X86ISelLowering.cpp revision cdd1eeca2c2da2e1c9b48e04f2f779ffe5cf3666
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/PseudoSourceValue.h"
36#include "llvm/CodeGen/SelectionDAG.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Target/TargetOptions.h"
40#include "llvm/ADT/SmallSet.h"
41#include "llvm/ADT/StringExtras.h"
42#include "llvm/ParameterAttributes.h"
43using namespace llvm;
44
45X86TargetLowering::X86TargetLowering(TargetMachine &TM)
46  : TargetLowering(TM) {
47  Subtarget = &TM.getSubtarget<X86Subtarget>();
48  X86ScalarSSEf64 = Subtarget->hasSSE2();
49  X86ScalarSSEf32 = Subtarget->hasSSE1();
50  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
51
52  bool Fast = false;
53
54  RegInfo = TM.getRegisterInfo();
55
56  // Set up the TargetLowering object.
57
58  // X86 is weird, it always uses i8 for shift amounts and setcc results.
59  setShiftAmountType(MVT::i8);
60  setSetCCResultType(MVT::i8);
61  setSetCCResultContents(ZeroOrOneSetCCResult);
62  setSchedulingPreference(SchedulingForRegPressure);
63  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
64  setStackPointerRegisterToSaveRestore(X86StackPtr);
65
66  if (Subtarget->isTargetDarwin()) {
67    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
68    setUseUnderscoreSetJmp(false);
69    setUseUnderscoreLongJmp(false);
70  } else if (Subtarget->isTargetMingw()) {
71    // MS runtime is weird: it exports _setjmp, but longjmp!
72    setUseUnderscoreSetJmp(true);
73    setUseUnderscoreLongJmp(false);
74  } else {
75    setUseUnderscoreSetJmp(true);
76    setUseUnderscoreLongJmp(true);
77  }
78
79  // Set up the register classes.
80  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
81  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
82  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
83  if (Subtarget->is64Bit())
84    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
85
86  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
87
88  // We don't accept any truncstore of integer registers.
89  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
90  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
91  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
92  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
93  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
94  setTruncStoreAction(MVT::i16, MVT::i8, Expand);
95
96  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
97  // operation.
98  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
99  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
100  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
101
102  if (Subtarget->is64Bit()) {
103    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
104    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
105  } else {
106    if (X86ScalarSSEf64)
107      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
108      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
109    else
110      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
111  }
112
113  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
114  // this operation.
115  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
116  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
117  // SSE has no i16 to fp conversion, only i32
118  if (X86ScalarSSEf32) {
119    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
120    // f32 and f64 cases are Legal, f80 case is not
121    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
122  } else {
123    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
124    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
125  }
126
127  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
128  // are Legal, f80 is custom lowered.
129  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
130  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
131
132  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
133  // this operation.
134  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
135  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
136
137  if (X86ScalarSSEf32) {
138    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
139    // f32 and f64 cases are Legal, f80 case is not
140    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
141  } else {
142    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
143    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
144  }
145
146  // Handle FP_TO_UINT by promoting the destination to a larger signed
147  // conversion.
148  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
149  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
150  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
151
152  if (Subtarget->is64Bit()) {
153    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
154    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
155  } else {
156    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
157      // Expand FP_TO_UINT into a select.
158      // FIXME: We would like to use a Custom expander here eventually to do
159      // the optimal thing for SSE vs. the default expansion in the legalizer.
160      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
161    else
162      // With SSE3 we can use fisttpll to convert to a signed i64.
163      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
164  }
165
166  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
167  if (!X86ScalarSSEf64) {
168    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
169    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
170  }
171
172  // Scalar integer multiply, multiply-high, divide, and remainder are
173  // lowered to use operations that produce two results, to match the
174  // available instructions. This exposes the two-result form to trivial
175  // CSE, which is able to combine x/y and x%y into a single instruction,
176  // for example. The single-result multiply instructions are introduced
177  // in X86ISelDAGToDAG.cpp, after CSE, for uses where the the high part
178  // is not needed.
179  setOperationAction(ISD::MUL             , MVT::i8    , Expand);
180  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
181  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
182  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
183  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
184  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
185  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
186  setOperationAction(ISD::MUL             , MVT::i16   , Expand);
187  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
188  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
189  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
190  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
191  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
192  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
193  setOperationAction(ISD::MUL             , MVT::i32   , Expand);
194  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
195  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
196  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
197  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
198  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
199  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
200  setOperationAction(ISD::MUL             , MVT::i64   , Expand);
201  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
202  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
203  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
204  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
205  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
206  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
207
208  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
209  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
210  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
211  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
212  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
213  if (Subtarget->is64Bit())
214    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
215  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
216  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
217  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
218  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
219  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
220  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
221
222  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
223  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
224  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
225  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
226  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
227  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
228  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
229  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
230  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
231  if (Subtarget->is64Bit()) {
232    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
233    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
234    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
235  }
236
237  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
238  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
239
240  // These should be promoted to a larger select which is supported.
241  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
242  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
243  // X86 wants to expand cmov itself.
244  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
245  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
246  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
247  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
248  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
249  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
250  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
251  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
252  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
253  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
254  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
255  if (Subtarget->is64Bit()) {
256    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
257    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
258  }
259  // X86 ret instruction may pop stack.
260  setOperationAction(ISD::RET             , MVT::Other, Custom);
261  if (!Subtarget->is64Bit())
262    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
263
264  // Darwin ABI issue.
265  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
266  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
267  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
268  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
269  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
270  if (Subtarget->is64Bit()) {
271    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
272    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
273    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
274    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
275  }
276  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
277  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
278  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
279  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
280  // X86 wants to expand memset / memcpy itself.
281  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
282  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
283
284  // Use the default ISD::LOCATION, ISD::DECLARE expansion.
285  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
286  // FIXME - use subtarget debug flags
287  if (!Subtarget->isTargetDarwin() &&
288      !Subtarget->isTargetELF() &&
289      !Subtarget->isTargetCygMing())
290    setOperationAction(ISD::LABEL, MVT::Other, Expand);
291
292  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
293  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
294  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
295  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
296  if (Subtarget->is64Bit()) {
297    // FIXME: Verify
298    setExceptionPointerRegister(X86::RAX);
299    setExceptionSelectorRegister(X86::RDX);
300  } else {
301    setExceptionPointerRegister(X86::EAX);
302    setExceptionSelectorRegister(X86::EDX);
303  }
304  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
305
306  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
307
308  setOperationAction(ISD::TRAP, MVT::Other, Legal);
309
310  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
311  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
312  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
313  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
314  if (Subtarget->is64Bit())
315    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
316  else
317    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
318
319  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
320  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
321  if (Subtarget->is64Bit())
322    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
323  if (Subtarget->isTargetCygMing())
324    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
325  else
326    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
327
328  if (X86ScalarSSEf64) {
329    // f32 and f64 use SSE.
330    // Set up the FP register classes.
331    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
332    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
333
334    // Use ANDPD to simulate FABS.
335    setOperationAction(ISD::FABS , MVT::f64, Custom);
336    setOperationAction(ISD::FABS , MVT::f32, Custom);
337
338    // Use XORP to simulate FNEG.
339    setOperationAction(ISD::FNEG , MVT::f64, Custom);
340    setOperationAction(ISD::FNEG , MVT::f32, Custom);
341
342    // Use ANDPD and ORPD to simulate FCOPYSIGN.
343    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
344    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
345
346    // We don't support sin/cos/fmod
347    setOperationAction(ISD::FSIN , MVT::f64, Expand);
348    setOperationAction(ISD::FCOS , MVT::f64, Expand);
349    setOperationAction(ISD::FREM , MVT::f64, Expand);
350    setOperationAction(ISD::FSIN , MVT::f32, Expand);
351    setOperationAction(ISD::FCOS , MVT::f32, Expand);
352    setOperationAction(ISD::FREM , MVT::f32, Expand);
353
354    // Expand FP immediates into loads from the stack, except for the special
355    // cases we handle.
356    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
357    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
358    addLegalFPImmediate(APFloat(+0.0)); // xorpd
359    addLegalFPImmediate(APFloat(+0.0f)); // xorps
360
361    // Floating truncations from f80 and extensions to f80 go through memory.
362    // If optimizing, we lie about this though and handle it in
363    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
364    if (Fast) {
365      setConvertAction(MVT::f32, MVT::f80, Expand);
366      setConvertAction(MVT::f64, MVT::f80, Expand);
367      setConvertAction(MVT::f80, MVT::f32, Expand);
368      setConvertAction(MVT::f80, MVT::f64, Expand);
369    }
370  } else if (X86ScalarSSEf32) {
371    // Use SSE for f32, x87 for f64.
372    // Set up the FP register classes.
373    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
374    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
375
376    // Use ANDPS to simulate FABS.
377    setOperationAction(ISD::FABS , MVT::f32, Custom);
378
379    // Use XORP to simulate FNEG.
380    setOperationAction(ISD::FNEG , MVT::f32, Custom);
381
382    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
383
384    // Use ANDPS and ORPS to simulate FCOPYSIGN.
385    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
386    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
387
388    // We don't support sin/cos/fmod
389    setOperationAction(ISD::FSIN , MVT::f32, Expand);
390    setOperationAction(ISD::FCOS , MVT::f32, Expand);
391    setOperationAction(ISD::FREM , MVT::f32, Expand);
392
393    // Expand FP immediates into loads from the stack, except for the special
394    // cases we handle.
395    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
396    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
397    addLegalFPImmediate(APFloat(+0.0f)); // xorps
398    addLegalFPImmediate(APFloat(+0.0)); // FLD0
399    addLegalFPImmediate(APFloat(+1.0)); // FLD1
400    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
401    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
402
403    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
404    // this though and handle it in InstructionSelectPreprocess so that
405    // dagcombine2 can hack on these.
406    if (Fast) {
407      setConvertAction(MVT::f32, MVT::f64, Expand);
408      setConvertAction(MVT::f32, MVT::f80, Expand);
409      setConvertAction(MVT::f80, MVT::f32, Expand);
410      setConvertAction(MVT::f64, MVT::f32, Expand);
411      // And x87->x87 truncations also.
412      setConvertAction(MVT::f80, MVT::f64, Expand);
413    }
414
415    if (!UnsafeFPMath) {
416      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
417      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
418    }
419  } else {
420    // f32 and f64 in x87.
421    // Set up the FP register classes.
422    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
423    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
424
425    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
426    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
427    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
428    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
429
430    // Floating truncations go through memory.  If optimizing, we lie about
431    // this though and handle it in InstructionSelectPreprocess so that
432    // dagcombine2 can hack on these.
433    if (Fast) {
434      setConvertAction(MVT::f80, MVT::f32, Expand);
435      setConvertAction(MVT::f64, MVT::f32, Expand);
436      setConvertAction(MVT::f80, MVT::f64, Expand);
437    }
438
439    if (!UnsafeFPMath) {
440      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
441      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
442    }
443
444    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
445    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
446    addLegalFPImmediate(APFloat(+0.0)); // FLD0
447    addLegalFPImmediate(APFloat(+1.0)); // FLD1
448    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
449    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
450    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
451    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
452    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
453    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
454  }
455
456  // Long double always uses X87.
457  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
458  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
459  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
460  {
461    setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
462    APFloat TmpFlt(+0.0);
463    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
464    addLegalFPImmediate(TmpFlt);  // FLD0
465    TmpFlt.changeSign();
466    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
467    APFloat TmpFlt2(+1.0);
468    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
469    addLegalFPImmediate(TmpFlt2);  // FLD1
470    TmpFlt2.changeSign();
471    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
472  }
473
474  if (!UnsafeFPMath) {
475    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
476    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
477  }
478
479  // Always use a library call for pow.
480  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
481  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
482  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
483
484  // First set operation action for all vector types to expand. Then we
485  // will selectively turn on ones that can be effectively codegen'd.
486  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
487       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
488    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
489    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
490    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
491    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
492    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
493    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
494    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
495    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
496    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
497    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
498    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
499    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
500    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
501    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
502    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
503    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
504    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
505    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
506    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
507    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
508    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
509    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
510    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
511    setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
512    setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
513    setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
514    setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
515    setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
516    setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
517    setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
518    setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
519    setOperationAction(ISD::SHL, (MVT::ValueType)VT, Expand);
520    setOperationAction(ISD::SRA, (MVT::ValueType)VT, Expand);
521    setOperationAction(ISD::SRL, (MVT::ValueType)VT, Expand);
522    setOperationAction(ISD::ROTL, (MVT::ValueType)VT, Expand);
523    setOperationAction(ISD::ROTR, (MVT::ValueType)VT, Expand);
524    setOperationAction(ISD::BSWAP, (MVT::ValueType)VT, Expand);
525  }
526
527  if (Subtarget->hasMMX()) {
528    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
529    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
530    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
531    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
532
533    // FIXME: add MMX packed arithmetics
534
535    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
536    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
537    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
538    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
539
540    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
541    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
542    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
543    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
544
545    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
546    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
547
548    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
549    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
550    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
551    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
552    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
553    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
554    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
555
556    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
557    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
558    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
559    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
560    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
561    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
562    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
563
564    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
565    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
566    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
567    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
568    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
569    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
570    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
571
572    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
573    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
574    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
575    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
576    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
577    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
578    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
579
580    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
581    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
582    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
583    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
584
585    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
586    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
587    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
588    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
589
590    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
591    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
592    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
593    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
594  }
595
596  if (Subtarget->hasSSE1()) {
597    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
598
599    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
600    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
601    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
602    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
603    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
604    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
605    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
606    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
607    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
608    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
609    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
610  }
611
612  if (Subtarget->hasSSE2()) {
613    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
614    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
615    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
616    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
617    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
618
619    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
620    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
621    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
622    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
623    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
624    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
625    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
626    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
627    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
628    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
629    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
630    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
631    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
632    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
633    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
634
635    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
636    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
637    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
638    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
639    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
640
641    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
642    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
643      // Do not attempt to custom lower non-power-of-2 vectors
644      if (!isPowerOf2_32(MVT::getVectorNumElements(VT)))
645        continue;
646      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
647      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
648      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
649    }
650    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
651    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
652    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
653    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
654    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
655    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
656    if (Subtarget->is64Bit()) {
657      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
658      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
659    }
660
661    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
662    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
663      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
664      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
665      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
666      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
667      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
668      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
669      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
670      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
671      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
672      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
673    }
674
675    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
676
677    // Custom lower v2i64 and v2f64 selects.
678    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
679    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
680    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
681    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
682  }
683
684  if (Subtarget->hasSSE41()) {
685    // FIXME: Do we need to handle scalar-to-vector here?
686    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
687
688    // i8 and i16 vectors are custom , because the source register and source
689    // source memory operand types are not the same width.  f32 vectors are
690    // custom since the immediate controlling the insert encodes additional
691    // information.
692    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
693    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
694    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
695    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
696
697    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
698    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
699    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
700    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
701
702    if (Subtarget->is64Bit()) {
703      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
704      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
705    }
706  }
707
708  // We want to custom lower some of our intrinsics.
709  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
710
711  // We have target-specific dag combine patterns for the following nodes:
712  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
713  setTargetDAGCombine(ISD::SELECT);
714
715  computeRegisterProperties();
716
717  // FIXME: These should be based on subtarget info. Plus, the values should
718  // be smaller when we are in optimizing for size mode.
719  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
720  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
721  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
722  allowUnalignedMemoryAccesses = true; // x86 supports it!
723}
724
725/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
726/// the desired ByVal argument alignment.
727static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
728  if (MaxAlign == 16)
729    return;
730  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
731    if (VTy->getBitWidth() == 128)
732      MaxAlign = 16;
733  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
734    unsigned EltAlign = 0;
735    getMaxByValAlign(ATy->getElementType(), EltAlign);
736    if (EltAlign > MaxAlign)
737      MaxAlign = EltAlign;
738  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
739    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
740      unsigned EltAlign = 0;
741      getMaxByValAlign(STy->getElementType(i), EltAlign);
742      if (EltAlign > MaxAlign)
743        MaxAlign = EltAlign;
744      if (MaxAlign == 16)
745        break;
746    }
747  }
748  return;
749}
750
751/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
752/// function arguments in the caller parameter area. For X86, aggregates
753/// that contain SSE vectors are placed at 16-byte boundaries while the rest
754/// are at 4-byte boundaries.
755unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
756  if (Subtarget->is64Bit())
757    return getTargetData()->getABITypeAlignment(Ty);
758  unsigned Align = 4;
759  if (Subtarget->hasSSE1())
760    getMaxByValAlign(Ty, Align);
761  return Align;
762}
763
764/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
765/// jumptable.
766SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
767                                                      SelectionDAG &DAG) const {
768  if (usesGlobalOffsetTable())
769    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
770  if (!Subtarget->isPICStyleRIPRel())
771    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
772  return Table;
773}
774
775//===----------------------------------------------------------------------===//
776//               Return Value Calling Convention Implementation
777//===----------------------------------------------------------------------===//
778
779#include "X86GenCallingConv.inc"
780
781/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
782/// exists skip possible ISD:TokenFactor.
783static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
784  if (Chain.getOpcode() == X86ISD::TAILCALL) {
785    return Chain;
786  } else if (Chain.getOpcode() == ISD::TokenFactor) {
787    if (Chain.getNumOperands() &&
788        Chain.getOperand(0).getOpcode() == X86ISD::TAILCALL)
789      return Chain.getOperand(0);
790  }
791  return Chain;
792}
793
794/// LowerRET - Lower an ISD::RET node.
795SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
796  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
797
798  SmallVector<CCValAssign, 16> RVLocs;
799  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
800  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
801  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
802  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
803
804  // If this is the first return lowered for this function, add the regs to the
805  // liveout set for the function.
806  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
807    for (unsigned i = 0; i != RVLocs.size(); ++i)
808      if (RVLocs[i].isRegLoc())
809        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
810  }
811  SDOperand Chain = Op.getOperand(0);
812
813  // Handle tail call return.
814  Chain = GetPossiblePreceedingTailCall(Chain);
815  if (Chain.getOpcode() == X86ISD::TAILCALL) {
816    SDOperand TailCall = Chain;
817    SDOperand TargetAddress = TailCall.getOperand(1);
818    SDOperand StackAdjustment = TailCall.getOperand(2);
819    assert(((TargetAddress.getOpcode() == ISD::Register &&
820               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
821                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
822              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
823              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
824             "Expecting an global address, external symbol, or register");
825    assert(StackAdjustment.getOpcode() == ISD::Constant &&
826           "Expecting a const value");
827
828    SmallVector<SDOperand,8> Operands;
829    Operands.push_back(Chain.getOperand(0));
830    Operands.push_back(TargetAddress);
831    Operands.push_back(StackAdjustment);
832    // Copy registers used by the call. Last operand is a flag so it is not
833    // copied.
834    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
835      Operands.push_back(Chain.getOperand(i));
836    }
837    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
838                       Operands.size());
839  }
840
841  // Regular return.
842  SDOperand Flag;
843
844  // Copy the result values into the output registers.
845  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
846      RVLocs[0].getLocReg() != X86::ST0) {
847    for (unsigned i = 0; i != RVLocs.size(); ++i) {
848      CCValAssign &VA = RVLocs[i];
849      assert(VA.isRegLoc() && "Can only return in registers!");
850      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
851                               Flag);
852      Flag = Chain.getValue(1);
853    }
854  } else {
855    // We need to handle a destination of ST0 specially, because it isn't really
856    // a register.
857    SDOperand Value = Op.getOperand(1);
858
859    // an XMM register onto the fp-stack.  Do this with an FP_EXTEND to f80.
860    // This will get legalized into a load/store if it can't get optimized away.
861    if (isScalarFPTypeInSSEReg(RVLocs[0].getValVT()))
862      Value = DAG.getNode(ISD::FP_EXTEND, MVT::f80, Value);
863
864    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
865    SDOperand Ops[] = { Chain, Value };
866    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
867    Flag = Chain.getValue(1);
868  }
869
870  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
871  if (Flag.Val)
872    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
873  else
874    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
875}
876
877
878/// LowerCallResult - Lower the result values of an ISD::CALL into the
879/// appropriate copies out of appropriate physical registers.  This assumes that
880/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
881/// being lowered.  The returns a SDNode with the same number of values as the
882/// ISD::CALL.
883SDNode *X86TargetLowering::
884LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
885                unsigned CallingConv, SelectionDAG &DAG) {
886
887  // Assign locations to each value returned by this call.
888  SmallVector<CCValAssign, 16> RVLocs;
889  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
890  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
891  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
892
893  SmallVector<SDOperand, 8> ResultVals;
894
895  // Copy all of the result registers out of their specified physreg.
896  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
897    for (unsigned i = 0; i != RVLocs.size(); ++i) {
898      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
899                                 RVLocs[i].getValVT(), InFlag).getValue(1);
900      InFlag = Chain.getValue(2);
901      ResultVals.push_back(Chain.getValue(0));
902    }
903  } else {
904    // Copies from the FP stack are special, as ST0 isn't a valid register
905    // before the fp stackifier runs.
906
907    // Copy ST0 into an RFP register with FP_GET_RESULT.  If this will end up
908    // in an SSE register, copy it out as F80 and do a truncate, otherwise use
909    // the specified value type.
910    MVT::ValueType GetResultTy = RVLocs[0].getValVT();
911    if (isScalarFPTypeInSSEReg(GetResultTy))
912      GetResultTy = MVT::f80;
913    SDVTList Tys = DAG.getVTList(GetResultTy, MVT::Other, MVT::Flag);
914
915    SDOperand GROps[] = { Chain, InFlag };
916    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
917    Chain  = RetVal.getValue(1);
918    InFlag = RetVal.getValue(2);
919
920    // If we want the result in an SSE register, use an FP_TRUNCATE to get it
921    // there.
922    if (GetResultTy != RVLocs[0].getValVT())
923      RetVal = DAG.getNode(ISD::FP_ROUND, RVLocs[0].getValVT(), RetVal,
924                           // This truncation won't change the value.
925                           DAG.getIntPtrConstant(1));
926
927    ResultVals.push_back(RetVal);
928  }
929
930  // Merge everything together with a MERGE_VALUES node.
931  ResultVals.push_back(Chain);
932  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
933                     &ResultVals[0], ResultVals.size()).Val;
934}
935
936/// LowerCallResultToTwo64BitRegs - Lower the result values of an x86-64
937/// ISD::CALL where the results are known to be in two 64-bit registers,
938/// e.g. XMM0 and XMM1. This simplify store the two values back to the
939/// fixed stack slot allocated for StructRet.
940SDNode *X86TargetLowering::
941LowerCallResultToTwo64BitRegs(SDOperand Chain, SDOperand InFlag,
942                              SDNode *TheCall, unsigned Reg1, unsigned Reg2,
943                              MVT::ValueType VT, SelectionDAG &DAG) {
944  SDOperand RetVal1 = DAG.getCopyFromReg(Chain, Reg1, VT, InFlag);
945  Chain = RetVal1.getValue(1);
946  InFlag = RetVal1.getValue(2);
947  SDOperand RetVal2 = DAG.getCopyFromReg(Chain, Reg2, VT, InFlag);
948  Chain = RetVal2.getValue(1);
949  InFlag = RetVal2.getValue(2);
950  SDOperand FIN = TheCall->getOperand(5);
951  Chain = DAG.getStore(Chain, RetVal1, FIN, NULL, 0);
952  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
953  Chain = DAG.getStore(Chain, RetVal2, FIN, NULL, 0);
954  return Chain.Val;
955}
956
957/// LowerCallResultToTwoX87Regs - Lower the result values of an x86-64 ISD::CALL
958/// where the results are known to be in ST0 and ST1.
959SDNode *X86TargetLowering::
960LowerCallResultToTwoX87Regs(SDOperand Chain, SDOperand InFlag,
961                            SDNode *TheCall, SelectionDAG &DAG) {
962  SmallVector<SDOperand, 8> ResultVals;
963  const MVT::ValueType VTs[] = { MVT::f80, MVT::f80, MVT::Other, MVT::Flag };
964  SDVTList Tys = DAG.getVTList(VTs, 4);
965  SDOperand Ops[] = { Chain, InFlag };
966  SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT2, Tys, Ops, 2);
967  Chain = RetVal.getValue(2);
968  SDOperand FIN = TheCall->getOperand(5);
969  Chain = DAG.getStore(Chain, RetVal.getValue(1), FIN, NULL, 0);
970  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(16));
971  Chain = DAG.getStore(Chain, RetVal, FIN, NULL, 0);
972  return Chain.Val;
973}
974
975//===----------------------------------------------------------------------===//
976//                C & StdCall & Fast Calling Convention implementation
977//===----------------------------------------------------------------------===//
978//  StdCall calling convention seems to be standard for many Windows' API
979//  routines and around. It differs from C calling convention just a little:
980//  callee should clean up the stack, not caller. Symbols should be also
981//  decorated in some fancy way :) It doesn't support any vector arguments.
982//  For info on fast calling convention see Fast Calling Convention (tail call)
983//  implementation LowerX86_32FastCCCallTo.
984
985/// AddLiveIn - This helper function adds the specified physical register to the
986/// MachineFunction as a live in value.  It also creates a corresponding virtual
987/// register for it.
988static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
989                          const TargetRegisterClass *RC) {
990  assert(RC->contains(PReg) && "Not the correct regclass!");
991  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
992  MF.getRegInfo().addLiveIn(PReg, VReg);
993  return VReg;
994}
995
996// Determines whether a CALL node uses struct return semantics.
997static bool CallIsStructReturn(SDOperand Op) {
998  unsigned NumOps = (Op.getNumOperands() - 5) / 2;
999  if (!NumOps)
1000    return false;
1001
1002  ConstantSDNode *Flags = cast<ConstantSDNode>(Op.getOperand(6));
1003  return Flags->getValue() & ISD::ParamFlags::StructReturn;
1004}
1005
1006// Determines whether a FORMAL_ARGUMENTS node uses struct return semantics.
1007static bool ArgsAreStructReturn(SDOperand Op) {
1008  unsigned NumArgs = Op.Val->getNumValues() - 1;
1009  if (!NumArgs)
1010    return false;
1011
1012  ConstantSDNode *Flags = cast<ConstantSDNode>(Op.getOperand(3));
1013  return Flags->getValue() & ISD::ParamFlags::StructReturn;
1014}
1015
1016// Determines whether a CALL or FORMAL_ARGUMENTS node requires the callee to pop
1017// its own arguments. Callee pop is necessary to support tail calls.
1018bool X86TargetLowering::IsCalleePop(SDOperand Op) {
1019  bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1020  if (IsVarArg)
1021    return false;
1022
1023  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1024  default:
1025    return false;
1026  case CallingConv::X86_StdCall:
1027    return !Subtarget->is64Bit();
1028  case CallingConv::X86_FastCall:
1029    return !Subtarget->is64Bit();
1030  case CallingConv::Fast:
1031    return PerformTailCallOpt;
1032  }
1033}
1034
1035// Selects the correct CCAssignFn for a CALL or FORMAL_ARGUMENTS node.
1036CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDOperand Op) const {
1037  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1038
1039  if (Subtarget->is64Bit())
1040    if (CC == CallingConv::Fast && PerformTailCallOpt)
1041      return CC_X86_64_TailCall;
1042    else
1043      return CC_X86_64_C;
1044
1045  if (CC == CallingConv::X86_FastCall)
1046    return CC_X86_32_FastCall;
1047  else if (CC == CallingConv::Fast && PerformTailCallOpt)
1048    return CC_X86_32_TailCall;
1049  else
1050    return CC_X86_32_C;
1051}
1052
1053// Selects the appropriate decoration to apply to a MachineFunction containing a
1054// given FORMAL_ARGUMENTS node.
1055NameDecorationStyle
1056X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDOperand Op) {
1057  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1058  if (CC == CallingConv::X86_FastCall)
1059    return FastCall;
1060  else if (CC == CallingConv::X86_StdCall)
1061    return StdCall;
1062  return None;
1063}
1064
1065
1066// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could possibly
1067// be overwritten when lowering the outgoing arguments in a tail call. Currently
1068// the implementation of this call is very conservative and assumes all
1069// arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with virtual
1070// registers would be overwritten by direct lowering.
1071// Possible improvement:
1072// Check FORMAL_ARGUMENTS corresponding MERGE_VALUES for CopyFromReg nodes
1073// indicating inreg passed arguments which also need not be lowered to a safe
1074// stack slot.
1075static bool IsPossiblyOverwrittenArgumentOfTailCall(SDOperand Op) {
1076  RegisterSDNode * OpReg = NULL;
1077  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
1078      (Op.getOpcode()== ISD::CopyFromReg &&
1079       (OpReg = cast<RegisterSDNode>(Op.getOperand(1))) &&
1080       OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister))
1081    return true;
1082  return false;
1083}
1084
1085// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1086// by "Src" to address "Dst" with size and alignment information specified by
1087// the specific parameter attribute. The copy will be passed as a byval function
1088// parameter.
1089static SDOperand
1090CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1091                          unsigned Flags, SelectionDAG &DAG) {
1092  unsigned Align = 1 <<
1093    ((Flags & ISD::ParamFlags::ByValAlign) >> ISD::ParamFlags::ByValAlignOffs);
1094  unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1095    ISD::ParamFlags::ByValSizeOffs;
1096  SDOperand AlignNode    = DAG.getConstant(Align, MVT::i32);
1097  SDOperand SizeNode     = DAG.getConstant(Size, MVT::i32);
1098  SDOperand AlwaysInline = DAG.getConstant(1, MVT::i32);
1099  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline);
1100}
1101
1102SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
1103                                              const CCValAssign &VA,
1104                                              MachineFrameInfo *MFI,
1105                                              SDOperand Root, unsigned i) {
1106  // Create the nodes corresponding to a load from this parameter slot.
1107  unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
1108  bool isByVal = Flags & ISD::ParamFlags::ByVal;
1109
1110  // FIXME: For now, all byval parameter objects are marked mutable. This
1111  // can be changed with more analysis.
1112  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1113                                  VA.getLocMemOffset(), !isByVal);
1114  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1115  if (isByVal)
1116    return FIN;
1117  return DAG.getLoad(VA.getValVT(), Root, FIN,
1118                     PseudoSourceValue::getFixedStack(), FI);
1119}
1120
1121SDOperand
1122X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
1123  MachineFunction &MF = DAG.getMachineFunction();
1124  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1125
1126  const Function* Fn = MF.getFunction();
1127  if (Fn->hasExternalLinkage() &&
1128      Subtarget->isTargetCygMing() &&
1129      Fn->getName() == "main")
1130    FuncInfo->setForceFramePointer(true);
1131
1132  // Decorate the function name.
1133  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1134
1135  MachineFrameInfo *MFI = MF.getFrameInfo();
1136  SDOperand Root = Op.getOperand(0);
1137  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1138  unsigned CC = MF.getFunction()->getCallingConv();
1139  bool Is64Bit = Subtarget->is64Bit();
1140
1141  assert(!(isVarArg && CC == CallingConv::Fast) &&
1142         "Var args not supported with calling convention fastcc");
1143
1144  // Assign locations to all of the incoming arguments.
1145  SmallVector<CCValAssign, 16> ArgLocs;
1146  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1147  CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op));
1148
1149  SmallVector<SDOperand, 8> ArgValues;
1150  unsigned LastVal = ~0U;
1151  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1152    CCValAssign &VA = ArgLocs[i];
1153    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1154    // places.
1155    assert(VA.getValNo() != LastVal &&
1156           "Don't support value assigned to multiple locs yet");
1157    LastVal = VA.getValNo();
1158
1159    if (VA.isRegLoc()) {
1160      MVT::ValueType RegVT = VA.getLocVT();
1161      TargetRegisterClass *RC;
1162      if (RegVT == MVT::i32)
1163        RC = X86::GR32RegisterClass;
1164      else if (Is64Bit && RegVT == MVT::i64)
1165        RC = X86::GR64RegisterClass;
1166      else if (RegVT == MVT::f32)
1167        RC = X86::FR32RegisterClass;
1168      else if (RegVT == MVT::f64)
1169        RC = X86::FR64RegisterClass;
1170      else {
1171        assert(MVT::isVector(RegVT));
1172        if (Is64Bit && MVT::getSizeInBits(RegVT) == 64) {
1173          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1174          RegVT = MVT::i64;
1175        } else
1176          RC = X86::VR128RegisterClass;
1177      }
1178
1179      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1180      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1181
1182      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1183      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1184      // right size.
1185      if (VA.getLocInfo() == CCValAssign::SExt)
1186        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1187                               DAG.getValueType(VA.getValVT()));
1188      else if (VA.getLocInfo() == CCValAssign::ZExt)
1189        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1190                               DAG.getValueType(VA.getValVT()));
1191
1192      if (VA.getLocInfo() != CCValAssign::Full)
1193        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1194
1195      // Handle MMX values passed in GPRs.
1196      if (Is64Bit && RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1197          MVT::getSizeInBits(RegVT) == 64)
1198        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1199
1200      ArgValues.push_back(ArgValue);
1201    } else {
1202      assert(VA.isMemLoc());
1203      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1204    }
1205  }
1206
1207  unsigned StackSize = CCInfo.getNextStackOffset();
1208  // align stack specially for tail calls
1209  if (CC == CallingConv::Fast)
1210    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1211
1212  // If the function takes variable number of arguments, make a frame index for
1213  // the start of the first vararg value... for expansion of llvm.va_start.
1214  if (isVarArg) {
1215    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1216      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1217    }
1218    if (Is64Bit) {
1219      static const unsigned GPR64ArgRegs[] = {
1220        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1221      };
1222      static const unsigned XMMArgRegs[] = {
1223        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1224        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1225      };
1226
1227      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1228      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1229
1230      // For X86-64, if there are vararg parameters that are passed via
1231      // registers, then we must store them to their spots on the stack so they
1232      // may be loaded by deferencing the result of va_next.
1233      VarArgsGPOffset = NumIntRegs * 8;
1234      VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1235      RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1236
1237      // Store the integer parameter registers.
1238      SmallVector<SDOperand, 8> MemOps;
1239      SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1240      SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1241                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1242      for (; NumIntRegs != 6; ++NumIntRegs) {
1243        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1244                                  X86::GR64RegisterClass);
1245        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1246        SDOperand Store =
1247          DAG.getStore(Val.getValue(1), Val, FIN,
1248                       PseudoSourceValue::getFixedStack(),
1249                       RegSaveFrameIndex);
1250        MemOps.push_back(Store);
1251        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1252                          DAG.getIntPtrConstant(8));
1253      }
1254
1255      // Now store the XMM (fp + vector) parameter registers.
1256      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1257                        DAG.getIntPtrConstant(VarArgsFPOffset));
1258      for (; NumXMMRegs != 8; ++NumXMMRegs) {
1259        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1260                                  X86::VR128RegisterClass);
1261        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1262        SDOperand Store =
1263          DAG.getStore(Val.getValue(1), Val, FIN,
1264                       PseudoSourceValue::getFixedStack(),
1265                       RegSaveFrameIndex);
1266        MemOps.push_back(Store);
1267        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1268                          DAG.getIntPtrConstant(16));
1269      }
1270      if (!MemOps.empty())
1271          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1272                             &MemOps[0], MemOps.size());
1273    }
1274  }
1275
1276  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1277  // arguments and the arguments after the retaddr has been pushed are
1278  // aligned.
1279  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1280      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1281      (StackSize & 7) == 0)
1282    StackSize += 4;
1283
1284  ArgValues.push_back(Root);
1285
1286  // Some CCs need callee pop.
1287  if (IsCalleePop(Op)) {
1288    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1289    BytesCallerReserves = 0;
1290  } else {
1291    BytesToPopOnReturn  = 0; // Callee pops nothing.
1292    // If this is an sret function, the return should pop the hidden pointer.
1293    if (!Is64Bit && ArgsAreStructReturn(Op))
1294      BytesToPopOnReturn = 4;
1295    BytesCallerReserves = StackSize;
1296  }
1297
1298  if (!Is64Bit) {
1299    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1300    if (CC == CallingConv::X86_FastCall)
1301      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1302  }
1303
1304  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1305
1306  // Return the new list of results.
1307  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1308                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1309}
1310
1311SDOperand
1312X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1313                                    const SDOperand &StackPtr,
1314                                    const CCValAssign &VA,
1315                                    SDOperand Chain,
1316                                    SDOperand Arg) {
1317  unsigned LocMemOffset = VA.getLocMemOffset();
1318  SDOperand PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1319  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1320  SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1321  unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1322  if (Flags & ISD::ParamFlags::ByVal) {
1323    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1324  }
1325  return DAG.getStore(Chain, Arg, PtrOff,
1326                      PseudoSourceValue::getStack(), LocMemOffset);
1327}
1328
1329/// ClassifyX86_64SRetCallReturn - Classify how to implement a x86-64
1330/// struct return call to the specified function. X86-64 ABI specifies
1331/// some SRet calls are actually returned in registers. Since current
1332/// LLVM cannot represent multi-value calls, they are represent as
1333/// calls where the results are passed in a hidden struct provided by
1334/// the caller. This function examines the type of the struct to
1335/// determine the correct way to implement the call.
1336X86::X86_64SRet
1337X86TargetLowering::ClassifyX86_64SRetCallReturn(const Function *Fn) {
1338  // FIXME: Disabled for now.
1339  return X86::InMemory;
1340
1341  const PointerType *PTy = cast<PointerType>(Fn->arg_begin()->getType());
1342  const Type *RTy = PTy->getElementType();
1343  unsigned Size = getTargetData()->getABITypeSize(RTy);
1344  if (Size != 16 && Size != 32)
1345    return X86::InMemory;
1346
1347  if (Size == 32) {
1348    const StructType *STy = dyn_cast<StructType>(RTy);
1349    if (!STy) return X86::InMemory;
1350    if (STy->getNumElements() == 2 &&
1351        STy->getElementType(0) == Type::X86_FP80Ty &&
1352        STy->getElementType(1) == Type::X86_FP80Ty)
1353      return X86::InX87;
1354  }
1355
1356  bool AllFP = true;
1357  for (Type::subtype_iterator I = RTy->subtype_begin(), E = RTy->subtype_end();
1358       I != E; ++I) {
1359    const Type *STy = I->get();
1360    if (!STy->isFPOrFPVector()) {
1361      AllFP = false;
1362      break;
1363    }
1364  }
1365
1366  if (AllFP)
1367    return X86::InSSE;
1368  return X86::InGPR64;
1369}
1370
1371void X86TargetLowering::X86_64AnalyzeSRetCallOperands(SDNode *TheCall,
1372                                                      CCAssignFn *Fn,
1373                                                      CCState &CCInfo) {
1374  unsigned NumOps = (TheCall->getNumOperands() - 5) / 2;
1375  for (unsigned i = 1; i != NumOps; ++i) {
1376    MVT::ValueType ArgVT = TheCall->getOperand(5+2*i).getValueType();
1377    SDOperand FlagOp = TheCall->getOperand(5+2*i+1);
1378    unsigned ArgFlags =cast<ConstantSDNode>(FlagOp)->getValue();
1379    if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo)) {
1380      cerr << "Call operand #" << i << " has unhandled type "
1381           << MVT::getValueTypeString(ArgVT) << "\n";
1382      abort();
1383    }
1384  }
1385}
1386
1387SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1388  MachineFunction &MF = DAG.getMachineFunction();
1389  SDOperand Chain     = Op.getOperand(0);
1390  unsigned CC         = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1391  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1392  bool IsTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0
1393                        && CC == CallingConv::Fast && PerformTailCallOpt;
1394  SDOperand Callee    = Op.getOperand(4);
1395  bool Is64Bit        = Subtarget->is64Bit();
1396  bool IsStructRet    = CallIsStructReturn(Op);
1397
1398  assert(!(isVarArg && CC == CallingConv::Fast) &&
1399         "Var args not supported with calling convention fastcc");
1400
1401  // Analyze operands of the call, assigning locations to each operand.
1402  SmallVector<CCValAssign, 16> ArgLocs;
1403  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1404  CCAssignFn *CCFn = CCAssignFnForNode(Op);
1405
1406  X86::X86_64SRet SRetMethod = X86::InMemory;
1407  if (Is64Bit && IsStructRet)
1408    // FIXME: We can't figure out type of the sret structure for indirect
1409    // calls. We need to copy more information from CallSite to the ISD::CALL
1410    // node.
1411    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1412      SRetMethod =
1413        ClassifyX86_64SRetCallReturn(dyn_cast<Function>(G->getGlobal()));
1414
1415  // UGLY HACK! For x86-64, some 128-bit aggregates are returns in a pair of
1416  // registers. Unfortunately, llvm does not support i128 yet so we pretend it's
1417  // a sret call.
1418  if (SRetMethod != X86::InMemory)
1419    X86_64AnalyzeSRetCallOperands(Op.Val, CCFn, CCInfo);
1420  else
1421    CCInfo.AnalyzeCallOperands(Op.Val, CCFn);
1422
1423  // Get a count of how many bytes are to be pushed on the stack.
1424  unsigned NumBytes = CCInfo.getNextStackOffset();
1425  if (CC == CallingConv::Fast)
1426    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1427
1428  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1429  // arguments and the arguments after the retaddr has been pushed are aligned.
1430  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1431      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1432      (NumBytes & 7) == 0)
1433    NumBytes += 4;
1434
1435  int FPDiff = 0;
1436  if (IsTailCall) {
1437    // Lower arguments at fp - stackoffset + fpdiff.
1438    unsigned NumBytesCallerPushed =
1439      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1440    FPDiff = NumBytesCallerPushed - NumBytes;
1441
1442    // Set the delta of movement of the returnaddr stackslot.
1443    // But only set if delta is greater than previous delta.
1444    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1445      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1446  }
1447
1448  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes));
1449
1450  SDOperand RetAddrFrIdx, NewRetAddrFrIdx;
1451  if (IsTailCall) {
1452    // Adjust the Return address stack slot.
1453    if (FPDiff) {
1454      MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32;
1455      RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1456      // Load the "old" Return address.
1457      RetAddrFrIdx =
1458        DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0);
1459      // Calculate the new stack slot for the return address.
1460      int SlotSize = Is64Bit ? 8 : 4;
1461      int NewReturnAddrFI =
1462        MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1463      NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1464      Chain = SDOperand(RetAddrFrIdx.Val, 1);
1465    }
1466  }
1467
1468  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1469  SmallVector<SDOperand, 8> MemOpChains;
1470
1471  SDOperand StackPtr;
1472
1473  // Walk the register/memloc assignments, inserting copies/loads.  For tail
1474  // calls, lower arguments which could otherwise be possibly overwritten to the
1475  // stack slot where they would go on normal function calls.
1476  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1477    CCValAssign &VA = ArgLocs[i];
1478    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1479
1480    // Promote the value if needed.
1481    switch (VA.getLocInfo()) {
1482    default: assert(0 && "Unknown loc info!");
1483    case CCValAssign::Full: break;
1484    case CCValAssign::SExt:
1485      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1486      break;
1487    case CCValAssign::ZExt:
1488      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1489      break;
1490    case CCValAssign::AExt:
1491      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1492      break;
1493    }
1494
1495    if (VA.isRegLoc()) {
1496      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1497    } else {
1498      if (!IsTailCall || IsPossiblyOverwrittenArgumentOfTailCall(Arg)) {
1499        assert(VA.isMemLoc());
1500        if (StackPtr.Val == 0)
1501          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1502
1503        MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1504                                               Arg));
1505      }
1506    }
1507  }
1508
1509  if (!MemOpChains.empty())
1510    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1511                        &MemOpChains[0], MemOpChains.size());
1512
1513  // Build a sequence of copy-to-reg nodes chained together with token chain
1514  // and flag operands which copy the outgoing args into registers.
1515  SDOperand InFlag;
1516  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1517    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1518                             InFlag);
1519    InFlag = Chain.getValue(1);
1520  }
1521
1522  if (IsTailCall)
1523    InFlag = SDOperand(); // ??? Isn't this nuking the preceding loop's output?
1524
1525  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1526  // GOT pointer.
1527  // Does not work with tail call since ebx is not restored correctly by
1528  // tailcaller. TODO: at least for x86 - verify for x86-64
1529  if (!IsTailCall && !Is64Bit &&
1530      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1531      Subtarget->isPICStyleGOT()) {
1532    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1533                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1534                             InFlag);
1535    InFlag = Chain.getValue(1);
1536  }
1537
1538  if (Is64Bit && isVarArg) {
1539    // From AMD64 ABI document:
1540    // For calls that may call functions that use varargs or stdargs
1541    // (prototype-less calls or calls to functions containing ellipsis (...) in
1542    // the declaration) %al is used as hidden argument to specify the number
1543    // of SSE registers used. The contents of %al do not need to match exactly
1544    // the number of registers, but must be an ubound on the number of SSE
1545    // registers used and is in the range 0 - 8 inclusive.
1546
1547    // Count the number of XMM registers allocated.
1548    static const unsigned XMMArgRegs[] = {
1549      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1550      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1551    };
1552    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1553
1554    Chain = DAG.getCopyToReg(Chain, X86::AL,
1555                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1556    InFlag = Chain.getValue(1);
1557  }
1558
1559  // For tail calls lower the arguments to the 'real' stack slot.
1560  if (IsTailCall) {
1561    SmallVector<SDOperand, 8> MemOpChains2;
1562    SDOperand FIN;
1563    int FI = 0;
1564    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1565      CCValAssign &VA = ArgLocs[i];
1566      if (!VA.isRegLoc()) {
1567        assert(VA.isMemLoc());
1568        SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1569        SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1570        unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1571        // Create frame index.
1572        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1573        uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1574        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1575        FIN = DAG.getFrameIndex(FI, MVT::i32);
1576        SDOperand Source = Arg;
1577        if (IsPossiblyOverwrittenArgumentOfTailCall(Arg)) {
1578          // Copy from stack slots to stack slot of a tail called function. This
1579          // needs to be done because if we would lower the arguments directly
1580          // to their real stack slot we might end up overwriting each other.
1581          // Get source stack slot.
1582          Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1583          if (StackPtr.Val == 0)
1584            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1585          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1586          if ((Flags & ISD::ParamFlags::ByVal)==0)
1587            Source = DAG.getLoad(VA.getValVT(), Chain, Source, NULL, 0);
1588        }
1589
1590        if (Flags & ISD::ParamFlags::ByVal) {
1591          // Copy relative to framepointer.
1592          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1593                                                           Flags, DAG));
1594        } else {
1595          // Store relative to framepointer.
1596          MemOpChains2.push_back(
1597            DAG.getStore(Chain, Source, FIN,
1598                         PseudoSourceValue::getFixedStack(), FI));
1599        }
1600      }
1601    }
1602
1603    if (!MemOpChains2.empty())
1604      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1605                          &MemOpChains2[0], MemOpChains2.size());
1606
1607    // Store the return address to the appropriate stack slot.
1608    if (FPDiff)
1609      Chain = DAG.getStore(Chain,RetAddrFrIdx, NewRetAddrFrIdx, NULL, 0);
1610  }
1611
1612  // If the callee is a GlobalAddress node (quite common, every direct call is)
1613  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1614  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1615    // We should use extra load for direct calls to dllimported functions in
1616    // non-JIT mode.
1617    if ((IsTailCall || !Is64Bit ||
1618         getTargetMachine().getCodeModel() != CodeModel::Large)
1619        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1620                                           getTargetMachine(), true))
1621      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1622  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1623    if (IsTailCall || !Is64Bit ||
1624        getTargetMachine().getCodeModel() != CodeModel::Large)
1625      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1626  } else if (IsTailCall) {
1627    assert(Callee.getOpcode() == ISD::LOAD &&
1628           "Function destination must be loaded into virtual register");
1629    unsigned Opc = Is64Bit ? X86::R9 : X86::ECX;
1630
1631    Chain = DAG.getCopyToReg(Chain,
1632                             DAG.getRegister(Opc, getPointerTy()) ,
1633                             Callee,InFlag);
1634    Callee = DAG.getRegister(Opc, getPointerTy());
1635    // Add register as live out.
1636    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1637  }
1638
1639  // Returns a chain & a flag for retval copy to use.
1640  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1641  SmallVector<SDOperand, 8> Ops;
1642
1643  if (IsTailCall) {
1644    Ops.push_back(Chain);
1645    Ops.push_back(DAG.getIntPtrConstant(NumBytes));
1646    Ops.push_back(DAG.getIntPtrConstant(0));
1647    if (InFlag.Val)
1648      Ops.push_back(InFlag);
1649    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1650    InFlag = Chain.getValue(1);
1651
1652    // Returns a chain & a flag for retval copy to use.
1653    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1654    Ops.clear();
1655  }
1656
1657  Ops.push_back(Chain);
1658  Ops.push_back(Callee);
1659
1660  if (IsTailCall)
1661    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1662
1663  // Add an implicit use GOT pointer in EBX.
1664  if (!IsTailCall && !Is64Bit &&
1665      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1666      Subtarget->isPICStyleGOT())
1667    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1668
1669  // Add argument registers to the end of the list so that they are known live
1670  // into the call.
1671  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1672    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1673                                  RegsToPass[i].second.getValueType()));
1674
1675  if (InFlag.Val)
1676    Ops.push_back(InFlag);
1677
1678  if (IsTailCall) {
1679    assert(InFlag.Val &&
1680           "Flag must be set. Depend on flag being set in LowerRET");
1681    Chain = DAG.getNode(X86ISD::TAILCALL,
1682                        Op.Val->getVTList(), &Ops[0], Ops.size());
1683
1684    return SDOperand(Chain.Val, Op.ResNo);
1685  }
1686
1687  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1688  InFlag = Chain.getValue(1);
1689
1690  // Create the CALLSEQ_END node.
1691  unsigned NumBytesForCalleeToPush;
1692  if (IsCalleePop(Op))
1693    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1694  else if (!Is64Bit && IsStructRet)
1695    // If this is is a call to a struct-return function, the callee
1696    // pops the hidden struct pointer, so we have to push it back.
1697    // This is common for Darwin/X86, Linux & Mingw32 targets.
1698    NumBytesForCalleeToPush = 4;
1699  else
1700    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1701
1702  // Returns a flag for retval copy to use.
1703  Chain = DAG.getCALLSEQ_END(Chain,
1704                             DAG.getIntPtrConstant(NumBytes),
1705                             DAG.getIntPtrConstant(NumBytesForCalleeToPush),
1706                             InFlag);
1707  InFlag = Chain.getValue(1);
1708
1709  // Handle result values, copying them out of physregs into vregs that we
1710  // return.
1711  switch (SRetMethod) {
1712  default:
1713    return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1714  case X86::InGPR64:
1715    return SDOperand(LowerCallResultToTwo64BitRegs(Chain, InFlag, Op.Val,
1716                                                   X86::RAX, X86::RDX,
1717                                                   MVT::i64, DAG), Op.ResNo);
1718  case X86::InSSE:
1719    return SDOperand(LowerCallResultToTwo64BitRegs(Chain, InFlag, Op.Val,
1720                                                   X86::XMM0, X86::XMM1,
1721                                                   MVT::f64, DAG), Op.ResNo);
1722  case X86::InX87:
1723    return SDOperand(LowerCallResultToTwoX87Regs(Chain, InFlag, Op.Val, DAG),
1724                     Op.ResNo);
1725  }
1726}
1727
1728
1729//===----------------------------------------------------------------------===//
1730//                Fast Calling Convention (tail call) implementation
1731//===----------------------------------------------------------------------===//
1732
1733//  Like std call, callee cleans arguments, convention except that ECX is
1734//  reserved for storing the tail called function address. Only 2 registers are
1735//  free for argument passing (inreg). Tail call optimization is performed
1736//  provided:
1737//                * tailcallopt is enabled
1738//                * caller/callee are fastcc
1739//                * elf/pic is disabled OR
1740//                * elf/pic enabled + callee is in module + callee has
1741//                  visibility protected or hidden
1742//  To keep the stack aligned according to platform abi the function
1743//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1744//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1745//  If a tail called function callee has more arguments than the caller the
1746//  caller needs to make sure that there is room to move the RETADDR to. This is
1747//  achieved by reserving an area the size of the argument delta right after the
1748//  original REtADDR, but before the saved framepointer or the spilled registers
1749//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1750//  stack layout:
1751//    arg1
1752//    arg2
1753//    RETADDR
1754//    [ new RETADDR
1755//      move area ]
1756//    (possible EBP)
1757//    ESI
1758//    EDI
1759//    local1 ..
1760
1761/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1762/// for a 16 byte align requirement.
1763unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1764                                                        SelectionDAG& DAG) {
1765  if (PerformTailCallOpt) {
1766    MachineFunction &MF = DAG.getMachineFunction();
1767    const TargetMachine &TM = MF.getTarget();
1768    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1769    unsigned StackAlignment = TFI.getStackAlignment();
1770    uint64_t AlignMask = StackAlignment - 1;
1771    int64_t Offset = StackSize;
1772    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1773    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1774      // Number smaller than 12 so just add the difference.
1775      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1776    } else {
1777      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1778      Offset = ((~AlignMask) & Offset) + StackAlignment +
1779        (StackAlignment-SlotSize);
1780    }
1781    StackSize = Offset;
1782  }
1783  return StackSize;
1784}
1785
1786/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1787/// following the call is a return. A function is eligible if caller/callee
1788/// calling conventions match, currently only fastcc supports tail calls, and
1789/// the function CALL is immediatly followed by a RET.
1790bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1791                                                      SDOperand Ret,
1792                                                      SelectionDAG& DAG) const {
1793  if (!PerformTailCallOpt)
1794    return false;
1795
1796  // Check whether CALL node immediatly preceeds the RET node and whether the
1797  // return uses the result of the node or is a void return.
1798  unsigned NumOps = Ret.getNumOperands();
1799  if ((NumOps == 1 &&
1800       (Ret.getOperand(0) == SDOperand(Call.Val,1) ||
1801        Ret.getOperand(0) == SDOperand(Call.Val,0))) ||
1802      (NumOps > 1 &&
1803       Ret.getOperand(0) == SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1804       Ret.getOperand(1) == SDOperand(Call.Val,0))) {
1805    MachineFunction &MF = DAG.getMachineFunction();
1806    unsigned CallerCC = MF.getFunction()->getCallingConv();
1807    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1808    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1809      SDOperand Callee = Call.getOperand(4);
1810      // On elf/pic %ebx needs to be livein.
1811      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1812          !Subtarget->isPICStyleGOT())
1813        return true;
1814
1815      // Can only do local tail calls with PIC.
1816      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1817        return G->getGlobal()->hasHiddenVisibility()
1818            || G->getGlobal()->hasProtectedVisibility();
1819    }
1820  }
1821
1822  return false;
1823}
1824
1825//===----------------------------------------------------------------------===//
1826//                           Other Lowering Hooks
1827//===----------------------------------------------------------------------===//
1828
1829
1830SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1831  MachineFunction &MF = DAG.getMachineFunction();
1832  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1833  int ReturnAddrIndex = FuncInfo->getRAIndex();
1834
1835  if (ReturnAddrIndex == 0) {
1836    // Set up a frame object for the return address.
1837    if (Subtarget->is64Bit())
1838      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1839    else
1840      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1841
1842    FuncInfo->setRAIndex(ReturnAddrIndex);
1843  }
1844
1845  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1846}
1847
1848
1849
1850/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1851/// specific condition code. It returns a false if it cannot do a direct
1852/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1853/// needed.
1854static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1855                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1856                           SelectionDAG &DAG) {
1857  X86CC = X86::COND_INVALID;
1858  if (!isFP) {
1859    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1860      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1861        // X > -1   -> X == 0, jump !sign.
1862        RHS = DAG.getConstant(0, RHS.getValueType());
1863        X86CC = X86::COND_NS;
1864        return true;
1865      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1866        // X < 0   -> X == 0, jump on sign.
1867        X86CC = X86::COND_S;
1868        return true;
1869      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1870        // X < 1   -> X <= 0
1871        RHS = DAG.getConstant(0, RHS.getValueType());
1872        X86CC = X86::COND_LE;
1873        return true;
1874      }
1875    }
1876
1877    switch (SetCCOpcode) {
1878    default: break;
1879    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1880    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1881    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1882    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1883    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1884    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1885    case ISD::SETULT: X86CC = X86::COND_B;  break;
1886    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1887    case ISD::SETULE: X86CC = X86::COND_BE; break;
1888    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1889    }
1890  } else {
1891    // On a floating point condition, the flags are set as follows:
1892    // ZF  PF  CF   op
1893    //  0 | 0 | 0 | X > Y
1894    //  0 | 0 | 1 | X < Y
1895    //  1 | 0 | 0 | X == Y
1896    //  1 | 1 | 1 | unordered
1897    bool Flip = false;
1898    switch (SetCCOpcode) {
1899    default: break;
1900    case ISD::SETUEQ:
1901    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1902    case ISD::SETOLT: Flip = true; // Fallthrough
1903    case ISD::SETOGT:
1904    case ISD::SETGT: X86CC = X86::COND_A;  break;
1905    case ISD::SETOLE: Flip = true; // Fallthrough
1906    case ISD::SETOGE:
1907    case ISD::SETGE: X86CC = X86::COND_AE; break;
1908    case ISD::SETUGT: Flip = true; // Fallthrough
1909    case ISD::SETULT:
1910    case ISD::SETLT: X86CC = X86::COND_B;  break;
1911    case ISD::SETUGE: Flip = true; // Fallthrough
1912    case ISD::SETULE:
1913    case ISD::SETLE: X86CC = X86::COND_BE; break;
1914    case ISD::SETONE:
1915    case ISD::SETNE: X86CC = X86::COND_NE; break;
1916    case ISD::SETUO: X86CC = X86::COND_P;  break;
1917    case ISD::SETO:  X86CC = X86::COND_NP; break;
1918    }
1919    if (Flip)
1920      std::swap(LHS, RHS);
1921  }
1922
1923  return X86CC != X86::COND_INVALID;
1924}
1925
1926/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1927/// code. Current x86 isa includes the following FP cmov instructions:
1928/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1929static bool hasFPCMov(unsigned X86CC) {
1930  switch (X86CC) {
1931  default:
1932    return false;
1933  case X86::COND_B:
1934  case X86::COND_BE:
1935  case X86::COND_E:
1936  case X86::COND_P:
1937  case X86::COND_A:
1938  case X86::COND_AE:
1939  case X86::COND_NE:
1940  case X86::COND_NP:
1941    return true;
1942  }
1943}
1944
1945/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1946/// true if Op is undef or if its value falls within the specified range (L, H].
1947static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1948  if (Op.getOpcode() == ISD::UNDEF)
1949    return true;
1950
1951  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1952  return (Val >= Low && Val < Hi);
1953}
1954
1955/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1956/// true if Op is undef or if its value equal to the specified value.
1957static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1958  if (Op.getOpcode() == ISD::UNDEF)
1959    return true;
1960  return cast<ConstantSDNode>(Op)->getValue() == Val;
1961}
1962
1963/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1964/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1965bool X86::isPSHUFDMask(SDNode *N) {
1966  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1967
1968  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
1969    return false;
1970
1971  // Check if the value doesn't reference the second vector.
1972  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1973    SDOperand Arg = N->getOperand(i);
1974    if (Arg.getOpcode() == ISD::UNDEF) continue;
1975    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1976    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
1977      return false;
1978  }
1979
1980  return true;
1981}
1982
1983/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1984/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1985bool X86::isPSHUFHWMask(SDNode *N) {
1986  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1987
1988  if (N->getNumOperands() != 8)
1989    return false;
1990
1991  // Lower quadword copied in order.
1992  for (unsigned i = 0; i != 4; ++i) {
1993    SDOperand Arg = N->getOperand(i);
1994    if (Arg.getOpcode() == ISD::UNDEF) continue;
1995    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1996    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1997      return false;
1998  }
1999
2000  // Upper quadword shuffled.
2001  for (unsigned i = 4; i != 8; ++i) {
2002    SDOperand Arg = N->getOperand(i);
2003    if (Arg.getOpcode() == ISD::UNDEF) continue;
2004    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2005    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2006    if (Val < 4 || Val > 7)
2007      return false;
2008  }
2009
2010  return true;
2011}
2012
2013/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2014/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2015bool X86::isPSHUFLWMask(SDNode *N) {
2016  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2017
2018  if (N->getNumOperands() != 8)
2019    return false;
2020
2021  // Upper quadword copied in order.
2022  for (unsigned i = 4; i != 8; ++i)
2023    if (!isUndefOrEqual(N->getOperand(i), i))
2024      return false;
2025
2026  // Lower quadword shuffled.
2027  for (unsigned i = 0; i != 4; ++i)
2028    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2029      return false;
2030
2031  return true;
2032}
2033
2034/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2035/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2036static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2037  if (NumElems != 2 && NumElems != 4) return false;
2038
2039  unsigned Half = NumElems / 2;
2040  for (unsigned i = 0; i < Half; ++i)
2041    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2042      return false;
2043  for (unsigned i = Half; i < NumElems; ++i)
2044    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2045      return false;
2046
2047  return true;
2048}
2049
2050bool X86::isSHUFPMask(SDNode *N) {
2051  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2052  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2053}
2054
2055/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2056/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2057/// half elements to come from vector 1 (which would equal the dest.) and
2058/// the upper half to come from vector 2.
2059static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2060  if (NumOps != 2 && NumOps != 4) return false;
2061
2062  unsigned Half = NumOps / 2;
2063  for (unsigned i = 0; i < Half; ++i)
2064    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2065      return false;
2066  for (unsigned i = Half; i < NumOps; ++i)
2067    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2068      return false;
2069  return true;
2070}
2071
2072static bool isCommutedSHUFP(SDNode *N) {
2073  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2074  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2075}
2076
2077/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2078/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2079bool X86::isMOVHLPSMask(SDNode *N) {
2080  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2081
2082  if (N->getNumOperands() != 4)
2083    return false;
2084
2085  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2086  return isUndefOrEqual(N->getOperand(0), 6) &&
2087         isUndefOrEqual(N->getOperand(1), 7) &&
2088         isUndefOrEqual(N->getOperand(2), 2) &&
2089         isUndefOrEqual(N->getOperand(3), 3);
2090}
2091
2092/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2093/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2094/// <2, 3, 2, 3>
2095bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2096  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2097
2098  if (N->getNumOperands() != 4)
2099    return false;
2100
2101  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2102  return isUndefOrEqual(N->getOperand(0), 2) &&
2103         isUndefOrEqual(N->getOperand(1), 3) &&
2104         isUndefOrEqual(N->getOperand(2), 2) &&
2105         isUndefOrEqual(N->getOperand(3), 3);
2106}
2107
2108/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2109/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2110bool X86::isMOVLPMask(SDNode *N) {
2111  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2112
2113  unsigned NumElems = N->getNumOperands();
2114  if (NumElems != 2 && NumElems != 4)
2115    return false;
2116
2117  for (unsigned i = 0; i < NumElems/2; ++i)
2118    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2119      return false;
2120
2121  for (unsigned i = NumElems/2; i < NumElems; ++i)
2122    if (!isUndefOrEqual(N->getOperand(i), i))
2123      return false;
2124
2125  return true;
2126}
2127
2128/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2129/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2130/// and MOVLHPS.
2131bool X86::isMOVHPMask(SDNode *N) {
2132  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2133
2134  unsigned NumElems = N->getNumOperands();
2135  if (NumElems != 2 && NumElems != 4)
2136    return false;
2137
2138  for (unsigned i = 0; i < NumElems/2; ++i)
2139    if (!isUndefOrEqual(N->getOperand(i), i))
2140      return false;
2141
2142  for (unsigned i = 0; i < NumElems/2; ++i) {
2143    SDOperand Arg = N->getOperand(i + NumElems/2);
2144    if (!isUndefOrEqual(Arg, i + NumElems))
2145      return false;
2146  }
2147
2148  return true;
2149}
2150
2151/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2152/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2153bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2154                         bool V2IsSplat = false) {
2155  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2156    return false;
2157
2158  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2159    SDOperand BitI  = Elts[i];
2160    SDOperand BitI1 = Elts[i+1];
2161    if (!isUndefOrEqual(BitI, j))
2162      return false;
2163    if (V2IsSplat) {
2164      if (isUndefOrEqual(BitI1, NumElts))
2165        return false;
2166    } else {
2167      if (!isUndefOrEqual(BitI1, j + NumElts))
2168        return false;
2169    }
2170  }
2171
2172  return true;
2173}
2174
2175bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2176  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2177  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2178}
2179
2180/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2181/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2182bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2183                         bool V2IsSplat = false) {
2184  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2185    return false;
2186
2187  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2188    SDOperand BitI  = Elts[i];
2189    SDOperand BitI1 = Elts[i+1];
2190    if (!isUndefOrEqual(BitI, j + NumElts/2))
2191      return false;
2192    if (V2IsSplat) {
2193      if (isUndefOrEqual(BitI1, NumElts))
2194        return false;
2195    } else {
2196      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2197        return false;
2198    }
2199  }
2200
2201  return true;
2202}
2203
2204bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2205  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2206  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2207}
2208
2209/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2210/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2211/// <0, 0, 1, 1>
2212bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2213  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2214
2215  unsigned NumElems = N->getNumOperands();
2216  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2217    return false;
2218
2219  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2220    SDOperand BitI  = N->getOperand(i);
2221    SDOperand BitI1 = N->getOperand(i+1);
2222
2223    if (!isUndefOrEqual(BitI, j))
2224      return false;
2225    if (!isUndefOrEqual(BitI1, j))
2226      return false;
2227  }
2228
2229  return true;
2230}
2231
2232/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2233/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2234/// <2, 2, 3, 3>
2235bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2236  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2237
2238  unsigned NumElems = N->getNumOperands();
2239  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2240    return false;
2241
2242  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2243    SDOperand BitI  = N->getOperand(i);
2244    SDOperand BitI1 = N->getOperand(i + 1);
2245
2246    if (!isUndefOrEqual(BitI, j))
2247      return false;
2248    if (!isUndefOrEqual(BitI1, j))
2249      return false;
2250  }
2251
2252  return true;
2253}
2254
2255/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2256/// specifies a shuffle of elements that is suitable for input to MOVSS,
2257/// MOVSD, and MOVD, i.e. setting the lowest element.
2258static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2259  if (NumElts != 2 && NumElts != 4)
2260    return false;
2261
2262  if (!isUndefOrEqual(Elts[0], NumElts))
2263    return false;
2264
2265  for (unsigned i = 1; i < NumElts; ++i) {
2266    if (!isUndefOrEqual(Elts[i], i))
2267      return false;
2268  }
2269
2270  return true;
2271}
2272
2273bool X86::isMOVLMask(SDNode *N) {
2274  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2275  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2276}
2277
2278/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2279/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2280/// element of vector 2 and the other elements to come from vector 1 in order.
2281static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2282                           bool V2IsSplat = false,
2283                           bool V2IsUndef = false) {
2284  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2285    return false;
2286
2287  if (!isUndefOrEqual(Ops[0], 0))
2288    return false;
2289
2290  for (unsigned i = 1; i < NumOps; ++i) {
2291    SDOperand Arg = Ops[i];
2292    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2293          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2294          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2295      return false;
2296  }
2297
2298  return true;
2299}
2300
2301static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2302                           bool V2IsUndef = false) {
2303  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2304  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2305                        V2IsSplat, V2IsUndef);
2306}
2307
2308/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2309/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2310bool X86::isMOVSHDUPMask(SDNode *N) {
2311  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2312
2313  if (N->getNumOperands() != 4)
2314    return false;
2315
2316  // Expect 1, 1, 3, 3
2317  for (unsigned i = 0; i < 2; ++i) {
2318    SDOperand Arg = N->getOperand(i);
2319    if (Arg.getOpcode() == ISD::UNDEF) continue;
2320    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2321    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2322    if (Val != 1) return false;
2323  }
2324
2325  bool HasHi = false;
2326  for (unsigned i = 2; i < 4; ++i) {
2327    SDOperand Arg = N->getOperand(i);
2328    if (Arg.getOpcode() == ISD::UNDEF) continue;
2329    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2330    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2331    if (Val != 3) return false;
2332    HasHi = true;
2333  }
2334
2335  // Don't use movshdup if it can be done with a shufps.
2336  return HasHi;
2337}
2338
2339/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2340/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2341bool X86::isMOVSLDUPMask(SDNode *N) {
2342  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2343
2344  if (N->getNumOperands() != 4)
2345    return false;
2346
2347  // Expect 0, 0, 2, 2
2348  for (unsigned i = 0; i < 2; ++i) {
2349    SDOperand Arg = N->getOperand(i);
2350    if (Arg.getOpcode() == ISD::UNDEF) continue;
2351    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2352    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2353    if (Val != 0) return false;
2354  }
2355
2356  bool HasHi = false;
2357  for (unsigned i = 2; i < 4; ++i) {
2358    SDOperand Arg = N->getOperand(i);
2359    if (Arg.getOpcode() == ISD::UNDEF) continue;
2360    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2361    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2362    if (Val != 2) return false;
2363    HasHi = true;
2364  }
2365
2366  // Don't use movshdup if it can be done with a shufps.
2367  return HasHi;
2368}
2369
2370/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2371/// specifies a identity operation on the LHS or RHS.
2372static bool isIdentityMask(SDNode *N, bool RHS = false) {
2373  unsigned NumElems = N->getNumOperands();
2374  for (unsigned i = 0; i < NumElems; ++i)
2375    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2376      return false;
2377  return true;
2378}
2379
2380/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2381/// a splat of a single element.
2382static bool isSplatMask(SDNode *N) {
2383  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2384
2385  // This is a splat operation if each element of the permute is the same, and
2386  // if the value doesn't reference the second vector.
2387  unsigned NumElems = N->getNumOperands();
2388  SDOperand ElementBase;
2389  unsigned i = 0;
2390  for (; i != NumElems; ++i) {
2391    SDOperand Elt = N->getOperand(i);
2392    if (isa<ConstantSDNode>(Elt)) {
2393      ElementBase = Elt;
2394      break;
2395    }
2396  }
2397
2398  if (!ElementBase.Val)
2399    return false;
2400
2401  for (; i != NumElems; ++i) {
2402    SDOperand Arg = N->getOperand(i);
2403    if (Arg.getOpcode() == ISD::UNDEF) continue;
2404    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2405    if (Arg != ElementBase) return false;
2406  }
2407
2408  // Make sure it is a splat of the first vector operand.
2409  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2410}
2411
2412/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2413/// a splat of a single element and it's a 2 or 4 element mask.
2414bool X86::isSplatMask(SDNode *N) {
2415  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2416
2417  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2418  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2419    return false;
2420  return ::isSplatMask(N);
2421}
2422
2423/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2424/// specifies a splat of zero element.
2425bool X86::isSplatLoMask(SDNode *N) {
2426  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2427
2428  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2429    if (!isUndefOrEqual(N->getOperand(i), 0))
2430      return false;
2431  return true;
2432}
2433
2434/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2435/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2436/// instructions.
2437unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2438  unsigned NumOperands = N->getNumOperands();
2439  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2440  unsigned Mask = 0;
2441  for (unsigned i = 0; i < NumOperands; ++i) {
2442    unsigned Val = 0;
2443    SDOperand Arg = N->getOperand(NumOperands-i-1);
2444    if (Arg.getOpcode() != ISD::UNDEF)
2445      Val = cast<ConstantSDNode>(Arg)->getValue();
2446    if (Val >= NumOperands) Val -= NumOperands;
2447    Mask |= Val;
2448    if (i != NumOperands - 1)
2449      Mask <<= Shift;
2450  }
2451
2452  return Mask;
2453}
2454
2455/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2456/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2457/// instructions.
2458unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2459  unsigned Mask = 0;
2460  // 8 nodes, but we only care about the last 4.
2461  for (unsigned i = 7; i >= 4; --i) {
2462    unsigned Val = 0;
2463    SDOperand Arg = N->getOperand(i);
2464    if (Arg.getOpcode() != ISD::UNDEF)
2465      Val = cast<ConstantSDNode>(Arg)->getValue();
2466    Mask |= (Val - 4);
2467    if (i != 4)
2468      Mask <<= 2;
2469  }
2470
2471  return Mask;
2472}
2473
2474/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2475/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2476/// instructions.
2477unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2478  unsigned Mask = 0;
2479  // 8 nodes, but we only care about the first 4.
2480  for (int i = 3; i >= 0; --i) {
2481    unsigned Val = 0;
2482    SDOperand Arg = N->getOperand(i);
2483    if (Arg.getOpcode() != ISD::UNDEF)
2484      Val = cast<ConstantSDNode>(Arg)->getValue();
2485    Mask |= Val;
2486    if (i != 0)
2487      Mask <<= 2;
2488  }
2489
2490  return Mask;
2491}
2492
2493/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2494/// specifies a 8 element shuffle that can be broken into a pair of
2495/// PSHUFHW and PSHUFLW.
2496static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2497  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2498
2499  if (N->getNumOperands() != 8)
2500    return false;
2501
2502  // Lower quadword shuffled.
2503  for (unsigned i = 0; i != 4; ++i) {
2504    SDOperand Arg = N->getOperand(i);
2505    if (Arg.getOpcode() == ISD::UNDEF) continue;
2506    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2507    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2508    if (Val >= 4)
2509      return false;
2510  }
2511
2512  // Upper quadword shuffled.
2513  for (unsigned i = 4; i != 8; ++i) {
2514    SDOperand Arg = N->getOperand(i);
2515    if (Arg.getOpcode() == ISD::UNDEF) continue;
2516    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2517    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2518    if (Val < 4 || Val > 7)
2519      return false;
2520  }
2521
2522  return true;
2523}
2524
2525/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2526/// values in ther permute mask.
2527static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2528                                      SDOperand &V2, SDOperand &Mask,
2529                                      SelectionDAG &DAG) {
2530  MVT::ValueType VT = Op.getValueType();
2531  MVT::ValueType MaskVT = Mask.getValueType();
2532  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2533  unsigned NumElems = Mask.getNumOperands();
2534  SmallVector<SDOperand, 8> MaskVec;
2535
2536  for (unsigned i = 0; i != NumElems; ++i) {
2537    SDOperand Arg = Mask.getOperand(i);
2538    if (Arg.getOpcode() == ISD::UNDEF) {
2539      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2540      continue;
2541    }
2542    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2543    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2544    if (Val < NumElems)
2545      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2546    else
2547      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2548  }
2549
2550  std::swap(V1, V2);
2551  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2552  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2553}
2554
2555/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2556/// the two vector operands have swapped position.
2557static
2558SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) {
2559  MVT::ValueType MaskVT = Mask.getValueType();
2560  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2561  unsigned NumElems = Mask.getNumOperands();
2562  SmallVector<SDOperand, 8> MaskVec;
2563  for (unsigned i = 0; i != NumElems; ++i) {
2564    SDOperand Arg = Mask.getOperand(i);
2565    if (Arg.getOpcode() == ISD::UNDEF) {
2566      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2567      continue;
2568    }
2569    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2570    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2571    if (Val < NumElems)
2572      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2573    else
2574      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2575  }
2576  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2577}
2578
2579
2580/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2581/// match movhlps. The lower half elements should come from upper half of
2582/// V1 (and in order), and the upper half elements should come from the upper
2583/// half of V2 (and in order).
2584static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2585  unsigned NumElems = Mask->getNumOperands();
2586  if (NumElems != 4)
2587    return false;
2588  for (unsigned i = 0, e = 2; i != e; ++i)
2589    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2590      return false;
2591  for (unsigned i = 2; i != 4; ++i)
2592    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2593      return false;
2594  return true;
2595}
2596
2597/// isScalarLoadToVector - Returns true if the node is a scalar load that
2598/// is promoted to a vector.
2599static inline bool isScalarLoadToVector(SDNode *N) {
2600  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2601    N = N->getOperand(0).Val;
2602    return ISD::isNON_EXTLoad(N);
2603  }
2604  return false;
2605}
2606
2607/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2608/// match movlp{s|d}. The lower half elements should come from lower half of
2609/// V1 (and in order), and the upper half elements should come from the upper
2610/// half of V2 (and in order). And since V1 will become the source of the
2611/// MOVLP, it must be either a vector load or a scalar load to vector.
2612static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2613  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2614    return false;
2615  // Is V2 is a vector load, don't do this transformation. We will try to use
2616  // load folding shufps op.
2617  if (ISD::isNON_EXTLoad(V2))
2618    return false;
2619
2620  unsigned NumElems = Mask->getNumOperands();
2621  if (NumElems != 2 && NumElems != 4)
2622    return false;
2623  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2624    if (!isUndefOrEqual(Mask->getOperand(i), i))
2625      return false;
2626  for (unsigned i = NumElems/2; i != NumElems; ++i)
2627    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2628      return false;
2629  return true;
2630}
2631
2632/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2633/// all the same.
2634static bool isSplatVector(SDNode *N) {
2635  if (N->getOpcode() != ISD::BUILD_VECTOR)
2636    return false;
2637
2638  SDOperand SplatValue = N->getOperand(0);
2639  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2640    if (N->getOperand(i) != SplatValue)
2641      return false;
2642  return true;
2643}
2644
2645/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2646/// to an undef.
2647static bool isUndefShuffle(SDNode *N) {
2648  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2649    return false;
2650
2651  SDOperand V1 = N->getOperand(0);
2652  SDOperand V2 = N->getOperand(1);
2653  SDOperand Mask = N->getOperand(2);
2654  unsigned NumElems = Mask.getNumOperands();
2655  for (unsigned i = 0; i != NumElems; ++i) {
2656    SDOperand Arg = Mask.getOperand(i);
2657    if (Arg.getOpcode() != ISD::UNDEF) {
2658      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2659      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2660        return false;
2661      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2662        return false;
2663    }
2664  }
2665  return true;
2666}
2667
2668/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2669/// constant +0.0.
2670static inline bool isZeroNode(SDOperand Elt) {
2671  return ((isa<ConstantSDNode>(Elt) &&
2672           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2673          (isa<ConstantFPSDNode>(Elt) &&
2674           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2675}
2676
2677/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2678/// to an zero vector.
2679static bool isZeroShuffle(SDNode *N) {
2680  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2681    return false;
2682
2683  SDOperand V1 = N->getOperand(0);
2684  SDOperand V2 = N->getOperand(1);
2685  SDOperand Mask = N->getOperand(2);
2686  unsigned NumElems = Mask.getNumOperands();
2687  for (unsigned i = 0; i != NumElems; ++i) {
2688    SDOperand Arg = Mask.getOperand(i);
2689    if (Arg.getOpcode() == ISD::UNDEF)
2690      continue;
2691
2692    unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2693    if (Idx < NumElems) {
2694      unsigned Opc = V1.Val->getOpcode();
2695      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2696        continue;
2697      if (Opc != ISD::BUILD_VECTOR ||
2698          !isZeroNode(V1.Val->getOperand(Idx)))
2699        return false;
2700    } else if (Idx >= NumElems) {
2701      unsigned Opc = V2.Val->getOpcode();
2702      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2703        continue;
2704      if (Opc != ISD::BUILD_VECTOR ||
2705          !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2706        return false;
2707    }
2708  }
2709  return true;
2710}
2711
2712/// getZeroVector - Returns a vector of specified type with all zero elements.
2713///
2714static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2715  assert(MVT::isVector(VT) && "Expected a vector type");
2716
2717  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2718  // type.  This ensures they get CSE'd.
2719  SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2720  SDOperand Vec;
2721  if (MVT::getSizeInBits(VT) == 64)  // MMX
2722    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2723  else                                              // SSE
2724    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2725  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2726}
2727
2728/// getOnesVector - Returns a vector of specified type with all bits set.
2729///
2730static SDOperand getOnesVector(MVT::ValueType VT, SelectionDAG &DAG) {
2731  assert(MVT::isVector(VT) && "Expected a vector type");
2732
2733  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2734  // type.  This ensures they get CSE'd.
2735  SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32);
2736  SDOperand Vec;
2737  if (MVT::getSizeInBits(VT) == 64)  // MMX
2738    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2739  else                                              // SSE
2740    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2741  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2742}
2743
2744
2745/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2746/// that point to V2 points to its first element.
2747static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2748  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2749
2750  bool Changed = false;
2751  SmallVector<SDOperand, 8> MaskVec;
2752  unsigned NumElems = Mask.getNumOperands();
2753  for (unsigned i = 0; i != NumElems; ++i) {
2754    SDOperand Arg = Mask.getOperand(i);
2755    if (Arg.getOpcode() != ISD::UNDEF) {
2756      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2757      if (Val > NumElems) {
2758        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2759        Changed = true;
2760      }
2761    }
2762    MaskVec.push_back(Arg);
2763  }
2764
2765  if (Changed)
2766    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2767                       &MaskVec[0], MaskVec.size());
2768  return Mask;
2769}
2770
2771/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2772/// operation of specified width.
2773static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2774  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2775  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2776
2777  SmallVector<SDOperand, 8> MaskVec;
2778  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2779  for (unsigned i = 1; i != NumElems; ++i)
2780    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2781  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2782}
2783
2784/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2785/// of specified width.
2786static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2787  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2788  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2789  SmallVector<SDOperand, 8> MaskVec;
2790  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2791    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2792    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2793  }
2794  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2795}
2796
2797/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2798/// of specified width.
2799static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2800  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2801  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2802  unsigned Half = NumElems/2;
2803  SmallVector<SDOperand, 8> MaskVec;
2804  for (unsigned i = 0; i != Half; ++i) {
2805    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2806    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2807  }
2808  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2809}
2810
2811/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2812///
2813static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2814  SDOperand V1 = Op.getOperand(0);
2815  SDOperand Mask = Op.getOperand(2);
2816  MVT::ValueType VT = Op.getValueType();
2817  unsigned NumElems = Mask.getNumOperands();
2818  Mask = getUnpacklMask(NumElems, DAG);
2819  while (NumElems != 4) {
2820    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2821    NumElems >>= 1;
2822  }
2823  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2824
2825  Mask = getZeroVector(MVT::v4i32, DAG);
2826  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2827                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2828  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2829}
2830
2831/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2832/// vector of zero or undef vector.  This produces a shuffle where the low
2833/// element of V2 is swizzled into the zero/undef vector, landing at element
2834/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2835static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2836                                             unsigned NumElems, unsigned Idx,
2837                                             bool isZero, SelectionDAG &DAG) {
2838  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2839  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2840  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2841  SmallVector<SDOperand, 16> MaskVec;
2842  for (unsigned i = 0; i != NumElems; ++i)
2843    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
2844      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
2845    else
2846      MaskVec.push_back(DAG.getConstant(i, EVT));
2847  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2848                               &MaskVec[0], MaskVec.size());
2849  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2850}
2851
2852/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2853///
2854static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2855                                       unsigned NumNonZero, unsigned NumZero,
2856                                       SelectionDAG &DAG, TargetLowering &TLI) {
2857  if (NumNonZero > 8)
2858    return SDOperand();
2859
2860  SDOperand V(0, 0);
2861  bool First = true;
2862  for (unsigned i = 0; i < 16; ++i) {
2863    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2864    if (ThisIsNonZero && First) {
2865      if (NumZero)
2866        V = getZeroVector(MVT::v8i16, DAG);
2867      else
2868        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2869      First = false;
2870    }
2871
2872    if ((i & 1) != 0) {
2873      SDOperand ThisElt(0, 0), LastElt(0, 0);
2874      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2875      if (LastIsNonZero) {
2876        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2877      }
2878      if (ThisIsNonZero) {
2879        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2880        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2881                              ThisElt, DAG.getConstant(8, MVT::i8));
2882        if (LastIsNonZero)
2883          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2884      } else
2885        ThisElt = LastElt;
2886
2887      if (ThisElt.Val)
2888        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2889                        DAG.getIntPtrConstant(i/2));
2890    }
2891  }
2892
2893  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2894}
2895
2896/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2897///
2898static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2899                                       unsigned NumNonZero, unsigned NumZero,
2900                                       SelectionDAG &DAG, TargetLowering &TLI) {
2901  if (NumNonZero > 4)
2902    return SDOperand();
2903
2904  SDOperand V(0, 0);
2905  bool First = true;
2906  for (unsigned i = 0; i < 8; ++i) {
2907    bool isNonZero = (NonZeros & (1 << i)) != 0;
2908    if (isNonZero) {
2909      if (First) {
2910        if (NumZero)
2911          V = getZeroVector(MVT::v8i16, DAG);
2912        else
2913          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2914        First = false;
2915      }
2916      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2917                      DAG.getIntPtrConstant(i));
2918    }
2919  }
2920
2921  return V;
2922}
2923
2924SDOperand
2925X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2926  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
2927  if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
2928    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
2929    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
2930    // eliminated on x86-32 hosts.
2931    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
2932      return Op;
2933
2934    if (ISD::isBuildVectorAllOnes(Op.Val))
2935      return getOnesVector(Op.getValueType(), DAG);
2936    return getZeroVector(Op.getValueType(), DAG);
2937  }
2938
2939  MVT::ValueType VT = Op.getValueType();
2940  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2941  unsigned EVTBits = MVT::getSizeInBits(EVT);
2942
2943  unsigned NumElems = Op.getNumOperands();
2944  unsigned NumZero  = 0;
2945  unsigned NumNonZero = 0;
2946  unsigned NonZeros = 0;
2947  bool HasNonImms = false;
2948  SmallSet<SDOperand, 8> Values;
2949  for (unsigned i = 0; i < NumElems; ++i) {
2950    SDOperand Elt = Op.getOperand(i);
2951    if (Elt.getOpcode() == ISD::UNDEF)
2952      continue;
2953    Values.insert(Elt);
2954    if (Elt.getOpcode() != ISD::Constant &&
2955        Elt.getOpcode() != ISD::ConstantFP)
2956      HasNonImms = true;
2957    if (isZeroNode(Elt))
2958      NumZero++;
2959    else {
2960      NonZeros |= (1 << i);
2961      NumNonZero++;
2962    }
2963  }
2964
2965  if (NumNonZero == 0) {
2966    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
2967    return DAG.getNode(ISD::UNDEF, VT);
2968  }
2969
2970  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2971  if (Values.size() == 1)
2972    return SDOperand();
2973
2974  // Special case for single non-zero element.
2975  if (NumNonZero == 1 && NumElems <= 4) {
2976    unsigned Idx = CountTrailingZeros_32(NonZeros);
2977    SDOperand Item = Op.getOperand(Idx);
2978    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2979    if (Idx == 0)
2980      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2981      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2982                                         NumZero > 0, DAG);
2983    else if (!HasNonImms) // Otherwise, it's better to do a constpool load.
2984      return SDOperand();
2985
2986    if (EVTBits == 32) {
2987      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2988      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2989                                         DAG);
2990      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2991      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2992      SmallVector<SDOperand, 8> MaskVec;
2993      for (unsigned i = 0; i < NumElems; i++)
2994        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2995      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2996                                   &MaskVec[0], MaskVec.size());
2997      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2998                         DAG.getNode(ISD::UNDEF, VT), Mask);
2999    }
3000  }
3001
3002  // A vector full of immediates; various special cases are already
3003  // handled, so this is best done with a single constant-pool load.
3004  if (!HasNonImms)
3005    return SDOperand();
3006
3007  // Let legalizer expand 2-wide build_vectors.
3008  if (EVTBits == 64)
3009    return SDOperand();
3010
3011  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3012  if (EVTBits == 8 && NumElems == 16) {
3013    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3014                                        *this);
3015    if (V.Val) return V;
3016  }
3017
3018  if (EVTBits == 16 && NumElems == 8) {
3019    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3020                                        *this);
3021    if (V.Val) return V;
3022  }
3023
3024  // If element VT is == 32 bits, turn it into a number of shuffles.
3025  SmallVector<SDOperand, 8> V;
3026  V.resize(NumElems);
3027  if (NumElems == 4 && NumZero > 0) {
3028    for (unsigned i = 0; i < 4; ++i) {
3029      bool isZero = !(NonZeros & (1 << i));
3030      if (isZero)
3031        V[i] = getZeroVector(VT, DAG);
3032      else
3033        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3034    }
3035
3036    for (unsigned i = 0; i < 2; ++i) {
3037      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3038        default: break;
3039        case 0:
3040          V[i] = V[i*2];  // Must be a zero vector.
3041          break;
3042        case 1:
3043          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3044                             getMOVLMask(NumElems, DAG));
3045          break;
3046        case 2:
3047          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3048                             getMOVLMask(NumElems, DAG));
3049          break;
3050        case 3:
3051          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3052                             getUnpacklMask(NumElems, DAG));
3053          break;
3054      }
3055    }
3056
3057    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3058    // clears the upper bits.
3059    // FIXME: we can do the same for v4f32 case when we know both parts of
3060    // the lower half come from scalar_to_vector (loadf32). We should do
3061    // that in post legalizer dag combiner with target specific hooks.
3062    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3063      return V[0];
3064    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3065    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3066    SmallVector<SDOperand, 8> MaskVec;
3067    bool Reverse = (NonZeros & 0x3) == 2;
3068    for (unsigned i = 0; i < 2; ++i)
3069      if (Reverse)
3070        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3071      else
3072        MaskVec.push_back(DAG.getConstant(i, EVT));
3073    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3074    for (unsigned i = 0; i < 2; ++i)
3075      if (Reverse)
3076        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3077      else
3078        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3079    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3080                                     &MaskVec[0], MaskVec.size());
3081    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3082  }
3083
3084  if (Values.size() > 2) {
3085    // Expand into a number of unpckl*.
3086    // e.g. for v4f32
3087    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3088    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3089    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3090    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3091    for (unsigned i = 0; i < NumElems; ++i)
3092      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3093    NumElems >>= 1;
3094    while (NumElems != 0) {
3095      for (unsigned i = 0; i < NumElems; ++i)
3096        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3097                           UnpckMask);
3098      NumElems >>= 1;
3099    }
3100    return V[0];
3101  }
3102
3103  return SDOperand();
3104}
3105
3106static
3107SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2,
3108                                   SDOperand PermMask, SelectionDAG &DAG,
3109                                   TargetLowering &TLI) {
3110  SDOperand NewV;
3111  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(8);
3112  MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3113  MVT::ValueType PtrVT = TLI.getPointerTy();
3114  SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(),
3115                                     PermMask.Val->op_end());
3116
3117  // First record which half of which vector the low elements come from.
3118  SmallVector<unsigned, 4> LowQuad(4);
3119  for (unsigned i = 0; i < 4; ++i) {
3120    SDOperand Elt = MaskElts[i];
3121    if (Elt.getOpcode() == ISD::UNDEF)
3122      continue;
3123    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3124    int QuadIdx = EltIdx / 4;
3125    ++LowQuad[QuadIdx];
3126  }
3127  int BestLowQuad = -1;
3128  unsigned MaxQuad = 1;
3129  for (unsigned i = 0; i < 4; ++i) {
3130    if (LowQuad[i] > MaxQuad) {
3131      BestLowQuad = i;
3132      MaxQuad = LowQuad[i];
3133    }
3134  }
3135
3136  // Record which half of which vector the high elements come from.
3137  SmallVector<unsigned, 4> HighQuad(4);
3138  for (unsigned i = 4; i < 8; ++i) {
3139    SDOperand Elt = MaskElts[i];
3140    if (Elt.getOpcode() == ISD::UNDEF)
3141      continue;
3142    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3143    int QuadIdx = EltIdx / 4;
3144    ++HighQuad[QuadIdx];
3145  }
3146  int BestHighQuad = -1;
3147  MaxQuad = 1;
3148  for (unsigned i = 0; i < 4; ++i) {
3149    if (HighQuad[i] > MaxQuad) {
3150      BestHighQuad = i;
3151      MaxQuad = HighQuad[i];
3152    }
3153  }
3154
3155  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3156  if (BestLowQuad != -1 || BestHighQuad != -1) {
3157    // First sort the 4 chunks in order using shufpd.
3158    SmallVector<SDOperand, 8> MaskVec;
3159    if (BestLowQuad != -1)
3160      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3161    else
3162      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3163    if (BestHighQuad != -1)
3164      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3165    else
3166      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3167    SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3168    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3169                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3170                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3171    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3172
3173    // Now sort high and low parts separately.
3174    BitVector InOrder(8);
3175    if (BestLowQuad != -1) {
3176      // Sort lower half in order using PSHUFLW.
3177      MaskVec.clear();
3178      bool AnyOutOrder = false;
3179      for (unsigned i = 0; i != 4; ++i) {
3180        SDOperand Elt = MaskElts[i];
3181        if (Elt.getOpcode() == ISD::UNDEF) {
3182          MaskVec.push_back(Elt);
3183          InOrder.set(i);
3184        } else {
3185          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3186          if (EltIdx != i)
3187            AnyOutOrder = true;
3188          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3189          // If this element is in the right place after this shuffle, then
3190          // remember it.
3191          if ((int)(EltIdx / 4) == BestLowQuad)
3192            InOrder.set(i);
3193        }
3194      }
3195      if (AnyOutOrder) {
3196        for (unsigned i = 4; i != 8; ++i)
3197          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3198        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3199        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3200      }
3201    }
3202
3203    if (BestHighQuad != -1) {
3204      // Sort high half in order using PSHUFHW if possible.
3205      MaskVec.clear();
3206      for (unsigned i = 0; i != 4; ++i)
3207        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3208      bool AnyOutOrder = false;
3209      for (unsigned i = 4; i != 8; ++i) {
3210        SDOperand Elt = MaskElts[i];
3211        if (Elt.getOpcode() == ISD::UNDEF) {
3212          MaskVec.push_back(Elt);
3213          InOrder.set(i);
3214        } else {
3215          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3216          if (EltIdx != i)
3217            AnyOutOrder = true;
3218          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3219          // If this element is in the right place after this shuffle, then
3220          // remember it.
3221          if ((int)(EltIdx / 4) == BestHighQuad)
3222            InOrder.set(i);
3223        }
3224      }
3225      if (AnyOutOrder) {
3226        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3227        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3228      }
3229    }
3230
3231    // The other elements are put in the right place using pextrw and pinsrw.
3232    for (unsigned i = 0; i != 8; ++i) {
3233      if (InOrder[i])
3234        continue;
3235      SDOperand Elt = MaskElts[i];
3236      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3237      if (EltIdx == i)
3238        continue;
3239      SDOperand ExtOp = (EltIdx < 8)
3240        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3241                      DAG.getConstant(EltIdx, PtrVT))
3242        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3243                      DAG.getConstant(EltIdx - 8, PtrVT));
3244      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3245                         DAG.getConstant(i, PtrVT));
3246    }
3247    return NewV;
3248  }
3249
3250  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
3251  ///as few as possible.
3252  // First, let's find out how many elements are already in the right order.
3253  unsigned V1InOrder = 0;
3254  unsigned V1FromV1 = 0;
3255  unsigned V2InOrder = 0;
3256  unsigned V2FromV2 = 0;
3257  SmallVector<SDOperand, 8> V1Elts;
3258  SmallVector<SDOperand, 8> V2Elts;
3259  for (unsigned i = 0; i < 8; ++i) {
3260    SDOperand Elt = MaskElts[i];
3261    if (Elt.getOpcode() == ISD::UNDEF) {
3262      V1Elts.push_back(Elt);
3263      V2Elts.push_back(Elt);
3264      ++V1InOrder;
3265      ++V2InOrder;
3266      continue;
3267    }
3268    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3269    if (EltIdx == i) {
3270      V1Elts.push_back(Elt);
3271      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3272      ++V1InOrder;
3273    } else if (EltIdx == i+8) {
3274      V1Elts.push_back(Elt);
3275      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3276      ++V2InOrder;
3277    } else if (EltIdx < 8) {
3278      V1Elts.push_back(Elt);
3279      ++V1FromV1;
3280    } else {
3281      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3282      ++V2FromV2;
3283    }
3284  }
3285
3286  if (V2InOrder > V1InOrder) {
3287    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3288    std::swap(V1, V2);
3289    std::swap(V1Elts, V2Elts);
3290    std::swap(V1FromV1, V2FromV2);
3291  }
3292
3293  if ((V1FromV1 + V1InOrder) != 8) {
3294    // Some elements are from V2.
3295    if (V1FromV1) {
3296      // If there are elements that are from V1 but out of place,
3297      // then first sort them in place
3298      SmallVector<SDOperand, 8> MaskVec;
3299      for (unsigned i = 0; i < 8; ++i) {
3300        SDOperand Elt = V1Elts[i];
3301        if (Elt.getOpcode() == ISD::UNDEF) {
3302          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3303          continue;
3304        }
3305        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3306        if (EltIdx >= 8)
3307          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3308        else
3309          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3310      }
3311      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3312      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3313    }
3314
3315    NewV = V1;
3316    for (unsigned i = 0; i < 8; ++i) {
3317      SDOperand Elt = V1Elts[i];
3318      if (Elt.getOpcode() == ISD::UNDEF)
3319        continue;
3320      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3321      if (EltIdx < 8)
3322        continue;
3323      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3324                                    DAG.getConstant(EltIdx - 8, PtrVT));
3325      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3326                         DAG.getConstant(i, PtrVT));
3327    }
3328    return NewV;
3329  } else {
3330    // All elements are from V1.
3331    NewV = V1;
3332    for (unsigned i = 0; i < 8; ++i) {
3333      SDOperand Elt = V1Elts[i];
3334      if (Elt.getOpcode() == ISD::UNDEF)
3335        continue;
3336      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3337      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3338                                    DAG.getConstant(EltIdx, PtrVT));
3339      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3340                         DAG.getConstant(i, PtrVT));
3341    }
3342    return NewV;
3343  }
3344}
3345
3346/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3347/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3348/// done when every pair / quad of shuffle mask elements point to elements in
3349/// the right sequence. e.g.
3350/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3351static
3352SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2,
3353                                MVT::ValueType VT,
3354                                SDOperand PermMask, SelectionDAG &DAG,
3355                                TargetLowering &TLI) {
3356  unsigned NumElems = PermMask.getNumOperands();
3357  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3358  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3359  MVT::ValueType NewVT = MaskVT;
3360  switch (VT) {
3361  case MVT::v4f32: NewVT = MVT::v2f64; break;
3362  case MVT::v4i32: NewVT = MVT::v2i64; break;
3363  case MVT::v8i16: NewVT = MVT::v4i32; break;
3364  case MVT::v16i8: NewVT = MVT::v4i32; break;
3365  default: assert(false && "Unexpected!");
3366  }
3367
3368  if (NewWidth == 2)
3369    if (MVT::isInteger(VT))
3370      NewVT = MVT::v2i64;
3371    else
3372      NewVT = MVT::v2f64;
3373  unsigned Scale = NumElems / NewWidth;
3374  SmallVector<SDOperand, 8> MaskVec;
3375  for (unsigned i = 0; i < NumElems; i += Scale) {
3376    unsigned StartIdx = ~0U;
3377    for (unsigned j = 0; j < Scale; ++j) {
3378      SDOperand Elt = PermMask.getOperand(i+j);
3379      if (Elt.getOpcode() == ISD::UNDEF)
3380        continue;
3381      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3382      if (StartIdx == ~0U)
3383        StartIdx = EltIdx - (EltIdx % Scale);
3384      if (EltIdx != StartIdx + j)
3385        return SDOperand();
3386    }
3387    if (StartIdx == ~0U)
3388      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
3389    else
3390      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32));
3391  }
3392
3393  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3394  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3395  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3396                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3397                                 &MaskVec[0], MaskVec.size()));
3398}
3399
3400SDOperand
3401X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3402  SDOperand V1 = Op.getOperand(0);
3403  SDOperand V2 = Op.getOperand(1);
3404  SDOperand PermMask = Op.getOperand(2);
3405  MVT::ValueType VT = Op.getValueType();
3406  unsigned NumElems = PermMask.getNumOperands();
3407  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3408  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3409  bool V1IsSplat = false;
3410  bool V2IsSplat = false;
3411
3412  if (isUndefShuffle(Op.Val))
3413    return DAG.getNode(ISD::UNDEF, VT);
3414
3415  if (isZeroShuffle(Op.Val))
3416    return getZeroVector(VT, DAG);
3417
3418  if (isIdentityMask(PermMask.Val))
3419    return V1;
3420  else if (isIdentityMask(PermMask.Val, true))
3421    return V2;
3422
3423  if (isSplatMask(PermMask.Val)) {
3424    if (NumElems <= 4) return Op;
3425    // Promote it to a v4i32 splat.
3426    return PromoteSplat(Op, DAG);
3427  }
3428
3429  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3430  // do it!
3431  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3432    SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3433    if (NewOp.Val)
3434      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3435  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3436    // FIXME: Figure out a cleaner way to do this.
3437    // Try to make use of movq to zero out the top part.
3438    if (ISD::isBuildVectorAllZeros(V2.Val)) {
3439      SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3440      if (NewOp.Val) {
3441        SDOperand NewV1 = NewOp.getOperand(0);
3442        SDOperand NewV2 = NewOp.getOperand(1);
3443        SDOperand NewMask = NewOp.getOperand(2);
3444        if (isCommutedMOVL(NewMask.Val, true, false)) {
3445          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3446          NewOp = DAG.getNode(ISD::VECTOR_SHUFFLE, NewOp.getValueType(),
3447                              NewV1, NewV2, getMOVLMask(2, DAG));
3448          return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3449        }
3450      }
3451    } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
3452      SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3453      if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
3454        return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3455    }
3456  }
3457
3458  if (X86::isMOVLMask(PermMask.Val))
3459    return (V1IsUndef) ? V2 : Op;
3460
3461  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3462      X86::isMOVSLDUPMask(PermMask.Val) ||
3463      X86::isMOVHLPSMask(PermMask.Val) ||
3464      X86::isMOVHPMask(PermMask.Val) ||
3465      X86::isMOVLPMask(PermMask.Val))
3466    return Op;
3467
3468  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3469      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3470    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3471
3472  bool Commuted = false;
3473  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3474  // 1,1,1,1 -> v8i16 though.
3475  V1IsSplat = isSplatVector(V1.Val);
3476  V2IsSplat = isSplatVector(V2.Val);
3477
3478  // Canonicalize the splat or undef, if present, to be on the RHS.
3479  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3480    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3481    std::swap(V1IsSplat, V2IsSplat);
3482    std::swap(V1IsUndef, V2IsUndef);
3483    Commuted = true;
3484  }
3485
3486  // FIXME: Figure out a cleaner way to do this.
3487  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3488    if (V2IsUndef) return V1;
3489    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3490    if (V2IsSplat) {
3491      // V2 is a splat, so the mask may be malformed. That is, it may point
3492      // to any V2 element. The instruction selectior won't like this. Get
3493      // a corrected mask and commute to form a proper MOVS{S|D}.
3494      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3495      if (NewMask.Val != PermMask.Val)
3496        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3497    }
3498    return Op;
3499  }
3500
3501  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3502      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3503      X86::isUNPCKLMask(PermMask.Val) ||
3504      X86::isUNPCKHMask(PermMask.Val))
3505    return Op;
3506
3507  if (V2IsSplat) {
3508    // Normalize mask so all entries that point to V2 points to its first
3509    // element then try to match unpck{h|l} again. If match, return a
3510    // new vector_shuffle with the corrected mask.
3511    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3512    if (NewMask.Val != PermMask.Val) {
3513      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3514        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3515        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3516      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3517        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3518        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3519      }
3520    }
3521  }
3522
3523  // Normalize the node to match x86 shuffle ops if needed
3524  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3525      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3526
3527  if (Commuted) {
3528    // Commute is back and try unpck* again.
3529    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3530    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3531        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3532        X86::isUNPCKLMask(PermMask.Val) ||
3533        X86::isUNPCKHMask(PermMask.Val))
3534      return Op;
3535  }
3536
3537  // If VT is integer, try PSHUF* first, then SHUFP*.
3538  if (MVT::isInteger(VT)) {
3539    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3540    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3541    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3542         X86::isPSHUFDMask(PermMask.Val)) ||
3543        X86::isPSHUFHWMask(PermMask.Val) ||
3544        X86::isPSHUFLWMask(PermMask.Val)) {
3545      if (V2.getOpcode() != ISD::UNDEF)
3546        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3547                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3548      return Op;
3549    }
3550
3551    if (X86::isSHUFPMask(PermMask.Val) &&
3552        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
3553      return Op;
3554  } else {
3555    // Floating point cases in the other order.
3556    if (X86::isSHUFPMask(PermMask.Val))
3557      return Op;
3558    if (X86::isPSHUFDMask(PermMask.Val) ||
3559        X86::isPSHUFHWMask(PermMask.Val) ||
3560        X86::isPSHUFLWMask(PermMask.Val)) {
3561      if (V2.getOpcode() != ISD::UNDEF)
3562        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3563                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3564      return Op;
3565    }
3566  }
3567
3568  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
3569  if (VT == MVT::v8i16) {
3570    SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
3571    if (NewOp.Val)
3572      return NewOp;
3573  }
3574
3575  // Handle all 4 wide cases with a number of shuffles.
3576  if (NumElems == 4 && MVT::getSizeInBits(VT) != 64) {
3577    // Don't do this for MMX.
3578    MVT::ValueType MaskVT = PermMask.getValueType();
3579    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3580    SmallVector<std::pair<int, int>, 8> Locs;
3581    Locs.reserve(NumElems);
3582    SmallVector<SDOperand, 8> Mask1(NumElems,
3583                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3584    SmallVector<SDOperand, 8> Mask2(NumElems,
3585                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3586    unsigned NumHi = 0;
3587    unsigned NumLo = 0;
3588    // If no more than two elements come from either vector. This can be
3589    // implemented with two shuffles. First shuffle gather the elements.
3590    // The second shuffle, which takes the first shuffle as both of its
3591    // vector operands, put the elements into the right order.
3592    for (unsigned i = 0; i != NumElems; ++i) {
3593      SDOperand Elt = PermMask.getOperand(i);
3594      if (Elt.getOpcode() == ISD::UNDEF) {
3595        Locs[i] = std::make_pair(-1, -1);
3596      } else {
3597        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3598        if (Val < NumElems) {
3599          Locs[i] = std::make_pair(0, NumLo);
3600          Mask1[NumLo] = Elt;
3601          NumLo++;
3602        } else {
3603          Locs[i] = std::make_pair(1, NumHi);
3604          if (2+NumHi < NumElems)
3605            Mask1[2+NumHi] = Elt;
3606          NumHi++;
3607        }
3608      }
3609    }
3610    if (NumLo <= 2 && NumHi <= 2) {
3611      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3612                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3613                                   &Mask1[0], Mask1.size()));
3614      for (unsigned i = 0; i != NumElems; ++i) {
3615        if (Locs[i].first == -1)
3616          continue;
3617        else {
3618          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3619          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3620          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3621        }
3622      }
3623
3624      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3625                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3626                                     &Mask2[0], Mask2.size()));
3627    }
3628
3629    // Break it into (shuffle shuffle_hi, shuffle_lo).
3630    Locs.clear();
3631    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3632    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3633    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3634    unsigned MaskIdx = 0;
3635    unsigned LoIdx = 0;
3636    unsigned HiIdx = NumElems/2;
3637    for (unsigned i = 0; i != NumElems; ++i) {
3638      if (i == NumElems/2) {
3639        MaskPtr = &HiMask;
3640        MaskIdx = 1;
3641        LoIdx = 0;
3642        HiIdx = NumElems/2;
3643      }
3644      SDOperand Elt = PermMask.getOperand(i);
3645      if (Elt.getOpcode() == ISD::UNDEF) {
3646        Locs[i] = std::make_pair(-1, -1);
3647      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3648        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3649        (*MaskPtr)[LoIdx] = Elt;
3650        LoIdx++;
3651      } else {
3652        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3653        (*MaskPtr)[HiIdx] = Elt;
3654        HiIdx++;
3655      }
3656    }
3657
3658    SDOperand LoShuffle =
3659      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3660                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3661                              &LoMask[0], LoMask.size()));
3662    SDOperand HiShuffle =
3663      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3664                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3665                              &HiMask[0], HiMask.size()));
3666    SmallVector<SDOperand, 8> MaskOps;
3667    for (unsigned i = 0; i != NumElems; ++i) {
3668      if (Locs[i].first == -1) {
3669        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3670      } else {
3671        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3672        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3673      }
3674    }
3675    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3676                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3677                                   &MaskOps[0], MaskOps.size()));
3678  }
3679
3680  return SDOperand();
3681}
3682
3683SDOperand
3684X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDOperand Op,
3685                                                SelectionDAG &DAG) {
3686  MVT::ValueType VT = Op.getValueType();
3687  if (MVT::getSizeInBits(VT) == 8) {
3688    SDOperand Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
3689                                    Op.getOperand(0), Op.getOperand(1));
3690    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
3691                                    DAG.getValueType(VT));
3692    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3693  } else if (MVT::getSizeInBits(VT) == 16) {
3694    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
3695                                    Op.getOperand(0), Op.getOperand(1));
3696    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
3697                                    DAG.getValueType(VT));
3698    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3699  }
3700  return SDOperand();
3701}
3702
3703
3704SDOperand
3705X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3706  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3707    return SDOperand();
3708
3709  if (Subtarget->hasSSE41())
3710    return LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
3711
3712  MVT::ValueType VT = Op.getValueType();
3713  // TODO: handle v16i8.
3714  if (MVT::getSizeInBits(VT) == 16) {
3715    SDOperand Vec = Op.getOperand(0);
3716    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3717    if (Idx == 0)
3718      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
3719                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
3720                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
3721                                     Op.getOperand(1)));
3722    // Transform it so it match pextrw which produces a 32-bit result.
3723    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3724    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3725                                    Op.getOperand(0), Op.getOperand(1));
3726    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3727                                    DAG.getValueType(VT));
3728    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3729  } else if (MVT::getSizeInBits(VT) == 32) {
3730    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3731    if (Idx == 0)
3732      return Op;
3733    // SHUFPS the element to the lowest double word, then movss.
3734    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3735    SmallVector<SDOperand, 8> IdxVec;
3736    IdxVec.
3737      push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3738    IdxVec.
3739      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3740    IdxVec.
3741      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3742    IdxVec.
3743      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3744    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3745                                 &IdxVec[0], IdxVec.size());
3746    SDOperand Vec = Op.getOperand(0);
3747    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3748                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3749    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3750                       DAG.getIntPtrConstant(0));
3751  } else if (MVT::getSizeInBits(VT) == 64) {
3752    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
3753    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
3754    //        to match extract_elt for f64.
3755    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3756    if (Idx == 0)
3757      return Op;
3758
3759    // UNPCKHPD the element to the lowest double word, then movsd.
3760    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3761    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3762    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3763    SmallVector<SDOperand, 8> IdxVec;
3764    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3765    IdxVec.
3766      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3767    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3768                                 &IdxVec[0], IdxVec.size());
3769    SDOperand Vec = Op.getOperand(0);
3770    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3771                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3772    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3773                       DAG.getIntPtrConstant(0));
3774  }
3775
3776  return SDOperand();
3777}
3778
3779SDOperand
3780X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDOperand Op, SelectionDAG &DAG){
3781  MVT::ValueType VT = Op.getValueType();
3782  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3783
3784  SDOperand N0 = Op.getOperand(0);
3785  SDOperand N1 = Op.getOperand(1);
3786  SDOperand N2 = Op.getOperand(2);
3787
3788  if ((MVT::getSizeInBits(EVT) == 8) || (MVT::getSizeInBits(EVT) == 16)) {
3789    unsigned Opc = (MVT::getSizeInBits(EVT) == 8) ? X86ISD::PINSRB
3790                                                  : X86ISD::PINSRW;
3791    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
3792    // argument.
3793    if (N1.getValueType() != MVT::i32)
3794      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3795    if (N2.getValueType() != MVT::i32)
3796      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
3797    return DAG.getNode(Opc, VT, N0, N1, N2);
3798  } else if (EVT == MVT::f32) {
3799    // Bits [7:6] of the constant are the source select.  This will always be
3800    //  zero here.  The DAG Combiner may combine an extract_elt index into these
3801    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
3802    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
3803    // Bits [5:4] of the constant are the destination select.  This is the
3804    //  value of the incoming immediate.
3805    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
3806    //   combine either bitwise AND or insert of float 0.0 to set these bits.
3807    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue() << 4);
3808    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
3809  }
3810  return SDOperand();
3811}
3812
3813SDOperand
3814X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3815  MVT::ValueType VT = Op.getValueType();
3816  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3817
3818  if (Subtarget->hasSSE41())
3819    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
3820
3821  if (EVT == MVT::i8)
3822    return SDOperand();
3823
3824  SDOperand N0 = Op.getOperand(0);
3825  SDOperand N1 = Op.getOperand(1);
3826  SDOperand N2 = Op.getOperand(2);
3827
3828  if (MVT::getSizeInBits(EVT) == 16) {
3829    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3830    // as its second argument.
3831    if (N1.getValueType() != MVT::i32)
3832      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3833    if (N2.getValueType() != MVT::i32)
3834      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
3835    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3836  }
3837  return SDOperand();
3838}
3839
3840SDOperand
3841X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3842  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3843  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3844}
3845
3846// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3847// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3848// one of the above mentioned nodes. It has to be wrapped because otherwise
3849// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3850// be used to form addressing mode. These wrapped nodes will be selected
3851// into MOV32ri.
3852SDOperand
3853X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3854  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3855  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3856                                               getPointerTy(),
3857                                               CP->getAlignment());
3858  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3859  // With PIC, the address is actually $g + Offset.
3860  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3861      !Subtarget->isPICStyleRIPRel()) {
3862    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3863                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3864                         Result);
3865  }
3866
3867  return Result;
3868}
3869
3870SDOperand
3871X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3872  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3873  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3874  // If it's a debug information descriptor, don't mess with it.
3875  if (DAG.isVerifiedDebugInfoDesc(Op))
3876    return Result;
3877  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3878  // With PIC, the address is actually $g + Offset.
3879  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3880      !Subtarget->isPICStyleRIPRel()) {
3881    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3882                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3883                         Result);
3884  }
3885
3886  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3887  // load the value at address GV, not the value of GV itself. This means that
3888  // the GlobalAddress must be in the base or index register of the address, not
3889  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3890  // The same applies for external symbols during PIC codegen
3891  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3892    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
3893                         PseudoSourceValue::getGOT(), 0);
3894
3895  return Result;
3896}
3897
3898// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3899static SDOperand
3900LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3901                              const MVT::ValueType PtrVT) {
3902  SDOperand InFlag;
3903  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3904                                     DAG.getNode(X86ISD::GlobalBaseReg,
3905                                                 PtrVT), InFlag);
3906  InFlag = Chain.getValue(1);
3907
3908  // emit leal symbol@TLSGD(,%ebx,1), %eax
3909  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3910  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3911                                             GA->getValueType(0),
3912                                             GA->getOffset());
3913  SDOperand Ops[] = { Chain,  TGA, InFlag };
3914  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3915  InFlag = Result.getValue(2);
3916  Chain = Result.getValue(1);
3917
3918  // call ___tls_get_addr. This function receives its argument in
3919  // the register EAX.
3920  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3921  InFlag = Chain.getValue(1);
3922
3923  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3924  SDOperand Ops1[] = { Chain,
3925                      DAG.getTargetExternalSymbol("___tls_get_addr",
3926                                                  PtrVT),
3927                      DAG.getRegister(X86::EAX, PtrVT),
3928                      DAG.getRegister(X86::EBX, PtrVT),
3929                      InFlag };
3930  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3931  InFlag = Chain.getValue(1);
3932
3933  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3934}
3935
3936// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3937// "local exec" model.
3938static SDOperand
3939LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3940                         const MVT::ValueType PtrVT) {
3941  // Get the Thread Pointer
3942  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3943  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3944  // exec)
3945  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3946                                             GA->getValueType(0),
3947                                             GA->getOffset());
3948  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3949
3950  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3951    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
3952                         PseudoSourceValue::getGOT(), 0);
3953
3954  // The address of the thread local variable is the add of the thread
3955  // pointer with the offset of the variable.
3956  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3957}
3958
3959SDOperand
3960X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3961  // TODO: implement the "local dynamic" model
3962  // TODO: implement the "initial exec"model for pic executables
3963  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3964         "TLS not implemented for non-ELF and 64-bit targets");
3965  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3966  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3967  // otherwise use the "Local Exec"TLS Model
3968  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3969    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3970  else
3971    return LowerToTLSExecModel(GA, DAG, getPointerTy());
3972}
3973
3974SDOperand
3975X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3976  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3977  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3978  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3979  // With PIC, the address is actually $g + Offset.
3980  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3981      !Subtarget->isPICStyleRIPRel()) {
3982    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3983                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3984                         Result);
3985  }
3986
3987  return Result;
3988}
3989
3990SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3991  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3992  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3993  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3994  // With PIC, the address is actually $g + Offset.
3995  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3996      !Subtarget->isPICStyleRIPRel()) {
3997    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3998                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3999                         Result);
4000  }
4001
4002  return Result;
4003}
4004
4005/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4006/// take a 2 x i32 value to shift plus a shift amount.
4007SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
4008  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
4009         "Not an i64 shift!");
4010  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4011  SDOperand ShOpLo = Op.getOperand(0);
4012  SDOperand ShOpHi = Op.getOperand(1);
4013  SDOperand ShAmt  = Op.getOperand(2);
4014  SDOperand Tmp1 = isSRA ?
4015    DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
4016    DAG.getConstant(0, MVT::i32);
4017
4018  SDOperand Tmp2, Tmp3;
4019  if (Op.getOpcode() == ISD::SHL_PARTS) {
4020    Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
4021    Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
4022  } else {
4023    Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
4024    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
4025  }
4026
4027  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4028  SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4029                                  DAG.getConstant(32, MVT::i8));
4030  SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
4031                               AndNode, DAG.getConstant(0, MVT::i8));
4032
4033  SDOperand Hi, Lo;
4034  SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4035  VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
4036  SmallVector<SDOperand, 4> Ops;
4037  if (Op.getOpcode() == ISD::SHL_PARTS) {
4038    Ops.push_back(Tmp2);
4039    Ops.push_back(Tmp3);
4040    Ops.push_back(CC);
4041    Ops.push_back(Cond);
4042    Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4043
4044    Ops.clear();
4045    Ops.push_back(Tmp3);
4046    Ops.push_back(Tmp1);
4047    Ops.push_back(CC);
4048    Ops.push_back(Cond);
4049    Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4050  } else {
4051    Ops.push_back(Tmp2);
4052    Ops.push_back(Tmp3);
4053    Ops.push_back(CC);
4054    Ops.push_back(Cond);
4055    Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4056
4057    Ops.clear();
4058    Ops.push_back(Tmp3);
4059    Ops.push_back(Tmp1);
4060    Ops.push_back(CC);
4061    Ops.push_back(Cond);
4062    Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
4063  }
4064
4065  VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
4066  Ops.clear();
4067  Ops.push_back(Lo);
4068  Ops.push_back(Hi);
4069  return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
4070}
4071
4072SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
4073  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
4074         Op.getOperand(0).getValueType() >= MVT::i16 &&
4075         "Unknown SINT_TO_FP to lower!");
4076
4077  SDOperand Result;
4078  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
4079  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
4080  MachineFunction &MF = DAG.getMachineFunction();
4081  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4082  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4083  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4084                                 StackSlot,
4085                                 PseudoSourceValue::getFixedStack(),
4086                                 SSFI);
4087
4088  // These are really Legal; caller falls through into that case.
4089  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4090    return Result;
4091  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4092      Subtarget->is64Bit())
4093    return Result;
4094
4095  // Build the FILD
4096  SDVTList Tys;
4097  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4098  if (useSSE)
4099    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4100  else
4101    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4102  SmallVector<SDOperand, 8> Ops;
4103  Ops.push_back(Chain);
4104  Ops.push_back(StackSlot);
4105  Ops.push_back(DAG.getValueType(SrcVT));
4106  Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
4107                       Tys, &Ops[0], Ops.size());
4108
4109  if (useSSE) {
4110    Chain = Result.getValue(1);
4111    SDOperand InFlag = Result.getValue(2);
4112
4113    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4114    // shouldn't be necessary except that RFP cannot be live across
4115    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4116    MachineFunction &MF = DAG.getMachineFunction();
4117    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4118    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4119    Tys = DAG.getVTList(MVT::Other);
4120    SmallVector<SDOperand, 8> Ops;
4121    Ops.push_back(Chain);
4122    Ops.push_back(Result);
4123    Ops.push_back(StackSlot);
4124    Ops.push_back(DAG.getValueType(Op.getValueType()));
4125    Ops.push_back(InFlag);
4126    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4127    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4128                         PseudoSourceValue::getFixedStack(), SSFI);
4129  }
4130
4131  return Result;
4132}
4133
4134std::pair<SDOperand,SDOperand> X86TargetLowering::
4135FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
4136  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
4137         "Unknown FP_TO_SINT to lower!");
4138
4139  // These are really Legal.
4140  if (Op.getValueType() == MVT::i32 &&
4141      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4142    return std::make_pair(SDOperand(), SDOperand());
4143  if (Subtarget->is64Bit() &&
4144      Op.getValueType() == MVT::i64 &&
4145      Op.getOperand(0).getValueType() != MVT::f80)
4146    return std::make_pair(SDOperand(), SDOperand());
4147
4148  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4149  // stack slot.
4150  MachineFunction &MF = DAG.getMachineFunction();
4151  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
4152  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4153  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4154  unsigned Opc;
4155  switch (Op.getValueType()) {
4156  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4157  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4158  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4159  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4160  }
4161
4162  SDOperand Chain = DAG.getEntryNode();
4163  SDOperand Value = Op.getOperand(0);
4164  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4165    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4166    Chain = DAG.getStore(Chain, Value, StackSlot,
4167                         PseudoSourceValue::getFixedStack(), SSFI);
4168    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4169    SDOperand Ops[] = {
4170      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4171    };
4172    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4173    Chain = Value.getValue(1);
4174    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4175    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4176  }
4177
4178  // Build the FP_TO_INT*_IN_MEM
4179  SDOperand Ops[] = { Chain, Value, StackSlot };
4180  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4181
4182  return std::make_pair(FIST, StackSlot);
4183}
4184
4185SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
4186  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
4187  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4188  if (FIST.Val == 0) return SDOperand();
4189
4190  // Load the result.
4191  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4192}
4193
4194SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4195  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
4196  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4197  if (FIST.Val == 0) return 0;
4198
4199  // Return an i64 load from the stack slot.
4200  SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0);
4201
4202  // Use a MERGE_VALUES node to drop the chain result value.
4203  return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val;
4204}
4205
4206SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4207  MVT::ValueType VT = Op.getValueType();
4208  MVT::ValueType EltVT = VT;
4209  if (MVT::isVector(VT))
4210    EltVT = MVT::getVectorElementType(VT);
4211  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4212  std::vector<Constant*> CV;
4213  if (EltVT == MVT::f64) {
4214    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
4215    CV.push_back(C);
4216    CV.push_back(C);
4217  } else {
4218    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
4219    CV.push_back(C);
4220    CV.push_back(C);
4221    CV.push_back(C);
4222    CV.push_back(C);
4223  }
4224  Constant *C = ConstantVector::get(CV);
4225  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4226  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4227                               PseudoSourceValue::getConstantPool(), 0,
4228                               false, 16);
4229  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4230}
4231
4232SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4233  MVT::ValueType VT = Op.getValueType();
4234  MVT::ValueType EltVT = VT;
4235  unsigned EltNum = 1;
4236  if (MVT::isVector(VT)) {
4237    EltVT = MVT::getVectorElementType(VT);
4238    EltNum = MVT::getVectorNumElements(VT);
4239  }
4240  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4241  std::vector<Constant*> CV;
4242  if (EltVT == MVT::f64) {
4243    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
4244    CV.push_back(C);
4245    CV.push_back(C);
4246  } else {
4247    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
4248    CV.push_back(C);
4249    CV.push_back(C);
4250    CV.push_back(C);
4251    CV.push_back(C);
4252  }
4253  Constant *C = ConstantVector::get(CV);
4254  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4255  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4256                               PseudoSourceValue::getConstantPool(), 0,
4257                               false, 16);
4258  if (MVT::isVector(VT)) {
4259    return DAG.getNode(ISD::BIT_CONVERT, VT,
4260                       DAG.getNode(ISD::XOR, MVT::v2i64,
4261                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4262                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4263  } else {
4264    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4265  }
4266}
4267
4268SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4269  SDOperand Op0 = Op.getOperand(0);
4270  SDOperand Op1 = Op.getOperand(1);
4271  MVT::ValueType VT = Op.getValueType();
4272  MVT::ValueType SrcVT = Op1.getValueType();
4273  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
4274
4275  // If second operand is smaller, extend it first.
4276  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4277    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4278    SrcVT = VT;
4279    SrcTy = MVT::getTypeForValueType(SrcVT);
4280  }
4281  // And if it is bigger, shrink it first.
4282  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4283    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4284    SrcVT = VT;
4285    SrcTy = MVT::getTypeForValueType(SrcVT);
4286  }
4287
4288  // At this point the operands and the result should have the same
4289  // type, and that won't be f80 since that is not custom lowered.
4290
4291  // First get the sign bit of second operand.
4292  std::vector<Constant*> CV;
4293  if (SrcVT == MVT::f64) {
4294    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4295    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4296  } else {
4297    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4298    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4299    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4300    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4301  }
4302  Constant *C = ConstantVector::get(CV);
4303  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4304  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4305                                PseudoSourceValue::getConstantPool(), 0,
4306                                false, 16);
4307  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4308
4309  // Shift sign bit right or left if the two operands have different types.
4310  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4311    // Op0 is MVT::f32, Op1 is MVT::f64.
4312    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4313    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4314                          DAG.getConstant(32, MVT::i32));
4315    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4316    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4317                          DAG.getIntPtrConstant(0));
4318  }
4319
4320  // Clear first operand sign bit.
4321  CV.clear();
4322  if (VT == MVT::f64) {
4323    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4324    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4325  } else {
4326    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4327    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4328    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4329    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4330  }
4331  C = ConstantVector::get(CV);
4332  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4333  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4334                                PseudoSourceValue::getConstantPool(), 0,
4335                                false, 16);
4336  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4337
4338  // Or the value with the sign bit.
4339  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4340}
4341
4342SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
4343  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4344  SDOperand Cond;
4345  SDOperand Op0 = Op.getOperand(0);
4346  SDOperand Op1 = Op.getOperand(1);
4347  SDOperand CC = Op.getOperand(2);
4348  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4349  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4350  unsigned X86CC;
4351
4352  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4353                     Op0, Op1, DAG)) {
4354    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4355    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4356                       DAG.getConstant(X86CC, MVT::i8), Cond);
4357  }
4358
4359  assert(isFP && "Illegal integer SetCC!");
4360
4361  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4362  switch (SetCCOpcode) {
4363  default: assert(false && "Illegal floating point SetCC!");
4364  case ISD::SETOEQ: {  // !PF & ZF
4365    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4366                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4367    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4368                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4369    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4370  }
4371  case ISD::SETUNE: {  // PF | !ZF
4372    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4373                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4374    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4375                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4376    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4377  }
4378  }
4379}
4380
4381
4382SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4383  bool addTest = true;
4384  SDOperand Cond  = Op.getOperand(0);
4385  SDOperand CC;
4386
4387  if (Cond.getOpcode() == ISD::SETCC)
4388    Cond = LowerSETCC(Cond, DAG);
4389
4390  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4391  // setting operand in place of the X86ISD::SETCC.
4392  if (Cond.getOpcode() == X86ISD::SETCC) {
4393    CC = Cond.getOperand(0);
4394
4395    SDOperand Cmp = Cond.getOperand(1);
4396    unsigned Opc = Cmp.getOpcode();
4397    MVT::ValueType VT = Op.getValueType();
4398
4399    bool IllegalFPCMov = false;
4400    if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT) &&
4401        !isScalarFPTypeInSSEReg(VT))  // FPStack?
4402      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4403
4404    if ((Opc == X86ISD::CMP ||
4405         Opc == X86ISD::COMI ||
4406         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4407      Cond = Cmp;
4408      addTest = false;
4409    }
4410  }
4411
4412  if (addTest) {
4413    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4414    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4415  }
4416
4417  const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4418                                                    MVT::Flag);
4419  SmallVector<SDOperand, 4> Ops;
4420  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4421  // condition is true.
4422  Ops.push_back(Op.getOperand(2));
4423  Ops.push_back(Op.getOperand(1));
4424  Ops.push_back(CC);
4425  Ops.push_back(Cond);
4426  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4427}
4428
4429SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4430  bool addTest = true;
4431  SDOperand Chain = Op.getOperand(0);
4432  SDOperand Cond  = Op.getOperand(1);
4433  SDOperand Dest  = Op.getOperand(2);
4434  SDOperand CC;
4435
4436  if (Cond.getOpcode() == ISD::SETCC)
4437    Cond = LowerSETCC(Cond, DAG);
4438
4439  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4440  // setting operand in place of the X86ISD::SETCC.
4441  if (Cond.getOpcode() == X86ISD::SETCC) {
4442    CC = Cond.getOperand(0);
4443
4444    SDOperand Cmp = Cond.getOperand(1);
4445    unsigned Opc = Cmp.getOpcode();
4446    if (Opc == X86ISD::CMP ||
4447        Opc == X86ISD::COMI ||
4448        Opc == X86ISD::UCOMI) {
4449      Cond = Cmp;
4450      addTest = false;
4451    }
4452  }
4453
4454  if (addTest) {
4455    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4456    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4457  }
4458  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4459                     Chain, Op.getOperand(2), CC, Cond);
4460}
4461
4462
4463// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4464// Calls to _alloca is needed to probe the stack when allocating more than 4k
4465// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4466// that the guard pages used by the OS virtual memory manager are allocated in
4467// correct sequence.
4468SDOperand
4469X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4470                                           SelectionDAG &DAG) {
4471  assert(Subtarget->isTargetCygMing() &&
4472         "This should be used only on Cygwin/Mingw targets");
4473
4474  // Get the inputs.
4475  SDOperand Chain = Op.getOperand(0);
4476  SDOperand Size  = Op.getOperand(1);
4477  // FIXME: Ensure alignment here
4478
4479  SDOperand Flag;
4480
4481  MVT::ValueType IntPtr = getPointerTy();
4482  MVT::ValueType SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
4483
4484  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4485  Flag = Chain.getValue(1);
4486
4487  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4488  SDOperand Ops[] = { Chain,
4489                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4490                      DAG.getRegister(X86::EAX, IntPtr),
4491                      Flag };
4492  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4493  Flag = Chain.getValue(1);
4494
4495  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4496
4497  std::vector<MVT::ValueType> Tys;
4498  Tys.push_back(SPTy);
4499  Tys.push_back(MVT::Other);
4500  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4501  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4502}
4503
4504SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4505  SDOperand InFlag(0, 0);
4506  SDOperand Chain = Op.getOperand(0);
4507  unsigned Align =
4508    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4509  if (Align == 0) Align = 1;
4510
4511  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4512  // If not DWORD aligned or size is more than the threshold, call memset.
4513  // The libc version is likely to be faster for these cases. It can use the
4514  // address value and run time information about the CPU.
4515  if ((Align & 3) != 0 ||
4516      (I && I->getValue() > Subtarget->getMaxInlineSizeThreshold())) {
4517    MVT::ValueType IntPtr = getPointerTy();
4518    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4519    TargetLowering::ArgListTy Args;
4520    TargetLowering::ArgListEntry Entry;
4521    Entry.Node = Op.getOperand(1);
4522    Entry.Ty = IntPtrTy;
4523    Args.push_back(Entry);
4524    // Extend the unsigned i8 argument to be an int value for the call.
4525    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4526    Entry.Ty = IntPtrTy;
4527    Args.push_back(Entry);
4528    Entry.Node = Op.getOperand(3);
4529    Args.push_back(Entry);
4530    std::pair<SDOperand,SDOperand> CallResult =
4531      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4532                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4533    return CallResult.second;
4534  }
4535
4536  MVT::ValueType AVT;
4537  SDOperand Count;
4538  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4539  unsigned BytesLeft = 0;
4540  bool TwoRepStos = false;
4541  if (ValC) {
4542    unsigned ValReg;
4543    uint64_t Val = ValC->getValue() & 255;
4544
4545    // If the value is a constant, then we can potentially use larger sets.
4546    switch (Align & 3) {
4547      case 2:   // WORD aligned
4548        AVT = MVT::i16;
4549        ValReg = X86::AX;
4550        Val = (Val << 8) | Val;
4551        break;
4552      case 0:  // DWORD aligned
4553        AVT = MVT::i32;
4554        ValReg = X86::EAX;
4555        Val = (Val << 8)  | Val;
4556        Val = (Val << 16) | Val;
4557        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4558          AVT = MVT::i64;
4559          ValReg = X86::RAX;
4560          Val = (Val << 32) | Val;
4561        }
4562        break;
4563      default:  // Byte aligned
4564        AVT = MVT::i8;
4565        ValReg = X86::AL;
4566        Count = Op.getOperand(3);
4567        break;
4568    }
4569
4570    if (AVT > MVT::i8) {
4571      if (I) {
4572        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4573        Count = DAG.getIntPtrConstant(I->getValue() / UBytes);
4574        BytesLeft = I->getValue() % UBytes;
4575      } else {
4576        assert(AVT >= MVT::i32 &&
4577               "Do not use rep;stos if not at least DWORD aligned");
4578        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4579                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4580        TwoRepStos = true;
4581      }
4582    }
4583
4584    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4585                              InFlag);
4586    InFlag = Chain.getValue(1);
4587  } else {
4588    AVT = MVT::i8;
4589    Count  = Op.getOperand(3);
4590    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4591    InFlag = Chain.getValue(1);
4592  }
4593
4594  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4595                            Count, InFlag);
4596  InFlag = Chain.getValue(1);
4597  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4598                            Op.getOperand(1), InFlag);
4599  InFlag = Chain.getValue(1);
4600
4601  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4602  SmallVector<SDOperand, 8> Ops;
4603  Ops.push_back(Chain);
4604  Ops.push_back(DAG.getValueType(AVT));
4605  Ops.push_back(InFlag);
4606  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4607
4608  if (TwoRepStos) {
4609    InFlag = Chain.getValue(1);
4610    Count = Op.getOperand(3);
4611    MVT::ValueType CVT = Count.getValueType();
4612    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4613                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4614    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4615                              Left, InFlag);
4616    InFlag = Chain.getValue(1);
4617    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4618    Ops.clear();
4619    Ops.push_back(Chain);
4620    Ops.push_back(DAG.getValueType(MVT::i8));
4621    Ops.push_back(InFlag);
4622    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4623  } else if (BytesLeft) {
4624    // Issue stores for the last 1 - 7 bytes.
4625    SDOperand Value;
4626    unsigned Val = ValC->getValue() & 255;
4627    unsigned Offset = I->getValue() - BytesLeft;
4628    SDOperand DstAddr = Op.getOperand(1);
4629    MVT::ValueType AddrVT = DstAddr.getValueType();
4630    if (BytesLeft >= 4) {
4631      Val = (Val << 8)  | Val;
4632      Val = (Val << 16) | Val;
4633      Value = DAG.getConstant(Val, MVT::i32);
4634      Chain = DAG.getStore(Chain, Value,
4635                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4636                                       DAG.getConstant(Offset, AddrVT)),
4637                           NULL, 0);
4638      BytesLeft -= 4;
4639      Offset += 4;
4640    }
4641    if (BytesLeft >= 2) {
4642      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4643      Chain = DAG.getStore(Chain, Value,
4644                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4645                                       DAG.getConstant(Offset, AddrVT)),
4646                           NULL, 0);
4647      BytesLeft -= 2;
4648      Offset += 2;
4649    }
4650    if (BytesLeft == 1) {
4651      Value = DAG.getConstant(Val, MVT::i8);
4652      Chain = DAG.getStore(Chain, Value,
4653                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4654                                       DAG.getConstant(Offset, AddrVT)),
4655                           NULL, 0);
4656    }
4657  }
4658
4659  return Chain;
4660}
4661
4662SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4663                                               SDOperand Dest,
4664                                               SDOperand Source,
4665                                               unsigned Size,
4666                                               unsigned Align,
4667                                               SelectionDAG &DAG) {
4668  MVT::ValueType AVT;
4669  unsigned BytesLeft = 0;
4670  switch (Align & 3) {
4671    case 2:   // WORD aligned
4672      AVT = MVT::i16;
4673      break;
4674    case 0:  // DWORD aligned
4675      AVT = MVT::i32;
4676      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4677        AVT = MVT::i64;
4678      break;
4679    default:  // Byte aligned
4680      AVT = MVT::i8;
4681      break;
4682  }
4683
4684  unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4685  SDOperand Count = DAG.getIntPtrConstant(Size / UBytes);
4686  BytesLeft = Size % UBytes;
4687
4688  SDOperand InFlag(0, 0);
4689  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4690                            Count, InFlag);
4691  InFlag = Chain.getValue(1);
4692  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4693                            Dest, InFlag);
4694  InFlag = Chain.getValue(1);
4695  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4696                            Source, InFlag);
4697  InFlag = Chain.getValue(1);
4698
4699  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4700  SmallVector<SDOperand, 8> Ops;
4701  Ops.push_back(Chain);
4702  Ops.push_back(DAG.getValueType(AVT));
4703  Ops.push_back(InFlag);
4704  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4705
4706  if (BytesLeft) {
4707    // Issue loads and stores for the last 1 - 7 bytes.
4708    unsigned Offset = Size - BytesLeft;
4709    SDOperand DstAddr = Dest;
4710    MVT::ValueType DstVT = DstAddr.getValueType();
4711    SDOperand SrcAddr = Source;
4712    MVT::ValueType SrcVT = SrcAddr.getValueType();
4713    SDOperand Value;
4714    if (BytesLeft >= 4) {
4715      Value = DAG.getLoad(MVT::i32, Chain,
4716                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4717                                      DAG.getConstant(Offset, SrcVT)),
4718                          NULL, 0);
4719      Chain = Value.getValue(1);
4720      Chain = DAG.getStore(Chain, Value,
4721                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4722                                       DAG.getConstant(Offset, DstVT)),
4723                           NULL, 0);
4724      BytesLeft -= 4;
4725      Offset += 4;
4726    }
4727    if (BytesLeft >= 2) {
4728      Value = DAG.getLoad(MVT::i16, Chain,
4729                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4730                                      DAG.getConstant(Offset, SrcVT)),
4731                          NULL, 0);
4732      Chain = Value.getValue(1);
4733      Chain = DAG.getStore(Chain, Value,
4734                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4735                                       DAG.getConstant(Offset, DstVT)),
4736                           NULL, 0);
4737      BytesLeft -= 2;
4738      Offset += 2;
4739    }
4740
4741    if (BytesLeft == 1) {
4742      Value = DAG.getLoad(MVT::i8, Chain,
4743                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4744                                      DAG.getConstant(Offset, SrcVT)),
4745                          NULL, 0);
4746      Chain = Value.getValue(1);
4747      Chain = DAG.getStore(Chain, Value,
4748                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4749                                       DAG.getConstant(Offset, DstVT)),
4750                           NULL, 0);
4751    }
4752  }
4753
4754  return Chain;
4755}
4756
4757/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
4758SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
4759  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4760  SDOperand TheChain = N->getOperand(0);
4761  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
4762  if (Subtarget->is64Bit()) {
4763    SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4764    SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
4765                                       MVT::i64, rax.getValue(2));
4766    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
4767                                DAG.getConstant(32, MVT::i8));
4768    SDOperand Ops[] = {
4769      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
4770    };
4771
4772    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4773    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4774  }
4775
4776  SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4777  SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
4778                                       MVT::i32, eax.getValue(2));
4779  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
4780  SDOperand Ops[] = { eax, edx };
4781  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
4782
4783  // Use a MERGE_VALUES to return the value and chain.
4784  Ops[1] = edx.getValue(1);
4785  Tys = DAG.getVTList(MVT::i64, MVT::Other);
4786  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4787}
4788
4789SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4790  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4791
4792  if (!Subtarget->is64Bit()) {
4793    // vastart just stores the address of the VarArgsFrameIndex slot into the
4794    // memory location argument.
4795    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4796    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
4797  }
4798
4799  // __va_list_tag:
4800  //   gp_offset         (0 - 6 * 8)
4801  //   fp_offset         (48 - 48 + 8 * 16)
4802  //   overflow_arg_area (point to parameters coming in memory).
4803  //   reg_save_area
4804  SmallVector<SDOperand, 8> MemOps;
4805  SDOperand FIN = Op.getOperand(1);
4806  // Store gp_offset
4807  SDOperand Store = DAG.getStore(Op.getOperand(0),
4808                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4809                                 FIN, SV, 0);
4810  MemOps.push_back(Store);
4811
4812  // Store fp_offset
4813  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
4814  Store = DAG.getStore(Op.getOperand(0),
4815                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4816                       FIN, SV, 0);
4817  MemOps.push_back(Store);
4818
4819  // Store ptr to overflow_arg_area
4820  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
4821  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4822  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
4823  MemOps.push_back(Store);
4824
4825  // Store ptr to reg_save_area.
4826  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
4827  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4828  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
4829  MemOps.push_back(Store);
4830  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4831}
4832
4833SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4834  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4835  SDOperand Chain = Op.getOperand(0);
4836  SDOperand DstPtr = Op.getOperand(1);
4837  SDOperand SrcPtr = Op.getOperand(2);
4838  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4839  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4840
4841  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr, SrcSV, 0);
4842  Chain = SrcPtr.getValue(1);
4843  for (unsigned i = 0; i < 3; ++i) {
4844    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr, SrcSV, 0);
4845    Chain = Val.getValue(1);
4846    Chain = DAG.getStore(Chain, Val, DstPtr, DstSV, 0);
4847    if (i == 2)
4848      break;
4849    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4850                         DAG.getIntPtrConstant(8));
4851    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4852                         DAG.getIntPtrConstant(8));
4853  }
4854  return Chain;
4855}
4856
4857SDOperand
4858X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4859  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4860  switch (IntNo) {
4861  default: return SDOperand();    // Don't custom lower most intrinsics.
4862    // Comparison intrinsics.
4863  case Intrinsic::x86_sse_comieq_ss:
4864  case Intrinsic::x86_sse_comilt_ss:
4865  case Intrinsic::x86_sse_comile_ss:
4866  case Intrinsic::x86_sse_comigt_ss:
4867  case Intrinsic::x86_sse_comige_ss:
4868  case Intrinsic::x86_sse_comineq_ss:
4869  case Intrinsic::x86_sse_ucomieq_ss:
4870  case Intrinsic::x86_sse_ucomilt_ss:
4871  case Intrinsic::x86_sse_ucomile_ss:
4872  case Intrinsic::x86_sse_ucomigt_ss:
4873  case Intrinsic::x86_sse_ucomige_ss:
4874  case Intrinsic::x86_sse_ucomineq_ss:
4875  case Intrinsic::x86_sse2_comieq_sd:
4876  case Intrinsic::x86_sse2_comilt_sd:
4877  case Intrinsic::x86_sse2_comile_sd:
4878  case Intrinsic::x86_sse2_comigt_sd:
4879  case Intrinsic::x86_sse2_comige_sd:
4880  case Intrinsic::x86_sse2_comineq_sd:
4881  case Intrinsic::x86_sse2_ucomieq_sd:
4882  case Intrinsic::x86_sse2_ucomilt_sd:
4883  case Intrinsic::x86_sse2_ucomile_sd:
4884  case Intrinsic::x86_sse2_ucomigt_sd:
4885  case Intrinsic::x86_sse2_ucomige_sd:
4886  case Intrinsic::x86_sse2_ucomineq_sd: {
4887    unsigned Opc = 0;
4888    ISD::CondCode CC = ISD::SETCC_INVALID;
4889    switch (IntNo) {
4890    default: break;
4891    case Intrinsic::x86_sse_comieq_ss:
4892    case Intrinsic::x86_sse2_comieq_sd:
4893      Opc = X86ISD::COMI;
4894      CC = ISD::SETEQ;
4895      break;
4896    case Intrinsic::x86_sse_comilt_ss:
4897    case Intrinsic::x86_sse2_comilt_sd:
4898      Opc = X86ISD::COMI;
4899      CC = ISD::SETLT;
4900      break;
4901    case Intrinsic::x86_sse_comile_ss:
4902    case Intrinsic::x86_sse2_comile_sd:
4903      Opc = X86ISD::COMI;
4904      CC = ISD::SETLE;
4905      break;
4906    case Intrinsic::x86_sse_comigt_ss:
4907    case Intrinsic::x86_sse2_comigt_sd:
4908      Opc = X86ISD::COMI;
4909      CC = ISD::SETGT;
4910      break;
4911    case Intrinsic::x86_sse_comige_ss:
4912    case Intrinsic::x86_sse2_comige_sd:
4913      Opc = X86ISD::COMI;
4914      CC = ISD::SETGE;
4915      break;
4916    case Intrinsic::x86_sse_comineq_ss:
4917    case Intrinsic::x86_sse2_comineq_sd:
4918      Opc = X86ISD::COMI;
4919      CC = ISD::SETNE;
4920      break;
4921    case Intrinsic::x86_sse_ucomieq_ss:
4922    case Intrinsic::x86_sse2_ucomieq_sd:
4923      Opc = X86ISD::UCOMI;
4924      CC = ISD::SETEQ;
4925      break;
4926    case Intrinsic::x86_sse_ucomilt_ss:
4927    case Intrinsic::x86_sse2_ucomilt_sd:
4928      Opc = X86ISD::UCOMI;
4929      CC = ISD::SETLT;
4930      break;
4931    case Intrinsic::x86_sse_ucomile_ss:
4932    case Intrinsic::x86_sse2_ucomile_sd:
4933      Opc = X86ISD::UCOMI;
4934      CC = ISD::SETLE;
4935      break;
4936    case Intrinsic::x86_sse_ucomigt_ss:
4937    case Intrinsic::x86_sse2_ucomigt_sd:
4938      Opc = X86ISD::UCOMI;
4939      CC = ISD::SETGT;
4940      break;
4941    case Intrinsic::x86_sse_ucomige_ss:
4942    case Intrinsic::x86_sse2_ucomige_sd:
4943      Opc = X86ISD::UCOMI;
4944      CC = ISD::SETGE;
4945      break;
4946    case Intrinsic::x86_sse_ucomineq_ss:
4947    case Intrinsic::x86_sse2_ucomineq_sd:
4948      Opc = X86ISD::UCOMI;
4949      CC = ISD::SETNE;
4950      break;
4951    }
4952
4953    unsigned X86CC;
4954    SDOperand LHS = Op.getOperand(1);
4955    SDOperand RHS = Op.getOperand(2);
4956    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4957
4958    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4959    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
4960                                  DAG.getConstant(X86CC, MVT::i8), Cond);
4961    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4962  }
4963  }
4964}
4965
4966SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4967  // Depths > 0 not supported yet!
4968  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4969    return SDOperand();
4970
4971  // Just load the return address
4972  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4973  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4974}
4975
4976SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4977  // Depths > 0 not supported yet!
4978  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4979    return SDOperand();
4980
4981  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4982  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4983                     DAG.getIntPtrConstant(4));
4984}
4985
4986SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4987                                                       SelectionDAG &DAG) {
4988  // Is not yet supported on x86-64
4989  if (Subtarget->is64Bit())
4990    return SDOperand();
4991
4992  return DAG.getIntPtrConstant(8);
4993}
4994
4995SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4996{
4997  assert(!Subtarget->is64Bit() &&
4998         "Lowering of eh_return builtin is not supported yet on x86-64");
4999
5000  MachineFunction &MF = DAG.getMachineFunction();
5001  SDOperand Chain     = Op.getOperand(0);
5002  SDOperand Offset    = Op.getOperand(1);
5003  SDOperand Handler   = Op.getOperand(2);
5004
5005  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
5006                                    getPointerTy());
5007
5008  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5009                                    DAG.getIntPtrConstant(-4UL));
5010  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5011  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5012  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
5013  MF.getRegInfo().addLiveOut(X86::ECX);
5014
5015  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
5016                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
5017}
5018
5019SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
5020                                             SelectionDAG &DAG) {
5021  SDOperand Root = Op.getOperand(0);
5022  SDOperand Trmp = Op.getOperand(1); // trampoline
5023  SDOperand FPtr = Op.getOperand(2); // nested function
5024  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
5025
5026  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5027
5028  const X86InstrInfo *TII =
5029    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5030
5031  if (Subtarget->is64Bit()) {
5032    SDOperand OutChains[6];
5033
5034    // Large code-model.
5035
5036    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5037    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5038
5039    const unsigned char N86R10 =
5040      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R10);
5041    const unsigned char N86R11 =
5042      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R11);
5043
5044    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5045
5046    // Load the pointer to the nested function into R11.
5047    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5048    SDOperand Addr = Trmp;
5049    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5050                                TrmpAddr, 0);
5051
5052    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5053    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5054
5055    // Load the 'nest' parameter value into R10.
5056    // R10 is specified in X86CallingConv.td
5057    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5058    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5059    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5060                                TrmpAddr, 10);
5061
5062    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5063    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5064
5065    // Jump to the nested function.
5066    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5067    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5068    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5069                                TrmpAddr, 20);
5070
5071    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5072    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5073    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5074                                TrmpAddr, 22);
5075
5076    SDOperand Ops[] =
5077      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5078    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5079  } else {
5080    const Function *Func =
5081      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5082    unsigned CC = Func->getCallingConv();
5083    unsigned NestReg;
5084
5085    switch (CC) {
5086    default:
5087      assert(0 && "Unsupported calling convention");
5088    case CallingConv::C:
5089    case CallingConv::X86_StdCall: {
5090      // Pass 'nest' parameter in ECX.
5091      // Must be kept in sync with X86CallingConv.td
5092      NestReg = X86::ECX;
5093
5094      // Check that ECX wasn't needed by an 'inreg' parameter.
5095      const FunctionType *FTy = Func->getFunctionType();
5096      const ParamAttrsList *Attrs = Func->getParamAttrs();
5097
5098      if (Attrs && !Func->isVarArg()) {
5099        unsigned InRegCount = 0;
5100        unsigned Idx = 1;
5101
5102        for (FunctionType::param_iterator I = FTy->param_begin(),
5103             E = FTy->param_end(); I != E; ++I, ++Idx)
5104          if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
5105            // FIXME: should only count parameters that are lowered to integers.
5106            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
5107
5108        if (InRegCount > 2) {
5109          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5110          abort();
5111        }
5112      }
5113      break;
5114    }
5115    case CallingConv::X86_FastCall:
5116      // Pass 'nest' parameter in EAX.
5117      // Must be kept in sync with X86CallingConv.td
5118      NestReg = X86::EAX;
5119      break;
5120    }
5121
5122    SDOperand OutChains[4];
5123    SDOperand Addr, Disp;
5124
5125    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5126    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5127
5128    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5129    const unsigned char N86Reg =
5130      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(NestReg);
5131    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5132                                Trmp, TrmpAddr, 0);
5133
5134    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5135    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
5136
5137    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
5138    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5139    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5140                                TrmpAddr, 5, false, 1);
5141
5142    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5143    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
5144
5145    SDOperand Ops[] =
5146      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5147    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5148  }
5149}
5150
5151SDOperand X86TargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
5152  /*
5153   The rounding mode is in bits 11:10 of FPSR, and has the following
5154   settings:
5155     00 Round to nearest
5156     01 Round to -inf
5157     10 Round to +inf
5158     11 Round to 0
5159
5160  FLT_ROUNDS, on the other hand, expects the following:
5161    -1 Undefined
5162     0 Round to 0
5163     1 Round to nearest
5164     2 Round to +inf
5165     3 Round to -inf
5166
5167  To perform the conversion, we do:
5168    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5169  */
5170
5171  MachineFunction &MF = DAG.getMachineFunction();
5172  const TargetMachine &TM = MF.getTarget();
5173  const TargetFrameInfo &TFI = *TM.getFrameInfo();
5174  unsigned StackAlignment = TFI.getStackAlignment();
5175  MVT::ValueType VT = Op.getValueType();
5176
5177  // Save FP Control Word to stack slot
5178  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5179  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5180
5181  SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5182                                DAG.getEntryNode(), StackSlot);
5183
5184  // Load FP Control Word from stack slot
5185  SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5186
5187  // Transform as necessary
5188  SDOperand CWD1 =
5189    DAG.getNode(ISD::SRL, MVT::i16,
5190                DAG.getNode(ISD::AND, MVT::i16,
5191                            CWD, DAG.getConstant(0x800, MVT::i16)),
5192                DAG.getConstant(11, MVT::i8));
5193  SDOperand CWD2 =
5194    DAG.getNode(ISD::SRL, MVT::i16,
5195                DAG.getNode(ISD::AND, MVT::i16,
5196                            CWD, DAG.getConstant(0x400, MVT::i16)),
5197                DAG.getConstant(9, MVT::i8));
5198
5199  SDOperand RetVal =
5200    DAG.getNode(ISD::AND, MVT::i16,
5201                DAG.getNode(ISD::ADD, MVT::i16,
5202                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5203                            DAG.getConstant(1, MVT::i16)),
5204                DAG.getConstant(3, MVT::i16));
5205
5206
5207  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
5208                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5209}
5210
5211SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) {
5212  MVT::ValueType VT = Op.getValueType();
5213  MVT::ValueType OpVT = VT;
5214  unsigned NumBits = MVT::getSizeInBits(VT);
5215
5216  Op = Op.getOperand(0);
5217  if (VT == MVT::i8) {
5218    // Zero extend to i32 since there is not an i8 bsr.
5219    OpVT = MVT::i32;
5220    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5221  }
5222
5223  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
5224  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5225  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
5226
5227  // If src is zero (i.e. bsr sets ZF), returns NumBits.
5228  SmallVector<SDOperand, 4> Ops;
5229  Ops.push_back(Op);
5230  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
5231  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5232  Ops.push_back(Op.getValue(1));
5233  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5234
5235  // Finally xor with NumBits-1.
5236  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
5237
5238  if (VT == MVT::i8)
5239    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5240  return Op;
5241}
5242
5243SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) {
5244  MVT::ValueType VT = Op.getValueType();
5245  MVT::ValueType OpVT = VT;
5246  unsigned NumBits = MVT::getSizeInBits(VT);
5247
5248  Op = Op.getOperand(0);
5249  if (VT == MVT::i8) {
5250    OpVT = MVT::i32;
5251    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5252  }
5253
5254  // Issue a bsf (scan bits forward) which also sets EFLAGS.
5255  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5256  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
5257
5258  // If src is zero (i.e. bsf sets ZF), returns NumBits.
5259  SmallVector<SDOperand, 4> Ops;
5260  Ops.push_back(Op);
5261  Ops.push_back(DAG.getConstant(NumBits, OpVT));
5262  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5263  Ops.push_back(Op.getValue(1));
5264  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5265
5266  if (VT == MVT::i8)
5267    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5268  return Op;
5269}
5270
5271/// LowerOperation - Provide custom lowering hooks for some operations.
5272///
5273SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
5274  switch (Op.getOpcode()) {
5275  default: assert(0 && "Should not custom lower this!");
5276  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5277  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5278  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5279  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
5280  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5281  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5282  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5283  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5284  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
5285  case ISD::SHL_PARTS:
5286  case ISD::SRA_PARTS:
5287  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
5288  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5289  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5290  case ISD::FABS:               return LowerFABS(Op, DAG);
5291  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5292  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5293  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5294  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5295  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5296  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5297  case ISD::CALL:               return LowerCALL(Op, DAG);
5298  case ISD::RET:                return LowerRET(Op, DAG);
5299  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5300  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
5301  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
5302  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5303  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
5304  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5305  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5306  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5307  case ISD::FRAME_TO_ARGS_OFFSET:
5308                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5309  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5310  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
5311  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
5312  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5313  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
5314  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
5315
5316  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5317  case ISD::READCYCLECOUNTER:
5318    return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
5319  }
5320}
5321
5322/// ExpandOperation - Provide custom lowering hooks for expanding operations.
5323SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
5324  switch (N->getOpcode()) {
5325  default: assert(0 && "Should not custom lower this!");
5326  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
5327  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
5328  }
5329}
5330
5331const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5332  switch (Opcode) {
5333  default: return NULL;
5334  case X86ISD::BSF:                return "X86ISD::BSF";
5335  case X86ISD::BSR:                return "X86ISD::BSR";
5336  case X86ISD::SHLD:               return "X86ISD::SHLD";
5337  case X86ISD::SHRD:               return "X86ISD::SHRD";
5338  case X86ISD::FAND:               return "X86ISD::FAND";
5339  case X86ISD::FOR:                return "X86ISD::FOR";
5340  case X86ISD::FXOR:               return "X86ISD::FXOR";
5341  case X86ISD::FSRL:               return "X86ISD::FSRL";
5342  case X86ISD::FILD:               return "X86ISD::FILD";
5343  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5344  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5345  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5346  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5347  case X86ISD::FLD:                return "X86ISD::FLD";
5348  case X86ISD::FST:                return "X86ISD::FST";
5349  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
5350  case X86ISD::FP_GET_RESULT2:     return "X86ISD::FP_GET_RESULT2";
5351  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
5352  case X86ISD::CALL:               return "X86ISD::CALL";
5353  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5354  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5355  case X86ISD::CMP:                return "X86ISD::CMP";
5356  case X86ISD::COMI:               return "X86ISD::COMI";
5357  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5358  case X86ISD::SETCC:              return "X86ISD::SETCC";
5359  case X86ISD::CMOV:               return "X86ISD::CMOV";
5360  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5361  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5362  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5363  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5364  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5365  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5366  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
5367  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
5368  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5369  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
5370  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
5371  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5372  case X86ISD::FMAX:               return "X86ISD::FMAX";
5373  case X86ISD::FMIN:               return "X86ISD::FMIN";
5374  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
5375  case X86ISD::FRCP:               return "X86ISD::FRCP";
5376  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
5377  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
5378  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
5379  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
5380  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
5381  }
5382}
5383
5384// isLegalAddressingMode - Return true if the addressing mode represented
5385// by AM is legal for this target, for a load/store of the specified type.
5386bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5387                                              const Type *Ty) const {
5388  // X86 supports extremely general addressing modes.
5389
5390  // X86 allows a sign-extended 32-bit immediate field as a displacement.
5391  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5392    return false;
5393
5394  if (AM.BaseGV) {
5395    // We can only fold this if we don't need an extra load.
5396    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5397      return false;
5398
5399    // X86-64 only supports addr of globals in small code model.
5400    if (Subtarget->is64Bit()) {
5401      if (getTargetMachine().getCodeModel() != CodeModel::Small)
5402        return false;
5403      // If lower 4G is not available, then we must use rip-relative addressing.
5404      if (AM.BaseOffs || AM.Scale > 1)
5405        return false;
5406    }
5407  }
5408
5409  switch (AM.Scale) {
5410  case 0:
5411  case 1:
5412  case 2:
5413  case 4:
5414  case 8:
5415    // These scales always work.
5416    break;
5417  case 3:
5418  case 5:
5419  case 9:
5420    // These scales are formed with basereg+scalereg.  Only accept if there is
5421    // no basereg yet.
5422    if (AM.HasBaseReg)
5423      return false;
5424    break;
5425  default:  // Other stuff never works.
5426    return false;
5427  }
5428
5429  return true;
5430}
5431
5432
5433bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5434  if (!Ty1->isInteger() || !Ty2->isInteger())
5435    return false;
5436  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5437  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5438  if (NumBits1 <= NumBits2)
5439    return false;
5440  return Subtarget->is64Bit() || NumBits1 < 64;
5441}
5442
5443bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5444                                       MVT::ValueType VT2) const {
5445  if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5446    return false;
5447  unsigned NumBits1 = MVT::getSizeInBits(VT1);
5448  unsigned NumBits2 = MVT::getSizeInBits(VT2);
5449  if (NumBits1 <= NumBits2)
5450    return false;
5451  return Subtarget->is64Bit() || NumBits1 < 64;
5452}
5453
5454/// isShuffleMaskLegal - Targets can use this to indicate that they only
5455/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5456/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5457/// are assumed to be legal.
5458bool
5459X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5460  // Only do shuffles on 128-bit vector types for now.
5461  if (MVT::getSizeInBits(VT) == 64) return false;
5462  return (Mask.Val->getNumOperands() <= 4 ||
5463          isIdentityMask(Mask.Val) ||
5464          isIdentityMask(Mask.Val, true) ||
5465          isSplatMask(Mask.Val)  ||
5466          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5467          X86::isUNPCKLMask(Mask.Val) ||
5468          X86::isUNPCKHMask(Mask.Val) ||
5469          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5470          X86::isUNPCKH_v_undef_Mask(Mask.Val));
5471}
5472
5473bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5474                                               MVT::ValueType EVT,
5475                                               SelectionDAG &DAG) const {
5476  unsigned NumElts = BVOps.size();
5477  // Only do shuffles on 128-bit vector types for now.
5478  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5479  if (NumElts == 2) return true;
5480  if (NumElts == 4) {
5481    return (isMOVLMask(&BVOps[0], 4)  ||
5482            isCommutedMOVL(&BVOps[0], 4, true) ||
5483            isSHUFPMask(&BVOps[0], 4) ||
5484            isCommutedSHUFP(&BVOps[0], 4));
5485  }
5486  return false;
5487}
5488
5489//===----------------------------------------------------------------------===//
5490//                           X86 Scheduler Hooks
5491//===----------------------------------------------------------------------===//
5492
5493MachineBasicBlock *
5494X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5495                                               MachineBasicBlock *BB) {
5496  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5497  switch (MI->getOpcode()) {
5498  default: assert(false && "Unexpected instr type to insert");
5499  case X86::CMOV_FR32:
5500  case X86::CMOV_FR64:
5501  case X86::CMOV_V4F32:
5502  case X86::CMOV_V2F64:
5503  case X86::CMOV_V2I64: {
5504    // To "insert" a SELECT_CC instruction, we actually have to insert the
5505    // diamond control-flow pattern.  The incoming instruction knows the
5506    // destination vreg to set, the condition code register to branch on, the
5507    // true/false values to select between, and a branch opcode to use.
5508    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5509    ilist<MachineBasicBlock>::iterator It = BB;
5510    ++It;
5511
5512    //  thisMBB:
5513    //  ...
5514    //   TrueVal = ...
5515    //   cmpTY ccX, r1, r2
5516    //   bCC copy1MBB
5517    //   fallthrough --> copy0MBB
5518    MachineBasicBlock *thisMBB = BB;
5519    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5520    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5521    unsigned Opc =
5522      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5523    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5524    MachineFunction *F = BB->getParent();
5525    F->getBasicBlockList().insert(It, copy0MBB);
5526    F->getBasicBlockList().insert(It, sinkMBB);
5527    // Update machine-CFG edges by first adding all successors of the current
5528    // block to the new block which will contain the Phi node for the select.
5529    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5530        e = BB->succ_end(); i != e; ++i)
5531      sinkMBB->addSuccessor(*i);
5532    // Next, remove all successors of the current block, and add the true
5533    // and fallthrough blocks as its successors.
5534    while(!BB->succ_empty())
5535      BB->removeSuccessor(BB->succ_begin());
5536    BB->addSuccessor(copy0MBB);
5537    BB->addSuccessor(sinkMBB);
5538
5539    //  copy0MBB:
5540    //   %FalseValue = ...
5541    //   # fallthrough to sinkMBB
5542    BB = copy0MBB;
5543
5544    // Update machine-CFG edges
5545    BB->addSuccessor(sinkMBB);
5546
5547    //  sinkMBB:
5548    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5549    //  ...
5550    BB = sinkMBB;
5551    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5552      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5553      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5554
5555    delete MI;   // The pseudo instruction is gone now.
5556    return BB;
5557  }
5558
5559  case X86::FP32_TO_INT16_IN_MEM:
5560  case X86::FP32_TO_INT32_IN_MEM:
5561  case X86::FP32_TO_INT64_IN_MEM:
5562  case X86::FP64_TO_INT16_IN_MEM:
5563  case X86::FP64_TO_INT32_IN_MEM:
5564  case X86::FP64_TO_INT64_IN_MEM:
5565  case X86::FP80_TO_INT16_IN_MEM:
5566  case X86::FP80_TO_INT32_IN_MEM:
5567  case X86::FP80_TO_INT64_IN_MEM: {
5568    // Change the floating point control register to use "round towards zero"
5569    // mode when truncating to an integer value.
5570    MachineFunction *F = BB->getParent();
5571    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5572    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5573
5574    // Load the old value of the high byte of the control word...
5575    unsigned OldCW =
5576      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
5577    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5578
5579    // Set the high part to be round to zero...
5580    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5581      .addImm(0xC7F);
5582
5583    // Reload the modified control word now...
5584    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5585
5586    // Restore the memory image of control word to original value
5587    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5588      .addReg(OldCW);
5589
5590    // Get the X86 opcode to use.
5591    unsigned Opc;
5592    switch (MI->getOpcode()) {
5593    default: assert(0 && "illegal opcode!");
5594    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5595    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5596    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5597    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5598    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5599    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
5600    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5601    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5602    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
5603    }
5604
5605    X86AddressMode AM;
5606    MachineOperand &Op = MI->getOperand(0);
5607    if (Op.isRegister()) {
5608      AM.BaseType = X86AddressMode::RegBase;
5609      AM.Base.Reg = Op.getReg();
5610    } else {
5611      AM.BaseType = X86AddressMode::FrameIndexBase;
5612      AM.Base.FrameIndex = Op.getIndex();
5613    }
5614    Op = MI->getOperand(1);
5615    if (Op.isImmediate())
5616      AM.Scale = Op.getImm();
5617    Op = MI->getOperand(2);
5618    if (Op.isImmediate())
5619      AM.IndexReg = Op.getImm();
5620    Op = MI->getOperand(3);
5621    if (Op.isGlobalAddress()) {
5622      AM.GV = Op.getGlobal();
5623    } else {
5624      AM.Disp = Op.getImm();
5625    }
5626    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5627                      .addReg(MI->getOperand(4).getReg());
5628
5629    // Reload the original control word now.
5630    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5631
5632    delete MI;   // The pseudo instruction is gone now.
5633    return BB;
5634  }
5635  }
5636}
5637
5638//===----------------------------------------------------------------------===//
5639//                           X86 Optimization Hooks
5640//===----------------------------------------------------------------------===//
5641
5642void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5643                                                       uint64_t Mask,
5644                                                       uint64_t &KnownZero,
5645                                                       uint64_t &KnownOne,
5646                                                       const SelectionDAG &DAG,
5647                                                       unsigned Depth) const {
5648  unsigned Opc = Op.getOpcode();
5649  assert((Opc >= ISD::BUILTIN_OP_END ||
5650          Opc == ISD::INTRINSIC_WO_CHAIN ||
5651          Opc == ISD::INTRINSIC_W_CHAIN ||
5652          Opc == ISD::INTRINSIC_VOID) &&
5653         "Should use MaskedValueIsZero if you don't know whether Op"
5654         " is a target node!");
5655
5656  KnownZero = KnownOne = 0;   // Don't know anything.
5657  switch (Opc) {
5658  default: break;
5659  case X86ISD::SETCC:
5660    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5661    break;
5662  }
5663}
5664
5665/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5666/// element of the result of the vector shuffle.
5667static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5668  MVT::ValueType VT = N->getValueType(0);
5669  SDOperand PermMask = N->getOperand(2);
5670  unsigned NumElems = PermMask.getNumOperands();
5671  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5672  i %= NumElems;
5673  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5674    return (i == 0)
5675     ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5676  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5677    SDOperand Idx = PermMask.getOperand(i);
5678    if (Idx.getOpcode() == ISD::UNDEF)
5679      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5680    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5681  }
5682  return SDOperand();
5683}
5684
5685/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5686/// node is a GlobalAddress + an offset.
5687static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5688  unsigned Opc = N->getOpcode();
5689  if (Opc == X86ISD::Wrapper) {
5690    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5691      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5692      return true;
5693    }
5694  } else if (Opc == ISD::ADD) {
5695    SDOperand N1 = N->getOperand(0);
5696    SDOperand N2 = N->getOperand(1);
5697    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5698      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5699      if (V) {
5700        Offset += V->getSignExtended();
5701        return true;
5702      }
5703    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5704      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5705      if (V) {
5706        Offset += V->getSignExtended();
5707        return true;
5708      }
5709    }
5710  }
5711  return false;
5712}
5713
5714/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5715/// + Dist * Size.
5716static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5717                              MachineFrameInfo *MFI) {
5718  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5719    return false;
5720
5721  SDOperand Loc = N->getOperand(1);
5722  SDOperand BaseLoc = Base->getOperand(1);
5723  if (Loc.getOpcode() == ISD::FrameIndex) {
5724    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5725      return false;
5726    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5727    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5728    int FS  = MFI->getObjectSize(FI);
5729    int BFS = MFI->getObjectSize(BFI);
5730    if (FS != BFS || FS != Size) return false;
5731    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5732  } else {
5733    GlobalValue *GV1 = NULL;
5734    GlobalValue *GV2 = NULL;
5735    int64_t Offset1 = 0;
5736    int64_t Offset2 = 0;
5737    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5738    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5739    if (isGA1 && isGA2 && GV1 == GV2)
5740      return Offset1 == (Offset2 + Dist*Size);
5741  }
5742
5743  return false;
5744}
5745
5746static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5747                              const X86Subtarget *Subtarget) {
5748  GlobalValue *GV;
5749  int64_t Offset = 0;
5750  if (isGAPlusOffset(Base, GV, Offset))
5751    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5752  // DAG combine handles the stack object case.
5753  return false;
5754}
5755
5756
5757/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5758/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5759/// if the load addresses are consecutive, non-overlapping, and in the right
5760/// order.
5761static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5762                                       const X86Subtarget *Subtarget) {
5763  MachineFunction &MF = DAG.getMachineFunction();
5764  MachineFrameInfo *MFI = MF.getFrameInfo();
5765  MVT::ValueType VT = N->getValueType(0);
5766  MVT::ValueType EVT = MVT::getVectorElementType(VT);
5767  SDOperand PermMask = N->getOperand(2);
5768  int NumElems = (int)PermMask.getNumOperands();
5769  SDNode *Base = NULL;
5770  for (int i = 0; i < NumElems; ++i) {
5771    SDOperand Idx = PermMask.getOperand(i);
5772    if (Idx.getOpcode() == ISD::UNDEF) {
5773      if (!Base) return SDOperand();
5774    } else {
5775      SDOperand Arg =
5776        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5777      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5778        return SDOperand();
5779      if (!Base)
5780        Base = Arg.Val;
5781      else if (!isConsecutiveLoad(Arg.Val, Base,
5782                                  i, MVT::getSizeInBits(EVT)/8,MFI))
5783        return SDOperand();
5784    }
5785  }
5786
5787  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
5788  LoadSDNode *LD = cast<LoadSDNode>(Base);
5789  if (isAlign16) {
5790    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5791                       LD->getSrcValueOffset(), LD->isVolatile());
5792  } else {
5793    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5794                       LD->getSrcValueOffset(), LD->isVolatile(),
5795                       LD->getAlignment());
5796  }
5797}
5798
5799/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5800static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5801                                      const X86Subtarget *Subtarget) {
5802  SDOperand Cond = N->getOperand(0);
5803
5804  // If we have SSE[12] support, try to form min/max nodes.
5805  if (Subtarget->hasSSE2() &&
5806      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5807    if (Cond.getOpcode() == ISD::SETCC) {
5808      // Get the LHS/RHS of the select.
5809      SDOperand LHS = N->getOperand(1);
5810      SDOperand RHS = N->getOperand(2);
5811      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5812
5813      unsigned Opcode = 0;
5814      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5815        switch (CC) {
5816        default: break;
5817        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5818        case ISD::SETULE:
5819        case ISD::SETLE:
5820          if (!UnsafeFPMath) break;
5821          // FALL THROUGH.
5822        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
5823        case ISD::SETLT:
5824          Opcode = X86ISD::FMIN;
5825          break;
5826
5827        case ISD::SETOGT: // (X > Y) ? X : Y -> max
5828        case ISD::SETUGT:
5829        case ISD::SETGT:
5830          if (!UnsafeFPMath) break;
5831          // FALL THROUGH.
5832        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
5833        case ISD::SETGE:
5834          Opcode = X86ISD::FMAX;
5835          break;
5836        }
5837      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5838        switch (CC) {
5839        default: break;
5840        case ISD::SETOGT: // (X > Y) ? Y : X -> min
5841        case ISD::SETUGT:
5842        case ISD::SETGT:
5843          if (!UnsafeFPMath) break;
5844          // FALL THROUGH.
5845        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
5846        case ISD::SETGE:
5847          Opcode = X86ISD::FMIN;
5848          break;
5849
5850        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
5851        case ISD::SETULE:
5852        case ISD::SETLE:
5853          if (!UnsafeFPMath) break;
5854          // FALL THROUGH.
5855        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
5856        case ISD::SETLT:
5857          Opcode = X86ISD::FMAX;
5858          break;
5859        }
5860      }
5861
5862      if (Opcode)
5863        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5864    }
5865
5866  }
5867
5868  return SDOperand();
5869}
5870
5871/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
5872/// X86ISD::FXOR nodes.
5873static SDOperand PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
5874  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
5875  // F[X]OR(0.0, x) -> x
5876  // F[X]OR(x, 0.0) -> x
5877  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
5878    if (C->getValueAPF().isPosZero())
5879      return N->getOperand(1);
5880  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
5881    if (C->getValueAPF().isPosZero())
5882      return N->getOperand(0);
5883  return SDOperand();
5884}
5885
5886/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
5887static SDOperand PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
5888  // FAND(0.0, x) -> 0.0
5889  // FAND(x, 0.0) -> 0.0
5890  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
5891    if (C->getValueAPF().isPosZero())
5892      return N->getOperand(0);
5893  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
5894    if (C->getValueAPF().isPosZero())
5895      return N->getOperand(1);
5896  return SDOperand();
5897}
5898
5899
5900SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5901                                               DAGCombinerInfo &DCI) const {
5902  SelectionDAG &DAG = DCI.DAG;
5903  switch (N->getOpcode()) {
5904  default: break;
5905  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, Subtarget);
5906  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
5907  case X86ISD::FXOR:
5908  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
5909  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
5910  }
5911
5912  return SDOperand();
5913}
5914
5915//===----------------------------------------------------------------------===//
5916//                           X86 Inline Assembly Support
5917//===----------------------------------------------------------------------===//
5918
5919/// getConstraintType - Given a constraint letter, return the type of
5920/// constraint it is for this target.
5921X86TargetLowering::ConstraintType
5922X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5923  if (Constraint.size() == 1) {
5924    switch (Constraint[0]) {
5925    case 'A':
5926    case 'r':
5927    case 'R':
5928    case 'l':
5929    case 'q':
5930    case 'Q':
5931    case 'x':
5932    case 'Y':
5933      return C_RegisterClass;
5934    default:
5935      break;
5936    }
5937  }
5938  return TargetLowering::getConstraintType(Constraint);
5939}
5940
5941/// LowerXConstraint - try to replace an X constraint, which matches anything,
5942/// with another that has more specific requirements based on the type of the
5943/// corresponding operand.
5944void X86TargetLowering::lowerXConstraint(MVT::ValueType ConstraintVT,
5945                                         std::string& s) const {
5946  if (MVT::isFloatingPoint(ConstraintVT)) {
5947    if (Subtarget->hasSSE2())
5948      s = "Y";
5949    else if (Subtarget->hasSSE1())
5950      s = "x";
5951    else
5952      s = "f";
5953  } else
5954    return TargetLowering::lowerXConstraint(ConstraintVT, s);
5955}
5956
5957/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5958/// vector.  If it is invalid, don't add anything to Ops.
5959void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5960                                                     char Constraint,
5961                                                     std::vector<SDOperand>&Ops,
5962                                                     SelectionDAG &DAG) {
5963  SDOperand Result(0, 0);
5964
5965  switch (Constraint) {
5966  default: break;
5967  case 'I':
5968    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5969      if (C->getValue() <= 31) {
5970        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5971        break;
5972      }
5973    }
5974    return;
5975  case 'N':
5976    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5977      if (C->getValue() <= 255) {
5978        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5979        break;
5980      }
5981    }
5982    return;
5983  case 'i': {
5984    // Literal immediates are always ok.
5985    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5986      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5987      break;
5988    }
5989
5990    // If we are in non-pic codegen mode, we allow the address of a global (with
5991    // an optional displacement) to be used with 'i'.
5992    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5993    int64_t Offset = 0;
5994
5995    // Match either (GA) or (GA+C)
5996    if (GA) {
5997      Offset = GA->getOffset();
5998    } else if (Op.getOpcode() == ISD::ADD) {
5999      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6000      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6001      if (C && GA) {
6002        Offset = GA->getOffset()+C->getValue();
6003      } else {
6004        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6005        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6006        if (C && GA)
6007          Offset = GA->getOffset()+C->getValue();
6008        else
6009          C = 0, GA = 0;
6010      }
6011    }
6012
6013    if (GA) {
6014      // If addressing this global requires a load (e.g. in PIC mode), we can't
6015      // match.
6016      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
6017                                         false))
6018        return;
6019
6020      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
6021                                      Offset);
6022      Result = Op;
6023      break;
6024    }
6025
6026    // Otherwise, not valid for this mode.
6027    return;
6028  }
6029  }
6030
6031  if (Result.Val) {
6032    Ops.push_back(Result);
6033    return;
6034  }
6035  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6036}
6037
6038std::vector<unsigned> X86TargetLowering::
6039getRegClassForInlineAsmConstraint(const std::string &Constraint,
6040                                  MVT::ValueType VT) const {
6041  if (Constraint.size() == 1) {
6042    // FIXME: not handling fp-stack yet!
6043    switch (Constraint[0]) {      // GCC X86 Constraint Letters
6044    default: break;  // Unknown constraint letter
6045    case 'A':   // EAX/EDX
6046      if (VT == MVT::i32 || VT == MVT::i64)
6047        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
6048      break;
6049    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
6050    case 'Q':   // Q_REGS
6051      if (VT == MVT::i32)
6052        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
6053      else if (VT == MVT::i16)
6054        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
6055      else if (VT == MVT::i8)
6056        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
6057      else if (VT == MVT::i64)
6058        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
6059      break;
6060    }
6061  }
6062
6063  return std::vector<unsigned>();
6064}
6065
6066std::pair<unsigned, const TargetRegisterClass*>
6067X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6068                                                MVT::ValueType VT) const {
6069  // First, see if this is a constraint that directly corresponds to an LLVM
6070  // register class.
6071  if (Constraint.size() == 1) {
6072    // GCC Constraint Letters
6073    switch (Constraint[0]) {
6074    default: break;
6075    case 'r':   // GENERAL_REGS
6076    case 'R':   // LEGACY_REGS
6077    case 'l':   // INDEX_REGS
6078      if (VT == MVT::i64 && Subtarget->is64Bit())
6079        return std::make_pair(0U, X86::GR64RegisterClass);
6080      if (VT == MVT::i32)
6081        return std::make_pair(0U, X86::GR32RegisterClass);
6082      else if (VT == MVT::i16)
6083        return std::make_pair(0U, X86::GR16RegisterClass);
6084      else if (VT == MVT::i8)
6085        return std::make_pair(0U, X86::GR8RegisterClass);
6086      break;
6087    case 'y':   // MMX_REGS if MMX allowed.
6088      if (!Subtarget->hasMMX()) break;
6089      return std::make_pair(0U, X86::VR64RegisterClass);
6090      break;
6091    case 'Y':   // SSE_REGS if SSE2 allowed
6092      if (!Subtarget->hasSSE2()) break;
6093      // FALL THROUGH.
6094    case 'x':   // SSE_REGS if SSE1 allowed
6095      if (!Subtarget->hasSSE1()) break;
6096
6097      switch (VT) {
6098      default: break;
6099      // Scalar SSE types.
6100      case MVT::f32:
6101      case MVT::i32:
6102        return std::make_pair(0U, X86::FR32RegisterClass);
6103      case MVT::f64:
6104      case MVT::i64:
6105        return std::make_pair(0U, X86::FR64RegisterClass);
6106      // Vector types.
6107      case MVT::v16i8:
6108      case MVT::v8i16:
6109      case MVT::v4i32:
6110      case MVT::v2i64:
6111      case MVT::v4f32:
6112      case MVT::v2f64:
6113        return std::make_pair(0U, X86::VR128RegisterClass);
6114      }
6115      break;
6116    }
6117  }
6118
6119  // Use the default implementation in TargetLowering to convert the register
6120  // constraint into a member of a register class.
6121  std::pair<unsigned, const TargetRegisterClass*> Res;
6122  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6123
6124  // Not found as a standard register?
6125  if (Res.second == 0) {
6126    // GCC calls "st(0)" just plain "st".
6127    if (StringsEqualNoCase("{st}", Constraint)) {
6128      Res.first = X86::ST0;
6129      Res.second = X86::RFP80RegisterClass;
6130    }
6131
6132    return Res;
6133  }
6134
6135  // Otherwise, check to see if this is a register class of the wrong value
6136  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
6137  // turn into {ax},{dx}.
6138  if (Res.second->hasType(VT))
6139    return Res;   // Correct type already, nothing to do.
6140
6141  // All of the single-register GCC register classes map their values onto
6142  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
6143  // really want an 8-bit or 32-bit register, map to the appropriate register
6144  // class and return the appropriate register.
6145  if (Res.second != X86::GR16RegisterClass)
6146    return Res;
6147
6148  if (VT == MVT::i8) {
6149    unsigned DestReg = 0;
6150    switch (Res.first) {
6151    default: break;
6152    case X86::AX: DestReg = X86::AL; break;
6153    case X86::DX: DestReg = X86::DL; break;
6154    case X86::CX: DestReg = X86::CL; break;
6155    case X86::BX: DestReg = X86::BL; break;
6156    }
6157    if (DestReg) {
6158      Res.first = DestReg;
6159      Res.second = Res.second = X86::GR8RegisterClass;
6160    }
6161  } else if (VT == MVT::i32) {
6162    unsigned DestReg = 0;
6163    switch (Res.first) {
6164    default: break;
6165    case X86::AX: DestReg = X86::EAX; break;
6166    case X86::DX: DestReg = X86::EDX; break;
6167    case X86::CX: DestReg = X86::ECX; break;
6168    case X86::BX: DestReg = X86::EBX; break;
6169    case X86::SI: DestReg = X86::ESI; break;
6170    case X86::DI: DestReg = X86::EDI; break;
6171    case X86::BP: DestReg = X86::EBP; break;
6172    case X86::SP: DestReg = X86::ESP; break;
6173    }
6174    if (DestReg) {
6175      Res.first = DestReg;
6176      Res.second = Res.second = X86::GR32RegisterClass;
6177    }
6178  } else if (VT == MVT::i64) {
6179    unsigned DestReg = 0;
6180    switch (Res.first) {
6181    default: break;
6182    case X86::AX: DestReg = X86::RAX; break;
6183    case X86::DX: DestReg = X86::RDX; break;
6184    case X86::CX: DestReg = X86::RCX; break;
6185    case X86::BX: DestReg = X86::RBX; break;
6186    case X86::SI: DestReg = X86::RSI; break;
6187    case X86::DI: DestReg = X86::RDI; break;
6188    case X86::BP: DestReg = X86::RBP; break;
6189    case X86::SP: DestReg = X86::RSP; break;
6190    }
6191    if (DestReg) {
6192      Res.first = DestReg;
6193      Res.second = Res.second = X86::GR64RegisterClass;
6194    }
6195  }
6196
6197  return Res;
6198}
6199