;
10324    }
10325
10326    // If we are in non-pic codegen mode, we allow the address of a global (with
10327    // an optional displacement) to be used with 'i'.
10328    GlobalAddressSDNode *GA = 0;
10329    int64_t Offset = 0;
10330
10331    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10332    while (1) {
10333      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10334        Offset += GA->getOffset();
10335        break;
10336      } else if (Op.getOpcode() == ISD::ADD) {
10337        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10338          Offset += C->getZExtValue();
10339          Op = Op.getOperand(0);
10340          continue;
10341        }
10342      } else if (Op.getOpcode() == ISD::SUB) {
10343        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10344          Offset += -C->getZExtValue();
10345          Op = Op.getOperand(0);
10346          continue;
10347        }
10348      }
10349
10350      // Otherwise, this isn't something we can handle, reject it.
10351      return;
10352    }
10353
10354    const GlobalValue *GV = GA->getGlobal();
10355    // If we require an extra load to get this address, as in PIC mode, we
10356    // can't accept it.
10357    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10358                                                        getTargetMachine())))
10359      return;
10360
10361    if (hasMemory)
10362      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
10363    else
10364      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
10365    Result = Op;
10366    break;
10367  }
10368  }
10369
10370  if (Result.getNode()) {
10371    Ops.push_back(Result);
10372    return;
10373  }
10374  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
10375                                                      Ops, DAG);
10376}
10377
10378std::vector<unsigned> X86TargetLowering::
10379getRegClassForInlineAsmConstraint(const std::string &Constraint,
10380                                  EVT VT) const {
10381  if (Constraint.size() == 1) {
10382    // FIXME: not handling fp-stack yet!
10383    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10384    default: break;  // Unknown constraint letter
10385    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10386      if (Subtarget->is64Bit()) {
10387        if (VT == MVT::i32)
10388          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10389                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10390                                       X86::R10D,X86::R11D,X86::R12D,
10391                                       X86::R13D,X86::R14D,X86::R15D,
10392                                       X86::EBP, X86::ESP, 0);
10393        else if (VT == MVT::i16)
10394          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10395                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10396                                       X86::R10W,X86::R11W,X86::R12W,
10397                                       X86::R13W,X86::R14W,X86::R15W,
10398                                       X86::BP,  X86::SP, 0);
10399        else if (VT == MVT::i8)
10400          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10401                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10402                                       X86::R10B,X86::R11B,X86::R12B,
10403                                       X86::R13B,X86::R14B,X86::R15B,
10404                                       X86::BPL, X86::SPL, 0);
10405
10406        else if (VT == MVT::i64)
10407          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10408                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10409                                       X86::R10, X86::R11, X86::R12,
10410                                       X86::R13, X86::R14, X86::R15,
10411                                       X86::RBP, X86::RSP, 0);
10412
10413        break;
10414      }
10415      // 32-bit fallthrough
10416    case 'Q':   // Q_REGS
10417      if (VT == MVT::i32)
10418        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10419      else if (VT == MVT::i16)
10420        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10421      else if (VT == MVT::i8)
10422        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10423      else if (VT == MVT::i64)
10424        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10425      break;
10426    }
10427  }
10428
10429  return std::vector<unsigned>();
10430}
10431
10432std::pair<unsigned, const TargetRegisterClass*>
10433X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10434                                                EVT VT) const {
10435  // First, see if this is a constraint that directly corresponds to an LLVM
10436  // register class.
10437  if (Constraint.size() == 1) {
10438    // GCC Constraint Letters
10439    switch (Constraint[0]) {
10440    default: break;
10441    case 'r':   // GENERAL_REGS
10442    case 'l':   // INDEX_REGS
10443      if (VT == MVT::i8)
10444        return std::make_pair(0U, X86::GR8RegisterClass);
10445      if (VT == MVT::i16)
10446        return std::make_pair(0U, X86::GR16RegisterClass);
10447      if (VT == MVT::i32 || !Subtarget->is64Bit())
10448        return std::make_pair(0U, X86::GR32RegisterClass);
10449      return std::make_pair(0U, X86::GR64RegisterClass);
10450    case 'R':   // LEGACY_REGS
10451      if (VT == MVT::i8)
10452        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10453      if (VT == MVT::i16)
10454        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10455      if (VT == MVT::i32 || !Subtarget->is64Bit())
10456        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10457      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10458    case 'f':  // FP Stack registers.
10459      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10460      // value to the correct fpstack register class.
10461      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10462        return std::make_pair(0U, X86::RFP32RegisterClass);
10463      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10464        return std::make_pair(0U, X86::RFP64RegisterClass);
10465      return std::make_pair(0U, X86::RFP80RegisterClass);
10466    case 'y':   // MMX_REGS if MMX allowed.
10467      if (!Subtarget->hasMMX()) break;
10468      return std::make_pair(0U, X86::VR64RegisterClass);
10469    case 'Y':   // SSE_REGS if SSE2 allowed
10470      if (!Subtarget->hasSSE2()) break;
10471      // FALL THROUGH.
10472    case 'x':   // SSE_REGS if SSE1 allowed
10473      if (!Subtarget->hasSSE1()) break;
10474
10475      switch (VT.getSimpleVT().SimpleTy) {
10476      default: break;
10477      // Scalar SSE types.
10478      case MVT::f32:
10479      case MVT::i32:
10480        return std::make_pair(0U, X86::FR32RegisterClass);
10481      case MVT::f64:
10482      case MVT::i64:
10483        return std::make_pair(0U, X86::FR64RegisterClass);
10484      // Vector types.
10485      case MVT::v16i8:
10486      case MVT::v8i16:
10487      case MVT::v4i32:
10488      case MVT::v2i64:
10489      case MVT::v4f32:
10490      case MVT::v2f64:
10491        return std::make_pair(0U, X86::VR128RegisterClass);
10492      }
10493      break;
10494    }
10495  }
10496
10497  // Use the default implementation in TargetLowering to convert the register
10498  // constraint into a member of a register class.
10499  std::pair<unsigned, const TargetRegisterClass*> Res;
10500  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10501
10502  // Not found as a standard register?
10503  if (Res.second == 0) {
10504    // Map st(0) -> st(7) -> ST0
10505    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10506        tolower(Constraint[1]) == 's' &&
10507        tolower(Constraint[2]) == 't' &&
10508        Constraint[3] == '(' &&
10509        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10510        Constraint[5] == ')' &&
10511        Constraint[6] == '}') {
10512
10513      Res.first = X86::ST0+Constraint[4]-'0';
10514      Res.second = X86::RFP80RegisterClass;
10515      return Res;
10516    }
10517
10518    // GCC allows "st(0)" to be called just plain "st".
10519    if (StringRef("{st}").equals_lower(Constraint)) {
10520      Res.first = X86::ST0;
10521      Res.second = X86::RFP80RegisterClass;
10522      return Res;
10523    }
10524
10525    // flags -> EFLAGS
10526    if (StringRef("{flags}").equals_lower(Constraint)) {
10527      Res.first = X86::EFLAGS;
10528      Res.second = X86::CCRRegisterClass;
10529      return Res;
10530    }
10531
10532    // 'A' means EAX + EDX.
10533    if (Constraint == "A") {
10534      Res.first = X86::EAX;
10535      Res.second = X86::GR32_ADRegisterClass;
10536      return Res;
10537    }
10538    return Res;
10539  }
10540
10541  // Otherwise, check to see if this is a register class of the wrong value
10542  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10543  // turn into {ax},{dx}.
10544  if (Res.second->hasType(VT))
10545    return Res;   // Correct type already, nothing to do.
10546
10547  // All of the single-register GCC register classes map their values onto
10548  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10549  // really want an 8-bit or 32-bit register, map to the appropriate register
10550  // class and return the appropriate register.
10551  if (Res.second == X86::GR16RegisterClass) {
10552    if (VT == MVT::i8) {
10553      unsigned DestReg = 0;
10554      switch (Res.first) {
10555      default: break;
10556      case X86::AX: DestReg = X86::AL; break;
10557      case X86::DX: DestReg = X86::DL; break;
10558      case X86::CX: DestReg = X86::CL; break;
10559      case X86::BX: DestReg = X86::BL; break;
10560      }
10561      if (DestReg) {
10562        Res.first = DestReg;
10563        Res.second = X86::GR8RegisterClass;
10564      }
10565    } else if (VT == MVT::i32) {
10566      unsigned DestReg = 0;
10567      switch (Res.first) {
10568      default: break;
10569      case X86::AX: DestReg = X86::EAX; break;
10570      case X86::DX: DestReg = X86::EDX; break;
10571      case X86::CX: DestReg = X86::ECX; break;
10572      case X86::BX: DestReg = X86::EBX; break;
10573      case X86::SI: DestReg = X86::ESI; break;
10574      case X86::DI: DestReg = X86::EDI; break;
10575      case X86::BP: DestReg = X86::EBP; break;
10576      case X86::SP: DestReg = X86::ESP; break;
10577      }
10578      if (DestReg) {
10579        Res.first = DestReg;
10580        Res.second = X86::GR32RegisterClass;
10581      }
10582    } else if (VT == MVT::i64) {
10583      unsigned DestReg = 0;
10584      switch (Res.first) {
10585      default: break;
10586      case X86::AX: DestReg = X86::RAX; break;
10587      case X86::DX: DestReg = X86::RDX; break;
10588      case X86::CX: DestReg = X86::RCX; break;
10589      case X86::BX: DestReg = X86::RBX; break;
10590      case X86::SI: DestReg = X86::RSI; break;
10591      case X86::DI: DestReg = X86::RDI; break;
10592      case X86::BP: DestReg = X86::RBP; break;
10593      case X86::SP: DestReg = X86::RSP; break;
10594      }
10595      if (DestReg) {
10596        Res.first = DestReg;
10597        Res.second = X86::GR64RegisterClass;
10598      }
10599    }
10600  } else if (Res.second == X86::FR32RegisterClass ||
10601             Res.second == X86::FR64RegisterClass ||
10602             Res.second == X86::VR128RegisterClass) {
10603    // Handle references to XMM physical registers that got mapped into the
10604    // wrong class.  This can happen with constraints like {xmm0} where the
10605    // target independent register mapper will just pick the first match it can
10606    // find, ignoring the required type.
10607    if (VT == MVT::f32)
10608      Res.second = X86::FR32RegisterClass;
10609    else if (VT == MVT::f64)
10610      Res.second = X86::FR64RegisterClass;
10611    else if (X86::VR128RegisterClass->hasType(VT))
10612      Res.second = X86::VR128RegisterClass;
10613  }
10614
10615  return Res;
10616}
10617