X86ISelLowering.cpp revision ccfea35efb0817267a9b997933207863917a8a85
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MCTargetExpr.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValue.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51using namespace llvm;
52
53STATISTIC(NumTailCalls, "Number of tail calls");
54
55static cl::opt<bool>
56DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
57
58// Disable16Bit - 16-bit operations typically have a larger encoding than
59// corresponding 32-bit instructions, and 16-bit code is slow on some
60// processors. This is an experimental flag to disable 16-bit operations
61// (which forces them to be Legalized to 32-bit operations).
62static cl::opt<bool>
63Disable16Bit("disable-16bit", cl::Hidden,
64             cl::desc("Disable use of 16-bit instructions"));
65
66// Forward declarations.
67static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
68                       SDValue V2);
69
70static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
71  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
72  default: llvm_unreachable("unknown subtarget type");
73  case X86Subtarget::isDarwin:
74    if (TM.getSubtarget<X86Subtarget>().is64Bit())
75      return new X8664_MachoTargetObjectFile();
76    return new TargetLoweringObjectFileMachO();
77  case X86Subtarget::isELF:
78   if (TM.getSubtarget<X86Subtarget>().is64Bit())
79     return new X8664_ELFTargetObjectFile(TM);
80    return new X8632_ELFTargetObjectFile(TM);
81  case X86Subtarget::isMingw:
82  case X86Subtarget::isCygwin:
83  case X86Subtarget::isWindows:
84    return new TargetLoweringObjectFileCOFF();
85  }
86}
87
88X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
89  : TargetLowering(TM, createTLOF(TM)) {
90  Subtarget = &TM.getSubtarget<X86Subtarget>();
91  X86ScalarSSEf64 = Subtarget->hasSSE2();
92  X86ScalarSSEf32 = Subtarget->hasSSE1();
93  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
94
95  RegInfo = TM.getRegisterInfo();
96  TD = getTargetData();
97
98  // Set up the TargetLowering object.
99
100  // X86 is weird, it always uses i8 for shift amounts and setcc results.
101  setShiftAmountType(MVT::i8);
102  setBooleanContents(ZeroOrOneBooleanContent);
103  setSchedulingPreference(SchedulingForRegPressure);
104  setStackPointerRegisterToSaveRestore(X86StackPtr);
105
106  if (Subtarget->isTargetDarwin()) {
107    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
108    setUseUnderscoreSetJmp(false);
109    setUseUnderscoreLongJmp(false);
110  } else if (Subtarget->isTargetMingw()) {
111    // MS runtime is weird: it exports _setjmp, but longjmp!
112    setUseUnderscoreSetJmp(true);
113    setUseUnderscoreLongJmp(false);
114  } else {
115    setUseUnderscoreSetJmp(true);
116    setUseUnderscoreLongJmp(true);
117  }
118
119  // Set up the register classes.
120  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
121  if (!Disable16Bit)
122    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
123  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
124  if (Subtarget->is64Bit())
125    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
126
127  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
128
129  // We don't accept any truncstore of integer registers.
130  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
131  if (!Disable16Bit)
132    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
133  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
134  if (!Disable16Bit)
135    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
136  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
137  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
138
139  // SETOEQ and SETUNE require checking two conditions.
140  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
141  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
142  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
143  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
144  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
145  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
146
147  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
148  // operation.
149  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
150  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
151  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
152
153  if (Subtarget->is64Bit()) {
154    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
155    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
156  } else if (!UseSoftFloat) {
157    if (X86ScalarSSEf64) {
158      // We have an impenetrably clever algorithm for ui64->double only.
159      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
160    }
161    // We have an algorithm for SSE2, and we turn this into a 64-bit
162    // FILD for other targets.
163    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
164  }
165
166  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
167  // this operation.
168  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
169  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
170
171  if (!UseSoftFloat) {
172    // SSE has no i16 to fp conversion, only i32
173    if (X86ScalarSSEf32) {
174      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
175      // f32 and f64 cases are Legal, f80 case is not
176      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
177    } else {
178      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
179      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
180    }
181  } else {
182    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
183    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
184  }
185
186  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
187  // are Legal, f80 is custom lowered.
188  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
189  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
190
191  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
192  // this operation.
193  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
194  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
195
196  if (X86ScalarSSEf32) {
197    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
198    // f32 and f64 cases are Legal, f80 case is not
199    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
200  } else {
201    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
202    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
203  }
204
205  // Handle FP_TO_UINT by promoting the destination to a larger signed
206  // conversion.
207  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
208  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
209  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
210
211  if (Subtarget->is64Bit()) {
212    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
213    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
214  } else if (!UseSoftFloat) {
215    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
216      // Expand FP_TO_UINT into a select.
217      // FIXME: We would like to use a Custom expander here eventually to do
218      // the optimal thing for SSE vs. the default expansion in the legalizer.
219      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
220    else
221      // With SSE3 we can use fisttpll to convert to a signed i64; without
222      // SSE, we're stuck with a fistpll.
223      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
224  }
225
226  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
227  if (!X86ScalarSSEf64) {
228    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
229    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
230  }
231
232  // Scalar integer divide and remainder are lowered to use operations that
233  // produce two results, to match the available instructions. This exposes
234  // the two-result form to trivial CSE, which is able to combine x/y and x%y
235  // into a single instruction.
236  //
237  // Scalar integer multiply-high is also lowered to use two-result
238  // operations, to match the available instructions. However, plain multiply
239  // (low) operations are left as Legal, as there are single-result
240  // instructions for this in x86. Using the two-result multiply instructions
241  // when both high and low results are needed must be arranged by dagcombine.
242  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
243  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
244  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
245  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
246  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
247  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
248  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
249  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
250  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
251  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
252  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
253  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
254  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
255  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
256  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
257  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
258  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
259  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
260  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
261  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
262  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
263  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
264  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
265  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
266
267  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
268  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
269  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
270  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
271  if (Subtarget->is64Bit())
272    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
273  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
274  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
275  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
276  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
277  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
278  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
279  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
280  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
281
282  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
283  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
284  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
285  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
286  if (Disable16Bit) {
287    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
288    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
289  } else {
290    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
291    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
292  }
293  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
294  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
295  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
296  if (Subtarget->is64Bit()) {
297    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
298    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
299    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
300  }
301
302  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
303  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
304
305  // These should be promoted to a larger select which is supported.
306  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
307  // X86 wants to expand cmov itself.
308  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
309  if (Disable16Bit)
310    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
311  else
312    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
313  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
314  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
315  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
316  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
317  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
318  if (Disable16Bit)
319    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
320  else
321    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
322  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
323  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
324  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
325  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
326  if (Subtarget->is64Bit()) {
327    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
328    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
329  }
330  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
331
332  // Darwin ABI issue.
333  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
334  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
335  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
336  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
337  if (Subtarget->is64Bit())
338    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
339  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
340  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
341  if (Subtarget->is64Bit()) {
342    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
343    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
344    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
345    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
346    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
347  }
348  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
349  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
350  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
351  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
352  if (Subtarget->is64Bit()) {
353    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
354    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
355    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
356  }
357
358  if (Subtarget->hasSSE1())
359    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
360
361  if (!Subtarget->hasSSE2())
362    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
363
364  // Expand certain atomics
365  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
366  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
367  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
368  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
369
370  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
371  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
372  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
373  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
374
375  if (!Subtarget->is64Bit()) {
376    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
377    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
378    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
381    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
382    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
383  }
384
385  // FIXME - use subtarget debug flags
386  if (!Subtarget->isTargetDarwin() &&
387      !Subtarget->isTargetELF() &&
388      !Subtarget->isTargetCygMing()) {
389    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
390  }
391
392  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
393  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
394  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
395  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
396  if (Subtarget->is64Bit()) {
397    setExceptionPointerRegister(X86::RAX);
398    setExceptionSelectorRegister(X86::RDX);
399  } else {
400    setExceptionPointerRegister(X86::EAX);
401    setExceptionSelectorRegister(X86::EDX);
402  }
403  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
404  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
405
406  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
407
408  setOperationAction(ISD::TRAP, MVT::Other, Legal);
409
410  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
411  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
412  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
413  if (Subtarget->is64Bit()) {
414    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
415    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
416  } else {
417    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
418    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
419  }
420
421  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
422  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
423  if (Subtarget->is64Bit())
424    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
425  if (Subtarget->isTargetCygMing())
426    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
427  else
428    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
429
430  if (!UseSoftFloat && X86ScalarSSEf64) {
431    // f32 and f64 use SSE.
432    // Set up the FP register classes.
433    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
434    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
435
436    // Use ANDPD to simulate FABS.
437    setOperationAction(ISD::FABS , MVT::f64, Custom);
438    setOperationAction(ISD::FABS , MVT::f32, Custom);
439
440    // Use XORP to simulate FNEG.
441    setOperationAction(ISD::FNEG , MVT::f64, Custom);
442    setOperationAction(ISD::FNEG , MVT::f32, Custom);
443
444    // Use ANDPD and ORPD to simulate FCOPYSIGN.
445    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
446    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
447
448    // We don't support sin/cos/fmod
449    setOperationAction(ISD::FSIN , MVT::f64, Expand);
450    setOperationAction(ISD::FCOS , MVT::f64, Expand);
451    setOperationAction(ISD::FSIN , MVT::f32, Expand);
452    setOperationAction(ISD::FCOS , MVT::f32, Expand);
453
454    // Expand FP immediates into loads from the stack, except for the special
455    // cases we handle.
456    addLegalFPImmediate(APFloat(+0.0)); // xorpd
457    addLegalFPImmediate(APFloat(+0.0f)); // xorps
458  } else if (!UseSoftFloat && X86ScalarSSEf32) {
459    // Use SSE for f32, x87 for f64.
460    // Set up the FP register classes.
461    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
462    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
463
464    // Use ANDPS to simulate FABS.
465    setOperationAction(ISD::FABS , MVT::f32, Custom);
466
467    // Use XORP to simulate FNEG.
468    setOperationAction(ISD::FNEG , MVT::f32, Custom);
469
470    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
471
472    // Use ANDPS and ORPS to simulate FCOPYSIGN.
473    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
474    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
475
476    // We don't support sin/cos/fmod
477    setOperationAction(ISD::FSIN , MVT::f32, Expand);
478    setOperationAction(ISD::FCOS , MVT::f32, Expand);
479
480    // Special cases we handle for FP constants.
481    addLegalFPImmediate(APFloat(+0.0f)); // xorps
482    addLegalFPImmediate(APFloat(+0.0)); // FLD0
483    addLegalFPImmediate(APFloat(+1.0)); // FLD1
484    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
485    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
486
487    if (!UnsafeFPMath) {
488      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
489      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
490    }
491  } else if (!UseSoftFloat) {
492    // f32 and f64 in x87.
493    // Set up the FP register classes.
494    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
495    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
496
497    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
498    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
499    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
500    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
501
502    if (!UnsafeFPMath) {
503      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
504      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
505    }
506    addLegalFPImmediate(APFloat(+0.0)); // FLD0
507    addLegalFPImmediate(APFloat(+1.0)); // FLD1
508    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
509    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
510    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
511    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
512    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
513    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
514  }
515
516  // Long double always uses X87.
517  if (!UseSoftFloat) {
518    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
519    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
520    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
521    {
522      bool ignored;
523      APFloat TmpFlt(+0.0);
524      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
525                     &ignored);
526      addLegalFPImmediate(TmpFlt);  // FLD0
527      TmpFlt.changeSign();
528      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
529      APFloat TmpFlt2(+1.0);
530      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
531                      &ignored);
532      addLegalFPImmediate(TmpFlt2);  // FLD1
533      TmpFlt2.changeSign();
534      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
535    }
536
537    if (!UnsafeFPMath) {
538      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
539      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
540    }
541  }
542
543  // Always use a library call for pow.
544  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
545  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
546  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
547
548  setOperationAction(ISD::FLOG, MVT::f80, Expand);
549  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
550  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
551  setOperationAction(ISD::FEXP, MVT::f80, Expand);
552  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
553
554  // First set operation action for all vector types to either promote
555  // (for widening) or expand (for scalarization). Then we will selectively
556  // turn on ones that can be effectively codegen'd.
557  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
558       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
559    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
574    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
575    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
608    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
610    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
611    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
612    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
613         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
614      setTruncStoreAction((MVT::SimpleValueType)VT,
615                          (MVT::SimpleValueType)InnerVT, Expand);
616    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
617    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
618    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
619  }
620
621  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
622  // with -msoft-float, disable use of MMX as well.
623  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
624    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
625    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
626    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
627    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
628    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
629
630    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
631    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
632    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
633    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
634
635    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
636    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
637    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
638    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
639
640    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
641    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
642
643    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
644    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
645    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
646    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
647    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
648    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
649    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
650
651    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
652    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
653    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
654    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
655    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
656    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
657    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
658
659    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
660    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
661    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
662    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
663    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
664    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
665    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
666
667    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
668    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
669    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
670    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
671    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
672    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
673    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
674    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
675    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
676
677    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
678    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
679    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
680    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
681    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
682
683    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
684    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
685    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
686    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
687
688    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
689    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
690    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
691    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
692
693    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
694
695    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
696    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
697    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
698    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
699    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
700    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
701    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
702  }
703
704  if (!UseSoftFloat && Subtarget->hasSSE1()) {
705    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
706
707    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
708    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
709    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
710    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
711    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
712    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
713    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
714    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
715    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
716    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
717    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
718    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
719  }
720
721  if (!UseSoftFloat && Subtarget->hasSSE2()) {
722    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
723
724    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
725    // registers cannot be used even for integer operations.
726    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
727    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
728    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
729    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
730
731    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
732    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
733    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
734    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
735    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
736    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
737    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
738    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
739    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
740    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
741    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
742    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
743    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
744    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
745    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
746    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
747
748    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
749    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
750    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
751    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
752
753    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
754    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
755    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
756    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
757    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
758
759    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
760    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
761    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
762    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
763    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
764
765    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
766    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
767      EVT VT = (MVT::SimpleValueType)i;
768      // Do not attempt to custom lower non-power-of-2 vectors
769      if (!isPowerOf2_32(VT.getVectorNumElements()))
770        continue;
771      // Do not attempt to custom lower non-128-bit vectors
772      if (!VT.is128BitVector())
773        continue;
774      setOperationAction(ISD::BUILD_VECTOR,
775                         VT.getSimpleVT().SimpleTy, Custom);
776      setOperationAction(ISD::VECTOR_SHUFFLE,
777                         VT.getSimpleVT().SimpleTy, Custom);
778      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
779                         VT.getSimpleVT().SimpleTy, Custom);
780    }
781
782    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
783    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
784    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
785    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
786    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
787    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
788
789    if (Subtarget->is64Bit()) {
790      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
791      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
792    }
793
794    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
795    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
796      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
797      EVT VT = SVT;
798
799      // Do not attempt to promote non-128-bit vectors
800      if (!VT.is128BitVector()) {
801        continue;
802      }
803      setOperationAction(ISD::AND,    SVT, Promote);
804      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
805      setOperationAction(ISD::OR,     SVT, Promote);
806      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
807      setOperationAction(ISD::XOR,    SVT, Promote);
808      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
809      setOperationAction(ISD::LOAD,   SVT, Promote);
810      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
811      setOperationAction(ISD::SELECT, SVT, Promote);
812      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
813    }
814
815    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
816
817    // Custom lower v2i64 and v2f64 selects.
818    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
819    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
820    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
821    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
822
823    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
824    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
825    if (!DisableMMX && Subtarget->hasMMX()) {
826      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
827      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
828    }
829  }
830
831  if (Subtarget->hasSSE41()) {
832    // FIXME: Do we need to handle scalar-to-vector here?
833    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
834
835    // i8 and i16 vectors are custom , because the source register and source
836    // source memory operand types are not the same width.  f32 vectors are
837    // custom since the immediate controlling the insert encodes additional
838    // information.
839    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
840    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
842    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
843
844    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
845    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
846    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
847    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
848
849    if (Subtarget->is64Bit()) {
850      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
851      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
852    }
853  }
854
855  if (Subtarget->hasSSE42()) {
856    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
857  }
858
859  if (!UseSoftFloat && Subtarget->hasAVX()) {
860    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
861    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
862    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
863    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
864
865    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
866    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
867    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
868    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
869    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
870    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
871    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
872    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
873    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
874    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
875    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
876    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
877    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
878    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
879    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
880
881    // Operations to consider commented out -v16i16 v32i8
882    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
883    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
884    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
885    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
886    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
887    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
888    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
889    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
890    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
891    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
892    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
893    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
894    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
895    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
896
897    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
898    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
899    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
900    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
901
902    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
903    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
904    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
905    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
906    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
907
908    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
909    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
910    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
911    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
913    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
914
915#if 0
916    // Not sure we want to do this since there are no 256-bit integer
917    // operations in AVX
918
919    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
920    // This includes 256-bit vectors
921    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
922      EVT VT = (MVT::SimpleValueType)i;
923
924      // Do not attempt to custom lower non-power-of-2 vectors
925      if (!isPowerOf2_32(VT.getVectorNumElements()))
926        continue;
927
928      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
929      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
930      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
931    }
932
933    if (Subtarget->is64Bit()) {
934      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
935      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
936    }
937#endif
938
939#if 0
940    // Not sure we want to do this since there are no 256-bit integer
941    // operations in AVX
942
943    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
944    // Including 256-bit vectors
945    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
946      EVT VT = (MVT::SimpleValueType)i;
947
948      if (!VT.is256BitVector()) {
949        continue;
950      }
951      setOperationAction(ISD::AND,    VT, Promote);
952      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
953      setOperationAction(ISD::OR,     VT, Promote);
954      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
955      setOperationAction(ISD::XOR,    VT, Promote);
956      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
957      setOperationAction(ISD::LOAD,   VT, Promote);
958      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
959      setOperationAction(ISD::SELECT, VT, Promote);
960      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
961    }
962
963    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
964#endif
965  }
966
967  // We want to custom lower some of our intrinsics.
968  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
969
970  // Add/Sub/Mul with overflow operations are custom lowered.
971  setOperationAction(ISD::SADDO, MVT::i32, Custom);
972  setOperationAction(ISD::SADDO, MVT::i64, Custom);
973  setOperationAction(ISD::UADDO, MVT::i32, Custom);
974  setOperationAction(ISD::UADDO, MVT::i64, Custom);
975  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
976  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
977  setOperationAction(ISD::USUBO, MVT::i32, Custom);
978  setOperationAction(ISD::USUBO, MVT::i64, Custom);
979  setOperationAction(ISD::SMULO, MVT::i32, Custom);
980  setOperationAction(ISD::SMULO, MVT::i64, Custom);
981
982  if (!Subtarget->is64Bit()) {
983    // These libcalls are not available in 32-bit.
984    setLibcallName(RTLIB::SHL_I128, 0);
985    setLibcallName(RTLIB::SRL_I128, 0);
986    setLibcallName(RTLIB::SRA_I128, 0);
987  }
988
989  // We have target-specific dag combine patterns for the following nodes:
990  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
991  setTargetDAGCombine(ISD::BUILD_VECTOR);
992  setTargetDAGCombine(ISD::SELECT);
993  setTargetDAGCombine(ISD::AND);
994  setTargetDAGCombine(ISD::SHL);
995  setTargetDAGCombine(ISD::SRA);
996  setTargetDAGCombine(ISD::SRL);
997  setTargetDAGCombine(ISD::OR);
998  setTargetDAGCombine(ISD::STORE);
999  setTargetDAGCombine(ISD::MEMBARRIER);
1000  setTargetDAGCombine(ISD::ZERO_EXTEND);
1001  if (Subtarget->is64Bit())
1002    setTargetDAGCombine(ISD::MUL);
1003
1004  computeRegisterProperties();
1005
1006  // FIXME: These should be based on subtarget info. Plus, the values should
1007  // be smaller when we are in optimizing for size mode.
1008  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1009  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
1010  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1011  setPrefLoopAlignment(16);
1012  benefitFromCodePlacementOpt = true;
1013}
1014
1015
1016MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1017  return MVT::i8;
1018}
1019
1020
1021/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1022/// the desired ByVal argument alignment.
1023static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1024  if (MaxAlign == 16)
1025    return;
1026  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1027    if (VTy->getBitWidth() == 128)
1028      MaxAlign = 16;
1029  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1030    unsigned EltAlign = 0;
1031    getMaxByValAlign(ATy->getElementType(), EltAlign);
1032    if (EltAlign > MaxAlign)
1033      MaxAlign = EltAlign;
1034  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1035    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1036      unsigned EltAlign = 0;
1037      getMaxByValAlign(STy->getElementType(i), EltAlign);
1038      if (EltAlign > MaxAlign)
1039        MaxAlign = EltAlign;
1040      if (MaxAlign == 16)
1041        break;
1042    }
1043  }
1044  return;
1045}
1046
1047/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1048/// function arguments in the caller parameter area. For X86, aggregates
1049/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1050/// are at 4-byte boundaries.
1051unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1052  if (Subtarget->is64Bit()) {
1053    // Max of 8 and alignment of type.
1054    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1055    if (TyAlign > 8)
1056      return TyAlign;
1057    return 8;
1058  }
1059
1060  unsigned Align = 4;
1061  if (Subtarget->hasSSE1())
1062    getMaxByValAlign(Ty, Align);
1063  return Align;
1064}
1065
1066/// getOptimalMemOpType - Returns the target specific optimal type for load
1067/// and store operations as a result of memset, memcpy, and memmove
1068/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1069/// determining it.
1070EVT
1071X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1072                                       bool isSrcConst, bool isSrcStr,
1073                                       SelectionDAG &DAG) const {
1074  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1075  // linux.  This is because the stack realignment code can't handle certain
1076  // cases like PR2962.  This should be removed when PR2962 is fixed.
1077  const Function *F = DAG.getMachineFunction().getFunction();
1078  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1079  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1080    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1081      return MVT::v4i32;
1082    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1083      return MVT::v4f32;
1084  }
1085  if (Subtarget->is64Bit() && Size >= 8)
1086    return MVT::i64;
1087  return MVT::i32;
1088}
1089
1090/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1091/// current function.  The returned value is a member of the
1092/// MachineJumpTableInfo::JTEntryKind enum.
1093unsigned X86TargetLowering::getJumpTableEncoding() const {
1094  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1095  // symbol.
1096  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1097      Subtarget->isPICStyleGOT())
1098    return MachineJumpTableInfo::EK_Custom32;
1099
1100  // Otherwise, use the normal jump table encoding heuristics.
1101  return TargetLowering::getJumpTableEncoding();
1102}
1103
1104/// getPICBaseSymbol - Return the X86-32 PIC base.
1105MCSymbol *
1106X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1107                                    MCContext &Ctx) const {
1108  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1109  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1110                               Twine(MF->getFunctionNumber())+"$pb");
1111}
1112
1113
1114const MCExpr *
1115X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1116                                             const MachineBasicBlock *MBB,
1117                                             unsigned uid,MCContext &Ctx) const{
1118  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1119         Subtarget->isPICStyleGOT());
1120  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1121  // entries.
1122  return X86MCTargetExpr::Create(MBB->getSymbol(Ctx),
1123                                 X86MCTargetExpr::GOTOFF, Ctx);
1124}
1125
1126/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1127/// jumptable.
1128SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1129                                                    SelectionDAG &DAG) const {
1130  if (!Subtarget->is64Bit())
1131    // This doesn't have DebugLoc associated with it, but is not really the
1132    // same as a Register.
1133    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1134                       getPointerTy());
1135  return Table;
1136}
1137
1138/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1139/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1140/// MCExpr.
1141const MCExpr *X86TargetLowering::
1142getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1143                             MCContext &Ctx) const {
1144  // X86-64 uses RIP relative addressing based on the jump table label.
1145  if (Subtarget->isPICStyleRIPRel())
1146    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1147
1148  // Otherwise, the reference is relative to the PIC base.
1149  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1150}
1151
1152/// getFunctionAlignment - Return the Log2 alignment of this function.
1153unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1154  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1155}
1156
1157//===----------------------------------------------------------------------===//
1158//               Return Value Calling Convention Implementation
1159//===----------------------------------------------------------------------===//
1160
1161#include "X86GenCallingConv.inc"
1162
1163bool
1164X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1165                        const SmallVectorImpl<EVT> &OutTys,
1166                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1167                        SelectionDAG &DAG) {
1168  SmallVector<CCValAssign, 16> RVLocs;
1169  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1170                 RVLocs, *DAG.getContext());
1171  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1172}
1173
1174SDValue
1175X86TargetLowering::LowerReturn(SDValue Chain,
1176                               CallingConv::ID CallConv, bool isVarArg,
1177                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1178                               DebugLoc dl, SelectionDAG &DAG) {
1179
1180  SmallVector<CCValAssign, 16> RVLocs;
1181  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1182                 RVLocs, *DAG.getContext());
1183  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1184
1185  // Add the regs to the liveout set for the function.
1186  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1187  for (unsigned i = 0; i != RVLocs.size(); ++i)
1188    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1189      MRI.addLiveOut(RVLocs[i].getLocReg());
1190
1191  SDValue Flag;
1192
1193  SmallVector<SDValue, 6> RetOps;
1194  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1195  // Operand #1 = Bytes To Pop
1196  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1197
1198  // Copy the result values into the output registers.
1199  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1200    CCValAssign &VA = RVLocs[i];
1201    assert(VA.isRegLoc() && "Can only return in registers!");
1202    SDValue ValToCopy = Outs[i].Val;
1203
1204    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1205    // the RET instruction and handled by the FP Stackifier.
1206    if (VA.getLocReg() == X86::ST0 ||
1207        VA.getLocReg() == X86::ST1) {
1208      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1209      // change the value to the FP stack register class.
1210      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1211        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1212      RetOps.push_back(ValToCopy);
1213      // Don't emit a copytoreg.
1214      continue;
1215    }
1216
1217    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1218    // which is returned in RAX / RDX.
1219    if (Subtarget->is64Bit()) {
1220      EVT ValVT = ValToCopy.getValueType();
1221      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1222        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1223        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1224          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1225      }
1226    }
1227
1228    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1229    Flag = Chain.getValue(1);
1230  }
1231
1232  // The x86-64 ABI for returning structs by value requires that we copy
1233  // the sret argument into %rax for the return. We saved the argument into
1234  // a virtual register in the entry block, so now we copy the value out
1235  // and into %rax.
1236  if (Subtarget->is64Bit() &&
1237      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1238    MachineFunction &MF = DAG.getMachineFunction();
1239    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1240    unsigned Reg = FuncInfo->getSRetReturnReg();
1241    if (!Reg) {
1242      Reg = MRI.createVirtualRegister(getRegClassFor(MVT::i64));
1243      FuncInfo->setSRetReturnReg(Reg);
1244    }
1245    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1246
1247    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1248    Flag = Chain.getValue(1);
1249
1250    // RAX now acts like a return value.
1251    MRI.addLiveOut(X86::RAX);
1252  }
1253
1254  RetOps[0] = Chain;  // Update chain.
1255
1256  // Add the flag if we have it.
1257  if (Flag.getNode())
1258    RetOps.push_back(Flag);
1259
1260  return DAG.getNode(X86ISD::RET_FLAG, dl,
1261                     MVT::Other, &RetOps[0], RetOps.size());
1262}
1263
1264/// LowerCallResult - Lower the result values of a call into the
1265/// appropriate copies out of appropriate physical registers.
1266///
1267SDValue
1268X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1269                                   CallingConv::ID CallConv, bool isVarArg,
1270                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1271                                   DebugLoc dl, SelectionDAG &DAG,
1272                                   SmallVectorImpl<SDValue> &InVals) {
1273
1274  // Assign locations to each value returned by this call.
1275  SmallVector<CCValAssign, 16> RVLocs;
1276  bool Is64Bit = Subtarget->is64Bit();
1277  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1278                 RVLocs, *DAG.getContext());
1279  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1280
1281  // Copy all of the result registers out of their specified physreg.
1282  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1283    CCValAssign &VA = RVLocs[i];
1284    EVT CopyVT = VA.getValVT();
1285
1286    // If this is x86-64, and we disabled SSE, we can't return FP values
1287    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1288        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1289      llvm_report_error("SSE register return with SSE disabled");
1290    }
1291
1292    // If this is a call to a function that returns an fp value on the floating
1293    // point stack, but where we prefer to use the value in xmm registers, copy
1294    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1295    if ((VA.getLocReg() == X86::ST0 ||
1296         VA.getLocReg() == X86::ST1) &&
1297        isScalarFPTypeInSSEReg(VA.getValVT())) {
1298      CopyVT = MVT::f80;
1299    }
1300
1301    SDValue Val;
1302    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1303      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1304      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1305        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1306                                   MVT::v2i64, InFlag).getValue(1);
1307        Val = Chain.getValue(0);
1308        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1309                          Val, DAG.getConstant(0, MVT::i64));
1310      } else {
1311        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1312                                   MVT::i64, InFlag).getValue(1);
1313        Val = Chain.getValue(0);
1314      }
1315      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1316    } else {
1317      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1318                                 CopyVT, InFlag).getValue(1);
1319      Val = Chain.getValue(0);
1320    }
1321    InFlag = Chain.getValue(2);
1322
1323    if (CopyVT != VA.getValVT()) {
1324      // Round the F80 the right size, which also moves to the appropriate xmm
1325      // register.
1326      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1327                        // This truncation won't change the value.
1328                        DAG.getIntPtrConstant(1));
1329    }
1330
1331    InVals.push_back(Val);
1332  }
1333
1334  return Chain;
1335}
1336
1337
1338//===----------------------------------------------------------------------===//
1339//                C & StdCall & Fast Calling Convention implementation
1340//===----------------------------------------------------------------------===//
1341//  StdCall calling convention seems to be standard for many Windows' API
1342//  routines and around. It differs from C calling convention just a little:
1343//  callee should clean up the stack, not caller. Symbols should be also
1344//  decorated in some fancy way :) It doesn't support any vector arguments.
1345//  For info on fast calling convention see Fast Calling Convention (tail call)
1346//  implementation LowerX86_32FastCCCallTo.
1347
1348/// CallIsStructReturn - Determines whether a call uses struct return
1349/// semantics.
1350static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1351  if (Outs.empty())
1352    return false;
1353
1354  return Outs[0].Flags.isSRet();
1355}
1356
1357/// ArgsAreStructReturn - Determines whether a function uses struct
1358/// return semantics.
1359static bool
1360ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1361  if (Ins.empty())
1362    return false;
1363
1364  return Ins[0].Flags.isSRet();
1365}
1366
1367/// IsCalleePop - Determines whether the callee is required to pop its
1368/// own arguments. Callee pop is necessary to support tail calls.
1369bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1370  if (IsVarArg)
1371    return false;
1372
1373  switch (CallingConv) {
1374  default:
1375    return false;
1376  case CallingConv::X86_StdCall:
1377    return !Subtarget->is64Bit();
1378  case CallingConv::X86_FastCall:
1379    return !Subtarget->is64Bit();
1380  case CallingConv::Fast:
1381    return GuaranteedTailCallOpt;
1382  }
1383}
1384
1385/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1386/// given CallingConvention value.
1387CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1388  if (Subtarget->is64Bit()) {
1389    if (Subtarget->isTargetWin64())
1390      return CC_X86_Win64_C;
1391    else
1392      return CC_X86_64_C;
1393  }
1394
1395  if (CC == CallingConv::X86_FastCall)
1396    return CC_X86_32_FastCall;
1397  else if (CC == CallingConv::Fast)
1398    return CC_X86_32_FastCC;
1399  else
1400    return CC_X86_32_C;
1401}
1402
1403/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1404/// by "Src" to address "Dst" with size and alignment information specified by
1405/// the specific parameter attribute. The copy will be passed as a byval
1406/// function parameter.
1407static SDValue
1408CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1409                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1410                          DebugLoc dl) {
1411  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1412  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1413                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1414}
1415
1416/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1417/// a tailcall target by changing its ABI.
1418static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1419  return GuaranteedTailCallOpt && CC == CallingConv::Fast;
1420}
1421
1422SDValue
1423X86TargetLowering::LowerMemArgument(SDValue Chain,
1424                                    CallingConv::ID CallConv,
1425                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1426                                    DebugLoc dl, SelectionDAG &DAG,
1427                                    const CCValAssign &VA,
1428                                    MachineFrameInfo *MFI,
1429                                    unsigned i) {
1430  // Create the nodes corresponding to a load from this parameter slot.
1431  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1432  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1433  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1434  EVT ValVT;
1435
1436  // If value is passed by pointer we have address passed instead of the value
1437  // itself.
1438  if (VA.getLocInfo() == CCValAssign::Indirect)
1439    ValVT = VA.getLocVT();
1440  else
1441    ValVT = VA.getValVT();
1442
1443  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1444  // changed with more analysis.
1445  // In case of tail call optimization mark all arguments mutable. Since they
1446  // could be overwritten by lowering of arguments in case of a tail call.
1447  if (Flags.isByVal()) {
1448    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1449                                    VA.getLocMemOffset(), isImmutable, false);
1450    return DAG.getFrameIndex(FI, getPointerTy());
1451  } else {
1452    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1453                                    VA.getLocMemOffset(), isImmutable, false);
1454    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1455    return DAG.getLoad(ValVT, dl, Chain, FIN,
1456                       PseudoSourceValue::getFixedStack(FI), 0,
1457                       false, false, 0);
1458  }
1459}
1460
1461SDValue
1462X86TargetLowering::LowerFormalArguments(SDValue Chain,
1463                                        CallingConv::ID CallConv,
1464                                        bool isVarArg,
1465                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1466                                        DebugLoc dl,
1467                                        SelectionDAG &DAG,
1468                                        SmallVectorImpl<SDValue> &InVals) {
1469
1470  MachineFunction &MF = DAG.getMachineFunction();
1471  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1472
1473  const Function* Fn = MF.getFunction();
1474  if (Fn->hasExternalLinkage() &&
1475      Subtarget->isTargetCygMing() &&
1476      Fn->getName() == "main")
1477    FuncInfo->setForceFramePointer(true);
1478
1479  MachineFrameInfo *MFI = MF.getFrameInfo();
1480  bool Is64Bit = Subtarget->is64Bit();
1481  bool IsWin64 = Subtarget->isTargetWin64();
1482
1483  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1484         "Var args not supported with calling convention fastcc");
1485
1486  // Assign locations to all of the incoming arguments.
1487  SmallVector<CCValAssign, 16> ArgLocs;
1488  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1489                 ArgLocs, *DAG.getContext());
1490  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1491
1492  unsigned LastVal = ~0U;
1493  SDValue ArgValue;
1494  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1495    CCValAssign &VA = ArgLocs[i];
1496    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1497    // places.
1498    assert(VA.getValNo() != LastVal &&
1499           "Don't support value assigned to multiple locs yet");
1500    LastVal = VA.getValNo();
1501
1502    if (VA.isRegLoc()) {
1503      EVT RegVT = VA.getLocVT();
1504      TargetRegisterClass *RC = NULL;
1505      if (RegVT == MVT::i32)
1506        RC = X86::GR32RegisterClass;
1507      else if (Is64Bit && RegVT == MVT::i64)
1508        RC = X86::GR64RegisterClass;
1509      else if (RegVT == MVT::f32)
1510        RC = X86::FR32RegisterClass;
1511      else if (RegVT == MVT::f64)
1512        RC = X86::FR64RegisterClass;
1513      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1514        RC = X86::VR128RegisterClass;
1515      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1516        RC = X86::VR64RegisterClass;
1517      else
1518        llvm_unreachable("Unknown argument type!");
1519
1520      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1521      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1522
1523      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1524      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1525      // right size.
1526      if (VA.getLocInfo() == CCValAssign::SExt)
1527        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1528                               DAG.getValueType(VA.getValVT()));
1529      else if (VA.getLocInfo() == CCValAssign::ZExt)
1530        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1531                               DAG.getValueType(VA.getValVT()));
1532      else if (VA.getLocInfo() == CCValAssign::BCvt)
1533        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1534
1535      if (VA.isExtInLoc()) {
1536        // Handle MMX values passed in XMM regs.
1537        if (RegVT.isVector()) {
1538          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1539                                 ArgValue, DAG.getConstant(0, MVT::i64));
1540          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1541        } else
1542          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1543      }
1544    } else {
1545      assert(VA.isMemLoc());
1546      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1547    }
1548
1549    // If value is passed via pointer - do a load.
1550    if (VA.getLocInfo() == CCValAssign::Indirect)
1551      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1552                             false, false, 0);
1553
1554    InVals.push_back(ArgValue);
1555  }
1556
1557  // The x86-64 ABI for returning structs by value requires that we copy
1558  // the sret argument into %rax for the return. Save the argument into
1559  // a virtual register so that we can access it from the return points.
1560  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1561    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1562    unsigned Reg = FuncInfo->getSRetReturnReg();
1563    if (!Reg) {
1564      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1565      FuncInfo->setSRetReturnReg(Reg);
1566    }
1567    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1568    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1569  }
1570
1571  unsigned StackSize = CCInfo.getNextStackOffset();
1572  // Align stack specially for tail calls.
1573  if (FuncIsMadeTailCallSafe(CallConv))
1574    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1575
1576  // If the function takes variable number of arguments, make a frame index for
1577  // the start of the first vararg value... for expansion of llvm.va_start.
1578  if (isVarArg) {
1579    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1580      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false);
1581    }
1582    if (Is64Bit) {
1583      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1584
1585      // FIXME: We should really autogenerate these arrays
1586      static const unsigned GPR64ArgRegsWin64[] = {
1587        X86::RCX, X86::RDX, X86::R8,  X86::R9
1588      };
1589      static const unsigned XMMArgRegsWin64[] = {
1590        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1591      };
1592      static const unsigned GPR64ArgRegs64Bit[] = {
1593        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1594      };
1595      static const unsigned XMMArgRegs64Bit[] = {
1596        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1597        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1598      };
1599      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1600
1601      if (IsWin64) {
1602        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1603        GPR64ArgRegs = GPR64ArgRegsWin64;
1604        XMMArgRegs = XMMArgRegsWin64;
1605      } else {
1606        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1607        GPR64ArgRegs = GPR64ArgRegs64Bit;
1608        XMMArgRegs = XMMArgRegs64Bit;
1609      }
1610      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1611                                                       TotalNumIntRegs);
1612      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1613                                                       TotalNumXMMRegs);
1614
1615      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1616      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1617             "SSE register cannot be used when SSE is disabled!");
1618      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1619             "SSE register cannot be used when SSE is disabled!");
1620      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1621        // Kernel mode asks for SSE to be disabled, so don't push them
1622        // on the stack.
1623        TotalNumXMMRegs = 0;
1624
1625      // For X86-64, if there are vararg parameters that are passed via
1626      // registers, then we must store them to their spots on the stack so they
1627      // may be loaded by deferencing the result of va_next.
1628      VarArgsGPOffset = NumIntRegs * 8;
1629      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1630      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1631                                                 TotalNumXMMRegs * 16, 16,
1632                                                 false);
1633
1634      // Store the integer parameter registers.
1635      SmallVector<SDValue, 8> MemOps;
1636      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1637      unsigned Offset = VarArgsGPOffset;
1638      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1639        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1640                                  DAG.getIntPtrConstant(Offset));
1641        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1642                                     X86::GR64RegisterClass);
1643        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1644        SDValue Store =
1645          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1646                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1647                       Offset, false, false, 0);
1648        MemOps.push_back(Store);
1649        Offset += 8;
1650      }
1651
1652      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1653        // Now store the XMM (fp + vector) parameter registers.
1654        SmallVector<SDValue, 11> SaveXMMOps;
1655        SaveXMMOps.push_back(Chain);
1656
1657        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1658        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1659        SaveXMMOps.push_back(ALVal);
1660
1661        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1662        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1663
1664        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1665          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1666                                       X86::VR128RegisterClass);
1667          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1668          SaveXMMOps.push_back(Val);
1669        }
1670        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1671                                     MVT::Other,
1672                                     &SaveXMMOps[0], SaveXMMOps.size()));
1673      }
1674
1675      if (!MemOps.empty())
1676        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1677                            &MemOps[0], MemOps.size());
1678    }
1679  }
1680
1681  // Some CCs need callee pop.
1682  if (IsCalleePop(isVarArg, CallConv)) {
1683    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1684  } else {
1685    BytesToPopOnReturn  = 0; // Callee pops nothing.
1686    // If this is an sret function, the return should pop the hidden pointer.
1687    if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
1688      BytesToPopOnReturn = 4;
1689  }
1690
1691  if (!Is64Bit) {
1692    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1693    if (CallConv == CallingConv::X86_FastCall)
1694      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1695  }
1696
1697  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1698
1699  return Chain;
1700}
1701
1702SDValue
1703X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1704                                    SDValue StackPtr, SDValue Arg,
1705                                    DebugLoc dl, SelectionDAG &DAG,
1706                                    const CCValAssign &VA,
1707                                    ISD::ArgFlagsTy Flags) {
1708  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1709  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1710  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1711  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1712  if (Flags.isByVal()) {
1713    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1714  }
1715  return DAG.getStore(Chain, dl, Arg, PtrOff,
1716                      PseudoSourceValue::getStack(), LocMemOffset,
1717                      false, false, 0);
1718}
1719
1720/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1721/// optimization is performed and it is required.
1722SDValue
1723X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1724                                           SDValue &OutRetAddr, SDValue Chain,
1725                                           bool IsTailCall, bool Is64Bit,
1726                                           int FPDiff, DebugLoc dl) {
1727  // Adjust the Return address stack slot.
1728  EVT VT = getPointerTy();
1729  OutRetAddr = getReturnAddressFrameIndex(DAG);
1730
1731  // Load the "old" Return address.
1732  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1733  return SDValue(OutRetAddr.getNode(), 1);
1734}
1735
1736/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1737/// optimization is performed and it is required (FPDiff!=0).
1738static SDValue
1739EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1740                         SDValue Chain, SDValue RetAddrFrIdx,
1741                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1742  // Store the return address to the appropriate stack slot.
1743  if (!FPDiff) return Chain;
1744  // Calculate the new stack slot for the return address.
1745  int SlotSize = Is64Bit ? 8 : 4;
1746  int NewReturnAddrFI =
1747    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, true,false);
1748  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1749  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1750  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1751                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1752                       false, false, 0);
1753  return Chain;
1754}
1755
1756SDValue
1757X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1758                             CallingConv::ID CallConv, bool isVarArg,
1759                             bool &isTailCall,
1760                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1761                             const SmallVectorImpl<ISD::InputArg> &Ins,
1762                             DebugLoc dl, SelectionDAG &DAG,
1763                             SmallVectorImpl<SDValue> &InVals) {
1764  MachineFunction &MF = DAG.getMachineFunction();
1765  bool Is64Bit        = Subtarget->is64Bit();
1766  bool IsStructRet    = CallIsStructReturn(Outs);
1767  bool IsSibcall      = false;
1768
1769  if (isTailCall) {
1770    // Check if it's really possible to do a tail call.
1771    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
1772                                                   Outs, Ins, DAG);
1773
1774    // Sibcalls are automatically detected tailcalls which do not require
1775    // ABI changes.
1776    if (!GuaranteedTailCallOpt && isTailCall)
1777      IsSibcall = true;
1778
1779    if (isTailCall)
1780      ++NumTailCalls;
1781  }
1782
1783  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1784         "Var args not supported with calling convention fastcc");
1785
1786  // Analyze operands of the call, assigning locations to each operand.
1787  SmallVector<CCValAssign, 16> ArgLocs;
1788  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1789                 ArgLocs, *DAG.getContext());
1790  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1791
1792  // Get a count of how many bytes are to be pushed on the stack.
1793  unsigned NumBytes = CCInfo.getNextStackOffset();
1794  if (IsSibcall)
1795    // This is a sibcall. The memory operands are available in caller's
1796    // own caller's stack.
1797    NumBytes = 0;
1798  else if (GuaranteedTailCallOpt && CallConv == CallingConv::Fast)
1799    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1800
1801  int FPDiff = 0;
1802  if (isTailCall && !IsSibcall) {
1803    // Lower arguments at fp - stackoffset + fpdiff.
1804    unsigned NumBytesCallerPushed =
1805      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1806    FPDiff = NumBytesCallerPushed - NumBytes;
1807
1808    // Set the delta of movement of the returnaddr stackslot.
1809    // But only set if delta is greater than previous delta.
1810    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1811      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1812  }
1813
1814  if (!IsSibcall)
1815    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1816
1817  SDValue RetAddrFrIdx;
1818  // Load return adress for tail calls.
1819  if (isTailCall && FPDiff)
1820    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1821                                    Is64Bit, FPDiff, dl);
1822
1823  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1824  SmallVector<SDValue, 8> MemOpChains;
1825  SDValue StackPtr;
1826
1827  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1828  // of tail call optimization arguments are handle later.
1829  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1830    CCValAssign &VA = ArgLocs[i];
1831    EVT RegVT = VA.getLocVT();
1832    SDValue Arg = Outs[i].Val;
1833    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1834    bool isByVal = Flags.isByVal();
1835
1836    // Promote the value if needed.
1837    switch (VA.getLocInfo()) {
1838    default: llvm_unreachable("Unknown loc info!");
1839    case CCValAssign::Full: break;
1840    case CCValAssign::SExt:
1841      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1842      break;
1843    case CCValAssign::ZExt:
1844      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1845      break;
1846    case CCValAssign::AExt:
1847      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1848        // Special case: passing MMX values in XMM registers.
1849        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1850        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1851        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1852      } else
1853        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1854      break;
1855    case CCValAssign::BCvt:
1856      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1857      break;
1858    case CCValAssign::Indirect: {
1859      // Store the argument.
1860      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1861      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1862      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1863                           PseudoSourceValue::getFixedStack(FI), 0,
1864                           false, false, 0);
1865      Arg = SpillSlot;
1866      break;
1867    }
1868    }
1869
1870    if (VA.isRegLoc()) {
1871      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1872    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1873      assert(VA.isMemLoc());
1874      if (StackPtr.getNode() == 0)
1875        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1876      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1877                                             dl, DAG, VA, Flags));
1878    }
1879  }
1880
1881  if (!MemOpChains.empty())
1882    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1883                        &MemOpChains[0], MemOpChains.size());
1884
1885  // Build a sequence of copy-to-reg nodes chained together with token chain
1886  // and flag operands which copy the outgoing args into registers.
1887  SDValue InFlag;
1888  // Tail call byval lowering might overwrite argument registers so in case of
1889  // tail call optimization the copies to registers are lowered later.
1890  if (!isTailCall)
1891    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1892      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1893                               RegsToPass[i].second, InFlag);
1894      InFlag = Chain.getValue(1);
1895    }
1896
1897  if (Subtarget->isPICStyleGOT()) {
1898    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1899    // GOT pointer.
1900    if (!isTailCall) {
1901      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1902                               DAG.getNode(X86ISD::GlobalBaseReg,
1903                                           DebugLoc::getUnknownLoc(),
1904                                           getPointerTy()),
1905                               InFlag);
1906      InFlag = Chain.getValue(1);
1907    } else {
1908      // If we are tail calling and generating PIC/GOT style code load the
1909      // address of the callee into ECX. The value in ecx is used as target of
1910      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1911      // for tail calls on PIC/GOT architectures. Normally we would just put the
1912      // address of GOT into ebx and then call target@PLT. But for tail calls
1913      // ebx would be restored (since ebx is callee saved) before jumping to the
1914      // target@PLT.
1915
1916      // Note: The actual moving to ECX is done further down.
1917      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1918      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1919          !G->getGlobal()->hasProtectedVisibility())
1920        Callee = LowerGlobalAddress(Callee, DAG);
1921      else if (isa<ExternalSymbolSDNode>(Callee))
1922        Callee = LowerExternalSymbol(Callee, DAG);
1923    }
1924  }
1925
1926  if (Is64Bit && isVarArg) {
1927    // From AMD64 ABI document:
1928    // For calls that may call functions that use varargs or stdargs
1929    // (prototype-less calls or calls to functions containing ellipsis (...) in
1930    // the declaration) %al is used as hidden argument to specify the number
1931    // of SSE registers used. The contents of %al do not need to match exactly
1932    // the number of registers, but must be an ubound on the number of SSE
1933    // registers used and is in the range 0 - 8 inclusive.
1934
1935    // FIXME: Verify this on Win64
1936    // Count the number of XMM registers allocated.
1937    static const unsigned XMMArgRegs[] = {
1938      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1939      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1940    };
1941    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1942    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1943           && "SSE registers cannot be used when SSE is disabled");
1944
1945    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1946                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1947    InFlag = Chain.getValue(1);
1948  }
1949
1950
1951  // For tail calls lower the arguments to the 'real' stack slot.
1952  if (isTailCall) {
1953    // Force all the incoming stack arguments to be loaded from the stack
1954    // before any new outgoing arguments are stored to the stack, because the
1955    // outgoing stack slots may alias the incoming argument stack slots, and
1956    // the alias isn't otherwise explicit. This is slightly more conservative
1957    // than necessary, because it means that each store effectively depends
1958    // on every argument instead of just those arguments it would clobber.
1959    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1960
1961    SmallVector<SDValue, 8> MemOpChains2;
1962    SDValue FIN;
1963    int FI = 0;
1964    // Do not flag preceeding copytoreg stuff together with the following stuff.
1965    InFlag = SDValue();
1966    if (GuaranteedTailCallOpt) {
1967      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1968        CCValAssign &VA = ArgLocs[i];
1969        if (VA.isRegLoc())
1970          continue;
1971        assert(VA.isMemLoc());
1972        SDValue Arg = Outs[i].Val;
1973        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1974        // Create frame index.
1975        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1976        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1977        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
1978        FIN = DAG.getFrameIndex(FI, getPointerTy());
1979
1980        if (Flags.isByVal()) {
1981          // Copy relative to framepointer.
1982          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1983          if (StackPtr.getNode() == 0)
1984            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1985                                          getPointerTy());
1986          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1987
1988          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
1989                                                           ArgChain,
1990                                                           Flags, DAG, dl));
1991        } else {
1992          // Store relative to framepointer.
1993          MemOpChains2.push_back(
1994            DAG.getStore(ArgChain, dl, Arg, FIN,
1995                         PseudoSourceValue::getFixedStack(FI), 0,
1996                         false, false, 0));
1997        }
1998      }
1999    }
2000
2001    if (!MemOpChains2.empty())
2002      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2003                          &MemOpChains2[0], MemOpChains2.size());
2004
2005    // Copy arguments to their registers.
2006    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2007      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2008                               RegsToPass[i].second, InFlag);
2009      InFlag = Chain.getValue(1);
2010    }
2011    InFlag =SDValue();
2012
2013    // Store the return address to the appropriate stack slot.
2014    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2015                                     FPDiff, dl);
2016  }
2017
2018  bool WasGlobalOrExternal = false;
2019  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2020    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2021    // In the 64-bit large code model, we have to make all calls
2022    // through a register, since the call instruction's 32-bit
2023    // pc-relative offset may not be large enough to hold the whole
2024    // address.
2025  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2026    WasGlobalOrExternal = true;
2027    // If the callee is a GlobalAddress node (quite common, every direct call
2028    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2029    // it.
2030
2031    // We should use extra load for direct calls to dllimported functions in
2032    // non-JIT mode.
2033    GlobalValue *GV = G->getGlobal();
2034    if (!GV->hasDLLImportLinkage()) {
2035      unsigned char OpFlags = 0;
2036
2037      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2038      // external symbols most go through the PLT in PIC mode.  If the symbol
2039      // has hidden or protected visibility, or if it is static or local, then
2040      // we don't need to use the PLT - we can directly call it.
2041      if (Subtarget->isTargetELF() &&
2042          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2043          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2044        OpFlags = X86II::MO_PLT;
2045      } else if (Subtarget->isPICStyleStubAny() &&
2046               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2047               Subtarget->getDarwinVers() < 9) {
2048        // PC-relative references to external symbols should go through $stub,
2049        // unless we're building with the leopard linker or later, which
2050        // automatically synthesizes these stubs.
2051        OpFlags = X86II::MO_DARWIN_STUB;
2052      }
2053
2054      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
2055                                          G->getOffset(), OpFlags);
2056    }
2057  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2058    WasGlobalOrExternal = true;
2059    unsigned char OpFlags = 0;
2060
2061    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2062    // symbols should go through the PLT.
2063    if (Subtarget->isTargetELF() &&
2064        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2065      OpFlags = X86II::MO_PLT;
2066    } else if (Subtarget->isPICStyleStubAny() &&
2067             Subtarget->getDarwinVers() < 9) {
2068      // PC-relative references to external symbols should go through $stub,
2069      // unless we're building with the leopard linker or later, which
2070      // automatically synthesizes these stubs.
2071      OpFlags = X86II::MO_DARWIN_STUB;
2072    }
2073
2074    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2075                                         OpFlags);
2076  }
2077
2078  if (isTailCall && !WasGlobalOrExternal) {
2079    // Force the address into a (call preserved) caller-saved register since
2080    // tailcall must happen after callee-saved registers are poped.
2081    // FIXME: Give it a special register class that contains caller-saved
2082    // register instead?
2083    unsigned TCReg = Is64Bit ? X86::R11 : X86::EAX;
2084    Chain = DAG.getCopyToReg(Chain,  dl,
2085                             DAG.getRegister(TCReg, getPointerTy()),
2086                             Callee,InFlag);
2087    Callee = DAG.getRegister(TCReg, getPointerTy());
2088  }
2089
2090  // Returns a chain & a flag for retval copy to use.
2091  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2092  SmallVector<SDValue, 8> Ops;
2093
2094  if (!IsSibcall && isTailCall) {
2095    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2096                           DAG.getIntPtrConstant(0, true), InFlag);
2097    InFlag = Chain.getValue(1);
2098  }
2099
2100  Ops.push_back(Chain);
2101  Ops.push_back(Callee);
2102
2103  if (isTailCall)
2104    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2105
2106  // Add argument registers to the end of the list so that they are known live
2107  // into the call.
2108  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2109    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2110                                  RegsToPass[i].second.getValueType()));
2111
2112  // Add an implicit use GOT pointer in EBX.
2113  if (!isTailCall && Subtarget->isPICStyleGOT())
2114    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2115
2116  // Add an implicit use of AL for x86 vararg functions.
2117  if (Is64Bit && isVarArg)
2118    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2119
2120  if (InFlag.getNode())
2121    Ops.push_back(InFlag);
2122
2123  if (isTailCall) {
2124    // If this is the first return lowered for this function, add the regs
2125    // to the liveout set for the function.
2126    if (MF.getRegInfo().liveout_empty()) {
2127      SmallVector<CCValAssign, 16> RVLocs;
2128      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2129                     *DAG.getContext());
2130      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2131      for (unsigned i = 0; i != RVLocs.size(); ++i)
2132        if (RVLocs[i].isRegLoc())
2133          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2134    }
2135
2136    assert(((Callee.getOpcode() == ISD::Register &&
2137               (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
2138                cast<RegisterSDNode>(Callee)->getReg() == X86::R11)) ||
2139              Callee.getOpcode() == ISD::TargetExternalSymbol ||
2140              Callee.getOpcode() == ISD::TargetGlobalAddress) &&
2141           "Expecting a global address, external symbol, or scratch register");
2142
2143    return DAG.getNode(X86ISD::TC_RETURN, dl,
2144                       NodeTys, &Ops[0], Ops.size());
2145  }
2146
2147  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2148  InFlag = Chain.getValue(1);
2149
2150  // Create the CALLSEQ_END node.
2151  unsigned NumBytesForCalleeToPush;
2152  if (IsCalleePop(isVarArg, CallConv))
2153    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2154  else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
2155    // If this is a call to a struct-return function, the callee
2156    // pops the hidden struct pointer, so we have to push it back.
2157    // This is common for Darwin/X86, Linux & Mingw32 targets.
2158    NumBytesForCalleeToPush = 4;
2159  else
2160    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2161
2162  // Returns a flag for retval copy to use.
2163  if (!IsSibcall) {
2164    Chain = DAG.getCALLSEQ_END(Chain,
2165                               DAG.getIntPtrConstant(NumBytes, true),
2166                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2167                                                     true),
2168                               InFlag);
2169    InFlag = Chain.getValue(1);
2170  }
2171
2172  // Handle result values, copying them out of physregs into vregs that we
2173  // return.
2174  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2175                         Ins, dl, DAG, InVals);
2176}
2177
2178
2179//===----------------------------------------------------------------------===//
2180//                Fast Calling Convention (tail call) implementation
2181//===----------------------------------------------------------------------===//
2182
2183//  Like std call, callee cleans arguments, convention except that ECX is
2184//  reserved for storing the tail called function address. Only 2 registers are
2185//  free for argument passing (inreg). Tail call optimization is performed
2186//  provided:
2187//                * tailcallopt is enabled
2188//                * caller/callee are fastcc
2189//  On X86_64 architecture with GOT-style position independent code only local
2190//  (within module) calls are supported at the moment.
2191//  To keep the stack aligned according to platform abi the function
2192//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2193//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2194//  If a tail called function callee has more arguments than the caller the
2195//  caller needs to make sure that there is room to move the RETADDR to. This is
2196//  achieved by reserving an area the size of the argument delta right after the
2197//  original REtADDR, but before the saved framepointer or the spilled registers
2198//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2199//  stack layout:
2200//    arg1
2201//    arg2
2202//    RETADDR
2203//    [ new RETADDR
2204//      move area ]
2205//    (possible EBP)
2206//    ESI
2207//    EDI
2208//    local1 ..
2209
2210/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2211/// for a 16 byte align requirement.
2212unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2213                                                        SelectionDAG& DAG) {
2214  MachineFunction &MF = DAG.getMachineFunction();
2215  const TargetMachine &TM = MF.getTarget();
2216  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2217  unsigned StackAlignment = TFI.getStackAlignment();
2218  uint64_t AlignMask = StackAlignment - 1;
2219  int64_t Offset = StackSize;
2220  uint64_t SlotSize = TD->getPointerSize();
2221  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2222    // Number smaller than 12 so just add the difference.
2223    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2224  } else {
2225    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2226    Offset = ((~AlignMask) & Offset) + StackAlignment +
2227      (StackAlignment-SlotSize);
2228  }
2229  return Offset;
2230}
2231
2232/// MatchingStackOffset - Return true if the given stack call argument is
2233/// already available in the same position (relatively) of the caller's
2234/// incoming argument stack.
2235static
2236bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2237                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2238                         const X86InstrInfo *TII) {
2239  int FI;
2240  if (Arg.getOpcode() == ISD::CopyFromReg) {
2241    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2242    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2243      return false;
2244    MachineInstr *Def = MRI->getVRegDef(VR);
2245    if (!Def)
2246      return false;
2247    if (!Flags.isByVal()) {
2248      if (!TII->isLoadFromStackSlot(Def, FI))
2249        return false;
2250    } else {
2251      unsigned Opcode = Def->getOpcode();
2252      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2253          Def->getOperand(1).isFI()) {
2254        FI = Def->getOperand(1).getIndex();
2255        if (MFI->getObjectSize(FI) != Flags.getByValSize())
2256          return false;
2257      } else
2258        return false;
2259    }
2260  } else {
2261    LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg);
2262    if (!Ld)
2263      return false;
2264    SDValue Ptr = Ld->getBasePtr();
2265    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2266    if (!FINode)
2267      return false;
2268    FI = FINode->getIndex();
2269  }
2270
2271  if (!MFI->isFixedObjectIndex(FI))
2272    return false;
2273  return Offset == MFI->getObjectOffset(FI);
2274}
2275
2276/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2277/// for tail call optimization. Targets which want to do tail call
2278/// optimization should implement this function.
2279bool
2280X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2281                                                     CallingConv::ID CalleeCC,
2282                                                     bool isVarArg,
2283                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2284                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2285                                                     SelectionDAG& DAG) const {
2286  if (CalleeCC != CallingConv::Fast &&
2287      CalleeCC != CallingConv::C)
2288    return false;
2289
2290  // If -tailcallopt is specified, make fastcc functions tail-callable.
2291  const Function *CallerF = DAG.getMachineFunction().getFunction();
2292  if (GuaranteedTailCallOpt) {
2293    if (CalleeCC == CallingConv::Fast &&
2294        CallerF->getCallingConv() == CalleeCC)
2295      return true;
2296    return false;
2297  }
2298
2299  // Look for obvious safe cases to perform tail call optimization that does not
2300  // requite ABI changes. This is what gcc calls sibcall.
2301
2302  // Do not tail call optimize vararg calls for now.
2303  if (isVarArg)
2304    return false;
2305
2306  // If the callee takes no arguments then go on to check the results of the
2307  // call.
2308  if (!Outs.empty()) {
2309    // Check if stack adjustment is needed. For now, do not do this if any
2310    // argument is passed on the stack.
2311    SmallVector<CCValAssign, 16> ArgLocs;
2312    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2313                   ArgLocs, *DAG.getContext());
2314    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2315    if (CCInfo.getNextStackOffset()) {
2316      MachineFunction &MF = DAG.getMachineFunction();
2317      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2318        return false;
2319      if (Subtarget->isTargetWin64())
2320        // Win64 ABI has additional complications.
2321        return false;
2322
2323      // Check if the arguments are already laid out in the right way as
2324      // the caller's fixed stack objects.
2325      MachineFrameInfo *MFI = MF.getFrameInfo();
2326      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2327      const X86InstrInfo *TII =
2328        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2329      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2330        CCValAssign &VA = ArgLocs[i];
2331        EVT RegVT = VA.getLocVT();
2332        SDValue Arg = Outs[i].Val;
2333        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2334        if (VA.getLocInfo() == CCValAssign::Indirect)
2335          return false;
2336        if (!VA.isRegLoc()) {
2337          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2338                                   MFI, MRI, TII))
2339            return false;
2340        }
2341      }
2342    }
2343  }
2344
2345  return true;
2346}
2347
2348FastISel *
2349X86TargetLowering::createFastISel(MachineFunction &mf, MachineModuleInfo *mmo,
2350                            DwarfWriter *dw,
2351                            DenseMap<const Value *, unsigned> &vm,
2352                            DenseMap<const BasicBlock*, MachineBasicBlock*> &bm,
2353                            DenseMap<const AllocaInst *, int> &am
2354#ifndef NDEBUG
2355                          , SmallSet<Instruction*, 8> &cil
2356#endif
2357                                  ) {
2358  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2359#ifndef NDEBUG
2360                             , cil
2361#endif
2362                             );
2363}
2364
2365
2366//===----------------------------------------------------------------------===//
2367//                           Other Lowering Hooks
2368//===----------------------------------------------------------------------===//
2369
2370
2371SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2372  MachineFunction &MF = DAG.getMachineFunction();
2373  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2374  int ReturnAddrIndex = FuncInfo->getRAIndex();
2375
2376  if (ReturnAddrIndex == 0) {
2377    // Set up a frame object for the return address.
2378    uint64_t SlotSize = TD->getPointerSize();
2379    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2380                                                           true, false);
2381    FuncInfo->setRAIndex(ReturnAddrIndex);
2382  }
2383
2384  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2385}
2386
2387
2388bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2389                                       bool hasSymbolicDisplacement) {
2390  // Offset should fit into 32 bit immediate field.
2391  if (!isInt32(Offset))
2392    return false;
2393
2394  // If we don't have a symbolic displacement - we don't have any extra
2395  // restrictions.
2396  if (!hasSymbolicDisplacement)
2397    return true;
2398
2399  // FIXME: Some tweaks might be needed for medium code model.
2400  if (M != CodeModel::Small && M != CodeModel::Kernel)
2401    return false;
2402
2403  // For small code model we assume that latest object is 16MB before end of 31
2404  // bits boundary. We may also accept pretty large negative constants knowing
2405  // that all objects are in the positive half of address space.
2406  if (M == CodeModel::Small && Offset < 16*1024*1024)
2407    return true;
2408
2409  // For kernel code model we know that all object resist in the negative half
2410  // of 32bits address space. We may not accept negative offsets, since they may
2411  // be just off and we may accept pretty large positive ones.
2412  if (M == CodeModel::Kernel && Offset > 0)
2413    return true;
2414
2415  return false;
2416}
2417
2418/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2419/// specific condition code, returning the condition code and the LHS/RHS of the
2420/// comparison to make.
2421static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2422                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2423  if (!isFP) {
2424    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2425      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2426        // X > -1   -> X == 0, jump !sign.
2427        RHS = DAG.getConstant(0, RHS.getValueType());
2428        return X86::COND_NS;
2429      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2430        // X < 0   -> X == 0, jump on sign.
2431        return X86::COND_S;
2432      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2433        // X < 1   -> X <= 0
2434        RHS = DAG.getConstant(0, RHS.getValueType());
2435        return X86::COND_LE;
2436      }
2437    }
2438
2439    switch (SetCCOpcode) {
2440    default: llvm_unreachable("Invalid integer condition!");
2441    case ISD::SETEQ:  return X86::COND_E;
2442    case ISD::SETGT:  return X86::COND_G;
2443    case ISD::SETGE:  return X86::COND_GE;
2444    case ISD::SETLT:  return X86::COND_L;
2445    case ISD::SETLE:  return X86::COND_LE;
2446    case ISD::SETNE:  return X86::COND_NE;
2447    case ISD::SETULT: return X86::COND_B;
2448    case ISD::SETUGT: return X86::COND_A;
2449    case ISD::SETULE: return X86::COND_BE;
2450    case ISD::SETUGE: return X86::COND_AE;
2451    }
2452  }
2453
2454  // First determine if it is required or is profitable to flip the operands.
2455
2456  // If LHS is a foldable load, but RHS is not, flip the condition.
2457  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2458      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2459    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2460    std::swap(LHS, RHS);
2461  }
2462
2463  switch (SetCCOpcode) {
2464  default: break;
2465  case ISD::SETOLT:
2466  case ISD::SETOLE:
2467  case ISD::SETUGT:
2468  case ISD::SETUGE:
2469    std::swap(LHS, RHS);
2470    break;
2471  }
2472
2473  // On a floating point condition, the flags are set as follows:
2474  // ZF  PF  CF   op
2475  //  0 | 0 | 0 | X > Y
2476  //  0 | 0 | 1 | X < Y
2477  //  1 | 0 | 0 | X == Y
2478  //  1 | 1 | 1 | unordered
2479  switch (SetCCOpcode) {
2480  default: llvm_unreachable("Condcode should be pre-legalized away");
2481  case ISD::SETUEQ:
2482  case ISD::SETEQ:   return X86::COND_E;
2483  case ISD::SETOLT:              // flipped
2484  case ISD::SETOGT:
2485  case ISD::SETGT:   return X86::COND_A;
2486  case ISD::SETOLE:              // flipped
2487  case ISD::SETOGE:
2488  case ISD::SETGE:   return X86::COND_AE;
2489  case ISD::SETUGT:              // flipped
2490  case ISD::SETULT:
2491  case ISD::SETLT:   return X86::COND_B;
2492  case ISD::SETUGE:              // flipped
2493  case ISD::SETULE:
2494  case ISD::SETLE:   return X86::COND_BE;
2495  case ISD::SETONE:
2496  case ISD::SETNE:   return X86::COND_NE;
2497  case ISD::SETUO:   return X86::COND_P;
2498  case ISD::SETO:    return X86::COND_NP;
2499  case ISD::SETOEQ:
2500  case ISD::SETUNE:  return X86::COND_INVALID;
2501  }
2502}
2503
2504/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2505/// code. Current x86 isa includes the following FP cmov instructions:
2506/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2507static bool hasFPCMov(unsigned X86CC) {
2508  switch (X86CC) {
2509  default:
2510    return false;
2511  case X86::COND_B:
2512  case X86::COND_BE:
2513  case X86::COND_E:
2514  case X86::COND_P:
2515  case X86::COND_A:
2516  case X86::COND_AE:
2517  case X86::COND_NE:
2518  case X86::COND_NP:
2519    return true;
2520  }
2521}
2522
2523/// isFPImmLegal - Returns true if the target can instruction select the
2524/// specified FP immediate natively. If false, the legalizer will
2525/// materialize the FP immediate as a load from a constant pool.
2526bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2527  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2528    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2529      return true;
2530  }
2531  return false;
2532}
2533
2534/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2535/// the specified range (L, H].
2536static bool isUndefOrInRange(int Val, int Low, int Hi) {
2537  return (Val < 0) || (Val >= Low && Val < Hi);
2538}
2539
2540/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2541/// specified value.
2542static bool isUndefOrEqual(int Val, int CmpVal) {
2543  if (Val < 0 || Val == CmpVal)
2544    return true;
2545  return false;
2546}
2547
2548/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2549/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2550/// the second operand.
2551static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2552  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2553    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2554  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2555    return (Mask[0] < 2 && Mask[1] < 2);
2556  return false;
2557}
2558
2559bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2560  SmallVector<int, 8> M;
2561  N->getMask(M);
2562  return ::isPSHUFDMask(M, N->getValueType(0));
2563}
2564
2565/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2566/// is suitable for input to PSHUFHW.
2567static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2568  if (VT != MVT::v8i16)
2569    return false;
2570
2571  // Lower quadword copied in order or undef.
2572  for (int i = 0; i != 4; ++i)
2573    if (Mask[i] >= 0 && Mask[i] != i)
2574      return false;
2575
2576  // Upper quadword shuffled.
2577  for (int i = 4; i != 8; ++i)
2578    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2579      return false;
2580
2581  return true;
2582}
2583
2584bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2585  SmallVector<int, 8> M;
2586  N->getMask(M);
2587  return ::isPSHUFHWMask(M, N->getValueType(0));
2588}
2589
2590/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2591/// is suitable for input to PSHUFLW.
2592static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2593  if (VT != MVT::v8i16)
2594    return false;
2595
2596  // Upper quadword copied in order.
2597  for (int i = 4; i != 8; ++i)
2598    if (Mask[i] >= 0 && Mask[i] != i)
2599      return false;
2600
2601  // Lower quadword shuffled.
2602  for (int i = 0; i != 4; ++i)
2603    if (Mask[i] >= 4)
2604      return false;
2605
2606  return true;
2607}
2608
2609bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2610  SmallVector<int, 8> M;
2611  N->getMask(M);
2612  return ::isPSHUFLWMask(M, N->getValueType(0));
2613}
2614
2615/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2616/// is suitable for input to PALIGNR.
2617static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2618                          bool hasSSSE3) {
2619  int i, e = VT.getVectorNumElements();
2620
2621  // Do not handle v2i64 / v2f64 shuffles with palignr.
2622  if (e < 4 || !hasSSSE3)
2623    return false;
2624
2625  for (i = 0; i != e; ++i)
2626    if (Mask[i] >= 0)
2627      break;
2628
2629  // All undef, not a palignr.
2630  if (i == e)
2631    return false;
2632
2633  // Determine if it's ok to perform a palignr with only the LHS, since we
2634  // don't have access to the actual shuffle elements to see if RHS is undef.
2635  bool Unary = Mask[i] < (int)e;
2636  bool NeedsUnary = false;
2637
2638  int s = Mask[i] - i;
2639
2640  // Check the rest of the elements to see if they are consecutive.
2641  for (++i; i != e; ++i) {
2642    int m = Mask[i];
2643    if (m < 0)
2644      continue;
2645
2646    Unary = Unary && (m < (int)e);
2647    NeedsUnary = NeedsUnary || (m < s);
2648
2649    if (NeedsUnary && !Unary)
2650      return false;
2651    if (Unary && m != ((s+i) & (e-1)))
2652      return false;
2653    if (!Unary && m != (s+i))
2654      return false;
2655  }
2656  return true;
2657}
2658
2659bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2660  SmallVector<int, 8> M;
2661  N->getMask(M);
2662  return ::isPALIGNRMask(M, N->getValueType(0), true);
2663}
2664
2665/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2666/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2667static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2668  int NumElems = VT.getVectorNumElements();
2669  if (NumElems != 2 && NumElems != 4)
2670    return false;
2671
2672  int Half = NumElems / 2;
2673  for (int i = 0; i < Half; ++i)
2674    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2675      return false;
2676  for (int i = Half; i < NumElems; ++i)
2677    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2678      return false;
2679
2680  return true;
2681}
2682
2683bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2684  SmallVector<int, 8> M;
2685  N->getMask(M);
2686  return ::isSHUFPMask(M, N->getValueType(0));
2687}
2688
2689/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2690/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2691/// half elements to come from vector 1 (which would equal the dest.) and
2692/// the upper half to come from vector 2.
2693static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2694  int NumElems = VT.getVectorNumElements();
2695
2696  if (NumElems != 2 && NumElems != 4)
2697    return false;
2698
2699  int Half = NumElems / 2;
2700  for (int i = 0; i < Half; ++i)
2701    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2702      return false;
2703  for (int i = Half; i < NumElems; ++i)
2704    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2705      return false;
2706  return true;
2707}
2708
2709static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2710  SmallVector<int, 8> M;
2711  N->getMask(M);
2712  return isCommutedSHUFPMask(M, N->getValueType(0));
2713}
2714
2715/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2716/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2717bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2718  if (N->getValueType(0).getVectorNumElements() != 4)
2719    return false;
2720
2721  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2722  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2723         isUndefOrEqual(N->getMaskElt(1), 7) &&
2724         isUndefOrEqual(N->getMaskElt(2), 2) &&
2725         isUndefOrEqual(N->getMaskElt(3), 3);
2726}
2727
2728/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2729/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2730/// <2, 3, 2, 3>
2731bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2732  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2733
2734  if (NumElems != 4)
2735    return false;
2736
2737  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2738  isUndefOrEqual(N->getMaskElt(1), 3) &&
2739  isUndefOrEqual(N->getMaskElt(2), 2) &&
2740  isUndefOrEqual(N->getMaskElt(3), 3);
2741}
2742
2743/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2744/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2745bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2746  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2747
2748  if (NumElems != 2 && NumElems != 4)
2749    return false;
2750
2751  for (unsigned i = 0; i < NumElems/2; ++i)
2752    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2753      return false;
2754
2755  for (unsigned i = NumElems/2; i < NumElems; ++i)
2756    if (!isUndefOrEqual(N->getMaskElt(i), i))
2757      return false;
2758
2759  return true;
2760}
2761
2762/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2763/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2764bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2765  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2766
2767  if (NumElems != 2 && NumElems != 4)
2768    return false;
2769
2770  for (unsigned i = 0; i < NumElems/2; ++i)
2771    if (!isUndefOrEqual(N->getMaskElt(i), i))
2772      return false;
2773
2774  for (unsigned i = 0; i < NumElems/2; ++i)
2775    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2776      return false;
2777
2778  return true;
2779}
2780
2781/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2782/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2783static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2784                         bool V2IsSplat = false) {
2785  int NumElts = VT.getVectorNumElements();
2786  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2787    return false;
2788
2789  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2790    int BitI  = Mask[i];
2791    int BitI1 = Mask[i+1];
2792    if (!isUndefOrEqual(BitI, j))
2793      return false;
2794    if (V2IsSplat) {
2795      if (!isUndefOrEqual(BitI1, NumElts))
2796        return false;
2797    } else {
2798      if (!isUndefOrEqual(BitI1, j + NumElts))
2799        return false;
2800    }
2801  }
2802  return true;
2803}
2804
2805bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2806  SmallVector<int, 8> M;
2807  N->getMask(M);
2808  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2809}
2810
2811/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2812/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2813static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2814                         bool V2IsSplat = false) {
2815  int NumElts = VT.getVectorNumElements();
2816  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2817    return false;
2818
2819  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2820    int BitI  = Mask[i];
2821    int BitI1 = Mask[i+1];
2822    if (!isUndefOrEqual(BitI, j + NumElts/2))
2823      return false;
2824    if (V2IsSplat) {
2825      if (isUndefOrEqual(BitI1, NumElts))
2826        return false;
2827    } else {
2828      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2829        return false;
2830    }
2831  }
2832  return true;
2833}
2834
2835bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2836  SmallVector<int, 8> M;
2837  N->getMask(M);
2838  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2839}
2840
2841/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2842/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2843/// <0, 0, 1, 1>
2844static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2845  int NumElems = VT.getVectorNumElements();
2846  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2847    return false;
2848
2849  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2850    int BitI  = Mask[i];
2851    int BitI1 = Mask[i+1];
2852    if (!isUndefOrEqual(BitI, j))
2853      return false;
2854    if (!isUndefOrEqual(BitI1, j))
2855      return false;
2856  }
2857  return true;
2858}
2859
2860bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2861  SmallVector<int, 8> M;
2862  N->getMask(M);
2863  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2864}
2865
2866/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2867/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2868/// <2, 2, 3, 3>
2869static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2870  int NumElems = VT.getVectorNumElements();
2871  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2872    return false;
2873
2874  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2875    int BitI  = Mask[i];
2876    int BitI1 = Mask[i+1];
2877    if (!isUndefOrEqual(BitI, j))
2878      return false;
2879    if (!isUndefOrEqual(BitI1, j))
2880      return false;
2881  }
2882  return true;
2883}
2884
2885bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2886  SmallVector<int, 8> M;
2887  N->getMask(M);
2888  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2889}
2890
2891/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2892/// specifies a shuffle of elements that is suitable for input to MOVSS,
2893/// MOVSD, and MOVD, i.e. setting the lowest element.
2894static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2895  if (VT.getVectorElementType().getSizeInBits() < 32)
2896    return false;
2897
2898  int NumElts = VT.getVectorNumElements();
2899
2900  if (!isUndefOrEqual(Mask[0], NumElts))
2901    return false;
2902
2903  for (int i = 1; i < NumElts; ++i)
2904    if (!isUndefOrEqual(Mask[i], i))
2905      return false;
2906
2907  return true;
2908}
2909
2910bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2911  SmallVector<int, 8> M;
2912  N->getMask(M);
2913  return ::isMOVLMask(M, N->getValueType(0));
2914}
2915
2916/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2917/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2918/// element of vector 2 and the other elements to come from vector 1 in order.
2919static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2920                               bool V2IsSplat = false, bool V2IsUndef = false) {
2921  int NumOps = VT.getVectorNumElements();
2922  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2923    return false;
2924
2925  if (!isUndefOrEqual(Mask[0], 0))
2926    return false;
2927
2928  for (int i = 1; i < NumOps; ++i)
2929    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2930          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2931          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2932      return false;
2933
2934  return true;
2935}
2936
2937static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2938                           bool V2IsUndef = false) {
2939  SmallVector<int, 8> M;
2940  N->getMask(M);
2941  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2942}
2943
2944/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2945/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2946bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2947  if (N->getValueType(0).getVectorNumElements() != 4)
2948    return false;
2949
2950  // Expect 1, 1, 3, 3
2951  for (unsigned i = 0; i < 2; ++i) {
2952    int Elt = N->getMaskElt(i);
2953    if (Elt >= 0 && Elt != 1)
2954      return false;
2955  }
2956
2957  bool HasHi = false;
2958  for (unsigned i = 2; i < 4; ++i) {
2959    int Elt = N->getMaskElt(i);
2960    if (Elt >= 0 && Elt != 3)
2961      return false;
2962    if (Elt == 3)
2963      HasHi = true;
2964  }
2965  // Don't use movshdup if it can be done with a shufps.
2966  // FIXME: verify that matching u, u, 3, 3 is what we want.
2967  return HasHi;
2968}
2969
2970/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2971/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2972bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2973  if (N->getValueType(0).getVectorNumElements() != 4)
2974    return false;
2975
2976  // Expect 0, 0, 2, 2
2977  for (unsigned i = 0; i < 2; ++i)
2978    if (N->getMaskElt(i) > 0)
2979      return false;
2980
2981  bool HasHi = false;
2982  for (unsigned i = 2; i < 4; ++i) {
2983    int Elt = N->getMaskElt(i);
2984    if (Elt >= 0 && Elt != 2)
2985      return false;
2986    if (Elt == 2)
2987      HasHi = true;
2988  }
2989  // Don't use movsldup if it can be done with a shufps.
2990  return HasHi;
2991}
2992
2993/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2994/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2995bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2996  int e = N->getValueType(0).getVectorNumElements() / 2;
2997
2998  for (int i = 0; i < e; ++i)
2999    if (!isUndefOrEqual(N->getMaskElt(i), i))
3000      return false;
3001  for (int i = 0; i < e; ++i)
3002    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3003      return false;
3004  return true;
3005}
3006
3007/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3008/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3009unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3010  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3011  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3012
3013  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3014  unsigned Mask = 0;
3015  for (int i = 0; i < NumOperands; ++i) {
3016    int Val = SVOp->getMaskElt(NumOperands-i-1);
3017    if (Val < 0) Val = 0;
3018    if (Val >= NumOperands) Val -= NumOperands;
3019    Mask |= Val;
3020    if (i != NumOperands - 1)
3021      Mask <<= Shift;
3022  }
3023  return Mask;
3024}
3025
3026/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3027/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3028unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3029  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3030  unsigned Mask = 0;
3031  // 8 nodes, but we only care about the last 4.
3032  for (unsigned i = 7; i >= 4; --i) {
3033    int Val = SVOp->getMaskElt(i);
3034    if (Val >= 0)
3035      Mask |= (Val - 4);
3036    if (i != 4)
3037      Mask <<= 2;
3038  }
3039  return Mask;
3040}
3041
3042/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3043/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3044unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3045  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3046  unsigned Mask = 0;
3047  // 8 nodes, but we only care about the first 4.
3048  for (int i = 3; i >= 0; --i) {
3049    int Val = SVOp->getMaskElt(i);
3050    if (Val >= 0)
3051      Mask |= Val;
3052    if (i != 0)
3053      Mask <<= 2;
3054  }
3055  return Mask;
3056}
3057
3058/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3059/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3060unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3061  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3062  EVT VVT = N->getValueType(0);
3063  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3064  int Val = 0;
3065
3066  unsigned i, e;
3067  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3068    Val = SVOp->getMaskElt(i);
3069    if (Val >= 0)
3070      break;
3071  }
3072  return (Val - i) * EltSize;
3073}
3074
3075/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3076/// constant +0.0.
3077bool X86::isZeroNode(SDValue Elt) {
3078  return ((isa<ConstantSDNode>(Elt) &&
3079           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
3080          (isa<ConstantFPSDNode>(Elt) &&
3081           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3082}
3083
3084/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3085/// their permute mask.
3086static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3087                                    SelectionDAG &DAG) {
3088  EVT VT = SVOp->getValueType(0);
3089  unsigned NumElems = VT.getVectorNumElements();
3090  SmallVector<int, 8> MaskVec;
3091
3092  for (unsigned i = 0; i != NumElems; ++i) {
3093    int idx = SVOp->getMaskElt(i);
3094    if (idx < 0)
3095      MaskVec.push_back(idx);
3096    else if (idx < (int)NumElems)
3097      MaskVec.push_back(idx + NumElems);
3098    else
3099      MaskVec.push_back(idx - NumElems);
3100  }
3101  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3102                              SVOp->getOperand(0), &MaskVec[0]);
3103}
3104
3105/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3106/// the two vector operands have swapped position.
3107static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3108  unsigned NumElems = VT.getVectorNumElements();
3109  for (unsigned i = 0; i != NumElems; ++i) {
3110    int idx = Mask[i];
3111    if (idx < 0)
3112      continue;
3113    else if (idx < (int)NumElems)
3114      Mask[i] = idx + NumElems;
3115    else
3116      Mask[i] = idx - NumElems;
3117  }
3118}
3119
3120/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3121/// match movhlps. The lower half elements should come from upper half of
3122/// V1 (and in order), and the upper half elements should come from the upper
3123/// half of V2 (and in order).
3124static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3125  if (Op->getValueType(0).getVectorNumElements() != 4)
3126    return false;
3127  for (unsigned i = 0, e = 2; i != e; ++i)
3128    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3129      return false;
3130  for (unsigned i = 2; i != 4; ++i)
3131    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3132      return false;
3133  return true;
3134}
3135
3136/// isScalarLoadToVector - Returns true if the node is a scalar load that
3137/// is promoted to a vector. It also returns the LoadSDNode by reference if
3138/// required.
3139static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3140  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3141    return false;
3142  N = N->getOperand(0).getNode();
3143  if (!ISD::isNON_EXTLoad(N))
3144    return false;
3145  if (LD)
3146    *LD = cast<LoadSDNode>(N);
3147  return true;
3148}
3149
3150/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3151/// match movlp{s|d}. The lower half elements should come from lower half of
3152/// V1 (and in order), and the upper half elements should come from the upper
3153/// half of V2 (and in order). And since V1 will become the source of the
3154/// MOVLP, it must be either a vector load or a scalar load to vector.
3155static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3156                               ShuffleVectorSDNode *Op) {
3157  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3158    return false;
3159  // Is V2 is a vector load, don't do this transformation. We will try to use
3160  // load folding shufps op.
3161  if (ISD::isNON_EXTLoad(V2))
3162    return false;
3163
3164  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3165
3166  if (NumElems != 2 && NumElems != 4)
3167    return false;
3168  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3169    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3170      return false;
3171  for (unsigned i = NumElems/2; i != NumElems; ++i)
3172    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3173      return false;
3174  return true;
3175}
3176
3177/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3178/// all the same.
3179static bool isSplatVector(SDNode *N) {
3180  if (N->getOpcode() != ISD::BUILD_VECTOR)
3181    return false;
3182
3183  SDValue SplatValue = N->getOperand(0);
3184  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3185    if (N->getOperand(i) != SplatValue)
3186      return false;
3187  return true;
3188}
3189
3190/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3191/// to an zero vector.
3192/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3193static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3194  SDValue V1 = N->getOperand(0);
3195  SDValue V2 = N->getOperand(1);
3196  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3197  for (unsigned i = 0; i != NumElems; ++i) {
3198    int Idx = N->getMaskElt(i);
3199    if (Idx >= (int)NumElems) {
3200      unsigned Opc = V2.getOpcode();
3201      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3202        continue;
3203      if (Opc != ISD::BUILD_VECTOR ||
3204          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3205        return false;
3206    } else if (Idx >= 0) {
3207      unsigned Opc = V1.getOpcode();
3208      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3209        continue;
3210      if (Opc != ISD::BUILD_VECTOR ||
3211          !X86::isZeroNode(V1.getOperand(Idx)))
3212        return false;
3213    }
3214  }
3215  return true;
3216}
3217
3218/// getZeroVector - Returns a vector of specified type with all zero elements.
3219///
3220static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3221                             DebugLoc dl) {
3222  assert(VT.isVector() && "Expected a vector type");
3223
3224  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3225  // type.  This ensures they get CSE'd.
3226  SDValue Vec;
3227  if (VT.getSizeInBits() == 64) { // MMX
3228    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3229    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3230  } else if (HasSSE2) {  // SSE2
3231    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3232    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3233  } else { // SSE1
3234    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3235    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3236  }
3237  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3238}
3239
3240/// getOnesVector - Returns a vector of specified type with all bits set.
3241///
3242static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3243  assert(VT.isVector() && "Expected a vector type");
3244
3245  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3246  // type.  This ensures they get CSE'd.
3247  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3248  SDValue Vec;
3249  if (VT.getSizeInBits() == 64)  // MMX
3250    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3251  else                                              // SSE
3252    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3253  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3254}
3255
3256
3257/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3258/// that point to V2 points to its first element.
3259static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3260  EVT VT = SVOp->getValueType(0);
3261  unsigned NumElems = VT.getVectorNumElements();
3262
3263  bool Changed = false;
3264  SmallVector<int, 8> MaskVec;
3265  SVOp->getMask(MaskVec);
3266
3267  for (unsigned i = 0; i != NumElems; ++i) {
3268    if (MaskVec[i] > (int)NumElems) {
3269      MaskVec[i] = NumElems;
3270      Changed = true;
3271    }
3272  }
3273  if (Changed)
3274    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3275                                SVOp->getOperand(1), &MaskVec[0]);
3276  return SDValue(SVOp, 0);
3277}
3278
3279/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3280/// operation of specified width.
3281static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3282                       SDValue V2) {
3283  unsigned NumElems = VT.getVectorNumElements();
3284  SmallVector<int, 8> Mask;
3285  Mask.push_back(NumElems);
3286  for (unsigned i = 1; i != NumElems; ++i)
3287    Mask.push_back(i);
3288  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3289}
3290
3291/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3292static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3293                          SDValue V2) {
3294  unsigned NumElems = VT.getVectorNumElements();
3295  SmallVector<int, 8> Mask;
3296  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3297    Mask.push_back(i);
3298    Mask.push_back(i + NumElems);
3299  }
3300  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3301}
3302
3303/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3304static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3305                          SDValue V2) {
3306  unsigned NumElems = VT.getVectorNumElements();
3307  unsigned Half = NumElems/2;
3308  SmallVector<int, 8> Mask;
3309  for (unsigned i = 0; i != Half; ++i) {
3310    Mask.push_back(i + Half);
3311    Mask.push_back(i + NumElems + Half);
3312  }
3313  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3314}
3315
3316/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3317static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3318                            bool HasSSE2) {
3319  if (SV->getValueType(0).getVectorNumElements() <= 4)
3320    return SDValue(SV, 0);
3321
3322  EVT PVT = MVT::v4f32;
3323  EVT VT = SV->getValueType(0);
3324  DebugLoc dl = SV->getDebugLoc();
3325  SDValue V1 = SV->getOperand(0);
3326  int NumElems = VT.getVectorNumElements();
3327  int EltNo = SV->getSplatIndex();
3328
3329  // unpack elements to the correct location
3330  while (NumElems > 4) {
3331    if (EltNo < NumElems/2) {
3332      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3333    } else {
3334      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3335      EltNo -= NumElems/2;
3336    }
3337    NumElems >>= 1;
3338  }
3339
3340  // Perform the splat.
3341  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3342  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3343  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3344  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3345}
3346
3347/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3348/// vector of zero or undef vector.  This produces a shuffle where the low
3349/// element of V2 is swizzled into the zero/undef vector, landing at element
3350/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3351static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3352                                             bool isZero, bool HasSSE2,
3353                                             SelectionDAG &DAG) {
3354  EVT VT = V2.getValueType();
3355  SDValue V1 = isZero
3356    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3357  unsigned NumElems = VT.getVectorNumElements();
3358  SmallVector<int, 16> MaskVec;
3359  for (unsigned i = 0; i != NumElems; ++i)
3360    // If this is the insertion idx, put the low elt of V2 here.
3361    MaskVec.push_back(i == Idx ? NumElems : i);
3362  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3363}
3364
3365/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3366/// a shuffle that is zero.
3367static
3368unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3369                                  bool Low, SelectionDAG &DAG) {
3370  unsigned NumZeros = 0;
3371  for (int i = 0; i < NumElems; ++i) {
3372    unsigned Index = Low ? i : NumElems-i-1;
3373    int Idx = SVOp->getMaskElt(Index);
3374    if (Idx < 0) {
3375      ++NumZeros;
3376      continue;
3377    }
3378    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3379    if (Elt.getNode() && X86::isZeroNode(Elt))
3380      ++NumZeros;
3381    else
3382      break;
3383  }
3384  return NumZeros;
3385}
3386
3387/// isVectorShift - Returns true if the shuffle can be implemented as a
3388/// logical left or right shift of a vector.
3389/// FIXME: split into pslldqi, psrldqi, palignr variants.
3390static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3391                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3392  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3393
3394  isLeft = true;
3395  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3396  if (!NumZeros) {
3397    isLeft = false;
3398    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3399    if (!NumZeros)
3400      return false;
3401  }
3402  bool SeenV1 = false;
3403  bool SeenV2 = false;
3404  for (int i = NumZeros; i < NumElems; ++i) {
3405    int Val = isLeft ? (i - NumZeros) : i;
3406    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3407    if (Idx < 0)
3408      continue;
3409    if (Idx < NumElems)
3410      SeenV1 = true;
3411    else {
3412      Idx -= NumElems;
3413      SeenV2 = true;
3414    }
3415    if (Idx != Val)
3416      return false;
3417  }
3418  if (SeenV1 && SeenV2)
3419    return false;
3420
3421  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3422  ShAmt = NumZeros;
3423  return true;
3424}
3425
3426
3427/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3428///
3429static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3430                                       unsigned NumNonZero, unsigned NumZero,
3431                                       SelectionDAG &DAG, TargetLowering &TLI) {
3432  if (NumNonZero > 8)
3433    return SDValue();
3434
3435  DebugLoc dl = Op.getDebugLoc();
3436  SDValue V(0, 0);
3437  bool First = true;
3438  for (unsigned i = 0; i < 16; ++i) {
3439    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3440    if (ThisIsNonZero && First) {
3441      if (NumZero)
3442        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3443      else
3444        V = DAG.getUNDEF(MVT::v8i16);
3445      First = false;
3446    }
3447
3448    if ((i & 1) != 0) {
3449      SDValue ThisElt(0, 0), LastElt(0, 0);
3450      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3451      if (LastIsNonZero) {
3452        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3453                              MVT::i16, Op.getOperand(i-1));
3454      }
3455      if (ThisIsNonZero) {
3456        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3457        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3458                              ThisElt, DAG.getConstant(8, MVT::i8));
3459        if (LastIsNonZero)
3460          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3461      } else
3462        ThisElt = LastElt;
3463
3464      if (ThisElt.getNode())
3465        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3466                        DAG.getIntPtrConstant(i/2));
3467    }
3468  }
3469
3470  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3471}
3472
3473/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3474///
3475static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3476                                       unsigned NumNonZero, unsigned NumZero,
3477                                       SelectionDAG &DAG, TargetLowering &TLI) {
3478  if (NumNonZero > 4)
3479    return SDValue();
3480
3481  DebugLoc dl = Op.getDebugLoc();
3482  SDValue V(0, 0);
3483  bool First = true;
3484  for (unsigned i = 0; i < 8; ++i) {
3485    bool isNonZero = (NonZeros & (1 << i)) != 0;
3486    if (isNonZero) {
3487      if (First) {
3488        if (NumZero)
3489          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3490        else
3491          V = DAG.getUNDEF(MVT::v8i16);
3492        First = false;
3493      }
3494      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3495                      MVT::v8i16, V, Op.getOperand(i),
3496                      DAG.getIntPtrConstant(i));
3497    }
3498  }
3499
3500  return V;
3501}
3502
3503/// getVShift - Return a vector logical shift node.
3504///
3505static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3506                         unsigned NumBits, SelectionDAG &DAG,
3507                         const TargetLowering &TLI, DebugLoc dl) {
3508  bool isMMX = VT.getSizeInBits() == 64;
3509  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3510  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3511  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3512  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3513                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3514                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3515}
3516
3517SDValue
3518X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3519                                          SelectionDAG &DAG) {
3520
3521  // Check if the scalar load can be widened into a vector load. And if
3522  // the address is "base + cst" see if the cst can be "absorbed" into
3523  // the shuffle mask.
3524  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3525    SDValue Ptr = LD->getBasePtr();
3526    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3527      return SDValue();
3528    EVT PVT = LD->getValueType(0);
3529    if (PVT != MVT::i32 && PVT != MVT::f32)
3530      return SDValue();
3531
3532    int FI = -1;
3533    int64_t Offset = 0;
3534    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3535      FI = FINode->getIndex();
3536      Offset = 0;
3537    } else if (Ptr.getOpcode() == ISD::ADD &&
3538               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3539               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3540      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3541      Offset = Ptr.getConstantOperandVal(1);
3542      Ptr = Ptr.getOperand(0);
3543    } else {
3544      return SDValue();
3545    }
3546
3547    SDValue Chain = LD->getChain();
3548    // Make sure the stack object alignment is at least 16.
3549    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3550    if (DAG.InferPtrAlignment(Ptr) < 16) {
3551      if (MFI->isFixedObjectIndex(FI)) {
3552        // Can't change the alignment. FIXME: It's possible to compute
3553        // the exact stack offset and reference FI + adjust offset instead.
3554        // If someone *really* cares about this. That's the way to implement it.
3555        return SDValue();
3556      } else {
3557        MFI->setObjectAlignment(FI, 16);
3558      }
3559    }
3560
3561    // (Offset % 16) must be multiple of 4. Then address is then
3562    // Ptr + (Offset & ~15).
3563    if (Offset < 0)
3564      return SDValue();
3565    if ((Offset % 16) & 3)
3566      return SDValue();
3567    int64_t StartOffset = Offset & ~15;
3568    if (StartOffset)
3569      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3570                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3571
3572    int EltNo = (Offset - StartOffset) >> 2;
3573    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3574    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3575    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3576                             false, false, 0);
3577    // Canonicalize it to a v4i32 shuffle.
3578    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3579    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3580                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3581                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3582  }
3583
3584  return SDValue();
3585}
3586
3587SDValue
3588X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3589  DebugLoc dl = Op.getDebugLoc();
3590  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3591  if (ISD::isBuildVectorAllZeros(Op.getNode())
3592      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3593    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3594    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3595    // eliminated on x86-32 hosts.
3596    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3597      return Op;
3598
3599    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3600      return getOnesVector(Op.getValueType(), DAG, dl);
3601    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3602  }
3603
3604  EVT VT = Op.getValueType();
3605  EVT ExtVT = VT.getVectorElementType();
3606  unsigned EVTBits = ExtVT.getSizeInBits();
3607
3608  unsigned NumElems = Op.getNumOperands();
3609  unsigned NumZero  = 0;
3610  unsigned NumNonZero = 0;
3611  unsigned NonZeros = 0;
3612  bool IsAllConstants = true;
3613  SmallSet<SDValue, 8> Values;
3614  for (unsigned i = 0; i < NumElems; ++i) {
3615    SDValue Elt = Op.getOperand(i);
3616    if (Elt.getOpcode() == ISD::UNDEF)
3617      continue;
3618    Values.insert(Elt);
3619    if (Elt.getOpcode() != ISD::Constant &&
3620        Elt.getOpcode() != ISD::ConstantFP)
3621      IsAllConstants = false;
3622    if (X86::isZeroNode(Elt))
3623      NumZero++;
3624    else {
3625      NonZeros |= (1 << i);
3626      NumNonZero++;
3627    }
3628  }
3629
3630  if (NumNonZero == 0) {
3631    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3632    return DAG.getUNDEF(VT);
3633  }
3634
3635  // Special case for single non-zero, non-undef, element.
3636  if (NumNonZero == 1) {
3637    unsigned Idx = CountTrailingZeros_32(NonZeros);
3638    SDValue Item = Op.getOperand(Idx);
3639
3640    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3641    // the value are obviously zero, truncate the value to i32 and do the
3642    // insertion that way.  Only do this if the value is non-constant or if the
3643    // value is a constant being inserted into element 0.  It is cheaper to do
3644    // a constant pool load than it is to do a movd + shuffle.
3645    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3646        (!IsAllConstants || Idx == 0)) {
3647      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3648        // Handle MMX and SSE both.
3649        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3650        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3651
3652        // Truncate the value (which may itself be a constant) to i32, and
3653        // convert it to a vector with movd (S2V+shuffle to zero extend).
3654        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3655        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3656        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3657                                           Subtarget->hasSSE2(), DAG);
3658
3659        // Now we have our 32-bit value zero extended in the low element of
3660        // a vector.  If Idx != 0, swizzle it into place.
3661        if (Idx != 0) {
3662          SmallVector<int, 4> Mask;
3663          Mask.push_back(Idx);
3664          for (unsigned i = 1; i != VecElts; ++i)
3665            Mask.push_back(i);
3666          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3667                                      DAG.getUNDEF(Item.getValueType()),
3668                                      &Mask[0]);
3669        }
3670        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3671      }
3672    }
3673
3674    // If we have a constant or non-constant insertion into the low element of
3675    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3676    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3677    // depending on what the source datatype is.
3678    if (Idx == 0) {
3679      if (NumZero == 0) {
3680        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3681      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3682          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3683        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3684        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3685        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3686                                           DAG);
3687      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3688        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3689        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3690        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3691        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3692                                           Subtarget->hasSSE2(), DAG);
3693        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3694      }
3695    }
3696
3697    // Is it a vector logical left shift?
3698    if (NumElems == 2 && Idx == 1 &&
3699        X86::isZeroNode(Op.getOperand(0)) &&
3700        !X86::isZeroNode(Op.getOperand(1))) {
3701      unsigned NumBits = VT.getSizeInBits();
3702      return getVShift(true, VT,
3703                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3704                                   VT, Op.getOperand(1)),
3705                       NumBits/2, DAG, *this, dl);
3706    }
3707
3708    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3709      return SDValue();
3710
3711    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3712    // is a non-constant being inserted into an element other than the low one,
3713    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3714    // movd/movss) to move this into the low element, then shuffle it into
3715    // place.
3716    if (EVTBits == 32) {
3717      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3718
3719      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3720      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3721                                         Subtarget->hasSSE2(), DAG);
3722      SmallVector<int, 8> MaskVec;
3723      for (unsigned i = 0; i < NumElems; i++)
3724        MaskVec.push_back(i == Idx ? 0 : 1);
3725      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3726    }
3727  }
3728
3729  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3730  if (Values.size() == 1) {
3731    if (EVTBits == 32) {
3732      // Instead of a shuffle like this:
3733      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3734      // Check if it's possible to issue this instead.
3735      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3736      unsigned Idx = CountTrailingZeros_32(NonZeros);
3737      SDValue Item = Op.getOperand(Idx);
3738      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3739        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3740    }
3741    return SDValue();
3742  }
3743
3744  // A vector full of immediates; various special cases are already
3745  // handled, so this is best done with a single constant-pool load.
3746  if (IsAllConstants)
3747    return SDValue();
3748
3749  // Let legalizer expand 2-wide build_vectors.
3750  if (EVTBits == 64) {
3751    if (NumNonZero == 1) {
3752      // One half is zero or undef.
3753      unsigned Idx = CountTrailingZeros_32(NonZeros);
3754      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3755                                 Op.getOperand(Idx));
3756      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3757                                         Subtarget->hasSSE2(), DAG);
3758    }
3759    return SDValue();
3760  }
3761
3762  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3763  if (EVTBits == 8 && NumElems == 16) {
3764    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3765                                        *this);
3766    if (V.getNode()) return V;
3767  }
3768
3769  if (EVTBits == 16 && NumElems == 8) {
3770    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3771                                        *this);
3772    if (V.getNode()) return V;
3773  }
3774
3775  // If element VT is == 32 bits, turn it into a number of shuffles.
3776  SmallVector<SDValue, 8> V;
3777  V.resize(NumElems);
3778  if (NumElems == 4 && NumZero > 0) {
3779    for (unsigned i = 0; i < 4; ++i) {
3780      bool isZero = !(NonZeros & (1 << i));
3781      if (isZero)
3782        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3783      else
3784        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3785    }
3786
3787    for (unsigned i = 0; i < 2; ++i) {
3788      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3789        default: break;
3790        case 0:
3791          V[i] = V[i*2];  // Must be a zero vector.
3792          break;
3793        case 1:
3794          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3795          break;
3796        case 2:
3797          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3798          break;
3799        case 3:
3800          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3801          break;
3802      }
3803    }
3804
3805    SmallVector<int, 8> MaskVec;
3806    bool Reverse = (NonZeros & 0x3) == 2;
3807    for (unsigned i = 0; i < 2; ++i)
3808      MaskVec.push_back(Reverse ? 1-i : i);
3809    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3810    for (unsigned i = 0; i < 2; ++i)
3811      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3812    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3813  }
3814
3815  if (Values.size() > 2) {
3816    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3817    // values to be inserted is equal to the number of elements, in which case
3818    // use the unpack code below in the hopes of matching the consecutive elts
3819    // load merge pattern for shuffles.
3820    // FIXME: We could probably just check that here directly.
3821    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3822        getSubtarget()->hasSSE41()) {
3823      V[0] = DAG.getUNDEF(VT);
3824      for (unsigned i = 0; i < NumElems; ++i)
3825        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3826          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3827                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3828      return V[0];
3829    }
3830    // Expand into a number of unpckl*.
3831    // e.g. for v4f32
3832    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3833    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3834    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3835    for (unsigned i = 0; i < NumElems; ++i)
3836      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3837    NumElems >>= 1;
3838    while (NumElems != 0) {
3839      for (unsigned i = 0; i < NumElems; ++i)
3840        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3841      NumElems >>= 1;
3842    }
3843    return V[0];
3844  }
3845
3846  return SDValue();
3847}
3848
3849SDValue
3850X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3851  // We support concatenate two MMX registers and place them in a MMX
3852  // register.  This is better than doing a stack convert.
3853  DebugLoc dl = Op.getDebugLoc();
3854  EVT ResVT = Op.getValueType();
3855  assert(Op.getNumOperands() == 2);
3856  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
3857         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
3858  int Mask[2];
3859  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
3860  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3861  InVec = Op.getOperand(1);
3862  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3863    unsigned NumElts = ResVT.getVectorNumElements();
3864    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3865    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
3866                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
3867  } else {
3868    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
3869    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3870    Mask[0] = 0; Mask[1] = 2;
3871    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
3872  }
3873  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3874}
3875
3876// v8i16 shuffles - Prefer shuffles in the following order:
3877// 1. [all]   pshuflw, pshufhw, optional move
3878// 2. [ssse3] 1 x pshufb
3879// 3. [ssse3] 2 x pshufb + 1 x por
3880// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3881static
3882SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3883                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3884  SDValue V1 = SVOp->getOperand(0);
3885  SDValue V2 = SVOp->getOperand(1);
3886  DebugLoc dl = SVOp->getDebugLoc();
3887  SmallVector<int, 8> MaskVals;
3888
3889  // Determine if more than 1 of the words in each of the low and high quadwords
3890  // of the result come from the same quadword of one of the two inputs.  Undef
3891  // mask values count as coming from any quadword, for better codegen.
3892  SmallVector<unsigned, 4> LoQuad(4);
3893  SmallVector<unsigned, 4> HiQuad(4);
3894  BitVector InputQuads(4);
3895  for (unsigned i = 0; i < 8; ++i) {
3896    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3897    int EltIdx = SVOp->getMaskElt(i);
3898    MaskVals.push_back(EltIdx);
3899    if (EltIdx < 0) {
3900      ++Quad[0];
3901      ++Quad[1];
3902      ++Quad[2];
3903      ++Quad[3];
3904      continue;
3905    }
3906    ++Quad[EltIdx / 4];
3907    InputQuads.set(EltIdx / 4);
3908  }
3909
3910  int BestLoQuad = -1;
3911  unsigned MaxQuad = 1;
3912  for (unsigned i = 0; i < 4; ++i) {
3913    if (LoQuad[i] > MaxQuad) {
3914      BestLoQuad = i;
3915      MaxQuad = LoQuad[i];
3916    }
3917  }
3918
3919  int BestHiQuad = -1;
3920  MaxQuad = 1;
3921  for (unsigned i = 0; i < 4; ++i) {
3922    if (HiQuad[i] > MaxQuad) {
3923      BestHiQuad = i;
3924      MaxQuad = HiQuad[i];
3925    }
3926  }
3927
3928  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3929  // of the two input vectors, shuffle them into one input vector so only a
3930  // single pshufb instruction is necessary. If There are more than 2 input
3931  // quads, disable the next transformation since it does not help SSSE3.
3932  bool V1Used = InputQuads[0] || InputQuads[1];
3933  bool V2Used = InputQuads[2] || InputQuads[3];
3934  if (TLI.getSubtarget()->hasSSSE3()) {
3935    if (InputQuads.count() == 2 && V1Used && V2Used) {
3936      BestLoQuad = InputQuads.find_first();
3937      BestHiQuad = InputQuads.find_next(BestLoQuad);
3938    }
3939    if (InputQuads.count() > 2) {
3940      BestLoQuad = -1;
3941      BestHiQuad = -1;
3942    }
3943  }
3944
3945  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3946  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3947  // words from all 4 input quadwords.
3948  SDValue NewV;
3949  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3950    SmallVector<int, 8> MaskV;
3951    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3952    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3953    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3954                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3955                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3956    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3957
3958    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3959    // source words for the shuffle, to aid later transformations.
3960    bool AllWordsInNewV = true;
3961    bool InOrder[2] = { true, true };
3962    for (unsigned i = 0; i != 8; ++i) {
3963      int idx = MaskVals[i];
3964      if (idx != (int)i)
3965        InOrder[i/4] = false;
3966      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3967        continue;
3968      AllWordsInNewV = false;
3969      break;
3970    }
3971
3972    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3973    if (AllWordsInNewV) {
3974      for (int i = 0; i != 8; ++i) {
3975        int idx = MaskVals[i];
3976        if (idx < 0)
3977          continue;
3978        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3979        if ((idx != i) && idx < 4)
3980          pshufhw = false;
3981        if ((idx != i) && idx > 3)
3982          pshuflw = false;
3983      }
3984      V1 = NewV;
3985      V2Used = false;
3986      BestLoQuad = 0;
3987      BestHiQuad = 1;
3988    }
3989
3990    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3991    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3992    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3993      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3994                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3995    }
3996  }
3997
3998  // If we have SSSE3, and all words of the result are from 1 input vector,
3999  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4000  // is present, fall back to case 4.
4001  if (TLI.getSubtarget()->hasSSSE3()) {
4002    SmallVector<SDValue,16> pshufbMask;
4003
4004    // If we have elements from both input vectors, set the high bit of the
4005    // shuffle mask element to zero out elements that come from V2 in the V1
4006    // mask, and elements that come from V1 in the V2 mask, so that the two
4007    // results can be OR'd together.
4008    bool TwoInputs = V1Used && V2Used;
4009    for (unsigned i = 0; i != 8; ++i) {
4010      int EltIdx = MaskVals[i] * 2;
4011      if (TwoInputs && (EltIdx >= 16)) {
4012        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4013        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4014        continue;
4015      }
4016      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4017      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4018    }
4019    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4020    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4021                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4022                                 MVT::v16i8, &pshufbMask[0], 16));
4023    if (!TwoInputs)
4024      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4025
4026    // Calculate the shuffle mask for the second input, shuffle it, and
4027    // OR it with the first shuffled input.
4028    pshufbMask.clear();
4029    for (unsigned i = 0; i != 8; ++i) {
4030      int EltIdx = MaskVals[i] * 2;
4031      if (EltIdx < 16) {
4032        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4033        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4034        continue;
4035      }
4036      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4037      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4038    }
4039    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4040    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4041                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4042                                 MVT::v16i8, &pshufbMask[0], 16));
4043    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4044    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4045  }
4046
4047  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4048  // and update MaskVals with new element order.
4049  BitVector InOrder(8);
4050  if (BestLoQuad >= 0) {
4051    SmallVector<int, 8> MaskV;
4052    for (int i = 0; i != 4; ++i) {
4053      int idx = MaskVals[i];
4054      if (idx < 0) {
4055        MaskV.push_back(-1);
4056        InOrder.set(i);
4057      } else if ((idx / 4) == BestLoQuad) {
4058        MaskV.push_back(idx & 3);
4059        InOrder.set(i);
4060      } else {
4061        MaskV.push_back(-1);
4062      }
4063    }
4064    for (unsigned i = 4; i != 8; ++i)
4065      MaskV.push_back(i);
4066    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4067                                &MaskV[0]);
4068  }
4069
4070  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4071  // and update MaskVals with the new element order.
4072  if (BestHiQuad >= 0) {
4073    SmallVector<int, 8> MaskV;
4074    for (unsigned i = 0; i != 4; ++i)
4075      MaskV.push_back(i);
4076    for (unsigned i = 4; i != 8; ++i) {
4077      int idx = MaskVals[i];
4078      if (idx < 0) {
4079        MaskV.push_back(-1);
4080        InOrder.set(i);
4081      } else if ((idx / 4) == BestHiQuad) {
4082        MaskV.push_back((idx & 3) + 4);
4083        InOrder.set(i);
4084      } else {
4085        MaskV.push_back(-1);
4086      }
4087    }
4088    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4089                                &MaskV[0]);
4090  }
4091
4092  // In case BestHi & BestLo were both -1, which means each quadword has a word
4093  // from each of the four input quadwords, calculate the InOrder bitvector now
4094  // before falling through to the insert/extract cleanup.
4095  if (BestLoQuad == -1 && BestHiQuad == -1) {
4096    NewV = V1;
4097    for (int i = 0; i != 8; ++i)
4098      if (MaskVals[i] < 0 || MaskVals[i] == i)
4099        InOrder.set(i);
4100  }
4101
4102  // The other elements are put in the right place using pextrw and pinsrw.
4103  for (unsigned i = 0; i != 8; ++i) {
4104    if (InOrder[i])
4105      continue;
4106    int EltIdx = MaskVals[i];
4107    if (EltIdx < 0)
4108      continue;
4109    SDValue ExtOp = (EltIdx < 8)
4110    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4111                  DAG.getIntPtrConstant(EltIdx))
4112    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4113                  DAG.getIntPtrConstant(EltIdx - 8));
4114    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4115                       DAG.getIntPtrConstant(i));
4116  }
4117  return NewV;
4118}
4119
4120// v16i8 shuffles - Prefer shuffles in the following order:
4121// 1. [ssse3] 1 x pshufb
4122// 2. [ssse3] 2 x pshufb + 1 x por
4123// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4124static
4125SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4126                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4127  SDValue V1 = SVOp->getOperand(0);
4128  SDValue V2 = SVOp->getOperand(1);
4129  DebugLoc dl = SVOp->getDebugLoc();
4130  SmallVector<int, 16> MaskVals;
4131  SVOp->getMask(MaskVals);
4132
4133  // If we have SSSE3, case 1 is generated when all result bytes come from
4134  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4135  // present, fall back to case 3.
4136  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4137  bool V1Only = true;
4138  bool V2Only = true;
4139  for (unsigned i = 0; i < 16; ++i) {
4140    int EltIdx = MaskVals[i];
4141    if (EltIdx < 0)
4142      continue;
4143    if (EltIdx < 16)
4144      V2Only = false;
4145    else
4146      V1Only = false;
4147  }
4148
4149  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4150  if (TLI.getSubtarget()->hasSSSE3()) {
4151    SmallVector<SDValue,16> pshufbMask;
4152
4153    // If all result elements are from one input vector, then only translate
4154    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4155    //
4156    // Otherwise, we have elements from both input vectors, and must zero out
4157    // elements that come from V2 in the first mask, and V1 in the second mask
4158    // so that we can OR them together.
4159    bool TwoInputs = !(V1Only || V2Only);
4160    for (unsigned i = 0; i != 16; ++i) {
4161      int EltIdx = MaskVals[i];
4162      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4163        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4164        continue;
4165      }
4166      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4167    }
4168    // If all the elements are from V2, assign it to V1 and return after
4169    // building the first pshufb.
4170    if (V2Only)
4171      V1 = V2;
4172    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4173                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4174                                 MVT::v16i8, &pshufbMask[0], 16));
4175    if (!TwoInputs)
4176      return V1;
4177
4178    // Calculate the shuffle mask for the second input, shuffle it, and
4179    // OR it with the first shuffled input.
4180    pshufbMask.clear();
4181    for (unsigned i = 0; i != 16; ++i) {
4182      int EltIdx = MaskVals[i];
4183      if (EltIdx < 16) {
4184        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4185        continue;
4186      }
4187      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4188    }
4189    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4190                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4191                                 MVT::v16i8, &pshufbMask[0], 16));
4192    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4193  }
4194
4195  // No SSSE3 - Calculate in place words and then fix all out of place words
4196  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4197  // the 16 different words that comprise the two doublequadword input vectors.
4198  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4199  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4200  SDValue NewV = V2Only ? V2 : V1;
4201  for (int i = 0; i != 8; ++i) {
4202    int Elt0 = MaskVals[i*2];
4203    int Elt1 = MaskVals[i*2+1];
4204
4205    // This word of the result is all undef, skip it.
4206    if (Elt0 < 0 && Elt1 < 0)
4207      continue;
4208
4209    // This word of the result is already in the correct place, skip it.
4210    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4211      continue;
4212    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4213      continue;
4214
4215    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4216    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4217    SDValue InsElt;
4218
4219    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4220    // using a single extract together, load it and store it.
4221    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4222      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4223                           DAG.getIntPtrConstant(Elt1 / 2));
4224      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4225                        DAG.getIntPtrConstant(i));
4226      continue;
4227    }
4228
4229    // If Elt1 is defined, extract it from the appropriate source.  If the
4230    // source byte is not also odd, shift the extracted word left 8 bits
4231    // otherwise clear the bottom 8 bits if we need to do an or.
4232    if (Elt1 >= 0) {
4233      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4234                           DAG.getIntPtrConstant(Elt1 / 2));
4235      if ((Elt1 & 1) == 0)
4236        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4237                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4238      else if (Elt0 >= 0)
4239        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4240                             DAG.getConstant(0xFF00, MVT::i16));
4241    }
4242    // If Elt0 is defined, extract it from the appropriate source.  If the
4243    // source byte is not also even, shift the extracted word right 8 bits. If
4244    // Elt1 was also defined, OR the extracted values together before
4245    // inserting them in the result.
4246    if (Elt0 >= 0) {
4247      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4248                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4249      if ((Elt0 & 1) != 0)
4250        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4251                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4252      else if (Elt1 >= 0)
4253        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4254                             DAG.getConstant(0x00FF, MVT::i16));
4255      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4256                         : InsElt0;
4257    }
4258    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4259                       DAG.getIntPtrConstant(i));
4260  }
4261  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4262}
4263
4264/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4265/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
4266/// done when every pair / quad of shuffle mask elements point to elements in
4267/// the right sequence. e.g.
4268/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4269static
4270SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4271                                 SelectionDAG &DAG,
4272                                 TargetLowering &TLI, DebugLoc dl) {
4273  EVT VT = SVOp->getValueType(0);
4274  SDValue V1 = SVOp->getOperand(0);
4275  SDValue V2 = SVOp->getOperand(1);
4276  unsigned NumElems = VT.getVectorNumElements();
4277  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4278  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4279  EVT MaskEltVT = MaskVT.getVectorElementType();
4280  EVT NewVT = MaskVT;
4281  switch (VT.getSimpleVT().SimpleTy) {
4282  default: assert(false && "Unexpected!");
4283  case MVT::v4f32: NewVT = MVT::v2f64; break;
4284  case MVT::v4i32: NewVT = MVT::v2i64; break;
4285  case MVT::v8i16: NewVT = MVT::v4i32; break;
4286  case MVT::v16i8: NewVT = MVT::v4i32; break;
4287  }
4288
4289  if (NewWidth == 2) {
4290    if (VT.isInteger())
4291      NewVT = MVT::v2i64;
4292    else
4293      NewVT = MVT::v2f64;
4294  }
4295  int Scale = NumElems / NewWidth;
4296  SmallVector<int, 8> MaskVec;
4297  for (unsigned i = 0; i < NumElems; i += Scale) {
4298    int StartIdx = -1;
4299    for (int j = 0; j < Scale; ++j) {
4300      int EltIdx = SVOp->getMaskElt(i+j);
4301      if (EltIdx < 0)
4302        continue;
4303      if (StartIdx == -1)
4304        StartIdx = EltIdx - (EltIdx % Scale);
4305      if (EltIdx != StartIdx + j)
4306        return SDValue();
4307    }
4308    if (StartIdx == -1)
4309      MaskVec.push_back(-1);
4310    else
4311      MaskVec.push_back(StartIdx / Scale);
4312  }
4313
4314  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4315  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4316  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4317}
4318
4319/// getVZextMovL - Return a zero-extending vector move low node.
4320///
4321static SDValue getVZextMovL(EVT VT, EVT OpVT,
4322                            SDValue SrcOp, SelectionDAG &DAG,
4323                            const X86Subtarget *Subtarget, DebugLoc dl) {
4324  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4325    LoadSDNode *LD = NULL;
4326    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4327      LD = dyn_cast<LoadSDNode>(SrcOp);
4328    if (!LD) {
4329      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4330      // instead.
4331      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4332      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4333          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4334          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4335          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4336        // PR2108
4337        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4338        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4339                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4340                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4341                                                   OpVT,
4342                                                   SrcOp.getOperand(0)
4343                                                          .getOperand(0))));
4344      }
4345    }
4346  }
4347
4348  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4349                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4350                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4351                                             OpVT, SrcOp)));
4352}
4353
4354/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4355/// shuffles.
4356static SDValue
4357LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4358  SDValue V1 = SVOp->getOperand(0);
4359  SDValue V2 = SVOp->getOperand(1);
4360  DebugLoc dl = SVOp->getDebugLoc();
4361  EVT VT = SVOp->getValueType(0);
4362
4363  SmallVector<std::pair<int, int>, 8> Locs;
4364  Locs.resize(4);
4365  SmallVector<int, 8> Mask1(4U, -1);
4366  SmallVector<int, 8> PermMask;
4367  SVOp->getMask(PermMask);
4368
4369  unsigned NumHi = 0;
4370  unsigned NumLo = 0;
4371  for (unsigned i = 0; i != 4; ++i) {
4372    int Idx = PermMask[i];
4373    if (Idx < 0) {
4374      Locs[i] = std::make_pair(-1, -1);
4375    } else {
4376      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4377      if (Idx < 4) {
4378        Locs[i] = std::make_pair(0, NumLo);
4379        Mask1[NumLo] = Idx;
4380        NumLo++;
4381      } else {
4382        Locs[i] = std::make_pair(1, NumHi);
4383        if (2+NumHi < 4)
4384          Mask1[2+NumHi] = Idx;
4385        NumHi++;
4386      }
4387    }
4388  }
4389
4390  if (NumLo <= 2 && NumHi <= 2) {
4391    // If no more than two elements come from either vector. This can be
4392    // implemented with two shuffles. First shuffle gather the elements.
4393    // The second shuffle, which takes the first shuffle as both of its
4394    // vector operands, put the elements into the right order.
4395    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4396
4397    SmallVector<int, 8> Mask2(4U, -1);
4398
4399    for (unsigned i = 0; i != 4; ++i) {
4400      if (Locs[i].first == -1)
4401        continue;
4402      else {
4403        unsigned Idx = (i < 2) ? 0 : 4;
4404        Idx += Locs[i].first * 2 + Locs[i].second;
4405        Mask2[i] = Idx;
4406      }
4407    }
4408
4409    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4410  } else if (NumLo == 3 || NumHi == 3) {
4411    // Otherwise, we must have three elements from one vector, call it X, and
4412    // one element from the other, call it Y.  First, use a shufps to build an
4413    // intermediate vector with the one element from Y and the element from X
4414    // that will be in the same half in the final destination (the indexes don't
4415    // matter). Then, use a shufps to build the final vector, taking the half
4416    // containing the element from Y from the intermediate, and the other half
4417    // from X.
4418    if (NumHi == 3) {
4419      // Normalize it so the 3 elements come from V1.
4420      CommuteVectorShuffleMask(PermMask, VT);
4421      std::swap(V1, V2);
4422    }
4423
4424    // Find the element from V2.
4425    unsigned HiIndex;
4426    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4427      int Val = PermMask[HiIndex];
4428      if (Val < 0)
4429        continue;
4430      if (Val >= 4)
4431        break;
4432    }
4433
4434    Mask1[0] = PermMask[HiIndex];
4435    Mask1[1] = -1;
4436    Mask1[2] = PermMask[HiIndex^1];
4437    Mask1[3] = -1;
4438    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4439
4440    if (HiIndex >= 2) {
4441      Mask1[0] = PermMask[0];
4442      Mask1[1] = PermMask[1];
4443      Mask1[2] = HiIndex & 1 ? 6 : 4;
4444      Mask1[3] = HiIndex & 1 ? 4 : 6;
4445      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4446    } else {
4447      Mask1[0] = HiIndex & 1 ? 2 : 0;
4448      Mask1[1] = HiIndex & 1 ? 0 : 2;
4449      Mask1[2] = PermMask[2];
4450      Mask1[3] = PermMask[3];
4451      if (Mask1[2] >= 0)
4452        Mask1[2] += 4;
4453      if (Mask1[3] >= 0)
4454        Mask1[3] += 4;
4455      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4456    }
4457  }
4458
4459  // Break it into (shuffle shuffle_hi, shuffle_lo).
4460  Locs.clear();
4461  SmallVector<int,8> LoMask(4U, -1);
4462  SmallVector<int,8> HiMask(4U, -1);
4463
4464  SmallVector<int,8> *MaskPtr = &LoMask;
4465  unsigned MaskIdx = 0;
4466  unsigned LoIdx = 0;
4467  unsigned HiIdx = 2;
4468  for (unsigned i = 0; i != 4; ++i) {
4469    if (i == 2) {
4470      MaskPtr = &HiMask;
4471      MaskIdx = 1;
4472      LoIdx = 0;
4473      HiIdx = 2;
4474    }
4475    int Idx = PermMask[i];
4476    if (Idx < 0) {
4477      Locs[i] = std::make_pair(-1, -1);
4478    } else if (Idx < 4) {
4479      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4480      (*MaskPtr)[LoIdx] = Idx;
4481      LoIdx++;
4482    } else {
4483      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4484      (*MaskPtr)[HiIdx] = Idx;
4485      HiIdx++;
4486    }
4487  }
4488
4489  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4490  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4491  SmallVector<int, 8> MaskOps;
4492  for (unsigned i = 0; i != 4; ++i) {
4493    if (Locs[i].first == -1) {
4494      MaskOps.push_back(-1);
4495    } else {
4496      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4497      MaskOps.push_back(Idx);
4498    }
4499  }
4500  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4501}
4502
4503SDValue
4504X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4505  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4506  SDValue V1 = Op.getOperand(0);
4507  SDValue V2 = Op.getOperand(1);
4508  EVT VT = Op.getValueType();
4509  DebugLoc dl = Op.getDebugLoc();
4510  unsigned NumElems = VT.getVectorNumElements();
4511  bool isMMX = VT.getSizeInBits() == 64;
4512  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4513  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4514  bool V1IsSplat = false;
4515  bool V2IsSplat = false;
4516
4517  if (isZeroShuffle(SVOp))
4518    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4519
4520  // Promote splats to v4f32.
4521  if (SVOp->isSplat()) {
4522    if (isMMX || NumElems < 4)
4523      return Op;
4524    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4525  }
4526
4527  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4528  // do it!
4529  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4530    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4531    if (NewOp.getNode())
4532      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4533                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4534  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4535    // FIXME: Figure out a cleaner way to do this.
4536    // Try to make use of movq to zero out the top part.
4537    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4538      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4539      if (NewOp.getNode()) {
4540        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4541          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4542                              DAG, Subtarget, dl);
4543      }
4544    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4545      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4546      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4547        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4548                            DAG, Subtarget, dl);
4549    }
4550  }
4551
4552  if (X86::isPSHUFDMask(SVOp))
4553    return Op;
4554
4555  // Check if this can be converted into a logical shift.
4556  bool isLeft = false;
4557  unsigned ShAmt = 0;
4558  SDValue ShVal;
4559  bool isShift = getSubtarget()->hasSSE2() &&
4560    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4561  if (isShift && ShVal.hasOneUse()) {
4562    // If the shifted value has multiple uses, it may be cheaper to use
4563    // v_set0 + movlhps or movhlps, etc.
4564    EVT EltVT = VT.getVectorElementType();
4565    ShAmt *= EltVT.getSizeInBits();
4566    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4567  }
4568
4569  if (X86::isMOVLMask(SVOp)) {
4570    if (V1IsUndef)
4571      return V2;
4572    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4573      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4574    if (!isMMX)
4575      return Op;
4576  }
4577
4578  // FIXME: fold these into legal mask.
4579  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4580                 X86::isMOVSLDUPMask(SVOp) ||
4581                 X86::isMOVHLPSMask(SVOp) ||
4582                 X86::isMOVLHPSMask(SVOp) ||
4583                 X86::isMOVLPMask(SVOp)))
4584    return Op;
4585
4586  if (ShouldXformToMOVHLPS(SVOp) ||
4587      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4588    return CommuteVectorShuffle(SVOp, DAG);
4589
4590  if (isShift) {
4591    // No better options. Use a vshl / vsrl.
4592    EVT EltVT = VT.getVectorElementType();
4593    ShAmt *= EltVT.getSizeInBits();
4594    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4595  }
4596
4597  bool Commuted = false;
4598  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4599  // 1,1,1,1 -> v8i16 though.
4600  V1IsSplat = isSplatVector(V1.getNode());
4601  V2IsSplat = isSplatVector(V2.getNode());
4602
4603  // Canonicalize the splat or undef, if present, to be on the RHS.
4604  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4605    Op = CommuteVectorShuffle(SVOp, DAG);
4606    SVOp = cast<ShuffleVectorSDNode>(Op);
4607    V1 = SVOp->getOperand(0);
4608    V2 = SVOp->getOperand(1);
4609    std::swap(V1IsSplat, V2IsSplat);
4610    std::swap(V1IsUndef, V2IsUndef);
4611    Commuted = true;
4612  }
4613
4614  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4615    // Shuffling low element of v1 into undef, just return v1.
4616    if (V2IsUndef)
4617      return V1;
4618    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4619    // the instruction selector will not match, so get a canonical MOVL with
4620    // swapped operands to undo the commute.
4621    return getMOVL(DAG, dl, VT, V2, V1);
4622  }
4623
4624  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4625      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4626      X86::isUNPCKLMask(SVOp) ||
4627      X86::isUNPCKHMask(SVOp))
4628    return Op;
4629
4630  if (V2IsSplat) {
4631    // Normalize mask so all entries that point to V2 points to its first
4632    // element then try to match unpck{h|l} again. If match, return a
4633    // new vector_shuffle with the corrected mask.
4634    SDValue NewMask = NormalizeMask(SVOp, DAG);
4635    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4636    if (NSVOp != SVOp) {
4637      if (X86::isUNPCKLMask(NSVOp, true)) {
4638        return NewMask;
4639      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4640        return NewMask;
4641      }
4642    }
4643  }
4644
4645  if (Commuted) {
4646    // Commute is back and try unpck* again.
4647    // FIXME: this seems wrong.
4648    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4649    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4650    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4651        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4652        X86::isUNPCKLMask(NewSVOp) ||
4653        X86::isUNPCKHMask(NewSVOp))
4654      return NewOp;
4655  }
4656
4657  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4658
4659  // Normalize the node to match x86 shuffle ops if needed
4660  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4661    return CommuteVectorShuffle(SVOp, DAG);
4662
4663  // Check for legal shuffle and return?
4664  SmallVector<int, 16> PermMask;
4665  SVOp->getMask(PermMask);
4666  if (isShuffleMaskLegal(PermMask, VT))
4667    return Op;
4668
4669  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4670  if (VT == MVT::v8i16) {
4671    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4672    if (NewOp.getNode())
4673      return NewOp;
4674  }
4675
4676  if (VT == MVT::v16i8) {
4677    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4678    if (NewOp.getNode())
4679      return NewOp;
4680  }
4681
4682  // Handle all 4 wide cases with a number of shuffles except for MMX.
4683  if (NumElems == 4 && !isMMX)
4684    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4685
4686  return SDValue();
4687}
4688
4689SDValue
4690X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4691                                                SelectionDAG &DAG) {
4692  EVT VT = Op.getValueType();
4693  DebugLoc dl = Op.getDebugLoc();
4694  if (VT.getSizeInBits() == 8) {
4695    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4696                                    Op.getOperand(0), Op.getOperand(1));
4697    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4698                                    DAG.getValueType(VT));
4699    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4700  } else if (VT.getSizeInBits() == 16) {
4701    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4702    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4703    if (Idx == 0)
4704      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4705                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4706                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4707                                                 MVT::v4i32,
4708                                                 Op.getOperand(0)),
4709                                     Op.getOperand(1)));
4710    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4711                                    Op.getOperand(0), Op.getOperand(1));
4712    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4713                                    DAG.getValueType(VT));
4714    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4715  } else if (VT == MVT::f32) {
4716    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4717    // the result back to FR32 register. It's only worth matching if the
4718    // result has a single use which is a store or a bitcast to i32.  And in
4719    // the case of a store, it's not worth it if the index is a constant 0,
4720    // because a MOVSSmr can be used instead, which is smaller and faster.
4721    if (!Op.hasOneUse())
4722      return SDValue();
4723    SDNode *User = *Op.getNode()->use_begin();
4724    if ((User->getOpcode() != ISD::STORE ||
4725         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4726          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4727        (User->getOpcode() != ISD::BIT_CONVERT ||
4728         User->getValueType(0) != MVT::i32))
4729      return SDValue();
4730    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4731                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4732                                              Op.getOperand(0)),
4733                                              Op.getOperand(1));
4734    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4735  } else if (VT == MVT::i32) {
4736    // ExtractPS works with constant index.
4737    if (isa<ConstantSDNode>(Op.getOperand(1)))
4738      return Op;
4739  }
4740  return SDValue();
4741}
4742
4743
4744SDValue
4745X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4746  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4747    return SDValue();
4748
4749  if (Subtarget->hasSSE41()) {
4750    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4751    if (Res.getNode())
4752      return Res;
4753  }
4754
4755  EVT VT = Op.getValueType();
4756  DebugLoc dl = Op.getDebugLoc();
4757  // TODO: handle v16i8.
4758  if (VT.getSizeInBits() == 16) {
4759    SDValue Vec = Op.getOperand(0);
4760    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4761    if (Idx == 0)
4762      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4763                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4764                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4765                                                 MVT::v4i32, Vec),
4766                                     Op.getOperand(1)));
4767    // Transform it so it match pextrw which produces a 32-bit result.
4768    EVT EltVT = MVT::i32;
4769    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4770                                    Op.getOperand(0), Op.getOperand(1));
4771    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4772                                    DAG.getValueType(VT));
4773    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4774  } else if (VT.getSizeInBits() == 32) {
4775    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4776    if (Idx == 0)
4777      return Op;
4778
4779    // SHUFPS the element to the lowest double word, then movss.
4780    int Mask[4] = { Idx, -1, -1, -1 };
4781    EVT VVT = Op.getOperand(0).getValueType();
4782    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4783                                       DAG.getUNDEF(VVT), Mask);
4784    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4785                       DAG.getIntPtrConstant(0));
4786  } else if (VT.getSizeInBits() == 64) {
4787    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4788    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4789    //        to match extract_elt for f64.
4790    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4791    if (Idx == 0)
4792      return Op;
4793
4794    // UNPCKHPD the element to the lowest double word, then movsd.
4795    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4796    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4797    int Mask[2] = { 1, -1 };
4798    EVT VVT = Op.getOperand(0).getValueType();
4799    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4800                                       DAG.getUNDEF(VVT), Mask);
4801    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4802                       DAG.getIntPtrConstant(0));
4803  }
4804
4805  return SDValue();
4806}
4807
4808SDValue
4809X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4810  EVT VT = Op.getValueType();
4811  EVT EltVT = VT.getVectorElementType();
4812  DebugLoc dl = Op.getDebugLoc();
4813
4814  SDValue N0 = Op.getOperand(0);
4815  SDValue N1 = Op.getOperand(1);
4816  SDValue N2 = Op.getOperand(2);
4817
4818  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4819      isa<ConstantSDNode>(N2)) {
4820    unsigned Opc = (EltVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4821                                                : X86ISD::PINSRW;
4822    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4823    // argument.
4824    if (N1.getValueType() != MVT::i32)
4825      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4826    if (N2.getValueType() != MVT::i32)
4827      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4828    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4829  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4830    // Bits [7:6] of the constant are the source select.  This will always be
4831    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4832    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4833    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4834    // Bits [5:4] of the constant are the destination select.  This is the
4835    //  value of the incoming immediate.
4836    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4837    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4838    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4839    // Create this as a scalar to vector..
4840    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4841    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4842  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4843    // PINSR* works with constant index.
4844    return Op;
4845  }
4846  return SDValue();
4847}
4848
4849SDValue
4850X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4851  EVT VT = Op.getValueType();
4852  EVT EltVT = VT.getVectorElementType();
4853
4854  if (Subtarget->hasSSE41())
4855    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4856
4857  if (EltVT == MVT::i8)
4858    return SDValue();
4859
4860  DebugLoc dl = Op.getDebugLoc();
4861  SDValue N0 = Op.getOperand(0);
4862  SDValue N1 = Op.getOperand(1);
4863  SDValue N2 = Op.getOperand(2);
4864
4865  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4866    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4867    // as its second argument.
4868    if (N1.getValueType() != MVT::i32)
4869      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4870    if (N2.getValueType() != MVT::i32)
4871      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4872    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4873  }
4874  return SDValue();
4875}
4876
4877SDValue
4878X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4879  DebugLoc dl = Op.getDebugLoc();
4880  if (Op.getValueType() == MVT::v2f32)
4881    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4882                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4883                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4884                                               Op.getOperand(0))));
4885
4886  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4887    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4888
4889  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4890  EVT VT = MVT::v2i32;
4891  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4892  default: break;
4893  case MVT::v16i8:
4894  case MVT::v8i16:
4895    VT = MVT::v4i32;
4896    break;
4897  }
4898  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4899                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4900}
4901
4902// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4903// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4904// one of the above mentioned nodes. It has to be wrapped because otherwise
4905// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4906// be used to form addressing mode. These wrapped nodes will be selected
4907// into MOV32ri.
4908SDValue
4909X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4910  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4911
4912  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4913  // global base reg.
4914  unsigned char OpFlag = 0;
4915  unsigned WrapperKind = X86ISD::Wrapper;
4916  CodeModel::Model M = getTargetMachine().getCodeModel();
4917
4918  if (Subtarget->isPICStyleRIPRel() &&
4919      (M == CodeModel::Small || M == CodeModel::Kernel))
4920    WrapperKind = X86ISD::WrapperRIP;
4921  else if (Subtarget->isPICStyleGOT())
4922    OpFlag = X86II::MO_GOTOFF;
4923  else if (Subtarget->isPICStyleStubPIC())
4924    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4925
4926  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4927                                             CP->getAlignment(),
4928                                             CP->getOffset(), OpFlag);
4929  DebugLoc DL = CP->getDebugLoc();
4930  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4931  // With PIC, the address is actually $g + Offset.
4932  if (OpFlag) {
4933    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4934                         DAG.getNode(X86ISD::GlobalBaseReg,
4935                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4936                         Result);
4937  }
4938
4939  return Result;
4940}
4941
4942SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4943  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4944
4945  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4946  // global base reg.
4947  unsigned char OpFlag = 0;
4948  unsigned WrapperKind = X86ISD::Wrapper;
4949  CodeModel::Model M = getTargetMachine().getCodeModel();
4950
4951  if (Subtarget->isPICStyleRIPRel() &&
4952      (M == CodeModel::Small || M == CodeModel::Kernel))
4953    WrapperKind = X86ISD::WrapperRIP;
4954  else if (Subtarget->isPICStyleGOT())
4955    OpFlag = X86II::MO_GOTOFF;
4956  else if (Subtarget->isPICStyleStubPIC())
4957    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4958
4959  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4960                                          OpFlag);
4961  DebugLoc DL = JT->getDebugLoc();
4962  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4963
4964  // With PIC, the address is actually $g + Offset.
4965  if (OpFlag) {
4966    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4967                         DAG.getNode(X86ISD::GlobalBaseReg,
4968                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4969                         Result);
4970  }
4971
4972  return Result;
4973}
4974
4975SDValue
4976X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4977  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4978
4979  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4980  // global base reg.
4981  unsigned char OpFlag = 0;
4982  unsigned WrapperKind = X86ISD::Wrapper;
4983  CodeModel::Model M = getTargetMachine().getCodeModel();
4984
4985  if (Subtarget->isPICStyleRIPRel() &&
4986      (M == CodeModel::Small || M == CodeModel::Kernel))
4987    WrapperKind = X86ISD::WrapperRIP;
4988  else if (Subtarget->isPICStyleGOT())
4989    OpFlag = X86II::MO_GOTOFF;
4990  else if (Subtarget->isPICStyleStubPIC())
4991    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4992
4993  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4994
4995  DebugLoc DL = Op.getDebugLoc();
4996  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4997
4998
4999  // With PIC, the address is actually $g + Offset.
5000  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5001      !Subtarget->is64Bit()) {
5002    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5003                         DAG.getNode(X86ISD::GlobalBaseReg,
5004                                     DebugLoc::getUnknownLoc(),
5005                                     getPointerTy()),
5006                         Result);
5007  }
5008
5009  return Result;
5010}
5011
5012SDValue
5013X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
5014  // Create the TargetBlockAddressAddress node.
5015  unsigned char OpFlags =
5016    Subtarget->ClassifyBlockAddressReference();
5017  CodeModel::Model M = getTargetMachine().getCodeModel();
5018  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5019  DebugLoc dl = Op.getDebugLoc();
5020  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5021                                       /*isTarget=*/true, OpFlags);
5022
5023  if (Subtarget->isPICStyleRIPRel() &&
5024      (M == CodeModel::Small || M == CodeModel::Kernel))
5025    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5026  else
5027    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5028
5029  // With PIC, the address is actually $g + Offset.
5030  if (isGlobalRelativeToPICBase(OpFlags)) {
5031    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5032                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5033                         Result);
5034  }
5035
5036  return Result;
5037}
5038
5039SDValue
5040X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5041                                      int64_t Offset,
5042                                      SelectionDAG &DAG) const {
5043  // Create the TargetGlobalAddress node, folding in the constant
5044  // offset if it is legal.
5045  unsigned char OpFlags =
5046    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5047  CodeModel::Model M = getTargetMachine().getCodeModel();
5048  SDValue Result;
5049  if (OpFlags == X86II::MO_NO_FLAG &&
5050      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5051    // A direct static reference to a global.
5052    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
5053    Offset = 0;
5054  } else {
5055    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
5056  }
5057
5058  if (Subtarget->isPICStyleRIPRel() &&
5059      (M == CodeModel::Small || M == CodeModel::Kernel))
5060    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5061  else
5062    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5063
5064  // With PIC, the address is actually $g + Offset.
5065  if (isGlobalRelativeToPICBase(OpFlags)) {
5066    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5067                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5068                         Result);
5069  }
5070
5071  // For globals that require a load from a stub to get the address, emit the
5072  // load.
5073  if (isGlobalStubReference(OpFlags))
5074    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5075                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5076
5077  // If there was a non-zero offset that we didn't fold, create an explicit
5078  // addition for it.
5079  if (Offset != 0)
5080    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5081                         DAG.getConstant(Offset, getPointerTy()));
5082
5083  return Result;
5084}
5085
5086SDValue
5087X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
5088  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5089  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5090  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5091}
5092
5093static SDValue
5094GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5095           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5096           unsigned char OperandFlags) {
5097  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5098  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5099  DebugLoc dl = GA->getDebugLoc();
5100  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
5101                                           GA->getValueType(0),
5102                                           GA->getOffset(),
5103                                           OperandFlags);
5104  if (InFlag) {
5105    SDValue Ops[] = { Chain,  TGA, *InFlag };
5106    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5107  } else {
5108    SDValue Ops[]  = { Chain, TGA };
5109    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5110  }
5111
5112  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5113  MFI->setHasCalls(true);
5114
5115  SDValue Flag = Chain.getValue(1);
5116  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5117}
5118
5119// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5120static SDValue
5121LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5122                                const EVT PtrVT) {
5123  SDValue InFlag;
5124  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5125  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5126                                     DAG.getNode(X86ISD::GlobalBaseReg,
5127                                                 DebugLoc::getUnknownLoc(),
5128                                                 PtrVT), InFlag);
5129  InFlag = Chain.getValue(1);
5130
5131  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5132}
5133
5134// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5135static SDValue
5136LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5137                                const EVT PtrVT) {
5138  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5139                    X86::RAX, X86II::MO_TLSGD);
5140}
5141
5142// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5143// "local exec" model.
5144static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5145                                   const EVT PtrVT, TLSModel::Model model,
5146                                   bool is64Bit) {
5147  DebugLoc dl = GA->getDebugLoc();
5148  // Get the Thread Pointer
5149  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5150                             DebugLoc::getUnknownLoc(), PtrVT,
5151                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5152                                             MVT::i32));
5153
5154  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5155                                      NULL, 0, false, false, 0);
5156
5157  unsigned char OperandFlags = 0;
5158  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5159  // initialexec.
5160  unsigned WrapperKind = X86ISD::Wrapper;
5161  if (model == TLSModel::LocalExec) {
5162    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5163  } else if (is64Bit) {
5164    assert(model == TLSModel::InitialExec);
5165    OperandFlags = X86II::MO_GOTTPOFF;
5166    WrapperKind = X86ISD::WrapperRIP;
5167  } else {
5168    assert(model == TLSModel::InitialExec);
5169    OperandFlags = X86II::MO_INDNTPOFF;
5170  }
5171
5172  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5173  // exec)
5174  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5175                                           GA->getOffset(), OperandFlags);
5176  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5177
5178  if (model == TLSModel::InitialExec)
5179    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5180                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5181
5182  // The address of the thread local variable is the add of the thread
5183  // pointer with the offset of the variable.
5184  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5185}
5186
5187SDValue
5188X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
5189  // TODO: implement the "local dynamic" model
5190  // TODO: implement the "initial exec"model for pic executables
5191  assert(Subtarget->isTargetELF() &&
5192         "TLS not implemented for non-ELF targets");
5193  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5194  const GlobalValue *GV = GA->getGlobal();
5195
5196  // If GV is an alias then use the aliasee for determining
5197  // thread-localness.
5198  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5199    GV = GA->resolveAliasedGlobal(false);
5200
5201  TLSModel::Model model = getTLSModel(GV,
5202                                      getTargetMachine().getRelocationModel());
5203
5204  switch (model) {
5205  case TLSModel::GeneralDynamic:
5206  case TLSModel::LocalDynamic: // not implemented
5207    if (Subtarget->is64Bit())
5208      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5209    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5210
5211  case TLSModel::InitialExec:
5212  case TLSModel::LocalExec:
5213    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5214                               Subtarget->is64Bit());
5215  }
5216
5217  llvm_unreachable("Unreachable");
5218  return SDValue();
5219}
5220
5221
5222/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5223/// take a 2 x i32 value to shift plus a shift amount.
5224SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
5225  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5226  EVT VT = Op.getValueType();
5227  unsigned VTBits = VT.getSizeInBits();
5228  DebugLoc dl = Op.getDebugLoc();
5229  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5230  SDValue ShOpLo = Op.getOperand(0);
5231  SDValue ShOpHi = Op.getOperand(1);
5232  SDValue ShAmt  = Op.getOperand(2);
5233  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5234                                     DAG.getConstant(VTBits - 1, MVT::i8))
5235                       : DAG.getConstant(0, VT);
5236
5237  SDValue Tmp2, Tmp3;
5238  if (Op.getOpcode() == ISD::SHL_PARTS) {
5239    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5240    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5241  } else {
5242    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5243    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5244  }
5245
5246  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5247                                DAG.getConstant(VTBits, MVT::i8));
5248  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5249                             AndNode, DAG.getConstant(0, MVT::i8));
5250
5251  SDValue Hi, Lo;
5252  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5253  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5254  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5255
5256  if (Op.getOpcode() == ISD::SHL_PARTS) {
5257    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5258    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5259  } else {
5260    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5261    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5262  }
5263
5264  SDValue Ops[2] = { Lo, Hi };
5265  return DAG.getMergeValues(Ops, 2, dl);
5266}
5267
5268SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5269  EVT SrcVT = Op.getOperand(0).getValueType();
5270
5271  if (SrcVT.isVector()) {
5272    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5273      return Op;
5274    }
5275    return SDValue();
5276  }
5277
5278  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5279         "Unknown SINT_TO_FP to lower!");
5280
5281  // These are really Legal; return the operand so the caller accepts it as
5282  // Legal.
5283  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5284    return Op;
5285  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5286      Subtarget->is64Bit()) {
5287    return Op;
5288  }
5289
5290  DebugLoc dl = Op.getDebugLoc();
5291  unsigned Size = SrcVT.getSizeInBits()/8;
5292  MachineFunction &MF = DAG.getMachineFunction();
5293  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5294  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5295  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5296                               StackSlot,
5297                               PseudoSourceValue::getFixedStack(SSFI), 0,
5298                               false, false, 0);
5299  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5300}
5301
5302SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5303                                     SDValue StackSlot,
5304                                     SelectionDAG &DAG) {
5305  // Build the FILD
5306  DebugLoc dl = Op.getDebugLoc();
5307  SDVTList Tys;
5308  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5309  if (useSSE)
5310    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5311  else
5312    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5313  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5314  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5315                               Tys, Ops, array_lengthof(Ops));
5316
5317  if (useSSE) {
5318    Chain = Result.getValue(1);
5319    SDValue InFlag = Result.getValue(2);
5320
5321    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5322    // shouldn't be necessary except that RFP cannot be live across
5323    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5324    MachineFunction &MF = DAG.getMachineFunction();
5325    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5326    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5327    Tys = DAG.getVTList(MVT::Other);
5328    SDValue Ops[] = {
5329      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5330    };
5331    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5332    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5333                         PseudoSourceValue::getFixedStack(SSFI), 0,
5334                         false, false, 0);
5335  }
5336
5337  return Result;
5338}
5339
5340// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5341SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5342  // This algorithm is not obvious. Here it is in C code, more or less:
5343  /*
5344    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5345      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5346      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5347
5348      // Copy ints to xmm registers.
5349      __m128i xh = _mm_cvtsi32_si128( hi );
5350      __m128i xl = _mm_cvtsi32_si128( lo );
5351
5352      // Combine into low half of a single xmm register.
5353      __m128i x = _mm_unpacklo_epi32( xh, xl );
5354      __m128d d;
5355      double sd;
5356
5357      // Merge in appropriate exponents to give the integer bits the right
5358      // magnitude.
5359      x = _mm_unpacklo_epi32( x, exp );
5360
5361      // Subtract away the biases to deal with the IEEE-754 double precision
5362      // implicit 1.
5363      d = _mm_sub_pd( (__m128d) x, bias );
5364
5365      // All conversions up to here are exact. The correctly rounded result is
5366      // calculated using the current rounding mode using the following
5367      // horizontal add.
5368      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5369      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5370                                // store doesn't really need to be here (except
5371                                // maybe to zero the other double)
5372      return sd;
5373    }
5374  */
5375
5376  DebugLoc dl = Op.getDebugLoc();
5377  LLVMContext *Context = DAG.getContext();
5378
5379  // Build some magic constants.
5380  std::vector<Constant*> CV0;
5381  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5382  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5383  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5384  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5385  Constant *C0 = ConstantVector::get(CV0);
5386  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5387
5388  std::vector<Constant*> CV1;
5389  CV1.push_back(
5390    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5391  CV1.push_back(
5392    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5393  Constant *C1 = ConstantVector::get(CV1);
5394  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5395
5396  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5397                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5398                                        Op.getOperand(0),
5399                                        DAG.getIntPtrConstant(1)));
5400  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5401                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5402                                        Op.getOperand(0),
5403                                        DAG.getIntPtrConstant(0)));
5404  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5405  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5406                              PseudoSourceValue::getConstantPool(), 0,
5407                              false, false, 16);
5408  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5409  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5410  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5411                              PseudoSourceValue::getConstantPool(), 0,
5412                              false, false, 16);
5413  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5414
5415  // Add the halves; easiest way is to swap them into another reg first.
5416  int ShufMask[2] = { 1, -1 };
5417  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5418                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5419  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5420  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5421                     DAG.getIntPtrConstant(0));
5422}
5423
5424// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5425SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5426  DebugLoc dl = Op.getDebugLoc();
5427  // FP constant to bias correct the final result.
5428  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5429                                   MVT::f64);
5430
5431  // Load the 32-bit value into an XMM register.
5432  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5433                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5434                                         Op.getOperand(0),
5435                                         DAG.getIntPtrConstant(0)));
5436
5437  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5438                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5439                     DAG.getIntPtrConstant(0));
5440
5441  // Or the load with the bias.
5442  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5443                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5444                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5445                                                   MVT::v2f64, Load)),
5446                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5447                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5448                                                   MVT::v2f64, Bias)));
5449  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5450                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5451                   DAG.getIntPtrConstant(0));
5452
5453  // Subtract the bias.
5454  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5455
5456  // Handle final rounding.
5457  EVT DestVT = Op.getValueType();
5458
5459  if (DestVT.bitsLT(MVT::f64)) {
5460    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5461                       DAG.getIntPtrConstant(0));
5462  } else if (DestVT.bitsGT(MVT::f64)) {
5463    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5464  }
5465
5466  // Handle final rounding.
5467  return Sub;
5468}
5469
5470SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5471  SDValue N0 = Op.getOperand(0);
5472  DebugLoc dl = Op.getDebugLoc();
5473
5474  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5475  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5476  // the optimization here.
5477  if (DAG.SignBitIsZero(N0))
5478    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5479
5480  EVT SrcVT = N0.getValueType();
5481  if (SrcVT == MVT::i64) {
5482    // We only handle SSE2 f64 target here; caller can expand the rest.
5483    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5484      return SDValue();
5485
5486    return LowerUINT_TO_FP_i64(Op, DAG);
5487  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5488    return LowerUINT_TO_FP_i32(Op, DAG);
5489  }
5490
5491  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5492
5493  // Make a 64-bit buffer, and use it to build an FILD.
5494  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5495  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5496  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5497                                   getPointerTy(), StackSlot, WordOff);
5498  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5499                                StackSlot, NULL, 0, false, false, 0);
5500  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5501                                OffsetSlot, NULL, 0, false, false, 0);
5502  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5503}
5504
5505std::pair<SDValue,SDValue> X86TargetLowering::
5506FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5507  DebugLoc dl = Op.getDebugLoc();
5508
5509  EVT DstTy = Op.getValueType();
5510
5511  if (!IsSigned) {
5512    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5513    DstTy = MVT::i64;
5514  }
5515
5516  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5517         DstTy.getSimpleVT() >= MVT::i16 &&
5518         "Unknown FP_TO_SINT to lower!");
5519
5520  // These are really Legal.
5521  if (DstTy == MVT::i32 &&
5522      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5523    return std::make_pair(SDValue(), SDValue());
5524  if (Subtarget->is64Bit() &&
5525      DstTy == MVT::i64 &&
5526      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5527    return std::make_pair(SDValue(), SDValue());
5528
5529  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5530  // stack slot.
5531  MachineFunction &MF = DAG.getMachineFunction();
5532  unsigned MemSize = DstTy.getSizeInBits()/8;
5533  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5534  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5535
5536  unsigned Opc;
5537  switch (DstTy.getSimpleVT().SimpleTy) {
5538  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5539  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5540  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5541  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5542  }
5543
5544  SDValue Chain = DAG.getEntryNode();
5545  SDValue Value = Op.getOperand(0);
5546  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5547    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5548    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5549                         PseudoSourceValue::getFixedStack(SSFI), 0,
5550                         false, false, 0);
5551    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5552    SDValue Ops[] = {
5553      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5554    };
5555    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5556    Chain = Value.getValue(1);
5557    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5558    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5559  }
5560
5561  // Build the FP_TO_INT*_IN_MEM
5562  SDValue Ops[] = { Chain, Value, StackSlot };
5563  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5564
5565  return std::make_pair(FIST, StackSlot);
5566}
5567
5568SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5569  if (Op.getValueType().isVector()) {
5570    if (Op.getValueType() == MVT::v2i32 &&
5571        Op.getOperand(0).getValueType() == MVT::v2f64) {
5572      return Op;
5573    }
5574    return SDValue();
5575  }
5576
5577  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5578  SDValue FIST = Vals.first, StackSlot = Vals.second;
5579  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5580  if (FIST.getNode() == 0) return Op;
5581
5582  // Load the result.
5583  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5584                     FIST, StackSlot, NULL, 0, false, false, 0);
5585}
5586
5587SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5588  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5589  SDValue FIST = Vals.first, StackSlot = Vals.second;
5590  assert(FIST.getNode() && "Unexpected failure");
5591
5592  // Load the result.
5593  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5594                     FIST, StackSlot, NULL, 0, false, false, 0);
5595}
5596
5597SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5598  LLVMContext *Context = DAG.getContext();
5599  DebugLoc dl = Op.getDebugLoc();
5600  EVT VT = Op.getValueType();
5601  EVT EltVT = VT;
5602  if (VT.isVector())
5603    EltVT = VT.getVectorElementType();
5604  std::vector<Constant*> CV;
5605  if (EltVT == MVT::f64) {
5606    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5607    CV.push_back(C);
5608    CV.push_back(C);
5609  } else {
5610    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5611    CV.push_back(C);
5612    CV.push_back(C);
5613    CV.push_back(C);
5614    CV.push_back(C);
5615  }
5616  Constant *C = ConstantVector::get(CV);
5617  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5618  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5619                             PseudoSourceValue::getConstantPool(), 0,
5620                             false, false, 16);
5621  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5622}
5623
5624SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5625  LLVMContext *Context = DAG.getContext();
5626  DebugLoc dl = Op.getDebugLoc();
5627  EVT VT = Op.getValueType();
5628  EVT EltVT = VT;
5629  if (VT.isVector())
5630    EltVT = VT.getVectorElementType();
5631  std::vector<Constant*> CV;
5632  if (EltVT == MVT::f64) {
5633    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5634    CV.push_back(C);
5635    CV.push_back(C);
5636  } else {
5637    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5638    CV.push_back(C);
5639    CV.push_back(C);
5640    CV.push_back(C);
5641    CV.push_back(C);
5642  }
5643  Constant *C = ConstantVector::get(CV);
5644  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5645  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5646                             PseudoSourceValue::getConstantPool(), 0,
5647                             false, false, 16);
5648  if (VT.isVector()) {
5649    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5650                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5651                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5652                                Op.getOperand(0)),
5653                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5654  } else {
5655    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5656  }
5657}
5658
5659SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5660  LLVMContext *Context = DAG.getContext();
5661  SDValue Op0 = Op.getOperand(0);
5662  SDValue Op1 = Op.getOperand(1);
5663  DebugLoc dl = Op.getDebugLoc();
5664  EVT VT = Op.getValueType();
5665  EVT SrcVT = Op1.getValueType();
5666
5667  // If second operand is smaller, extend it first.
5668  if (SrcVT.bitsLT(VT)) {
5669    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5670    SrcVT = VT;
5671  }
5672  // And if it is bigger, shrink it first.
5673  if (SrcVT.bitsGT(VT)) {
5674    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5675    SrcVT = VT;
5676  }
5677
5678  // At this point the operands and the result should have the same
5679  // type, and that won't be f80 since that is not custom lowered.
5680
5681  // First get the sign bit of second operand.
5682  std::vector<Constant*> CV;
5683  if (SrcVT == MVT::f64) {
5684    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5685    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5686  } else {
5687    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5688    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5689    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5690    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5691  }
5692  Constant *C = ConstantVector::get(CV);
5693  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5694  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5695                              PseudoSourceValue::getConstantPool(), 0,
5696                              false, false, 16);
5697  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5698
5699  // Shift sign bit right or left if the two operands have different types.
5700  if (SrcVT.bitsGT(VT)) {
5701    // Op0 is MVT::f32, Op1 is MVT::f64.
5702    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5703    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5704                          DAG.getConstant(32, MVT::i32));
5705    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5706    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5707                          DAG.getIntPtrConstant(0));
5708  }
5709
5710  // Clear first operand sign bit.
5711  CV.clear();
5712  if (VT == MVT::f64) {
5713    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5714    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5715  } else {
5716    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5717    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5718    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5719    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5720  }
5721  C = ConstantVector::get(CV);
5722  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5723  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5724                              PseudoSourceValue::getConstantPool(), 0,
5725                              false, false, 16);
5726  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5727
5728  // Or the value with the sign bit.
5729  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5730}
5731
5732/// Emit nodes that will be selected as "test Op0,Op0", or something
5733/// equivalent.
5734SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5735                                    SelectionDAG &DAG) {
5736  DebugLoc dl = Op.getDebugLoc();
5737
5738  // CF and OF aren't always set the way we want. Determine which
5739  // of these we need.
5740  bool NeedCF = false;
5741  bool NeedOF = false;
5742  switch (X86CC) {
5743  case X86::COND_A: case X86::COND_AE:
5744  case X86::COND_B: case X86::COND_BE:
5745    NeedCF = true;
5746    break;
5747  case X86::COND_G: case X86::COND_GE:
5748  case X86::COND_L: case X86::COND_LE:
5749  case X86::COND_O: case X86::COND_NO:
5750    NeedOF = true;
5751    break;
5752  default: break;
5753  }
5754
5755  // See if we can use the EFLAGS value from the operand instead of
5756  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5757  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5758  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5759    unsigned Opcode = 0;
5760    unsigned NumOperands = 0;
5761    switch (Op.getNode()->getOpcode()) {
5762    case ISD::ADD:
5763      // Due to an isel shortcoming, be conservative if this add is likely to
5764      // be selected as part of a load-modify-store instruction. When the root
5765      // node in a match is a store, isel doesn't know how to remap non-chain
5766      // non-flag uses of other nodes in the match, such as the ADD in this
5767      // case. This leads to the ADD being left around and reselected, with
5768      // the result being two adds in the output.
5769      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5770           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5771        if (UI->getOpcode() == ISD::STORE)
5772          goto default_case;
5773      if (ConstantSDNode *C =
5774            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5775        // An add of one will be selected as an INC.
5776        if (C->getAPIntValue() == 1) {
5777          Opcode = X86ISD::INC;
5778          NumOperands = 1;
5779          break;
5780        }
5781        // An add of negative one (subtract of one) will be selected as a DEC.
5782        if (C->getAPIntValue().isAllOnesValue()) {
5783          Opcode = X86ISD::DEC;
5784          NumOperands = 1;
5785          break;
5786        }
5787      }
5788      // Otherwise use a regular EFLAGS-setting add.
5789      Opcode = X86ISD::ADD;
5790      NumOperands = 2;
5791      break;
5792    case ISD::AND: {
5793      // If the primary and result isn't used, don't bother using X86ISD::AND,
5794      // because a TEST instruction will be better.
5795      bool NonFlagUse = false;
5796      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5797             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
5798        SDNode *User = *UI;
5799        unsigned UOpNo = UI.getOperandNo();
5800        if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
5801          // Look pass truncate.
5802          UOpNo = User->use_begin().getOperandNo();
5803          User = *User->use_begin();
5804        }
5805        if (User->getOpcode() != ISD::BRCOND &&
5806            User->getOpcode() != ISD::SETCC &&
5807            (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
5808          NonFlagUse = true;
5809          break;
5810        }
5811      }
5812      if (!NonFlagUse)
5813        break;
5814    }
5815    // FALL THROUGH
5816    case ISD::SUB:
5817    case ISD::OR:
5818    case ISD::XOR:
5819      // Due to the ISEL shortcoming noted above, be conservative if this op is
5820      // likely to be selected as part of a load-modify-store instruction.
5821      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5822           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5823        if (UI->getOpcode() == ISD::STORE)
5824          goto default_case;
5825      // Otherwise use a regular EFLAGS-setting instruction.
5826      switch (Op.getNode()->getOpcode()) {
5827      case ISD::SUB: Opcode = X86ISD::SUB; break;
5828      case ISD::OR:  Opcode = X86ISD::OR;  break;
5829      case ISD::XOR: Opcode = X86ISD::XOR; break;
5830      case ISD::AND: Opcode = X86ISD::AND; break;
5831      default: llvm_unreachable("unexpected operator!");
5832      }
5833      NumOperands = 2;
5834      break;
5835    case X86ISD::ADD:
5836    case X86ISD::SUB:
5837    case X86ISD::INC:
5838    case X86ISD::DEC:
5839    case X86ISD::OR:
5840    case X86ISD::XOR:
5841    case X86ISD::AND:
5842      return SDValue(Op.getNode(), 1);
5843    default:
5844    default_case:
5845      break;
5846    }
5847    if (Opcode != 0) {
5848      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5849      SmallVector<SDValue, 4> Ops;
5850      for (unsigned i = 0; i != NumOperands; ++i)
5851        Ops.push_back(Op.getOperand(i));
5852      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5853      DAG.ReplaceAllUsesWith(Op, New);
5854      return SDValue(New.getNode(), 1);
5855    }
5856  }
5857
5858  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5859  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5860                     DAG.getConstant(0, Op.getValueType()));
5861}
5862
5863/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5864/// equivalent.
5865SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5866                                   SelectionDAG &DAG) {
5867  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5868    if (C->getAPIntValue() == 0)
5869      return EmitTest(Op0, X86CC, DAG);
5870
5871  DebugLoc dl = Op0.getDebugLoc();
5872  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5873}
5874
5875/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
5876/// if it's possible.
5877static SDValue LowerToBT(SDValue Op0, ISD::CondCode CC,
5878                         DebugLoc dl, SelectionDAG &DAG) {
5879  SDValue LHS, RHS;
5880  if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5881    if (ConstantSDNode *Op010C =
5882        dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5883      if (Op010C->getZExtValue() == 1) {
5884        LHS = Op0.getOperand(0);
5885        RHS = Op0.getOperand(1).getOperand(1);
5886      }
5887  } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5888    if (ConstantSDNode *Op000C =
5889        dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5890      if (Op000C->getZExtValue() == 1) {
5891        LHS = Op0.getOperand(1);
5892        RHS = Op0.getOperand(0).getOperand(1);
5893      }
5894  } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5895    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5896    SDValue AndLHS = Op0.getOperand(0);
5897    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5898      LHS = AndLHS.getOperand(0);
5899      RHS = AndLHS.getOperand(1);
5900    }
5901  }
5902
5903  if (LHS.getNode()) {
5904    // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5905    // instruction.  Since the shift amount is in-range-or-undefined, we know
5906    // that doing a bittest on the i16 value is ok.  We extend to i32 because
5907    // the encoding for the i16 version is larger than the i32 version.
5908    if (LHS.getValueType() == MVT::i8)
5909      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5910
5911    // If the operand types disagree, extend the shift amount to match.  Since
5912    // BT ignores high bits (like shifts) we can use anyextend.
5913    if (LHS.getValueType() != RHS.getValueType())
5914      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5915
5916    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5917    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5918    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5919                       DAG.getConstant(Cond, MVT::i8), BT);
5920  }
5921
5922  return SDValue();
5923}
5924
5925SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5926  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5927  SDValue Op0 = Op.getOperand(0);
5928  SDValue Op1 = Op.getOperand(1);
5929  DebugLoc dl = Op.getDebugLoc();
5930  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5931
5932  // Optimize to BT if possible.
5933  // Lower (X & (1 << N)) == 0 to BT(X, N).
5934  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5935  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5936  if (Op0.getOpcode() == ISD::AND &&
5937      Op0.hasOneUse() &&
5938      Op1.getOpcode() == ISD::Constant &&
5939      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5940      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5941    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
5942    if (NewSetCC.getNode())
5943      return NewSetCC;
5944  }
5945
5946  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5947  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5948  if (X86CC == X86::COND_INVALID)
5949    return SDValue();
5950
5951  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5952
5953  // Use sbb x, x to materialize carry bit into a GPR.
5954  if (X86CC == X86::COND_B)
5955    return DAG.getNode(ISD::AND, dl, MVT::i8,
5956                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
5957                                   DAG.getConstant(X86CC, MVT::i8), Cond),
5958                       DAG.getConstant(1, MVT::i8));
5959
5960  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5961                     DAG.getConstant(X86CC, MVT::i8), Cond);
5962}
5963
5964SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5965  SDValue Cond;
5966  SDValue Op0 = Op.getOperand(0);
5967  SDValue Op1 = Op.getOperand(1);
5968  SDValue CC = Op.getOperand(2);
5969  EVT VT = Op.getValueType();
5970  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5971  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5972  DebugLoc dl = Op.getDebugLoc();
5973
5974  if (isFP) {
5975    unsigned SSECC = 8;
5976    EVT VT0 = Op0.getValueType();
5977    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5978    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5979    bool Swap = false;
5980
5981    switch (SetCCOpcode) {
5982    default: break;
5983    case ISD::SETOEQ:
5984    case ISD::SETEQ:  SSECC = 0; break;
5985    case ISD::SETOGT:
5986    case ISD::SETGT: Swap = true; // Fallthrough
5987    case ISD::SETLT:
5988    case ISD::SETOLT: SSECC = 1; break;
5989    case ISD::SETOGE:
5990    case ISD::SETGE: Swap = true; // Fallthrough
5991    case ISD::SETLE:
5992    case ISD::SETOLE: SSECC = 2; break;
5993    case ISD::SETUO:  SSECC = 3; break;
5994    case ISD::SETUNE:
5995    case ISD::SETNE:  SSECC = 4; break;
5996    case ISD::SETULE: Swap = true;
5997    case ISD::SETUGE: SSECC = 5; break;
5998    case ISD::SETULT: Swap = true;
5999    case ISD::SETUGT: SSECC = 6; break;
6000    case ISD::SETO:   SSECC = 7; break;
6001    }
6002    if (Swap)
6003      std::swap(Op0, Op1);
6004
6005    // In the two special cases we can't handle, emit two comparisons.
6006    if (SSECC == 8) {
6007      if (SetCCOpcode == ISD::SETUEQ) {
6008        SDValue UNORD, EQ;
6009        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6010        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6011        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6012      }
6013      else if (SetCCOpcode == ISD::SETONE) {
6014        SDValue ORD, NEQ;
6015        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6016        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6017        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6018      }
6019      llvm_unreachable("Illegal FP comparison");
6020    }
6021    // Handle all other FP comparisons here.
6022    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6023  }
6024
6025  // We are handling one of the integer comparisons here.  Since SSE only has
6026  // GT and EQ comparisons for integer, swapping operands and multiple
6027  // operations may be required for some comparisons.
6028  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6029  bool Swap = false, Invert = false, FlipSigns = false;
6030
6031  switch (VT.getSimpleVT().SimpleTy) {
6032  default: break;
6033  case MVT::v8i8:
6034  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6035  case MVT::v4i16:
6036  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6037  case MVT::v2i32:
6038  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6039  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6040  }
6041
6042  switch (SetCCOpcode) {
6043  default: break;
6044  case ISD::SETNE:  Invert = true;
6045  case ISD::SETEQ:  Opc = EQOpc; break;
6046  case ISD::SETLT:  Swap = true;
6047  case ISD::SETGT:  Opc = GTOpc; break;
6048  case ISD::SETGE:  Swap = true;
6049  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6050  case ISD::SETULT: Swap = true;
6051  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6052  case ISD::SETUGE: Swap = true;
6053  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6054  }
6055  if (Swap)
6056    std::swap(Op0, Op1);
6057
6058  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6059  // bits of the inputs before performing those operations.
6060  if (FlipSigns) {
6061    EVT EltVT = VT.getVectorElementType();
6062    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6063                                      EltVT);
6064    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6065    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6066                                    SignBits.size());
6067    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6068    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6069  }
6070
6071  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6072
6073  // If the logical-not of the result is required, perform that now.
6074  if (Invert)
6075    Result = DAG.getNOT(dl, Result, VT);
6076
6077  return Result;
6078}
6079
6080// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6081static bool isX86LogicalCmp(SDValue Op) {
6082  unsigned Opc = Op.getNode()->getOpcode();
6083  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6084    return true;
6085  if (Op.getResNo() == 1 &&
6086      (Opc == X86ISD::ADD ||
6087       Opc == X86ISD::SUB ||
6088       Opc == X86ISD::SMUL ||
6089       Opc == X86ISD::UMUL ||
6090       Opc == X86ISD::INC ||
6091       Opc == X86ISD::DEC ||
6092       Opc == X86ISD::OR ||
6093       Opc == X86ISD::XOR ||
6094       Opc == X86ISD::AND))
6095    return true;
6096
6097  return false;
6098}
6099
6100SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
6101  bool addTest = true;
6102  SDValue Cond  = Op.getOperand(0);
6103  DebugLoc dl = Op.getDebugLoc();
6104  SDValue CC;
6105
6106  if (Cond.getOpcode() == ISD::SETCC) {
6107    SDValue NewCond = LowerSETCC(Cond, DAG);
6108    if (NewCond.getNode())
6109      Cond = NewCond;
6110  }
6111
6112  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6113  SDValue Op1 = Op.getOperand(1);
6114  SDValue Op2 = Op.getOperand(2);
6115  if (Cond.getOpcode() == X86ISD::SETCC &&
6116      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6117    SDValue Cmp = Cond.getOperand(1);
6118    if (Cmp.getOpcode() == X86ISD::CMP) {
6119      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6120      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6121      ConstantSDNode *RHSC =
6122        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6123      if (N1C && N1C->isAllOnesValue() &&
6124          N2C && N2C->isNullValue() &&
6125          RHSC && RHSC->isNullValue()) {
6126        SDValue CmpOp0 = Cmp.getOperand(0);
6127        Cmp = DAG.getNode(X86ISD::CMP, dl, CmpOp0.getValueType(),
6128                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6129        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6130                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6131      }
6132    }
6133  }
6134
6135  // Look pass (and (setcc_carry (cmp ...)), 1).
6136  if (Cond.getOpcode() == ISD::AND &&
6137      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6138    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6139    if (C && C->getAPIntValue() == 1)
6140      Cond = Cond.getOperand(0);
6141  }
6142
6143  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6144  // setting operand in place of the X86ISD::SETCC.
6145  if (Cond.getOpcode() == X86ISD::SETCC ||
6146      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6147    CC = Cond.getOperand(0);
6148
6149    SDValue Cmp = Cond.getOperand(1);
6150    unsigned Opc = Cmp.getOpcode();
6151    EVT VT = Op.getValueType();
6152
6153    bool IllegalFPCMov = false;
6154    if (VT.isFloatingPoint() && !VT.isVector() &&
6155        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6156      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6157
6158    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6159        Opc == X86ISD::BT) { // FIXME
6160      Cond = Cmp;
6161      addTest = false;
6162    }
6163  }
6164
6165  if (addTest) {
6166    // Look pass the truncate.
6167    if (Cond.getOpcode() == ISD::TRUNCATE)
6168      Cond = Cond.getOperand(0);
6169
6170    // We know the result of AND is compared against zero. Try to match
6171    // it to BT.
6172    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6173      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6174      if (NewSetCC.getNode()) {
6175        CC = NewSetCC.getOperand(0);
6176        Cond = NewSetCC.getOperand(1);
6177        addTest = false;
6178      }
6179    }
6180  }
6181
6182  if (addTest) {
6183    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6184    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6185  }
6186
6187  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6188  // condition is true.
6189  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6190  SDValue Ops[] = { Op2, Op1, CC, Cond };
6191  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6192}
6193
6194// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6195// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6196// from the AND / OR.
6197static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6198  Opc = Op.getOpcode();
6199  if (Opc != ISD::OR && Opc != ISD::AND)
6200    return false;
6201  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6202          Op.getOperand(0).hasOneUse() &&
6203          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6204          Op.getOperand(1).hasOneUse());
6205}
6206
6207// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6208// 1 and that the SETCC node has a single use.
6209static bool isXor1OfSetCC(SDValue Op) {
6210  if (Op.getOpcode() != ISD::XOR)
6211    return false;
6212  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6213  if (N1C && N1C->getAPIntValue() == 1) {
6214    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6215      Op.getOperand(0).hasOneUse();
6216  }
6217  return false;
6218}
6219
6220SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
6221  bool addTest = true;
6222  SDValue Chain = Op.getOperand(0);
6223  SDValue Cond  = Op.getOperand(1);
6224  SDValue Dest  = Op.getOperand(2);
6225  DebugLoc dl = Op.getDebugLoc();
6226  SDValue CC;
6227
6228  if (Cond.getOpcode() == ISD::SETCC) {
6229    SDValue NewCond = LowerSETCC(Cond, DAG);
6230    if (NewCond.getNode())
6231      Cond = NewCond;
6232  }
6233#if 0
6234  // FIXME: LowerXALUO doesn't handle these!!
6235  else if (Cond.getOpcode() == X86ISD::ADD  ||
6236           Cond.getOpcode() == X86ISD::SUB  ||
6237           Cond.getOpcode() == X86ISD::SMUL ||
6238           Cond.getOpcode() == X86ISD::UMUL)
6239    Cond = LowerXALUO(Cond, DAG);
6240#endif
6241
6242  // Look pass (and (setcc_carry (cmp ...)), 1).
6243  if (Cond.getOpcode() == ISD::AND &&
6244      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6245    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6246    if (C && C->getAPIntValue() == 1)
6247      Cond = Cond.getOperand(0);
6248  }
6249
6250  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6251  // setting operand in place of the X86ISD::SETCC.
6252  if (Cond.getOpcode() == X86ISD::SETCC ||
6253      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6254    CC = Cond.getOperand(0);
6255
6256    SDValue Cmp = Cond.getOperand(1);
6257    unsigned Opc = Cmp.getOpcode();
6258    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6259    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6260      Cond = Cmp;
6261      addTest = false;
6262    } else {
6263      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6264      default: break;
6265      case X86::COND_O:
6266      case X86::COND_B:
6267        // These can only come from an arithmetic instruction with overflow,
6268        // e.g. SADDO, UADDO.
6269        Cond = Cond.getNode()->getOperand(1);
6270        addTest = false;
6271        break;
6272      }
6273    }
6274  } else {
6275    unsigned CondOpc;
6276    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6277      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6278      if (CondOpc == ISD::OR) {
6279        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6280        // two branches instead of an explicit OR instruction with a
6281        // separate test.
6282        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6283            isX86LogicalCmp(Cmp)) {
6284          CC = Cond.getOperand(0).getOperand(0);
6285          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6286                              Chain, Dest, CC, Cmp);
6287          CC = Cond.getOperand(1).getOperand(0);
6288          Cond = Cmp;
6289          addTest = false;
6290        }
6291      } else { // ISD::AND
6292        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6293        // two branches instead of an explicit AND instruction with a
6294        // separate test. However, we only do this if this block doesn't
6295        // have a fall-through edge, because this requires an explicit
6296        // jmp when the condition is false.
6297        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6298            isX86LogicalCmp(Cmp) &&
6299            Op.getNode()->hasOneUse()) {
6300          X86::CondCode CCode =
6301            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6302          CCode = X86::GetOppositeBranchCondition(CCode);
6303          CC = DAG.getConstant(CCode, MVT::i8);
6304          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
6305          // Look for an unconditional branch following this conditional branch.
6306          // We need this because we need to reverse the successors in order
6307          // to implement FCMP_OEQ.
6308          if (User.getOpcode() == ISD::BR) {
6309            SDValue FalseBB = User.getOperand(1);
6310            SDValue NewBR =
6311              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
6312            assert(NewBR == User);
6313            Dest = FalseBB;
6314
6315            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6316                                Chain, Dest, CC, Cmp);
6317            X86::CondCode CCode =
6318              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6319            CCode = X86::GetOppositeBranchCondition(CCode);
6320            CC = DAG.getConstant(CCode, MVT::i8);
6321            Cond = Cmp;
6322            addTest = false;
6323          }
6324        }
6325      }
6326    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6327      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6328      // It should be transformed during dag combiner except when the condition
6329      // is set by a arithmetics with overflow node.
6330      X86::CondCode CCode =
6331        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6332      CCode = X86::GetOppositeBranchCondition(CCode);
6333      CC = DAG.getConstant(CCode, MVT::i8);
6334      Cond = Cond.getOperand(0).getOperand(1);
6335      addTest = false;
6336    }
6337  }
6338
6339  if (addTest) {
6340    // Look pass the truncate.
6341    if (Cond.getOpcode() == ISD::TRUNCATE)
6342      Cond = Cond.getOperand(0);
6343
6344    // We know the result of AND is compared against zero. Try to match
6345    // it to BT.
6346    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6347      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6348      if (NewSetCC.getNode()) {
6349        CC = NewSetCC.getOperand(0);
6350        Cond = NewSetCC.getOperand(1);
6351        addTest = false;
6352      }
6353    }
6354  }
6355
6356  if (addTest) {
6357    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6358    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6359  }
6360  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6361                     Chain, Dest, CC, Cond);
6362}
6363
6364
6365// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6366// Calls to _alloca is needed to probe the stack when allocating more than 4k
6367// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6368// that the guard pages used by the OS virtual memory manager are allocated in
6369// correct sequence.
6370SDValue
6371X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6372                                           SelectionDAG &DAG) {
6373  assert(Subtarget->isTargetCygMing() &&
6374         "This should be used only on Cygwin/Mingw targets");
6375  DebugLoc dl = Op.getDebugLoc();
6376
6377  // Get the inputs.
6378  SDValue Chain = Op.getOperand(0);
6379  SDValue Size  = Op.getOperand(1);
6380  // FIXME: Ensure alignment here
6381
6382  SDValue Flag;
6383
6384  EVT IntPtr = getPointerTy();
6385  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6386
6387  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
6388
6389  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6390  Flag = Chain.getValue(1);
6391
6392  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6393  SDValue Ops[] = { Chain,
6394                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
6395                      DAG.getRegister(X86::EAX, IntPtr),
6396                      DAG.getRegister(X86StackPtr, SPTy),
6397                      Flag };
6398  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
6399  Flag = Chain.getValue(1);
6400
6401  Chain = DAG.getCALLSEQ_END(Chain,
6402                             DAG.getIntPtrConstant(0, true),
6403                             DAG.getIntPtrConstant(0, true),
6404                             Flag);
6405
6406  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6407
6408  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6409  return DAG.getMergeValues(Ops1, 2, dl);
6410}
6411
6412SDValue
6413X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6414                                           SDValue Chain,
6415                                           SDValue Dst, SDValue Src,
6416                                           SDValue Size, unsigned Align,
6417                                           const Value *DstSV,
6418                                           uint64_t DstSVOff) {
6419  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6420
6421  // If not DWORD aligned or size is more than the threshold, call the library.
6422  // The libc version is likely to be faster for these cases. It can use the
6423  // address value and run time information about the CPU.
6424  if ((Align & 3) != 0 ||
6425      !ConstantSize ||
6426      ConstantSize->getZExtValue() >
6427        getSubtarget()->getMaxInlineSizeThreshold()) {
6428    SDValue InFlag(0, 0);
6429
6430    // Check to see if there is a specialized entry-point for memory zeroing.
6431    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6432
6433    if (const char *bzeroEntry =  V &&
6434        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6435      EVT IntPtr = getPointerTy();
6436      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6437      TargetLowering::ArgListTy Args;
6438      TargetLowering::ArgListEntry Entry;
6439      Entry.Node = Dst;
6440      Entry.Ty = IntPtrTy;
6441      Args.push_back(Entry);
6442      Entry.Node = Size;
6443      Args.push_back(Entry);
6444      std::pair<SDValue,SDValue> CallResult =
6445        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6446                    false, false, false, false,
6447                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6448                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl,
6449                    DAG.GetOrdering(Chain.getNode()));
6450      return CallResult.second;
6451    }
6452
6453    // Otherwise have the target-independent code call memset.
6454    return SDValue();
6455  }
6456
6457  uint64_t SizeVal = ConstantSize->getZExtValue();
6458  SDValue InFlag(0, 0);
6459  EVT AVT;
6460  SDValue Count;
6461  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6462  unsigned BytesLeft = 0;
6463  bool TwoRepStos = false;
6464  if (ValC) {
6465    unsigned ValReg;
6466    uint64_t Val = ValC->getZExtValue() & 255;
6467
6468    // If the value is a constant, then we can potentially use larger sets.
6469    switch (Align & 3) {
6470    case 2:   // WORD aligned
6471      AVT = MVT::i16;
6472      ValReg = X86::AX;
6473      Val = (Val << 8) | Val;
6474      break;
6475    case 0:  // DWORD aligned
6476      AVT = MVT::i32;
6477      ValReg = X86::EAX;
6478      Val = (Val << 8)  | Val;
6479      Val = (Val << 16) | Val;
6480      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6481        AVT = MVT::i64;
6482        ValReg = X86::RAX;
6483        Val = (Val << 32) | Val;
6484      }
6485      break;
6486    default:  // Byte aligned
6487      AVT = MVT::i8;
6488      ValReg = X86::AL;
6489      Count = DAG.getIntPtrConstant(SizeVal);
6490      break;
6491    }
6492
6493    if (AVT.bitsGT(MVT::i8)) {
6494      unsigned UBytes = AVT.getSizeInBits() / 8;
6495      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6496      BytesLeft = SizeVal % UBytes;
6497    }
6498
6499    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6500                              InFlag);
6501    InFlag = Chain.getValue(1);
6502  } else {
6503    AVT = MVT::i8;
6504    Count  = DAG.getIntPtrConstant(SizeVal);
6505    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6506    InFlag = Chain.getValue(1);
6507  }
6508
6509  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6510                                                              X86::ECX,
6511                            Count, InFlag);
6512  InFlag = Chain.getValue(1);
6513  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6514                                                              X86::EDI,
6515                            Dst, InFlag);
6516  InFlag = Chain.getValue(1);
6517
6518  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6519  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6520  Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6521
6522  if (TwoRepStos) {
6523    InFlag = Chain.getValue(1);
6524    Count  = Size;
6525    EVT CVT = Count.getValueType();
6526    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6527                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6528    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6529                                                             X86::ECX,
6530                              Left, InFlag);
6531    InFlag = Chain.getValue(1);
6532    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6533    SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
6534    Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6535  } else if (BytesLeft) {
6536    // Handle the last 1 - 7 bytes.
6537    unsigned Offset = SizeVal - BytesLeft;
6538    EVT AddrVT = Dst.getValueType();
6539    EVT SizeVT = Size.getValueType();
6540
6541    Chain = DAG.getMemset(Chain, dl,
6542                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6543                                      DAG.getConstant(Offset, AddrVT)),
6544                          Src,
6545                          DAG.getConstant(BytesLeft, SizeVT),
6546                          Align, DstSV, DstSVOff + Offset);
6547  }
6548
6549  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6550  return Chain;
6551}
6552
6553SDValue
6554X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6555                                      SDValue Chain, SDValue Dst, SDValue Src,
6556                                      SDValue Size, unsigned Align,
6557                                      bool AlwaysInline,
6558                                      const Value *DstSV, uint64_t DstSVOff,
6559                                      const Value *SrcSV, uint64_t SrcSVOff) {
6560  // This requires the copy size to be a constant, preferrably
6561  // within a subtarget-specific limit.
6562  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6563  if (!ConstantSize)
6564    return SDValue();
6565  uint64_t SizeVal = ConstantSize->getZExtValue();
6566  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6567    return SDValue();
6568
6569  /// If not DWORD aligned, call the library.
6570  if ((Align & 3) != 0)
6571    return SDValue();
6572
6573  // DWORD aligned
6574  EVT AVT = MVT::i32;
6575  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6576    AVT = MVT::i64;
6577
6578  unsigned UBytes = AVT.getSizeInBits() / 8;
6579  unsigned CountVal = SizeVal / UBytes;
6580  SDValue Count = DAG.getIntPtrConstant(CountVal);
6581  unsigned BytesLeft = SizeVal % UBytes;
6582
6583  SDValue InFlag(0, 0);
6584  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6585                                                              X86::ECX,
6586                            Count, InFlag);
6587  InFlag = Chain.getValue(1);
6588  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6589                                                             X86::EDI,
6590                            Dst, InFlag);
6591  InFlag = Chain.getValue(1);
6592  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6593                                                              X86::ESI,
6594                            Src, InFlag);
6595  InFlag = Chain.getValue(1);
6596
6597  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6598  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6599  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
6600                                array_lengthof(Ops));
6601
6602  SmallVector<SDValue, 4> Results;
6603  Results.push_back(RepMovs);
6604  if (BytesLeft) {
6605    // Handle the last 1 - 7 bytes.
6606    unsigned Offset = SizeVal - BytesLeft;
6607    EVT DstVT = Dst.getValueType();
6608    EVT SrcVT = Src.getValueType();
6609    EVT SizeVT = Size.getValueType();
6610    Results.push_back(DAG.getMemcpy(Chain, dl,
6611                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6612                                                DAG.getConstant(Offset, DstVT)),
6613                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6614                                                DAG.getConstant(Offset, SrcVT)),
6615                                    DAG.getConstant(BytesLeft, SizeVT),
6616                                    Align, AlwaysInline,
6617                                    DstSV, DstSVOff + Offset,
6618                                    SrcSV, SrcSVOff + Offset));
6619  }
6620
6621  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6622                     &Results[0], Results.size());
6623}
6624
6625SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6626  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6627  DebugLoc dl = Op.getDebugLoc();
6628
6629  if (!Subtarget->is64Bit()) {
6630    // vastart just stores the address of the VarArgsFrameIndex slot into the
6631    // memory location argument.
6632    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6633    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6634                        false, false, 0);
6635  }
6636
6637  // __va_list_tag:
6638  //   gp_offset         (0 - 6 * 8)
6639  //   fp_offset         (48 - 48 + 8 * 16)
6640  //   overflow_arg_area (point to parameters coming in memory).
6641  //   reg_save_area
6642  SmallVector<SDValue, 8> MemOps;
6643  SDValue FIN = Op.getOperand(1);
6644  // Store gp_offset
6645  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6646                               DAG.getConstant(VarArgsGPOffset, MVT::i32),
6647                               FIN, SV, 0, false, false, 0);
6648  MemOps.push_back(Store);
6649
6650  // Store fp_offset
6651  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6652                    FIN, DAG.getIntPtrConstant(4));
6653  Store = DAG.getStore(Op.getOperand(0), dl,
6654                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6655                       FIN, SV, 0, false, false, 0);
6656  MemOps.push_back(Store);
6657
6658  // Store ptr to overflow_arg_area
6659  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6660                    FIN, DAG.getIntPtrConstant(4));
6661  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6662  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0,
6663                       false, false, 0);
6664  MemOps.push_back(Store);
6665
6666  // Store ptr to reg_save_area.
6667  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6668                    FIN, DAG.getIntPtrConstant(8));
6669  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6670  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0,
6671                       false, false, 0);
6672  MemOps.push_back(Store);
6673  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6674                     &MemOps[0], MemOps.size());
6675}
6676
6677SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6678  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6679  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6680  SDValue Chain = Op.getOperand(0);
6681  SDValue SrcPtr = Op.getOperand(1);
6682  SDValue SrcSV = Op.getOperand(2);
6683
6684  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6685  return SDValue();
6686}
6687
6688SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6689  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6690  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6691  SDValue Chain = Op.getOperand(0);
6692  SDValue DstPtr = Op.getOperand(1);
6693  SDValue SrcPtr = Op.getOperand(2);
6694  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6695  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6696  DebugLoc dl = Op.getDebugLoc();
6697
6698  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6699                       DAG.getIntPtrConstant(24), 8, false,
6700                       DstSV, 0, SrcSV, 0);
6701}
6702
6703SDValue
6704X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6705  DebugLoc dl = Op.getDebugLoc();
6706  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6707  switch (IntNo) {
6708  default: return SDValue();    // Don't custom lower most intrinsics.
6709  // Comparison intrinsics.
6710  case Intrinsic::x86_sse_comieq_ss:
6711  case Intrinsic::x86_sse_comilt_ss:
6712  case Intrinsic::x86_sse_comile_ss:
6713  case Intrinsic::x86_sse_comigt_ss:
6714  case Intrinsic::x86_sse_comige_ss:
6715  case Intrinsic::x86_sse_comineq_ss:
6716  case Intrinsic::x86_sse_ucomieq_ss:
6717  case Intrinsic::x86_sse_ucomilt_ss:
6718  case Intrinsic::x86_sse_ucomile_ss:
6719  case Intrinsic::x86_sse_ucomigt_ss:
6720  case Intrinsic::x86_sse_ucomige_ss:
6721  case Intrinsic::x86_sse_ucomineq_ss:
6722  case Intrinsic::x86_sse2_comieq_sd:
6723  case Intrinsic::x86_sse2_comilt_sd:
6724  case Intrinsic::x86_sse2_comile_sd:
6725  case Intrinsic::x86_sse2_comigt_sd:
6726  case Intrinsic::x86_sse2_comige_sd:
6727  case Intrinsic::x86_sse2_comineq_sd:
6728  case Intrinsic::x86_sse2_ucomieq_sd:
6729  case Intrinsic::x86_sse2_ucomilt_sd:
6730  case Intrinsic::x86_sse2_ucomile_sd:
6731  case Intrinsic::x86_sse2_ucomigt_sd:
6732  case Intrinsic::x86_sse2_ucomige_sd:
6733  case Intrinsic::x86_sse2_ucomineq_sd: {
6734    unsigned Opc = 0;
6735    ISD::CondCode CC = ISD::SETCC_INVALID;
6736    switch (IntNo) {
6737    default: break;
6738    case Intrinsic::x86_sse_comieq_ss:
6739    case Intrinsic::x86_sse2_comieq_sd:
6740      Opc = X86ISD::COMI;
6741      CC = ISD::SETEQ;
6742      break;
6743    case Intrinsic::x86_sse_comilt_ss:
6744    case Intrinsic::x86_sse2_comilt_sd:
6745      Opc = X86ISD::COMI;
6746      CC = ISD::SETLT;
6747      break;
6748    case Intrinsic::x86_sse_comile_ss:
6749    case Intrinsic::x86_sse2_comile_sd:
6750      Opc = X86ISD::COMI;
6751      CC = ISD::SETLE;
6752      break;
6753    case Intrinsic::x86_sse_comigt_ss:
6754    case Intrinsic::x86_sse2_comigt_sd:
6755      Opc = X86ISD::COMI;
6756      CC = ISD::SETGT;
6757      break;
6758    case Intrinsic::x86_sse_comige_ss:
6759    case Intrinsic::x86_sse2_comige_sd:
6760      Opc = X86ISD::COMI;
6761      CC = ISD::SETGE;
6762      break;
6763    case Intrinsic::x86_sse_comineq_ss:
6764    case Intrinsic::x86_sse2_comineq_sd:
6765      Opc = X86ISD::COMI;
6766      CC = ISD::SETNE;
6767      break;
6768    case Intrinsic::x86_sse_ucomieq_ss:
6769    case Intrinsic::x86_sse2_ucomieq_sd:
6770      Opc = X86ISD::UCOMI;
6771      CC = ISD::SETEQ;
6772      break;
6773    case Intrinsic::x86_sse_ucomilt_ss:
6774    case Intrinsic::x86_sse2_ucomilt_sd:
6775      Opc = X86ISD::UCOMI;
6776      CC = ISD::SETLT;
6777      break;
6778    case Intrinsic::x86_sse_ucomile_ss:
6779    case Intrinsic::x86_sse2_ucomile_sd:
6780      Opc = X86ISD::UCOMI;
6781      CC = ISD::SETLE;
6782      break;
6783    case Intrinsic::x86_sse_ucomigt_ss:
6784    case Intrinsic::x86_sse2_ucomigt_sd:
6785      Opc = X86ISD::UCOMI;
6786      CC = ISD::SETGT;
6787      break;
6788    case Intrinsic::x86_sse_ucomige_ss:
6789    case Intrinsic::x86_sse2_ucomige_sd:
6790      Opc = X86ISD::UCOMI;
6791      CC = ISD::SETGE;
6792      break;
6793    case Intrinsic::x86_sse_ucomineq_ss:
6794    case Intrinsic::x86_sse2_ucomineq_sd:
6795      Opc = X86ISD::UCOMI;
6796      CC = ISD::SETNE;
6797      break;
6798    }
6799
6800    SDValue LHS = Op.getOperand(1);
6801    SDValue RHS = Op.getOperand(2);
6802    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6803    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6804    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6805    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6806                                DAG.getConstant(X86CC, MVT::i8), Cond);
6807    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6808  }
6809  // ptest intrinsics. The intrinsic these come from are designed to return
6810  // an integer value, not just an instruction so lower it to the ptest
6811  // pattern and a setcc for the result.
6812  case Intrinsic::x86_sse41_ptestz:
6813  case Intrinsic::x86_sse41_ptestc:
6814  case Intrinsic::x86_sse41_ptestnzc:{
6815    unsigned X86CC = 0;
6816    switch (IntNo) {
6817    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6818    case Intrinsic::x86_sse41_ptestz:
6819      // ZF = 1
6820      X86CC = X86::COND_E;
6821      break;
6822    case Intrinsic::x86_sse41_ptestc:
6823      // CF = 1
6824      X86CC = X86::COND_B;
6825      break;
6826    case Intrinsic::x86_sse41_ptestnzc:
6827      // ZF and CF = 0
6828      X86CC = X86::COND_A;
6829      break;
6830    }
6831
6832    SDValue LHS = Op.getOperand(1);
6833    SDValue RHS = Op.getOperand(2);
6834    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6835    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6836    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6837    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6838  }
6839
6840  // Fix vector shift instructions where the last operand is a non-immediate
6841  // i32 value.
6842  case Intrinsic::x86_sse2_pslli_w:
6843  case Intrinsic::x86_sse2_pslli_d:
6844  case Intrinsic::x86_sse2_pslli_q:
6845  case Intrinsic::x86_sse2_psrli_w:
6846  case Intrinsic::x86_sse2_psrli_d:
6847  case Intrinsic::x86_sse2_psrli_q:
6848  case Intrinsic::x86_sse2_psrai_w:
6849  case Intrinsic::x86_sse2_psrai_d:
6850  case Intrinsic::x86_mmx_pslli_w:
6851  case Intrinsic::x86_mmx_pslli_d:
6852  case Intrinsic::x86_mmx_pslli_q:
6853  case Intrinsic::x86_mmx_psrli_w:
6854  case Intrinsic::x86_mmx_psrli_d:
6855  case Intrinsic::x86_mmx_psrli_q:
6856  case Intrinsic::x86_mmx_psrai_w:
6857  case Intrinsic::x86_mmx_psrai_d: {
6858    SDValue ShAmt = Op.getOperand(2);
6859    if (isa<ConstantSDNode>(ShAmt))
6860      return SDValue();
6861
6862    unsigned NewIntNo = 0;
6863    EVT ShAmtVT = MVT::v4i32;
6864    switch (IntNo) {
6865    case Intrinsic::x86_sse2_pslli_w:
6866      NewIntNo = Intrinsic::x86_sse2_psll_w;
6867      break;
6868    case Intrinsic::x86_sse2_pslli_d:
6869      NewIntNo = Intrinsic::x86_sse2_psll_d;
6870      break;
6871    case Intrinsic::x86_sse2_pslli_q:
6872      NewIntNo = Intrinsic::x86_sse2_psll_q;
6873      break;
6874    case Intrinsic::x86_sse2_psrli_w:
6875      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6876      break;
6877    case Intrinsic::x86_sse2_psrli_d:
6878      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6879      break;
6880    case Intrinsic::x86_sse2_psrli_q:
6881      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6882      break;
6883    case Intrinsic::x86_sse2_psrai_w:
6884      NewIntNo = Intrinsic::x86_sse2_psra_w;
6885      break;
6886    case Intrinsic::x86_sse2_psrai_d:
6887      NewIntNo = Intrinsic::x86_sse2_psra_d;
6888      break;
6889    default: {
6890      ShAmtVT = MVT::v2i32;
6891      switch (IntNo) {
6892      case Intrinsic::x86_mmx_pslli_w:
6893        NewIntNo = Intrinsic::x86_mmx_psll_w;
6894        break;
6895      case Intrinsic::x86_mmx_pslli_d:
6896        NewIntNo = Intrinsic::x86_mmx_psll_d;
6897        break;
6898      case Intrinsic::x86_mmx_pslli_q:
6899        NewIntNo = Intrinsic::x86_mmx_psll_q;
6900        break;
6901      case Intrinsic::x86_mmx_psrli_w:
6902        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6903        break;
6904      case Intrinsic::x86_mmx_psrli_d:
6905        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6906        break;
6907      case Intrinsic::x86_mmx_psrli_q:
6908        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6909        break;
6910      case Intrinsic::x86_mmx_psrai_w:
6911        NewIntNo = Intrinsic::x86_mmx_psra_w;
6912        break;
6913      case Intrinsic::x86_mmx_psrai_d:
6914        NewIntNo = Intrinsic::x86_mmx_psra_d;
6915        break;
6916      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6917      }
6918      break;
6919    }
6920    }
6921
6922    // The vector shift intrinsics with scalars uses 32b shift amounts but
6923    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6924    // to be zero.
6925    SDValue ShOps[4];
6926    ShOps[0] = ShAmt;
6927    ShOps[1] = DAG.getConstant(0, MVT::i32);
6928    if (ShAmtVT == MVT::v4i32) {
6929      ShOps[2] = DAG.getUNDEF(MVT::i32);
6930      ShOps[3] = DAG.getUNDEF(MVT::i32);
6931      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
6932    } else {
6933      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
6934    }
6935
6936    EVT VT = Op.getValueType();
6937    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
6938    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6939                       DAG.getConstant(NewIntNo, MVT::i32),
6940                       Op.getOperand(1), ShAmt);
6941  }
6942  }
6943}
6944
6945SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6946  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6947  DebugLoc dl = Op.getDebugLoc();
6948
6949  if (Depth > 0) {
6950    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6951    SDValue Offset =
6952      DAG.getConstant(TD->getPointerSize(),
6953                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6954    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6955                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6956                                   FrameAddr, Offset),
6957                       NULL, 0, false, false, 0);
6958  }
6959
6960  // Just load the return address.
6961  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6962  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6963                     RetAddrFI, NULL, 0, false, false, 0);
6964}
6965
6966SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6967  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6968  MFI->setFrameAddressIsTaken(true);
6969  EVT VT = Op.getValueType();
6970  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6971  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6972  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6973  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6974  while (Depth--)
6975    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
6976                            false, false, 0);
6977  return FrameAddr;
6978}
6979
6980SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6981                                                     SelectionDAG &DAG) {
6982  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6983}
6984
6985SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6986{
6987  MachineFunction &MF = DAG.getMachineFunction();
6988  SDValue Chain     = Op.getOperand(0);
6989  SDValue Offset    = Op.getOperand(1);
6990  SDValue Handler   = Op.getOperand(2);
6991  DebugLoc dl       = Op.getDebugLoc();
6992
6993  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6994                                  getPointerTy());
6995  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6996
6997  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6998                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6999  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7000  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7001  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7002  MF.getRegInfo().addLiveOut(StoreAddrReg);
7003
7004  return DAG.getNode(X86ISD::EH_RETURN, dl,
7005                     MVT::Other,
7006                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7007}
7008
7009SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7010                                             SelectionDAG &DAG) {
7011  SDValue Root = Op.getOperand(0);
7012  SDValue Trmp = Op.getOperand(1); // trampoline
7013  SDValue FPtr = Op.getOperand(2); // nested function
7014  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7015  DebugLoc dl  = Op.getDebugLoc();
7016
7017  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7018
7019  if (Subtarget->is64Bit()) {
7020    SDValue OutChains[6];
7021
7022    // Large code-model.
7023    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7024    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7025
7026    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7027    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7028
7029    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7030
7031    // Load the pointer to the nested function into R11.
7032    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7033    SDValue Addr = Trmp;
7034    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7035                                Addr, TrmpAddr, 0, false, false, 0);
7036
7037    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7038                       DAG.getConstant(2, MVT::i64));
7039    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7040                                false, false, 2);
7041
7042    // Load the 'nest' parameter value into R10.
7043    // R10 is specified in X86CallingConv.td
7044    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7045    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7046                       DAG.getConstant(10, MVT::i64));
7047    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7048                                Addr, TrmpAddr, 10, false, false, 0);
7049
7050    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7051                       DAG.getConstant(12, MVT::i64));
7052    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7053                                false, false, 2);
7054
7055    // Jump to the nested function.
7056    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7057    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7058                       DAG.getConstant(20, MVT::i64));
7059    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7060                                Addr, TrmpAddr, 20, false, false, 0);
7061
7062    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7063    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7064                       DAG.getConstant(22, MVT::i64));
7065    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7066                                TrmpAddr, 22, false, false, 0);
7067
7068    SDValue Ops[] =
7069      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7070    return DAG.getMergeValues(Ops, 2, dl);
7071  } else {
7072    const Function *Func =
7073      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7074    CallingConv::ID CC = Func->getCallingConv();
7075    unsigned NestReg;
7076
7077    switch (CC) {
7078    default:
7079      llvm_unreachable("Unsupported calling convention");
7080    case CallingConv::C:
7081    case CallingConv::X86_StdCall: {
7082      // Pass 'nest' parameter in ECX.
7083      // Must be kept in sync with X86CallingConv.td
7084      NestReg = X86::ECX;
7085
7086      // Check that ECX wasn't needed by an 'inreg' parameter.
7087      const FunctionType *FTy = Func->getFunctionType();
7088      const AttrListPtr &Attrs = Func->getAttributes();
7089
7090      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7091        unsigned InRegCount = 0;
7092        unsigned Idx = 1;
7093
7094        for (FunctionType::param_iterator I = FTy->param_begin(),
7095             E = FTy->param_end(); I != E; ++I, ++Idx)
7096          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7097            // FIXME: should only count parameters that are lowered to integers.
7098            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7099
7100        if (InRegCount > 2) {
7101          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
7102        }
7103      }
7104      break;
7105    }
7106    case CallingConv::X86_FastCall:
7107    case CallingConv::Fast:
7108      // Pass 'nest' parameter in EAX.
7109      // Must be kept in sync with X86CallingConv.td
7110      NestReg = X86::EAX;
7111      break;
7112    }
7113
7114    SDValue OutChains[4];
7115    SDValue Addr, Disp;
7116
7117    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7118                       DAG.getConstant(10, MVT::i32));
7119    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7120
7121    // This is storing the opcode for MOV32ri.
7122    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7123    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7124    OutChains[0] = DAG.getStore(Root, dl,
7125                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7126                                Trmp, TrmpAddr, 0, false, false, 0);
7127
7128    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7129                       DAG.getConstant(1, MVT::i32));
7130    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7131                                false, false, 1);
7132
7133    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7134    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7135                       DAG.getConstant(5, MVT::i32));
7136    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7137                                TrmpAddr, 5, false, false, 1);
7138
7139    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7140                       DAG.getConstant(6, MVT::i32));
7141    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7142                                false, false, 1);
7143
7144    SDValue Ops[] =
7145      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7146    return DAG.getMergeValues(Ops, 2, dl);
7147  }
7148}
7149
7150SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
7151  /*
7152   The rounding mode is in bits 11:10 of FPSR, and has the following
7153   settings:
7154     00 Round to nearest
7155     01 Round to -inf
7156     10 Round to +inf
7157     11 Round to 0
7158
7159  FLT_ROUNDS, on the other hand, expects the following:
7160    -1 Undefined
7161     0 Round to 0
7162     1 Round to nearest
7163     2 Round to +inf
7164     3 Round to -inf
7165
7166  To perform the conversion, we do:
7167    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7168  */
7169
7170  MachineFunction &MF = DAG.getMachineFunction();
7171  const TargetMachine &TM = MF.getTarget();
7172  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7173  unsigned StackAlignment = TFI.getStackAlignment();
7174  EVT VT = Op.getValueType();
7175  DebugLoc dl = Op.getDebugLoc();
7176
7177  // Save FP Control Word to stack slot
7178  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7179  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7180
7181  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7182                              DAG.getEntryNode(), StackSlot);
7183
7184  // Load FP Control Word from stack slot
7185  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7186                            false, false, 0);
7187
7188  // Transform as necessary
7189  SDValue CWD1 =
7190    DAG.getNode(ISD::SRL, dl, MVT::i16,
7191                DAG.getNode(ISD::AND, dl, MVT::i16,
7192                            CWD, DAG.getConstant(0x800, MVT::i16)),
7193                DAG.getConstant(11, MVT::i8));
7194  SDValue CWD2 =
7195    DAG.getNode(ISD::SRL, dl, MVT::i16,
7196                DAG.getNode(ISD::AND, dl, MVT::i16,
7197                            CWD, DAG.getConstant(0x400, MVT::i16)),
7198                DAG.getConstant(9, MVT::i8));
7199
7200  SDValue RetVal =
7201    DAG.getNode(ISD::AND, dl, MVT::i16,
7202                DAG.getNode(ISD::ADD, dl, MVT::i16,
7203                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7204                            DAG.getConstant(1, MVT::i16)),
7205                DAG.getConstant(3, MVT::i16));
7206
7207
7208  return DAG.getNode((VT.getSizeInBits() < 16 ?
7209                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7210}
7211
7212SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
7213  EVT VT = Op.getValueType();
7214  EVT OpVT = VT;
7215  unsigned NumBits = VT.getSizeInBits();
7216  DebugLoc dl = Op.getDebugLoc();
7217
7218  Op = Op.getOperand(0);
7219  if (VT == MVT::i8) {
7220    // Zero extend to i32 since there is not an i8 bsr.
7221    OpVT = MVT::i32;
7222    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7223  }
7224
7225  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7226  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7227  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7228
7229  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7230  SDValue Ops[] = {
7231    Op,
7232    DAG.getConstant(NumBits+NumBits-1, OpVT),
7233    DAG.getConstant(X86::COND_E, MVT::i8),
7234    Op.getValue(1)
7235  };
7236  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7237
7238  // Finally xor with NumBits-1.
7239  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7240
7241  if (VT == MVT::i8)
7242    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7243  return Op;
7244}
7245
7246SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
7247  EVT VT = Op.getValueType();
7248  EVT OpVT = VT;
7249  unsigned NumBits = VT.getSizeInBits();
7250  DebugLoc dl = Op.getDebugLoc();
7251
7252  Op = Op.getOperand(0);
7253  if (VT == MVT::i8) {
7254    OpVT = MVT::i32;
7255    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7256  }
7257
7258  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7259  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7260  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7261
7262  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7263  SDValue Ops[] = {
7264    Op,
7265    DAG.getConstant(NumBits, OpVT),
7266    DAG.getConstant(X86::COND_E, MVT::i8),
7267    Op.getValue(1)
7268  };
7269  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7270
7271  if (VT == MVT::i8)
7272    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7273  return Op;
7274}
7275
7276SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
7277  EVT VT = Op.getValueType();
7278  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7279  DebugLoc dl = Op.getDebugLoc();
7280
7281  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7282  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7283  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7284  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7285  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7286  //
7287  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7288  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7289  //  return AloBlo + AloBhi + AhiBlo;
7290
7291  SDValue A = Op.getOperand(0);
7292  SDValue B = Op.getOperand(1);
7293
7294  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7295                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7296                       A, DAG.getConstant(32, MVT::i32));
7297  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7298                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7299                       B, DAG.getConstant(32, MVT::i32));
7300  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7301                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7302                       A, B);
7303  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7304                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7305                       A, Bhi);
7306  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7307                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7308                       Ahi, B);
7309  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7310                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7311                       AloBhi, DAG.getConstant(32, MVT::i32));
7312  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7313                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7314                       AhiBlo, DAG.getConstant(32, MVT::i32));
7315  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7316  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7317  return Res;
7318}
7319
7320
7321SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
7322  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7323  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7324  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7325  // has only one use.
7326  SDNode *N = Op.getNode();
7327  SDValue LHS = N->getOperand(0);
7328  SDValue RHS = N->getOperand(1);
7329  unsigned BaseOp = 0;
7330  unsigned Cond = 0;
7331  DebugLoc dl = Op.getDebugLoc();
7332
7333  switch (Op.getOpcode()) {
7334  default: llvm_unreachable("Unknown ovf instruction!");
7335  case ISD::SADDO:
7336    // A subtract of one will be selected as a INC. Note that INC doesn't
7337    // set CF, so we can't do this for UADDO.
7338    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7339      if (C->getAPIntValue() == 1) {
7340        BaseOp = X86ISD::INC;
7341        Cond = X86::COND_O;
7342        break;
7343      }
7344    BaseOp = X86ISD::ADD;
7345    Cond = X86::COND_O;
7346    break;
7347  case ISD::UADDO:
7348    BaseOp = X86ISD::ADD;
7349    Cond = X86::COND_B;
7350    break;
7351  case ISD::SSUBO:
7352    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7353    // set CF, so we can't do this for USUBO.
7354    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7355      if (C->getAPIntValue() == 1) {
7356        BaseOp = X86ISD::DEC;
7357        Cond = X86::COND_O;
7358        break;
7359      }
7360    BaseOp = X86ISD::SUB;
7361    Cond = X86::COND_O;
7362    break;
7363  case ISD::USUBO:
7364    BaseOp = X86ISD::SUB;
7365    Cond = X86::COND_B;
7366    break;
7367  case ISD::SMULO:
7368    BaseOp = X86ISD::SMUL;
7369    Cond = X86::COND_O;
7370    break;
7371  case ISD::UMULO:
7372    BaseOp = X86ISD::UMUL;
7373    Cond = X86::COND_B;
7374    break;
7375  }
7376
7377  // Also sets EFLAGS.
7378  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7379  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7380
7381  SDValue SetCC =
7382    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7383                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7384
7385  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7386  return Sum;
7387}
7388
7389SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
7390  EVT T = Op.getValueType();
7391  DebugLoc dl = Op.getDebugLoc();
7392  unsigned Reg = 0;
7393  unsigned size = 0;
7394  switch(T.getSimpleVT().SimpleTy) {
7395  default:
7396    assert(false && "Invalid value type!");
7397  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7398  case MVT::i16: Reg = X86::AX;  size = 2; break;
7399  case MVT::i32: Reg = X86::EAX; size = 4; break;
7400  case MVT::i64:
7401    assert(Subtarget->is64Bit() && "Node not type legal!");
7402    Reg = X86::RAX; size = 8;
7403    break;
7404  }
7405  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7406                                    Op.getOperand(2), SDValue());
7407  SDValue Ops[] = { cpIn.getValue(0),
7408                    Op.getOperand(1),
7409                    Op.getOperand(3),
7410                    DAG.getTargetConstant(size, MVT::i8),
7411                    cpIn.getValue(1) };
7412  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7413  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7414  SDValue cpOut =
7415    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7416  return cpOut;
7417}
7418
7419SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7420                                                 SelectionDAG &DAG) {
7421  assert(Subtarget->is64Bit() && "Result not type legalized?");
7422  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7423  SDValue TheChain = Op.getOperand(0);
7424  DebugLoc dl = Op.getDebugLoc();
7425  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7426  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7427  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7428                                   rax.getValue(2));
7429  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7430                            DAG.getConstant(32, MVT::i8));
7431  SDValue Ops[] = {
7432    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7433    rdx.getValue(1)
7434  };
7435  return DAG.getMergeValues(Ops, 2, dl);
7436}
7437
7438SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
7439  SDNode *Node = Op.getNode();
7440  DebugLoc dl = Node->getDebugLoc();
7441  EVT T = Node->getValueType(0);
7442  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7443                              DAG.getConstant(0, T), Node->getOperand(2));
7444  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7445                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7446                       Node->getOperand(0),
7447                       Node->getOperand(1), negOp,
7448                       cast<AtomicSDNode>(Node)->getSrcValue(),
7449                       cast<AtomicSDNode>(Node)->getAlignment());
7450}
7451
7452/// LowerOperation - Provide custom lowering hooks for some operations.
7453///
7454SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7455  switch (Op.getOpcode()) {
7456  default: llvm_unreachable("Should not custom lower this!");
7457  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7458  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7459  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7460  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7461  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7462  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7463  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7464  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7465  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7466  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7467  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7468  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7469  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7470  case ISD::SHL_PARTS:
7471  case ISD::SRA_PARTS:
7472  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7473  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7474  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7475  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7476  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7477  case ISD::FABS:               return LowerFABS(Op, DAG);
7478  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7479  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7480  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7481  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7482  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7483  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7484  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7485  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7486  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7487  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7488  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7489  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7490  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7491  case ISD::FRAME_TO_ARGS_OFFSET:
7492                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7493  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7494  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7495  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7496  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7497  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7498  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7499  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7500  case ISD::SADDO:
7501  case ISD::UADDO:
7502  case ISD::SSUBO:
7503  case ISD::USUBO:
7504  case ISD::SMULO:
7505  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7506  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7507  }
7508}
7509
7510void X86TargetLowering::
7511ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7512                        SelectionDAG &DAG, unsigned NewOp) {
7513  EVT T = Node->getValueType(0);
7514  DebugLoc dl = Node->getDebugLoc();
7515  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7516
7517  SDValue Chain = Node->getOperand(0);
7518  SDValue In1 = Node->getOperand(1);
7519  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7520                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7521  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7522                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7523  SDValue Ops[] = { Chain, In1, In2L, In2H };
7524  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7525  SDValue Result =
7526    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7527                            cast<MemSDNode>(Node)->getMemOperand());
7528  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7529  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7530  Results.push_back(Result.getValue(2));
7531}
7532
7533/// ReplaceNodeResults - Replace a node with an illegal result type
7534/// with a new node built out of custom code.
7535void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7536                                           SmallVectorImpl<SDValue>&Results,
7537                                           SelectionDAG &DAG) {
7538  DebugLoc dl = N->getDebugLoc();
7539  switch (N->getOpcode()) {
7540  default:
7541    assert(false && "Do not know how to custom type legalize this operation!");
7542    return;
7543  case ISD::FP_TO_SINT: {
7544    std::pair<SDValue,SDValue> Vals =
7545        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7546    SDValue FIST = Vals.first, StackSlot = Vals.second;
7547    if (FIST.getNode() != 0) {
7548      EVT VT = N->getValueType(0);
7549      // Return a load from the stack slot.
7550      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7551                                    false, false, 0));
7552    }
7553    return;
7554  }
7555  case ISD::READCYCLECOUNTER: {
7556    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7557    SDValue TheChain = N->getOperand(0);
7558    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7559    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7560                                     rd.getValue(1));
7561    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7562                                     eax.getValue(2));
7563    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7564    SDValue Ops[] = { eax, edx };
7565    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7566    Results.push_back(edx.getValue(1));
7567    return;
7568  }
7569  case ISD::ATOMIC_CMP_SWAP: {
7570    EVT T = N->getValueType(0);
7571    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7572    SDValue cpInL, cpInH;
7573    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7574                        DAG.getConstant(0, MVT::i32));
7575    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7576                        DAG.getConstant(1, MVT::i32));
7577    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7578    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7579                             cpInL.getValue(1));
7580    SDValue swapInL, swapInH;
7581    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7582                          DAG.getConstant(0, MVT::i32));
7583    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7584                          DAG.getConstant(1, MVT::i32));
7585    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7586                               cpInH.getValue(1));
7587    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7588                               swapInL.getValue(1));
7589    SDValue Ops[] = { swapInH.getValue(0),
7590                      N->getOperand(1),
7591                      swapInH.getValue(1) };
7592    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7593    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7594    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7595                                        MVT::i32, Result.getValue(1));
7596    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7597                                        MVT::i32, cpOutL.getValue(2));
7598    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7599    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7600    Results.push_back(cpOutH.getValue(1));
7601    return;
7602  }
7603  case ISD::ATOMIC_LOAD_ADD:
7604    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7605    return;
7606  case ISD::ATOMIC_LOAD_AND:
7607    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7608    return;
7609  case ISD::ATOMIC_LOAD_NAND:
7610    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7611    return;
7612  case ISD::ATOMIC_LOAD_OR:
7613    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7614    return;
7615  case ISD::ATOMIC_LOAD_SUB:
7616    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7617    return;
7618  case ISD::ATOMIC_LOAD_XOR:
7619    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7620    return;
7621  case ISD::ATOMIC_SWAP:
7622    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7623    return;
7624  }
7625}
7626
7627const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7628  switch (Opcode) {
7629  default: return NULL;
7630  case X86ISD::BSF:                return "X86ISD::BSF";
7631  case X86ISD::BSR:                return "X86ISD::BSR";
7632  case X86ISD::SHLD:               return "X86ISD::SHLD";
7633  case X86ISD::SHRD:               return "X86ISD::SHRD";
7634  case X86ISD::FAND:               return "X86ISD::FAND";
7635  case X86ISD::FOR:                return "X86ISD::FOR";
7636  case X86ISD::FXOR:               return "X86ISD::FXOR";
7637  case X86ISD::FSRL:               return "X86ISD::FSRL";
7638  case X86ISD::FILD:               return "X86ISD::FILD";
7639  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7640  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7641  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7642  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7643  case X86ISD::FLD:                return "X86ISD::FLD";
7644  case X86ISD::FST:                return "X86ISD::FST";
7645  case X86ISD::CALL:               return "X86ISD::CALL";
7646  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7647  case X86ISD::BT:                 return "X86ISD::BT";
7648  case X86ISD::CMP:                return "X86ISD::CMP";
7649  case X86ISD::COMI:               return "X86ISD::COMI";
7650  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7651  case X86ISD::SETCC:              return "X86ISD::SETCC";
7652  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
7653  case X86ISD::CMOV:               return "X86ISD::CMOV";
7654  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7655  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7656  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7657  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7658  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7659  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7660  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7661  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7662  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7663  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7664  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7665  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7666  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7667  case X86ISD::FMAX:               return "X86ISD::FMAX";
7668  case X86ISD::FMIN:               return "X86ISD::FMIN";
7669  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7670  case X86ISD::FRCP:               return "X86ISD::FRCP";
7671  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7672  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7673  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7674  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7675  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7676  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7677  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7678  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7679  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7680  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7681  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7682  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7683  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7684  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7685  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7686  case X86ISD::VSHL:               return "X86ISD::VSHL";
7687  case X86ISD::VSRL:               return "X86ISD::VSRL";
7688  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7689  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7690  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7691  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7692  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7693  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7694  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7695  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7696  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7697  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7698  case X86ISD::ADD:                return "X86ISD::ADD";
7699  case X86ISD::SUB:                return "X86ISD::SUB";
7700  case X86ISD::SMUL:               return "X86ISD::SMUL";
7701  case X86ISD::UMUL:               return "X86ISD::UMUL";
7702  case X86ISD::INC:                return "X86ISD::INC";
7703  case X86ISD::DEC:                return "X86ISD::DEC";
7704  case X86ISD::OR:                 return "X86ISD::OR";
7705  case X86ISD::XOR:                return "X86ISD::XOR";
7706  case X86ISD::AND:                return "X86ISD::AND";
7707  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7708  case X86ISD::PTEST:              return "X86ISD::PTEST";
7709  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7710  }
7711}
7712
7713// isLegalAddressingMode - Return true if the addressing mode represented
7714// by AM is legal for this target, for a load/store of the specified type.
7715bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7716                                              const Type *Ty) const {
7717  // X86 supports extremely general addressing modes.
7718  CodeModel::Model M = getTargetMachine().getCodeModel();
7719
7720  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7721  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7722    return false;
7723
7724  if (AM.BaseGV) {
7725    unsigned GVFlags =
7726      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7727
7728    // If a reference to this global requires an extra load, we can't fold it.
7729    if (isGlobalStubReference(GVFlags))
7730      return false;
7731
7732    // If BaseGV requires a register for the PIC base, we cannot also have a
7733    // BaseReg specified.
7734    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7735      return false;
7736
7737    // If lower 4G is not available, then we must use rip-relative addressing.
7738    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7739      return false;
7740  }
7741
7742  switch (AM.Scale) {
7743  case 0:
7744  case 1:
7745  case 2:
7746  case 4:
7747  case 8:
7748    // These scales always work.
7749    break;
7750  case 3:
7751  case 5:
7752  case 9:
7753    // These scales are formed with basereg+scalereg.  Only accept if there is
7754    // no basereg yet.
7755    if (AM.HasBaseReg)
7756      return false;
7757    break;
7758  default:  // Other stuff never works.
7759    return false;
7760  }
7761
7762  return true;
7763}
7764
7765
7766bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7767  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7768    return false;
7769  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7770  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7771  if (NumBits1 <= NumBits2)
7772    return false;
7773  return Subtarget->is64Bit() || NumBits1 < 64;
7774}
7775
7776bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7777  if (!VT1.isInteger() || !VT2.isInteger())
7778    return false;
7779  unsigned NumBits1 = VT1.getSizeInBits();
7780  unsigned NumBits2 = VT2.getSizeInBits();
7781  if (NumBits1 <= NumBits2)
7782    return false;
7783  return Subtarget->is64Bit() || NumBits1 < 64;
7784}
7785
7786bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7787  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7788  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
7789}
7790
7791bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7792  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7793  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7794}
7795
7796bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7797  // i16 instructions are longer (0x66 prefix) and potentially slower.
7798  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7799}
7800
7801/// isShuffleMaskLegal - Targets can use this to indicate that they only
7802/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7803/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7804/// are assumed to be legal.
7805bool
7806X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7807                                      EVT VT) const {
7808  // Only do shuffles on 128-bit vector types for now.
7809  if (VT.getSizeInBits() == 64)
7810    return false;
7811
7812  // FIXME: pshufb, blends, shifts.
7813  return (VT.getVectorNumElements() == 2 ||
7814          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7815          isMOVLMask(M, VT) ||
7816          isSHUFPMask(M, VT) ||
7817          isPSHUFDMask(M, VT) ||
7818          isPSHUFHWMask(M, VT) ||
7819          isPSHUFLWMask(M, VT) ||
7820          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7821          isUNPCKLMask(M, VT) ||
7822          isUNPCKHMask(M, VT) ||
7823          isUNPCKL_v_undef_Mask(M, VT) ||
7824          isUNPCKH_v_undef_Mask(M, VT));
7825}
7826
7827bool
7828X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7829                                          EVT VT) const {
7830  unsigned NumElts = VT.getVectorNumElements();
7831  // FIXME: This collection of masks seems suspect.
7832  if (NumElts == 2)
7833    return true;
7834  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7835    return (isMOVLMask(Mask, VT)  ||
7836            isCommutedMOVLMask(Mask, VT, true) ||
7837            isSHUFPMask(Mask, VT) ||
7838            isCommutedSHUFPMask(Mask, VT));
7839  }
7840  return false;
7841}
7842
7843//===----------------------------------------------------------------------===//
7844//                           X86 Scheduler Hooks
7845//===----------------------------------------------------------------------===//
7846
7847// private utility function
7848MachineBasicBlock *
7849X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7850                                                       MachineBasicBlock *MBB,
7851                                                       unsigned regOpc,
7852                                                       unsigned immOpc,
7853                                                       unsigned LoadOpc,
7854                                                       unsigned CXchgOpc,
7855                                                       unsigned copyOpc,
7856                                                       unsigned notOpc,
7857                                                       unsigned EAXreg,
7858                                                       TargetRegisterClass *RC,
7859                                                       bool invSrc) const {
7860  // For the atomic bitwise operator, we generate
7861  //   thisMBB:
7862  //   newMBB:
7863  //     ld  t1 = [bitinstr.addr]
7864  //     op  t2 = t1, [bitinstr.val]
7865  //     mov EAX = t1
7866  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7867  //     bz  newMBB
7868  //     fallthrough -->nextMBB
7869  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7870  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7871  MachineFunction::iterator MBBIter = MBB;
7872  ++MBBIter;
7873
7874  /// First build the CFG
7875  MachineFunction *F = MBB->getParent();
7876  MachineBasicBlock *thisMBB = MBB;
7877  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7878  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7879  F->insert(MBBIter, newMBB);
7880  F->insert(MBBIter, nextMBB);
7881
7882  // Move all successors to thisMBB to nextMBB
7883  nextMBB->transferSuccessors(thisMBB);
7884
7885  // Update thisMBB to fall through to newMBB
7886  thisMBB->addSuccessor(newMBB);
7887
7888  // newMBB jumps to itself and fall through to nextMBB
7889  newMBB->addSuccessor(nextMBB);
7890  newMBB->addSuccessor(newMBB);
7891
7892  // Insert instructions into newMBB based on incoming instruction
7893  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7894         "unexpected number of operands");
7895  DebugLoc dl = bInstr->getDebugLoc();
7896  MachineOperand& destOper = bInstr->getOperand(0);
7897  MachineOperand* argOpers[2 + X86AddrNumOperands];
7898  int numArgs = bInstr->getNumOperands() - 1;
7899  for (int i=0; i < numArgs; ++i)
7900    argOpers[i] = &bInstr->getOperand(i+1);
7901
7902  // x86 address has 4 operands: base, index, scale, and displacement
7903  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7904  int valArgIndx = lastAddrIndx + 1;
7905
7906  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7907  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7908  for (int i=0; i <= lastAddrIndx; ++i)
7909    (*MIB).addOperand(*argOpers[i]);
7910
7911  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7912  if (invSrc) {
7913    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7914  }
7915  else
7916    tt = t1;
7917
7918  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7919  assert((argOpers[valArgIndx]->isReg() ||
7920          argOpers[valArgIndx]->isImm()) &&
7921         "invalid operand");
7922  if (argOpers[valArgIndx]->isReg())
7923    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7924  else
7925    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7926  MIB.addReg(tt);
7927  (*MIB).addOperand(*argOpers[valArgIndx]);
7928
7929  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7930  MIB.addReg(t1);
7931
7932  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7933  for (int i=0; i <= lastAddrIndx; ++i)
7934    (*MIB).addOperand(*argOpers[i]);
7935  MIB.addReg(t2);
7936  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7937  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7938                    bInstr->memoperands_end());
7939
7940  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7941  MIB.addReg(EAXreg);
7942
7943  // insert branch
7944  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
7945
7946  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7947  return nextMBB;
7948}
7949
7950// private utility function:  64 bit atomics on 32 bit host.
7951MachineBasicBlock *
7952X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7953                                                       MachineBasicBlock *MBB,
7954                                                       unsigned regOpcL,
7955                                                       unsigned regOpcH,
7956                                                       unsigned immOpcL,
7957                                                       unsigned immOpcH,
7958                                                       bool invSrc) const {
7959  // For the atomic bitwise operator, we generate
7960  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7961  //     ld t1,t2 = [bitinstr.addr]
7962  //   newMBB:
7963  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7964  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7965  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7966  //     mov ECX, EBX <- t5, t6
7967  //     mov EAX, EDX <- t1, t2
7968  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7969  //     mov t3, t4 <- EAX, EDX
7970  //     bz  newMBB
7971  //     result in out1, out2
7972  //     fallthrough -->nextMBB
7973
7974  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7975  const unsigned LoadOpc = X86::MOV32rm;
7976  const unsigned copyOpc = X86::MOV32rr;
7977  const unsigned NotOpc = X86::NOT32r;
7978  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7979  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7980  MachineFunction::iterator MBBIter = MBB;
7981  ++MBBIter;
7982
7983  /// First build the CFG
7984  MachineFunction *F = MBB->getParent();
7985  MachineBasicBlock *thisMBB = MBB;
7986  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7987  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7988  F->insert(MBBIter, newMBB);
7989  F->insert(MBBIter, nextMBB);
7990
7991  // Move all successors to thisMBB to nextMBB
7992  nextMBB->transferSuccessors(thisMBB);
7993
7994  // Update thisMBB to fall through to newMBB
7995  thisMBB->addSuccessor(newMBB);
7996
7997  // newMBB jumps to itself and fall through to nextMBB
7998  newMBB->addSuccessor(nextMBB);
7999  newMBB->addSuccessor(newMBB);
8000
8001  DebugLoc dl = bInstr->getDebugLoc();
8002  // Insert instructions into newMBB based on incoming instruction
8003  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8004  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
8005         "unexpected number of operands");
8006  MachineOperand& dest1Oper = bInstr->getOperand(0);
8007  MachineOperand& dest2Oper = bInstr->getOperand(1);
8008  MachineOperand* argOpers[2 + X86AddrNumOperands];
8009  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
8010    argOpers[i] = &bInstr->getOperand(i+2);
8011
8012  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8013  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8014
8015  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8016  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8017  for (int i=0; i <= lastAddrIndx; ++i)
8018    (*MIB).addOperand(*argOpers[i]);
8019  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8020  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8021  // add 4 to displacement.
8022  for (int i=0; i <= lastAddrIndx-2; ++i)
8023    (*MIB).addOperand(*argOpers[i]);
8024  MachineOperand newOp3 = *(argOpers[3]);
8025  if (newOp3.isImm())
8026    newOp3.setImm(newOp3.getImm()+4);
8027  else
8028    newOp3.setOffset(newOp3.getOffset()+4);
8029  (*MIB).addOperand(newOp3);
8030  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8031
8032  // t3/4 are defined later, at the bottom of the loop
8033  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8034  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8035  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8036    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8037  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8038    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8039
8040  // The subsequent operations should be using the destination registers of
8041  //the PHI instructions.
8042  if (invSrc) {
8043    t1 = F->getRegInfo().createVirtualRegister(RC);
8044    t2 = F->getRegInfo().createVirtualRegister(RC);
8045    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8046    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8047  } else {
8048    t1 = dest1Oper.getReg();
8049    t2 = dest2Oper.getReg();
8050  }
8051
8052  int valArgIndx = lastAddrIndx + 1;
8053  assert((argOpers[valArgIndx]->isReg() ||
8054          argOpers[valArgIndx]->isImm()) &&
8055         "invalid operand");
8056  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8057  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8058  if (argOpers[valArgIndx]->isReg())
8059    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8060  else
8061    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8062  if (regOpcL != X86::MOV32rr)
8063    MIB.addReg(t1);
8064  (*MIB).addOperand(*argOpers[valArgIndx]);
8065  assert(argOpers[valArgIndx + 1]->isReg() ==
8066         argOpers[valArgIndx]->isReg());
8067  assert(argOpers[valArgIndx + 1]->isImm() ==
8068         argOpers[valArgIndx]->isImm());
8069  if (argOpers[valArgIndx + 1]->isReg())
8070    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8071  else
8072    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8073  if (regOpcH != X86::MOV32rr)
8074    MIB.addReg(t2);
8075  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8076
8077  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
8078  MIB.addReg(t1);
8079  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
8080  MIB.addReg(t2);
8081
8082  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
8083  MIB.addReg(t5);
8084  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
8085  MIB.addReg(t6);
8086
8087  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8088  for (int i=0; i <= lastAddrIndx; ++i)
8089    (*MIB).addOperand(*argOpers[i]);
8090
8091  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8092  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8093                    bInstr->memoperands_end());
8094
8095  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
8096  MIB.addReg(X86::EAX);
8097  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
8098  MIB.addReg(X86::EDX);
8099
8100  // insert branch
8101  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8102
8103  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8104  return nextMBB;
8105}
8106
8107// private utility function
8108MachineBasicBlock *
8109X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8110                                                      MachineBasicBlock *MBB,
8111                                                      unsigned cmovOpc) const {
8112  // For the atomic min/max operator, we generate
8113  //   thisMBB:
8114  //   newMBB:
8115  //     ld t1 = [min/max.addr]
8116  //     mov t2 = [min/max.val]
8117  //     cmp  t1, t2
8118  //     cmov[cond] t2 = t1
8119  //     mov EAX = t1
8120  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8121  //     bz   newMBB
8122  //     fallthrough -->nextMBB
8123  //
8124  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8125  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8126  MachineFunction::iterator MBBIter = MBB;
8127  ++MBBIter;
8128
8129  /// First build the CFG
8130  MachineFunction *F = MBB->getParent();
8131  MachineBasicBlock *thisMBB = MBB;
8132  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8133  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8134  F->insert(MBBIter, newMBB);
8135  F->insert(MBBIter, nextMBB);
8136
8137  // Move all successors of thisMBB to nextMBB
8138  nextMBB->transferSuccessors(thisMBB);
8139
8140  // Update thisMBB to fall through to newMBB
8141  thisMBB->addSuccessor(newMBB);
8142
8143  // newMBB jumps to newMBB and fall through to nextMBB
8144  newMBB->addSuccessor(nextMBB);
8145  newMBB->addSuccessor(newMBB);
8146
8147  DebugLoc dl = mInstr->getDebugLoc();
8148  // Insert instructions into newMBB based on incoming instruction
8149  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8150         "unexpected number of operands");
8151  MachineOperand& destOper = mInstr->getOperand(0);
8152  MachineOperand* argOpers[2 + X86AddrNumOperands];
8153  int numArgs = mInstr->getNumOperands() - 1;
8154  for (int i=0; i < numArgs; ++i)
8155    argOpers[i] = &mInstr->getOperand(i+1);
8156
8157  // x86 address has 4 operands: base, index, scale, and displacement
8158  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8159  int valArgIndx = lastAddrIndx + 1;
8160
8161  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8162  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8163  for (int i=0; i <= lastAddrIndx; ++i)
8164    (*MIB).addOperand(*argOpers[i]);
8165
8166  // We only support register and immediate values
8167  assert((argOpers[valArgIndx]->isReg() ||
8168          argOpers[valArgIndx]->isImm()) &&
8169         "invalid operand");
8170
8171  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8172  if (argOpers[valArgIndx]->isReg())
8173    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8174  else
8175    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8176  (*MIB).addOperand(*argOpers[valArgIndx]);
8177
8178  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
8179  MIB.addReg(t1);
8180
8181  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8182  MIB.addReg(t1);
8183  MIB.addReg(t2);
8184
8185  // Generate movc
8186  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8187  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8188  MIB.addReg(t2);
8189  MIB.addReg(t1);
8190
8191  // Cmp and exchange if none has modified the memory location
8192  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8193  for (int i=0; i <= lastAddrIndx; ++i)
8194    (*MIB).addOperand(*argOpers[i]);
8195  MIB.addReg(t3);
8196  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8197  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8198                    mInstr->memoperands_end());
8199
8200  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
8201  MIB.addReg(X86::EAX);
8202
8203  // insert branch
8204  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8205
8206  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
8207  return nextMBB;
8208}
8209
8210// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8211// all of this code can be replaced with that in the .td file.
8212MachineBasicBlock *
8213X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8214                            unsigned numArgs, bool memArg) const {
8215
8216  MachineFunction *F = BB->getParent();
8217  DebugLoc dl = MI->getDebugLoc();
8218  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8219
8220  unsigned Opc;
8221  if (memArg)
8222    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8223  else
8224    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8225
8226  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8227
8228  for (unsigned i = 0; i < numArgs; ++i) {
8229    MachineOperand &Op = MI->getOperand(i+1);
8230
8231    if (!(Op.isReg() && Op.isImplicit()))
8232      MIB.addOperand(Op);
8233  }
8234
8235  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8236    .addReg(X86::XMM0);
8237
8238  F->DeleteMachineInstr(MI);
8239
8240  return BB;
8241}
8242
8243MachineBasicBlock *
8244X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8245                                                 MachineInstr *MI,
8246                                                 MachineBasicBlock *MBB) const {
8247  // Emit code to save XMM registers to the stack. The ABI says that the
8248  // number of registers to save is given in %al, so it's theoretically
8249  // possible to do an indirect jump trick to avoid saving all of them,
8250  // however this code takes a simpler approach and just executes all
8251  // of the stores if %al is non-zero. It's less code, and it's probably
8252  // easier on the hardware branch predictor, and stores aren't all that
8253  // expensive anyway.
8254
8255  // Create the new basic blocks. One block contains all the XMM stores,
8256  // and one block is the final destination regardless of whether any
8257  // stores were performed.
8258  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8259  MachineFunction *F = MBB->getParent();
8260  MachineFunction::iterator MBBIter = MBB;
8261  ++MBBIter;
8262  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8263  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8264  F->insert(MBBIter, XMMSaveMBB);
8265  F->insert(MBBIter, EndMBB);
8266
8267  // Set up the CFG.
8268  // Move any original successors of MBB to the end block.
8269  EndMBB->transferSuccessors(MBB);
8270  // The original block will now fall through to the XMM save block.
8271  MBB->addSuccessor(XMMSaveMBB);
8272  // The XMMSaveMBB will fall through to the end block.
8273  XMMSaveMBB->addSuccessor(EndMBB);
8274
8275  // Now add the instructions.
8276  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8277  DebugLoc DL = MI->getDebugLoc();
8278
8279  unsigned CountReg = MI->getOperand(0).getReg();
8280  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8281  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8282
8283  if (!Subtarget->isTargetWin64()) {
8284    // If %al is 0, branch around the XMM save block.
8285    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8286    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8287    MBB->addSuccessor(EndMBB);
8288  }
8289
8290  // In the XMM save block, save all the XMM argument registers.
8291  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8292    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8293    MachineMemOperand *MMO =
8294      F->getMachineMemOperand(
8295        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8296        MachineMemOperand::MOStore, Offset,
8297        /*Size=*/16, /*Align=*/16);
8298    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8299      .addFrameIndex(RegSaveFrameIndex)
8300      .addImm(/*Scale=*/1)
8301      .addReg(/*IndexReg=*/0)
8302      .addImm(/*Disp=*/Offset)
8303      .addReg(/*Segment=*/0)
8304      .addReg(MI->getOperand(i).getReg())
8305      .addMemOperand(MMO);
8306  }
8307
8308  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8309
8310  return EndMBB;
8311}
8312
8313MachineBasicBlock *
8314X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8315                                     MachineBasicBlock *BB,
8316                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8317  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8318  DebugLoc DL = MI->getDebugLoc();
8319
8320  // To "insert" a SELECT_CC instruction, we actually have to insert the
8321  // diamond control-flow pattern.  The incoming instruction knows the
8322  // destination vreg to set, the condition code register to branch on, the
8323  // true/false values to select between, and a branch opcode to use.
8324  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8325  MachineFunction::iterator It = BB;
8326  ++It;
8327
8328  //  thisMBB:
8329  //  ...
8330  //   TrueVal = ...
8331  //   cmpTY ccX, r1, r2
8332  //   bCC copy1MBB
8333  //   fallthrough --> copy0MBB
8334  MachineBasicBlock *thisMBB = BB;
8335  MachineFunction *F = BB->getParent();
8336  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8337  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8338  unsigned Opc =
8339    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8340  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8341  F->insert(It, copy0MBB);
8342  F->insert(It, sinkMBB);
8343  // Update machine-CFG edges by first adding all successors of the current
8344  // block to the new block which will contain the Phi node for the select.
8345  // Also inform sdisel of the edge changes.
8346  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
8347         E = BB->succ_end(); I != E; ++I) {
8348    EM->insert(std::make_pair(*I, sinkMBB));
8349    sinkMBB->addSuccessor(*I);
8350  }
8351  // Next, remove all successors of the current block, and add the true
8352  // and fallthrough blocks as its successors.
8353  while (!BB->succ_empty())
8354    BB->removeSuccessor(BB->succ_begin());
8355  // Add the true and fallthrough blocks as its successors.
8356  BB->addSuccessor(copy0MBB);
8357  BB->addSuccessor(sinkMBB);
8358
8359  //  copy0MBB:
8360  //   %FalseValue = ...
8361  //   # fallthrough to sinkMBB
8362  BB = copy0MBB;
8363
8364  // Update machine-CFG edges
8365  BB->addSuccessor(sinkMBB);
8366
8367  //  sinkMBB:
8368  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8369  //  ...
8370  BB = sinkMBB;
8371  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
8372    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8373    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8374
8375  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8376  return BB;
8377}
8378
8379
8380MachineBasicBlock *
8381X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8382                                               MachineBasicBlock *BB,
8383                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8384  switch (MI->getOpcode()) {
8385  default: assert(false && "Unexpected instr type to insert");
8386  case X86::CMOV_GR8:
8387  case X86::CMOV_V1I64:
8388  case X86::CMOV_FR32:
8389  case X86::CMOV_FR64:
8390  case X86::CMOV_V4F32:
8391  case X86::CMOV_V2F64:
8392  case X86::CMOV_V2I64:
8393    return EmitLoweredSelect(MI, BB, EM);
8394
8395  case X86::FP32_TO_INT16_IN_MEM:
8396  case X86::FP32_TO_INT32_IN_MEM:
8397  case X86::FP32_TO_INT64_IN_MEM:
8398  case X86::FP64_TO_INT16_IN_MEM:
8399  case X86::FP64_TO_INT32_IN_MEM:
8400  case X86::FP64_TO_INT64_IN_MEM:
8401  case X86::FP80_TO_INT16_IN_MEM:
8402  case X86::FP80_TO_INT32_IN_MEM:
8403  case X86::FP80_TO_INT64_IN_MEM: {
8404    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8405    DebugLoc DL = MI->getDebugLoc();
8406
8407    // Change the floating point control register to use "round towards zero"
8408    // mode when truncating to an integer value.
8409    MachineFunction *F = BB->getParent();
8410    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8411    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8412
8413    // Load the old value of the high byte of the control word...
8414    unsigned OldCW =
8415      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8416    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8417                      CWFrameIdx);
8418
8419    // Set the high part to be round to zero...
8420    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8421      .addImm(0xC7F);
8422
8423    // Reload the modified control word now...
8424    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8425
8426    // Restore the memory image of control word to original value
8427    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8428      .addReg(OldCW);
8429
8430    // Get the X86 opcode to use.
8431    unsigned Opc;
8432    switch (MI->getOpcode()) {
8433    default: llvm_unreachable("illegal opcode!");
8434    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8435    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8436    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8437    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8438    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8439    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8440    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8441    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8442    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8443    }
8444
8445    X86AddressMode AM;
8446    MachineOperand &Op = MI->getOperand(0);
8447    if (Op.isReg()) {
8448      AM.BaseType = X86AddressMode::RegBase;
8449      AM.Base.Reg = Op.getReg();
8450    } else {
8451      AM.BaseType = X86AddressMode::FrameIndexBase;
8452      AM.Base.FrameIndex = Op.getIndex();
8453    }
8454    Op = MI->getOperand(1);
8455    if (Op.isImm())
8456      AM.Scale = Op.getImm();
8457    Op = MI->getOperand(2);
8458    if (Op.isImm())
8459      AM.IndexReg = Op.getImm();
8460    Op = MI->getOperand(3);
8461    if (Op.isGlobal()) {
8462      AM.GV = Op.getGlobal();
8463    } else {
8464      AM.Disp = Op.getImm();
8465    }
8466    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8467                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8468
8469    // Reload the original control word now.
8470    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8471
8472    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8473    return BB;
8474  }
8475    // String/text processing lowering.
8476  case X86::PCMPISTRM128REG:
8477    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8478  case X86::PCMPISTRM128MEM:
8479    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8480  case X86::PCMPESTRM128REG:
8481    return EmitPCMP(MI, BB, 5, false /* in mem */);
8482  case X86::PCMPESTRM128MEM:
8483    return EmitPCMP(MI, BB, 5, true /* in mem */);
8484
8485    // Atomic Lowering.
8486  case X86::ATOMAND32:
8487    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8488                                               X86::AND32ri, X86::MOV32rm,
8489                                               X86::LCMPXCHG32, X86::MOV32rr,
8490                                               X86::NOT32r, X86::EAX,
8491                                               X86::GR32RegisterClass);
8492  case X86::ATOMOR32:
8493    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8494                                               X86::OR32ri, X86::MOV32rm,
8495                                               X86::LCMPXCHG32, X86::MOV32rr,
8496                                               X86::NOT32r, X86::EAX,
8497                                               X86::GR32RegisterClass);
8498  case X86::ATOMXOR32:
8499    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8500                                               X86::XOR32ri, X86::MOV32rm,
8501                                               X86::LCMPXCHG32, X86::MOV32rr,
8502                                               X86::NOT32r, X86::EAX,
8503                                               X86::GR32RegisterClass);
8504  case X86::ATOMNAND32:
8505    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8506                                               X86::AND32ri, X86::MOV32rm,
8507                                               X86::LCMPXCHG32, X86::MOV32rr,
8508                                               X86::NOT32r, X86::EAX,
8509                                               X86::GR32RegisterClass, true);
8510  case X86::ATOMMIN32:
8511    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8512  case X86::ATOMMAX32:
8513    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8514  case X86::ATOMUMIN32:
8515    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8516  case X86::ATOMUMAX32:
8517    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8518
8519  case X86::ATOMAND16:
8520    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8521                                               X86::AND16ri, X86::MOV16rm,
8522                                               X86::LCMPXCHG16, X86::MOV16rr,
8523                                               X86::NOT16r, X86::AX,
8524                                               X86::GR16RegisterClass);
8525  case X86::ATOMOR16:
8526    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8527                                               X86::OR16ri, X86::MOV16rm,
8528                                               X86::LCMPXCHG16, X86::MOV16rr,
8529                                               X86::NOT16r, X86::AX,
8530                                               X86::GR16RegisterClass);
8531  case X86::ATOMXOR16:
8532    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8533                                               X86::XOR16ri, X86::MOV16rm,
8534                                               X86::LCMPXCHG16, X86::MOV16rr,
8535                                               X86::NOT16r, X86::AX,
8536                                               X86::GR16RegisterClass);
8537  case X86::ATOMNAND16:
8538    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8539                                               X86::AND16ri, X86::MOV16rm,
8540                                               X86::LCMPXCHG16, X86::MOV16rr,
8541                                               X86::NOT16r, X86::AX,
8542                                               X86::GR16RegisterClass, true);
8543  case X86::ATOMMIN16:
8544    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8545  case X86::ATOMMAX16:
8546    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8547  case X86::ATOMUMIN16:
8548    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8549  case X86::ATOMUMAX16:
8550    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8551
8552  case X86::ATOMAND8:
8553    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8554                                               X86::AND8ri, X86::MOV8rm,
8555                                               X86::LCMPXCHG8, X86::MOV8rr,
8556                                               X86::NOT8r, X86::AL,
8557                                               X86::GR8RegisterClass);
8558  case X86::ATOMOR8:
8559    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8560                                               X86::OR8ri, X86::MOV8rm,
8561                                               X86::LCMPXCHG8, X86::MOV8rr,
8562                                               X86::NOT8r, X86::AL,
8563                                               X86::GR8RegisterClass);
8564  case X86::ATOMXOR8:
8565    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8566                                               X86::XOR8ri, X86::MOV8rm,
8567                                               X86::LCMPXCHG8, X86::MOV8rr,
8568                                               X86::NOT8r, X86::AL,
8569                                               X86::GR8RegisterClass);
8570  case X86::ATOMNAND8:
8571    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8572                                               X86::AND8ri, X86::MOV8rm,
8573                                               X86::LCMPXCHG8, X86::MOV8rr,
8574                                               X86::NOT8r, X86::AL,
8575                                               X86::GR8RegisterClass, true);
8576  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8577  // This group is for 64-bit host.
8578  case X86::ATOMAND64:
8579    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8580                                               X86::AND64ri32, X86::MOV64rm,
8581                                               X86::LCMPXCHG64, X86::MOV64rr,
8582                                               X86::NOT64r, X86::RAX,
8583                                               X86::GR64RegisterClass);
8584  case X86::ATOMOR64:
8585    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8586                                               X86::OR64ri32, X86::MOV64rm,
8587                                               X86::LCMPXCHG64, X86::MOV64rr,
8588                                               X86::NOT64r, X86::RAX,
8589                                               X86::GR64RegisterClass);
8590  case X86::ATOMXOR64:
8591    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8592                                               X86::XOR64ri32, X86::MOV64rm,
8593                                               X86::LCMPXCHG64, X86::MOV64rr,
8594                                               X86::NOT64r, X86::RAX,
8595                                               X86::GR64RegisterClass);
8596  case X86::ATOMNAND64:
8597    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8598                                               X86::AND64ri32, X86::MOV64rm,
8599                                               X86::LCMPXCHG64, X86::MOV64rr,
8600                                               X86::NOT64r, X86::RAX,
8601                                               X86::GR64RegisterClass, true);
8602  case X86::ATOMMIN64:
8603    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8604  case X86::ATOMMAX64:
8605    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8606  case X86::ATOMUMIN64:
8607    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8608  case X86::ATOMUMAX64:
8609    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8610
8611  // This group does 64-bit operations on a 32-bit host.
8612  case X86::ATOMAND6432:
8613    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8614                                               X86::AND32rr, X86::AND32rr,
8615                                               X86::AND32ri, X86::AND32ri,
8616                                               false);
8617  case X86::ATOMOR6432:
8618    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8619                                               X86::OR32rr, X86::OR32rr,
8620                                               X86::OR32ri, X86::OR32ri,
8621                                               false);
8622  case X86::ATOMXOR6432:
8623    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8624                                               X86::XOR32rr, X86::XOR32rr,
8625                                               X86::XOR32ri, X86::XOR32ri,
8626                                               false);
8627  case X86::ATOMNAND6432:
8628    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8629                                               X86::AND32rr, X86::AND32rr,
8630                                               X86::AND32ri, X86::AND32ri,
8631                                               true);
8632  case X86::ATOMADD6432:
8633    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8634                                               X86::ADD32rr, X86::ADC32rr,
8635                                               X86::ADD32ri, X86::ADC32ri,
8636                                               false);
8637  case X86::ATOMSUB6432:
8638    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8639                                               X86::SUB32rr, X86::SBB32rr,
8640                                               X86::SUB32ri, X86::SBB32ri,
8641                                               false);
8642  case X86::ATOMSWAP6432:
8643    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8644                                               X86::MOV32rr, X86::MOV32rr,
8645                                               X86::MOV32ri, X86::MOV32ri,
8646                                               false);
8647  case X86::VASTART_SAVE_XMM_REGS:
8648    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8649  }
8650}
8651
8652//===----------------------------------------------------------------------===//
8653//                           X86 Optimization Hooks
8654//===----------------------------------------------------------------------===//
8655
8656void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8657                                                       const APInt &Mask,
8658                                                       APInt &KnownZero,
8659                                                       APInt &KnownOne,
8660                                                       const SelectionDAG &DAG,
8661                                                       unsigned Depth) const {
8662  unsigned Opc = Op.getOpcode();
8663  assert((Opc >= ISD::BUILTIN_OP_END ||
8664          Opc == ISD::INTRINSIC_WO_CHAIN ||
8665          Opc == ISD::INTRINSIC_W_CHAIN ||
8666          Opc == ISD::INTRINSIC_VOID) &&
8667         "Should use MaskedValueIsZero if you don't know whether Op"
8668         " is a target node!");
8669
8670  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8671  switch (Opc) {
8672  default: break;
8673  case X86ISD::ADD:
8674  case X86ISD::SUB:
8675  case X86ISD::SMUL:
8676  case X86ISD::UMUL:
8677  case X86ISD::INC:
8678  case X86ISD::DEC:
8679  case X86ISD::OR:
8680  case X86ISD::XOR:
8681  case X86ISD::AND:
8682    // These nodes' second result is a boolean.
8683    if (Op.getResNo() == 0)
8684      break;
8685    // Fallthrough
8686  case X86ISD::SETCC:
8687    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8688                                       Mask.getBitWidth() - 1);
8689    break;
8690  }
8691}
8692
8693/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8694/// node is a GlobalAddress + offset.
8695bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8696                                       GlobalValue* &GA, int64_t &Offset) const{
8697  if (N->getOpcode() == X86ISD::Wrapper) {
8698    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8699      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8700      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8701      return true;
8702    }
8703  }
8704  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8705}
8706
8707static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8708                                     EVT EltVT, LoadSDNode *&LDBase,
8709                                     unsigned &LastLoadedElt,
8710                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8711                                     const TargetLowering &TLI) {
8712  LDBase = NULL;
8713  LastLoadedElt = -1U;
8714  for (unsigned i = 0; i < NumElems; ++i) {
8715    if (N->getMaskElt(i) < 0) {
8716      if (!LDBase)
8717        return false;
8718      continue;
8719    }
8720
8721    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8722    if (!Elt.getNode() ||
8723        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8724      return false;
8725    if (!LDBase) {
8726      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8727        return false;
8728      LDBase = cast<LoadSDNode>(Elt.getNode());
8729      LastLoadedElt = i;
8730      continue;
8731    }
8732    if (Elt.getOpcode() == ISD::UNDEF)
8733      continue;
8734
8735    LoadSDNode *LD = cast<LoadSDNode>(Elt);
8736    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
8737      return false;
8738    LastLoadedElt = i;
8739  }
8740  return true;
8741}
8742
8743/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8744/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8745/// if the load addresses are consecutive, non-overlapping, and in the right
8746/// order.  In the case of v2i64, it will see if it can rewrite the
8747/// shuffle to be an appropriate build vector so it can take advantage of
8748// performBuildVectorCombine.
8749static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8750                                     const TargetLowering &TLI) {
8751  DebugLoc dl = N->getDebugLoc();
8752  EVT VT = N->getValueType(0);
8753  EVT EltVT = VT.getVectorElementType();
8754  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8755  unsigned NumElems = VT.getVectorNumElements();
8756
8757  if (VT.getSizeInBits() != 128)
8758    return SDValue();
8759
8760  // Try to combine a vector_shuffle into a 128-bit load.
8761  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8762  LoadSDNode *LD = NULL;
8763  unsigned LastLoadedElt;
8764  if (!EltsFromConsecutiveLoads(SVN, NumElems, EltVT, LD, LastLoadedElt, DAG,
8765                                MFI, TLI))
8766    return SDValue();
8767
8768  if (LastLoadedElt == NumElems - 1) {
8769    if (DAG.InferPtrAlignment(LD->getBasePtr()) >= 16)
8770      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8771                         LD->getSrcValue(), LD->getSrcValueOffset(),
8772                         LD->isVolatile(), LD->isNonTemporal(), 0);
8773    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8774                       LD->getSrcValue(), LD->getSrcValueOffset(),
8775                       LD->isVolatile(), LD->isNonTemporal(),
8776                       LD->getAlignment());
8777  } else if (NumElems == 4 && LastLoadedElt == 1) {
8778    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8779    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8780    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8781    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8782  }
8783  return SDValue();
8784}
8785
8786/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8787static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8788                                    const X86Subtarget *Subtarget) {
8789  DebugLoc DL = N->getDebugLoc();
8790  SDValue Cond = N->getOperand(0);
8791  // Get the LHS/RHS of the select.
8792  SDValue LHS = N->getOperand(1);
8793  SDValue RHS = N->getOperand(2);
8794
8795  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
8796  // instructions have the peculiarity that if either operand is a NaN,
8797  // they chose what we call the RHS operand (and as such are not symmetric).
8798  // It happens that this matches the semantics of the common C idiom
8799  // x<y?x:y and related forms, so we can recognize these cases.
8800  if (Subtarget->hasSSE2() &&
8801      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8802      Cond.getOpcode() == ISD::SETCC) {
8803    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8804
8805    unsigned Opcode = 0;
8806    // Check for x CC y ? x : y.
8807    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8808      switch (CC) {
8809      default: break;
8810      case ISD::SETULT:
8811        // This can be a min if we can prove that at least one of the operands
8812        // is not a nan.
8813        if (!FiniteOnlyFPMath()) {
8814          if (DAG.isKnownNeverNaN(RHS)) {
8815            // Put the potential NaN in the RHS so that SSE will preserve it.
8816            std::swap(LHS, RHS);
8817          } else if (!DAG.isKnownNeverNaN(LHS))
8818            break;
8819        }
8820        Opcode = X86ISD::FMIN;
8821        break;
8822      case ISD::SETOLE:
8823        // This can be a min if we can prove that at least one of the operands
8824        // is not a nan.
8825        if (!FiniteOnlyFPMath()) {
8826          if (DAG.isKnownNeverNaN(LHS)) {
8827            // Put the potential NaN in the RHS so that SSE will preserve it.
8828            std::swap(LHS, RHS);
8829          } else if (!DAG.isKnownNeverNaN(RHS))
8830            break;
8831        }
8832        Opcode = X86ISD::FMIN;
8833        break;
8834      case ISD::SETULE:
8835        // This can be a min, but if either operand is a NaN we need it to
8836        // preserve the original LHS.
8837        std::swap(LHS, RHS);
8838      case ISD::SETOLT:
8839      case ISD::SETLT:
8840      case ISD::SETLE:
8841        Opcode = X86ISD::FMIN;
8842        break;
8843
8844      case ISD::SETOGE:
8845        // This can be a max if we can prove that at least one of the operands
8846        // is not a nan.
8847        if (!FiniteOnlyFPMath()) {
8848          if (DAG.isKnownNeverNaN(LHS)) {
8849            // Put the potential NaN in the RHS so that SSE will preserve it.
8850            std::swap(LHS, RHS);
8851          } else if (!DAG.isKnownNeverNaN(RHS))
8852            break;
8853        }
8854        Opcode = X86ISD::FMAX;
8855        break;
8856      case ISD::SETUGT:
8857        // This can be a max if we can prove that at least one of the operands
8858        // is not a nan.
8859        if (!FiniteOnlyFPMath()) {
8860          if (DAG.isKnownNeverNaN(RHS)) {
8861            // Put the potential NaN in the RHS so that SSE will preserve it.
8862            std::swap(LHS, RHS);
8863          } else if (!DAG.isKnownNeverNaN(LHS))
8864            break;
8865        }
8866        Opcode = X86ISD::FMAX;
8867        break;
8868      case ISD::SETUGE:
8869        // This can be a max, but if either operand is a NaN we need it to
8870        // preserve the original LHS.
8871        std::swap(LHS, RHS);
8872      case ISD::SETOGT:
8873      case ISD::SETGT:
8874      case ISD::SETGE:
8875        Opcode = X86ISD::FMAX;
8876        break;
8877      }
8878    // Check for x CC y ? y : x -- a min/max with reversed arms.
8879    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8880      switch (CC) {
8881      default: break;
8882      case ISD::SETOGE:
8883        // This can be a min if we can prove that at least one of the operands
8884        // is not a nan.
8885        if (!FiniteOnlyFPMath()) {
8886          if (DAG.isKnownNeverNaN(RHS)) {
8887            // Put the potential NaN in the RHS so that SSE will preserve it.
8888            std::swap(LHS, RHS);
8889          } else if (!DAG.isKnownNeverNaN(LHS))
8890            break;
8891        }
8892        Opcode = X86ISD::FMIN;
8893        break;
8894      case ISD::SETUGT:
8895        // This can be a min if we can prove that at least one of the operands
8896        // is not a nan.
8897        if (!FiniteOnlyFPMath()) {
8898          if (DAG.isKnownNeverNaN(LHS)) {
8899            // Put the potential NaN in the RHS so that SSE will preserve it.
8900            std::swap(LHS, RHS);
8901          } else if (!DAG.isKnownNeverNaN(RHS))
8902            break;
8903        }
8904        Opcode = X86ISD::FMIN;
8905        break;
8906      case ISD::SETUGE:
8907        // This can be a min, but if either operand is a NaN we need it to
8908        // preserve the original LHS.
8909        std::swap(LHS, RHS);
8910      case ISD::SETOGT:
8911      case ISD::SETGT:
8912      case ISD::SETGE:
8913        Opcode = X86ISD::FMIN;
8914        break;
8915
8916      case ISD::SETULT:
8917        // This can be a max if we can prove that at least one of the operands
8918        // is not a nan.
8919        if (!FiniteOnlyFPMath()) {
8920          if (DAG.isKnownNeverNaN(LHS)) {
8921            // Put the potential NaN in the RHS so that SSE will preserve it.
8922            std::swap(LHS, RHS);
8923          } else if (!DAG.isKnownNeverNaN(RHS))
8924            break;
8925        }
8926        Opcode = X86ISD::FMAX;
8927        break;
8928      case ISD::SETOLE:
8929        // This can be a max if we can prove that at least one of the operands
8930        // is not a nan.
8931        if (!FiniteOnlyFPMath()) {
8932          if (DAG.isKnownNeverNaN(RHS)) {
8933            // Put the potential NaN in the RHS so that SSE will preserve it.
8934            std::swap(LHS, RHS);
8935          } else if (!DAG.isKnownNeverNaN(LHS))
8936            break;
8937        }
8938        Opcode = X86ISD::FMAX;
8939        break;
8940      case ISD::SETULE:
8941        // This can be a max, but if either operand is a NaN we need it to
8942        // preserve the original LHS.
8943        std::swap(LHS, RHS);
8944      case ISD::SETOLT:
8945      case ISD::SETLT:
8946      case ISD::SETLE:
8947        Opcode = X86ISD::FMAX;
8948        break;
8949      }
8950    }
8951
8952    if (Opcode)
8953      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8954  }
8955
8956  // If this is a select between two integer constants, try to do some
8957  // optimizations.
8958  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8959    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8960      // Don't do this for crazy integer types.
8961      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8962        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8963        // so that TrueC (the true value) is larger than FalseC.
8964        bool NeedsCondInvert = false;
8965
8966        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8967            // Efficiently invertible.
8968            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
8969             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
8970              isa<ConstantSDNode>(Cond.getOperand(1))))) {
8971          NeedsCondInvert = true;
8972          std::swap(TrueC, FalseC);
8973        }
8974
8975        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
8976        if (FalseC->getAPIntValue() == 0 &&
8977            TrueC->getAPIntValue().isPowerOf2()) {
8978          if (NeedsCondInvert) // Invert the condition if needed.
8979            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8980                               DAG.getConstant(1, Cond.getValueType()));
8981
8982          // Zero extend the condition if needed.
8983          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8984
8985          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8986          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8987                             DAG.getConstant(ShAmt, MVT::i8));
8988        }
8989
8990        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8991        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8992          if (NeedsCondInvert) // Invert the condition if needed.
8993            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8994                               DAG.getConstant(1, Cond.getValueType()));
8995
8996          // Zero extend the condition if needed.
8997          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8998                             FalseC->getValueType(0), Cond);
8999          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9000                             SDValue(FalseC, 0));
9001        }
9002
9003        // Optimize cases that will turn into an LEA instruction.  This requires
9004        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9005        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9006          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9007          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9008
9009          bool isFastMultiplier = false;
9010          if (Diff < 10) {
9011            switch ((unsigned char)Diff) {
9012              default: break;
9013              case 1:  // result = add base, cond
9014              case 2:  // result = lea base(    , cond*2)
9015              case 3:  // result = lea base(cond, cond*2)
9016              case 4:  // result = lea base(    , cond*4)
9017              case 5:  // result = lea base(cond, cond*4)
9018              case 8:  // result = lea base(    , cond*8)
9019              case 9:  // result = lea base(cond, cond*8)
9020                isFastMultiplier = true;
9021                break;
9022            }
9023          }
9024
9025          if (isFastMultiplier) {
9026            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9027            if (NeedsCondInvert) // Invert the condition if needed.
9028              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9029                                 DAG.getConstant(1, Cond.getValueType()));
9030
9031            // Zero extend the condition if needed.
9032            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9033                               Cond);
9034            // Scale the condition by the difference.
9035            if (Diff != 1)
9036              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9037                                 DAG.getConstant(Diff, Cond.getValueType()));
9038
9039            // Add the base if non-zero.
9040            if (FalseC->getAPIntValue() != 0)
9041              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9042                                 SDValue(FalseC, 0));
9043            return Cond;
9044          }
9045        }
9046      }
9047  }
9048
9049  return SDValue();
9050}
9051
9052/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9053static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9054                                  TargetLowering::DAGCombinerInfo &DCI) {
9055  DebugLoc DL = N->getDebugLoc();
9056
9057  // If the flag operand isn't dead, don't touch this CMOV.
9058  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9059    return SDValue();
9060
9061  // If this is a select between two integer constants, try to do some
9062  // optimizations.  Note that the operands are ordered the opposite of SELECT
9063  // operands.
9064  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9065    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9066      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9067      // larger than FalseC (the false value).
9068      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9069
9070      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9071        CC = X86::GetOppositeBranchCondition(CC);
9072        std::swap(TrueC, FalseC);
9073      }
9074
9075      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9076      // This is efficient for any integer data type (including i8/i16) and
9077      // shift amount.
9078      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9079        SDValue Cond = N->getOperand(3);
9080        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9081                           DAG.getConstant(CC, MVT::i8), Cond);
9082
9083        // Zero extend the condition if needed.
9084        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9085
9086        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9087        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9088                           DAG.getConstant(ShAmt, MVT::i8));
9089        if (N->getNumValues() == 2)  // Dead flag value?
9090          return DCI.CombineTo(N, Cond, SDValue());
9091        return Cond;
9092      }
9093
9094      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9095      // for any integer data type, including i8/i16.
9096      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9097        SDValue Cond = N->getOperand(3);
9098        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9099                           DAG.getConstant(CC, MVT::i8), Cond);
9100
9101        // Zero extend the condition if needed.
9102        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9103                           FalseC->getValueType(0), Cond);
9104        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9105                           SDValue(FalseC, 0));
9106
9107        if (N->getNumValues() == 2)  // Dead flag value?
9108          return DCI.CombineTo(N, Cond, SDValue());
9109        return Cond;
9110      }
9111
9112      // Optimize cases that will turn into an LEA instruction.  This requires
9113      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9114      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9115        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9116        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9117
9118        bool isFastMultiplier = false;
9119        if (Diff < 10) {
9120          switch ((unsigned char)Diff) {
9121          default: break;
9122          case 1:  // result = add base, cond
9123          case 2:  // result = lea base(    , cond*2)
9124          case 3:  // result = lea base(cond, cond*2)
9125          case 4:  // result = lea base(    , cond*4)
9126          case 5:  // result = lea base(cond, cond*4)
9127          case 8:  // result = lea base(    , cond*8)
9128          case 9:  // result = lea base(cond, cond*8)
9129            isFastMultiplier = true;
9130            break;
9131          }
9132        }
9133
9134        if (isFastMultiplier) {
9135          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9136          SDValue Cond = N->getOperand(3);
9137          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9138                             DAG.getConstant(CC, MVT::i8), Cond);
9139          // Zero extend the condition if needed.
9140          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9141                             Cond);
9142          // Scale the condition by the difference.
9143          if (Diff != 1)
9144            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9145                               DAG.getConstant(Diff, Cond.getValueType()));
9146
9147          // Add the base if non-zero.
9148          if (FalseC->getAPIntValue() != 0)
9149            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9150                               SDValue(FalseC, 0));
9151          if (N->getNumValues() == 2)  // Dead flag value?
9152            return DCI.CombineTo(N, Cond, SDValue());
9153          return Cond;
9154        }
9155      }
9156    }
9157  }
9158  return SDValue();
9159}
9160
9161/// PerformANDCombine - Look for SSE and instructions of this form:
9162/// (and x, (build_vector c1,c2,c3,c4)). If there exists a use of a build_vector
9163/// that's the bitwise complement of the mask, then transform the node to
9164/// (and (xor x, (build_vector -1,-1,-1,-1)), (build_vector ~c1,~c2,~c3,~c4)).
9165static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
9166                                 TargetLowering::DAGCombinerInfo &DCI) {
9167  EVT VT = N->getValueType(0);
9168  if (!VT.isVector() || !VT.isInteger())
9169    return SDValue();
9170
9171  SDValue N0 = N->getOperand(0);
9172  SDValue N1 = N->getOperand(1);
9173  if (N0.getOpcode() == ISD::XOR || !N1.hasOneUse())
9174    return SDValue();
9175
9176  if (N1.getOpcode() == ISD::BUILD_VECTOR) {
9177    unsigned NumElts = VT.getVectorNumElements();
9178    EVT EltVT = VT.getVectorElementType();
9179    SmallVector<SDValue, 8> Mask;
9180    Mask.reserve(NumElts);
9181    for (unsigned i = 0; i != NumElts; ++i) {
9182      SDValue Arg = N1.getOperand(i);
9183      if (Arg.getOpcode() == ISD::UNDEF) {
9184        Mask.push_back(Arg);
9185        continue;
9186      }
9187      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Arg);
9188      if (!C) return SDValue();
9189      Mask.push_back(DAG.getConstant(~C->getAPIntValue(), EltVT));
9190    }
9191    N1 = DAG.getNode(ISD::BUILD_VECTOR, N1.getDebugLoc(), VT,
9192                     &Mask[0], NumElts);
9193    if (!N1.use_empty()) {
9194      unsigned Bits = EltVT.getSizeInBits();
9195      Mask.clear();
9196      for (unsigned i = 0; i != NumElts; ++i)
9197        Mask.push_back(DAG.getConstant(APInt::getAllOnesValue(Bits), EltVT));
9198      SDValue NewMask = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9199                                    VT, &Mask[0], NumElts);
9200      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9201                         DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
9202                                     N0, NewMask), N1);
9203    }
9204  }
9205
9206  return SDValue();
9207}
9208
9209/// PerformMulCombine - Optimize a single multiply with constant into two
9210/// in order to implement it with two cheaper instructions, e.g.
9211/// LEA + SHL, LEA + LEA.
9212static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9213                                 TargetLowering::DAGCombinerInfo &DCI) {
9214  if (DAG.getMachineFunction().
9215      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
9216    return SDValue();
9217
9218  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9219    return SDValue();
9220
9221  EVT VT = N->getValueType(0);
9222  if (VT != MVT::i64)
9223    return SDValue();
9224
9225  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9226  if (!C)
9227    return SDValue();
9228  uint64_t MulAmt = C->getZExtValue();
9229  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9230    return SDValue();
9231
9232  uint64_t MulAmt1 = 0;
9233  uint64_t MulAmt2 = 0;
9234  if ((MulAmt % 9) == 0) {
9235    MulAmt1 = 9;
9236    MulAmt2 = MulAmt / 9;
9237  } else if ((MulAmt % 5) == 0) {
9238    MulAmt1 = 5;
9239    MulAmt2 = MulAmt / 5;
9240  } else if ((MulAmt % 3) == 0) {
9241    MulAmt1 = 3;
9242    MulAmt2 = MulAmt / 3;
9243  }
9244  if (MulAmt2 &&
9245      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9246    DebugLoc DL = N->getDebugLoc();
9247
9248    if (isPowerOf2_64(MulAmt2) &&
9249        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9250      // If second multiplifer is pow2, issue it first. We want the multiply by
9251      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9252      // is an add.
9253      std::swap(MulAmt1, MulAmt2);
9254
9255    SDValue NewMul;
9256    if (isPowerOf2_64(MulAmt1))
9257      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9258                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9259    else
9260      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9261                           DAG.getConstant(MulAmt1, VT));
9262
9263    if (isPowerOf2_64(MulAmt2))
9264      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9265                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9266    else
9267      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9268                           DAG.getConstant(MulAmt2, VT));
9269
9270    // Do not add new nodes to DAG combiner worklist.
9271    DCI.CombineTo(N, NewMul, false);
9272  }
9273  return SDValue();
9274}
9275
9276static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9277  SDValue N0 = N->getOperand(0);
9278  SDValue N1 = N->getOperand(1);
9279  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9280  EVT VT = N0.getValueType();
9281
9282  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9283  // since the result of setcc_c is all zero's or all ones.
9284  if (N1C && N0.getOpcode() == ISD::AND &&
9285      N0.getOperand(1).getOpcode() == ISD::Constant) {
9286    SDValue N00 = N0.getOperand(0);
9287    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9288        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9289          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9290         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9291      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9292      APInt ShAmt = N1C->getAPIntValue();
9293      Mask = Mask.shl(ShAmt);
9294      if (Mask != 0)
9295        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9296                           N00, DAG.getConstant(Mask, VT));
9297    }
9298  }
9299
9300  return SDValue();
9301}
9302
9303/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9304///                       when possible.
9305static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9306                                   const X86Subtarget *Subtarget) {
9307  EVT VT = N->getValueType(0);
9308  if (!VT.isVector() && VT.isInteger() &&
9309      N->getOpcode() == ISD::SHL)
9310    return PerformSHLCombine(N, DAG);
9311
9312  // On X86 with SSE2 support, we can transform this to a vector shift if
9313  // all elements are shifted by the same amount.  We can't do this in legalize
9314  // because the a constant vector is typically transformed to a constant pool
9315  // so we have no knowledge of the shift amount.
9316  if (!Subtarget->hasSSE2())
9317    return SDValue();
9318
9319  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9320    return SDValue();
9321
9322  SDValue ShAmtOp = N->getOperand(1);
9323  EVT EltVT = VT.getVectorElementType();
9324  DebugLoc DL = N->getDebugLoc();
9325  SDValue BaseShAmt = SDValue();
9326  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9327    unsigned NumElts = VT.getVectorNumElements();
9328    unsigned i = 0;
9329    for (; i != NumElts; ++i) {
9330      SDValue Arg = ShAmtOp.getOperand(i);
9331      if (Arg.getOpcode() == ISD::UNDEF) continue;
9332      BaseShAmt = Arg;
9333      break;
9334    }
9335    for (; i != NumElts; ++i) {
9336      SDValue Arg = ShAmtOp.getOperand(i);
9337      if (Arg.getOpcode() == ISD::UNDEF) continue;
9338      if (Arg != BaseShAmt) {
9339        return SDValue();
9340      }
9341    }
9342  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9343             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9344    SDValue InVec = ShAmtOp.getOperand(0);
9345    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9346      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9347      unsigned i = 0;
9348      for (; i != NumElts; ++i) {
9349        SDValue Arg = InVec.getOperand(i);
9350        if (Arg.getOpcode() == ISD::UNDEF) continue;
9351        BaseShAmt = Arg;
9352        break;
9353      }
9354    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9355       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9356         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9357         if (C->getZExtValue() == SplatIdx)
9358           BaseShAmt = InVec.getOperand(1);
9359       }
9360    }
9361    if (BaseShAmt.getNode() == 0)
9362      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9363                              DAG.getIntPtrConstant(0));
9364  } else
9365    return SDValue();
9366
9367  // The shift amount is an i32.
9368  if (EltVT.bitsGT(MVT::i32))
9369    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9370  else if (EltVT.bitsLT(MVT::i32))
9371    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9372
9373  // The shift amount is identical so we can do a vector shift.
9374  SDValue  ValOp = N->getOperand(0);
9375  switch (N->getOpcode()) {
9376  default:
9377    llvm_unreachable("Unknown shift opcode!");
9378    break;
9379  case ISD::SHL:
9380    if (VT == MVT::v2i64)
9381      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9382                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9383                         ValOp, BaseShAmt);
9384    if (VT == MVT::v4i32)
9385      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9386                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9387                         ValOp, BaseShAmt);
9388    if (VT == MVT::v8i16)
9389      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9390                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9391                         ValOp, BaseShAmt);
9392    break;
9393  case ISD::SRA:
9394    if (VT == MVT::v4i32)
9395      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9396                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9397                         ValOp, BaseShAmt);
9398    if (VT == MVT::v8i16)
9399      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9400                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9401                         ValOp, BaseShAmt);
9402    break;
9403  case ISD::SRL:
9404    if (VT == MVT::v2i64)
9405      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9406                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9407                         ValOp, BaseShAmt);
9408    if (VT == MVT::v4i32)
9409      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9410                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9411                         ValOp, BaseShAmt);
9412    if (VT ==  MVT::v8i16)
9413      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9414                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9415                         ValOp, BaseShAmt);
9416    break;
9417  }
9418  return SDValue();
9419}
9420
9421static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9422                                const X86Subtarget *Subtarget) {
9423  EVT VT = N->getValueType(0);
9424  if (VT != MVT::i64 || !Subtarget->is64Bit())
9425    return SDValue();
9426
9427  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9428  SDValue N0 = N->getOperand(0);
9429  SDValue N1 = N->getOperand(1);
9430  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9431    std::swap(N0, N1);
9432  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9433    return SDValue();
9434
9435  SDValue ShAmt0 = N0.getOperand(1);
9436  if (ShAmt0.getValueType() != MVT::i8)
9437    return SDValue();
9438  SDValue ShAmt1 = N1.getOperand(1);
9439  if (ShAmt1.getValueType() != MVT::i8)
9440    return SDValue();
9441  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9442    ShAmt0 = ShAmt0.getOperand(0);
9443  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9444    ShAmt1 = ShAmt1.getOperand(0);
9445
9446  DebugLoc DL = N->getDebugLoc();
9447  unsigned Opc = X86ISD::SHLD;
9448  SDValue Op0 = N0.getOperand(0);
9449  SDValue Op1 = N1.getOperand(0);
9450  if (ShAmt0.getOpcode() == ISD::SUB) {
9451    Opc = X86ISD::SHRD;
9452    std::swap(Op0, Op1);
9453    std::swap(ShAmt0, ShAmt1);
9454  }
9455
9456  if (ShAmt1.getOpcode() == ISD::SUB) {
9457    SDValue Sum = ShAmt1.getOperand(0);
9458    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9459      if (SumC->getSExtValue() == 64 &&
9460          ShAmt1.getOperand(1) == ShAmt0)
9461        return DAG.getNode(Opc, DL, VT,
9462                           Op0, Op1,
9463                           DAG.getNode(ISD::TRUNCATE, DL,
9464                                       MVT::i8, ShAmt0));
9465    }
9466  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9467    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9468    if (ShAmt0C &&
9469        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64)
9470      return DAG.getNode(Opc, DL, VT,
9471                         N0.getOperand(0), N1.getOperand(0),
9472                         DAG.getNode(ISD::TRUNCATE, DL,
9473                                       MVT::i8, ShAmt0));
9474  }
9475
9476  return SDValue();
9477}
9478
9479/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9480static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9481                                   const X86Subtarget *Subtarget) {
9482  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9483  // the FP state in cases where an emms may be missing.
9484  // A preferable solution to the general problem is to figure out the right
9485  // places to insert EMMS.  This qualifies as a quick hack.
9486
9487  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9488  StoreSDNode *St = cast<StoreSDNode>(N);
9489  EVT VT = St->getValue().getValueType();
9490  if (VT.getSizeInBits() != 64)
9491    return SDValue();
9492
9493  const Function *F = DAG.getMachineFunction().getFunction();
9494  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9495  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9496    && Subtarget->hasSSE2();
9497  if ((VT.isVector() ||
9498       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9499      isa<LoadSDNode>(St->getValue()) &&
9500      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9501      St->getChain().hasOneUse() && !St->isVolatile()) {
9502    SDNode* LdVal = St->getValue().getNode();
9503    LoadSDNode *Ld = 0;
9504    int TokenFactorIndex = -1;
9505    SmallVector<SDValue, 8> Ops;
9506    SDNode* ChainVal = St->getChain().getNode();
9507    // Must be a store of a load.  We currently handle two cases:  the load
9508    // is a direct child, and it's under an intervening TokenFactor.  It is
9509    // possible to dig deeper under nested TokenFactors.
9510    if (ChainVal == LdVal)
9511      Ld = cast<LoadSDNode>(St->getChain());
9512    else if (St->getValue().hasOneUse() &&
9513             ChainVal->getOpcode() == ISD::TokenFactor) {
9514      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9515        if (ChainVal->getOperand(i).getNode() == LdVal) {
9516          TokenFactorIndex = i;
9517          Ld = cast<LoadSDNode>(St->getValue());
9518        } else
9519          Ops.push_back(ChainVal->getOperand(i));
9520      }
9521    }
9522
9523    if (!Ld || !ISD::isNormalLoad(Ld))
9524      return SDValue();
9525
9526    // If this is not the MMX case, i.e. we are just turning i64 load/store
9527    // into f64 load/store, avoid the transformation if there are multiple
9528    // uses of the loaded value.
9529    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9530      return SDValue();
9531
9532    DebugLoc LdDL = Ld->getDebugLoc();
9533    DebugLoc StDL = N->getDebugLoc();
9534    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9535    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9536    // pair instead.
9537    if (Subtarget->is64Bit() || F64IsLegal) {
9538      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9539      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9540                                  Ld->getBasePtr(), Ld->getSrcValue(),
9541                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9542                                  Ld->isNonTemporal(), Ld->getAlignment());
9543      SDValue NewChain = NewLd.getValue(1);
9544      if (TokenFactorIndex != -1) {
9545        Ops.push_back(NewChain);
9546        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9547                               Ops.size());
9548      }
9549      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9550                          St->getSrcValue(), St->getSrcValueOffset(),
9551                          St->isVolatile(), St->isNonTemporal(),
9552                          St->getAlignment());
9553    }
9554
9555    // Otherwise, lower to two pairs of 32-bit loads / stores.
9556    SDValue LoAddr = Ld->getBasePtr();
9557    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9558                                 DAG.getConstant(4, MVT::i32));
9559
9560    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9561                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9562                               Ld->isVolatile(), Ld->isNonTemporal(),
9563                               Ld->getAlignment());
9564    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9565                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9566                               Ld->isVolatile(), Ld->isNonTemporal(),
9567                               MinAlign(Ld->getAlignment(), 4));
9568
9569    SDValue NewChain = LoLd.getValue(1);
9570    if (TokenFactorIndex != -1) {
9571      Ops.push_back(LoLd);
9572      Ops.push_back(HiLd);
9573      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9574                             Ops.size());
9575    }
9576
9577    LoAddr = St->getBasePtr();
9578    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9579                         DAG.getConstant(4, MVT::i32));
9580
9581    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9582                                St->getSrcValue(), St->getSrcValueOffset(),
9583                                St->isVolatile(), St->isNonTemporal(),
9584                                St->getAlignment());
9585    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9586                                St->getSrcValue(),
9587                                St->getSrcValueOffset() + 4,
9588                                St->isVolatile(),
9589                                St->isNonTemporal(),
9590                                MinAlign(St->getAlignment(), 4));
9591    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9592  }
9593  return SDValue();
9594}
9595
9596/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9597/// X86ISD::FXOR nodes.
9598static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9599  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9600  // F[X]OR(0.0, x) -> x
9601  // F[X]OR(x, 0.0) -> x
9602  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9603    if (C->getValueAPF().isPosZero())
9604      return N->getOperand(1);
9605  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9606    if (C->getValueAPF().isPosZero())
9607      return N->getOperand(0);
9608  return SDValue();
9609}
9610
9611/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9612static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9613  // FAND(0.0, x) -> 0.0
9614  // FAND(x, 0.0) -> 0.0
9615  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9616    if (C->getValueAPF().isPosZero())
9617      return N->getOperand(0);
9618  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9619    if (C->getValueAPF().isPosZero())
9620      return N->getOperand(1);
9621  return SDValue();
9622}
9623
9624static SDValue PerformBTCombine(SDNode *N,
9625                                SelectionDAG &DAG,
9626                                TargetLowering::DAGCombinerInfo &DCI) {
9627  // BT ignores high bits in the bit index operand.
9628  SDValue Op1 = N->getOperand(1);
9629  if (Op1.hasOneUse()) {
9630    unsigned BitWidth = Op1.getValueSizeInBits();
9631    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9632    APInt KnownZero, KnownOne;
9633    TargetLowering::TargetLoweringOpt TLO(DAG);
9634    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9635    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9636        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9637      DCI.CommitTargetLoweringOpt(TLO);
9638  }
9639  return SDValue();
9640}
9641
9642static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9643  SDValue Op = N->getOperand(0);
9644  if (Op.getOpcode() == ISD::BIT_CONVERT)
9645    Op = Op.getOperand(0);
9646  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9647  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9648      VT.getVectorElementType().getSizeInBits() ==
9649      OpVT.getVectorElementType().getSizeInBits()) {
9650    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9651  }
9652  return SDValue();
9653}
9654
9655// On X86 and X86-64, atomic operations are lowered to locked instructions.
9656// Locked instructions, in turn, have implicit fence semantics (all memory
9657// operations are flushed before issuing the locked instruction, and the
9658// are not buffered), so we can fold away the common pattern of
9659// fence-atomic-fence.
9660static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9661  SDValue atomic = N->getOperand(0);
9662  switch (atomic.getOpcode()) {
9663    case ISD::ATOMIC_CMP_SWAP:
9664    case ISD::ATOMIC_SWAP:
9665    case ISD::ATOMIC_LOAD_ADD:
9666    case ISD::ATOMIC_LOAD_SUB:
9667    case ISD::ATOMIC_LOAD_AND:
9668    case ISD::ATOMIC_LOAD_OR:
9669    case ISD::ATOMIC_LOAD_XOR:
9670    case ISD::ATOMIC_LOAD_NAND:
9671    case ISD::ATOMIC_LOAD_MIN:
9672    case ISD::ATOMIC_LOAD_MAX:
9673    case ISD::ATOMIC_LOAD_UMIN:
9674    case ISD::ATOMIC_LOAD_UMAX:
9675      break;
9676    default:
9677      return SDValue();
9678  }
9679
9680  SDValue fence = atomic.getOperand(0);
9681  if (fence.getOpcode() != ISD::MEMBARRIER)
9682    return SDValue();
9683
9684  switch (atomic.getOpcode()) {
9685    case ISD::ATOMIC_CMP_SWAP:
9686      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9687                                    atomic.getOperand(1), atomic.getOperand(2),
9688                                    atomic.getOperand(3));
9689    case ISD::ATOMIC_SWAP:
9690    case ISD::ATOMIC_LOAD_ADD:
9691    case ISD::ATOMIC_LOAD_SUB:
9692    case ISD::ATOMIC_LOAD_AND:
9693    case ISD::ATOMIC_LOAD_OR:
9694    case ISD::ATOMIC_LOAD_XOR:
9695    case ISD::ATOMIC_LOAD_NAND:
9696    case ISD::ATOMIC_LOAD_MIN:
9697    case ISD::ATOMIC_LOAD_MAX:
9698    case ISD::ATOMIC_LOAD_UMIN:
9699    case ISD::ATOMIC_LOAD_UMAX:
9700      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9701                                    atomic.getOperand(1), atomic.getOperand(2));
9702    default:
9703      return SDValue();
9704  }
9705}
9706
9707static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
9708  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
9709  //           (and (i32 x86isd::setcc_carry), 1)
9710  // This eliminates the zext. This transformation is necessary because
9711  // ISD::SETCC is always legalized to i8.
9712  DebugLoc dl = N->getDebugLoc();
9713  SDValue N0 = N->getOperand(0);
9714  EVT VT = N->getValueType(0);
9715  if (N0.getOpcode() == ISD::AND &&
9716      N0.hasOneUse() &&
9717      N0.getOperand(0).hasOneUse()) {
9718    SDValue N00 = N0.getOperand(0);
9719    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
9720      return SDValue();
9721    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9722    if (!C || C->getZExtValue() != 1)
9723      return SDValue();
9724    return DAG.getNode(ISD::AND, dl, VT,
9725                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
9726                                   N00.getOperand(0), N00.getOperand(1)),
9727                       DAG.getConstant(1, VT));
9728  }
9729
9730  return SDValue();
9731}
9732
9733SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9734                                             DAGCombinerInfo &DCI) const {
9735  SelectionDAG &DAG = DCI.DAG;
9736  switch (N->getOpcode()) {
9737  default: break;
9738  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9739  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9740  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9741  case ISD::AND:            return PerformANDCombine(N, DAG, DCI);
9742  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9743  case ISD::SHL:
9744  case ISD::SRA:
9745  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9746  case ISD::OR:             return PerformOrCombine(N, DAG, Subtarget);
9747  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9748  case X86ISD::FXOR:
9749  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9750  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9751  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9752  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9753  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9754  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
9755  }
9756
9757  return SDValue();
9758}
9759
9760//===----------------------------------------------------------------------===//
9761//                           X86 Inline Assembly Support
9762//===----------------------------------------------------------------------===//
9763
9764static bool LowerToBSwap(CallInst *CI) {
9765  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9766  // we will turn this bswap into something that will be lowered to logical ops
9767  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9768  // so don't worry about this.
9769
9770  // Verify this is a simple bswap.
9771  if (CI->getNumOperands() != 2 ||
9772      CI->getType() != CI->getOperand(1)->getType() ||
9773      !CI->getType()->isIntegerTy())
9774    return false;
9775
9776  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9777  if (!Ty || Ty->getBitWidth() % 16 != 0)
9778    return false;
9779
9780  // Okay, we can do this xform, do so now.
9781  const Type *Tys[] = { Ty };
9782  Module *M = CI->getParent()->getParent()->getParent();
9783  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9784
9785  Value *Op = CI->getOperand(1);
9786  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9787
9788  CI->replaceAllUsesWith(Op);
9789  CI->eraseFromParent();
9790  return true;
9791}
9792
9793bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9794  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9795  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9796
9797  std::string AsmStr = IA->getAsmString();
9798
9799  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9800  SmallVector<StringRef, 4> AsmPieces;
9801  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9802
9803  switch (AsmPieces.size()) {
9804  default: return false;
9805  case 1:
9806    AsmStr = AsmPieces[0];
9807    AsmPieces.clear();
9808    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9809
9810    // bswap $0
9811    if (AsmPieces.size() == 2 &&
9812        (AsmPieces[0] == "bswap" ||
9813         AsmPieces[0] == "bswapq" ||
9814         AsmPieces[0] == "bswapl") &&
9815        (AsmPieces[1] == "$0" ||
9816         AsmPieces[1] == "${0:q}")) {
9817      // No need to check constraints, nothing other than the equivalent of
9818      // "=r,0" would be valid here.
9819      return LowerToBSwap(CI);
9820    }
9821    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9822    if (CI->getType()->isIntegerTy(16) &&
9823        AsmPieces.size() == 3 &&
9824        AsmPieces[0] == "rorw" &&
9825        AsmPieces[1] == "$$8," &&
9826        AsmPieces[2] == "${0:w}" &&
9827        IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
9828      return LowerToBSwap(CI);
9829    }
9830    break;
9831  case 3:
9832    if (CI->getType()->isIntegerTy(64) &&
9833        Constraints.size() >= 2 &&
9834        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9835        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9836      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9837      SmallVector<StringRef, 4> Words;
9838      SplitString(AsmPieces[0], Words, " \t");
9839      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9840        Words.clear();
9841        SplitString(AsmPieces[1], Words, " \t");
9842        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9843          Words.clear();
9844          SplitString(AsmPieces[2], Words, " \t,");
9845          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9846              Words[2] == "%edx") {
9847            return LowerToBSwap(CI);
9848          }
9849        }
9850      }
9851    }
9852    break;
9853  }
9854  return false;
9855}
9856
9857
9858
9859/// getConstraintType - Given a constraint letter, return the type of
9860/// constraint it is for this target.
9861X86TargetLowering::ConstraintType
9862X86TargetLowering::getConstraintType(const std::string &Constraint) const {
9863  if (Constraint.size() == 1) {
9864    switch (Constraint[0]) {
9865    case 'A':
9866      return C_Register;
9867    case 'f':
9868    case 'r':
9869    case 'R':
9870    case 'l':
9871    case 'q':
9872    case 'Q':
9873    case 'x':
9874    case 'y':
9875    case 'Y':
9876      return C_RegisterClass;
9877    case 'e':
9878    case 'Z':
9879      return C_Other;
9880    default:
9881      break;
9882    }
9883  }
9884  return TargetLowering::getConstraintType(Constraint);
9885}
9886
9887/// LowerXConstraint - try to replace an X constraint, which matches anything,
9888/// with another that has more specific requirements based on the type of the
9889/// corresponding operand.
9890const char *X86TargetLowering::
9891LowerXConstraint(EVT ConstraintVT) const {
9892  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
9893  // 'f' like normal targets.
9894  if (ConstraintVT.isFloatingPoint()) {
9895    if (Subtarget->hasSSE2())
9896      return "Y";
9897    if (Subtarget->hasSSE1())
9898      return "x";
9899  }
9900
9901  return TargetLowering::LowerXConstraint(ConstraintVT);
9902}
9903
9904/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9905/// vector.  If it is invalid, don't add anything to Ops.
9906void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9907                                                     char Constraint,
9908                                                     bool hasMemory,
9909                                                     std::vector<SDValue>&Ops,
9910                                                     SelectionDAG &DAG) const {
9911  SDValue Result(0, 0);
9912
9913  switch (Constraint) {
9914  default: break;
9915  case 'I':
9916    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9917      if (C->getZExtValue() <= 31) {
9918        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9919        break;
9920      }
9921    }
9922    return;
9923  case 'J':
9924    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9925      if (C->getZExtValue() <= 63) {
9926        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9927        break;
9928      }
9929    }
9930    return;
9931  case 'K':
9932    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9933      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
9934        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9935        break;
9936      }
9937    }
9938    return;
9939  case 'N':
9940    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9941      if (C->getZExtValue() <= 255) {
9942        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9943        break;
9944      }
9945    }
9946    return;
9947  case 'e': {
9948    // 32-bit signed value
9949    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9950      const ConstantInt *CI = C->getConstantIntValue();
9951      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9952                                  C->getSExtValue())) {
9953        // Widen to 64 bits here to get it sign extended.
9954        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
9955        break;
9956      }
9957    // FIXME gcc accepts some relocatable values here too, but only in certain
9958    // memory models; it's complicated.
9959    }
9960    return;
9961  }
9962  case 'Z': {
9963    // 32-bit unsigned value
9964    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9965      const ConstantInt *CI = C->getConstantIntValue();
9966      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9967                                  C->getZExtValue())) {
9968        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9969        break;
9970      }
9971    }
9972    // FIXME gcc accepts some relocatable values here too, but only in certain
9973    // memory models; it's complicated.
9974    return;
9975  }
9976  case 'i': {
9977    // Literal immediates are always ok.
9978    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
9979      // Widen to 64 bits here to get it sign extended.
9980      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
9981      break;
9982    }
9983
9984    // If we are in non-pic codegen mode, we allow the address of a global (with
9985    // an optional displacement) to be used with 'i'.
9986    GlobalAddressSDNode *GA = 0;
9987    int64_t Offset = 0;
9988
9989    // Match either (GA), (GA+C), (GA+C1+C2), etc.
9990    while (1) {
9991      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
9992        Offset += GA->getOffset();
9993        break;
9994      } else if (Op.getOpcode() == ISD::ADD) {
9995        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9996          Offset += C->getZExtValue();
9997          Op = Op.getOperand(0);
9998          continue;
9999        }
10000      } else if (Op.getOpcode() == ISD::SUB) {
10001        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10002          Offset += -C->getZExtValue();
10003          Op = Op.getOperand(0);
10004          continue;
10005        }
10006      }
10007
10008      // Otherwise, this isn't something we can handle, reject it.
10009      return;
10010    }
10011
10012    GlobalValue *GV = GA->getGlobal();
10013    // If we require an extra load to get this address, as in PIC mode, we
10014    // can't accept it.
10015    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10016                                                        getTargetMachine())))
10017      return;
10018
10019    if (hasMemory)
10020      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
10021    else
10022      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
10023    Result = Op;
10024    break;
10025  }
10026  }
10027
10028  if (Result.getNode()) {
10029    Ops.push_back(Result);
10030    return;
10031  }
10032  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
10033                                                      Ops, DAG);
10034}
10035
10036std::vector<unsigned> X86TargetLowering::
10037getRegClassForInlineAsmConstraint(const std::string &Constraint,
10038                                  EVT VT) const {
10039  if (Constraint.size() == 1) {
10040    // FIXME: not handling fp-stack yet!
10041    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10042    default: break;  // Unknown constraint letter
10043    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10044      if (Subtarget->is64Bit()) {
10045        if (VT == MVT::i32)
10046          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10047                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10048                                       X86::R10D,X86::R11D,X86::R12D,
10049                                       X86::R13D,X86::R14D,X86::R15D,
10050                                       X86::EBP, X86::ESP, 0);
10051        else if (VT == MVT::i16)
10052          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10053                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10054                                       X86::R10W,X86::R11W,X86::R12W,
10055                                       X86::R13W,X86::R14W,X86::R15W,
10056                                       X86::BP,  X86::SP, 0);
10057        else if (VT == MVT::i8)
10058          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10059                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10060                                       X86::R10B,X86::R11B,X86::R12B,
10061                                       X86::R13B,X86::R14B,X86::R15B,
10062                                       X86::BPL, X86::SPL, 0);
10063
10064        else if (VT == MVT::i64)
10065          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10066                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10067                                       X86::R10, X86::R11, X86::R12,
10068                                       X86::R13, X86::R14, X86::R15,
10069                                       X86::RBP, X86::RSP, 0);
10070
10071        break;
10072      }
10073      // 32-bit fallthrough
10074    case 'Q':   // Q_REGS
10075      if (VT == MVT::i32)
10076        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10077      else if (VT == MVT::i16)
10078        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10079      else if (VT == MVT::i8)
10080        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10081      else if (VT == MVT::i64)
10082        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10083      break;
10084    }
10085  }
10086
10087  return std::vector<unsigned>();
10088}
10089
10090std::pair<unsigned, const TargetRegisterClass*>
10091X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10092                                                EVT VT) const {
10093  // First, see if this is a constraint that directly corresponds to an LLVM
10094  // register class.
10095  if (Constraint.size() == 1) {
10096    // GCC Constraint Letters
10097    switch (Constraint[0]) {
10098    default: break;
10099    case 'r':   // GENERAL_REGS
10100    case 'l':   // INDEX_REGS
10101      if (VT == MVT::i8)
10102        return std::make_pair(0U, X86::GR8RegisterClass);
10103      if (VT == MVT::i16)
10104        return std::make_pair(0U, X86::GR16RegisterClass);
10105      if (VT == MVT::i32 || !Subtarget->is64Bit())
10106        return std::make_pair(0U, X86::GR32RegisterClass);
10107      return std::make_pair(0U, X86::GR64RegisterClass);
10108    case 'R':   // LEGACY_REGS
10109      if (VT == MVT::i8)
10110        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10111      if (VT == MVT::i16)
10112        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10113      if (VT == MVT::i32 || !Subtarget->is64Bit())
10114        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10115      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10116    case 'f':  // FP Stack registers.
10117      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10118      // value to the correct fpstack register class.
10119      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10120        return std::make_pair(0U, X86::RFP32RegisterClass);
10121      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10122        return std::make_pair(0U, X86::RFP64RegisterClass);
10123      return std::make_pair(0U, X86::RFP80RegisterClass);
10124    case 'y':   // MMX_REGS if MMX allowed.
10125      if (!Subtarget->hasMMX()) break;
10126      return std::make_pair(0U, X86::VR64RegisterClass);
10127    case 'Y':   // SSE_REGS if SSE2 allowed
10128      if (!Subtarget->hasSSE2()) break;
10129      // FALL THROUGH.
10130    case 'x':   // SSE_REGS if SSE1 allowed
10131      if (!Subtarget->hasSSE1()) break;
10132
10133      switch (VT.getSimpleVT().SimpleTy) {
10134      default: break;
10135      // Scalar SSE types.
10136      case MVT::f32:
10137      case MVT::i32:
10138        return std::make_pair(0U, X86::FR32RegisterClass);
10139      case MVT::f64:
10140      case MVT::i64:
10141        return std::make_pair(0U, X86::FR64RegisterClass);
10142      // Vector types.
10143      case MVT::v16i8:
10144      case MVT::v8i16:
10145      case MVT::v4i32:
10146      case MVT::v2i64:
10147      case MVT::v4f32:
10148      case MVT::v2f64:
10149        return std::make_pair(0U, X86::VR128RegisterClass);
10150      }
10151      break;
10152    }
10153  }
10154
10155  // Use the default implementation in TargetLowering to convert the register
10156  // constraint into a member of a register class.
10157  std::pair<unsigned, const TargetRegisterClass*> Res;
10158  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10159
10160  // Not found as a standard register?
10161  if (Res.second == 0) {
10162    // Map st(0) -> st(7) -> ST0
10163    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10164        tolower(Constraint[1]) == 's' &&
10165        tolower(Constraint[2]) == 't' &&
10166        Constraint[3] == '(' &&
10167        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10168        Constraint[5] == ')' &&
10169        Constraint[6] == '}') {
10170
10171      Res.first = X86::ST0+Constraint[4]-'0';
10172      Res.second = X86::RFP80RegisterClass;
10173      return Res;
10174    }
10175
10176    // GCC allows "st(0)" to be called just plain "st".
10177    if (StringRef("{st}").equals_lower(Constraint)) {
10178      Res.first = X86::ST0;
10179      Res.second = X86::RFP80RegisterClass;
10180      return Res;
10181    }
10182
10183    // flags -> EFLAGS
10184    if (StringRef("{flags}").equals_lower(Constraint)) {
10185      Res.first = X86::EFLAGS;
10186      Res.second = X86::CCRRegisterClass;
10187      return Res;
10188    }
10189
10190    // 'A' means EAX + EDX.
10191    if (Constraint == "A") {
10192      Res.first = X86::EAX;
10193      Res.second = X86::GR32_ADRegisterClass;
10194      return Res;
10195    }
10196    return Res;
10197  }
10198
10199  // Otherwise, check to see if this is a register class of the wrong value
10200  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10201  // turn into {ax},{dx}.
10202  if (Res.second->hasType(VT))
10203    return Res;   // Correct type already, nothing to do.
10204
10205  // All of the single-register GCC register classes map their values onto
10206  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10207  // really want an 8-bit or 32-bit register, map to the appropriate register
10208  // class and return the appropriate register.
10209  if (Res.second == X86::GR16RegisterClass) {
10210    if (VT == MVT::i8) {
10211      unsigned DestReg = 0;
10212      switch (Res.first) {
10213      default: break;
10214      case X86::AX: DestReg = X86::AL; break;
10215      case X86::DX: DestReg = X86::DL; break;
10216      case X86::CX: DestReg = X86::CL; break;
10217      case X86::BX: DestReg = X86::BL; break;
10218      }
10219      if (DestReg) {
10220        Res.first = DestReg;
10221        Res.second = X86::GR8RegisterClass;
10222      }
10223    } else if (VT == MVT::i32) {
10224      unsigned DestReg = 0;
10225      switch (Res.first) {
10226      default: break;
10227      case X86::AX: DestReg = X86::EAX; break;
10228      case X86::DX: DestReg = X86::EDX; break;
10229      case X86::CX: DestReg = X86::ECX; break;
10230      case X86::BX: DestReg = X86::EBX; break;
10231      case X86::SI: DestReg = X86::ESI; break;
10232      case X86::DI: DestReg = X86::EDI; break;
10233      case X86::BP: DestReg = X86::EBP; break;
10234      case X86::SP: DestReg = X86::ESP; break;
10235      }
10236      if (DestReg) {
10237        Res.first = DestReg;
10238        Res.second = X86::GR32RegisterClass;
10239      }
10240    } else if (VT == MVT::i64) {
10241      unsigned DestReg = 0;
10242      switch (Res.first) {
10243      default: break;
10244      case X86::AX: DestReg = X86::RAX; break;
10245      case X86::DX: DestReg = X86::RDX; break;
10246      case X86::CX: DestReg = X86::RCX; break;
10247      case X86::BX: DestReg = X86::RBX; break;
10248      case X86::SI: DestReg = X86::RSI; break;
10249      case X86::DI: DestReg = X86::RDI; break;
10250      case X86::BP: DestReg = X86::RBP; break;
10251      case X86::SP: DestReg = X86::RSP; break;
10252      }
10253      if (DestReg) {
10254        Res.first = DestReg;
10255        Res.second = X86::GR64RegisterClass;
10256      }
10257    }
10258  } else if (Res.second == X86::FR32RegisterClass ||
10259             Res.second == X86::FR64RegisterClass ||
10260             Res.second == X86::VR128RegisterClass) {
10261    // Handle references to XMM physical registers that got mapped into the
10262    // wrong class.  This can happen with constraints like {xmm0} where the
10263    // target independent register mapper will just pick the first match it can
10264    // find, ignoring the required type.
10265    if (VT == MVT::f32)
10266      Res.second = X86::FR32RegisterClass;
10267    else if (VT == MVT::f64)
10268      Res.second = X86::FR64RegisterClass;
10269    else if (X86::VR128RegisterClass->hasType(VT))
10270      Res.second = X86::VR128RegisterClass;
10271  }
10272
10273  return Res;
10274}
10275
10276//===----------------------------------------------------------------------===//
10277//                           X86 Widen vector type
10278//===----------------------------------------------------------------------===//
10279
10280/// getWidenVectorType: given a vector type, returns the type to widen
10281/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
10282/// If there is no vector type that we want to widen to, returns MVT::Other
10283/// When and where to widen is target dependent based on the cost of
10284/// scalarizing vs using the wider vector type.
10285
10286EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
10287  assert(VT.isVector());
10288  if (isTypeLegal(VT))
10289    return VT;
10290
10291  // TODO: In computeRegisterProperty, we can compute the list of legal vector
10292  //       type based on element type.  This would speed up our search (though
10293  //       it may not be worth it since the size of the list is relatively
10294  //       small).
10295  EVT EltVT = VT.getVectorElementType();
10296  unsigned NElts = VT.getVectorNumElements();
10297
10298  // On X86, it make sense to widen any vector wider than 1
10299  if (NElts <= 1)
10300    return MVT::Other;
10301
10302  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
10303       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
10304    EVT SVT = (MVT::SimpleValueType)nVT;
10305
10306    if (isTypeLegal(SVT) &&
10307        SVT.getVectorElementType() == EltVT &&
10308        SVT.getVectorNumElements() > NElts)
10309      return SVT;
10310  }
10311  return MVT::Other;
10312}
10313