X86ISelLowering.cpp revision d00bfe1f8dded563fa32a045d6d74ec1c25427dd
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
65
66  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
67
68  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
69    if (is64Bit) return new X8664_MachoTargetObjectFile();
70    return new TargetLoweringObjectFileMachO();
71  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
72    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
73    return new X8632_ELFTargetObjectFile(TM);
74  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
75    return new TargetLoweringObjectFileCOFF();
76  }
77  llvm_unreachable("unknown subtarget type");
78}
79
80X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
81  : TargetLowering(TM, createTLOF(TM)) {
82  Subtarget = &TM.getSubtarget<X86Subtarget>();
83  X86ScalarSSEf64 = Subtarget->hasSSE2();
84  X86ScalarSSEf32 = Subtarget->hasSSE1();
85  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
86
87  RegInfo = TM.getRegisterInfo();
88  TD = getTargetData();
89
90  // Set up the TargetLowering object.
91
92  // X86 is weird, it always uses i8 for shift amounts and setcc results.
93  setShiftAmountType(MVT::i8);
94  setBooleanContents(ZeroOrOneBooleanContent);
95  setSchedulingPreference(Sched::RegPressure);
96  setStackPointerRegisterToSaveRestore(X86StackPtr);
97
98  if (Subtarget->isTargetDarwin()) {
99    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
100    setUseUnderscoreSetJmp(false);
101    setUseUnderscoreLongJmp(false);
102  } else if (Subtarget->isTargetMingw()) {
103    // MS runtime is weird: it exports _setjmp, but longjmp!
104    setUseUnderscoreSetJmp(true);
105    setUseUnderscoreLongJmp(false);
106  } else {
107    setUseUnderscoreSetJmp(true);
108    setUseUnderscoreLongJmp(true);
109  }
110
111  // Set up the register classes.
112  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
113  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
123  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
124  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
125  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
126  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
127
128  // SETOEQ and SETUNE require checking two conditions.
129  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
130  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
131  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
132  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
133  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
135
136  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
137  // operation.
138  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
139  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
141
142  if (Subtarget->is64Bit()) {
143    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
144    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
145  } else if (!UseSoftFloat) {
146    // We have an algorithm for SSE2->double, and we turn this into a
147    // 64-bit FILD followed by conditional FADD for other targets.
148    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
149    // We have an algorithm for SSE2, and we turn this into a 64-bit
150    // FILD for other targets.
151    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
152  }
153
154  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
155  // this operation.
156  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
157  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
158
159  if (!UseSoftFloat) {
160    // SSE has no i16 to fp conversion, only i32
161    if (X86ScalarSSEf32) {
162      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
163      // f32 and f64 cases are Legal, f80 case is not
164      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
165    } else {
166      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    }
169  } else {
170    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
171    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
172  }
173
174  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
175  // are Legal, f80 is custom lowered.
176  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
177  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
178
179  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
180  // this operation.
181  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
182  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
183
184  if (X86ScalarSSEf32) {
185    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
186    // f32 and f64 cases are Legal, f80 case is not
187    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
188  } else {
189    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  }
192
193  // Handle FP_TO_UINT by promoting the destination to a larger signed
194  // conversion.
195  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
197  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
198
199  if (Subtarget->is64Bit()) {
200    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
201    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
202  } else if (!UseSoftFloat) {
203    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
204      // Expand FP_TO_UINT into a select.
205      // FIXME: We would like to use a Custom expander here eventually to do
206      // the optimal thing for SSE vs. the default expansion in the legalizer.
207      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
208    else
209      // With SSE3 we can use fisttpll to convert to a signed i64; without
210      // SSE, we're stuck with a fistpll.
211      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
212  }
213
214  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
215  if (!X86ScalarSSEf64) {
216    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
217    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
218    if (Subtarget->is64Bit()) {
219      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
220      // Without SSE, i64->f64 goes through memory; i64->MMX is Legal.
221      if (Subtarget->hasMMX() && !DisableMMX)
222        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Custom);
223      else
224        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
225    }
226  }
227
228  // Scalar integer divide and remainder are lowered to use operations that
229  // produce two results, to match the available instructions. This exposes
230  // the two-result form to trivial CSE, which is able to combine x/y and x%y
231  // into a single instruction.
232  //
233  // Scalar integer multiply-high is also lowered to use two-result
234  // operations, to match the available instructions. However, plain multiply
235  // (low) operations are left as Legal, as there are single-result
236  // instructions for this in x86. Using the two-result multiply instructions
237  // when both high and low results are needed must be arranged by dagcombine.
238  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
240  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
241  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
242  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
243  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
244  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
248  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
249  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
262
263  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
264  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
265  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
266  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
267  if (Subtarget->is64Bit())
268    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
269  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
270  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
271  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
272  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
273  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
274  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
275  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
276  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
277
278  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
279  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
280  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
281  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
282  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
283  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
301  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
302  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
303  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
305  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
306  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
307  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
309  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
310  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
313    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
314  }
315  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
316
317  // Darwin ABI issue.
318  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
319  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
320  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
321  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
322  if (Subtarget->is64Bit())
323    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
324  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
325  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
326  if (Subtarget->is64Bit()) {
327    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
328    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
329    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
330    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
331    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
332  }
333  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
334  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
335  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
336  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
337  if (Subtarget->is64Bit()) {
338    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
339    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
340    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
341  }
342
343  if (Subtarget->hasSSE1())
344    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
345
346  // We may not have a libcall for MEMBARRIER so we should lower this.
347  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
348
349  // On X86 and X86-64, atomic operations are lowered to locked instructions.
350  // Locked instructions, in turn, have implicit fence semantics (all memory
351  // operations are flushed before issuing the locked instruction, and they
352  // are not buffered), so we can fold away the common pattern of
353  // fence-atomic-fence.
354  setShouldFoldAtomicFences(true);
355
356  // Expand certain atomics
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
359  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
360  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
361
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
364  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
365  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
366
367  if (!Subtarget->is64Bit()) {
368    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
374    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
375  }
376
377  // FIXME - use subtarget debug flags
378  if (!Subtarget->isTargetDarwin() &&
379      !Subtarget->isTargetELF() &&
380      !Subtarget->isTargetCygMing()) {
381    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
382  }
383
384  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
385  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
388  if (Subtarget->is64Bit()) {
389    setExceptionPointerRegister(X86::RAX);
390    setExceptionSelectorRegister(X86::RDX);
391  } else {
392    setExceptionPointerRegister(X86::EAX);
393    setExceptionSelectorRegister(X86::EDX);
394  }
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
397
398  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
399
400  setOperationAction(ISD::TRAP, MVT::Other, Legal);
401
402  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
403  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
404  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
405  if (Subtarget->is64Bit()) {
406    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
407    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
408  } else {
409    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
410    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
411  }
412
413  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
414  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
415  if (Subtarget->is64Bit())
416    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
417  if (Subtarget->isTargetCygMing())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
419  else
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
421
422  if (!UseSoftFloat && X86ScalarSSEf64) {
423    // f32 and f64 use SSE.
424    // Set up the FP register classes.
425    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
426    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
427
428    // Use ANDPD to simulate FABS.
429    setOperationAction(ISD::FABS , MVT::f64, Custom);
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f64, Custom);
434    setOperationAction(ISD::FNEG , MVT::f32, Custom);
435
436    // Use ANDPD and ORPD to simulate FCOPYSIGN.
437    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
438    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
439
440    // We don't support sin/cos/fmod
441    setOperationAction(ISD::FSIN , MVT::f64, Expand);
442    setOperationAction(ISD::FCOS , MVT::f64, Expand);
443    setOperationAction(ISD::FSIN , MVT::f32, Expand);
444    setOperationAction(ISD::FCOS , MVT::f32, Expand);
445
446    // Expand FP immediates into loads from the stack, except for the special
447    // cases we handle.
448    addLegalFPImmediate(APFloat(+0.0)); // xorpd
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450  } else if (!UseSoftFloat && X86ScalarSSEf32) {
451    // Use SSE for f32, x87 for f64.
452    // Set up the FP register classes.
453    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
454    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
455
456    // Use ANDPS to simulate FABS.
457    setOperationAction(ISD::FABS , MVT::f32, Custom);
458
459    // Use XORP to simulate FNEG.
460    setOperationAction(ISD::FNEG , MVT::f32, Custom);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463
464    // Use ANDPS and ORPS to simulate FCOPYSIGN.
465    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
467
468    // We don't support sin/cos/fmod
469    setOperationAction(ISD::FSIN , MVT::f32, Expand);
470    setOperationAction(ISD::FCOS , MVT::f32, Expand);
471
472    // Special cases we handle for FP constants.
473    addLegalFPImmediate(APFloat(+0.0f)); // xorps
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478
479    if (!UnsafeFPMath) {
480      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
481      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
482    }
483  } else if (!UseSoftFloat) {
484    // f32 and f64 in x87.
485    // Set up the FP register classes.
486    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
487    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
488
489    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
490    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
493
494    if (!UnsafeFPMath) {
495      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
496      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
497    }
498    addLegalFPImmediate(APFloat(+0.0)); // FLD0
499    addLegalFPImmediate(APFloat(+1.0)); // FLD1
500    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
501    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
502    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
503    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
504    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
505    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
506  }
507
508  // Long double always uses X87.
509  if (!UseSoftFloat) {
510    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
511    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
512    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
513    {
514      bool ignored;
515      APFloat TmpFlt(+0.0);
516      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                     &ignored);
518      addLegalFPImmediate(TmpFlt);  // FLD0
519      TmpFlt.changeSign();
520      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
521      APFloat TmpFlt2(+1.0);
522      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
523                      &ignored);
524      addLegalFPImmediate(TmpFlt2);  // FLD1
525      TmpFlt2.changeSign();
526      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
527    }
528
529    if (!UnsafeFPMath) {
530      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
531      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
532    }
533  }
534
535  // Always use a library call for pow.
536  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
537  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
539
540  setOperationAction(ISD::FLOG, MVT::f80, Expand);
541  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
543  setOperationAction(ISD::FEXP, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
545
546  // First set operation action for all vector types to either promote
547  // (for widening) or expand (for scalarization). Then we will selectively
548  // turn on ones that can be effectively codegen'd.
549  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
550       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
551    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
566    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
600    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
604    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
605         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
606      setTruncStoreAction((MVT::SimpleValueType)VT,
607                          (MVT::SimpleValueType)InnerVT, Expand);
608    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
609    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
610    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
611  }
612
613  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
614  // with -msoft-float, disable use of MMX as well.
615  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
616    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass, false);
617    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false);
618    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false);
619
620    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false);
621
622    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
623    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
624    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
625    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
626
627    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
628    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
629    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
630    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
631
632    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
633    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
634
635    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
636    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
637    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
638    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
639    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
640    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
641    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
642
643    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
644    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
645    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
646    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
647    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
648    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
649    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
650
651    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
652    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
653    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
654    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
655    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
656    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
657    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
658
659    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
660    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
661    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
662    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
663    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
664    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
665    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
666
667    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
668    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
669    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
670    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
671
672    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
674    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
675    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
676
677    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
678    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
679    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
680
681    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
682
683    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
684    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
685    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
686    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
687    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
688    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
689    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
690
691    if (!X86ScalarSSEf64 && Subtarget->is64Bit()) {
692      setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Custom);
693      setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Custom);
694      setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Custom);
695      setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Custom);
696    }
697  }
698
699  if (!UseSoftFloat && Subtarget->hasSSE1()) {
700    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
701
702    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
703    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
704    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
705    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
706    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
707    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
708    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
709    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
710    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
711    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
712    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
713    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
714  }
715
716  if (!UseSoftFloat && Subtarget->hasSSE2()) {
717    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
718
719    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
720    // registers cannot be used even for integer operations.
721    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
722    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
723    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
724    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
725
726    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
727    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
728    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
729    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
730    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
731    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
732    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
733    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
734    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
735    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
736    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
737    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
738    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
739    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
740    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
741    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
742
743    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
744    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
745    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
746    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
747
748    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
749    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
750    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
751    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
752    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
753
754    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
755    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
756    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
757    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
758    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
759
760    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
761    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
762      EVT VT = (MVT::SimpleValueType)i;
763      // Do not attempt to custom lower non-power-of-2 vectors
764      if (!isPowerOf2_32(VT.getVectorNumElements()))
765        continue;
766      // Do not attempt to custom lower non-128-bit vectors
767      if (!VT.is128BitVector())
768        continue;
769      setOperationAction(ISD::BUILD_VECTOR,
770                         VT.getSimpleVT().SimpleTy, Custom);
771      setOperationAction(ISD::VECTOR_SHUFFLE,
772                         VT.getSimpleVT().SimpleTy, Custom);
773      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
774                         VT.getSimpleVT().SimpleTy, Custom);
775    }
776
777    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
778    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
779    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
780    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
781    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
782    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
783
784    if (Subtarget->is64Bit()) {
785      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
786      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
787    }
788
789    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
790    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
791      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
792      EVT VT = SVT;
793
794      // Do not attempt to promote non-128-bit vectors
795      if (!VT.is128BitVector())
796        continue;
797
798      setOperationAction(ISD::AND,    SVT, Promote);
799      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
800      setOperationAction(ISD::OR,     SVT, Promote);
801      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
802      setOperationAction(ISD::XOR,    SVT, Promote);
803      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
804      setOperationAction(ISD::LOAD,   SVT, Promote);
805      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
806      setOperationAction(ISD::SELECT, SVT, Promote);
807      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
808    }
809
810    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
811
812    // Custom lower v2i64 and v2f64 selects.
813    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
814    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
815    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
816    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
817
818    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
819    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
820    if (!DisableMMX && Subtarget->hasMMX()) {
821      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
822      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
823    }
824  }
825
826  if (Subtarget->hasSSE41()) {
827    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
828    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
829    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
830    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
831    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
832    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
833    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
834    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
835    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
836    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
837
838    // FIXME: Do we need to handle scalar-to-vector here?
839    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
840
841    // Can turn SHL into an integer multiply.
842    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
843    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
844
845    // i8 and i16 vectors are custom , because the source register and source
846    // source memory operand types are not the same width.  f32 vectors are
847    // custom since the immediate controlling the insert encodes additional
848    // information.
849    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
850    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
851    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
852    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
853
854    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
855    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
856    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
857    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
858
859    if (Subtarget->is64Bit()) {
860      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
861      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
862    }
863  }
864
865  if (Subtarget->hasSSE42()) {
866    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
867  }
868
869  if (!UseSoftFloat && Subtarget->hasAVX()) {
870    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
871    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
872    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
873    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
874    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
875
876    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
877    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
879    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
880    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
881    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
882    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
883    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
884    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
885    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
886    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
887    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
888    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
889    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
890    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
891
892    // Operations to consider commented out -v16i16 v32i8
893    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
894    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
895    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
896    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
897    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
898    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
899    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
900    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
901    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
902    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
903    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
904    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
905    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
906    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
907
908    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
909    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
910    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
911    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
912
913    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
914    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
915    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
916    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
917    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
918
919    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
920    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
921    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
922    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
923    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
924    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
925
926#if 0
927    // Not sure we want to do this since there are no 256-bit integer
928    // operations in AVX
929
930    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
931    // This includes 256-bit vectors
932    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
933      EVT VT = (MVT::SimpleValueType)i;
934
935      // Do not attempt to custom lower non-power-of-2 vectors
936      if (!isPowerOf2_32(VT.getVectorNumElements()))
937        continue;
938
939      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
940      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
941      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
942    }
943
944    if (Subtarget->is64Bit()) {
945      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
946      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
947    }
948#endif
949
950#if 0
951    // Not sure we want to do this since there are no 256-bit integer
952    // operations in AVX
953
954    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
955    // Including 256-bit vectors
956    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
957      EVT VT = (MVT::SimpleValueType)i;
958
959      if (!VT.is256BitVector()) {
960        continue;
961      }
962      setOperationAction(ISD::AND,    VT, Promote);
963      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
964      setOperationAction(ISD::OR,     VT, Promote);
965      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
966      setOperationAction(ISD::XOR,    VT, Promote);
967      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
968      setOperationAction(ISD::LOAD,   VT, Promote);
969      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
970      setOperationAction(ISD::SELECT, VT, Promote);
971      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
972    }
973
974    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
975#endif
976  }
977
978  // We want to custom lower some of our intrinsics.
979  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
980
981  // Add/Sub/Mul with overflow operations are custom lowered.
982  setOperationAction(ISD::SADDO, MVT::i32, Custom);
983  setOperationAction(ISD::UADDO, MVT::i32, Custom);
984  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
985  setOperationAction(ISD::USUBO, MVT::i32, Custom);
986  setOperationAction(ISD::SMULO, MVT::i32, Custom);
987
988  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
989  // handle type legalization for these operations here.
990  //
991  // FIXME: We really should do custom legalization for addition and
992  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
993  // than generic legalization for 64-bit multiplication-with-overflow, though.
994  if (Subtarget->is64Bit()) {
995    setOperationAction(ISD::SADDO, MVT::i64, Custom);
996    setOperationAction(ISD::UADDO, MVT::i64, Custom);
997    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
998    setOperationAction(ISD::USUBO, MVT::i64, Custom);
999    setOperationAction(ISD::SMULO, MVT::i64, Custom);
1000  }
1001
1002  if (!Subtarget->is64Bit()) {
1003    // These libcalls are not available in 32-bit.
1004    setLibcallName(RTLIB::SHL_I128, 0);
1005    setLibcallName(RTLIB::SRL_I128, 0);
1006    setLibcallName(RTLIB::SRA_I128, 0);
1007  }
1008
1009  // We have target-specific dag combine patterns for the following nodes:
1010  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1011  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1012  setTargetDAGCombine(ISD::BUILD_VECTOR);
1013  setTargetDAGCombine(ISD::SELECT);
1014  setTargetDAGCombine(ISD::SHL);
1015  setTargetDAGCombine(ISD::SRA);
1016  setTargetDAGCombine(ISD::SRL);
1017  setTargetDAGCombine(ISD::OR);
1018  setTargetDAGCombine(ISD::STORE);
1019  setTargetDAGCombine(ISD::ZERO_EXTEND);
1020  if (Subtarget->is64Bit())
1021    setTargetDAGCombine(ISD::MUL);
1022
1023  computeRegisterProperties();
1024
1025  // FIXME: These should be based on subtarget info. Plus, the values should
1026  // be smaller when we are in optimizing for size mode.
1027  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1028  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1029  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1030  setPrefLoopAlignment(16);
1031  benefitFromCodePlacementOpt = true;
1032}
1033
1034
1035MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1036  return MVT::i8;
1037}
1038
1039
1040/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1041/// the desired ByVal argument alignment.
1042static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1043  if (MaxAlign == 16)
1044    return;
1045  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1046    if (VTy->getBitWidth() == 128)
1047      MaxAlign = 16;
1048  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1049    unsigned EltAlign = 0;
1050    getMaxByValAlign(ATy->getElementType(), EltAlign);
1051    if (EltAlign > MaxAlign)
1052      MaxAlign = EltAlign;
1053  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1054    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1055      unsigned EltAlign = 0;
1056      getMaxByValAlign(STy->getElementType(i), EltAlign);
1057      if (EltAlign > MaxAlign)
1058        MaxAlign = EltAlign;
1059      if (MaxAlign == 16)
1060        break;
1061    }
1062  }
1063  return;
1064}
1065
1066/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1067/// function arguments in the caller parameter area. For X86, aggregates
1068/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1069/// are at 4-byte boundaries.
1070unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1071  if (Subtarget->is64Bit()) {
1072    // Max of 8 and alignment of type.
1073    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1074    if (TyAlign > 8)
1075      return TyAlign;
1076    return 8;
1077  }
1078
1079  unsigned Align = 4;
1080  if (Subtarget->hasSSE1())
1081    getMaxByValAlign(Ty, Align);
1082  return Align;
1083}
1084
1085/// getOptimalMemOpType - Returns the target specific optimal type for load
1086/// and store operations as a result of memset, memcpy, and memmove
1087/// lowering. If DstAlign is zero that means it's safe to destination
1088/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1089/// means there isn't a need to check it against alignment requirement,
1090/// probably because the source does not need to be loaded. If
1091/// 'NonScalarIntSafe' is true, that means it's safe to return a
1092/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1093/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1094/// constant so it does not need to be loaded.
1095/// It returns EVT::Other if the type should be determined using generic
1096/// target-independent logic.
1097EVT
1098X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1099                                       unsigned DstAlign, unsigned SrcAlign,
1100                                       bool NonScalarIntSafe,
1101                                       bool MemcpyStrSrc,
1102                                       MachineFunction &MF) const {
1103  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1104  // linux.  This is because the stack realignment code can't handle certain
1105  // cases like PR2962.  This should be removed when PR2962 is fixed.
1106  const Function *F = MF.getFunction();
1107  if (NonScalarIntSafe &&
1108      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1109    if (Size >= 16 &&
1110        (Subtarget->isUnalignedMemAccessFast() ||
1111         ((DstAlign == 0 || DstAlign >= 16) &&
1112          (SrcAlign == 0 || SrcAlign >= 16))) &&
1113        Subtarget->getStackAlignment() >= 16) {
1114      if (Subtarget->hasSSE2())
1115        return MVT::v4i32;
1116      if (Subtarget->hasSSE1())
1117        return MVT::v4f32;
1118    } else if (!MemcpyStrSrc && Size >= 8 &&
1119               !Subtarget->is64Bit() &&
1120               Subtarget->getStackAlignment() >= 8 &&
1121               Subtarget->hasSSE2()) {
1122      // Do not use f64 to lower memcpy if source is string constant. It's
1123      // better to use i32 to avoid the loads.
1124      return MVT::f64;
1125    }
1126  }
1127  if (Subtarget->is64Bit() && Size >= 8)
1128    return MVT::i64;
1129  return MVT::i32;
1130}
1131
1132/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1133/// current function.  The returned value is a member of the
1134/// MachineJumpTableInfo::JTEntryKind enum.
1135unsigned X86TargetLowering::getJumpTableEncoding() const {
1136  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1137  // symbol.
1138  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1139      Subtarget->isPICStyleGOT())
1140    return MachineJumpTableInfo::EK_Custom32;
1141
1142  // Otherwise, use the normal jump table encoding heuristics.
1143  return TargetLowering::getJumpTableEncoding();
1144}
1145
1146/// getPICBaseSymbol - Return the X86-32 PIC base.
1147MCSymbol *
1148X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1149                                    MCContext &Ctx) const {
1150  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1151  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1152                               Twine(MF->getFunctionNumber())+"$pb");
1153}
1154
1155
1156const MCExpr *
1157X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1158                                             const MachineBasicBlock *MBB,
1159                                             unsigned uid,MCContext &Ctx) const{
1160  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1161         Subtarget->isPICStyleGOT());
1162  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1163  // entries.
1164  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1165                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1166}
1167
1168/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1169/// jumptable.
1170SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1171                                                    SelectionDAG &DAG) const {
1172  if (!Subtarget->is64Bit())
1173    // This doesn't have DebugLoc associated with it, but is not really the
1174    // same as a Register.
1175    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1176  return Table;
1177}
1178
1179/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1180/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1181/// MCExpr.
1182const MCExpr *X86TargetLowering::
1183getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1184                             MCContext &Ctx) const {
1185  // X86-64 uses RIP relative addressing based on the jump table label.
1186  if (Subtarget->isPICStyleRIPRel())
1187    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1188
1189  // Otherwise, the reference is relative to the PIC base.
1190  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1191}
1192
1193/// getFunctionAlignment - Return the Log2 alignment of this function.
1194unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1195  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1196}
1197
1198std::pair<const TargetRegisterClass*, uint8_t>
1199X86TargetLowering::findRepresentativeClass(EVT VT) const{
1200  const TargetRegisterClass *RRC = 0;
1201  uint8_t Cost = 1;
1202  switch (VT.getSimpleVT().SimpleTy) {
1203  default:
1204    return TargetLowering::findRepresentativeClass(VT);
1205  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1206    RRC = (Subtarget->is64Bit()
1207           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1208    break;
1209  case MVT::v8i8: case MVT::v4i16:
1210  case MVT::v2i32: case MVT::v1i64:
1211    RRC = X86::VR64RegisterClass;
1212    break;
1213  case MVT::f32: case MVT::f64:
1214  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1215  case MVT::v4f32: case MVT::v2f64:
1216  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1217  case MVT::v4f64:
1218    RRC = X86::VR128RegisterClass;
1219    break;
1220  }
1221  return std::make_pair(RRC, Cost);
1222}
1223
1224unsigned
1225X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1226                                       MachineFunction &MF) const {
1227  unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
1228  switch (RC->getID()) {
1229  default:
1230    return 0;
1231  case X86::GR32RegClassID:
1232    return 4 - FPDiff;
1233  case X86::GR64RegClassID:
1234    return 8 - FPDiff;
1235  case X86::VR128RegClassID:
1236    return Subtarget->is64Bit() ? 10 : 4;
1237  case X86::VR64RegClassID:
1238    return 4;
1239  }
1240}
1241
1242bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1243                                               unsigned &Offset) const {
1244  if (!Subtarget->isTargetLinux())
1245    return false;
1246
1247  if (Subtarget->is64Bit()) {
1248    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1249    Offset = 0x28;
1250    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1251      AddressSpace = 256;
1252    else
1253      AddressSpace = 257;
1254  } else {
1255    // %gs:0x14 on i386
1256    Offset = 0x14;
1257    AddressSpace = 256;
1258  }
1259  return true;
1260}
1261
1262
1263//===----------------------------------------------------------------------===//
1264//               Return Value Calling Convention Implementation
1265//===----------------------------------------------------------------------===//
1266
1267#include "X86GenCallingConv.inc"
1268
1269bool
1270X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1271                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1272                        LLVMContext &Context) const {
1273  SmallVector<CCValAssign, 16> RVLocs;
1274  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1275                 RVLocs, Context);
1276  return CCInfo.CheckReturn(Outs, RetCC_X86);
1277}
1278
1279SDValue
1280X86TargetLowering::LowerReturn(SDValue Chain,
1281                               CallingConv::ID CallConv, bool isVarArg,
1282                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1283                               const SmallVectorImpl<SDValue> &OutVals,
1284                               DebugLoc dl, SelectionDAG &DAG) const {
1285  MachineFunction &MF = DAG.getMachineFunction();
1286  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1287
1288  SmallVector<CCValAssign, 16> RVLocs;
1289  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1290                 RVLocs, *DAG.getContext());
1291  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1292
1293  // Add the regs to the liveout set for the function.
1294  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1295  for (unsigned i = 0; i != RVLocs.size(); ++i)
1296    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1297      MRI.addLiveOut(RVLocs[i].getLocReg());
1298
1299  SDValue Flag;
1300
1301  SmallVector<SDValue, 6> RetOps;
1302  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1303  // Operand #1 = Bytes To Pop
1304  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1305                   MVT::i16));
1306
1307  // Copy the result values into the output registers.
1308  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1309    CCValAssign &VA = RVLocs[i];
1310    assert(VA.isRegLoc() && "Can only return in registers!");
1311    SDValue ValToCopy = OutVals[i];
1312    EVT ValVT = ValToCopy.getValueType();
1313
1314    // If this is x86-64, and we disabled SSE, we can't return FP values
1315    if ((ValVT == MVT::f32 || ValVT == MVT::f64) &&
1316        (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1317      report_fatal_error("SSE register return with SSE disabled");
1318    }
1319    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1320    // llvm-gcc has never done it right and no one has noticed, so this
1321    // should be OK for now.
1322    if (ValVT == MVT::f64 &&
1323        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1324      report_fatal_error("SSE2 register return with SSE2 disabled");
1325
1326    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1327    // the RET instruction and handled by the FP Stackifier.
1328    if (VA.getLocReg() == X86::ST0 ||
1329        VA.getLocReg() == X86::ST1) {
1330      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1331      // change the value to the FP stack register class.
1332      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1333        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1334      RetOps.push_back(ValToCopy);
1335      // Don't emit a copytoreg.
1336      continue;
1337    }
1338
1339    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1340    // which is returned in RAX / RDX.
1341    if (Subtarget->is64Bit()) {
1342      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1343        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1344        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1345          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1346                                  ValToCopy);
1347
1348          // If we don't have SSE2 available, convert to v4f32 so the generated
1349          // register is legal.
1350          if (!Subtarget->hasSSE2())
1351            ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32,ValToCopy);
1352        }
1353      }
1354    }
1355
1356    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1357    Flag = Chain.getValue(1);
1358  }
1359
1360  // The x86-64 ABI for returning structs by value requires that we copy
1361  // the sret argument into %rax for the return. We saved the argument into
1362  // a virtual register in the entry block, so now we copy the value out
1363  // and into %rax.
1364  if (Subtarget->is64Bit() &&
1365      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1366    MachineFunction &MF = DAG.getMachineFunction();
1367    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1368    unsigned Reg = FuncInfo->getSRetReturnReg();
1369    assert(Reg &&
1370           "SRetReturnReg should have been set in LowerFormalArguments().");
1371    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1372
1373    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1374    Flag = Chain.getValue(1);
1375
1376    // RAX now acts like a return value.
1377    MRI.addLiveOut(X86::RAX);
1378  }
1379
1380  RetOps[0] = Chain;  // Update chain.
1381
1382  // Add the flag if we have it.
1383  if (Flag.getNode())
1384    RetOps.push_back(Flag);
1385
1386  return DAG.getNode(X86ISD::RET_FLAG, dl,
1387                     MVT::Other, &RetOps[0], RetOps.size());
1388}
1389
1390/// LowerCallResult - Lower the result values of a call into the
1391/// appropriate copies out of appropriate physical registers.
1392///
1393SDValue
1394X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1395                                   CallingConv::ID CallConv, bool isVarArg,
1396                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1397                                   DebugLoc dl, SelectionDAG &DAG,
1398                                   SmallVectorImpl<SDValue> &InVals) const {
1399
1400  // Assign locations to each value returned by this call.
1401  SmallVector<CCValAssign, 16> RVLocs;
1402  bool Is64Bit = Subtarget->is64Bit();
1403  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1404                 RVLocs, *DAG.getContext());
1405  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1406
1407  // Copy all of the result registers out of their specified physreg.
1408  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1409    CCValAssign &VA = RVLocs[i];
1410    EVT CopyVT = VA.getValVT();
1411
1412    // If this is x86-64, and we disabled SSE, we can't return FP values
1413    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1414        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1415      report_fatal_error("SSE register return with SSE disabled");
1416    }
1417
1418    SDValue Val;
1419
1420    // If this is a call to a function that returns an fp value on the floating
1421    // point stack, we must guarantee the the value is popped from the stack, so
1422    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1423    // if the return value is not used. We use the FpGET_ST0 instructions
1424    // instead.
1425    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1426      // If we prefer to use the value in xmm registers, copy it out as f80 and
1427      // use a truncate to move it from fp stack reg to xmm reg.
1428      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1429      bool isST0 = VA.getLocReg() == X86::ST0;
1430      unsigned Opc = 0;
1431      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1432      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1433      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1434      SDValue Ops[] = { Chain, InFlag };
1435      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1436                                         Ops, 2), 1);
1437      Val = Chain.getValue(0);
1438
1439      // Round the f80 to the right size, which also moves it to the appropriate
1440      // xmm register.
1441      if (CopyVT != VA.getValVT())
1442        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1443                          // This truncation won't change the value.
1444                          DAG.getIntPtrConstant(1));
1445    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1446      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1447      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1448        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1449                                   MVT::v2i64, InFlag).getValue(1);
1450        Val = Chain.getValue(0);
1451        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1452                          Val, DAG.getConstant(0, MVT::i64));
1453      } else {
1454        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1455                                   MVT::i64, InFlag).getValue(1);
1456        Val = Chain.getValue(0);
1457      }
1458      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1459    } else {
1460      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1461                                 CopyVT, InFlag).getValue(1);
1462      Val = Chain.getValue(0);
1463    }
1464    InFlag = Chain.getValue(2);
1465    InVals.push_back(Val);
1466  }
1467
1468  return Chain;
1469}
1470
1471
1472//===----------------------------------------------------------------------===//
1473//                C & StdCall & Fast Calling Convention implementation
1474//===----------------------------------------------------------------------===//
1475//  StdCall calling convention seems to be standard for many Windows' API
1476//  routines and around. It differs from C calling convention just a little:
1477//  callee should clean up the stack, not caller. Symbols should be also
1478//  decorated in some fancy way :) It doesn't support any vector arguments.
1479//  For info on fast calling convention see Fast Calling Convention (tail call)
1480//  implementation LowerX86_32FastCCCallTo.
1481
1482/// CallIsStructReturn - Determines whether a call uses struct return
1483/// semantics.
1484static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1485  if (Outs.empty())
1486    return false;
1487
1488  return Outs[0].Flags.isSRet();
1489}
1490
1491/// ArgsAreStructReturn - Determines whether a function uses struct
1492/// return semantics.
1493static bool
1494ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1495  if (Ins.empty())
1496    return false;
1497
1498  return Ins[0].Flags.isSRet();
1499}
1500
1501/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1502/// given CallingConvention value.
1503CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1504  if (Subtarget->is64Bit()) {
1505    if (CC == CallingConv::GHC)
1506      return CC_X86_64_GHC;
1507    else if (Subtarget->isTargetWin64())
1508      return CC_X86_Win64_C;
1509    else
1510      return CC_X86_64_C;
1511  }
1512
1513  if (CC == CallingConv::X86_FastCall)
1514    return CC_X86_32_FastCall;
1515  else if (CC == CallingConv::X86_ThisCall)
1516    return CC_X86_32_ThisCall;
1517  else if (CC == CallingConv::Fast)
1518    return CC_X86_32_FastCC;
1519  else if (CC == CallingConv::GHC)
1520    return CC_X86_32_GHC;
1521  else
1522    return CC_X86_32_C;
1523}
1524
1525/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1526/// by "Src" to address "Dst" with size and alignment information specified by
1527/// the specific parameter attribute. The copy will be passed as a byval
1528/// function parameter.
1529static SDValue
1530CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1531                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1532                          DebugLoc dl) {
1533  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1534  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1535                       /*isVolatile*/false, /*AlwaysInline=*/true,
1536                       NULL, 0, NULL, 0);
1537}
1538
1539/// IsTailCallConvention - Return true if the calling convention is one that
1540/// supports tail call optimization.
1541static bool IsTailCallConvention(CallingConv::ID CC) {
1542  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1543}
1544
1545/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1546/// a tailcall target by changing its ABI.
1547static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1548  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1549}
1550
1551SDValue
1552X86TargetLowering::LowerMemArgument(SDValue Chain,
1553                                    CallingConv::ID CallConv,
1554                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1555                                    DebugLoc dl, SelectionDAG &DAG,
1556                                    const CCValAssign &VA,
1557                                    MachineFrameInfo *MFI,
1558                                    unsigned i) const {
1559  // Create the nodes corresponding to a load from this parameter slot.
1560  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1561  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1562  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1563  EVT ValVT;
1564
1565  // If value is passed by pointer we have address passed instead of the value
1566  // itself.
1567  if (VA.getLocInfo() == CCValAssign::Indirect)
1568    ValVT = VA.getLocVT();
1569  else
1570    ValVT = VA.getValVT();
1571
1572  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1573  // changed with more analysis.
1574  // In case of tail call optimization mark all arguments mutable. Since they
1575  // could be overwritten by lowering of arguments in case of a tail call.
1576  if (Flags.isByVal()) {
1577    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1578                                    VA.getLocMemOffset(), isImmutable);
1579    return DAG.getFrameIndex(FI, getPointerTy());
1580  } else {
1581    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1582                                    VA.getLocMemOffset(), isImmutable);
1583    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1584    return DAG.getLoad(ValVT, dl, Chain, FIN,
1585                       PseudoSourceValue::getFixedStack(FI), 0,
1586                       false, false, 0);
1587  }
1588}
1589
1590SDValue
1591X86TargetLowering::LowerFormalArguments(SDValue Chain,
1592                                        CallingConv::ID CallConv,
1593                                        bool isVarArg,
1594                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1595                                        DebugLoc dl,
1596                                        SelectionDAG &DAG,
1597                                        SmallVectorImpl<SDValue> &InVals)
1598                                          const {
1599  MachineFunction &MF = DAG.getMachineFunction();
1600  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1601
1602  const Function* Fn = MF.getFunction();
1603  if (Fn->hasExternalLinkage() &&
1604      Subtarget->isTargetCygMing() &&
1605      Fn->getName() == "main")
1606    FuncInfo->setForceFramePointer(true);
1607
1608  MachineFrameInfo *MFI = MF.getFrameInfo();
1609  bool Is64Bit = Subtarget->is64Bit();
1610  bool IsWin64 = Subtarget->isTargetWin64();
1611
1612  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1613         "Var args not supported with calling convention fastcc or ghc");
1614
1615  // Assign locations to all of the incoming arguments.
1616  SmallVector<CCValAssign, 16> ArgLocs;
1617  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1618                 ArgLocs, *DAG.getContext());
1619  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1620
1621  unsigned LastVal = ~0U;
1622  SDValue ArgValue;
1623  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1624    CCValAssign &VA = ArgLocs[i];
1625    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1626    // places.
1627    assert(VA.getValNo() != LastVal &&
1628           "Don't support value assigned to multiple locs yet");
1629    LastVal = VA.getValNo();
1630
1631    if (VA.isRegLoc()) {
1632      EVT RegVT = VA.getLocVT();
1633      TargetRegisterClass *RC = NULL;
1634      if (RegVT == MVT::i32)
1635        RC = X86::GR32RegisterClass;
1636      else if (Is64Bit && RegVT == MVT::i64)
1637        RC = X86::GR64RegisterClass;
1638      else if (RegVT == MVT::f32)
1639        RC = X86::FR32RegisterClass;
1640      else if (RegVT == MVT::f64)
1641        RC = X86::FR64RegisterClass;
1642      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1643        RC = X86::VR256RegisterClass;
1644      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1645        RC = X86::VR128RegisterClass;
1646      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1647        RC = X86::VR64RegisterClass;
1648      else
1649        llvm_unreachable("Unknown argument type!");
1650
1651      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1652      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1653
1654      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1655      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1656      // right size.
1657      if (VA.getLocInfo() == CCValAssign::SExt)
1658        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1659                               DAG.getValueType(VA.getValVT()));
1660      else if (VA.getLocInfo() == CCValAssign::ZExt)
1661        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1662                               DAG.getValueType(VA.getValVT()));
1663      else if (VA.getLocInfo() == CCValAssign::BCvt)
1664        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1665
1666      if (VA.isExtInLoc()) {
1667        // Handle MMX values passed in XMM regs.
1668        if (RegVT.isVector()) {
1669          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1670                                 ArgValue, DAG.getConstant(0, MVT::i64));
1671          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1672        } else
1673          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1674      }
1675    } else {
1676      assert(VA.isMemLoc());
1677      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1678    }
1679
1680    // If value is passed via pointer - do a load.
1681    if (VA.getLocInfo() == CCValAssign::Indirect)
1682      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1683                             false, false, 0);
1684
1685    InVals.push_back(ArgValue);
1686  }
1687
1688  // The x86-64 ABI for returning structs by value requires that we copy
1689  // the sret argument into %rax for the return. Save the argument into
1690  // a virtual register so that we can access it from the return points.
1691  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1692    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1693    unsigned Reg = FuncInfo->getSRetReturnReg();
1694    if (!Reg) {
1695      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1696      FuncInfo->setSRetReturnReg(Reg);
1697    }
1698    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1699    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1700  }
1701
1702  unsigned StackSize = CCInfo.getNextStackOffset();
1703  // Align stack specially for tail calls.
1704  if (FuncIsMadeTailCallSafe(CallConv))
1705    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1706
1707  // If the function takes variable number of arguments, make a frame index for
1708  // the start of the first vararg value... for expansion of llvm.va_start.
1709  if (isVarArg) {
1710    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1711                    CallConv != CallingConv::X86_ThisCall)) {
1712      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1713    }
1714    if (Is64Bit) {
1715      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1716
1717      // FIXME: We should really autogenerate these arrays
1718      static const unsigned GPR64ArgRegsWin64[] = {
1719        X86::RCX, X86::RDX, X86::R8,  X86::R9
1720      };
1721      static const unsigned XMMArgRegsWin64[] = {
1722        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1723      };
1724      static const unsigned GPR64ArgRegs64Bit[] = {
1725        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1726      };
1727      static const unsigned XMMArgRegs64Bit[] = {
1728        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1729        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1730      };
1731      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1732
1733      if (IsWin64) {
1734        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1735        GPR64ArgRegs = GPR64ArgRegsWin64;
1736        XMMArgRegs = XMMArgRegsWin64;
1737      } else {
1738        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1739        GPR64ArgRegs = GPR64ArgRegs64Bit;
1740        XMMArgRegs = XMMArgRegs64Bit;
1741      }
1742      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1743                                                       TotalNumIntRegs);
1744      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1745                                                       TotalNumXMMRegs);
1746
1747      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1748      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1749             "SSE register cannot be used when SSE is disabled!");
1750      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1751             "SSE register cannot be used when SSE is disabled!");
1752      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1753        // Kernel mode asks for SSE to be disabled, so don't push them
1754        // on the stack.
1755        TotalNumXMMRegs = 0;
1756
1757      // For X86-64, if there are vararg parameters that are passed via
1758      // registers, then we must store them to their spots on the stack so they
1759      // may be loaded by deferencing the result of va_next.
1760      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1761      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1762      FuncInfo->setRegSaveFrameIndex(
1763        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1764                               false));
1765
1766      // Store the integer parameter registers.
1767      SmallVector<SDValue, 8> MemOps;
1768      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1769                                        getPointerTy());
1770      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1771      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1772        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1773                                  DAG.getIntPtrConstant(Offset));
1774        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1775                                     X86::GR64RegisterClass);
1776        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1777        SDValue Store =
1778          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1779                       PseudoSourceValue::getFixedStack(
1780                         FuncInfo->getRegSaveFrameIndex()),
1781                       Offset, false, false, 0);
1782        MemOps.push_back(Store);
1783        Offset += 8;
1784      }
1785
1786      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1787        // Now store the XMM (fp + vector) parameter registers.
1788        SmallVector<SDValue, 11> SaveXMMOps;
1789        SaveXMMOps.push_back(Chain);
1790
1791        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1792        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1793        SaveXMMOps.push_back(ALVal);
1794
1795        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1796                               FuncInfo->getRegSaveFrameIndex()));
1797        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1798                               FuncInfo->getVarArgsFPOffset()));
1799
1800        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1801          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1802                                       X86::VR128RegisterClass);
1803          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1804          SaveXMMOps.push_back(Val);
1805        }
1806        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1807                                     MVT::Other,
1808                                     &SaveXMMOps[0], SaveXMMOps.size()));
1809      }
1810
1811      if (!MemOps.empty())
1812        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1813                            &MemOps[0], MemOps.size());
1814    }
1815  }
1816
1817  // Some CCs need callee pop.
1818  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1819    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1820  } else {
1821    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1822    // If this is an sret function, the return should pop the hidden pointer.
1823    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1824      FuncInfo->setBytesToPopOnReturn(4);
1825  }
1826
1827  if (!Is64Bit) {
1828    // RegSaveFrameIndex is X86-64 only.
1829    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1830    if (CallConv == CallingConv::X86_FastCall ||
1831        CallConv == CallingConv::X86_ThisCall)
1832      // fastcc functions can't have varargs.
1833      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1834  }
1835
1836  return Chain;
1837}
1838
1839SDValue
1840X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1841                                    SDValue StackPtr, SDValue Arg,
1842                                    DebugLoc dl, SelectionDAG &DAG,
1843                                    const CCValAssign &VA,
1844                                    ISD::ArgFlagsTy Flags) const {
1845  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1846  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1847  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1848  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1849  if (Flags.isByVal()) {
1850    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1851  }
1852  return DAG.getStore(Chain, dl, Arg, PtrOff,
1853                      PseudoSourceValue::getStack(), LocMemOffset,
1854                      false, false, 0);
1855}
1856
1857/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1858/// optimization is performed and it is required.
1859SDValue
1860X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1861                                           SDValue &OutRetAddr, SDValue Chain,
1862                                           bool IsTailCall, bool Is64Bit,
1863                                           int FPDiff, DebugLoc dl) const {
1864  // Adjust the Return address stack slot.
1865  EVT VT = getPointerTy();
1866  OutRetAddr = getReturnAddressFrameIndex(DAG);
1867
1868  // Load the "old" Return address.
1869  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1870  return SDValue(OutRetAddr.getNode(), 1);
1871}
1872
1873/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1874/// optimization is performed and it is required (FPDiff!=0).
1875static SDValue
1876EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1877                         SDValue Chain, SDValue RetAddrFrIdx,
1878                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1879  // Store the return address to the appropriate stack slot.
1880  if (!FPDiff) return Chain;
1881  // Calculate the new stack slot for the return address.
1882  int SlotSize = Is64Bit ? 8 : 4;
1883  int NewReturnAddrFI =
1884    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1885  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1886  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1887  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1888                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1889                       false, false, 0);
1890  return Chain;
1891}
1892
1893SDValue
1894X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1895                             CallingConv::ID CallConv, bool isVarArg,
1896                             bool &isTailCall,
1897                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1898                             const SmallVectorImpl<SDValue> &OutVals,
1899                             const SmallVectorImpl<ISD::InputArg> &Ins,
1900                             DebugLoc dl, SelectionDAG &DAG,
1901                             SmallVectorImpl<SDValue> &InVals) const {
1902  MachineFunction &MF = DAG.getMachineFunction();
1903  bool Is64Bit        = Subtarget->is64Bit();
1904  bool IsStructRet    = CallIsStructReturn(Outs);
1905  bool IsSibcall      = false;
1906
1907  if (isTailCall) {
1908    // Check if it's really possible to do a tail call.
1909    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1910                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1911                                                   Outs, OutVals, Ins, DAG);
1912
1913    // Sibcalls are automatically detected tailcalls which do not require
1914    // ABI changes.
1915    if (!GuaranteedTailCallOpt && isTailCall)
1916      IsSibcall = true;
1917
1918    if (isTailCall)
1919      ++NumTailCalls;
1920  }
1921
1922  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1923         "Var args not supported with calling convention fastcc or ghc");
1924
1925  // Analyze operands of the call, assigning locations to each operand.
1926  SmallVector<CCValAssign, 16> ArgLocs;
1927  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1928                 ArgLocs, *DAG.getContext());
1929  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1930
1931  // Get a count of how many bytes are to be pushed on the stack.
1932  unsigned NumBytes = CCInfo.getNextStackOffset();
1933  if (IsSibcall)
1934    // This is a sibcall. The memory operands are available in caller's
1935    // own caller's stack.
1936    NumBytes = 0;
1937  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1938    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1939
1940  int FPDiff = 0;
1941  if (isTailCall && !IsSibcall) {
1942    // Lower arguments at fp - stackoffset + fpdiff.
1943    unsigned NumBytesCallerPushed =
1944      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1945    FPDiff = NumBytesCallerPushed - NumBytes;
1946
1947    // Set the delta of movement of the returnaddr stackslot.
1948    // But only set if delta is greater than previous delta.
1949    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1950      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1951  }
1952
1953  if (!IsSibcall)
1954    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1955
1956  SDValue RetAddrFrIdx;
1957  // Load return adress for tail calls.
1958  if (isTailCall && FPDiff)
1959    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1960                                    Is64Bit, FPDiff, dl);
1961
1962  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1963  SmallVector<SDValue, 8> MemOpChains;
1964  SDValue StackPtr;
1965
1966  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1967  // of tail call optimization arguments are handle later.
1968  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1969    CCValAssign &VA = ArgLocs[i];
1970    EVT RegVT = VA.getLocVT();
1971    SDValue Arg = OutVals[i];
1972    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1973    bool isByVal = Flags.isByVal();
1974
1975    // Promote the value if needed.
1976    switch (VA.getLocInfo()) {
1977    default: llvm_unreachable("Unknown loc info!");
1978    case CCValAssign::Full: break;
1979    case CCValAssign::SExt:
1980      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1981      break;
1982    case CCValAssign::ZExt:
1983      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1984      break;
1985    case CCValAssign::AExt:
1986      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1987        // Special case: passing MMX values in XMM registers.
1988        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1989        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1990        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1991      } else
1992        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1993      break;
1994    case CCValAssign::BCvt:
1995      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1996      break;
1997    case CCValAssign::Indirect: {
1998      // Store the argument.
1999      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2000      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2001      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2002                           PseudoSourceValue::getFixedStack(FI), 0,
2003                           false, false, 0);
2004      Arg = SpillSlot;
2005      break;
2006    }
2007    }
2008
2009    if (VA.isRegLoc()) {
2010      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2011      if (isVarArg && Subtarget->isTargetWin64()) {
2012        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2013        // shadow reg if callee is a varargs function.
2014        unsigned ShadowReg = 0;
2015        switch (VA.getLocReg()) {
2016        case X86::XMM0: ShadowReg = X86::RCX; break;
2017        case X86::XMM1: ShadowReg = X86::RDX; break;
2018        case X86::XMM2: ShadowReg = X86::R8; break;
2019        case X86::XMM3: ShadowReg = X86::R9; break;
2020        }
2021        if (ShadowReg)
2022          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2023      }
2024    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2025      assert(VA.isMemLoc());
2026      if (StackPtr.getNode() == 0)
2027        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2028      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2029                                             dl, DAG, VA, Flags));
2030    }
2031  }
2032
2033  if (!MemOpChains.empty())
2034    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2035                        &MemOpChains[0], MemOpChains.size());
2036
2037  // Build a sequence of copy-to-reg nodes chained together with token chain
2038  // and flag operands which copy the outgoing args into registers.
2039  SDValue InFlag;
2040  // Tail call byval lowering might overwrite argument registers so in case of
2041  // tail call optimization the copies to registers are lowered later.
2042  if (!isTailCall)
2043    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2044      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2045                               RegsToPass[i].second, InFlag);
2046      InFlag = Chain.getValue(1);
2047    }
2048
2049  if (Subtarget->isPICStyleGOT()) {
2050    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2051    // GOT pointer.
2052    if (!isTailCall) {
2053      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2054                               DAG.getNode(X86ISD::GlobalBaseReg,
2055                                           DebugLoc(), getPointerTy()),
2056                               InFlag);
2057      InFlag = Chain.getValue(1);
2058    } else {
2059      // If we are tail calling and generating PIC/GOT style code load the
2060      // address of the callee into ECX. The value in ecx is used as target of
2061      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2062      // for tail calls on PIC/GOT architectures. Normally we would just put the
2063      // address of GOT into ebx and then call target@PLT. But for tail calls
2064      // ebx would be restored (since ebx is callee saved) before jumping to the
2065      // target@PLT.
2066
2067      // Note: The actual moving to ECX is done further down.
2068      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2069      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2070          !G->getGlobal()->hasProtectedVisibility())
2071        Callee = LowerGlobalAddress(Callee, DAG);
2072      else if (isa<ExternalSymbolSDNode>(Callee))
2073        Callee = LowerExternalSymbol(Callee, DAG);
2074    }
2075  }
2076
2077  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2078    // From AMD64 ABI document:
2079    // For calls that may call functions that use varargs or stdargs
2080    // (prototype-less calls or calls to functions containing ellipsis (...) in
2081    // the declaration) %al is used as hidden argument to specify the number
2082    // of SSE registers used. The contents of %al do not need to match exactly
2083    // the number of registers, but must be an ubound on the number of SSE
2084    // registers used and is in the range 0 - 8 inclusive.
2085
2086    // Count the number of XMM registers allocated.
2087    static const unsigned XMMArgRegs[] = {
2088      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2089      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2090    };
2091    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2092    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2093           && "SSE registers cannot be used when SSE is disabled");
2094
2095    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2096                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2097    InFlag = Chain.getValue(1);
2098  }
2099
2100
2101  // For tail calls lower the arguments to the 'real' stack slot.
2102  if (isTailCall) {
2103    // Force all the incoming stack arguments to be loaded from the stack
2104    // before any new outgoing arguments are stored to the stack, because the
2105    // outgoing stack slots may alias the incoming argument stack slots, and
2106    // the alias isn't otherwise explicit. This is slightly more conservative
2107    // than necessary, because it means that each store effectively depends
2108    // on every argument instead of just those arguments it would clobber.
2109    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2110
2111    SmallVector<SDValue, 8> MemOpChains2;
2112    SDValue FIN;
2113    int FI = 0;
2114    // Do not flag preceeding copytoreg stuff together with the following stuff.
2115    InFlag = SDValue();
2116    if (GuaranteedTailCallOpt) {
2117      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2118        CCValAssign &VA = ArgLocs[i];
2119        if (VA.isRegLoc())
2120          continue;
2121        assert(VA.isMemLoc());
2122        SDValue Arg = OutVals[i];
2123        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2124        // Create frame index.
2125        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2126        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2127        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2128        FIN = DAG.getFrameIndex(FI, getPointerTy());
2129
2130        if (Flags.isByVal()) {
2131          // Copy relative to framepointer.
2132          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2133          if (StackPtr.getNode() == 0)
2134            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2135                                          getPointerTy());
2136          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2137
2138          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2139                                                           ArgChain,
2140                                                           Flags, DAG, dl));
2141        } else {
2142          // Store relative to framepointer.
2143          MemOpChains2.push_back(
2144            DAG.getStore(ArgChain, dl, Arg, FIN,
2145                         PseudoSourceValue::getFixedStack(FI), 0,
2146                         false, false, 0));
2147        }
2148      }
2149    }
2150
2151    if (!MemOpChains2.empty())
2152      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2153                          &MemOpChains2[0], MemOpChains2.size());
2154
2155    // Copy arguments to their registers.
2156    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2157      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2158                               RegsToPass[i].second, InFlag);
2159      InFlag = Chain.getValue(1);
2160    }
2161    InFlag =SDValue();
2162
2163    // Store the return address to the appropriate stack slot.
2164    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2165                                     FPDiff, dl);
2166  }
2167
2168  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2169    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2170    // In the 64-bit large code model, we have to make all calls
2171    // through a register, since the call instruction's 32-bit
2172    // pc-relative offset may not be large enough to hold the whole
2173    // address.
2174  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2175    // If the callee is a GlobalAddress node (quite common, every direct call
2176    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2177    // it.
2178
2179    // We should use extra load for direct calls to dllimported functions in
2180    // non-JIT mode.
2181    const GlobalValue *GV = G->getGlobal();
2182    if (!GV->hasDLLImportLinkage()) {
2183      unsigned char OpFlags = 0;
2184
2185      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2186      // external symbols most go through the PLT in PIC mode.  If the symbol
2187      // has hidden or protected visibility, or if it is static or local, then
2188      // we don't need to use the PLT - we can directly call it.
2189      if (Subtarget->isTargetELF() &&
2190          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2191          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2192        OpFlags = X86II::MO_PLT;
2193      } else if (Subtarget->isPICStyleStubAny() &&
2194               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2195               Subtarget->getDarwinVers() < 9) {
2196        // PC-relative references to external symbols should go through $stub,
2197        // unless we're building with the leopard linker or later, which
2198        // automatically synthesizes these stubs.
2199        OpFlags = X86II::MO_DARWIN_STUB;
2200      }
2201
2202      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2203                                          G->getOffset(), OpFlags);
2204    }
2205  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2206    unsigned char OpFlags = 0;
2207
2208    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2209    // symbols should go through the PLT.
2210    if (Subtarget->isTargetELF() &&
2211        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2212      OpFlags = X86II::MO_PLT;
2213    } else if (Subtarget->isPICStyleStubAny() &&
2214             Subtarget->getDarwinVers() < 9) {
2215      // PC-relative references to external symbols should go through $stub,
2216      // unless we're building with the leopard linker or later, which
2217      // automatically synthesizes these stubs.
2218      OpFlags = X86II::MO_DARWIN_STUB;
2219    }
2220
2221    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2222                                         OpFlags);
2223  }
2224
2225  // Returns a chain & a flag for retval copy to use.
2226  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2227  SmallVector<SDValue, 8> Ops;
2228
2229  if (!IsSibcall && isTailCall) {
2230    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2231                           DAG.getIntPtrConstant(0, true), InFlag);
2232    InFlag = Chain.getValue(1);
2233  }
2234
2235  Ops.push_back(Chain);
2236  Ops.push_back(Callee);
2237
2238  if (isTailCall)
2239    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2240
2241  // Add argument registers to the end of the list so that they are known live
2242  // into the call.
2243  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2244    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2245                                  RegsToPass[i].second.getValueType()));
2246
2247  // Add an implicit use GOT pointer in EBX.
2248  if (!isTailCall && Subtarget->isPICStyleGOT())
2249    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2250
2251  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2252  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2253    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2254
2255  if (InFlag.getNode())
2256    Ops.push_back(InFlag);
2257
2258  if (isTailCall) {
2259    // We used to do:
2260    //// If this is the first return lowered for this function, add the regs
2261    //// to the liveout set for the function.
2262    // This isn't right, although it's probably harmless on x86; liveouts
2263    // should be computed from returns not tail calls.  Consider a void
2264    // function making a tail call to a function returning int.
2265    return DAG.getNode(X86ISD::TC_RETURN, dl,
2266                       NodeTys, &Ops[0], Ops.size());
2267  }
2268
2269  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2270  InFlag = Chain.getValue(1);
2271
2272  // Create the CALLSEQ_END node.
2273  unsigned NumBytesForCalleeToPush;
2274  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2275    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2276  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2277    // If this is a call to a struct-return function, the callee
2278    // pops the hidden struct pointer, so we have to push it back.
2279    // This is common for Darwin/X86, Linux & Mingw32 targets.
2280    NumBytesForCalleeToPush = 4;
2281  else
2282    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2283
2284  // Returns a flag for retval copy to use.
2285  if (!IsSibcall) {
2286    Chain = DAG.getCALLSEQ_END(Chain,
2287                               DAG.getIntPtrConstant(NumBytes, true),
2288                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2289                                                     true),
2290                               InFlag);
2291    InFlag = Chain.getValue(1);
2292  }
2293
2294  // Handle result values, copying them out of physregs into vregs that we
2295  // return.
2296  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2297                         Ins, dl, DAG, InVals);
2298}
2299
2300
2301//===----------------------------------------------------------------------===//
2302//                Fast Calling Convention (tail call) implementation
2303//===----------------------------------------------------------------------===//
2304
2305//  Like std call, callee cleans arguments, convention except that ECX is
2306//  reserved for storing the tail called function address. Only 2 registers are
2307//  free for argument passing (inreg). Tail call optimization is performed
2308//  provided:
2309//                * tailcallopt is enabled
2310//                * caller/callee are fastcc
2311//  On X86_64 architecture with GOT-style position independent code only local
2312//  (within module) calls are supported at the moment.
2313//  To keep the stack aligned according to platform abi the function
2314//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2315//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2316//  If a tail called function callee has more arguments than the caller the
2317//  caller needs to make sure that there is room to move the RETADDR to. This is
2318//  achieved by reserving an area the size of the argument delta right after the
2319//  original REtADDR, but before the saved framepointer or the spilled registers
2320//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2321//  stack layout:
2322//    arg1
2323//    arg2
2324//    RETADDR
2325//    [ new RETADDR
2326//      move area ]
2327//    (possible EBP)
2328//    ESI
2329//    EDI
2330//    local1 ..
2331
2332/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2333/// for a 16 byte align requirement.
2334unsigned
2335X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2336                                               SelectionDAG& DAG) const {
2337  MachineFunction &MF = DAG.getMachineFunction();
2338  const TargetMachine &TM = MF.getTarget();
2339  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2340  unsigned StackAlignment = TFI.getStackAlignment();
2341  uint64_t AlignMask = StackAlignment - 1;
2342  int64_t Offset = StackSize;
2343  uint64_t SlotSize = TD->getPointerSize();
2344  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2345    // Number smaller than 12 so just add the difference.
2346    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2347  } else {
2348    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2349    Offset = ((~AlignMask) & Offset) + StackAlignment +
2350      (StackAlignment-SlotSize);
2351  }
2352  return Offset;
2353}
2354
2355/// MatchingStackOffset - Return true if the given stack call argument is
2356/// already available in the same position (relatively) of the caller's
2357/// incoming argument stack.
2358static
2359bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2360                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2361                         const X86InstrInfo *TII) {
2362  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2363  int FI = INT_MAX;
2364  if (Arg.getOpcode() == ISD::CopyFromReg) {
2365    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2366    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2367      return false;
2368    MachineInstr *Def = MRI->getVRegDef(VR);
2369    if (!Def)
2370      return false;
2371    if (!Flags.isByVal()) {
2372      if (!TII->isLoadFromStackSlot(Def, FI))
2373        return false;
2374    } else {
2375      unsigned Opcode = Def->getOpcode();
2376      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2377          Def->getOperand(1).isFI()) {
2378        FI = Def->getOperand(1).getIndex();
2379        Bytes = Flags.getByValSize();
2380      } else
2381        return false;
2382    }
2383  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2384    if (Flags.isByVal())
2385      // ByVal argument is passed in as a pointer but it's now being
2386      // dereferenced. e.g.
2387      // define @foo(%struct.X* %A) {
2388      //   tail call @bar(%struct.X* byval %A)
2389      // }
2390      return false;
2391    SDValue Ptr = Ld->getBasePtr();
2392    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2393    if (!FINode)
2394      return false;
2395    FI = FINode->getIndex();
2396  } else
2397    return false;
2398
2399  assert(FI != INT_MAX);
2400  if (!MFI->isFixedObjectIndex(FI))
2401    return false;
2402  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2403}
2404
2405/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2406/// for tail call optimization. Targets which want to do tail call
2407/// optimization should implement this function.
2408bool
2409X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2410                                                     CallingConv::ID CalleeCC,
2411                                                     bool isVarArg,
2412                                                     bool isCalleeStructRet,
2413                                                     bool isCallerStructRet,
2414                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2415                                    const SmallVectorImpl<SDValue> &OutVals,
2416                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2417                                                     SelectionDAG& DAG) const {
2418  if (!IsTailCallConvention(CalleeCC) &&
2419      CalleeCC != CallingConv::C)
2420    return false;
2421
2422  // If -tailcallopt is specified, make fastcc functions tail-callable.
2423  const MachineFunction &MF = DAG.getMachineFunction();
2424  const Function *CallerF = DAG.getMachineFunction().getFunction();
2425  CallingConv::ID CallerCC = CallerF->getCallingConv();
2426  bool CCMatch = CallerCC == CalleeCC;
2427
2428  if (GuaranteedTailCallOpt) {
2429    if (IsTailCallConvention(CalleeCC) && CCMatch)
2430      return true;
2431    return false;
2432  }
2433
2434  // Look for obvious safe cases to perform tail call optimization that do not
2435  // require ABI changes. This is what gcc calls sibcall.
2436
2437  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2438  // emit a special epilogue.
2439  if (RegInfo->needsStackRealignment(MF))
2440    return false;
2441
2442  // Do not sibcall optimize vararg calls unless the call site is not passing
2443  // any arguments.
2444  if (isVarArg && !Outs.empty())
2445    return false;
2446
2447  // Also avoid sibcall optimization if either caller or callee uses struct
2448  // return semantics.
2449  if (isCalleeStructRet || isCallerStructRet)
2450    return false;
2451
2452  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2453  // Therefore if it's not used by the call it is not safe to optimize this into
2454  // a sibcall.
2455  bool Unused = false;
2456  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2457    if (!Ins[i].Used) {
2458      Unused = true;
2459      break;
2460    }
2461  }
2462  if (Unused) {
2463    SmallVector<CCValAssign, 16> RVLocs;
2464    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2465                   RVLocs, *DAG.getContext());
2466    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2467    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2468      CCValAssign &VA = RVLocs[i];
2469      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2470        return false;
2471    }
2472  }
2473
2474  // If the calling conventions do not match, then we'd better make sure the
2475  // results are returned in the same way as what the caller expects.
2476  if (!CCMatch) {
2477    SmallVector<CCValAssign, 16> RVLocs1;
2478    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2479                    RVLocs1, *DAG.getContext());
2480    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2481
2482    SmallVector<CCValAssign, 16> RVLocs2;
2483    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2484                    RVLocs2, *DAG.getContext());
2485    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2486
2487    if (RVLocs1.size() != RVLocs2.size())
2488      return false;
2489    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2490      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2491        return false;
2492      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2493        return false;
2494      if (RVLocs1[i].isRegLoc()) {
2495        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2496          return false;
2497      } else {
2498        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2499          return false;
2500      }
2501    }
2502  }
2503
2504  // If the callee takes no arguments then go on to check the results of the
2505  // call.
2506  if (!Outs.empty()) {
2507    // Check if stack adjustment is needed. For now, do not do this if any
2508    // argument is passed on the stack.
2509    SmallVector<CCValAssign, 16> ArgLocs;
2510    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2511                   ArgLocs, *DAG.getContext());
2512    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2513    if (CCInfo.getNextStackOffset()) {
2514      MachineFunction &MF = DAG.getMachineFunction();
2515      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2516        return false;
2517      if (Subtarget->isTargetWin64())
2518        // Win64 ABI has additional complications.
2519        return false;
2520
2521      // Check if the arguments are already laid out in the right way as
2522      // the caller's fixed stack objects.
2523      MachineFrameInfo *MFI = MF.getFrameInfo();
2524      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2525      const X86InstrInfo *TII =
2526        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2527      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2528        CCValAssign &VA = ArgLocs[i];
2529        SDValue Arg = OutVals[i];
2530        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2531        if (VA.getLocInfo() == CCValAssign::Indirect)
2532          return false;
2533        if (!VA.isRegLoc()) {
2534          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2535                                   MFI, MRI, TII))
2536            return false;
2537        }
2538      }
2539    }
2540
2541    // If the tailcall address may be in a register, then make sure it's
2542    // possible to register allocate for it. In 32-bit, the call address can
2543    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2544    // callee-saved registers are restored. These happen to be the same
2545    // registers used to pass 'inreg' arguments so watch out for those.
2546    if (!Subtarget->is64Bit() &&
2547        !isa<GlobalAddressSDNode>(Callee) &&
2548        !isa<ExternalSymbolSDNode>(Callee)) {
2549      unsigned NumInRegs = 0;
2550      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2551        CCValAssign &VA = ArgLocs[i];
2552        if (!VA.isRegLoc())
2553          continue;
2554        unsigned Reg = VA.getLocReg();
2555        switch (Reg) {
2556        default: break;
2557        case X86::EAX: case X86::EDX: case X86::ECX:
2558          if (++NumInRegs == 3)
2559            return false;
2560          break;
2561        }
2562      }
2563    }
2564  }
2565
2566  return true;
2567}
2568
2569FastISel *
2570X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2571  return X86::createFastISel(funcInfo);
2572}
2573
2574
2575//===----------------------------------------------------------------------===//
2576//                           Other Lowering Hooks
2577//===----------------------------------------------------------------------===//
2578
2579static bool MayFoldLoad(SDValue Op) {
2580  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2581}
2582
2583static bool MayFoldIntoStore(SDValue Op) {
2584  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2585}
2586
2587static bool isTargetShuffle(unsigned Opcode) {
2588  switch(Opcode) {
2589  default: return false;
2590  case X86ISD::PSHUFD:
2591  case X86ISD::PSHUFHW:
2592  case X86ISD::PSHUFLW:
2593  case X86ISD::SHUFPD:
2594  case X86ISD::SHUFPS:
2595  case X86ISD::MOVLHPS:
2596  case X86ISD::MOVLHPD:
2597  case X86ISD::MOVHLPS:
2598  case X86ISD::MOVLPS:
2599  case X86ISD::MOVLPD:
2600  case X86ISD::MOVSHDUP:
2601  case X86ISD::MOVSLDUP:
2602  case X86ISD::MOVSS:
2603  case X86ISD::MOVSD:
2604  case X86ISD::PUNPCKLDQ:
2605    return true;
2606  }
2607  return false;
2608}
2609
2610static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2611                                               SDValue V1, SelectionDAG &DAG) {
2612  switch(Opc) {
2613  default: llvm_unreachable("Unknown x86 shuffle node");
2614  case X86ISD::MOVSHDUP:
2615  case X86ISD::MOVSLDUP:
2616    return DAG.getNode(Opc, dl, VT, V1);
2617  }
2618
2619  return SDValue();
2620}
2621
2622static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2623                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2624  switch(Opc) {
2625  default: llvm_unreachable("Unknown x86 shuffle node");
2626  case X86ISD::PSHUFD:
2627  case X86ISD::PSHUFHW:
2628  case X86ISD::PSHUFLW:
2629    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2630  }
2631
2632  return SDValue();
2633}
2634
2635static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2636               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2637  switch(Opc) {
2638  default: llvm_unreachable("Unknown x86 shuffle node");
2639  case X86ISD::SHUFPD:
2640  case X86ISD::SHUFPS:
2641    return DAG.getNode(Opc, dl, VT, V1, V2,
2642                       DAG.getConstant(TargetMask, MVT::i8));
2643  }
2644  return SDValue();
2645}
2646
2647static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2648                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2649  switch(Opc) {
2650  default: llvm_unreachable("Unknown x86 shuffle node");
2651  case X86ISD::MOVLHPS:
2652  case X86ISD::MOVLHPD:
2653  case X86ISD::MOVHLPS:
2654  case X86ISD::MOVLPS:
2655  case X86ISD::MOVLPD:
2656  case X86ISD::MOVSS:
2657  case X86ISD::MOVSD:
2658  case X86ISD::PUNPCKLDQ:
2659    return DAG.getNode(Opc, dl, VT, V1, V2);
2660  }
2661  return SDValue();
2662}
2663
2664SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2665  MachineFunction &MF = DAG.getMachineFunction();
2666  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2667  int ReturnAddrIndex = FuncInfo->getRAIndex();
2668
2669  if (ReturnAddrIndex == 0) {
2670    // Set up a frame object for the return address.
2671    uint64_t SlotSize = TD->getPointerSize();
2672    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2673                                                           false);
2674    FuncInfo->setRAIndex(ReturnAddrIndex);
2675  }
2676
2677  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2678}
2679
2680
2681bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2682                                       bool hasSymbolicDisplacement) {
2683  // Offset should fit into 32 bit immediate field.
2684  if (!isInt<32>(Offset))
2685    return false;
2686
2687  // If we don't have a symbolic displacement - we don't have any extra
2688  // restrictions.
2689  if (!hasSymbolicDisplacement)
2690    return true;
2691
2692  // FIXME: Some tweaks might be needed for medium code model.
2693  if (M != CodeModel::Small && M != CodeModel::Kernel)
2694    return false;
2695
2696  // For small code model we assume that latest object is 16MB before end of 31
2697  // bits boundary. We may also accept pretty large negative constants knowing
2698  // that all objects are in the positive half of address space.
2699  if (M == CodeModel::Small && Offset < 16*1024*1024)
2700    return true;
2701
2702  // For kernel code model we know that all object resist in the negative half
2703  // of 32bits address space. We may not accept negative offsets, since they may
2704  // be just off and we may accept pretty large positive ones.
2705  if (M == CodeModel::Kernel && Offset > 0)
2706    return true;
2707
2708  return false;
2709}
2710
2711/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2712/// specific condition code, returning the condition code and the LHS/RHS of the
2713/// comparison to make.
2714static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2715                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2716  if (!isFP) {
2717    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2718      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2719        // X > -1   -> X == 0, jump !sign.
2720        RHS = DAG.getConstant(0, RHS.getValueType());
2721        return X86::COND_NS;
2722      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2723        // X < 0   -> X == 0, jump on sign.
2724        return X86::COND_S;
2725      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2726        // X < 1   -> X <= 0
2727        RHS = DAG.getConstant(0, RHS.getValueType());
2728        return X86::COND_LE;
2729      }
2730    }
2731
2732    switch (SetCCOpcode) {
2733    default: llvm_unreachable("Invalid integer condition!");
2734    case ISD::SETEQ:  return X86::COND_E;
2735    case ISD::SETGT:  return X86::COND_G;
2736    case ISD::SETGE:  return X86::COND_GE;
2737    case ISD::SETLT:  return X86::COND_L;
2738    case ISD::SETLE:  return X86::COND_LE;
2739    case ISD::SETNE:  return X86::COND_NE;
2740    case ISD::SETULT: return X86::COND_B;
2741    case ISD::SETUGT: return X86::COND_A;
2742    case ISD::SETULE: return X86::COND_BE;
2743    case ISD::SETUGE: return X86::COND_AE;
2744    }
2745  }
2746
2747  // First determine if it is required or is profitable to flip the operands.
2748
2749  // If LHS is a foldable load, but RHS is not, flip the condition.
2750  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2751      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2752    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2753    std::swap(LHS, RHS);
2754  }
2755
2756  switch (SetCCOpcode) {
2757  default: break;
2758  case ISD::SETOLT:
2759  case ISD::SETOLE:
2760  case ISD::SETUGT:
2761  case ISD::SETUGE:
2762    std::swap(LHS, RHS);
2763    break;
2764  }
2765
2766  // On a floating point condition, the flags are set as follows:
2767  // ZF  PF  CF   op
2768  //  0 | 0 | 0 | X > Y
2769  //  0 | 0 | 1 | X < Y
2770  //  1 | 0 | 0 | X == Y
2771  //  1 | 1 | 1 | unordered
2772  switch (SetCCOpcode) {
2773  default: llvm_unreachable("Condcode should be pre-legalized away");
2774  case ISD::SETUEQ:
2775  case ISD::SETEQ:   return X86::COND_E;
2776  case ISD::SETOLT:              // flipped
2777  case ISD::SETOGT:
2778  case ISD::SETGT:   return X86::COND_A;
2779  case ISD::SETOLE:              // flipped
2780  case ISD::SETOGE:
2781  case ISD::SETGE:   return X86::COND_AE;
2782  case ISD::SETUGT:              // flipped
2783  case ISD::SETULT:
2784  case ISD::SETLT:   return X86::COND_B;
2785  case ISD::SETUGE:              // flipped
2786  case ISD::SETULE:
2787  case ISD::SETLE:   return X86::COND_BE;
2788  case ISD::SETONE:
2789  case ISD::SETNE:   return X86::COND_NE;
2790  case ISD::SETUO:   return X86::COND_P;
2791  case ISD::SETO:    return X86::COND_NP;
2792  case ISD::SETOEQ:
2793  case ISD::SETUNE:  return X86::COND_INVALID;
2794  }
2795}
2796
2797/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2798/// code. Current x86 isa includes the following FP cmov instructions:
2799/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2800static bool hasFPCMov(unsigned X86CC) {
2801  switch (X86CC) {
2802  default:
2803    return false;
2804  case X86::COND_B:
2805  case X86::COND_BE:
2806  case X86::COND_E:
2807  case X86::COND_P:
2808  case X86::COND_A:
2809  case X86::COND_AE:
2810  case X86::COND_NE:
2811  case X86::COND_NP:
2812    return true;
2813  }
2814}
2815
2816/// isFPImmLegal - Returns true if the target can instruction select the
2817/// specified FP immediate natively. If false, the legalizer will
2818/// materialize the FP immediate as a load from a constant pool.
2819bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2820  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2821    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2822      return true;
2823  }
2824  return false;
2825}
2826
2827/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2828/// the specified range (L, H].
2829static bool isUndefOrInRange(int Val, int Low, int Hi) {
2830  return (Val < 0) || (Val >= Low && Val < Hi);
2831}
2832
2833/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2834/// specified value.
2835static bool isUndefOrEqual(int Val, int CmpVal) {
2836  if (Val < 0 || Val == CmpVal)
2837    return true;
2838  return false;
2839}
2840
2841/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2842/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2843/// the second operand.
2844static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2845  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2846    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2847  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2848    return (Mask[0] < 2 && Mask[1] < 2);
2849  return false;
2850}
2851
2852bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2853  SmallVector<int, 8> M;
2854  N->getMask(M);
2855  return ::isPSHUFDMask(M, N->getValueType(0));
2856}
2857
2858/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2859/// is suitable for input to PSHUFHW.
2860static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2861  if (VT != MVT::v8i16)
2862    return false;
2863
2864  // Lower quadword copied in order or undef.
2865  for (int i = 0; i != 4; ++i)
2866    if (Mask[i] >= 0 && Mask[i] != i)
2867      return false;
2868
2869  // Upper quadword shuffled.
2870  for (int i = 4; i != 8; ++i)
2871    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2872      return false;
2873
2874  return true;
2875}
2876
2877bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2878  SmallVector<int, 8> M;
2879  N->getMask(M);
2880  return ::isPSHUFHWMask(M, N->getValueType(0));
2881}
2882
2883/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2884/// is suitable for input to PSHUFLW.
2885static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2886  if (VT != MVT::v8i16)
2887    return false;
2888
2889  // Upper quadword copied in order.
2890  for (int i = 4; i != 8; ++i)
2891    if (Mask[i] >= 0 && Mask[i] != i)
2892      return false;
2893
2894  // Lower quadword shuffled.
2895  for (int i = 0; i != 4; ++i)
2896    if (Mask[i] >= 4)
2897      return false;
2898
2899  return true;
2900}
2901
2902bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2903  SmallVector<int, 8> M;
2904  N->getMask(M);
2905  return ::isPSHUFLWMask(M, N->getValueType(0));
2906}
2907
2908/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2909/// is suitable for input to PALIGNR.
2910static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2911                          bool hasSSSE3) {
2912  int i, e = VT.getVectorNumElements();
2913
2914  // Do not handle v2i64 / v2f64 shuffles with palignr.
2915  if (e < 4 || !hasSSSE3)
2916    return false;
2917
2918  for (i = 0; i != e; ++i)
2919    if (Mask[i] >= 0)
2920      break;
2921
2922  // All undef, not a palignr.
2923  if (i == e)
2924    return false;
2925
2926  // Determine if it's ok to perform a palignr with only the LHS, since we
2927  // don't have access to the actual shuffle elements to see if RHS is undef.
2928  bool Unary = Mask[i] < (int)e;
2929  bool NeedsUnary = false;
2930
2931  int s = Mask[i] - i;
2932
2933  // Check the rest of the elements to see if they are consecutive.
2934  for (++i; i != e; ++i) {
2935    int m = Mask[i];
2936    if (m < 0)
2937      continue;
2938
2939    Unary = Unary && (m < (int)e);
2940    NeedsUnary = NeedsUnary || (m < s);
2941
2942    if (NeedsUnary && !Unary)
2943      return false;
2944    if (Unary && m != ((s+i) & (e-1)))
2945      return false;
2946    if (!Unary && m != (s+i))
2947      return false;
2948  }
2949  return true;
2950}
2951
2952bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2953  SmallVector<int, 8> M;
2954  N->getMask(M);
2955  return ::isPALIGNRMask(M, N->getValueType(0), true);
2956}
2957
2958/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2959/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2960static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2961  int NumElems = VT.getVectorNumElements();
2962  if (NumElems != 2 && NumElems != 4)
2963    return false;
2964
2965  int Half = NumElems / 2;
2966  for (int i = 0; i < Half; ++i)
2967    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2968      return false;
2969  for (int i = Half; i < NumElems; ++i)
2970    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2971      return false;
2972
2973  return true;
2974}
2975
2976bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2977  SmallVector<int, 8> M;
2978  N->getMask(M);
2979  return ::isSHUFPMask(M, N->getValueType(0));
2980}
2981
2982/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2983/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2984/// half elements to come from vector 1 (which would equal the dest.) and
2985/// the upper half to come from vector 2.
2986static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2987  int NumElems = VT.getVectorNumElements();
2988
2989  if (NumElems != 2 && NumElems != 4)
2990    return false;
2991
2992  int Half = NumElems / 2;
2993  for (int i = 0; i < Half; ++i)
2994    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2995      return false;
2996  for (int i = Half; i < NumElems; ++i)
2997    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2998      return false;
2999  return true;
3000}
3001
3002static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3003  SmallVector<int, 8> M;
3004  N->getMask(M);
3005  return isCommutedSHUFPMask(M, N->getValueType(0));
3006}
3007
3008/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3009/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3010bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3011  if (N->getValueType(0).getVectorNumElements() != 4)
3012    return false;
3013
3014  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3015  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3016         isUndefOrEqual(N->getMaskElt(1), 7) &&
3017         isUndefOrEqual(N->getMaskElt(2), 2) &&
3018         isUndefOrEqual(N->getMaskElt(3), 3);
3019}
3020
3021/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3022/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3023/// <2, 3, 2, 3>
3024bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3025  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3026
3027  if (NumElems != 4)
3028    return false;
3029
3030  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3031  isUndefOrEqual(N->getMaskElt(1), 3) &&
3032  isUndefOrEqual(N->getMaskElt(2), 2) &&
3033  isUndefOrEqual(N->getMaskElt(3), 3);
3034}
3035
3036/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3037/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3038bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3039  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3040
3041  if (NumElems != 2 && NumElems != 4)
3042    return false;
3043
3044  for (unsigned i = 0; i < NumElems/2; ++i)
3045    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3046      return false;
3047
3048  for (unsigned i = NumElems/2; i < NumElems; ++i)
3049    if (!isUndefOrEqual(N->getMaskElt(i), i))
3050      return false;
3051
3052  return true;
3053}
3054
3055/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3056/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3057bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3058  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3059
3060  if (NumElems != 2 && NumElems != 4)
3061    return false;
3062
3063  for (unsigned i = 0; i < NumElems/2; ++i)
3064    if (!isUndefOrEqual(N->getMaskElt(i), i))
3065      return false;
3066
3067  for (unsigned i = 0; i < NumElems/2; ++i)
3068    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3069      return false;
3070
3071  return true;
3072}
3073
3074/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3075/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3076static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3077                         bool V2IsSplat = false) {
3078  int NumElts = VT.getVectorNumElements();
3079  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3080    return false;
3081
3082  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3083    int BitI  = Mask[i];
3084    int BitI1 = Mask[i+1];
3085    if (!isUndefOrEqual(BitI, j))
3086      return false;
3087    if (V2IsSplat) {
3088      if (!isUndefOrEqual(BitI1, NumElts))
3089        return false;
3090    } else {
3091      if (!isUndefOrEqual(BitI1, j + NumElts))
3092        return false;
3093    }
3094  }
3095  return true;
3096}
3097
3098bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3099  SmallVector<int, 8> M;
3100  N->getMask(M);
3101  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3102}
3103
3104/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3105/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3106static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3107                         bool V2IsSplat = false) {
3108  int NumElts = VT.getVectorNumElements();
3109  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3110    return false;
3111
3112  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3113    int BitI  = Mask[i];
3114    int BitI1 = Mask[i+1];
3115    if (!isUndefOrEqual(BitI, j + NumElts/2))
3116      return false;
3117    if (V2IsSplat) {
3118      if (isUndefOrEqual(BitI1, NumElts))
3119        return false;
3120    } else {
3121      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3122        return false;
3123    }
3124  }
3125  return true;
3126}
3127
3128bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3129  SmallVector<int, 8> M;
3130  N->getMask(M);
3131  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3132}
3133
3134/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3135/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3136/// <0, 0, 1, 1>
3137static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3138  int NumElems = VT.getVectorNumElements();
3139  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3140    return false;
3141
3142  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3143    int BitI  = Mask[i];
3144    int BitI1 = Mask[i+1];
3145    if (!isUndefOrEqual(BitI, j))
3146      return false;
3147    if (!isUndefOrEqual(BitI1, j))
3148      return false;
3149  }
3150  return true;
3151}
3152
3153bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3154  SmallVector<int, 8> M;
3155  N->getMask(M);
3156  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3157}
3158
3159/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3160/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3161/// <2, 2, 3, 3>
3162static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3163  int NumElems = VT.getVectorNumElements();
3164  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3165    return false;
3166
3167  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3168    int BitI  = Mask[i];
3169    int BitI1 = Mask[i+1];
3170    if (!isUndefOrEqual(BitI, j))
3171      return false;
3172    if (!isUndefOrEqual(BitI1, j))
3173      return false;
3174  }
3175  return true;
3176}
3177
3178bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3179  SmallVector<int, 8> M;
3180  N->getMask(M);
3181  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3182}
3183
3184/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3185/// specifies a shuffle of elements that is suitable for input to MOVSS,
3186/// MOVSD, and MOVD, i.e. setting the lowest element.
3187static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3188  if (VT.getVectorElementType().getSizeInBits() < 32)
3189    return false;
3190
3191  int NumElts = VT.getVectorNumElements();
3192
3193  if (!isUndefOrEqual(Mask[0], NumElts))
3194    return false;
3195
3196  for (int i = 1; i < NumElts; ++i)
3197    if (!isUndefOrEqual(Mask[i], i))
3198      return false;
3199
3200  return true;
3201}
3202
3203bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3204  SmallVector<int, 8> M;
3205  N->getMask(M);
3206  return ::isMOVLMask(M, N->getValueType(0));
3207}
3208
3209/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3210/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3211/// element of vector 2 and the other elements to come from vector 1 in order.
3212static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3213                               bool V2IsSplat = false, bool V2IsUndef = false) {
3214  int NumOps = VT.getVectorNumElements();
3215  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3216    return false;
3217
3218  if (!isUndefOrEqual(Mask[0], 0))
3219    return false;
3220
3221  for (int i = 1; i < NumOps; ++i)
3222    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3223          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3224          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3225      return false;
3226
3227  return true;
3228}
3229
3230static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3231                           bool V2IsUndef = false) {
3232  SmallVector<int, 8> M;
3233  N->getMask(M);
3234  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3235}
3236
3237/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3238/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3239bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3240  if (N->getValueType(0).getVectorNumElements() != 4)
3241    return false;
3242
3243  // Expect 1, 1, 3, 3
3244  for (unsigned i = 0; i < 2; ++i) {
3245    int Elt = N->getMaskElt(i);
3246    if (Elt >= 0 && Elt != 1)
3247      return false;
3248  }
3249
3250  bool HasHi = false;
3251  for (unsigned i = 2; i < 4; ++i) {
3252    int Elt = N->getMaskElt(i);
3253    if (Elt >= 0 && Elt != 3)
3254      return false;
3255    if (Elt == 3)
3256      HasHi = true;
3257  }
3258  // Don't use movshdup if it can be done with a shufps.
3259  // FIXME: verify that matching u, u, 3, 3 is what we want.
3260  return HasHi;
3261}
3262
3263/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3264/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3265bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3266  if (N->getValueType(0).getVectorNumElements() != 4)
3267    return false;
3268
3269  // Expect 0, 0, 2, 2
3270  for (unsigned i = 0; i < 2; ++i)
3271    if (N->getMaskElt(i) > 0)
3272      return false;
3273
3274  bool HasHi = false;
3275  for (unsigned i = 2; i < 4; ++i) {
3276    int Elt = N->getMaskElt(i);
3277    if (Elt >= 0 && Elt != 2)
3278      return false;
3279    if (Elt == 2)
3280      HasHi = true;
3281  }
3282  // Don't use movsldup if it can be done with a shufps.
3283  return HasHi;
3284}
3285
3286/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3287/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3288bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3289  int e = N->getValueType(0).getVectorNumElements() / 2;
3290
3291  for (int i = 0; i < e; ++i)
3292    if (!isUndefOrEqual(N->getMaskElt(i), i))
3293      return false;
3294  for (int i = 0; i < e; ++i)
3295    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3296      return false;
3297  return true;
3298}
3299
3300/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3301/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3302unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3303  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3304  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3305
3306  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3307  unsigned Mask = 0;
3308  for (int i = 0; i < NumOperands; ++i) {
3309    int Val = SVOp->getMaskElt(NumOperands-i-1);
3310    if (Val < 0) Val = 0;
3311    if (Val >= NumOperands) Val -= NumOperands;
3312    Mask |= Val;
3313    if (i != NumOperands - 1)
3314      Mask <<= Shift;
3315  }
3316  return Mask;
3317}
3318
3319/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3320/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3321unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3322  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3323  unsigned Mask = 0;
3324  // 8 nodes, but we only care about the last 4.
3325  for (unsigned i = 7; i >= 4; --i) {
3326    int Val = SVOp->getMaskElt(i);
3327    if (Val >= 0)
3328      Mask |= (Val - 4);
3329    if (i != 4)
3330      Mask <<= 2;
3331  }
3332  return Mask;
3333}
3334
3335/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3336/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3337unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3338  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3339  unsigned Mask = 0;
3340  // 8 nodes, but we only care about the first 4.
3341  for (int i = 3; i >= 0; --i) {
3342    int Val = SVOp->getMaskElt(i);
3343    if (Val >= 0)
3344      Mask |= Val;
3345    if (i != 0)
3346      Mask <<= 2;
3347  }
3348  return Mask;
3349}
3350
3351/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3352/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3353unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3354  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3355  EVT VVT = N->getValueType(0);
3356  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3357  int Val = 0;
3358
3359  unsigned i, e;
3360  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3361    Val = SVOp->getMaskElt(i);
3362    if (Val >= 0)
3363      break;
3364  }
3365  return (Val - i) * EltSize;
3366}
3367
3368/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3369/// constant +0.0.
3370bool X86::isZeroNode(SDValue Elt) {
3371  return ((isa<ConstantSDNode>(Elt) &&
3372           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3373          (isa<ConstantFPSDNode>(Elt) &&
3374           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3375}
3376
3377/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3378/// their permute mask.
3379static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3380                                    SelectionDAG &DAG) {
3381  EVT VT = SVOp->getValueType(0);
3382  unsigned NumElems = VT.getVectorNumElements();
3383  SmallVector<int, 8> MaskVec;
3384
3385  for (unsigned i = 0; i != NumElems; ++i) {
3386    int idx = SVOp->getMaskElt(i);
3387    if (idx < 0)
3388      MaskVec.push_back(idx);
3389    else if (idx < (int)NumElems)
3390      MaskVec.push_back(idx + NumElems);
3391    else
3392      MaskVec.push_back(idx - NumElems);
3393  }
3394  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3395                              SVOp->getOperand(0), &MaskVec[0]);
3396}
3397
3398/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3399/// the two vector operands have swapped position.
3400static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3401  unsigned NumElems = VT.getVectorNumElements();
3402  for (unsigned i = 0; i != NumElems; ++i) {
3403    int idx = Mask[i];
3404    if (idx < 0)
3405      continue;
3406    else if (idx < (int)NumElems)
3407      Mask[i] = idx + NumElems;
3408    else
3409      Mask[i] = idx - NumElems;
3410  }
3411}
3412
3413/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3414/// match movhlps. The lower half elements should come from upper half of
3415/// V1 (and in order), and the upper half elements should come from the upper
3416/// half of V2 (and in order).
3417static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3418  if (Op->getValueType(0).getVectorNumElements() != 4)
3419    return false;
3420  for (unsigned i = 0, e = 2; i != e; ++i)
3421    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3422      return false;
3423  for (unsigned i = 2; i != 4; ++i)
3424    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3425      return false;
3426  return true;
3427}
3428
3429/// isScalarLoadToVector - Returns true if the node is a scalar load that
3430/// is promoted to a vector. It also returns the LoadSDNode by reference if
3431/// required.
3432static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3433  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3434    return false;
3435  N = N->getOperand(0).getNode();
3436  if (!ISD::isNON_EXTLoad(N))
3437    return false;
3438  if (LD)
3439    *LD = cast<LoadSDNode>(N);
3440  return true;
3441}
3442
3443/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3444/// match movlp{s|d}. The lower half elements should come from lower half of
3445/// V1 (and in order), and the upper half elements should come from the upper
3446/// half of V2 (and in order). And since V1 will become the source of the
3447/// MOVLP, it must be either a vector load or a scalar load to vector.
3448static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3449                               ShuffleVectorSDNode *Op) {
3450  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3451    return false;
3452  // Is V2 is a vector load, don't do this transformation. We will try to use
3453  // load folding shufps op.
3454  if (ISD::isNON_EXTLoad(V2))
3455    return false;
3456
3457  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3458
3459  if (NumElems != 2 && NumElems != 4)
3460    return false;
3461  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3462    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3463      return false;
3464  for (unsigned i = NumElems/2; i != NumElems; ++i)
3465    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3466      return false;
3467  return true;
3468}
3469
3470/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3471/// all the same.
3472static bool isSplatVector(SDNode *N) {
3473  if (N->getOpcode() != ISD::BUILD_VECTOR)
3474    return false;
3475
3476  SDValue SplatValue = N->getOperand(0);
3477  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3478    if (N->getOperand(i) != SplatValue)
3479      return false;
3480  return true;
3481}
3482
3483/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3484/// to an zero vector.
3485/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3486static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3487  SDValue V1 = N->getOperand(0);
3488  SDValue V2 = N->getOperand(1);
3489  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3490  for (unsigned i = 0; i != NumElems; ++i) {
3491    int Idx = N->getMaskElt(i);
3492    if (Idx >= (int)NumElems) {
3493      unsigned Opc = V2.getOpcode();
3494      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3495        continue;
3496      if (Opc != ISD::BUILD_VECTOR ||
3497          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3498        return false;
3499    } else if (Idx >= 0) {
3500      unsigned Opc = V1.getOpcode();
3501      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3502        continue;
3503      if (Opc != ISD::BUILD_VECTOR ||
3504          !X86::isZeroNode(V1.getOperand(Idx)))
3505        return false;
3506    }
3507  }
3508  return true;
3509}
3510
3511/// getZeroVector - Returns a vector of specified type with all zero elements.
3512///
3513static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3514                             DebugLoc dl) {
3515  assert(VT.isVector() && "Expected a vector type");
3516
3517  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted
3518  // to their dest type. This ensures they get CSE'd.
3519  SDValue Vec;
3520  if (VT.getSizeInBits() == 64) { // MMX
3521    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3522    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3523  } else if (VT.getSizeInBits() == 128) {
3524    if (HasSSE2) {  // SSE2
3525      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3526      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3527    } else { // SSE1
3528      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3529      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3530    }
3531  } else if (VT.getSizeInBits() == 256) { // AVX
3532    // 256-bit logic and arithmetic instructions in AVX are
3533    // all floating-point, no support for integer ops. Default
3534    // to emitting fp zeroed vectors then.
3535    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3536    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3537    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3538  }
3539  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3540}
3541
3542/// getOnesVector - Returns a vector of specified type with all bits set.
3543///
3544static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3545  assert(VT.isVector() && "Expected a vector type");
3546
3547  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3548  // type.  This ensures they get CSE'd.
3549  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3550  SDValue Vec;
3551  if (VT.getSizeInBits() == 64) // MMX
3552    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3553  else // SSE
3554    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3555  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3556}
3557
3558
3559/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3560/// that point to V2 points to its first element.
3561static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3562  EVT VT = SVOp->getValueType(0);
3563  unsigned NumElems = VT.getVectorNumElements();
3564
3565  bool Changed = false;
3566  SmallVector<int, 8> MaskVec;
3567  SVOp->getMask(MaskVec);
3568
3569  for (unsigned i = 0; i != NumElems; ++i) {
3570    if (MaskVec[i] > (int)NumElems) {
3571      MaskVec[i] = NumElems;
3572      Changed = true;
3573    }
3574  }
3575  if (Changed)
3576    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3577                                SVOp->getOperand(1), &MaskVec[0]);
3578  return SDValue(SVOp, 0);
3579}
3580
3581/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3582/// operation of specified width.
3583static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3584                       SDValue V2) {
3585  unsigned NumElems = VT.getVectorNumElements();
3586  SmallVector<int, 8> Mask;
3587  Mask.push_back(NumElems);
3588  for (unsigned i = 1; i != NumElems; ++i)
3589    Mask.push_back(i);
3590  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3591}
3592
3593/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3594static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3595                          SDValue V2) {
3596  unsigned NumElems = VT.getVectorNumElements();
3597  SmallVector<int, 8> Mask;
3598  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3599    Mask.push_back(i);
3600    Mask.push_back(i + NumElems);
3601  }
3602  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3603}
3604
3605/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3606static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3607                          SDValue V2) {
3608  unsigned NumElems = VT.getVectorNumElements();
3609  unsigned Half = NumElems/2;
3610  SmallVector<int, 8> Mask;
3611  for (unsigned i = 0; i != Half; ++i) {
3612    Mask.push_back(i + Half);
3613    Mask.push_back(i + NumElems + Half);
3614  }
3615  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3616}
3617
3618/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3619static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3620  if (SV->getValueType(0).getVectorNumElements() <= 4)
3621    return SDValue(SV, 0);
3622
3623  EVT PVT = MVT::v4f32;
3624  EVT VT = SV->getValueType(0);
3625  DebugLoc dl = SV->getDebugLoc();
3626  SDValue V1 = SV->getOperand(0);
3627  int NumElems = VT.getVectorNumElements();
3628  int EltNo = SV->getSplatIndex();
3629
3630  // unpack elements to the correct location
3631  while (NumElems > 4) {
3632    if (EltNo < NumElems/2) {
3633      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3634    } else {
3635      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3636      EltNo -= NumElems/2;
3637    }
3638    NumElems >>= 1;
3639  }
3640
3641  // Perform the splat.
3642  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3643  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3644  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3645  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3646}
3647
3648/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3649/// vector of zero or undef vector.  This produces a shuffle where the low
3650/// element of V2 is swizzled into the zero/undef vector, landing at element
3651/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3652static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3653                                             bool isZero, bool HasSSE2,
3654                                             SelectionDAG &DAG) {
3655  EVT VT = V2.getValueType();
3656  SDValue V1 = isZero
3657    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3658  unsigned NumElems = VT.getVectorNumElements();
3659  SmallVector<int, 16> MaskVec;
3660  for (unsigned i = 0; i != NumElems; ++i)
3661    // If this is the insertion idx, put the low elt of V2 here.
3662    MaskVec.push_back(i == Idx ? NumElems : i);
3663  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3664}
3665
3666/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3667/// element of the result of the vector shuffle.
3668SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG) {
3669  SDValue V = SDValue(N, 0);
3670  EVT VT = V.getValueType();
3671  unsigned Opcode = V.getOpcode();
3672
3673  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3674  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3675    Index = SV->getMaskElt(Index);
3676
3677    if (Index < 0)
3678      return DAG.getUNDEF(VT.getVectorElementType());
3679
3680    int NumElems = VT.getVectorNumElements();
3681    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3682    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG);
3683  }
3684
3685  // Recurse into target specific vector shuffles to find scalars.
3686  if (isTargetShuffle(Opcode)) {
3687    switch(Opcode) {
3688    case X86ISD::MOVSS:
3689    case X86ISD::MOVSD: {
3690      // The index 0 always comes from the first element of the second source,
3691      // this is why MOVSS and MOVSD are used in the first place. The other
3692      // elements come from the other positions of the first source vector.
3693      unsigned OpNum = (Index == 0) ? 1 : 0;
3694      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG);
3695    }
3696    default:
3697      assert("not implemented for target shuffle node");
3698      return SDValue();
3699    }
3700  }
3701
3702  // Actual nodes that may contain scalar elements
3703  if (Opcode == ISD::BIT_CONVERT) {
3704    V = V.getOperand(0);
3705    EVT SrcVT = V.getValueType();
3706    unsigned NumElems = VT.getVectorNumElements();
3707
3708    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3709      return SDValue();
3710  }
3711
3712  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3713    return (Index == 0) ? V.getOperand(0)
3714                          : DAG.getUNDEF(VT.getVectorElementType());
3715
3716  if (V.getOpcode() == ISD::BUILD_VECTOR)
3717    return V.getOperand(Index);
3718
3719  return SDValue();
3720}
3721
3722/// getNumOfConsecutiveZeros - Return the number of elements of a vector
3723/// shuffle operation which come from a consecutively from a zero. The
3724/// search can start in two diferent directions, from left or right.
3725static
3726unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3727                                  bool ZerosFromLeft, SelectionDAG &DAG) {
3728  int i = 0;
3729
3730  while (i < NumElems) {
3731    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3732    SDValue Elt = getShuffleScalarElt(N, Index, DAG);
3733    if (!(Elt.getNode() &&
3734         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3735      break;
3736    ++i;
3737  }
3738
3739  return i;
3740}
3741
3742/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3743/// MaskE correspond consecutively to elements from one of the vector operands,
3744/// starting from its index OpIdx. Also tell OpNum which source vector operand.
3745static
3746bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3747                              int OpIdx, int NumElems, unsigned &OpNum) {
3748  bool SeenV1 = false;
3749  bool SeenV2 = false;
3750
3751  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
3752    int Idx = SVOp->getMaskElt(i);
3753    // Ignore undef indicies
3754    if (Idx < 0)
3755      continue;
3756
3757    if (Idx < NumElems)
3758      SeenV1 = true;
3759    else
3760      SeenV2 = true;
3761
3762    // Only accept consecutive elements from the same vector
3763    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
3764      return false;
3765  }
3766
3767  OpNum = SeenV1 ? 0 : 1;
3768  return true;
3769}
3770
3771/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3772/// logical left shift of a vector.
3773static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3774                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3775  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3776  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3777              false /* check zeros from right */, DAG);
3778  unsigned OpSrc;
3779
3780  if (!NumZeros)
3781    return false;
3782
3783  // Considering the elements in the mask that are not consecutive zeros,
3784  // check if they consecutively come from only one of the source vectors.
3785  //
3786  //               V1 = {X, A, B, C}     0
3787  //                         \  \  \    /
3788  //   vector_shuffle V1, V2 <1, 2, 3, X>
3789  //
3790  if (!isShuffleMaskConsecutive(SVOp,
3791            0,                   // Mask Start Index
3792            NumElems-NumZeros-1, // Mask End Index
3793            NumZeros,            // Where to start looking in the src vector
3794            NumElems,            // Number of elements in vector
3795            OpSrc))              // Which source operand ?
3796    return false;
3797
3798  isLeft = false;
3799  ShAmt = NumZeros;
3800  ShVal = SVOp->getOperand(OpSrc);
3801  return true;
3802}
3803
3804/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3805/// logical left shift of a vector.
3806static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3807                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3808  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3809  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3810              true /* check zeros from left */, DAG);
3811  unsigned OpSrc;
3812
3813  if (!NumZeros)
3814    return false;
3815
3816  // Considering the elements in the mask that are not consecutive zeros,
3817  // check if they consecutively come from only one of the source vectors.
3818  //
3819  //                           0    { A, B, X, X } = V2
3820  //                          / \    /  /
3821  //   vector_shuffle V1, V2 <X, X, 4, 5>
3822  //
3823  if (!isShuffleMaskConsecutive(SVOp,
3824            NumZeros,     // Mask Start Index
3825            NumElems-1,   // Mask End Index
3826            0,            // Where to start looking in the src vector
3827            NumElems,     // Number of elements in vector
3828            OpSrc))       // Which source operand ?
3829    return false;
3830
3831  isLeft = true;
3832  ShAmt = NumZeros;
3833  ShVal = SVOp->getOperand(OpSrc);
3834  return true;
3835}
3836
3837/// isVectorShift - Returns true if the shuffle can be implemented as a
3838/// logical left or right shift of a vector.
3839static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3840                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3841  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
3842      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
3843    return true;
3844
3845  return false;
3846}
3847
3848/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3849///
3850static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3851                                       unsigned NumNonZero, unsigned NumZero,
3852                                       SelectionDAG &DAG,
3853                                       const TargetLowering &TLI) {
3854  if (NumNonZero > 8)
3855    return SDValue();
3856
3857  DebugLoc dl = Op.getDebugLoc();
3858  SDValue V(0, 0);
3859  bool First = true;
3860  for (unsigned i = 0; i < 16; ++i) {
3861    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3862    if (ThisIsNonZero && First) {
3863      if (NumZero)
3864        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3865      else
3866        V = DAG.getUNDEF(MVT::v8i16);
3867      First = false;
3868    }
3869
3870    if ((i & 1) != 0) {
3871      SDValue ThisElt(0, 0), LastElt(0, 0);
3872      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3873      if (LastIsNonZero) {
3874        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3875                              MVT::i16, Op.getOperand(i-1));
3876      }
3877      if (ThisIsNonZero) {
3878        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3879        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3880                              ThisElt, DAG.getConstant(8, MVT::i8));
3881        if (LastIsNonZero)
3882          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3883      } else
3884        ThisElt = LastElt;
3885
3886      if (ThisElt.getNode())
3887        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3888                        DAG.getIntPtrConstant(i/2));
3889    }
3890  }
3891
3892  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3893}
3894
3895/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3896///
3897static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3898                                     unsigned NumNonZero, unsigned NumZero,
3899                                     SelectionDAG &DAG,
3900                                     const TargetLowering &TLI) {
3901  if (NumNonZero > 4)
3902    return SDValue();
3903
3904  DebugLoc dl = Op.getDebugLoc();
3905  SDValue V(0, 0);
3906  bool First = true;
3907  for (unsigned i = 0; i < 8; ++i) {
3908    bool isNonZero = (NonZeros & (1 << i)) != 0;
3909    if (isNonZero) {
3910      if (First) {
3911        if (NumZero)
3912          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3913        else
3914          V = DAG.getUNDEF(MVT::v8i16);
3915        First = false;
3916      }
3917      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3918                      MVT::v8i16, V, Op.getOperand(i),
3919                      DAG.getIntPtrConstant(i));
3920    }
3921  }
3922
3923  return V;
3924}
3925
3926/// getVShift - Return a vector logical shift node.
3927///
3928static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3929                         unsigned NumBits, SelectionDAG &DAG,
3930                         const TargetLowering &TLI, DebugLoc dl) {
3931  bool isMMX = VT.getSizeInBits() == 64;
3932  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3933  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3934  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3935  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3936                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3937                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3938}
3939
3940SDValue
3941X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3942                                          SelectionDAG &DAG) const {
3943
3944  // Check if the scalar load can be widened into a vector load. And if
3945  // the address is "base + cst" see if the cst can be "absorbed" into
3946  // the shuffle mask.
3947  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3948    SDValue Ptr = LD->getBasePtr();
3949    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3950      return SDValue();
3951    EVT PVT = LD->getValueType(0);
3952    if (PVT != MVT::i32 && PVT != MVT::f32)
3953      return SDValue();
3954
3955    int FI = -1;
3956    int64_t Offset = 0;
3957    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3958      FI = FINode->getIndex();
3959      Offset = 0;
3960    } else if (Ptr.getOpcode() == ISD::ADD &&
3961               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3962               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3963      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3964      Offset = Ptr.getConstantOperandVal(1);
3965      Ptr = Ptr.getOperand(0);
3966    } else {
3967      return SDValue();
3968    }
3969
3970    SDValue Chain = LD->getChain();
3971    // Make sure the stack object alignment is at least 16.
3972    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3973    if (DAG.InferPtrAlignment(Ptr) < 16) {
3974      if (MFI->isFixedObjectIndex(FI)) {
3975        // Can't change the alignment. FIXME: It's possible to compute
3976        // the exact stack offset and reference FI + adjust offset instead.
3977        // If someone *really* cares about this. That's the way to implement it.
3978        return SDValue();
3979      } else {
3980        MFI->setObjectAlignment(FI, 16);
3981      }
3982    }
3983
3984    // (Offset % 16) must be multiple of 4. Then address is then
3985    // Ptr + (Offset & ~15).
3986    if (Offset < 0)
3987      return SDValue();
3988    if ((Offset % 16) & 3)
3989      return SDValue();
3990    int64_t StartOffset = Offset & ~15;
3991    if (StartOffset)
3992      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3993                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3994
3995    int EltNo = (Offset - StartOffset) >> 2;
3996    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3997    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3998    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3999                             false, false, 0);
4000    // Canonicalize it to a v4i32 shuffle.
4001    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
4002    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4003                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4004                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
4005  }
4006
4007  return SDValue();
4008}
4009
4010/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4011/// vector of type 'VT', see if the elements can be replaced by a single large
4012/// load which has the same value as a build_vector whose operands are 'elts'.
4013///
4014/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4015///
4016/// FIXME: we'd also like to handle the case where the last elements are zero
4017/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4018/// There's even a handy isZeroNode for that purpose.
4019static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4020                                        DebugLoc &dl, SelectionDAG &DAG) {
4021  EVT EltVT = VT.getVectorElementType();
4022  unsigned NumElems = Elts.size();
4023
4024  LoadSDNode *LDBase = NULL;
4025  unsigned LastLoadedElt = -1U;
4026
4027  // For each element in the initializer, see if we've found a load or an undef.
4028  // If we don't find an initial load element, or later load elements are
4029  // non-consecutive, bail out.
4030  for (unsigned i = 0; i < NumElems; ++i) {
4031    SDValue Elt = Elts[i];
4032
4033    if (!Elt.getNode() ||
4034        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4035      return SDValue();
4036    if (!LDBase) {
4037      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4038        return SDValue();
4039      LDBase = cast<LoadSDNode>(Elt.getNode());
4040      LastLoadedElt = i;
4041      continue;
4042    }
4043    if (Elt.getOpcode() == ISD::UNDEF)
4044      continue;
4045
4046    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4047    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4048      return SDValue();
4049    LastLoadedElt = i;
4050  }
4051
4052  // If we have found an entire vector of loads and undefs, then return a large
4053  // load of the entire vector width starting at the base pointer.  If we found
4054  // consecutive loads for the low half, generate a vzext_load node.
4055  if (LastLoadedElt == NumElems - 1) {
4056    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4057      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
4058                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
4059                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4060    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
4061                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
4062                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4063                       LDBase->getAlignment());
4064  } else if (NumElems == 4 && LastLoadedElt == 1) {
4065    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4066    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4067    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
4068    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
4069  }
4070  return SDValue();
4071}
4072
4073SDValue
4074X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4075  DebugLoc dl = Op.getDebugLoc();
4076  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4077  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4078  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4079  // is present, so AllOnes is ignored.
4080  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4081      (Op.getValueType().getSizeInBits() != 256 &&
4082       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4083    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
4084    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4085    // eliminated on x86-32 hosts.
4086    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
4087      return Op;
4088
4089    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4090      return getOnesVector(Op.getValueType(), DAG, dl);
4091    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4092  }
4093
4094  EVT VT = Op.getValueType();
4095  EVT ExtVT = VT.getVectorElementType();
4096  unsigned EVTBits = ExtVT.getSizeInBits();
4097
4098  unsigned NumElems = Op.getNumOperands();
4099  unsigned NumZero  = 0;
4100  unsigned NumNonZero = 0;
4101  unsigned NonZeros = 0;
4102  bool IsAllConstants = true;
4103  SmallSet<SDValue, 8> Values;
4104  for (unsigned i = 0; i < NumElems; ++i) {
4105    SDValue Elt = Op.getOperand(i);
4106    if (Elt.getOpcode() == ISD::UNDEF)
4107      continue;
4108    Values.insert(Elt);
4109    if (Elt.getOpcode() != ISD::Constant &&
4110        Elt.getOpcode() != ISD::ConstantFP)
4111      IsAllConstants = false;
4112    if (X86::isZeroNode(Elt))
4113      NumZero++;
4114    else {
4115      NonZeros |= (1 << i);
4116      NumNonZero++;
4117    }
4118  }
4119
4120  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4121  if (NumNonZero == 0)
4122    return DAG.getUNDEF(VT);
4123
4124  // Special case for single non-zero, non-undef, element.
4125  if (NumNonZero == 1) {
4126    unsigned Idx = CountTrailingZeros_32(NonZeros);
4127    SDValue Item = Op.getOperand(Idx);
4128
4129    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4130    // the value are obviously zero, truncate the value to i32 and do the
4131    // insertion that way.  Only do this if the value is non-constant or if the
4132    // value is a constant being inserted into element 0.  It is cheaper to do
4133    // a constant pool load than it is to do a movd + shuffle.
4134    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4135        (!IsAllConstants || Idx == 0)) {
4136      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4137        // Handle MMX and SSE both.
4138        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
4139        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
4140
4141        // Truncate the value (which may itself be a constant) to i32, and
4142        // convert it to a vector with movd (S2V+shuffle to zero extend).
4143        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4144        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4145        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4146                                           Subtarget->hasSSE2(), DAG);
4147
4148        // Now we have our 32-bit value zero extended in the low element of
4149        // a vector.  If Idx != 0, swizzle it into place.
4150        if (Idx != 0) {
4151          SmallVector<int, 4> Mask;
4152          Mask.push_back(Idx);
4153          for (unsigned i = 1; i != VecElts; ++i)
4154            Mask.push_back(i);
4155          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4156                                      DAG.getUNDEF(Item.getValueType()),
4157                                      &Mask[0]);
4158        }
4159        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
4160      }
4161    }
4162
4163    // If we have a constant or non-constant insertion into the low element of
4164    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4165    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4166    // depending on what the source datatype is.
4167    if (Idx == 0) {
4168      if (NumZero == 0) {
4169        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4170      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4171          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4172        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4173        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4174        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4175                                           DAG);
4176      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4177        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4178        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
4179        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4180        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4181                                           Subtarget->hasSSE2(), DAG);
4182        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
4183      }
4184    }
4185
4186    // Is it a vector logical left shift?
4187    if (NumElems == 2 && Idx == 1 &&
4188        X86::isZeroNode(Op.getOperand(0)) &&
4189        !X86::isZeroNode(Op.getOperand(1))) {
4190      unsigned NumBits = VT.getSizeInBits();
4191      return getVShift(true, VT,
4192                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4193                                   VT, Op.getOperand(1)),
4194                       NumBits/2, DAG, *this, dl);
4195    }
4196
4197    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4198      return SDValue();
4199
4200    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4201    // is a non-constant being inserted into an element other than the low one,
4202    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4203    // movd/movss) to move this into the low element, then shuffle it into
4204    // place.
4205    if (EVTBits == 32) {
4206      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4207
4208      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4209      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4210                                         Subtarget->hasSSE2(), DAG);
4211      SmallVector<int, 8> MaskVec;
4212      for (unsigned i = 0; i < NumElems; i++)
4213        MaskVec.push_back(i == Idx ? 0 : 1);
4214      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4215    }
4216  }
4217
4218  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4219  if (Values.size() == 1) {
4220    if (EVTBits == 32) {
4221      // Instead of a shuffle like this:
4222      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4223      // Check if it's possible to issue this instead.
4224      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4225      unsigned Idx = CountTrailingZeros_32(NonZeros);
4226      SDValue Item = Op.getOperand(Idx);
4227      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4228        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4229    }
4230    return SDValue();
4231  }
4232
4233  // A vector full of immediates; various special cases are already
4234  // handled, so this is best done with a single constant-pool load.
4235  if (IsAllConstants)
4236    return SDValue();
4237
4238  // Let legalizer expand 2-wide build_vectors.
4239  if (EVTBits == 64) {
4240    if (NumNonZero == 1) {
4241      // One half is zero or undef.
4242      unsigned Idx = CountTrailingZeros_32(NonZeros);
4243      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4244                                 Op.getOperand(Idx));
4245      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4246                                         Subtarget->hasSSE2(), DAG);
4247    }
4248    return SDValue();
4249  }
4250
4251  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4252  if (EVTBits == 8 && NumElems == 16) {
4253    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4254                                        *this);
4255    if (V.getNode()) return V;
4256  }
4257
4258  if (EVTBits == 16 && NumElems == 8) {
4259    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4260                                      *this);
4261    if (V.getNode()) return V;
4262  }
4263
4264  // If element VT is == 32 bits, turn it into a number of shuffles.
4265  SmallVector<SDValue, 8> V;
4266  V.resize(NumElems);
4267  if (NumElems == 4 && NumZero > 0) {
4268    for (unsigned i = 0; i < 4; ++i) {
4269      bool isZero = !(NonZeros & (1 << i));
4270      if (isZero)
4271        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4272      else
4273        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4274    }
4275
4276    for (unsigned i = 0; i < 2; ++i) {
4277      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4278        default: break;
4279        case 0:
4280          V[i] = V[i*2];  // Must be a zero vector.
4281          break;
4282        case 1:
4283          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4284          break;
4285        case 2:
4286          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4287          break;
4288        case 3:
4289          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4290          break;
4291      }
4292    }
4293
4294    SmallVector<int, 8> MaskVec;
4295    bool Reverse = (NonZeros & 0x3) == 2;
4296    for (unsigned i = 0; i < 2; ++i)
4297      MaskVec.push_back(Reverse ? 1-i : i);
4298    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4299    for (unsigned i = 0; i < 2; ++i)
4300      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4301    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4302  }
4303
4304  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4305    // Check for a build vector of consecutive loads.
4306    for (unsigned i = 0; i < NumElems; ++i)
4307      V[i] = Op.getOperand(i);
4308
4309    // Check for elements which are consecutive loads.
4310    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4311    if (LD.getNode())
4312      return LD;
4313
4314    // For SSE 4.1, use insertps to put the high elements into the low element.
4315    if (getSubtarget()->hasSSE41()) {
4316      SDValue Result;
4317      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4318        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4319      else
4320        Result = DAG.getUNDEF(VT);
4321
4322      for (unsigned i = 1; i < NumElems; ++i) {
4323        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4324        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4325                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4326      }
4327      return Result;
4328    }
4329
4330    // Otherwise, expand into a number of unpckl*, start by extending each of
4331    // our (non-undef) elements to the full vector width with the element in the
4332    // bottom slot of the vector (which generates no code for SSE).
4333    for (unsigned i = 0; i < NumElems; ++i) {
4334      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4335        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4336      else
4337        V[i] = DAG.getUNDEF(VT);
4338    }
4339
4340    // Next, we iteratively mix elements, e.g. for v4f32:
4341    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4342    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4343    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4344    unsigned EltStride = NumElems >> 1;
4345    while (EltStride != 0) {
4346      for (unsigned i = 0; i < EltStride; ++i) {
4347        // If V[i+EltStride] is undef and this is the first round of mixing,
4348        // then it is safe to just drop this shuffle: V[i] is already in the
4349        // right place, the one element (since it's the first round) being
4350        // inserted as undef can be dropped.  This isn't safe for successive
4351        // rounds because they will permute elements within both vectors.
4352        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4353            EltStride == NumElems/2)
4354          continue;
4355
4356        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4357      }
4358      EltStride >>= 1;
4359    }
4360    return V[0];
4361  }
4362  return SDValue();
4363}
4364
4365SDValue
4366X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4367  // We support concatenate two MMX registers and place them in a MMX
4368  // register.  This is better than doing a stack convert.
4369  DebugLoc dl = Op.getDebugLoc();
4370  EVT ResVT = Op.getValueType();
4371  assert(Op.getNumOperands() == 2);
4372  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4373         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4374  int Mask[2];
4375  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4376  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4377  InVec = Op.getOperand(1);
4378  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4379    unsigned NumElts = ResVT.getVectorNumElements();
4380    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4381    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4382                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4383  } else {
4384    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4385    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4386    Mask[0] = 0; Mask[1] = 2;
4387    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4388  }
4389  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4390}
4391
4392// v8i16 shuffles - Prefer shuffles in the following order:
4393// 1. [all]   pshuflw, pshufhw, optional move
4394// 2. [ssse3] 1 x pshufb
4395// 3. [ssse3] 2 x pshufb + 1 x por
4396// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4397SDValue
4398X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4399                                            SelectionDAG &DAG) const {
4400  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4401  SDValue V1 = SVOp->getOperand(0);
4402  SDValue V2 = SVOp->getOperand(1);
4403  DebugLoc dl = SVOp->getDebugLoc();
4404  SmallVector<int, 8> MaskVals;
4405
4406  // Determine if more than 1 of the words in each of the low and high quadwords
4407  // of the result come from the same quadword of one of the two inputs.  Undef
4408  // mask values count as coming from any quadword, for better codegen.
4409  SmallVector<unsigned, 4> LoQuad(4);
4410  SmallVector<unsigned, 4> HiQuad(4);
4411  BitVector InputQuads(4);
4412  for (unsigned i = 0; i < 8; ++i) {
4413    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4414    int EltIdx = SVOp->getMaskElt(i);
4415    MaskVals.push_back(EltIdx);
4416    if (EltIdx < 0) {
4417      ++Quad[0];
4418      ++Quad[1];
4419      ++Quad[2];
4420      ++Quad[3];
4421      continue;
4422    }
4423    ++Quad[EltIdx / 4];
4424    InputQuads.set(EltIdx / 4);
4425  }
4426
4427  int BestLoQuad = -1;
4428  unsigned MaxQuad = 1;
4429  for (unsigned i = 0; i < 4; ++i) {
4430    if (LoQuad[i] > MaxQuad) {
4431      BestLoQuad = i;
4432      MaxQuad = LoQuad[i];
4433    }
4434  }
4435
4436  int BestHiQuad = -1;
4437  MaxQuad = 1;
4438  for (unsigned i = 0; i < 4; ++i) {
4439    if (HiQuad[i] > MaxQuad) {
4440      BestHiQuad = i;
4441      MaxQuad = HiQuad[i];
4442    }
4443  }
4444
4445  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4446  // of the two input vectors, shuffle them into one input vector so only a
4447  // single pshufb instruction is necessary. If There are more than 2 input
4448  // quads, disable the next transformation since it does not help SSSE3.
4449  bool V1Used = InputQuads[0] || InputQuads[1];
4450  bool V2Used = InputQuads[2] || InputQuads[3];
4451  if (Subtarget->hasSSSE3()) {
4452    if (InputQuads.count() == 2 && V1Used && V2Used) {
4453      BestLoQuad = InputQuads.find_first();
4454      BestHiQuad = InputQuads.find_next(BestLoQuad);
4455    }
4456    if (InputQuads.count() > 2) {
4457      BestLoQuad = -1;
4458      BestHiQuad = -1;
4459    }
4460  }
4461
4462  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4463  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4464  // words from all 4 input quadwords.
4465  SDValue NewV;
4466  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4467    SmallVector<int, 8> MaskV;
4468    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4469    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4470    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4471                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4472                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4473    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4474
4475    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4476    // source words for the shuffle, to aid later transformations.
4477    bool AllWordsInNewV = true;
4478    bool InOrder[2] = { true, true };
4479    for (unsigned i = 0; i != 8; ++i) {
4480      int idx = MaskVals[i];
4481      if (idx != (int)i)
4482        InOrder[i/4] = false;
4483      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4484        continue;
4485      AllWordsInNewV = false;
4486      break;
4487    }
4488
4489    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4490    if (AllWordsInNewV) {
4491      for (int i = 0; i != 8; ++i) {
4492        int idx = MaskVals[i];
4493        if (idx < 0)
4494          continue;
4495        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4496        if ((idx != i) && idx < 4)
4497          pshufhw = false;
4498        if ((idx != i) && idx > 3)
4499          pshuflw = false;
4500      }
4501      V1 = NewV;
4502      V2Used = false;
4503      BestLoQuad = 0;
4504      BestHiQuad = 1;
4505    }
4506
4507    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4508    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4509    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4510      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4511      unsigned TargetMask = 0;
4512      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4513                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4514      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4515                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4516      V1 = NewV.getOperand(0);
4517      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4518    }
4519  }
4520
4521  // If we have SSSE3, and all words of the result are from 1 input vector,
4522  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4523  // is present, fall back to case 4.
4524  if (Subtarget->hasSSSE3()) {
4525    SmallVector<SDValue,16> pshufbMask;
4526
4527    // If we have elements from both input vectors, set the high bit of the
4528    // shuffle mask element to zero out elements that come from V2 in the V1
4529    // mask, and elements that come from V1 in the V2 mask, so that the two
4530    // results can be OR'd together.
4531    bool TwoInputs = V1Used && V2Used;
4532    for (unsigned i = 0; i != 8; ++i) {
4533      int EltIdx = MaskVals[i] * 2;
4534      if (TwoInputs && (EltIdx >= 16)) {
4535        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4536        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4537        continue;
4538      }
4539      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4540      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4541    }
4542    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4543    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4544                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4545                                 MVT::v16i8, &pshufbMask[0], 16));
4546    if (!TwoInputs)
4547      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4548
4549    // Calculate the shuffle mask for the second input, shuffle it, and
4550    // OR it with the first shuffled input.
4551    pshufbMask.clear();
4552    for (unsigned i = 0; i != 8; ++i) {
4553      int EltIdx = MaskVals[i] * 2;
4554      if (EltIdx < 16) {
4555        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4556        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4557        continue;
4558      }
4559      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4560      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4561    }
4562    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4563    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4564                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4565                                 MVT::v16i8, &pshufbMask[0], 16));
4566    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4567    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4568  }
4569
4570  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4571  // and update MaskVals with new element order.
4572  BitVector InOrder(8);
4573  if (BestLoQuad >= 0) {
4574    SmallVector<int, 8> MaskV;
4575    for (int i = 0; i != 4; ++i) {
4576      int idx = MaskVals[i];
4577      if (idx < 0) {
4578        MaskV.push_back(-1);
4579        InOrder.set(i);
4580      } else if ((idx / 4) == BestLoQuad) {
4581        MaskV.push_back(idx & 3);
4582        InOrder.set(i);
4583      } else {
4584        MaskV.push_back(-1);
4585      }
4586    }
4587    for (unsigned i = 4; i != 8; ++i)
4588      MaskV.push_back(i);
4589    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4590                                &MaskV[0]);
4591
4592    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4593      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4594                               NewV.getOperand(0),
4595                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4596                               DAG);
4597  }
4598
4599  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4600  // and update MaskVals with the new element order.
4601  if (BestHiQuad >= 0) {
4602    SmallVector<int, 8> MaskV;
4603    for (unsigned i = 0; i != 4; ++i)
4604      MaskV.push_back(i);
4605    for (unsigned i = 4; i != 8; ++i) {
4606      int idx = MaskVals[i];
4607      if (idx < 0) {
4608        MaskV.push_back(-1);
4609        InOrder.set(i);
4610      } else if ((idx / 4) == BestHiQuad) {
4611        MaskV.push_back((idx & 3) + 4);
4612        InOrder.set(i);
4613      } else {
4614        MaskV.push_back(-1);
4615      }
4616    }
4617    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4618                                &MaskV[0]);
4619
4620    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4621      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4622                              NewV.getOperand(0),
4623                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4624                              DAG);
4625  }
4626
4627  // In case BestHi & BestLo were both -1, which means each quadword has a word
4628  // from each of the four input quadwords, calculate the InOrder bitvector now
4629  // before falling through to the insert/extract cleanup.
4630  if (BestLoQuad == -1 && BestHiQuad == -1) {
4631    NewV = V1;
4632    for (int i = 0; i != 8; ++i)
4633      if (MaskVals[i] < 0 || MaskVals[i] == i)
4634        InOrder.set(i);
4635  }
4636
4637  // The other elements are put in the right place using pextrw and pinsrw.
4638  for (unsigned i = 0; i != 8; ++i) {
4639    if (InOrder[i])
4640      continue;
4641    int EltIdx = MaskVals[i];
4642    if (EltIdx < 0)
4643      continue;
4644    SDValue ExtOp = (EltIdx < 8)
4645    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4646                  DAG.getIntPtrConstant(EltIdx))
4647    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4648                  DAG.getIntPtrConstant(EltIdx - 8));
4649    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4650                       DAG.getIntPtrConstant(i));
4651  }
4652  return NewV;
4653}
4654
4655// v16i8 shuffles - Prefer shuffles in the following order:
4656// 1. [ssse3] 1 x pshufb
4657// 2. [ssse3] 2 x pshufb + 1 x por
4658// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4659static
4660SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4661                                 SelectionDAG &DAG,
4662                                 const X86TargetLowering &TLI) {
4663  SDValue V1 = SVOp->getOperand(0);
4664  SDValue V2 = SVOp->getOperand(1);
4665  DebugLoc dl = SVOp->getDebugLoc();
4666  SmallVector<int, 16> MaskVals;
4667  SVOp->getMask(MaskVals);
4668
4669  // If we have SSSE3, case 1 is generated when all result bytes come from
4670  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4671  // present, fall back to case 3.
4672  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4673  bool V1Only = true;
4674  bool V2Only = true;
4675  for (unsigned i = 0; i < 16; ++i) {
4676    int EltIdx = MaskVals[i];
4677    if (EltIdx < 0)
4678      continue;
4679    if (EltIdx < 16)
4680      V2Only = false;
4681    else
4682      V1Only = false;
4683  }
4684
4685  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4686  if (TLI.getSubtarget()->hasSSSE3()) {
4687    SmallVector<SDValue,16> pshufbMask;
4688
4689    // If all result elements are from one input vector, then only translate
4690    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4691    //
4692    // Otherwise, we have elements from both input vectors, and must zero out
4693    // elements that come from V2 in the first mask, and V1 in the second mask
4694    // so that we can OR them together.
4695    bool TwoInputs = !(V1Only || V2Only);
4696    for (unsigned i = 0; i != 16; ++i) {
4697      int EltIdx = MaskVals[i];
4698      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4699        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4700        continue;
4701      }
4702      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4703    }
4704    // If all the elements are from V2, assign it to V1 and return after
4705    // building the first pshufb.
4706    if (V2Only)
4707      V1 = V2;
4708    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4709                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4710                                 MVT::v16i8, &pshufbMask[0], 16));
4711    if (!TwoInputs)
4712      return V1;
4713
4714    // Calculate the shuffle mask for the second input, shuffle it, and
4715    // OR it with the first shuffled input.
4716    pshufbMask.clear();
4717    for (unsigned i = 0; i != 16; ++i) {
4718      int EltIdx = MaskVals[i];
4719      if (EltIdx < 16) {
4720        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4721        continue;
4722      }
4723      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4724    }
4725    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4726                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4727                                 MVT::v16i8, &pshufbMask[0], 16));
4728    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4729  }
4730
4731  // No SSSE3 - Calculate in place words and then fix all out of place words
4732  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4733  // the 16 different words that comprise the two doublequadword input vectors.
4734  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4735  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4736  SDValue NewV = V2Only ? V2 : V1;
4737  for (int i = 0; i != 8; ++i) {
4738    int Elt0 = MaskVals[i*2];
4739    int Elt1 = MaskVals[i*2+1];
4740
4741    // This word of the result is all undef, skip it.
4742    if (Elt0 < 0 && Elt1 < 0)
4743      continue;
4744
4745    // This word of the result is already in the correct place, skip it.
4746    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4747      continue;
4748    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4749      continue;
4750
4751    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4752    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4753    SDValue InsElt;
4754
4755    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4756    // using a single extract together, load it and store it.
4757    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4758      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4759                           DAG.getIntPtrConstant(Elt1 / 2));
4760      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4761                        DAG.getIntPtrConstant(i));
4762      continue;
4763    }
4764
4765    // If Elt1 is defined, extract it from the appropriate source.  If the
4766    // source byte is not also odd, shift the extracted word left 8 bits
4767    // otherwise clear the bottom 8 bits if we need to do an or.
4768    if (Elt1 >= 0) {
4769      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4770                           DAG.getIntPtrConstant(Elt1 / 2));
4771      if ((Elt1 & 1) == 0)
4772        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4773                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4774      else if (Elt0 >= 0)
4775        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4776                             DAG.getConstant(0xFF00, MVT::i16));
4777    }
4778    // If Elt0 is defined, extract it from the appropriate source.  If the
4779    // source byte is not also even, shift the extracted word right 8 bits. If
4780    // Elt1 was also defined, OR the extracted values together before
4781    // inserting them in the result.
4782    if (Elt0 >= 0) {
4783      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4784                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4785      if ((Elt0 & 1) != 0)
4786        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4787                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4788      else if (Elt1 >= 0)
4789        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4790                             DAG.getConstant(0x00FF, MVT::i16));
4791      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4792                         : InsElt0;
4793    }
4794    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4795                       DAG.getIntPtrConstant(i));
4796  }
4797  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4798}
4799
4800/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4801/// ones, or rewriting v4i32 / v2i32 as 2 wide ones if possible. This can be
4802/// done when every pair / quad of shuffle mask elements point to elements in
4803/// the right sequence. e.g.
4804/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4805static
4806SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4807                                 SelectionDAG &DAG,
4808                                 const TargetLowering &TLI, DebugLoc dl) {
4809  EVT VT = SVOp->getValueType(0);
4810  SDValue V1 = SVOp->getOperand(0);
4811  SDValue V2 = SVOp->getOperand(1);
4812  unsigned NumElems = VT.getVectorNumElements();
4813  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4814  EVT MaskVT = (NewWidth == 4) ? MVT::v4i16 : MVT::v2i32;
4815  EVT NewVT = MaskVT;
4816  switch (VT.getSimpleVT().SimpleTy) {
4817  default: assert(false && "Unexpected!");
4818  case MVT::v4f32: NewVT = MVT::v2f64; break;
4819  case MVT::v4i32: NewVT = MVT::v2i64; break;
4820  case MVT::v8i16: NewVT = MVT::v4i32; break;
4821  case MVT::v16i8: NewVT = MVT::v4i32; break;
4822  }
4823
4824  if (NewWidth == 2) {
4825    if (VT.isInteger())
4826      NewVT = MVT::v2i64;
4827    else
4828      NewVT = MVT::v2f64;
4829  }
4830  int Scale = NumElems / NewWidth;
4831  SmallVector<int, 8> MaskVec;
4832  for (unsigned i = 0; i < NumElems; i += Scale) {
4833    int StartIdx = -1;
4834    for (int j = 0; j < Scale; ++j) {
4835      int EltIdx = SVOp->getMaskElt(i+j);
4836      if (EltIdx < 0)
4837        continue;
4838      if (StartIdx == -1)
4839        StartIdx = EltIdx - (EltIdx % Scale);
4840      if (EltIdx != StartIdx + j)
4841        return SDValue();
4842    }
4843    if (StartIdx == -1)
4844      MaskVec.push_back(-1);
4845    else
4846      MaskVec.push_back(StartIdx / Scale);
4847  }
4848
4849  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4850  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4851  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4852}
4853
4854/// getVZextMovL - Return a zero-extending vector move low node.
4855///
4856static SDValue getVZextMovL(EVT VT, EVT OpVT,
4857                            SDValue SrcOp, SelectionDAG &DAG,
4858                            const X86Subtarget *Subtarget, DebugLoc dl) {
4859  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4860    LoadSDNode *LD = NULL;
4861    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4862      LD = dyn_cast<LoadSDNode>(SrcOp);
4863    if (!LD) {
4864      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4865      // instead.
4866      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4867      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4868          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4869          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4870          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4871        // PR2108
4872        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4873        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4874                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4875                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4876                                                   OpVT,
4877                                                   SrcOp.getOperand(0)
4878                                                          .getOperand(0))));
4879      }
4880    }
4881  }
4882
4883  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4884                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4885                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4886                                             OpVT, SrcOp)));
4887}
4888
4889/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4890/// shuffles.
4891static SDValue
4892LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4893  SDValue V1 = SVOp->getOperand(0);
4894  SDValue V2 = SVOp->getOperand(1);
4895  DebugLoc dl = SVOp->getDebugLoc();
4896  EVT VT = SVOp->getValueType(0);
4897
4898  SmallVector<std::pair<int, int>, 8> Locs;
4899  Locs.resize(4);
4900  SmallVector<int, 8> Mask1(4U, -1);
4901  SmallVector<int, 8> PermMask;
4902  SVOp->getMask(PermMask);
4903
4904  unsigned NumHi = 0;
4905  unsigned NumLo = 0;
4906  for (unsigned i = 0; i != 4; ++i) {
4907    int Idx = PermMask[i];
4908    if (Idx < 0) {
4909      Locs[i] = std::make_pair(-1, -1);
4910    } else {
4911      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4912      if (Idx < 4) {
4913        Locs[i] = std::make_pair(0, NumLo);
4914        Mask1[NumLo] = Idx;
4915        NumLo++;
4916      } else {
4917        Locs[i] = std::make_pair(1, NumHi);
4918        if (2+NumHi < 4)
4919          Mask1[2+NumHi] = Idx;
4920        NumHi++;
4921      }
4922    }
4923  }
4924
4925  if (NumLo <= 2 && NumHi <= 2) {
4926    // If no more than two elements come from either vector. This can be
4927    // implemented with two shuffles. First shuffle gather the elements.
4928    // The second shuffle, which takes the first shuffle as both of its
4929    // vector operands, put the elements into the right order.
4930    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4931
4932    SmallVector<int, 8> Mask2(4U, -1);
4933
4934    for (unsigned i = 0; i != 4; ++i) {
4935      if (Locs[i].first == -1)
4936        continue;
4937      else {
4938        unsigned Idx = (i < 2) ? 0 : 4;
4939        Idx += Locs[i].first * 2 + Locs[i].second;
4940        Mask2[i] = Idx;
4941      }
4942    }
4943
4944    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4945  } else if (NumLo == 3 || NumHi == 3) {
4946    // Otherwise, we must have three elements from one vector, call it X, and
4947    // one element from the other, call it Y.  First, use a shufps to build an
4948    // intermediate vector with the one element from Y and the element from X
4949    // that will be in the same half in the final destination (the indexes don't
4950    // matter). Then, use a shufps to build the final vector, taking the half
4951    // containing the element from Y from the intermediate, and the other half
4952    // from X.
4953    if (NumHi == 3) {
4954      // Normalize it so the 3 elements come from V1.
4955      CommuteVectorShuffleMask(PermMask, VT);
4956      std::swap(V1, V2);
4957    }
4958
4959    // Find the element from V2.
4960    unsigned HiIndex;
4961    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4962      int Val = PermMask[HiIndex];
4963      if (Val < 0)
4964        continue;
4965      if (Val >= 4)
4966        break;
4967    }
4968
4969    Mask1[0] = PermMask[HiIndex];
4970    Mask1[1] = -1;
4971    Mask1[2] = PermMask[HiIndex^1];
4972    Mask1[3] = -1;
4973    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4974
4975    if (HiIndex >= 2) {
4976      Mask1[0] = PermMask[0];
4977      Mask1[1] = PermMask[1];
4978      Mask1[2] = HiIndex & 1 ? 6 : 4;
4979      Mask1[3] = HiIndex & 1 ? 4 : 6;
4980      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4981    } else {
4982      Mask1[0] = HiIndex & 1 ? 2 : 0;
4983      Mask1[1] = HiIndex & 1 ? 0 : 2;
4984      Mask1[2] = PermMask[2];
4985      Mask1[3] = PermMask[3];
4986      if (Mask1[2] >= 0)
4987        Mask1[2] += 4;
4988      if (Mask1[3] >= 0)
4989        Mask1[3] += 4;
4990      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4991    }
4992  }
4993
4994  // Break it into (shuffle shuffle_hi, shuffle_lo).
4995  Locs.clear();
4996  SmallVector<int,8> LoMask(4U, -1);
4997  SmallVector<int,8> HiMask(4U, -1);
4998
4999  SmallVector<int,8> *MaskPtr = &LoMask;
5000  unsigned MaskIdx = 0;
5001  unsigned LoIdx = 0;
5002  unsigned HiIdx = 2;
5003  for (unsigned i = 0; i != 4; ++i) {
5004    if (i == 2) {
5005      MaskPtr = &HiMask;
5006      MaskIdx = 1;
5007      LoIdx = 0;
5008      HiIdx = 2;
5009    }
5010    int Idx = PermMask[i];
5011    if (Idx < 0) {
5012      Locs[i] = std::make_pair(-1, -1);
5013    } else if (Idx < 4) {
5014      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5015      (*MaskPtr)[LoIdx] = Idx;
5016      LoIdx++;
5017    } else {
5018      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5019      (*MaskPtr)[HiIdx] = Idx;
5020      HiIdx++;
5021    }
5022  }
5023
5024  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5025  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5026  SmallVector<int, 8> MaskOps;
5027  for (unsigned i = 0; i != 4; ++i) {
5028    if (Locs[i].first == -1) {
5029      MaskOps.push_back(-1);
5030    } else {
5031      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5032      MaskOps.push_back(Idx);
5033    }
5034  }
5035  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5036}
5037
5038static
5039SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5040                        bool HasSSE2) {
5041  SDValue V1 = Op.getOperand(0);
5042  SDValue V2 = Op.getOperand(1);
5043  EVT VT = Op.getValueType();
5044
5045  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5046
5047  if (HasSSE2 && VT == MVT::v2f64)
5048    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5049
5050  // v4f32 or v4i32
5051  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5052}
5053
5054static
5055SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5056  SDValue V1 = Op.getOperand(0);
5057  SDValue V2 = Op.getOperand(1);
5058  EVT VT = Op.getValueType();
5059
5060  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5061         "unsupported shuffle type");
5062
5063  if (V2.getOpcode() == ISD::UNDEF)
5064    V2 = V1;
5065
5066  // v4i32 or v4f32
5067  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5068}
5069
5070static
5071SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5072  SDValue V1 = Op.getOperand(0);
5073  SDValue V2 = Op.getOperand(1);
5074  EVT VT = Op.getValueType();
5075  unsigned NumElems = VT.getVectorNumElements();
5076
5077  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5078  // operand of these instructions is only memory, so check if there's a
5079  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5080  // same masks.
5081  bool CanFoldLoad = false;
5082  SDValue TmpV1 = V1;
5083  SDValue TmpV2 = V2;
5084
5085  // Trivial case, when V2 comes from a load.
5086  if (TmpV2.hasOneUse() && TmpV2.getOpcode() == ISD::BIT_CONVERT)
5087    TmpV2 = TmpV2.getOperand(0);
5088  if (TmpV2.hasOneUse() && TmpV2.getOpcode() == ISD::SCALAR_TO_VECTOR)
5089    TmpV2 = TmpV2.getOperand(0);
5090  if (MayFoldLoad(TmpV2))
5091    CanFoldLoad = true;
5092
5093  // When V1 is a load, it can be folded later into a store in isel, example:
5094  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5095  //    turns into:
5096  //  (MOVLPSmr addr:$src1, VR128:$src2)
5097  // So, recognize this potential and also use MOVLPS or MOVLPD
5098  if (TmpV1.hasOneUse() && TmpV1.getOpcode() == ISD::BIT_CONVERT)
5099    TmpV1 = TmpV1.getOperand(0);
5100  if (MayFoldLoad(TmpV1) && MayFoldIntoStore(Op))
5101    CanFoldLoad = true;
5102
5103  if (CanFoldLoad) {
5104    if (HasSSE2 && NumElems == 2)
5105      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5106
5107    if (NumElems == 4)
5108      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5109  }
5110
5111  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5112  // movl and movlp will both match v2i64, but v2i64 is never matched by
5113  // movl earlier because we make it strict to avoid messing with the movlp load
5114  // folding logic (see the code above getMOVLP call). Match it here then,
5115  // this is horrible, but will stay like this until we move all shuffle
5116  // matching to x86 specific nodes. Note that for the 1st condition all
5117  // types are matched with movsd.
5118  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5119    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5120  else if (HasSSE2)
5121    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5122
5123
5124  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5125
5126  // Invert the operand order and use SHUFPS to match it.
5127  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5128                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5129}
5130
5131SDValue
5132X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5133  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5134  SDValue V1 = Op.getOperand(0);
5135  SDValue V2 = Op.getOperand(1);
5136  EVT VT = Op.getValueType();
5137  DebugLoc dl = Op.getDebugLoc();
5138  unsigned NumElems = VT.getVectorNumElements();
5139  bool isMMX = VT.getSizeInBits() == 64;
5140  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5141  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5142  bool V1IsSplat = false;
5143  bool V2IsSplat = false;
5144  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5145  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5146  MachineFunction &MF = DAG.getMachineFunction();
5147  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5148
5149  if (isZeroShuffle(SVOp))
5150    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5151
5152  // Promote splats to v4f32.
5153  if (SVOp->isSplat()) {
5154    if (isMMX || NumElems < 4)
5155      return Op;
5156    return PromoteSplat(SVOp, DAG);
5157  }
5158
5159  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5160  // do it!
5161  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5162    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
5163    if (NewOp.getNode())
5164      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5165                         LowerVECTOR_SHUFFLE(NewOp, DAG));
5166  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5167    // FIXME: Figure out a cleaner way to do this.
5168    // Try to make use of movq to zero out the top part.
5169    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5170      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
5171      if (NewOp.getNode()) {
5172        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5173          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5174                              DAG, Subtarget, dl);
5175      }
5176    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5177      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
5178      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5179        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5180                            DAG, Subtarget, dl);
5181    }
5182  }
5183
5184  if (X86::isPSHUFDMask(SVOp)) {
5185    // The actual implementation will match the mask in the if above and then
5186    // during isel it can match several different instructions, not only pshufd
5187    // as its name says, sad but true, emulate the behavior for now...
5188    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5189        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5190
5191    if (OptForSize && HasSSE2 && X86::isUNPCKL_v_undef_Mask(SVOp) &&
5192        VT == MVT::v4i32)
5193      return getTargetShuffleNode(X86ISD::PUNPCKLDQ, dl, VT, V1, V1, DAG);
5194
5195    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5196
5197    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5198      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5199
5200    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5201      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5202                                  TargetMask, DAG);
5203
5204    if (VT == MVT::v4f32)
5205      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5206                                  TargetMask, DAG);
5207  }
5208
5209  // Check if this can be converted into a logical shift.
5210  bool isLeft = false;
5211  unsigned ShAmt = 0;
5212  SDValue ShVal;
5213  bool isShift = getSubtarget()->hasSSE2() &&
5214    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5215  if (isShift && ShVal.hasOneUse()) {
5216    // If the shifted value has multiple uses, it may be cheaper to use
5217    // v_set0 + movlhps or movhlps, etc.
5218    EVT EltVT = VT.getVectorElementType();
5219    ShAmt *= EltVT.getSizeInBits();
5220    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5221  }
5222
5223  if (X86::isMOVLMask(SVOp)) {
5224    if (V1IsUndef)
5225      return V2;
5226    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5227      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5228    if (!isMMX && !X86::isMOVLPMask(SVOp)) {
5229      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5230        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5231
5232      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5233        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5234    }
5235  }
5236
5237  // FIXME: fold these into legal mask.
5238  if (!isMMX) {
5239    if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5240      return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5241
5242    if (X86::isMOVHLPSMask(SVOp))
5243      return getMOVHighToLow(Op, dl, DAG);
5244
5245    if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5246      return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5247
5248    if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5249      return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5250
5251    if (X86::isMOVLPMask(SVOp))
5252      return getMOVLP(Op, dl, DAG, HasSSE2);
5253  }
5254
5255  if (ShouldXformToMOVHLPS(SVOp) ||
5256      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5257    return CommuteVectorShuffle(SVOp, DAG);
5258
5259  if (isShift) {
5260    // No better options. Use a vshl / vsrl.
5261    EVT EltVT = VT.getVectorElementType();
5262    ShAmt *= EltVT.getSizeInBits();
5263    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5264  }
5265
5266  bool Commuted = false;
5267  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5268  // 1,1,1,1 -> v8i16 though.
5269  V1IsSplat = isSplatVector(V1.getNode());
5270  V2IsSplat = isSplatVector(V2.getNode());
5271
5272  // Canonicalize the splat or undef, if present, to be on the RHS.
5273  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5274    Op = CommuteVectorShuffle(SVOp, DAG);
5275    SVOp = cast<ShuffleVectorSDNode>(Op);
5276    V1 = SVOp->getOperand(0);
5277    V2 = SVOp->getOperand(1);
5278    std::swap(V1IsSplat, V2IsSplat);
5279    std::swap(V1IsUndef, V2IsUndef);
5280    Commuted = true;
5281  }
5282
5283  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5284    // Shuffling low element of v1 into undef, just return v1.
5285    if (V2IsUndef)
5286      return V1;
5287    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5288    // the instruction selector will not match, so get a canonical MOVL with
5289    // swapped operands to undo the commute.
5290    return getMOVL(DAG, dl, VT, V2, V1);
5291  }
5292
5293  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
5294      X86::isUNPCKH_v_undef_Mask(SVOp) ||
5295      X86::isUNPCKLMask(SVOp) ||
5296      X86::isUNPCKHMask(SVOp))
5297    return Op;
5298
5299  if (V2IsSplat) {
5300    // Normalize mask so all entries that point to V2 points to its first
5301    // element then try to match unpck{h|l} again. If match, return a
5302    // new vector_shuffle with the corrected mask.
5303    SDValue NewMask = NormalizeMask(SVOp, DAG);
5304    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5305    if (NSVOp != SVOp) {
5306      if (X86::isUNPCKLMask(NSVOp, true)) {
5307        return NewMask;
5308      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5309        return NewMask;
5310      }
5311    }
5312  }
5313
5314  if (Commuted) {
5315    // Commute is back and try unpck* again.
5316    // FIXME: this seems wrong.
5317    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5318    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5319    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
5320        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
5321        X86::isUNPCKLMask(NewSVOp) ||
5322        X86::isUNPCKHMask(NewSVOp))
5323      return NewOp;
5324  }
5325
5326  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
5327
5328  // Normalize the node to match x86 shuffle ops if needed
5329  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5330    return CommuteVectorShuffle(SVOp, DAG);
5331
5332  // Check for legal shuffle and return?
5333  SmallVector<int, 16> PermMask;
5334  SVOp->getMask(PermMask);
5335  if (isShuffleMaskLegal(PermMask, VT))
5336    return Op;
5337
5338  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5339  if (VT == MVT::v8i16) {
5340    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5341    if (NewOp.getNode())
5342      return NewOp;
5343  }
5344
5345  if (VT == MVT::v16i8) {
5346    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5347    if (NewOp.getNode())
5348      return NewOp;
5349  }
5350
5351  // Handle all 4 wide cases with a number of shuffles except for MMX.
5352  if (NumElems == 4 && !isMMX)
5353    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5354
5355  return SDValue();
5356}
5357
5358SDValue
5359X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5360                                                SelectionDAG &DAG) const {
5361  EVT VT = Op.getValueType();
5362  DebugLoc dl = Op.getDebugLoc();
5363  if (VT.getSizeInBits() == 8) {
5364    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5365                                    Op.getOperand(0), Op.getOperand(1));
5366    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5367                                    DAG.getValueType(VT));
5368    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5369  } else if (VT.getSizeInBits() == 16) {
5370    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5371    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5372    if (Idx == 0)
5373      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5374                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5375                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5376                                                 MVT::v4i32,
5377                                                 Op.getOperand(0)),
5378                                     Op.getOperand(1)));
5379    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5380                                    Op.getOperand(0), Op.getOperand(1));
5381    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5382                                    DAG.getValueType(VT));
5383    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5384  } else if (VT == MVT::f32) {
5385    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5386    // the result back to FR32 register. It's only worth matching if the
5387    // result has a single use which is a store or a bitcast to i32.  And in
5388    // the case of a store, it's not worth it if the index is a constant 0,
5389    // because a MOVSSmr can be used instead, which is smaller and faster.
5390    if (!Op.hasOneUse())
5391      return SDValue();
5392    SDNode *User = *Op.getNode()->use_begin();
5393    if ((User->getOpcode() != ISD::STORE ||
5394         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5395          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5396        (User->getOpcode() != ISD::BIT_CONVERT ||
5397         User->getValueType(0) != MVT::i32))
5398      return SDValue();
5399    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5400                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
5401                                              Op.getOperand(0)),
5402                                              Op.getOperand(1));
5403    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
5404  } else if (VT == MVT::i32) {
5405    // ExtractPS works with constant index.
5406    if (isa<ConstantSDNode>(Op.getOperand(1)))
5407      return Op;
5408  }
5409  return SDValue();
5410}
5411
5412
5413SDValue
5414X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5415                                           SelectionDAG &DAG) const {
5416  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5417    return SDValue();
5418
5419  if (Subtarget->hasSSE41()) {
5420    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5421    if (Res.getNode())
5422      return Res;
5423  }
5424
5425  EVT VT = Op.getValueType();
5426  DebugLoc dl = Op.getDebugLoc();
5427  // TODO: handle v16i8.
5428  if (VT.getSizeInBits() == 16) {
5429    SDValue Vec = Op.getOperand(0);
5430    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5431    if (Idx == 0)
5432      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5433                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5434                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5435                                                 MVT::v4i32, Vec),
5436                                     Op.getOperand(1)));
5437    // Transform it so it match pextrw which produces a 32-bit result.
5438    EVT EltVT = MVT::i32;
5439    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5440                                    Op.getOperand(0), Op.getOperand(1));
5441    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5442                                    DAG.getValueType(VT));
5443    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5444  } else if (VT.getSizeInBits() == 32) {
5445    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5446    if (Idx == 0)
5447      return Op;
5448
5449    // SHUFPS the element to the lowest double word, then movss.
5450    int Mask[4] = { Idx, -1, -1, -1 };
5451    EVT VVT = Op.getOperand(0).getValueType();
5452    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5453                                       DAG.getUNDEF(VVT), Mask);
5454    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5455                       DAG.getIntPtrConstant(0));
5456  } else if (VT.getSizeInBits() == 64) {
5457    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5458    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5459    //        to match extract_elt for f64.
5460    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5461    if (Idx == 0)
5462      return Op;
5463
5464    // UNPCKHPD the element to the lowest double word, then movsd.
5465    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5466    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5467    int Mask[2] = { 1, -1 };
5468    EVT VVT = Op.getOperand(0).getValueType();
5469    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5470                                       DAG.getUNDEF(VVT), Mask);
5471    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5472                       DAG.getIntPtrConstant(0));
5473  }
5474
5475  return SDValue();
5476}
5477
5478SDValue
5479X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5480                                               SelectionDAG &DAG) const {
5481  EVT VT = Op.getValueType();
5482  EVT EltVT = VT.getVectorElementType();
5483  DebugLoc dl = Op.getDebugLoc();
5484
5485  SDValue N0 = Op.getOperand(0);
5486  SDValue N1 = Op.getOperand(1);
5487  SDValue N2 = Op.getOperand(2);
5488
5489  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5490      isa<ConstantSDNode>(N2)) {
5491    unsigned Opc;
5492    if (VT == MVT::v8i16)
5493      Opc = X86ISD::PINSRW;
5494    else if (VT == MVT::v4i16)
5495      Opc = X86ISD::MMX_PINSRW;
5496    else if (VT == MVT::v16i8)
5497      Opc = X86ISD::PINSRB;
5498    else
5499      Opc = X86ISD::PINSRB;
5500
5501    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5502    // argument.
5503    if (N1.getValueType() != MVT::i32)
5504      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5505    if (N2.getValueType() != MVT::i32)
5506      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5507    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5508  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5509    // Bits [7:6] of the constant are the source select.  This will always be
5510    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5511    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5512    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5513    // Bits [5:4] of the constant are the destination select.  This is the
5514    //  value of the incoming immediate.
5515    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5516    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5517    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5518    // Create this as a scalar to vector..
5519    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5520    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5521  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5522    // PINSR* works with constant index.
5523    return Op;
5524  }
5525  return SDValue();
5526}
5527
5528SDValue
5529X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5530  EVT VT = Op.getValueType();
5531  EVT EltVT = VT.getVectorElementType();
5532
5533  if (Subtarget->hasSSE41())
5534    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5535
5536  if (EltVT == MVT::i8)
5537    return SDValue();
5538
5539  DebugLoc dl = Op.getDebugLoc();
5540  SDValue N0 = Op.getOperand(0);
5541  SDValue N1 = Op.getOperand(1);
5542  SDValue N2 = Op.getOperand(2);
5543
5544  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5545    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5546    // as its second argument.
5547    if (N1.getValueType() != MVT::i32)
5548      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5549    if (N2.getValueType() != MVT::i32)
5550      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5551    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5552                       dl, VT, N0, N1, N2);
5553  }
5554  return SDValue();
5555}
5556
5557SDValue
5558X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5559  DebugLoc dl = Op.getDebugLoc();
5560
5561  if (Op.getValueType() == MVT::v1i64 &&
5562      Op.getOperand(0).getValueType() == MVT::i64)
5563    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5564
5565  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5566  EVT VT = MVT::v2i32;
5567  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5568  default: break;
5569  case MVT::v16i8:
5570  case MVT::v8i16:
5571    VT = MVT::v4i32;
5572    break;
5573  }
5574  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5575                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5576}
5577
5578// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5579// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5580// one of the above mentioned nodes. It has to be wrapped because otherwise
5581// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5582// be used to form addressing mode. These wrapped nodes will be selected
5583// into MOV32ri.
5584SDValue
5585X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5586  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5587
5588  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5589  // global base reg.
5590  unsigned char OpFlag = 0;
5591  unsigned WrapperKind = X86ISD::Wrapper;
5592  CodeModel::Model M = getTargetMachine().getCodeModel();
5593
5594  if (Subtarget->isPICStyleRIPRel() &&
5595      (M == CodeModel::Small || M == CodeModel::Kernel))
5596    WrapperKind = X86ISD::WrapperRIP;
5597  else if (Subtarget->isPICStyleGOT())
5598    OpFlag = X86II::MO_GOTOFF;
5599  else if (Subtarget->isPICStyleStubPIC())
5600    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5601
5602  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5603                                             CP->getAlignment(),
5604                                             CP->getOffset(), OpFlag);
5605  DebugLoc DL = CP->getDebugLoc();
5606  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5607  // With PIC, the address is actually $g + Offset.
5608  if (OpFlag) {
5609    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5610                         DAG.getNode(X86ISD::GlobalBaseReg,
5611                                     DebugLoc(), getPointerTy()),
5612                         Result);
5613  }
5614
5615  return Result;
5616}
5617
5618SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5619  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5620
5621  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5622  // global base reg.
5623  unsigned char OpFlag = 0;
5624  unsigned WrapperKind = X86ISD::Wrapper;
5625  CodeModel::Model M = getTargetMachine().getCodeModel();
5626
5627  if (Subtarget->isPICStyleRIPRel() &&
5628      (M == CodeModel::Small || M == CodeModel::Kernel))
5629    WrapperKind = X86ISD::WrapperRIP;
5630  else if (Subtarget->isPICStyleGOT())
5631    OpFlag = X86II::MO_GOTOFF;
5632  else if (Subtarget->isPICStyleStubPIC())
5633    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5634
5635  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5636                                          OpFlag);
5637  DebugLoc DL = JT->getDebugLoc();
5638  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5639
5640  // With PIC, the address is actually $g + Offset.
5641  if (OpFlag) {
5642    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5643                         DAG.getNode(X86ISD::GlobalBaseReg,
5644                                     DebugLoc(), getPointerTy()),
5645                         Result);
5646  }
5647
5648  return Result;
5649}
5650
5651SDValue
5652X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5653  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5654
5655  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5656  // global base reg.
5657  unsigned char OpFlag = 0;
5658  unsigned WrapperKind = X86ISD::Wrapper;
5659  CodeModel::Model M = getTargetMachine().getCodeModel();
5660
5661  if (Subtarget->isPICStyleRIPRel() &&
5662      (M == CodeModel::Small || M == CodeModel::Kernel))
5663    WrapperKind = X86ISD::WrapperRIP;
5664  else if (Subtarget->isPICStyleGOT())
5665    OpFlag = X86II::MO_GOTOFF;
5666  else if (Subtarget->isPICStyleStubPIC())
5667    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5668
5669  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5670
5671  DebugLoc DL = Op.getDebugLoc();
5672  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5673
5674
5675  // With PIC, the address is actually $g + Offset.
5676  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5677      !Subtarget->is64Bit()) {
5678    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5679                         DAG.getNode(X86ISD::GlobalBaseReg,
5680                                     DebugLoc(), getPointerTy()),
5681                         Result);
5682  }
5683
5684  return Result;
5685}
5686
5687SDValue
5688X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5689  // Create the TargetBlockAddressAddress node.
5690  unsigned char OpFlags =
5691    Subtarget->ClassifyBlockAddressReference();
5692  CodeModel::Model M = getTargetMachine().getCodeModel();
5693  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5694  DebugLoc dl = Op.getDebugLoc();
5695  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5696                                       /*isTarget=*/true, OpFlags);
5697
5698  if (Subtarget->isPICStyleRIPRel() &&
5699      (M == CodeModel::Small || M == CodeModel::Kernel))
5700    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5701  else
5702    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5703
5704  // With PIC, the address is actually $g + Offset.
5705  if (isGlobalRelativeToPICBase(OpFlags)) {
5706    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5707                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5708                         Result);
5709  }
5710
5711  return Result;
5712}
5713
5714SDValue
5715X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5716                                      int64_t Offset,
5717                                      SelectionDAG &DAG) const {
5718  // Create the TargetGlobalAddress node, folding in the constant
5719  // offset if it is legal.
5720  unsigned char OpFlags =
5721    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5722  CodeModel::Model M = getTargetMachine().getCodeModel();
5723  SDValue Result;
5724  if (OpFlags == X86II::MO_NO_FLAG &&
5725      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5726    // A direct static reference to a global.
5727    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5728    Offset = 0;
5729  } else {
5730    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5731  }
5732
5733  if (Subtarget->isPICStyleRIPRel() &&
5734      (M == CodeModel::Small || M == CodeModel::Kernel))
5735    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5736  else
5737    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5738
5739  // With PIC, the address is actually $g + Offset.
5740  if (isGlobalRelativeToPICBase(OpFlags)) {
5741    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5742                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5743                         Result);
5744  }
5745
5746  // For globals that require a load from a stub to get the address, emit the
5747  // load.
5748  if (isGlobalStubReference(OpFlags))
5749    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5750                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5751
5752  // If there was a non-zero offset that we didn't fold, create an explicit
5753  // addition for it.
5754  if (Offset != 0)
5755    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5756                         DAG.getConstant(Offset, getPointerTy()));
5757
5758  return Result;
5759}
5760
5761SDValue
5762X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
5763  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5764  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5765  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5766}
5767
5768static SDValue
5769GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5770           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5771           unsigned char OperandFlags) {
5772  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5773  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5774  DebugLoc dl = GA->getDebugLoc();
5775  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5776                                           GA->getValueType(0),
5777                                           GA->getOffset(),
5778                                           OperandFlags);
5779  if (InFlag) {
5780    SDValue Ops[] = { Chain,  TGA, *InFlag };
5781    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5782  } else {
5783    SDValue Ops[]  = { Chain, TGA };
5784    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5785  }
5786
5787  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5788  MFI->setAdjustsStack(true);
5789
5790  SDValue Flag = Chain.getValue(1);
5791  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5792}
5793
5794// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5795static SDValue
5796LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5797                                const EVT PtrVT) {
5798  SDValue InFlag;
5799  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5800  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5801                                     DAG.getNode(X86ISD::GlobalBaseReg,
5802                                                 DebugLoc(), PtrVT), InFlag);
5803  InFlag = Chain.getValue(1);
5804
5805  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5806}
5807
5808// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5809static SDValue
5810LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5811                                const EVT PtrVT) {
5812  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5813                    X86::RAX, X86II::MO_TLSGD);
5814}
5815
5816// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5817// "local exec" model.
5818static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5819                                   const EVT PtrVT, TLSModel::Model model,
5820                                   bool is64Bit) {
5821  DebugLoc dl = GA->getDebugLoc();
5822  // Get the Thread Pointer
5823  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5824                             DebugLoc(), PtrVT,
5825                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5826                                             MVT::i32));
5827
5828  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5829                                      NULL, 0, false, false, 0);
5830
5831  unsigned char OperandFlags = 0;
5832  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5833  // initialexec.
5834  unsigned WrapperKind = X86ISD::Wrapper;
5835  if (model == TLSModel::LocalExec) {
5836    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5837  } else if (is64Bit) {
5838    assert(model == TLSModel::InitialExec);
5839    OperandFlags = X86II::MO_GOTTPOFF;
5840    WrapperKind = X86ISD::WrapperRIP;
5841  } else {
5842    assert(model == TLSModel::InitialExec);
5843    OperandFlags = X86II::MO_INDNTPOFF;
5844  }
5845
5846  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5847  // exec)
5848  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5849                                           GA->getValueType(0),
5850                                           GA->getOffset(), OperandFlags);
5851  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5852
5853  if (model == TLSModel::InitialExec)
5854    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5855                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5856
5857  // The address of the thread local variable is the add of the thread
5858  // pointer with the offset of the variable.
5859  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5860}
5861
5862SDValue
5863X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
5864
5865  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5866  const GlobalValue *GV = GA->getGlobal();
5867
5868  if (Subtarget->isTargetELF()) {
5869    // TODO: implement the "local dynamic" model
5870    // TODO: implement the "initial exec"model for pic executables
5871
5872    // If GV is an alias then use the aliasee for determining
5873    // thread-localness.
5874    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5875      GV = GA->resolveAliasedGlobal(false);
5876
5877    TLSModel::Model model
5878      = getTLSModel(GV, getTargetMachine().getRelocationModel());
5879
5880    switch (model) {
5881      case TLSModel::GeneralDynamic:
5882      case TLSModel::LocalDynamic: // not implemented
5883        if (Subtarget->is64Bit())
5884          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5885        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5886
5887      case TLSModel::InitialExec:
5888      case TLSModel::LocalExec:
5889        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5890                                   Subtarget->is64Bit());
5891    }
5892  } else if (Subtarget->isTargetDarwin()) {
5893    // Darwin only has one model of TLS.  Lower to that.
5894    unsigned char OpFlag = 0;
5895    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
5896                           X86ISD::WrapperRIP : X86ISD::Wrapper;
5897
5898    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5899    // global base reg.
5900    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
5901                  !Subtarget->is64Bit();
5902    if (PIC32)
5903      OpFlag = X86II::MO_TLVP_PIC_BASE;
5904    else
5905      OpFlag = X86II::MO_TLVP;
5906    DebugLoc DL = Op.getDebugLoc();
5907    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
5908                                                getPointerTy(),
5909                                                GA->getOffset(), OpFlag);
5910    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5911
5912    // With PIC32, the address is actually $g + Offset.
5913    if (PIC32)
5914      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5915                           DAG.getNode(X86ISD::GlobalBaseReg,
5916                                       DebugLoc(), getPointerTy()),
5917                           Offset);
5918
5919    // Lowering the machine isd will make sure everything is in the right
5920    // location.
5921    SDValue Args[] = { Offset };
5922    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
5923
5924    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
5925    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5926    MFI->setAdjustsStack(true);
5927
5928    // And our return value (tls address) is in the standard call return value
5929    // location.
5930    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
5931    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
5932  }
5933
5934  assert(false &&
5935         "TLS not implemented for this target.");
5936
5937  llvm_unreachable("Unreachable");
5938  return SDValue();
5939}
5940
5941
5942/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5943/// take a 2 x i32 value to shift plus a shift amount.
5944SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
5945  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5946  EVT VT = Op.getValueType();
5947  unsigned VTBits = VT.getSizeInBits();
5948  DebugLoc dl = Op.getDebugLoc();
5949  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5950  SDValue ShOpLo = Op.getOperand(0);
5951  SDValue ShOpHi = Op.getOperand(1);
5952  SDValue ShAmt  = Op.getOperand(2);
5953  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5954                                     DAG.getConstant(VTBits - 1, MVT::i8))
5955                       : DAG.getConstant(0, VT);
5956
5957  SDValue Tmp2, Tmp3;
5958  if (Op.getOpcode() == ISD::SHL_PARTS) {
5959    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5960    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5961  } else {
5962    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5963    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5964  }
5965
5966  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5967                                DAG.getConstant(VTBits, MVT::i8));
5968  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5969                             AndNode, DAG.getConstant(0, MVT::i8));
5970
5971  SDValue Hi, Lo;
5972  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5973  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5974  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5975
5976  if (Op.getOpcode() == ISD::SHL_PARTS) {
5977    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5978    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5979  } else {
5980    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5981    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5982  }
5983
5984  SDValue Ops[2] = { Lo, Hi };
5985  return DAG.getMergeValues(Ops, 2, dl);
5986}
5987
5988SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
5989                                           SelectionDAG &DAG) const {
5990  EVT SrcVT = Op.getOperand(0).getValueType();
5991
5992  if (SrcVT.isVector()) {
5993    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5994      return Op;
5995    }
5996    return SDValue();
5997  }
5998
5999  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6000         "Unknown SINT_TO_FP to lower!");
6001
6002  // These are really Legal; return the operand so the caller accepts it as
6003  // Legal.
6004  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6005    return Op;
6006  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6007      Subtarget->is64Bit()) {
6008    return Op;
6009  }
6010
6011  DebugLoc dl = Op.getDebugLoc();
6012  unsigned Size = SrcVT.getSizeInBits()/8;
6013  MachineFunction &MF = DAG.getMachineFunction();
6014  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6015  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6016  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6017                               StackSlot,
6018                               PseudoSourceValue::getFixedStack(SSFI), 0,
6019                               false, false, 0);
6020  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6021}
6022
6023SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6024                                     SDValue StackSlot,
6025                                     SelectionDAG &DAG) const {
6026  // Build the FILD
6027  DebugLoc dl = Op.getDebugLoc();
6028  SDVTList Tys;
6029  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6030  if (useSSE)
6031    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
6032  else
6033    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6034  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6035  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
6036                               Tys, Ops, array_lengthof(Ops));
6037
6038  if (useSSE) {
6039    Chain = Result.getValue(1);
6040    SDValue InFlag = Result.getValue(2);
6041
6042    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6043    // shouldn't be necessary except that RFP cannot be live across
6044    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6045    MachineFunction &MF = DAG.getMachineFunction();
6046    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
6047    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6048    Tys = DAG.getVTList(MVT::Other);
6049    SDValue Ops[] = {
6050      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6051    };
6052    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
6053    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
6054                         PseudoSourceValue::getFixedStack(SSFI), 0,
6055                         false, false, 0);
6056  }
6057
6058  return Result;
6059}
6060
6061// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6062SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6063                                               SelectionDAG &DAG) const {
6064  // This algorithm is not obvious. Here it is in C code, more or less:
6065  /*
6066    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6067      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6068      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6069
6070      // Copy ints to xmm registers.
6071      __m128i xh = _mm_cvtsi32_si128( hi );
6072      __m128i xl = _mm_cvtsi32_si128( lo );
6073
6074      // Combine into low half of a single xmm register.
6075      __m128i x = _mm_unpacklo_epi32( xh, xl );
6076      __m128d d;
6077      double sd;
6078
6079      // Merge in appropriate exponents to give the integer bits the right
6080      // magnitude.
6081      x = _mm_unpacklo_epi32( x, exp );
6082
6083      // Subtract away the biases to deal with the IEEE-754 double precision
6084      // implicit 1.
6085      d = _mm_sub_pd( (__m128d) x, bias );
6086
6087      // All conversions up to here are exact. The correctly rounded result is
6088      // calculated using the current rounding mode using the following
6089      // horizontal add.
6090      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6091      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6092                                // store doesn't really need to be here (except
6093                                // maybe to zero the other double)
6094      return sd;
6095    }
6096  */
6097
6098  DebugLoc dl = Op.getDebugLoc();
6099  LLVMContext *Context = DAG.getContext();
6100
6101  // Build some magic constants.
6102  std::vector<Constant*> CV0;
6103  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6104  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6105  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6106  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6107  Constant *C0 = ConstantVector::get(CV0);
6108  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6109
6110  std::vector<Constant*> CV1;
6111  CV1.push_back(
6112    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6113  CV1.push_back(
6114    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6115  Constant *C1 = ConstantVector::get(CV1);
6116  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6117
6118  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6119                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6120                                        Op.getOperand(0),
6121                                        DAG.getIntPtrConstant(1)));
6122  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6123                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6124                                        Op.getOperand(0),
6125                                        DAG.getIntPtrConstant(0)));
6126  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6127  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6128                              PseudoSourceValue::getConstantPool(), 0,
6129                              false, false, 16);
6130  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6131  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
6132  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6133                              PseudoSourceValue::getConstantPool(), 0,
6134                              false, false, 16);
6135  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6136
6137  // Add the halves; easiest way is to swap them into another reg first.
6138  int ShufMask[2] = { 1, -1 };
6139  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6140                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6141  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6142  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6143                     DAG.getIntPtrConstant(0));
6144}
6145
6146// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6147SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6148                                               SelectionDAG &DAG) const {
6149  DebugLoc dl = Op.getDebugLoc();
6150  // FP constant to bias correct the final result.
6151  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6152                                   MVT::f64);
6153
6154  // Load the 32-bit value into an XMM register.
6155  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6156                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6157                                         Op.getOperand(0),
6158                                         DAG.getIntPtrConstant(0)));
6159
6160  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6161                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
6162                     DAG.getIntPtrConstant(0));
6163
6164  // Or the load with the bias.
6165  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6166                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6167                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6168                                                   MVT::v2f64, Load)),
6169                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6170                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6171                                                   MVT::v2f64, Bias)));
6172  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6173                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
6174                   DAG.getIntPtrConstant(0));
6175
6176  // Subtract the bias.
6177  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6178
6179  // Handle final rounding.
6180  EVT DestVT = Op.getValueType();
6181
6182  if (DestVT.bitsLT(MVT::f64)) {
6183    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6184                       DAG.getIntPtrConstant(0));
6185  } else if (DestVT.bitsGT(MVT::f64)) {
6186    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6187  }
6188
6189  // Handle final rounding.
6190  return Sub;
6191}
6192
6193SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6194                                           SelectionDAG &DAG) const {
6195  SDValue N0 = Op.getOperand(0);
6196  DebugLoc dl = Op.getDebugLoc();
6197
6198  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6199  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6200  // the optimization here.
6201  if (DAG.SignBitIsZero(N0))
6202    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6203
6204  EVT SrcVT = N0.getValueType();
6205  EVT DstVT = Op.getValueType();
6206  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6207    return LowerUINT_TO_FP_i64(Op, DAG);
6208  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6209    return LowerUINT_TO_FP_i32(Op, DAG);
6210
6211  // Make a 64-bit buffer, and use it to build an FILD.
6212  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6213  if (SrcVT == MVT::i32) {
6214    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6215    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6216                                     getPointerTy(), StackSlot, WordOff);
6217    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6218                                  StackSlot, NULL, 0, false, false, 0);
6219    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6220                                  OffsetSlot, NULL, 0, false, false, 0);
6221    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6222    return Fild;
6223  }
6224
6225  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6226  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6227                                StackSlot, NULL, 0, false, false, 0);
6228  // For i64 source, we need to add the appropriate power of 2 if the input
6229  // was negative.  This is the same as the optimization in
6230  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6231  // we must be careful to do the computation in x87 extended precision, not
6232  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6233  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6234  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6235  SDValue Fild = DAG.getNode(X86ISD::FILD, dl, Tys, Ops, 3);
6236
6237  APInt FF(32, 0x5F800000ULL);
6238
6239  // Check whether the sign bit is set.
6240  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6241                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6242                                 ISD::SETLT);
6243
6244  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6245  SDValue FudgePtr = DAG.getConstantPool(
6246                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6247                                         getPointerTy());
6248
6249  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6250  SDValue Zero = DAG.getIntPtrConstant(0);
6251  SDValue Four = DAG.getIntPtrConstant(4);
6252  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6253                               Zero, Four);
6254  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6255
6256  // Load the value out, extending it from f32 to f80.
6257  // FIXME: Avoid the extend by constructing the right constant pool?
6258  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
6259                                 FudgePtr, PseudoSourceValue::getConstantPool(),
6260                                 0, MVT::f32, false, false, 4);
6261  // Extend everything to 80 bits to force it to be done on x87.
6262  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6263  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6264}
6265
6266std::pair<SDValue,SDValue> X86TargetLowering::
6267FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6268  DebugLoc dl = Op.getDebugLoc();
6269
6270  EVT DstTy = Op.getValueType();
6271
6272  if (!IsSigned) {
6273    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6274    DstTy = MVT::i64;
6275  }
6276
6277  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6278         DstTy.getSimpleVT() >= MVT::i16 &&
6279         "Unknown FP_TO_SINT to lower!");
6280
6281  // These are really Legal.
6282  if (DstTy == MVT::i32 &&
6283      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6284    return std::make_pair(SDValue(), SDValue());
6285  if (Subtarget->is64Bit() &&
6286      DstTy == MVT::i64 &&
6287      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6288    return std::make_pair(SDValue(), SDValue());
6289
6290  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6291  // stack slot.
6292  MachineFunction &MF = DAG.getMachineFunction();
6293  unsigned MemSize = DstTy.getSizeInBits()/8;
6294  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6295  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6296
6297  unsigned Opc;
6298  switch (DstTy.getSimpleVT().SimpleTy) {
6299  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6300  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6301  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6302  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6303  }
6304
6305  SDValue Chain = DAG.getEntryNode();
6306  SDValue Value = Op.getOperand(0);
6307  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
6308    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6309    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
6310                         PseudoSourceValue::getFixedStack(SSFI), 0,
6311                         false, false, 0);
6312    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6313    SDValue Ops[] = {
6314      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
6315    };
6316    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
6317    Chain = Value.getValue(1);
6318    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6319    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6320  }
6321
6322  // Build the FP_TO_INT*_IN_MEM
6323  SDValue Ops[] = { Chain, Value, StackSlot };
6324  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
6325
6326  return std::make_pair(FIST, StackSlot);
6327}
6328
6329SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6330                                           SelectionDAG &DAG) const {
6331  if (Op.getValueType().isVector()) {
6332    if (Op.getValueType() == MVT::v2i32 &&
6333        Op.getOperand(0).getValueType() == MVT::v2f64) {
6334      return Op;
6335    }
6336    return SDValue();
6337  }
6338
6339  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6340  SDValue FIST = Vals.first, StackSlot = Vals.second;
6341  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6342  if (FIST.getNode() == 0) return Op;
6343
6344  // Load the result.
6345  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6346                     FIST, StackSlot, NULL, 0, false, false, 0);
6347}
6348
6349SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6350                                           SelectionDAG &DAG) const {
6351  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6352  SDValue FIST = Vals.first, StackSlot = Vals.second;
6353  assert(FIST.getNode() && "Unexpected failure");
6354
6355  // Load the result.
6356  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6357                     FIST, StackSlot, NULL, 0, false, false, 0);
6358}
6359
6360SDValue X86TargetLowering::LowerFABS(SDValue Op,
6361                                     SelectionDAG &DAG) const {
6362  LLVMContext *Context = DAG.getContext();
6363  DebugLoc dl = Op.getDebugLoc();
6364  EVT VT = Op.getValueType();
6365  EVT EltVT = VT;
6366  if (VT.isVector())
6367    EltVT = VT.getVectorElementType();
6368  std::vector<Constant*> CV;
6369  if (EltVT == MVT::f64) {
6370    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6371    CV.push_back(C);
6372    CV.push_back(C);
6373  } else {
6374    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6375    CV.push_back(C);
6376    CV.push_back(C);
6377    CV.push_back(C);
6378    CV.push_back(C);
6379  }
6380  Constant *C = ConstantVector::get(CV);
6381  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6382  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6383                             PseudoSourceValue::getConstantPool(), 0,
6384                             false, false, 16);
6385  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6386}
6387
6388SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6389  LLVMContext *Context = DAG.getContext();
6390  DebugLoc dl = Op.getDebugLoc();
6391  EVT VT = Op.getValueType();
6392  EVT EltVT = VT;
6393  if (VT.isVector())
6394    EltVT = VT.getVectorElementType();
6395  std::vector<Constant*> CV;
6396  if (EltVT == MVT::f64) {
6397    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6398    CV.push_back(C);
6399    CV.push_back(C);
6400  } else {
6401    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6402    CV.push_back(C);
6403    CV.push_back(C);
6404    CV.push_back(C);
6405    CV.push_back(C);
6406  }
6407  Constant *C = ConstantVector::get(CV);
6408  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6409  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6410                             PseudoSourceValue::getConstantPool(), 0,
6411                             false, false, 16);
6412  if (VT.isVector()) {
6413    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6414                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6415                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6416                                Op.getOperand(0)),
6417                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6418  } else {
6419    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6420  }
6421}
6422
6423SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6424  LLVMContext *Context = DAG.getContext();
6425  SDValue Op0 = Op.getOperand(0);
6426  SDValue Op1 = Op.getOperand(1);
6427  DebugLoc dl = Op.getDebugLoc();
6428  EVT VT = Op.getValueType();
6429  EVT SrcVT = Op1.getValueType();
6430
6431  // If second operand is smaller, extend it first.
6432  if (SrcVT.bitsLT(VT)) {
6433    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6434    SrcVT = VT;
6435  }
6436  // And if it is bigger, shrink it first.
6437  if (SrcVT.bitsGT(VT)) {
6438    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6439    SrcVT = VT;
6440  }
6441
6442  // At this point the operands and the result should have the same
6443  // type, and that won't be f80 since that is not custom lowered.
6444
6445  // First get the sign bit of second operand.
6446  std::vector<Constant*> CV;
6447  if (SrcVT == MVT::f64) {
6448    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6449    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6450  } else {
6451    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6452    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6453    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6454    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6455  }
6456  Constant *C = ConstantVector::get(CV);
6457  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6458  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6459                              PseudoSourceValue::getConstantPool(), 0,
6460                              false, false, 16);
6461  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6462
6463  // Shift sign bit right or left if the two operands have different types.
6464  if (SrcVT.bitsGT(VT)) {
6465    // Op0 is MVT::f32, Op1 is MVT::f64.
6466    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6467    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6468                          DAG.getConstant(32, MVT::i32));
6469    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6470    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6471                          DAG.getIntPtrConstant(0));
6472  }
6473
6474  // Clear first operand sign bit.
6475  CV.clear();
6476  if (VT == MVT::f64) {
6477    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6478    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6479  } else {
6480    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6481    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6482    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6483    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6484  }
6485  C = ConstantVector::get(CV);
6486  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6487  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6488                              PseudoSourceValue::getConstantPool(), 0,
6489                              false, false, 16);
6490  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6491
6492  // Or the value with the sign bit.
6493  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6494}
6495
6496/// Emit nodes that will be selected as "test Op0,Op0", or something
6497/// equivalent.
6498SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6499                                    SelectionDAG &DAG) const {
6500  DebugLoc dl = Op.getDebugLoc();
6501
6502  // CF and OF aren't always set the way we want. Determine which
6503  // of these we need.
6504  bool NeedCF = false;
6505  bool NeedOF = false;
6506  switch (X86CC) {
6507  default: break;
6508  case X86::COND_A: case X86::COND_AE:
6509  case X86::COND_B: case X86::COND_BE:
6510    NeedCF = true;
6511    break;
6512  case X86::COND_G: case X86::COND_GE:
6513  case X86::COND_L: case X86::COND_LE:
6514  case X86::COND_O: case X86::COND_NO:
6515    NeedOF = true;
6516    break;
6517  }
6518
6519  // See if we can use the EFLAGS value from the operand instead of
6520  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6521  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6522  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6523    // Emit a CMP with 0, which is the TEST pattern.
6524    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6525                       DAG.getConstant(0, Op.getValueType()));
6526
6527  unsigned Opcode = 0;
6528  unsigned NumOperands = 0;
6529  switch (Op.getNode()->getOpcode()) {
6530  case ISD::ADD:
6531    // Due to an isel shortcoming, be conservative if this add is likely to be
6532    // selected as part of a load-modify-store instruction. When the root node
6533    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6534    // uses of other nodes in the match, such as the ADD in this case. This
6535    // leads to the ADD being left around and reselected, with the result being
6536    // two adds in the output.  Alas, even if none our users are stores, that
6537    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6538    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6539    // climbing the DAG back to the root, and it doesn't seem to be worth the
6540    // effort.
6541    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6542           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6543      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6544        goto default_case;
6545
6546    if (ConstantSDNode *C =
6547        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6548      // An add of one will be selected as an INC.
6549      if (C->getAPIntValue() == 1) {
6550        Opcode = X86ISD::INC;
6551        NumOperands = 1;
6552        break;
6553      }
6554
6555      // An add of negative one (subtract of one) will be selected as a DEC.
6556      if (C->getAPIntValue().isAllOnesValue()) {
6557        Opcode = X86ISD::DEC;
6558        NumOperands = 1;
6559        break;
6560      }
6561    }
6562
6563    // Otherwise use a regular EFLAGS-setting add.
6564    Opcode = X86ISD::ADD;
6565    NumOperands = 2;
6566    break;
6567  case ISD::AND: {
6568    // If the primary and result isn't used, don't bother using X86ISD::AND,
6569    // because a TEST instruction will be better.
6570    bool NonFlagUse = false;
6571    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6572           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6573      SDNode *User = *UI;
6574      unsigned UOpNo = UI.getOperandNo();
6575      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6576        // Look pass truncate.
6577        UOpNo = User->use_begin().getOperandNo();
6578        User = *User->use_begin();
6579      }
6580
6581      if (User->getOpcode() != ISD::BRCOND &&
6582          User->getOpcode() != ISD::SETCC &&
6583          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6584        NonFlagUse = true;
6585        break;
6586      }
6587    }
6588
6589    if (!NonFlagUse)
6590      break;
6591  }
6592    // FALL THROUGH
6593  case ISD::SUB:
6594  case ISD::OR:
6595  case ISD::XOR:
6596    // Due to the ISEL shortcoming noted above, be conservative if this op is
6597    // likely to be selected as part of a load-modify-store instruction.
6598    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6599           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6600      if (UI->getOpcode() == ISD::STORE)
6601        goto default_case;
6602
6603    // Otherwise use a regular EFLAGS-setting instruction.
6604    switch (Op.getNode()->getOpcode()) {
6605    default: llvm_unreachable("unexpected operator!");
6606    case ISD::SUB: Opcode = X86ISD::SUB; break;
6607    case ISD::OR:  Opcode = X86ISD::OR;  break;
6608    case ISD::XOR: Opcode = X86ISD::XOR; break;
6609    case ISD::AND: Opcode = X86ISD::AND; break;
6610    }
6611
6612    NumOperands = 2;
6613    break;
6614  case X86ISD::ADD:
6615  case X86ISD::SUB:
6616  case X86ISD::INC:
6617  case X86ISD::DEC:
6618  case X86ISD::OR:
6619  case X86ISD::XOR:
6620  case X86ISD::AND:
6621    return SDValue(Op.getNode(), 1);
6622  default:
6623  default_case:
6624    break;
6625  }
6626
6627  if (Opcode == 0)
6628    // Emit a CMP with 0, which is the TEST pattern.
6629    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6630                       DAG.getConstant(0, Op.getValueType()));
6631
6632  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6633  SmallVector<SDValue, 4> Ops;
6634  for (unsigned i = 0; i != NumOperands; ++i)
6635    Ops.push_back(Op.getOperand(i));
6636
6637  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6638  DAG.ReplaceAllUsesWith(Op, New);
6639  return SDValue(New.getNode(), 1);
6640}
6641
6642/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6643/// equivalent.
6644SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6645                                   SelectionDAG &DAG) const {
6646  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6647    if (C->getAPIntValue() == 0)
6648      return EmitTest(Op0, X86CC, DAG);
6649
6650  DebugLoc dl = Op0.getDebugLoc();
6651  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6652}
6653
6654/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6655/// if it's possible.
6656SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6657                                     DebugLoc dl, SelectionDAG &DAG) const {
6658  SDValue Op0 = And.getOperand(0);
6659  SDValue Op1 = And.getOperand(1);
6660  if (Op0.getOpcode() == ISD::TRUNCATE)
6661    Op0 = Op0.getOperand(0);
6662  if (Op1.getOpcode() == ISD::TRUNCATE)
6663    Op1 = Op1.getOperand(0);
6664
6665  SDValue LHS, RHS;
6666  if (Op1.getOpcode() == ISD::SHL)
6667    std::swap(Op0, Op1);
6668  if (Op0.getOpcode() == ISD::SHL) {
6669    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6670      if (And00C->getZExtValue() == 1) {
6671        // If we looked past a truncate, check that it's only truncating away
6672        // known zeros.
6673        unsigned BitWidth = Op0.getValueSizeInBits();
6674        unsigned AndBitWidth = And.getValueSizeInBits();
6675        if (BitWidth > AndBitWidth) {
6676          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6677          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6678          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6679            return SDValue();
6680        }
6681        LHS = Op1;
6682        RHS = Op0.getOperand(1);
6683      }
6684  } else if (Op1.getOpcode() == ISD::Constant) {
6685    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6686    SDValue AndLHS = Op0;
6687    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6688      LHS = AndLHS.getOperand(0);
6689      RHS = AndLHS.getOperand(1);
6690    }
6691  }
6692
6693  if (LHS.getNode()) {
6694    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6695    // instruction.  Since the shift amount is in-range-or-undefined, we know
6696    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6697    // the encoding for the i16 version is larger than the i32 version.
6698    // Also promote i16 to i32 for performance / code size reason.
6699    if (LHS.getValueType() == MVT::i8 ||
6700        LHS.getValueType() == MVT::i16)
6701      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6702
6703    // If the operand types disagree, extend the shift amount to match.  Since
6704    // BT ignores high bits (like shifts) we can use anyextend.
6705    if (LHS.getValueType() != RHS.getValueType())
6706      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6707
6708    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6709    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6710    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6711                       DAG.getConstant(Cond, MVT::i8), BT);
6712  }
6713
6714  return SDValue();
6715}
6716
6717SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6718  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6719  SDValue Op0 = Op.getOperand(0);
6720  SDValue Op1 = Op.getOperand(1);
6721  DebugLoc dl = Op.getDebugLoc();
6722  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6723
6724  // Optimize to BT if possible.
6725  // Lower (X & (1 << N)) == 0 to BT(X, N).
6726  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6727  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6728  if (Op0.getOpcode() == ISD::AND &&
6729      Op0.hasOneUse() &&
6730      Op1.getOpcode() == ISD::Constant &&
6731      cast<ConstantSDNode>(Op1)->isNullValue() &&
6732      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6733    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6734    if (NewSetCC.getNode())
6735      return NewSetCC;
6736  }
6737
6738  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6739  if (Op0.getOpcode() == X86ISD::SETCC &&
6740      Op1.getOpcode() == ISD::Constant &&
6741      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6742       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6743      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6744    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6745    bool Invert = (CC == ISD::SETNE) ^
6746      cast<ConstantSDNode>(Op1)->isNullValue();
6747    if (Invert)
6748      CCode = X86::GetOppositeBranchCondition(CCode);
6749    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6750                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6751  }
6752
6753  bool isFP = Op1.getValueType().isFloatingPoint();
6754  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6755  if (X86CC == X86::COND_INVALID)
6756    return SDValue();
6757
6758  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6759
6760  // Use sbb x, x to materialize carry bit into a GPR.
6761  if (X86CC == X86::COND_B)
6762    return DAG.getNode(ISD::AND, dl, MVT::i8,
6763                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6764                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6765                       DAG.getConstant(1, MVT::i8));
6766
6767  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6768                     DAG.getConstant(X86CC, MVT::i8), Cond);
6769}
6770
6771SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
6772  SDValue Cond;
6773  SDValue Op0 = Op.getOperand(0);
6774  SDValue Op1 = Op.getOperand(1);
6775  SDValue CC = Op.getOperand(2);
6776  EVT VT = Op.getValueType();
6777  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6778  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6779  DebugLoc dl = Op.getDebugLoc();
6780
6781  if (isFP) {
6782    unsigned SSECC = 8;
6783    EVT VT0 = Op0.getValueType();
6784    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6785    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6786    bool Swap = false;
6787
6788    switch (SetCCOpcode) {
6789    default: break;
6790    case ISD::SETOEQ:
6791    case ISD::SETEQ:  SSECC = 0; break;
6792    case ISD::SETOGT:
6793    case ISD::SETGT: Swap = true; // Fallthrough
6794    case ISD::SETLT:
6795    case ISD::SETOLT: SSECC = 1; break;
6796    case ISD::SETOGE:
6797    case ISD::SETGE: Swap = true; // Fallthrough
6798    case ISD::SETLE:
6799    case ISD::SETOLE: SSECC = 2; break;
6800    case ISD::SETUO:  SSECC = 3; break;
6801    case ISD::SETUNE:
6802    case ISD::SETNE:  SSECC = 4; break;
6803    case ISD::SETULE: Swap = true;
6804    case ISD::SETUGE: SSECC = 5; break;
6805    case ISD::SETULT: Swap = true;
6806    case ISD::SETUGT: SSECC = 6; break;
6807    case ISD::SETO:   SSECC = 7; break;
6808    }
6809    if (Swap)
6810      std::swap(Op0, Op1);
6811
6812    // In the two special cases we can't handle, emit two comparisons.
6813    if (SSECC == 8) {
6814      if (SetCCOpcode == ISD::SETUEQ) {
6815        SDValue UNORD, EQ;
6816        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6817        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6818        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6819      }
6820      else if (SetCCOpcode == ISD::SETONE) {
6821        SDValue ORD, NEQ;
6822        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6823        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6824        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6825      }
6826      llvm_unreachable("Illegal FP comparison");
6827    }
6828    // Handle all other FP comparisons here.
6829    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6830  }
6831
6832  // We are handling one of the integer comparisons here.  Since SSE only has
6833  // GT and EQ comparisons for integer, swapping operands and multiple
6834  // operations may be required for some comparisons.
6835  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6836  bool Swap = false, Invert = false, FlipSigns = false;
6837
6838  switch (VT.getSimpleVT().SimpleTy) {
6839  default: break;
6840  case MVT::v8i8:
6841  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6842  case MVT::v4i16:
6843  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6844  case MVT::v2i32:
6845  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6846  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6847  }
6848
6849  switch (SetCCOpcode) {
6850  default: break;
6851  case ISD::SETNE:  Invert = true;
6852  case ISD::SETEQ:  Opc = EQOpc; break;
6853  case ISD::SETLT:  Swap = true;
6854  case ISD::SETGT:  Opc = GTOpc; break;
6855  case ISD::SETGE:  Swap = true;
6856  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6857  case ISD::SETULT: Swap = true;
6858  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6859  case ISD::SETUGE: Swap = true;
6860  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6861  }
6862  if (Swap)
6863    std::swap(Op0, Op1);
6864
6865  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6866  // bits of the inputs before performing those operations.
6867  if (FlipSigns) {
6868    EVT EltVT = VT.getVectorElementType();
6869    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6870                                      EltVT);
6871    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6872    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6873                                    SignBits.size());
6874    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6875    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6876  }
6877
6878  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6879
6880  // If the logical-not of the result is required, perform that now.
6881  if (Invert)
6882    Result = DAG.getNOT(dl, Result, VT);
6883
6884  return Result;
6885}
6886
6887// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6888static bool isX86LogicalCmp(SDValue Op) {
6889  unsigned Opc = Op.getNode()->getOpcode();
6890  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6891    return true;
6892  if (Op.getResNo() == 1 &&
6893      (Opc == X86ISD::ADD ||
6894       Opc == X86ISD::SUB ||
6895       Opc == X86ISD::SMUL ||
6896       Opc == X86ISD::UMUL ||
6897       Opc == X86ISD::INC ||
6898       Opc == X86ISD::DEC ||
6899       Opc == X86ISD::OR ||
6900       Opc == X86ISD::XOR ||
6901       Opc == X86ISD::AND))
6902    return true;
6903
6904  return false;
6905}
6906
6907SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
6908  bool addTest = true;
6909  SDValue Cond  = Op.getOperand(0);
6910  DebugLoc dl = Op.getDebugLoc();
6911  SDValue CC;
6912
6913  if (Cond.getOpcode() == ISD::SETCC) {
6914    SDValue NewCond = LowerSETCC(Cond, DAG);
6915    if (NewCond.getNode())
6916      Cond = NewCond;
6917  }
6918
6919  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6920  SDValue Op1 = Op.getOperand(1);
6921  SDValue Op2 = Op.getOperand(2);
6922  if (Cond.getOpcode() == X86ISD::SETCC &&
6923      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6924    SDValue Cmp = Cond.getOperand(1);
6925    if (Cmp.getOpcode() == X86ISD::CMP) {
6926      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6927      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6928      ConstantSDNode *RHSC =
6929        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6930      if (N1C && N1C->isAllOnesValue() &&
6931          N2C && N2C->isNullValue() &&
6932          RHSC && RHSC->isNullValue()) {
6933        SDValue CmpOp0 = Cmp.getOperand(0);
6934        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6935                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6936        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6937                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6938      }
6939    }
6940  }
6941
6942  // Look pass (and (setcc_carry (cmp ...)), 1).
6943  if (Cond.getOpcode() == ISD::AND &&
6944      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6945    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6946    if (C && C->getAPIntValue() == 1)
6947      Cond = Cond.getOperand(0);
6948  }
6949
6950  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6951  // setting operand in place of the X86ISD::SETCC.
6952  if (Cond.getOpcode() == X86ISD::SETCC ||
6953      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6954    CC = Cond.getOperand(0);
6955
6956    SDValue Cmp = Cond.getOperand(1);
6957    unsigned Opc = Cmp.getOpcode();
6958    EVT VT = Op.getValueType();
6959
6960    bool IllegalFPCMov = false;
6961    if (VT.isFloatingPoint() && !VT.isVector() &&
6962        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6963      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6964
6965    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6966        Opc == X86ISD::BT) { // FIXME
6967      Cond = Cmp;
6968      addTest = false;
6969    }
6970  }
6971
6972  if (addTest) {
6973    // Look pass the truncate.
6974    if (Cond.getOpcode() == ISD::TRUNCATE)
6975      Cond = Cond.getOperand(0);
6976
6977    // We know the result of AND is compared against zero. Try to match
6978    // it to BT.
6979    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6980      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6981      if (NewSetCC.getNode()) {
6982        CC = NewSetCC.getOperand(0);
6983        Cond = NewSetCC.getOperand(1);
6984        addTest = false;
6985      }
6986    }
6987  }
6988
6989  if (addTest) {
6990    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6991    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6992  }
6993
6994  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6995  // condition is true.
6996  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6997  SDValue Ops[] = { Op2, Op1, CC, Cond };
6998  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6999}
7000
7001// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7002// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7003// from the AND / OR.
7004static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7005  Opc = Op.getOpcode();
7006  if (Opc != ISD::OR && Opc != ISD::AND)
7007    return false;
7008  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7009          Op.getOperand(0).hasOneUse() &&
7010          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7011          Op.getOperand(1).hasOneUse());
7012}
7013
7014// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7015// 1 and that the SETCC node has a single use.
7016static bool isXor1OfSetCC(SDValue Op) {
7017  if (Op.getOpcode() != ISD::XOR)
7018    return false;
7019  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7020  if (N1C && N1C->getAPIntValue() == 1) {
7021    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7022      Op.getOperand(0).hasOneUse();
7023  }
7024  return false;
7025}
7026
7027SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7028  bool addTest = true;
7029  SDValue Chain = Op.getOperand(0);
7030  SDValue Cond  = Op.getOperand(1);
7031  SDValue Dest  = Op.getOperand(2);
7032  DebugLoc dl = Op.getDebugLoc();
7033  SDValue CC;
7034
7035  if (Cond.getOpcode() == ISD::SETCC) {
7036    SDValue NewCond = LowerSETCC(Cond, DAG);
7037    if (NewCond.getNode())
7038      Cond = NewCond;
7039  }
7040#if 0
7041  // FIXME: LowerXALUO doesn't handle these!!
7042  else if (Cond.getOpcode() == X86ISD::ADD  ||
7043           Cond.getOpcode() == X86ISD::SUB  ||
7044           Cond.getOpcode() == X86ISD::SMUL ||
7045           Cond.getOpcode() == X86ISD::UMUL)
7046    Cond = LowerXALUO(Cond, DAG);
7047#endif
7048
7049  // Look pass (and (setcc_carry (cmp ...)), 1).
7050  if (Cond.getOpcode() == ISD::AND &&
7051      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7052    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7053    if (C && C->getAPIntValue() == 1)
7054      Cond = Cond.getOperand(0);
7055  }
7056
7057  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7058  // setting operand in place of the X86ISD::SETCC.
7059  if (Cond.getOpcode() == X86ISD::SETCC ||
7060      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7061    CC = Cond.getOperand(0);
7062
7063    SDValue Cmp = Cond.getOperand(1);
7064    unsigned Opc = Cmp.getOpcode();
7065    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7066    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7067      Cond = Cmp;
7068      addTest = false;
7069    } else {
7070      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7071      default: break;
7072      case X86::COND_O:
7073      case X86::COND_B:
7074        // These can only come from an arithmetic instruction with overflow,
7075        // e.g. SADDO, UADDO.
7076        Cond = Cond.getNode()->getOperand(1);
7077        addTest = false;
7078        break;
7079      }
7080    }
7081  } else {
7082    unsigned CondOpc;
7083    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7084      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7085      if (CondOpc == ISD::OR) {
7086        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7087        // two branches instead of an explicit OR instruction with a
7088        // separate test.
7089        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7090            isX86LogicalCmp(Cmp)) {
7091          CC = Cond.getOperand(0).getOperand(0);
7092          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7093                              Chain, Dest, CC, Cmp);
7094          CC = Cond.getOperand(1).getOperand(0);
7095          Cond = Cmp;
7096          addTest = false;
7097        }
7098      } else { // ISD::AND
7099        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7100        // two branches instead of an explicit AND instruction with a
7101        // separate test. However, we only do this if this block doesn't
7102        // have a fall-through edge, because this requires an explicit
7103        // jmp when the condition is false.
7104        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7105            isX86LogicalCmp(Cmp) &&
7106            Op.getNode()->hasOneUse()) {
7107          X86::CondCode CCode =
7108            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7109          CCode = X86::GetOppositeBranchCondition(CCode);
7110          CC = DAG.getConstant(CCode, MVT::i8);
7111          SDNode *User = *Op.getNode()->use_begin();
7112          // Look for an unconditional branch following this conditional branch.
7113          // We need this because we need to reverse the successors in order
7114          // to implement FCMP_OEQ.
7115          if (User->getOpcode() == ISD::BR) {
7116            SDValue FalseBB = User->getOperand(1);
7117            SDNode *NewBR =
7118              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7119            assert(NewBR == User);
7120            (void)NewBR;
7121            Dest = FalseBB;
7122
7123            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7124                                Chain, Dest, CC, Cmp);
7125            X86::CondCode CCode =
7126              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7127            CCode = X86::GetOppositeBranchCondition(CCode);
7128            CC = DAG.getConstant(CCode, MVT::i8);
7129            Cond = Cmp;
7130            addTest = false;
7131          }
7132        }
7133      }
7134    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7135      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7136      // It should be transformed during dag combiner except when the condition
7137      // is set by a arithmetics with overflow node.
7138      X86::CondCode CCode =
7139        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7140      CCode = X86::GetOppositeBranchCondition(CCode);
7141      CC = DAG.getConstant(CCode, MVT::i8);
7142      Cond = Cond.getOperand(0).getOperand(1);
7143      addTest = false;
7144    }
7145  }
7146
7147  if (addTest) {
7148    // Look pass the truncate.
7149    if (Cond.getOpcode() == ISD::TRUNCATE)
7150      Cond = Cond.getOperand(0);
7151
7152    // We know the result of AND is compared against zero. Try to match
7153    // it to BT.
7154    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7155      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7156      if (NewSetCC.getNode()) {
7157        CC = NewSetCC.getOperand(0);
7158        Cond = NewSetCC.getOperand(1);
7159        addTest = false;
7160      }
7161    }
7162  }
7163
7164  if (addTest) {
7165    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7166    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7167  }
7168  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7169                     Chain, Dest, CC, Cond);
7170}
7171
7172
7173// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7174// Calls to _alloca is needed to probe the stack when allocating more than 4k
7175// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7176// that the guard pages used by the OS virtual memory manager are allocated in
7177// correct sequence.
7178SDValue
7179X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7180                                           SelectionDAG &DAG) const {
7181  assert(Subtarget->isTargetCygMing() &&
7182         "This should be used only on Cygwin/Mingw targets");
7183  DebugLoc dl = Op.getDebugLoc();
7184
7185  // Get the inputs.
7186  SDValue Chain = Op.getOperand(0);
7187  SDValue Size  = Op.getOperand(1);
7188  // FIXME: Ensure alignment here
7189
7190  SDValue Flag;
7191
7192  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7193
7194  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7195  Flag = Chain.getValue(1);
7196
7197  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
7198
7199  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
7200  Flag = Chain.getValue(1);
7201
7202  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7203
7204  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7205  return DAG.getMergeValues(Ops1, 2, dl);
7206}
7207
7208SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7209  MachineFunction &MF = DAG.getMachineFunction();
7210  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7211
7212  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7213  DebugLoc dl = Op.getDebugLoc();
7214
7215  if (!Subtarget->is64Bit()) {
7216    // vastart just stores the address of the VarArgsFrameIndex slot into the
7217    // memory location argument.
7218    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7219                                   getPointerTy());
7220    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
7221                        false, false, 0);
7222  }
7223
7224  // __va_list_tag:
7225  //   gp_offset         (0 - 6 * 8)
7226  //   fp_offset         (48 - 48 + 8 * 16)
7227  //   overflow_arg_area (point to parameters coming in memory).
7228  //   reg_save_area
7229  SmallVector<SDValue, 8> MemOps;
7230  SDValue FIN = Op.getOperand(1);
7231  // Store gp_offset
7232  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
7233                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7234                                               MVT::i32),
7235                               FIN, SV, 0, false, false, 0);
7236  MemOps.push_back(Store);
7237
7238  // Store fp_offset
7239  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7240                    FIN, DAG.getIntPtrConstant(4));
7241  Store = DAG.getStore(Op.getOperand(0), dl,
7242                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7243                                       MVT::i32),
7244                       FIN, SV, 4, false, false, 0);
7245  MemOps.push_back(Store);
7246
7247  // Store ptr to overflow_arg_area
7248  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7249                    FIN, DAG.getIntPtrConstant(4));
7250  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7251                                    getPointerTy());
7252  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 8,
7253                       false, false, 0);
7254  MemOps.push_back(Store);
7255
7256  // Store ptr to reg_save_area.
7257  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7258                    FIN, DAG.getIntPtrConstant(8));
7259  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7260                                    getPointerTy());
7261  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 16,
7262                       false, false, 0);
7263  MemOps.push_back(Store);
7264  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7265                     &MemOps[0], MemOps.size());
7266}
7267
7268SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7269  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7270  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
7271
7272  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
7273  return SDValue();
7274}
7275
7276SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
7277  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7278  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
7279  SDValue Chain = Op.getOperand(0);
7280  SDValue DstPtr = Op.getOperand(1);
7281  SDValue SrcPtr = Op.getOperand(2);
7282  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7283  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7284  DebugLoc dl = Op.getDebugLoc();
7285
7286  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
7287                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
7288                       false, DstSV, 0, SrcSV, 0);
7289}
7290
7291SDValue
7292X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
7293  DebugLoc dl = Op.getDebugLoc();
7294  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7295  switch (IntNo) {
7296  default: return SDValue();    // Don't custom lower most intrinsics.
7297  // Comparison intrinsics.
7298  case Intrinsic::x86_sse_comieq_ss:
7299  case Intrinsic::x86_sse_comilt_ss:
7300  case Intrinsic::x86_sse_comile_ss:
7301  case Intrinsic::x86_sse_comigt_ss:
7302  case Intrinsic::x86_sse_comige_ss:
7303  case Intrinsic::x86_sse_comineq_ss:
7304  case Intrinsic::x86_sse_ucomieq_ss:
7305  case Intrinsic::x86_sse_ucomilt_ss:
7306  case Intrinsic::x86_sse_ucomile_ss:
7307  case Intrinsic::x86_sse_ucomigt_ss:
7308  case Intrinsic::x86_sse_ucomige_ss:
7309  case Intrinsic::x86_sse_ucomineq_ss:
7310  case Intrinsic::x86_sse2_comieq_sd:
7311  case Intrinsic::x86_sse2_comilt_sd:
7312  case Intrinsic::x86_sse2_comile_sd:
7313  case Intrinsic::x86_sse2_comigt_sd:
7314  case Intrinsic::x86_sse2_comige_sd:
7315  case Intrinsic::x86_sse2_comineq_sd:
7316  case Intrinsic::x86_sse2_ucomieq_sd:
7317  case Intrinsic::x86_sse2_ucomilt_sd:
7318  case Intrinsic::x86_sse2_ucomile_sd:
7319  case Intrinsic::x86_sse2_ucomigt_sd:
7320  case Intrinsic::x86_sse2_ucomige_sd:
7321  case Intrinsic::x86_sse2_ucomineq_sd: {
7322    unsigned Opc = 0;
7323    ISD::CondCode CC = ISD::SETCC_INVALID;
7324    switch (IntNo) {
7325    default: break;
7326    case Intrinsic::x86_sse_comieq_ss:
7327    case Intrinsic::x86_sse2_comieq_sd:
7328      Opc = X86ISD::COMI;
7329      CC = ISD::SETEQ;
7330      break;
7331    case Intrinsic::x86_sse_comilt_ss:
7332    case Intrinsic::x86_sse2_comilt_sd:
7333      Opc = X86ISD::COMI;
7334      CC = ISD::SETLT;
7335      break;
7336    case Intrinsic::x86_sse_comile_ss:
7337    case Intrinsic::x86_sse2_comile_sd:
7338      Opc = X86ISD::COMI;
7339      CC = ISD::SETLE;
7340      break;
7341    case Intrinsic::x86_sse_comigt_ss:
7342    case Intrinsic::x86_sse2_comigt_sd:
7343      Opc = X86ISD::COMI;
7344      CC = ISD::SETGT;
7345      break;
7346    case Intrinsic::x86_sse_comige_ss:
7347    case Intrinsic::x86_sse2_comige_sd:
7348      Opc = X86ISD::COMI;
7349      CC = ISD::SETGE;
7350      break;
7351    case Intrinsic::x86_sse_comineq_ss:
7352    case Intrinsic::x86_sse2_comineq_sd:
7353      Opc = X86ISD::COMI;
7354      CC = ISD::SETNE;
7355      break;
7356    case Intrinsic::x86_sse_ucomieq_ss:
7357    case Intrinsic::x86_sse2_ucomieq_sd:
7358      Opc = X86ISD::UCOMI;
7359      CC = ISD::SETEQ;
7360      break;
7361    case Intrinsic::x86_sse_ucomilt_ss:
7362    case Intrinsic::x86_sse2_ucomilt_sd:
7363      Opc = X86ISD::UCOMI;
7364      CC = ISD::SETLT;
7365      break;
7366    case Intrinsic::x86_sse_ucomile_ss:
7367    case Intrinsic::x86_sse2_ucomile_sd:
7368      Opc = X86ISD::UCOMI;
7369      CC = ISD::SETLE;
7370      break;
7371    case Intrinsic::x86_sse_ucomigt_ss:
7372    case Intrinsic::x86_sse2_ucomigt_sd:
7373      Opc = X86ISD::UCOMI;
7374      CC = ISD::SETGT;
7375      break;
7376    case Intrinsic::x86_sse_ucomige_ss:
7377    case Intrinsic::x86_sse2_ucomige_sd:
7378      Opc = X86ISD::UCOMI;
7379      CC = ISD::SETGE;
7380      break;
7381    case Intrinsic::x86_sse_ucomineq_ss:
7382    case Intrinsic::x86_sse2_ucomineq_sd:
7383      Opc = X86ISD::UCOMI;
7384      CC = ISD::SETNE;
7385      break;
7386    }
7387
7388    SDValue LHS = Op.getOperand(1);
7389    SDValue RHS = Op.getOperand(2);
7390    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7391    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7392    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7393    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7394                                DAG.getConstant(X86CC, MVT::i8), Cond);
7395    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7396  }
7397  // ptest and testp intrinsics. The intrinsic these come from are designed to
7398  // return an integer value, not just an instruction so lower it to the ptest
7399  // or testp pattern and a setcc for the result.
7400  case Intrinsic::x86_sse41_ptestz:
7401  case Intrinsic::x86_sse41_ptestc:
7402  case Intrinsic::x86_sse41_ptestnzc:
7403  case Intrinsic::x86_avx_ptestz_256:
7404  case Intrinsic::x86_avx_ptestc_256:
7405  case Intrinsic::x86_avx_ptestnzc_256:
7406  case Intrinsic::x86_avx_vtestz_ps:
7407  case Intrinsic::x86_avx_vtestc_ps:
7408  case Intrinsic::x86_avx_vtestnzc_ps:
7409  case Intrinsic::x86_avx_vtestz_pd:
7410  case Intrinsic::x86_avx_vtestc_pd:
7411  case Intrinsic::x86_avx_vtestnzc_pd:
7412  case Intrinsic::x86_avx_vtestz_ps_256:
7413  case Intrinsic::x86_avx_vtestc_ps_256:
7414  case Intrinsic::x86_avx_vtestnzc_ps_256:
7415  case Intrinsic::x86_avx_vtestz_pd_256:
7416  case Intrinsic::x86_avx_vtestc_pd_256:
7417  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7418    bool IsTestPacked = false;
7419    unsigned X86CC = 0;
7420    switch (IntNo) {
7421    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7422    case Intrinsic::x86_avx_vtestz_ps:
7423    case Intrinsic::x86_avx_vtestz_pd:
7424    case Intrinsic::x86_avx_vtestz_ps_256:
7425    case Intrinsic::x86_avx_vtestz_pd_256:
7426      IsTestPacked = true; // Fallthrough
7427    case Intrinsic::x86_sse41_ptestz:
7428    case Intrinsic::x86_avx_ptestz_256:
7429      // ZF = 1
7430      X86CC = X86::COND_E;
7431      break;
7432    case Intrinsic::x86_avx_vtestc_ps:
7433    case Intrinsic::x86_avx_vtestc_pd:
7434    case Intrinsic::x86_avx_vtestc_ps_256:
7435    case Intrinsic::x86_avx_vtestc_pd_256:
7436      IsTestPacked = true; // Fallthrough
7437    case Intrinsic::x86_sse41_ptestc:
7438    case Intrinsic::x86_avx_ptestc_256:
7439      // CF = 1
7440      X86CC = X86::COND_B;
7441      break;
7442    case Intrinsic::x86_avx_vtestnzc_ps:
7443    case Intrinsic::x86_avx_vtestnzc_pd:
7444    case Intrinsic::x86_avx_vtestnzc_ps_256:
7445    case Intrinsic::x86_avx_vtestnzc_pd_256:
7446      IsTestPacked = true; // Fallthrough
7447    case Intrinsic::x86_sse41_ptestnzc:
7448    case Intrinsic::x86_avx_ptestnzc_256:
7449      // ZF and CF = 0
7450      X86CC = X86::COND_A;
7451      break;
7452    }
7453
7454    SDValue LHS = Op.getOperand(1);
7455    SDValue RHS = Op.getOperand(2);
7456    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7457    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7458    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7459    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7460    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7461  }
7462
7463  // Fix vector shift instructions where the last operand is a non-immediate
7464  // i32 value.
7465  case Intrinsic::x86_sse2_pslli_w:
7466  case Intrinsic::x86_sse2_pslli_d:
7467  case Intrinsic::x86_sse2_pslli_q:
7468  case Intrinsic::x86_sse2_psrli_w:
7469  case Intrinsic::x86_sse2_psrli_d:
7470  case Intrinsic::x86_sse2_psrli_q:
7471  case Intrinsic::x86_sse2_psrai_w:
7472  case Intrinsic::x86_sse2_psrai_d:
7473  case Intrinsic::x86_mmx_pslli_w:
7474  case Intrinsic::x86_mmx_pslli_d:
7475  case Intrinsic::x86_mmx_pslli_q:
7476  case Intrinsic::x86_mmx_psrli_w:
7477  case Intrinsic::x86_mmx_psrli_d:
7478  case Intrinsic::x86_mmx_psrli_q:
7479  case Intrinsic::x86_mmx_psrai_w:
7480  case Intrinsic::x86_mmx_psrai_d: {
7481    SDValue ShAmt = Op.getOperand(2);
7482    if (isa<ConstantSDNode>(ShAmt))
7483      return SDValue();
7484
7485    unsigned NewIntNo = 0;
7486    EVT ShAmtVT = MVT::v4i32;
7487    switch (IntNo) {
7488    case Intrinsic::x86_sse2_pslli_w:
7489      NewIntNo = Intrinsic::x86_sse2_psll_w;
7490      break;
7491    case Intrinsic::x86_sse2_pslli_d:
7492      NewIntNo = Intrinsic::x86_sse2_psll_d;
7493      break;
7494    case Intrinsic::x86_sse2_pslli_q:
7495      NewIntNo = Intrinsic::x86_sse2_psll_q;
7496      break;
7497    case Intrinsic::x86_sse2_psrli_w:
7498      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7499      break;
7500    case Intrinsic::x86_sse2_psrli_d:
7501      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7502      break;
7503    case Intrinsic::x86_sse2_psrli_q:
7504      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7505      break;
7506    case Intrinsic::x86_sse2_psrai_w:
7507      NewIntNo = Intrinsic::x86_sse2_psra_w;
7508      break;
7509    case Intrinsic::x86_sse2_psrai_d:
7510      NewIntNo = Intrinsic::x86_sse2_psra_d;
7511      break;
7512    default: {
7513      ShAmtVT = MVT::v2i32;
7514      switch (IntNo) {
7515      case Intrinsic::x86_mmx_pslli_w:
7516        NewIntNo = Intrinsic::x86_mmx_psll_w;
7517        break;
7518      case Intrinsic::x86_mmx_pslli_d:
7519        NewIntNo = Intrinsic::x86_mmx_psll_d;
7520        break;
7521      case Intrinsic::x86_mmx_pslli_q:
7522        NewIntNo = Intrinsic::x86_mmx_psll_q;
7523        break;
7524      case Intrinsic::x86_mmx_psrli_w:
7525        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7526        break;
7527      case Intrinsic::x86_mmx_psrli_d:
7528        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7529        break;
7530      case Intrinsic::x86_mmx_psrli_q:
7531        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7532        break;
7533      case Intrinsic::x86_mmx_psrai_w:
7534        NewIntNo = Intrinsic::x86_mmx_psra_w;
7535        break;
7536      case Intrinsic::x86_mmx_psrai_d:
7537        NewIntNo = Intrinsic::x86_mmx_psra_d;
7538        break;
7539      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7540      }
7541      break;
7542    }
7543    }
7544
7545    // The vector shift intrinsics with scalars uses 32b shift amounts but
7546    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7547    // to be zero.
7548    SDValue ShOps[4];
7549    ShOps[0] = ShAmt;
7550    ShOps[1] = DAG.getConstant(0, MVT::i32);
7551    if (ShAmtVT == MVT::v4i32) {
7552      ShOps[2] = DAG.getUNDEF(MVT::i32);
7553      ShOps[3] = DAG.getUNDEF(MVT::i32);
7554      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7555    } else {
7556      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7557    }
7558
7559    EVT VT = Op.getValueType();
7560    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7561    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7562                       DAG.getConstant(NewIntNo, MVT::i32),
7563                       Op.getOperand(1), ShAmt);
7564  }
7565  }
7566}
7567
7568SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7569                                           SelectionDAG &DAG) const {
7570  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7571  MFI->setReturnAddressIsTaken(true);
7572
7573  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7574  DebugLoc dl = Op.getDebugLoc();
7575
7576  if (Depth > 0) {
7577    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7578    SDValue Offset =
7579      DAG.getConstant(TD->getPointerSize(),
7580                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7581    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7582                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7583                                   FrameAddr, Offset),
7584                       NULL, 0, false, false, 0);
7585  }
7586
7587  // Just load the return address.
7588  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7589  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7590                     RetAddrFI, NULL, 0, false, false, 0);
7591}
7592
7593SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7594  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7595  MFI->setFrameAddressIsTaken(true);
7596
7597  EVT VT = Op.getValueType();
7598  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7599  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7600  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7601  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7602  while (Depth--)
7603    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7604                            false, false, 0);
7605  return FrameAddr;
7606}
7607
7608SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7609                                                     SelectionDAG &DAG) const {
7610  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7611}
7612
7613SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7614  MachineFunction &MF = DAG.getMachineFunction();
7615  SDValue Chain     = Op.getOperand(0);
7616  SDValue Offset    = Op.getOperand(1);
7617  SDValue Handler   = Op.getOperand(2);
7618  DebugLoc dl       = Op.getDebugLoc();
7619
7620  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7621                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7622                                     getPointerTy());
7623  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7624
7625  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7626                                  DAG.getIntPtrConstant(TD->getPointerSize()));
7627  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7628  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7629  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7630  MF.getRegInfo().addLiveOut(StoreAddrReg);
7631
7632  return DAG.getNode(X86ISD::EH_RETURN, dl,
7633                     MVT::Other,
7634                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7635}
7636
7637SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7638                                             SelectionDAG &DAG) const {
7639  SDValue Root = Op.getOperand(0);
7640  SDValue Trmp = Op.getOperand(1); // trampoline
7641  SDValue FPtr = Op.getOperand(2); // nested function
7642  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7643  DebugLoc dl  = Op.getDebugLoc();
7644
7645  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7646
7647  if (Subtarget->is64Bit()) {
7648    SDValue OutChains[6];
7649
7650    // Large code-model.
7651    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7652    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7653
7654    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7655    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7656
7657    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7658
7659    // Load the pointer to the nested function into R11.
7660    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7661    SDValue Addr = Trmp;
7662    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7663                                Addr, TrmpAddr, 0, false, false, 0);
7664
7665    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7666                       DAG.getConstant(2, MVT::i64));
7667    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7668                                false, false, 2);
7669
7670    // Load the 'nest' parameter value into R10.
7671    // R10 is specified in X86CallingConv.td
7672    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7673    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7674                       DAG.getConstant(10, MVT::i64));
7675    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7676                                Addr, TrmpAddr, 10, false, false, 0);
7677
7678    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7679                       DAG.getConstant(12, MVT::i64));
7680    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7681                                false, false, 2);
7682
7683    // Jump to the nested function.
7684    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7685    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7686                       DAG.getConstant(20, MVT::i64));
7687    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7688                                Addr, TrmpAddr, 20, false, false, 0);
7689
7690    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7691    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7692                       DAG.getConstant(22, MVT::i64));
7693    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7694                                TrmpAddr, 22, false, false, 0);
7695
7696    SDValue Ops[] =
7697      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7698    return DAG.getMergeValues(Ops, 2, dl);
7699  } else {
7700    const Function *Func =
7701      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7702    CallingConv::ID CC = Func->getCallingConv();
7703    unsigned NestReg;
7704
7705    switch (CC) {
7706    default:
7707      llvm_unreachable("Unsupported calling convention");
7708    case CallingConv::C:
7709    case CallingConv::X86_StdCall: {
7710      // Pass 'nest' parameter in ECX.
7711      // Must be kept in sync with X86CallingConv.td
7712      NestReg = X86::ECX;
7713
7714      // Check that ECX wasn't needed by an 'inreg' parameter.
7715      const FunctionType *FTy = Func->getFunctionType();
7716      const AttrListPtr &Attrs = Func->getAttributes();
7717
7718      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7719        unsigned InRegCount = 0;
7720        unsigned Idx = 1;
7721
7722        for (FunctionType::param_iterator I = FTy->param_begin(),
7723             E = FTy->param_end(); I != E; ++I, ++Idx)
7724          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7725            // FIXME: should only count parameters that are lowered to integers.
7726            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7727
7728        if (InRegCount > 2) {
7729          report_fatal_error("Nest register in use - reduce number of inreg"
7730                             " parameters!");
7731        }
7732      }
7733      break;
7734    }
7735    case CallingConv::X86_FastCall:
7736    case CallingConv::X86_ThisCall:
7737    case CallingConv::Fast:
7738      // Pass 'nest' parameter in EAX.
7739      // Must be kept in sync with X86CallingConv.td
7740      NestReg = X86::EAX;
7741      break;
7742    }
7743
7744    SDValue OutChains[4];
7745    SDValue Addr, Disp;
7746
7747    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7748                       DAG.getConstant(10, MVT::i32));
7749    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7750
7751    // This is storing the opcode for MOV32ri.
7752    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7753    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7754    OutChains[0] = DAG.getStore(Root, dl,
7755                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7756                                Trmp, TrmpAddr, 0, false, false, 0);
7757
7758    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7759                       DAG.getConstant(1, MVT::i32));
7760    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7761                                false, false, 1);
7762
7763    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7764    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7765                       DAG.getConstant(5, MVT::i32));
7766    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7767                                TrmpAddr, 5, false, false, 1);
7768
7769    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7770                       DAG.getConstant(6, MVT::i32));
7771    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7772                                false, false, 1);
7773
7774    SDValue Ops[] =
7775      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7776    return DAG.getMergeValues(Ops, 2, dl);
7777  }
7778}
7779
7780SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7781                                            SelectionDAG &DAG) const {
7782  /*
7783   The rounding mode is in bits 11:10 of FPSR, and has the following
7784   settings:
7785     00 Round to nearest
7786     01 Round to -inf
7787     10 Round to +inf
7788     11 Round to 0
7789
7790  FLT_ROUNDS, on the other hand, expects the following:
7791    -1 Undefined
7792     0 Round to 0
7793     1 Round to nearest
7794     2 Round to +inf
7795     3 Round to -inf
7796
7797  To perform the conversion, we do:
7798    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7799  */
7800
7801  MachineFunction &MF = DAG.getMachineFunction();
7802  const TargetMachine &TM = MF.getTarget();
7803  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7804  unsigned StackAlignment = TFI.getStackAlignment();
7805  EVT VT = Op.getValueType();
7806  DebugLoc dl = Op.getDebugLoc();
7807
7808  // Save FP Control Word to stack slot
7809  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7810  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7811
7812  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7813                              DAG.getEntryNode(), StackSlot);
7814
7815  // Load FP Control Word from stack slot
7816  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7817                            false, false, 0);
7818
7819  // Transform as necessary
7820  SDValue CWD1 =
7821    DAG.getNode(ISD::SRL, dl, MVT::i16,
7822                DAG.getNode(ISD::AND, dl, MVT::i16,
7823                            CWD, DAG.getConstant(0x800, MVT::i16)),
7824                DAG.getConstant(11, MVT::i8));
7825  SDValue CWD2 =
7826    DAG.getNode(ISD::SRL, dl, MVT::i16,
7827                DAG.getNode(ISD::AND, dl, MVT::i16,
7828                            CWD, DAG.getConstant(0x400, MVT::i16)),
7829                DAG.getConstant(9, MVT::i8));
7830
7831  SDValue RetVal =
7832    DAG.getNode(ISD::AND, dl, MVT::i16,
7833                DAG.getNode(ISD::ADD, dl, MVT::i16,
7834                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7835                            DAG.getConstant(1, MVT::i16)),
7836                DAG.getConstant(3, MVT::i16));
7837
7838
7839  return DAG.getNode((VT.getSizeInBits() < 16 ?
7840                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7841}
7842
7843SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
7844  EVT VT = Op.getValueType();
7845  EVT OpVT = VT;
7846  unsigned NumBits = VT.getSizeInBits();
7847  DebugLoc dl = Op.getDebugLoc();
7848
7849  Op = Op.getOperand(0);
7850  if (VT == MVT::i8) {
7851    // Zero extend to i32 since there is not an i8 bsr.
7852    OpVT = MVT::i32;
7853    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7854  }
7855
7856  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7857  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7858  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7859
7860  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7861  SDValue Ops[] = {
7862    Op,
7863    DAG.getConstant(NumBits+NumBits-1, OpVT),
7864    DAG.getConstant(X86::COND_E, MVT::i8),
7865    Op.getValue(1)
7866  };
7867  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7868
7869  // Finally xor with NumBits-1.
7870  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7871
7872  if (VT == MVT::i8)
7873    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7874  return Op;
7875}
7876
7877SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
7878  EVT VT = Op.getValueType();
7879  EVT OpVT = VT;
7880  unsigned NumBits = VT.getSizeInBits();
7881  DebugLoc dl = Op.getDebugLoc();
7882
7883  Op = Op.getOperand(0);
7884  if (VT == MVT::i8) {
7885    OpVT = MVT::i32;
7886    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7887  }
7888
7889  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7890  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7891  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7892
7893  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7894  SDValue Ops[] = {
7895    Op,
7896    DAG.getConstant(NumBits, OpVT),
7897    DAG.getConstant(X86::COND_E, MVT::i8),
7898    Op.getValue(1)
7899  };
7900  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7901
7902  if (VT == MVT::i8)
7903    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7904  return Op;
7905}
7906
7907SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
7908  EVT VT = Op.getValueType();
7909  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7910  DebugLoc dl = Op.getDebugLoc();
7911
7912  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7913  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7914  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7915  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7916  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7917  //
7918  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7919  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7920  //  return AloBlo + AloBhi + AhiBlo;
7921
7922  SDValue A = Op.getOperand(0);
7923  SDValue B = Op.getOperand(1);
7924
7925  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7926                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7927                       A, DAG.getConstant(32, MVT::i32));
7928  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7929                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7930                       B, DAG.getConstant(32, MVT::i32));
7931  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7932                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7933                       A, B);
7934  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7935                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7936                       A, Bhi);
7937  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7938                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7939                       Ahi, B);
7940  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7941                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7942                       AloBhi, DAG.getConstant(32, MVT::i32));
7943  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7944                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7945                       AhiBlo, DAG.getConstant(32, MVT::i32));
7946  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7947  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7948  return Res;
7949}
7950
7951SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
7952  EVT VT = Op.getValueType();
7953  DebugLoc dl = Op.getDebugLoc();
7954  SDValue R = Op.getOperand(0);
7955
7956  LLVMContext *Context = DAG.getContext();
7957
7958  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
7959
7960  if (VT == MVT::v4i32) {
7961    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7962                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
7963                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
7964
7965    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
7966
7967    std::vector<Constant*> CV(4, CI);
7968    Constant *C = ConstantVector::get(CV);
7969    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7970    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7971                                 PseudoSourceValue::getConstantPool(), 0,
7972                                 false, false, 16);
7973
7974    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
7975    Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
7976    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
7977    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
7978  }
7979  if (VT == MVT::v16i8) {
7980    // a = a << 5;
7981    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7982                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
7983                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
7984
7985    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
7986    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
7987
7988    std::vector<Constant*> CVM1(16, CM1);
7989    std::vector<Constant*> CVM2(16, CM2);
7990    Constant *C = ConstantVector::get(CVM1);
7991    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7992    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7993                            PseudoSourceValue::getConstantPool(), 0,
7994                            false, false, 16);
7995
7996    // r = pblendv(r, psllw(r & (char16)15, 4), a);
7997    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7998    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7999                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8000                    DAG.getConstant(4, MVT::i32));
8001    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8002                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8003                    R, M, Op);
8004    // a += a
8005    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8006
8007    C = ConstantVector::get(CVM2);
8008    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8009    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8010                    PseudoSourceValue::getConstantPool(), 0, false, false, 16);
8011
8012    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8013    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8014    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8015                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8016                    DAG.getConstant(2, MVT::i32));
8017    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8018                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8019                    R, M, Op);
8020    // a += a
8021    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8022
8023    // return pblendv(r, r+r, a);
8024    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8025                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8026                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8027    return R;
8028  }
8029  return SDValue();
8030}
8031
8032SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8033  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8034  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8035  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8036  // has only one use.
8037  SDNode *N = Op.getNode();
8038  SDValue LHS = N->getOperand(0);
8039  SDValue RHS = N->getOperand(1);
8040  unsigned BaseOp = 0;
8041  unsigned Cond = 0;
8042  DebugLoc dl = Op.getDebugLoc();
8043
8044  switch (Op.getOpcode()) {
8045  default: llvm_unreachable("Unknown ovf instruction!");
8046  case ISD::SADDO:
8047    // A subtract of one will be selected as a INC. Note that INC doesn't
8048    // set CF, so we can't do this for UADDO.
8049    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8050      if (C->getAPIntValue() == 1) {
8051        BaseOp = X86ISD::INC;
8052        Cond = X86::COND_O;
8053        break;
8054      }
8055    BaseOp = X86ISD::ADD;
8056    Cond = X86::COND_O;
8057    break;
8058  case ISD::UADDO:
8059    BaseOp = X86ISD::ADD;
8060    Cond = X86::COND_B;
8061    break;
8062  case ISD::SSUBO:
8063    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8064    // set CF, so we can't do this for USUBO.
8065    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8066      if (C->getAPIntValue() == 1) {
8067        BaseOp = X86ISD::DEC;
8068        Cond = X86::COND_O;
8069        break;
8070      }
8071    BaseOp = X86ISD::SUB;
8072    Cond = X86::COND_O;
8073    break;
8074  case ISD::USUBO:
8075    BaseOp = X86ISD::SUB;
8076    Cond = X86::COND_B;
8077    break;
8078  case ISD::SMULO:
8079    BaseOp = X86ISD::SMUL;
8080    Cond = X86::COND_O;
8081    break;
8082  case ISD::UMULO:
8083    BaseOp = X86ISD::UMUL;
8084    Cond = X86::COND_B;
8085    break;
8086  }
8087
8088  // Also sets EFLAGS.
8089  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8090  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
8091
8092  SDValue SetCC =
8093    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
8094                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
8095
8096  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8097  return Sum;
8098}
8099
8100SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8101  DebugLoc dl = Op.getDebugLoc();
8102
8103  if (!Subtarget->hasSSE2()) {
8104    SDValue Chain = Op.getOperand(0);
8105    SDValue Zero = DAG.getConstant(0,
8106                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8107    SDValue Ops[] = {
8108      DAG.getRegister(X86::ESP, MVT::i32), // Base
8109      DAG.getTargetConstant(1, MVT::i8),   // Scale
8110      DAG.getRegister(0, MVT::i32),        // Index
8111      DAG.getTargetConstant(0, MVT::i32),  // Disp
8112      DAG.getRegister(0, MVT::i32),        // Segment.
8113      Zero,
8114      Chain
8115    };
8116    SDNode *Res =
8117      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8118                          array_lengthof(Ops));
8119    return SDValue(Res, 0);
8120  }
8121
8122  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8123  if (!isDev)
8124    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8125
8126  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8127  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8128  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8129  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8130
8131  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8132  if (!Op1 && !Op2 && !Op3 && Op4)
8133    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8134
8135  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8136  if (Op1 && !Op2 && !Op3 && !Op4)
8137    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8138
8139  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8140  //           (MFENCE)>;
8141  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8142}
8143
8144SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8145  EVT T = Op.getValueType();
8146  DebugLoc dl = Op.getDebugLoc();
8147  unsigned Reg = 0;
8148  unsigned size = 0;
8149  switch(T.getSimpleVT().SimpleTy) {
8150  default:
8151    assert(false && "Invalid value type!");
8152  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8153  case MVT::i16: Reg = X86::AX;  size = 2; break;
8154  case MVT::i32: Reg = X86::EAX; size = 4; break;
8155  case MVT::i64:
8156    assert(Subtarget->is64Bit() && "Node not type legal!");
8157    Reg = X86::RAX; size = 8;
8158    break;
8159  }
8160  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
8161                                    Op.getOperand(2), SDValue());
8162  SDValue Ops[] = { cpIn.getValue(0),
8163                    Op.getOperand(1),
8164                    Op.getOperand(3),
8165                    DAG.getTargetConstant(size, MVT::i8),
8166                    cpIn.getValue(1) };
8167  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8168  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
8169  SDValue cpOut =
8170    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
8171  return cpOut;
8172}
8173
8174SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8175                                                 SelectionDAG &DAG) const {
8176  assert(Subtarget->is64Bit() && "Result not type legalized?");
8177  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8178  SDValue TheChain = Op.getOperand(0);
8179  DebugLoc dl = Op.getDebugLoc();
8180  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8181  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8182  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8183                                   rax.getValue(2));
8184  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8185                            DAG.getConstant(32, MVT::i8));
8186  SDValue Ops[] = {
8187    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8188    rdx.getValue(1)
8189  };
8190  return DAG.getMergeValues(Ops, 2, dl);
8191}
8192
8193SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
8194                                            SelectionDAG &DAG) const {
8195  EVT SrcVT = Op.getOperand(0).getValueType();
8196  EVT DstVT = Op.getValueType();
8197  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8198          Subtarget->hasMMX() && !DisableMMX) &&
8199         "Unexpected custom BIT_CONVERT");
8200  assert((DstVT == MVT::i64 ||
8201          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8202         "Unexpected custom BIT_CONVERT");
8203  // i64 <=> MMX conversions are Legal.
8204  if (SrcVT==MVT::i64 && DstVT.isVector())
8205    return Op;
8206  if (DstVT==MVT::i64 && SrcVT.isVector())
8207    return Op;
8208  // MMX <=> MMX conversions are Legal.
8209  if (SrcVT.isVector() && DstVT.isVector())
8210    return Op;
8211  // All other conversions need to be expanded.
8212  return SDValue();
8213}
8214SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
8215  SDNode *Node = Op.getNode();
8216  DebugLoc dl = Node->getDebugLoc();
8217  EVT T = Node->getValueType(0);
8218  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
8219                              DAG.getConstant(0, T), Node->getOperand(2));
8220  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
8221                       cast<AtomicSDNode>(Node)->getMemoryVT(),
8222                       Node->getOperand(0),
8223                       Node->getOperand(1), negOp,
8224                       cast<AtomicSDNode>(Node)->getSrcValue(),
8225                       cast<AtomicSDNode>(Node)->getAlignment());
8226}
8227
8228/// LowerOperation - Provide custom lowering hooks for some operations.
8229///
8230SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8231  switch (Op.getOpcode()) {
8232  default: llvm_unreachable("Should not custom lower this!");
8233  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
8234  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
8235  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
8236  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8237  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
8238  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8239  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8240  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
8241  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8242  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8243  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8244  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8245  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
8246  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8247  case ISD::SHL_PARTS:
8248  case ISD::SRA_PARTS:
8249  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
8250  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
8251  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
8252  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
8253  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
8254  case ISD::FABS:               return LowerFABS(Op, DAG);
8255  case ISD::FNEG:               return LowerFNEG(Op, DAG);
8256  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
8257  case ISD::SETCC:              return LowerSETCC(Op, DAG);
8258  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
8259  case ISD::SELECT:             return LowerSELECT(Op, DAG);
8260  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
8261  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8262  case ISD::VASTART:            return LowerVASTART(Op, DAG);
8263  case ISD::VAARG:              return LowerVAARG(Op, DAG);
8264  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
8265  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8266  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8267  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8268  case ISD::FRAME_TO_ARGS_OFFSET:
8269                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
8270  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
8271  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
8272  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
8273  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8274  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
8275  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
8276  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
8277  case ISD::SHL:                return LowerSHL(Op, DAG);
8278  case ISD::SADDO:
8279  case ISD::UADDO:
8280  case ISD::SSUBO:
8281  case ISD::USUBO:
8282  case ISD::SMULO:
8283  case ISD::UMULO:              return LowerXALUO(Op, DAG);
8284  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
8285  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
8286  }
8287}
8288
8289void X86TargetLowering::
8290ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
8291                        SelectionDAG &DAG, unsigned NewOp) const {
8292  EVT T = Node->getValueType(0);
8293  DebugLoc dl = Node->getDebugLoc();
8294  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
8295
8296  SDValue Chain = Node->getOperand(0);
8297  SDValue In1 = Node->getOperand(1);
8298  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8299                             Node->getOperand(2), DAG.getIntPtrConstant(0));
8300  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8301                             Node->getOperand(2), DAG.getIntPtrConstant(1));
8302  SDValue Ops[] = { Chain, In1, In2L, In2H };
8303  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8304  SDValue Result =
8305    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
8306                            cast<MemSDNode>(Node)->getMemOperand());
8307  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
8308  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8309  Results.push_back(Result.getValue(2));
8310}
8311
8312/// ReplaceNodeResults - Replace a node with an illegal result type
8313/// with a new node built out of custom code.
8314void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8315                                           SmallVectorImpl<SDValue>&Results,
8316                                           SelectionDAG &DAG) const {
8317  DebugLoc dl = N->getDebugLoc();
8318  switch (N->getOpcode()) {
8319  default:
8320    assert(false && "Do not know how to custom type legalize this operation!");
8321    return;
8322  case ISD::FP_TO_SINT: {
8323    std::pair<SDValue,SDValue> Vals =
8324        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8325    SDValue FIST = Vals.first, StackSlot = Vals.second;
8326    if (FIST.getNode() != 0) {
8327      EVT VT = N->getValueType(0);
8328      // Return a load from the stack slot.
8329      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
8330                                    false, false, 0));
8331    }
8332    return;
8333  }
8334  case ISD::READCYCLECOUNTER: {
8335    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8336    SDValue TheChain = N->getOperand(0);
8337    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8338    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8339                                     rd.getValue(1));
8340    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8341                                     eax.getValue(2));
8342    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8343    SDValue Ops[] = { eax, edx };
8344    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8345    Results.push_back(edx.getValue(1));
8346    return;
8347  }
8348  case ISD::ATOMIC_CMP_SWAP: {
8349    EVT T = N->getValueType(0);
8350    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8351    SDValue cpInL, cpInH;
8352    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8353                        DAG.getConstant(0, MVT::i32));
8354    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8355                        DAG.getConstant(1, MVT::i32));
8356    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8357    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8358                             cpInL.getValue(1));
8359    SDValue swapInL, swapInH;
8360    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8361                          DAG.getConstant(0, MVT::i32));
8362    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8363                          DAG.getConstant(1, MVT::i32));
8364    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8365                               cpInH.getValue(1));
8366    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8367                               swapInL.getValue(1));
8368    SDValue Ops[] = { swapInH.getValue(0),
8369                      N->getOperand(1),
8370                      swapInH.getValue(1) };
8371    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8372    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
8373    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8374                                        MVT::i32, Result.getValue(1));
8375    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8376                                        MVT::i32, cpOutL.getValue(2));
8377    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8378    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8379    Results.push_back(cpOutH.getValue(1));
8380    return;
8381  }
8382  case ISD::ATOMIC_LOAD_ADD:
8383    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8384    return;
8385  case ISD::ATOMIC_LOAD_AND:
8386    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8387    return;
8388  case ISD::ATOMIC_LOAD_NAND:
8389    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8390    return;
8391  case ISD::ATOMIC_LOAD_OR:
8392    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8393    return;
8394  case ISD::ATOMIC_LOAD_SUB:
8395    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8396    return;
8397  case ISD::ATOMIC_LOAD_XOR:
8398    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8399    return;
8400  case ISD::ATOMIC_SWAP:
8401    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8402    return;
8403  }
8404}
8405
8406const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8407  switch (Opcode) {
8408  default: return NULL;
8409  case X86ISD::BSF:                return "X86ISD::BSF";
8410  case X86ISD::BSR:                return "X86ISD::BSR";
8411  case X86ISD::SHLD:               return "X86ISD::SHLD";
8412  case X86ISD::SHRD:               return "X86ISD::SHRD";
8413  case X86ISD::FAND:               return "X86ISD::FAND";
8414  case X86ISD::FOR:                return "X86ISD::FOR";
8415  case X86ISD::FXOR:               return "X86ISD::FXOR";
8416  case X86ISD::FSRL:               return "X86ISD::FSRL";
8417  case X86ISD::FILD:               return "X86ISD::FILD";
8418  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8419  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8420  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8421  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8422  case X86ISD::FLD:                return "X86ISD::FLD";
8423  case X86ISD::FST:                return "X86ISD::FST";
8424  case X86ISD::CALL:               return "X86ISD::CALL";
8425  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8426  case X86ISD::BT:                 return "X86ISD::BT";
8427  case X86ISD::CMP:                return "X86ISD::CMP";
8428  case X86ISD::COMI:               return "X86ISD::COMI";
8429  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8430  case X86ISD::SETCC:              return "X86ISD::SETCC";
8431  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8432  case X86ISD::CMOV:               return "X86ISD::CMOV";
8433  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8434  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8435  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8436  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8437  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8438  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8439  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8440  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8441  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8442  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8443  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8444  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8445  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
8446  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8447  case X86ISD::FMAX:               return "X86ISD::FMAX";
8448  case X86ISD::FMIN:               return "X86ISD::FMIN";
8449  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8450  case X86ISD::FRCP:               return "X86ISD::FRCP";
8451  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8452  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8453  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
8454  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8455  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8456  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8457  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8458  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8459  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8460  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8461  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8462  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8463  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8464  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8465  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8466  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8467  case X86ISD::VSHL:               return "X86ISD::VSHL";
8468  case X86ISD::VSRL:               return "X86ISD::VSRL";
8469  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8470  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8471  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8472  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8473  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8474  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8475  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8476  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8477  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8478  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8479  case X86ISD::ADD:                return "X86ISD::ADD";
8480  case X86ISD::SUB:                return "X86ISD::SUB";
8481  case X86ISD::SMUL:               return "X86ISD::SMUL";
8482  case X86ISD::UMUL:               return "X86ISD::UMUL";
8483  case X86ISD::INC:                return "X86ISD::INC";
8484  case X86ISD::DEC:                return "X86ISD::DEC";
8485  case X86ISD::OR:                 return "X86ISD::OR";
8486  case X86ISD::XOR:                return "X86ISD::XOR";
8487  case X86ISD::AND:                return "X86ISD::AND";
8488  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8489  case X86ISD::PTEST:              return "X86ISD::PTEST";
8490  case X86ISD::TESTP:              return "X86ISD::TESTP";
8491  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8492  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8493  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8494  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8495  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8496  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8497  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8498  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8499  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8500  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8501  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8502  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8503  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
8504  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
8505  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8506  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8507  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8508  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8509  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8510  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8511  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8512  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8513  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8514  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8515  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8516  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8517  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8518  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8519  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8520  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8521  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8522  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8523  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8524  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8525  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
8526  }
8527}
8528
8529// isLegalAddressingMode - Return true if the addressing mode represented
8530// by AM is legal for this target, for a load/store of the specified type.
8531bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8532                                              const Type *Ty) const {
8533  // X86 supports extremely general addressing modes.
8534  CodeModel::Model M = getTargetMachine().getCodeModel();
8535  Reloc::Model R = getTargetMachine().getRelocationModel();
8536
8537  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8538  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8539    return false;
8540
8541  if (AM.BaseGV) {
8542    unsigned GVFlags =
8543      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8544
8545    // If a reference to this global requires an extra load, we can't fold it.
8546    if (isGlobalStubReference(GVFlags))
8547      return false;
8548
8549    // If BaseGV requires a register for the PIC base, we cannot also have a
8550    // BaseReg specified.
8551    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8552      return false;
8553
8554    // If lower 4G is not available, then we must use rip-relative addressing.
8555    if ((M != CodeModel::Small || R != Reloc::Static) &&
8556        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8557      return false;
8558  }
8559
8560  switch (AM.Scale) {
8561  case 0:
8562  case 1:
8563  case 2:
8564  case 4:
8565  case 8:
8566    // These scales always work.
8567    break;
8568  case 3:
8569  case 5:
8570  case 9:
8571    // These scales are formed with basereg+scalereg.  Only accept if there is
8572    // no basereg yet.
8573    if (AM.HasBaseReg)
8574      return false;
8575    break;
8576  default:  // Other stuff never works.
8577    return false;
8578  }
8579
8580  return true;
8581}
8582
8583
8584bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8585  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8586    return false;
8587  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8588  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8589  if (NumBits1 <= NumBits2)
8590    return false;
8591  return true;
8592}
8593
8594bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8595  if (!VT1.isInteger() || !VT2.isInteger())
8596    return false;
8597  unsigned NumBits1 = VT1.getSizeInBits();
8598  unsigned NumBits2 = VT2.getSizeInBits();
8599  if (NumBits1 <= NumBits2)
8600    return false;
8601  return true;
8602}
8603
8604bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8605  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8606  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8607}
8608
8609bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8610  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8611  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8612}
8613
8614bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8615  // i16 instructions are longer (0x66 prefix) and potentially slower.
8616  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8617}
8618
8619/// isShuffleMaskLegal - Targets can use this to indicate that they only
8620/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8621/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8622/// are assumed to be legal.
8623bool
8624X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8625                                      EVT VT) const {
8626  // Very little shuffling can be done for 64-bit vectors right now.
8627  if (VT.getSizeInBits() == 64)
8628    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8629
8630  // FIXME: pshufb, blends, shifts.
8631  return (VT.getVectorNumElements() == 2 ||
8632          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8633          isMOVLMask(M, VT) ||
8634          isSHUFPMask(M, VT) ||
8635          isPSHUFDMask(M, VT) ||
8636          isPSHUFHWMask(M, VT) ||
8637          isPSHUFLWMask(M, VT) ||
8638          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
8639          isUNPCKLMask(M, VT) ||
8640          isUNPCKHMask(M, VT) ||
8641          isUNPCKL_v_undef_Mask(M, VT) ||
8642          isUNPCKH_v_undef_Mask(M, VT));
8643}
8644
8645bool
8646X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
8647                                          EVT VT) const {
8648  unsigned NumElts = VT.getVectorNumElements();
8649  // FIXME: This collection of masks seems suspect.
8650  if (NumElts == 2)
8651    return true;
8652  if (NumElts == 4 && VT.getSizeInBits() == 128) {
8653    return (isMOVLMask(Mask, VT)  ||
8654            isCommutedMOVLMask(Mask, VT, true) ||
8655            isSHUFPMask(Mask, VT) ||
8656            isCommutedSHUFPMask(Mask, VT));
8657  }
8658  return false;
8659}
8660
8661//===----------------------------------------------------------------------===//
8662//                           X86 Scheduler Hooks
8663//===----------------------------------------------------------------------===//
8664
8665// private utility function
8666MachineBasicBlock *
8667X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
8668                                                       MachineBasicBlock *MBB,
8669                                                       unsigned regOpc,
8670                                                       unsigned immOpc,
8671                                                       unsigned LoadOpc,
8672                                                       unsigned CXchgOpc,
8673                                                       unsigned notOpc,
8674                                                       unsigned EAXreg,
8675                                                       TargetRegisterClass *RC,
8676                                                       bool invSrc) const {
8677  // For the atomic bitwise operator, we generate
8678  //   thisMBB:
8679  //   newMBB:
8680  //     ld  t1 = [bitinstr.addr]
8681  //     op  t2 = t1, [bitinstr.val]
8682  //     mov EAX = t1
8683  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8684  //     bz  newMBB
8685  //     fallthrough -->nextMBB
8686  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8687  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8688  MachineFunction::iterator MBBIter = MBB;
8689  ++MBBIter;
8690
8691  /// First build the CFG
8692  MachineFunction *F = MBB->getParent();
8693  MachineBasicBlock *thisMBB = MBB;
8694  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8695  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8696  F->insert(MBBIter, newMBB);
8697  F->insert(MBBIter, nextMBB);
8698
8699  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8700  nextMBB->splice(nextMBB->begin(), thisMBB,
8701                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8702                  thisMBB->end());
8703  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8704
8705  // Update thisMBB to fall through to newMBB
8706  thisMBB->addSuccessor(newMBB);
8707
8708  // newMBB jumps to itself and fall through to nextMBB
8709  newMBB->addSuccessor(nextMBB);
8710  newMBB->addSuccessor(newMBB);
8711
8712  // Insert instructions into newMBB based on incoming instruction
8713  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8714         "unexpected number of operands");
8715  DebugLoc dl = bInstr->getDebugLoc();
8716  MachineOperand& destOper = bInstr->getOperand(0);
8717  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8718  int numArgs = bInstr->getNumOperands() - 1;
8719  for (int i=0; i < numArgs; ++i)
8720    argOpers[i] = &bInstr->getOperand(i+1);
8721
8722  // x86 address has 4 operands: base, index, scale, and displacement
8723  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8724  int valArgIndx = lastAddrIndx + 1;
8725
8726  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8727  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8728  for (int i=0; i <= lastAddrIndx; ++i)
8729    (*MIB).addOperand(*argOpers[i]);
8730
8731  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8732  if (invSrc) {
8733    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8734  }
8735  else
8736    tt = t1;
8737
8738  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8739  assert((argOpers[valArgIndx]->isReg() ||
8740          argOpers[valArgIndx]->isImm()) &&
8741         "invalid operand");
8742  if (argOpers[valArgIndx]->isReg())
8743    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8744  else
8745    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8746  MIB.addReg(tt);
8747  (*MIB).addOperand(*argOpers[valArgIndx]);
8748
8749  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
8750  MIB.addReg(t1);
8751
8752  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8753  for (int i=0; i <= lastAddrIndx; ++i)
8754    (*MIB).addOperand(*argOpers[i]);
8755  MIB.addReg(t2);
8756  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8757  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8758                    bInstr->memoperands_end());
8759
8760  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8761  MIB.addReg(EAXreg);
8762
8763  // insert branch
8764  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8765
8766  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8767  return nextMBB;
8768}
8769
8770// private utility function:  64 bit atomics on 32 bit host.
8771MachineBasicBlock *
8772X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8773                                                       MachineBasicBlock *MBB,
8774                                                       unsigned regOpcL,
8775                                                       unsigned regOpcH,
8776                                                       unsigned immOpcL,
8777                                                       unsigned immOpcH,
8778                                                       bool invSrc) const {
8779  // For the atomic bitwise operator, we generate
8780  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8781  //     ld t1,t2 = [bitinstr.addr]
8782  //   newMBB:
8783  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8784  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8785  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8786  //     mov ECX, EBX <- t5, t6
8787  //     mov EAX, EDX <- t1, t2
8788  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8789  //     mov t3, t4 <- EAX, EDX
8790  //     bz  newMBB
8791  //     result in out1, out2
8792  //     fallthrough -->nextMBB
8793
8794  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8795  const unsigned LoadOpc = X86::MOV32rm;
8796  const unsigned NotOpc = X86::NOT32r;
8797  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8798  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8799  MachineFunction::iterator MBBIter = MBB;
8800  ++MBBIter;
8801
8802  /// First build the CFG
8803  MachineFunction *F = MBB->getParent();
8804  MachineBasicBlock *thisMBB = MBB;
8805  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8806  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8807  F->insert(MBBIter, newMBB);
8808  F->insert(MBBIter, nextMBB);
8809
8810  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8811  nextMBB->splice(nextMBB->begin(), thisMBB,
8812                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8813                  thisMBB->end());
8814  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8815
8816  // Update thisMBB to fall through to newMBB
8817  thisMBB->addSuccessor(newMBB);
8818
8819  // newMBB jumps to itself and fall through to nextMBB
8820  newMBB->addSuccessor(nextMBB);
8821  newMBB->addSuccessor(newMBB);
8822
8823  DebugLoc dl = bInstr->getDebugLoc();
8824  // Insert instructions into newMBB based on incoming instruction
8825  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8826  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
8827         "unexpected number of operands");
8828  MachineOperand& dest1Oper = bInstr->getOperand(0);
8829  MachineOperand& dest2Oper = bInstr->getOperand(1);
8830  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8831  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
8832    argOpers[i] = &bInstr->getOperand(i+2);
8833
8834    // We use some of the operands multiple times, so conservatively just
8835    // clear any kill flags that might be present.
8836    if (argOpers[i]->isReg() && argOpers[i]->isUse())
8837      argOpers[i]->setIsKill(false);
8838  }
8839
8840  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8841  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8842
8843  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8844  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8845  for (int i=0; i <= lastAddrIndx; ++i)
8846    (*MIB).addOperand(*argOpers[i]);
8847  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8848  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8849  // add 4 to displacement.
8850  for (int i=0; i <= lastAddrIndx-2; ++i)
8851    (*MIB).addOperand(*argOpers[i]);
8852  MachineOperand newOp3 = *(argOpers[3]);
8853  if (newOp3.isImm())
8854    newOp3.setImm(newOp3.getImm()+4);
8855  else
8856    newOp3.setOffset(newOp3.getOffset()+4);
8857  (*MIB).addOperand(newOp3);
8858  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8859
8860  // t3/4 are defined later, at the bottom of the loop
8861  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8862  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8863  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8864    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8865  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8866    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8867
8868  // The subsequent operations should be using the destination registers of
8869  //the PHI instructions.
8870  if (invSrc) {
8871    t1 = F->getRegInfo().createVirtualRegister(RC);
8872    t2 = F->getRegInfo().createVirtualRegister(RC);
8873    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8874    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8875  } else {
8876    t1 = dest1Oper.getReg();
8877    t2 = dest2Oper.getReg();
8878  }
8879
8880  int valArgIndx = lastAddrIndx + 1;
8881  assert((argOpers[valArgIndx]->isReg() ||
8882          argOpers[valArgIndx]->isImm()) &&
8883         "invalid operand");
8884  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8885  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8886  if (argOpers[valArgIndx]->isReg())
8887    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8888  else
8889    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8890  if (regOpcL != X86::MOV32rr)
8891    MIB.addReg(t1);
8892  (*MIB).addOperand(*argOpers[valArgIndx]);
8893  assert(argOpers[valArgIndx + 1]->isReg() ==
8894         argOpers[valArgIndx]->isReg());
8895  assert(argOpers[valArgIndx + 1]->isImm() ==
8896         argOpers[valArgIndx]->isImm());
8897  if (argOpers[valArgIndx + 1]->isReg())
8898    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8899  else
8900    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8901  if (regOpcH != X86::MOV32rr)
8902    MIB.addReg(t2);
8903  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8904
8905  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8906  MIB.addReg(t1);
8907  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
8908  MIB.addReg(t2);
8909
8910  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
8911  MIB.addReg(t5);
8912  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
8913  MIB.addReg(t6);
8914
8915  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8916  for (int i=0; i <= lastAddrIndx; ++i)
8917    (*MIB).addOperand(*argOpers[i]);
8918
8919  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8920  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8921                    bInstr->memoperands_end());
8922
8923  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
8924  MIB.addReg(X86::EAX);
8925  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
8926  MIB.addReg(X86::EDX);
8927
8928  // insert branch
8929  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8930
8931  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8932  return nextMBB;
8933}
8934
8935// private utility function
8936MachineBasicBlock *
8937X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8938                                                      MachineBasicBlock *MBB,
8939                                                      unsigned cmovOpc) const {
8940  // For the atomic min/max operator, we generate
8941  //   thisMBB:
8942  //   newMBB:
8943  //     ld t1 = [min/max.addr]
8944  //     mov t2 = [min/max.val]
8945  //     cmp  t1, t2
8946  //     cmov[cond] t2 = t1
8947  //     mov EAX = t1
8948  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8949  //     bz   newMBB
8950  //     fallthrough -->nextMBB
8951  //
8952  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8953  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8954  MachineFunction::iterator MBBIter = MBB;
8955  ++MBBIter;
8956
8957  /// First build the CFG
8958  MachineFunction *F = MBB->getParent();
8959  MachineBasicBlock *thisMBB = MBB;
8960  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8961  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8962  F->insert(MBBIter, newMBB);
8963  F->insert(MBBIter, nextMBB);
8964
8965  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8966  nextMBB->splice(nextMBB->begin(), thisMBB,
8967                  llvm::next(MachineBasicBlock::iterator(mInstr)),
8968                  thisMBB->end());
8969  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8970
8971  // Update thisMBB to fall through to newMBB
8972  thisMBB->addSuccessor(newMBB);
8973
8974  // newMBB jumps to newMBB and fall through to nextMBB
8975  newMBB->addSuccessor(nextMBB);
8976  newMBB->addSuccessor(newMBB);
8977
8978  DebugLoc dl = mInstr->getDebugLoc();
8979  // Insert instructions into newMBB based on incoming instruction
8980  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8981         "unexpected number of operands");
8982  MachineOperand& destOper = mInstr->getOperand(0);
8983  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8984  int numArgs = mInstr->getNumOperands() - 1;
8985  for (int i=0; i < numArgs; ++i)
8986    argOpers[i] = &mInstr->getOperand(i+1);
8987
8988  // x86 address has 4 operands: base, index, scale, and displacement
8989  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8990  int valArgIndx = lastAddrIndx + 1;
8991
8992  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8993  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8994  for (int i=0; i <= lastAddrIndx; ++i)
8995    (*MIB).addOperand(*argOpers[i]);
8996
8997  // We only support register and immediate values
8998  assert((argOpers[valArgIndx]->isReg() ||
8999          argOpers[valArgIndx]->isImm()) &&
9000         "invalid operand");
9001
9002  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9003  if (argOpers[valArgIndx]->isReg())
9004    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9005  else
9006    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9007  (*MIB).addOperand(*argOpers[valArgIndx]);
9008
9009  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9010  MIB.addReg(t1);
9011
9012  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9013  MIB.addReg(t1);
9014  MIB.addReg(t2);
9015
9016  // Generate movc
9017  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9018  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9019  MIB.addReg(t2);
9020  MIB.addReg(t1);
9021
9022  // Cmp and exchange if none has modified the memory location
9023  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9024  for (int i=0; i <= lastAddrIndx; ++i)
9025    (*MIB).addOperand(*argOpers[i]);
9026  MIB.addReg(t3);
9027  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9028  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9029                    mInstr->memoperands_end());
9030
9031  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9032  MIB.addReg(X86::EAX);
9033
9034  // insert branch
9035  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9036
9037  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9038  return nextMBB;
9039}
9040
9041// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9042// or XMM0_V32I8 in AVX all of this code can be replaced with that
9043// in the .td file.
9044MachineBasicBlock *
9045X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9046                            unsigned numArgs, bool memArg) const {
9047
9048  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9049         "Target must have SSE4.2 or AVX features enabled");
9050
9051  DebugLoc dl = MI->getDebugLoc();
9052  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9053
9054  unsigned Opc;
9055
9056  if (!Subtarget->hasAVX()) {
9057    if (memArg)
9058      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9059    else
9060      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9061  } else {
9062    if (memArg)
9063      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9064    else
9065      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9066  }
9067
9068  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
9069
9070  for (unsigned i = 0; i < numArgs; ++i) {
9071    MachineOperand &Op = MI->getOperand(i+1);
9072
9073    if (!(Op.isReg() && Op.isImplicit()))
9074      MIB.addOperand(Op);
9075  }
9076
9077  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9078    .addReg(X86::XMM0);
9079
9080  MI->eraseFromParent();
9081
9082  return BB;
9083}
9084
9085MachineBasicBlock *
9086X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
9087                                                 MachineInstr *MI,
9088                                                 MachineBasicBlock *MBB) const {
9089  // Emit code to save XMM registers to the stack. The ABI says that the
9090  // number of registers to save is given in %al, so it's theoretically
9091  // possible to do an indirect jump trick to avoid saving all of them,
9092  // however this code takes a simpler approach and just executes all
9093  // of the stores if %al is non-zero. It's less code, and it's probably
9094  // easier on the hardware branch predictor, and stores aren't all that
9095  // expensive anyway.
9096
9097  // Create the new basic blocks. One block contains all the XMM stores,
9098  // and one block is the final destination regardless of whether any
9099  // stores were performed.
9100  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9101  MachineFunction *F = MBB->getParent();
9102  MachineFunction::iterator MBBIter = MBB;
9103  ++MBBIter;
9104  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
9105  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
9106  F->insert(MBBIter, XMMSaveMBB);
9107  F->insert(MBBIter, EndMBB);
9108
9109  // Transfer the remainder of MBB and its successor edges to EndMBB.
9110  EndMBB->splice(EndMBB->begin(), MBB,
9111                 llvm::next(MachineBasicBlock::iterator(MI)),
9112                 MBB->end());
9113  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
9114
9115  // The original block will now fall through to the XMM save block.
9116  MBB->addSuccessor(XMMSaveMBB);
9117  // The XMMSaveMBB will fall through to the end block.
9118  XMMSaveMBB->addSuccessor(EndMBB);
9119
9120  // Now add the instructions.
9121  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9122  DebugLoc DL = MI->getDebugLoc();
9123
9124  unsigned CountReg = MI->getOperand(0).getReg();
9125  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
9126  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
9127
9128  if (!Subtarget->isTargetWin64()) {
9129    // If %al is 0, branch around the XMM save block.
9130    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
9131    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
9132    MBB->addSuccessor(EndMBB);
9133  }
9134
9135  // In the XMM save block, save all the XMM argument registers.
9136  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
9137    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
9138    MachineMemOperand *MMO =
9139      F->getMachineMemOperand(
9140        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
9141        MachineMemOperand::MOStore, Offset,
9142        /*Size=*/16, /*Align=*/16);
9143    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
9144      .addFrameIndex(RegSaveFrameIndex)
9145      .addImm(/*Scale=*/1)
9146      .addReg(/*IndexReg=*/0)
9147      .addImm(/*Disp=*/Offset)
9148      .addReg(/*Segment=*/0)
9149      .addReg(MI->getOperand(i).getReg())
9150      .addMemOperand(MMO);
9151  }
9152
9153  MI->eraseFromParent();   // The pseudo instruction is gone now.
9154
9155  return EndMBB;
9156}
9157
9158MachineBasicBlock *
9159X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
9160                                     MachineBasicBlock *BB) const {
9161  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9162  DebugLoc DL = MI->getDebugLoc();
9163
9164  // To "insert" a SELECT_CC instruction, we actually have to insert the
9165  // diamond control-flow pattern.  The incoming instruction knows the
9166  // destination vreg to set, the condition code register to branch on, the
9167  // true/false values to select between, and a branch opcode to use.
9168  const BasicBlock *LLVM_BB = BB->getBasicBlock();
9169  MachineFunction::iterator It = BB;
9170  ++It;
9171
9172  //  thisMBB:
9173  //  ...
9174  //   TrueVal = ...
9175  //   cmpTY ccX, r1, r2
9176  //   bCC copy1MBB
9177  //   fallthrough --> copy0MBB
9178  MachineBasicBlock *thisMBB = BB;
9179  MachineFunction *F = BB->getParent();
9180  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9181  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9182  F->insert(It, copy0MBB);
9183  F->insert(It, sinkMBB);
9184
9185  // If the EFLAGS register isn't dead in the terminator, then claim that it's
9186  // live into the sink and copy blocks.
9187  const MachineFunction *MF = BB->getParent();
9188  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
9189  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
9190
9191  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
9192    const MachineOperand &MO = MI->getOperand(I);
9193    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
9194    unsigned Reg = MO.getReg();
9195    if (Reg != X86::EFLAGS) continue;
9196    copy0MBB->addLiveIn(Reg);
9197    sinkMBB->addLiveIn(Reg);
9198  }
9199
9200  // Transfer the remainder of BB and its successor edges to sinkMBB.
9201  sinkMBB->splice(sinkMBB->begin(), BB,
9202                  llvm::next(MachineBasicBlock::iterator(MI)),
9203                  BB->end());
9204  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9205
9206  // Add the true and fallthrough blocks as its successors.
9207  BB->addSuccessor(copy0MBB);
9208  BB->addSuccessor(sinkMBB);
9209
9210  // Create the conditional branch instruction.
9211  unsigned Opc =
9212    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
9213  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
9214
9215  //  copy0MBB:
9216  //   %FalseValue = ...
9217  //   # fallthrough to sinkMBB
9218  copy0MBB->addSuccessor(sinkMBB);
9219
9220  //  sinkMBB:
9221  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9222  //  ...
9223  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9224          TII->get(X86::PHI), MI->getOperand(0).getReg())
9225    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
9226    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
9227
9228  MI->eraseFromParent();   // The pseudo instruction is gone now.
9229  return sinkMBB;
9230}
9231
9232MachineBasicBlock *
9233X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
9234                                          MachineBasicBlock *BB) const {
9235  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9236  DebugLoc DL = MI->getDebugLoc();
9237
9238  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
9239  // non-trivial part is impdef of ESP.
9240  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
9241  // mingw-w64.
9242
9243  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
9244    .addExternalSymbol("_alloca")
9245    .addReg(X86::EAX, RegState::Implicit)
9246    .addReg(X86::ESP, RegState::Implicit)
9247    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
9248    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
9249    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
9250
9251  MI->eraseFromParent();   // The pseudo instruction is gone now.
9252  return BB;
9253}
9254
9255MachineBasicBlock *
9256X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
9257                                      MachineBasicBlock *BB) const {
9258  // This is pretty easy.  We're taking the value that we received from
9259  // our load from the relocation, sticking it in either RDI (x86-64)
9260  // or EAX and doing an indirect call.  The return value will then
9261  // be in the normal return register.
9262  const X86InstrInfo *TII
9263    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
9264  DebugLoc DL = MI->getDebugLoc();
9265  MachineFunction *F = BB->getParent();
9266  bool IsWin64 = Subtarget->isTargetWin64();
9267
9268  assert(MI->getOperand(3).isGlobal() && "This should be a global");
9269
9270  if (Subtarget->is64Bit()) {
9271    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9272                                      TII->get(X86::MOV64rm), X86::RDI)
9273    .addReg(X86::RIP)
9274    .addImm(0).addReg(0)
9275    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9276                      MI->getOperand(3).getTargetFlags())
9277    .addReg(0);
9278    MIB = BuildMI(*BB, MI, DL, TII->get(IsWin64 ? X86::WINCALL64m : X86::CALL64m));
9279    addDirectMem(MIB, X86::RDI);
9280  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
9281    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9282                                      TII->get(X86::MOV32rm), X86::EAX)
9283    .addReg(0)
9284    .addImm(0).addReg(0)
9285    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9286                      MI->getOperand(3).getTargetFlags())
9287    .addReg(0);
9288    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9289    addDirectMem(MIB, X86::EAX);
9290  } else {
9291    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9292                                      TII->get(X86::MOV32rm), X86::EAX)
9293    .addReg(TII->getGlobalBaseReg(F))
9294    .addImm(0).addReg(0)
9295    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9296                      MI->getOperand(3).getTargetFlags())
9297    .addReg(0);
9298    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9299    addDirectMem(MIB, X86::EAX);
9300  }
9301
9302  MI->eraseFromParent(); // The pseudo instruction is gone now.
9303  return BB;
9304}
9305
9306MachineBasicBlock *
9307X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
9308                                               MachineBasicBlock *BB) const {
9309  switch (MI->getOpcode()) {
9310  default: assert(false && "Unexpected instr type to insert");
9311  case X86::MINGW_ALLOCA:
9312    return EmitLoweredMingwAlloca(MI, BB);
9313  case X86::TLSCall_32:
9314  case X86::TLSCall_64:
9315    return EmitLoweredTLSCall(MI, BB);
9316  case X86::CMOV_GR8:
9317  case X86::CMOV_V1I64:
9318  case X86::CMOV_FR32:
9319  case X86::CMOV_FR64:
9320  case X86::CMOV_V4F32:
9321  case X86::CMOV_V2F64:
9322  case X86::CMOV_V2I64:
9323  case X86::CMOV_GR16:
9324  case X86::CMOV_GR32:
9325  case X86::CMOV_RFP32:
9326  case X86::CMOV_RFP64:
9327  case X86::CMOV_RFP80:
9328    return EmitLoweredSelect(MI, BB);
9329
9330  case X86::FP32_TO_INT16_IN_MEM:
9331  case X86::FP32_TO_INT32_IN_MEM:
9332  case X86::FP32_TO_INT64_IN_MEM:
9333  case X86::FP64_TO_INT16_IN_MEM:
9334  case X86::FP64_TO_INT32_IN_MEM:
9335  case X86::FP64_TO_INT64_IN_MEM:
9336  case X86::FP80_TO_INT16_IN_MEM:
9337  case X86::FP80_TO_INT32_IN_MEM:
9338  case X86::FP80_TO_INT64_IN_MEM: {
9339    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9340    DebugLoc DL = MI->getDebugLoc();
9341
9342    // Change the floating point control register to use "round towards zero"
9343    // mode when truncating to an integer value.
9344    MachineFunction *F = BB->getParent();
9345    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
9346    addFrameReference(BuildMI(*BB, MI, DL,
9347                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
9348
9349    // Load the old value of the high byte of the control word...
9350    unsigned OldCW =
9351      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
9352    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
9353                      CWFrameIdx);
9354
9355    // Set the high part to be round to zero...
9356    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
9357      .addImm(0xC7F);
9358
9359    // Reload the modified control word now...
9360    addFrameReference(BuildMI(*BB, MI, DL,
9361                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9362
9363    // Restore the memory image of control word to original value
9364    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
9365      .addReg(OldCW);
9366
9367    // Get the X86 opcode to use.
9368    unsigned Opc;
9369    switch (MI->getOpcode()) {
9370    default: llvm_unreachable("illegal opcode!");
9371    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
9372    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
9373    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
9374    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
9375    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
9376    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
9377    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
9378    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
9379    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
9380    }
9381
9382    X86AddressMode AM;
9383    MachineOperand &Op = MI->getOperand(0);
9384    if (Op.isReg()) {
9385      AM.BaseType = X86AddressMode::RegBase;
9386      AM.Base.Reg = Op.getReg();
9387    } else {
9388      AM.BaseType = X86AddressMode::FrameIndexBase;
9389      AM.Base.FrameIndex = Op.getIndex();
9390    }
9391    Op = MI->getOperand(1);
9392    if (Op.isImm())
9393      AM.Scale = Op.getImm();
9394    Op = MI->getOperand(2);
9395    if (Op.isImm())
9396      AM.IndexReg = Op.getImm();
9397    Op = MI->getOperand(3);
9398    if (Op.isGlobal()) {
9399      AM.GV = Op.getGlobal();
9400    } else {
9401      AM.Disp = Op.getImm();
9402    }
9403    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
9404                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
9405
9406    // Reload the original control word now.
9407    addFrameReference(BuildMI(*BB, MI, DL,
9408                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9409
9410    MI->eraseFromParent();   // The pseudo instruction is gone now.
9411    return BB;
9412  }
9413    // String/text processing lowering.
9414  case X86::PCMPISTRM128REG:
9415  case X86::VPCMPISTRM128REG:
9416    return EmitPCMP(MI, BB, 3, false /* in-mem */);
9417  case X86::PCMPISTRM128MEM:
9418  case X86::VPCMPISTRM128MEM:
9419    return EmitPCMP(MI, BB, 3, true /* in-mem */);
9420  case X86::PCMPESTRM128REG:
9421  case X86::VPCMPESTRM128REG:
9422    return EmitPCMP(MI, BB, 5, false /* in mem */);
9423  case X86::PCMPESTRM128MEM:
9424  case X86::VPCMPESTRM128MEM:
9425    return EmitPCMP(MI, BB, 5, true /* in mem */);
9426
9427    // Atomic Lowering.
9428  case X86::ATOMAND32:
9429    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9430                                               X86::AND32ri, X86::MOV32rm,
9431                                               X86::LCMPXCHG32,
9432                                               X86::NOT32r, X86::EAX,
9433                                               X86::GR32RegisterClass);
9434  case X86::ATOMOR32:
9435    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
9436                                               X86::OR32ri, X86::MOV32rm,
9437                                               X86::LCMPXCHG32,
9438                                               X86::NOT32r, X86::EAX,
9439                                               X86::GR32RegisterClass);
9440  case X86::ATOMXOR32:
9441    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
9442                                               X86::XOR32ri, X86::MOV32rm,
9443                                               X86::LCMPXCHG32,
9444                                               X86::NOT32r, X86::EAX,
9445                                               X86::GR32RegisterClass);
9446  case X86::ATOMNAND32:
9447    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9448                                               X86::AND32ri, X86::MOV32rm,
9449                                               X86::LCMPXCHG32,
9450                                               X86::NOT32r, X86::EAX,
9451                                               X86::GR32RegisterClass, true);
9452  case X86::ATOMMIN32:
9453    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
9454  case X86::ATOMMAX32:
9455    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
9456  case X86::ATOMUMIN32:
9457    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
9458  case X86::ATOMUMAX32:
9459    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
9460
9461  case X86::ATOMAND16:
9462    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9463                                               X86::AND16ri, X86::MOV16rm,
9464                                               X86::LCMPXCHG16,
9465                                               X86::NOT16r, X86::AX,
9466                                               X86::GR16RegisterClass);
9467  case X86::ATOMOR16:
9468    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
9469                                               X86::OR16ri, X86::MOV16rm,
9470                                               X86::LCMPXCHG16,
9471                                               X86::NOT16r, X86::AX,
9472                                               X86::GR16RegisterClass);
9473  case X86::ATOMXOR16:
9474    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
9475                                               X86::XOR16ri, X86::MOV16rm,
9476                                               X86::LCMPXCHG16,
9477                                               X86::NOT16r, X86::AX,
9478                                               X86::GR16RegisterClass);
9479  case X86::ATOMNAND16:
9480    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9481                                               X86::AND16ri, X86::MOV16rm,
9482                                               X86::LCMPXCHG16,
9483                                               X86::NOT16r, X86::AX,
9484                                               X86::GR16RegisterClass, true);
9485  case X86::ATOMMIN16:
9486    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
9487  case X86::ATOMMAX16:
9488    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
9489  case X86::ATOMUMIN16:
9490    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
9491  case X86::ATOMUMAX16:
9492    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
9493
9494  case X86::ATOMAND8:
9495    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9496                                               X86::AND8ri, X86::MOV8rm,
9497                                               X86::LCMPXCHG8,
9498                                               X86::NOT8r, X86::AL,
9499                                               X86::GR8RegisterClass);
9500  case X86::ATOMOR8:
9501    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
9502                                               X86::OR8ri, X86::MOV8rm,
9503                                               X86::LCMPXCHG8,
9504                                               X86::NOT8r, X86::AL,
9505                                               X86::GR8RegisterClass);
9506  case X86::ATOMXOR8:
9507    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
9508                                               X86::XOR8ri, X86::MOV8rm,
9509                                               X86::LCMPXCHG8,
9510                                               X86::NOT8r, X86::AL,
9511                                               X86::GR8RegisterClass);
9512  case X86::ATOMNAND8:
9513    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9514                                               X86::AND8ri, X86::MOV8rm,
9515                                               X86::LCMPXCHG8,
9516                                               X86::NOT8r, X86::AL,
9517                                               X86::GR8RegisterClass, true);
9518  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
9519  // This group is for 64-bit host.
9520  case X86::ATOMAND64:
9521    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9522                                               X86::AND64ri32, X86::MOV64rm,
9523                                               X86::LCMPXCHG64,
9524                                               X86::NOT64r, X86::RAX,
9525                                               X86::GR64RegisterClass);
9526  case X86::ATOMOR64:
9527    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
9528                                               X86::OR64ri32, X86::MOV64rm,
9529                                               X86::LCMPXCHG64,
9530                                               X86::NOT64r, X86::RAX,
9531                                               X86::GR64RegisterClass);
9532  case X86::ATOMXOR64:
9533    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
9534                                               X86::XOR64ri32, X86::MOV64rm,
9535                                               X86::LCMPXCHG64,
9536                                               X86::NOT64r, X86::RAX,
9537                                               X86::GR64RegisterClass);
9538  case X86::ATOMNAND64:
9539    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9540                                               X86::AND64ri32, X86::MOV64rm,
9541                                               X86::LCMPXCHG64,
9542                                               X86::NOT64r, X86::RAX,
9543                                               X86::GR64RegisterClass, true);
9544  case X86::ATOMMIN64:
9545    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
9546  case X86::ATOMMAX64:
9547    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
9548  case X86::ATOMUMIN64:
9549    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
9550  case X86::ATOMUMAX64:
9551    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
9552
9553  // This group does 64-bit operations on a 32-bit host.
9554  case X86::ATOMAND6432:
9555    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9556                                               X86::AND32rr, X86::AND32rr,
9557                                               X86::AND32ri, X86::AND32ri,
9558                                               false);
9559  case X86::ATOMOR6432:
9560    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9561                                               X86::OR32rr, X86::OR32rr,
9562                                               X86::OR32ri, X86::OR32ri,
9563                                               false);
9564  case X86::ATOMXOR6432:
9565    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9566                                               X86::XOR32rr, X86::XOR32rr,
9567                                               X86::XOR32ri, X86::XOR32ri,
9568                                               false);
9569  case X86::ATOMNAND6432:
9570    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9571                                               X86::AND32rr, X86::AND32rr,
9572                                               X86::AND32ri, X86::AND32ri,
9573                                               true);
9574  case X86::ATOMADD6432:
9575    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9576                                               X86::ADD32rr, X86::ADC32rr,
9577                                               X86::ADD32ri, X86::ADC32ri,
9578                                               false);
9579  case X86::ATOMSUB6432:
9580    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9581                                               X86::SUB32rr, X86::SBB32rr,
9582                                               X86::SUB32ri, X86::SBB32ri,
9583                                               false);
9584  case X86::ATOMSWAP6432:
9585    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9586                                               X86::MOV32rr, X86::MOV32rr,
9587                                               X86::MOV32ri, X86::MOV32ri,
9588                                               false);
9589  case X86::VASTART_SAVE_XMM_REGS:
9590    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
9591  }
9592}
9593
9594//===----------------------------------------------------------------------===//
9595//                           X86 Optimization Hooks
9596//===----------------------------------------------------------------------===//
9597
9598void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9599                                                       const APInt &Mask,
9600                                                       APInt &KnownZero,
9601                                                       APInt &KnownOne,
9602                                                       const SelectionDAG &DAG,
9603                                                       unsigned Depth) const {
9604  unsigned Opc = Op.getOpcode();
9605  assert((Opc >= ISD::BUILTIN_OP_END ||
9606          Opc == ISD::INTRINSIC_WO_CHAIN ||
9607          Opc == ISD::INTRINSIC_W_CHAIN ||
9608          Opc == ISD::INTRINSIC_VOID) &&
9609         "Should use MaskedValueIsZero if you don't know whether Op"
9610         " is a target node!");
9611
9612  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
9613  switch (Opc) {
9614  default: break;
9615  case X86ISD::ADD:
9616  case X86ISD::SUB:
9617  case X86ISD::SMUL:
9618  case X86ISD::UMUL:
9619  case X86ISD::INC:
9620  case X86ISD::DEC:
9621  case X86ISD::OR:
9622  case X86ISD::XOR:
9623  case X86ISD::AND:
9624    // These nodes' second result is a boolean.
9625    if (Op.getResNo() == 0)
9626      break;
9627    // Fallthrough
9628  case X86ISD::SETCC:
9629    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
9630                                       Mask.getBitWidth() - 1);
9631    break;
9632  }
9633}
9634
9635/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
9636/// node is a GlobalAddress + offset.
9637bool X86TargetLowering::isGAPlusOffset(SDNode *N,
9638                                       const GlobalValue* &GA,
9639                                       int64_t &Offset) const {
9640  if (N->getOpcode() == X86ISD::Wrapper) {
9641    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
9642      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
9643      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
9644      return true;
9645    }
9646  }
9647  return TargetLowering::isGAPlusOffset(N, GA, Offset);
9648}
9649
9650/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
9651/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
9652/// if the load addresses are consecutive, non-overlapping, and in the right
9653/// order.
9654static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
9655                                     const TargetLowering &TLI) {
9656  DebugLoc dl = N->getDebugLoc();
9657  EVT VT = N->getValueType(0);
9658
9659  if (VT.getSizeInBits() != 128)
9660    return SDValue();
9661
9662  SmallVector<SDValue, 16> Elts;
9663  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
9664    Elts.push_back(getShuffleScalarElt(N, i, DAG));
9665
9666  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
9667}
9668
9669/// PerformShuffleCombine - Detect vector gather/scatter index generation
9670/// and convert it from being a bunch of shuffles and extracts to a simple
9671/// store and scalar loads to extract the elements.
9672static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
9673                                                const TargetLowering &TLI) {
9674  SDValue InputVector = N->getOperand(0);
9675
9676  // Only operate on vectors of 4 elements, where the alternative shuffling
9677  // gets to be more expensive.
9678  if (InputVector.getValueType() != MVT::v4i32)
9679    return SDValue();
9680
9681  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
9682  // single use which is a sign-extend or zero-extend, and all elements are
9683  // used.
9684  SmallVector<SDNode *, 4> Uses;
9685  unsigned ExtractedElements = 0;
9686  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
9687       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
9688    if (UI.getUse().getResNo() != InputVector.getResNo())
9689      return SDValue();
9690
9691    SDNode *Extract = *UI;
9692    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9693      return SDValue();
9694
9695    if (Extract->getValueType(0) != MVT::i32)
9696      return SDValue();
9697    if (!Extract->hasOneUse())
9698      return SDValue();
9699    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
9700        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
9701      return SDValue();
9702    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
9703      return SDValue();
9704
9705    // Record which element was extracted.
9706    ExtractedElements |=
9707      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
9708
9709    Uses.push_back(Extract);
9710  }
9711
9712  // If not all the elements were used, this may not be worthwhile.
9713  if (ExtractedElements != 15)
9714    return SDValue();
9715
9716  // Ok, we've now decided to do the transformation.
9717  DebugLoc dl = InputVector.getDebugLoc();
9718
9719  // Store the value to a temporary stack slot.
9720  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
9721  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL,
9722                            0, false, false, 0);
9723
9724  // Replace each use (extract) with a load of the appropriate element.
9725  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
9726       UE = Uses.end(); UI != UE; ++UI) {
9727    SDNode *Extract = *UI;
9728
9729    // Compute the element's address.
9730    SDValue Idx = Extract->getOperand(1);
9731    unsigned EltSize =
9732        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
9733    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
9734    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
9735
9736    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
9737                                     OffsetVal, StackPtr);
9738
9739    // Load the scalar.
9740    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
9741                                     ScalarAddr, NULL, 0, false, false, 0);
9742
9743    // Replace the exact with the load.
9744    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
9745  }
9746
9747  // The replacement was made in place; don't return anything.
9748  return SDValue();
9749}
9750
9751/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
9752static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9753                                    const X86Subtarget *Subtarget) {
9754  DebugLoc DL = N->getDebugLoc();
9755  SDValue Cond = N->getOperand(0);
9756  // Get the LHS/RHS of the select.
9757  SDValue LHS = N->getOperand(1);
9758  SDValue RHS = N->getOperand(2);
9759
9760  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9761  // instructions match the semantics of the common C idiom x<y?x:y but not
9762  // x<=y?x:y, because of how they handle negative zero (which can be
9763  // ignored in unsafe-math mode).
9764  if (Subtarget->hasSSE2() &&
9765      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9766      Cond.getOpcode() == ISD::SETCC) {
9767    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9768
9769    unsigned Opcode = 0;
9770    // Check for x CC y ? x : y.
9771    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9772        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9773      switch (CC) {
9774      default: break;
9775      case ISD::SETULT:
9776        // Converting this to a min would handle NaNs incorrectly, and swapping
9777        // the operands would cause it to handle comparisons between positive
9778        // and negative zero incorrectly.
9779        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9780          if (!UnsafeFPMath &&
9781              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9782            break;
9783          std::swap(LHS, RHS);
9784        }
9785        Opcode = X86ISD::FMIN;
9786        break;
9787      case ISD::SETOLE:
9788        // Converting this to a min would handle comparisons between positive
9789        // and negative zero incorrectly.
9790        if (!UnsafeFPMath &&
9791            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9792          break;
9793        Opcode = X86ISD::FMIN;
9794        break;
9795      case ISD::SETULE:
9796        // Converting this to a min would handle both negative zeros and NaNs
9797        // incorrectly, but we can swap the operands to fix both.
9798        std::swap(LHS, RHS);
9799      case ISD::SETOLT:
9800      case ISD::SETLT:
9801      case ISD::SETLE:
9802        Opcode = X86ISD::FMIN;
9803        break;
9804
9805      case ISD::SETOGE:
9806        // Converting this to a max would handle comparisons between positive
9807        // and negative zero incorrectly.
9808        if (!UnsafeFPMath &&
9809            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9810          break;
9811        Opcode = X86ISD::FMAX;
9812        break;
9813      case ISD::SETUGT:
9814        // Converting this to a max would handle NaNs incorrectly, and swapping
9815        // the operands would cause it to handle comparisons between positive
9816        // and negative zero incorrectly.
9817        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9818          if (!UnsafeFPMath &&
9819              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9820            break;
9821          std::swap(LHS, RHS);
9822        }
9823        Opcode = X86ISD::FMAX;
9824        break;
9825      case ISD::SETUGE:
9826        // Converting this to a max would handle both negative zeros and NaNs
9827        // incorrectly, but we can swap the operands to fix both.
9828        std::swap(LHS, RHS);
9829      case ISD::SETOGT:
9830      case ISD::SETGT:
9831      case ISD::SETGE:
9832        Opcode = X86ISD::FMAX;
9833        break;
9834      }
9835    // Check for x CC y ? y : x -- a min/max with reversed arms.
9836    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9837               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9838      switch (CC) {
9839      default: break;
9840      case ISD::SETOGE:
9841        // Converting this to a min would handle comparisons between positive
9842        // and negative zero incorrectly, and swapping the operands would
9843        // cause it to handle NaNs incorrectly.
9844        if (!UnsafeFPMath &&
9845            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9846          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9847            break;
9848          std::swap(LHS, RHS);
9849        }
9850        Opcode = X86ISD::FMIN;
9851        break;
9852      case ISD::SETUGT:
9853        // Converting this to a min would handle NaNs incorrectly.
9854        if (!UnsafeFPMath &&
9855            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9856          break;
9857        Opcode = X86ISD::FMIN;
9858        break;
9859      case ISD::SETUGE:
9860        // Converting this to a min would handle both negative zeros and NaNs
9861        // incorrectly, but we can swap the operands to fix both.
9862        std::swap(LHS, RHS);
9863      case ISD::SETOGT:
9864      case ISD::SETGT:
9865      case ISD::SETGE:
9866        Opcode = X86ISD::FMIN;
9867        break;
9868
9869      case ISD::SETULT:
9870        // Converting this to a max would handle NaNs incorrectly.
9871        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9872          break;
9873        Opcode = X86ISD::FMAX;
9874        break;
9875      case ISD::SETOLE:
9876        // Converting this to a max would handle comparisons between positive
9877        // and negative zero incorrectly, and swapping the operands would
9878        // cause it to handle NaNs incorrectly.
9879        if (!UnsafeFPMath &&
9880            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9881          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9882            break;
9883          std::swap(LHS, RHS);
9884        }
9885        Opcode = X86ISD::FMAX;
9886        break;
9887      case ISD::SETULE:
9888        // Converting this to a max would handle both negative zeros and NaNs
9889        // incorrectly, but we can swap the operands to fix both.
9890        std::swap(LHS, RHS);
9891      case ISD::SETOLT:
9892      case ISD::SETLT:
9893      case ISD::SETLE:
9894        Opcode = X86ISD::FMAX;
9895        break;
9896      }
9897    }
9898
9899    if (Opcode)
9900      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9901  }
9902
9903  // If this is a select between two integer constants, try to do some
9904  // optimizations.
9905  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9906    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9907      // Don't do this for crazy integer types.
9908      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9909        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9910        // so that TrueC (the true value) is larger than FalseC.
9911        bool NeedsCondInvert = false;
9912
9913        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9914            // Efficiently invertible.
9915            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9916             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9917              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9918          NeedsCondInvert = true;
9919          std::swap(TrueC, FalseC);
9920        }
9921
9922        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9923        if (FalseC->getAPIntValue() == 0 &&
9924            TrueC->getAPIntValue().isPowerOf2()) {
9925          if (NeedsCondInvert) // Invert the condition if needed.
9926            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9927                               DAG.getConstant(1, Cond.getValueType()));
9928
9929          // Zero extend the condition if needed.
9930          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9931
9932          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9933          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9934                             DAG.getConstant(ShAmt, MVT::i8));
9935        }
9936
9937        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9938        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9939          if (NeedsCondInvert) // Invert the condition if needed.
9940            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9941                               DAG.getConstant(1, Cond.getValueType()));
9942
9943          // Zero extend the condition if needed.
9944          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9945                             FalseC->getValueType(0), Cond);
9946          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9947                             SDValue(FalseC, 0));
9948        }
9949
9950        // Optimize cases that will turn into an LEA instruction.  This requires
9951        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9952        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9953          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9954          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9955
9956          bool isFastMultiplier = false;
9957          if (Diff < 10) {
9958            switch ((unsigned char)Diff) {
9959              default: break;
9960              case 1:  // result = add base, cond
9961              case 2:  // result = lea base(    , cond*2)
9962              case 3:  // result = lea base(cond, cond*2)
9963              case 4:  // result = lea base(    , cond*4)
9964              case 5:  // result = lea base(cond, cond*4)
9965              case 8:  // result = lea base(    , cond*8)
9966              case 9:  // result = lea base(cond, cond*8)
9967                isFastMultiplier = true;
9968                break;
9969            }
9970          }
9971
9972          if (isFastMultiplier) {
9973            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9974            if (NeedsCondInvert) // Invert the condition if needed.
9975              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9976                                 DAG.getConstant(1, Cond.getValueType()));
9977
9978            // Zero extend the condition if needed.
9979            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9980                               Cond);
9981            // Scale the condition by the difference.
9982            if (Diff != 1)
9983              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9984                                 DAG.getConstant(Diff, Cond.getValueType()));
9985
9986            // Add the base if non-zero.
9987            if (FalseC->getAPIntValue() != 0)
9988              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9989                                 SDValue(FalseC, 0));
9990            return Cond;
9991          }
9992        }
9993      }
9994  }
9995
9996  return SDValue();
9997}
9998
9999/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
10000static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
10001                                  TargetLowering::DAGCombinerInfo &DCI) {
10002  DebugLoc DL = N->getDebugLoc();
10003
10004  // If the flag operand isn't dead, don't touch this CMOV.
10005  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
10006    return SDValue();
10007
10008  // If this is a select between two integer constants, try to do some
10009  // optimizations.  Note that the operands are ordered the opposite of SELECT
10010  // operands.
10011  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
10012    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10013      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
10014      // larger than FalseC (the false value).
10015      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
10016
10017      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
10018        CC = X86::GetOppositeBranchCondition(CC);
10019        std::swap(TrueC, FalseC);
10020      }
10021
10022      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
10023      // This is efficient for any integer data type (including i8/i16) and
10024      // shift amount.
10025      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
10026        SDValue Cond = N->getOperand(3);
10027        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10028                           DAG.getConstant(CC, MVT::i8), Cond);
10029
10030        // Zero extend the condition if needed.
10031        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
10032
10033        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10034        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
10035                           DAG.getConstant(ShAmt, MVT::i8));
10036        if (N->getNumValues() == 2)  // Dead flag value?
10037          return DCI.CombineTo(N, Cond, SDValue());
10038        return Cond;
10039      }
10040
10041      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
10042      // for any integer data type, including i8/i16.
10043      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10044        SDValue Cond = N->getOperand(3);
10045        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10046                           DAG.getConstant(CC, MVT::i8), Cond);
10047
10048        // Zero extend the condition if needed.
10049        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10050                           FalseC->getValueType(0), Cond);
10051        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10052                           SDValue(FalseC, 0));
10053
10054        if (N->getNumValues() == 2)  // Dead flag value?
10055          return DCI.CombineTo(N, Cond, SDValue());
10056        return Cond;
10057      }
10058
10059      // Optimize cases that will turn into an LEA instruction.  This requires
10060      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10061      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10062        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10063        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10064
10065        bool isFastMultiplier = false;
10066        if (Diff < 10) {
10067          switch ((unsigned char)Diff) {
10068          default: break;
10069          case 1:  // result = add base, cond
10070          case 2:  // result = lea base(    , cond*2)
10071          case 3:  // result = lea base(cond, cond*2)
10072          case 4:  // result = lea base(    , cond*4)
10073          case 5:  // result = lea base(cond, cond*4)
10074          case 8:  // result = lea base(    , cond*8)
10075          case 9:  // result = lea base(cond, cond*8)
10076            isFastMultiplier = true;
10077            break;
10078          }
10079        }
10080
10081        if (isFastMultiplier) {
10082          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10083          SDValue Cond = N->getOperand(3);
10084          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10085                             DAG.getConstant(CC, MVT::i8), Cond);
10086          // Zero extend the condition if needed.
10087          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10088                             Cond);
10089          // Scale the condition by the difference.
10090          if (Diff != 1)
10091            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10092                               DAG.getConstant(Diff, Cond.getValueType()));
10093
10094          // Add the base if non-zero.
10095          if (FalseC->getAPIntValue() != 0)
10096            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10097                               SDValue(FalseC, 0));
10098          if (N->getNumValues() == 2)  // Dead flag value?
10099            return DCI.CombineTo(N, Cond, SDValue());
10100          return Cond;
10101        }
10102      }
10103    }
10104  }
10105  return SDValue();
10106}
10107
10108
10109/// PerformMulCombine - Optimize a single multiply with constant into two
10110/// in order to implement it with two cheaper instructions, e.g.
10111/// LEA + SHL, LEA + LEA.
10112static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
10113                                 TargetLowering::DAGCombinerInfo &DCI) {
10114  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10115    return SDValue();
10116
10117  EVT VT = N->getValueType(0);
10118  if (VT != MVT::i64)
10119    return SDValue();
10120
10121  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10122  if (!C)
10123    return SDValue();
10124  uint64_t MulAmt = C->getZExtValue();
10125  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
10126    return SDValue();
10127
10128  uint64_t MulAmt1 = 0;
10129  uint64_t MulAmt2 = 0;
10130  if ((MulAmt % 9) == 0) {
10131    MulAmt1 = 9;
10132    MulAmt2 = MulAmt / 9;
10133  } else if ((MulAmt % 5) == 0) {
10134    MulAmt1 = 5;
10135    MulAmt2 = MulAmt / 5;
10136  } else if ((MulAmt % 3) == 0) {
10137    MulAmt1 = 3;
10138    MulAmt2 = MulAmt / 3;
10139  }
10140  if (MulAmt2 &&
10141      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
10142    DebugLoc DL = N->getDebugLoc();
10143
10144    if (isPowerOf2_64(MulAmt2) &&
10145        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
10146      // If second multiplifer is pow2, issue it first. We want the multiply by
10147      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
10148      // is an add.
10149      std::swap(MulAmt1, MulAmt2);
10150
10151    SDValue NewMul;
10152    if (isPowerOf2_64(MulAmt1))
10153      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
10154                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
10155    else
10156      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
10157                           DAG.getConstant(MulAmt1, VT));
10158
10159    if (isPowerOf2_64(MulAmt2))
10160      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
10161                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
10162    else
10163      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
10164                           DAG.getConstant(MulAmt2, VT));
10165
10166    // Do not add new nodes to DAG combiner worklist.
10167    DCI.CombineTo(N, NewMul, false);
10168  }
10169  return SDValue();
10170}
10171
10172static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
10173  SDValue N0 = N->getOperand(0);
10174  SDValue N1 = N->getOperand(1);
10175  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10176  EVT VT = N0.getValueType();
10177
10178  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
10179  // since the result of setcc_c is all zero's or all ones.
10180  if (N1C && N0.getOpcode() == ISD::AND &&
10181      N0.getOperand(1).getOpcode() == ISD::Constant) {
10182    SDValue N00 = N0.getOperand(0);
10183    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
10184        ((N00.getOpcode() == ISD::ANY_EXTEND ||
10185          N00.getOpcode() == ISD::ZERO_EXTEND) &&
10186         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
10187      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
10188      APInt ShAmt = N1C->getAPIntValue();
10189      Mask = Mask.shl(ShAmt);
10190      if (Mask != 0)
10191        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
10192                           N00, DAG.getConstant(Mask, VT));
10193    }
10194  }
10195
10196  return SDValue();
10197}
10198
10199/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
10200///                       when possible.
10201static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
10202                                   const X86Subtarget *Subtarget) {
10203  EVT VT = N->getValueType(0);
10204  if (!VT.isVector() && VT.isInteger() &&
10205      N->getOpcode() == ISD::SHL)
10206    return PerformSHLCombine(N, DAG);
10207
10208  // On X86 with SSE2 support, we can transform this to a vector shift if
10209  // all elements are shifted by the same amount.  We can't do this in legalize
10210  // because the a constant vector is typically transformed to a constant pool
10211  // so we have no knowledge of the shift amount.
10212  if (!Subtarget->hasSSE2())
10213    return SDValue();
10214
10215  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
10216    return SDValue();
10217
10218  SDValue ShAmtOp = N->getOperand(1);
10219  EVT EltVT = VT.getVectorElementType();
10220  DebugLoc DL = N->getDebugLoc();
10221  SDValue BaseShAmt = SDValue();
10222  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
10223    unsigned NumElts = VT.getVectorNumElements();
10224    unsigned i = 0;
10225    for (; i != NumElts; ++i) {
10226      SDValue Arg = ShAmtOp.getOperand(i);
10227      if (Arg.getOpcode() == ISD::UNDEF) continue;
10228      BaseShAmt = Arg;
10229      break;
10230    }
10231    for (; i != NumElts; ++i) {
10232      SDValue Arg = ShAmtOp.getOperand(i);
10233      if (Arg.getOpcode() == ISD::UNDEF) continue;
10234      if (Arg != BaseShAmt) {
10235        return SDValue();
10236      }
10237    }
10238  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
10239             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
10240    SDValue InVec = ShAmtOp.getOperand(0);
10241    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
10242      unsigned NumElts = InVec.getValueType().getVectorNumElements();
10243      unsigned i = 0;
10244      for (; i != NumElts; ++i) {
10245        SDValue Arg = InVec.getOperand(i);
10246        if (Arg.getOpcode() == ISD::UNDEF) continue;
10247        BaseShAmt = Arg;
10248        break;
10249      }
10250    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
10251       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
10252         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
10253         if (C->getZExtValue() == SplatIdx)
10254           BaseShAmt = InVec.getOperand(1);
10255       }
10256    }
10257    if (BaseShAmt.getNode() == 0)
10258      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
10259                              DAG.getIntPtrConstant(0));
10260  } else
10261    return SDValue();
10262
10263  // The shift amount is an i32.
10264  if (EltVT.bitsGT(MVT::i32))
10265    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
10266  else if (EltVT.bitsLT(MVT::i32))
10267    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
10268
10269  // The shift amount is identical so we can do a vector shift.
10270  SDValue  ValOp = N->getOperand(0);
10271  switch (N->getOpcode()) {
10272  default:
10273    llvm_unreachable("Unknown shift opcode!");
10274    break;
10275  case ISD::SHL:
10276    if (VT == MVT::v2i64)
10277      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10278                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10279                         ValOp, BaseShAmt);
10280    if (VT == MVT::v4i32)
10281      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10282                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10283                         ValOp, BaseShAmt);
10284    if (VT == MVT::v8i16)
10285      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10286                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10287                         ValOp, BaseShAmt);
10288    break;
10289  case ISD::SRA:
10290    if (VT == MVT::v4i32)
10291      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10292                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10293                         ValOp, BaseShAmt);
10294    if (VT == MVT::v8i16)
10295      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10296                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10297                         ValOp, BaseShAmt);
10298    break;
10299  case ISD::SRL:
10300    if (VT == MVT::v2i64)
10301      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10302                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10303                         ValOp, BaseShAmt);
10304    if (VT == MVT::v4i32)
10305      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10306                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10307                         ValOp, BaseShAmt);
10308    if (VT ==  MVT::v8i16)
10309      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10310                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10311                         ValOp, BaseShAmt);
10312    break;
10313  }
10314  return SDValue();
10315}
10316
10317static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
10318                                TargetLowering::DAGCombinerInfo &DCI,
10319                                const X86Subtarget *Subtarget) {
10320  if (DCI.isBeforeLegalizeOps())
10321    return SDValue();
10322
10323  EVT VT = N->getValueType(0);
10324  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
10325    return SDValue();
10326
10327  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
10328  SDValue N0 = N->getOperand(0);
10329  SDValue N1 = N->getOperand(1);
10330  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
10331    std::swap(N0, N1);
10332  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
10333    return SDValue();
10334  if (!N0.hasOneUse() || !N1.hasOneUse())
10335    return SDValue();
10336
10337  SDValue ShAmt0 = N0.getOperand(1);
10338  if (ShAmt0.getValueType() != MVT::i8)
10339    return SDValue();
10340  SDValue ShAmt1 = N1.getOperand(1);
10341  if (ShAmt1.getValueType() != MVT::i8)
10342    return SDValue();
10343  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
10344    ShAmt0 = ShAmt0.getOperand(0);
10345  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
10346    ShAmt1 = ShAmt1.getOperand(0);
10347
10348  DebugLoc DL = N->getDebugLoc();
10349  unsigned Opc = X86ISD::SHLD;
10350  SDValue Op0 = N0.getOperand(0);
10351  SDValue Op1 = N1.getOperand(0);
10352  if (ShAmt0.getOpcode() == ISD::SUB) {
10353    Opc = X86ISD::SHRD;
10354    std::swap(Op0, Op1);
10355    std::swap(ShAmt0, ShAmt1);
10356  }
10357
10358  unsigned Bits = VT.getSizeInBits();
10359  if (ShAmt1.getOpcode() == ISD::SUB) {
10360    SDValue Sum = ShAmt1.getOperand(0);
10361    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
10362      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
10363      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
10364        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
10365      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
10366        return DAG.getNode(Opc, DL, VT,
10367                           Op0, Op1,
10368                           DAG.getNode(ISD::TRUNCATE, DL,
10369                                       MVT::i8, ShAmt0));
10370    }
10371  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
10372    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
10373    if (ShAmt0C &&
10374        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
10375      return DAG.getNode(Opc, DL, VT,
10376                         N0.getOperand(0), N1.getOperand(0),
10377                         DAG.getNode(ISD::TRUNCATE, DL,
10378                                       MVT::i8, ShAmt0));
10379  }
10380
10381  return SDValue();
10382}
10383
10384/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
10385static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
10386                                   const X86Subtarget *Subtarget) {
10387  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
10388  // the FP state in cases where an emms may be missing.
10389  // A preferable solution to the general problem is to figure out the right
10390  // places to insert EMMS.  This qualifies as a quick hack.
10391
10392  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
10393  StoreSDNode *St = cast<StoreSDNode>(N);
10394  EVT VT = St->getValue().getValueType();
10395  if (VT.getSizeInBits() != 64)
10396    return SDValue();
10397
10398  const Function *F = DAG.getMachineFunction().getFunction();
10399  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
10400  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
10401    && Subtarget->hasSSE2();
10402  if ((VT.isVector() ||
10403       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
10404      isa<LoadSDNode>(St->getValue()) &&
10405      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
10406      St->getChain().hasOneUse() && !St->isVolatile()) {
10407    SDNode* LdVal = St->getValue().getNode();
10408    LoadSDNode *Ld = 0;
10409    int TokenFactorIndex = -1;
10410    SmallVector<SDValue, 8> Ops;
10411    SDNode* ChainVal = St->getChain().getNode();
10412    // Must be a store of a load.  We currently handle two cases:  the load
10413    // is a direct child, and it's under an intervening TokenFactor.  It is
10414    // possible to dig deeper under nested TokenFactors.
10415    if (ChainVal == LdVal)
10416      Ld = cast<LoadSDNode>(St->getChain());
10417    else if (St->getValue().hasOneUse() &&
10418             ChainVal->getOpcode() == ISD::TokenFactor) {
10419      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
10420        if (ChainVal->getOperand(i).getNode() == LdVal) {
10421          TokenFactorIndex = i;
10422          Ld = cast<LoadSDNode>(St->getValue());
10423        } else
10424          Ops.push_back(ChainVal->getOperand(i));
10425      }
10426    }
10427
10428    if (!Ld || !ISD::isNormalLoad(Ld))
10429      return SDValue();
10430
10431    // If this is not the MMX case, i.e. we are just turning i64 load/store
10432    // into f64 load/store, avoid the transformation if there are multiple
10433    // uses of the loaded value.
10434    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
10435      return SDValue();
10436
10437    DebugLoc LdDL = Ld->getDebugLoc();
10438    DebugLoc StDL = N->getDebugLoc();
10439    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
10440    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
10441    // pair instead.
10442    if (Subtarget->is64Bit() || F64IsLegal) {
10443      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
10444      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
10445                                  Ld->getBasePtr(), Ld->getSrcValue(),
10446                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
10447                                  Ld->isNonTemporal(), Ld->getAlignment());
10448      SDValue NewChain = NewLd.getValue(1);
10449      if (TokenFactorIndex != -1) {
10450        Ops.push_back(NewChain);
10451        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10452                               Ops.size());
10453      }
10454      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
10455                          St->getSrcValue(), St->getSrcValueOffset(),
10456                          St->isVolatile(), St->isNonTemporal(),
10457                          St->getAlignment());
10458    }
10459
10460    // Otherwise, lower to two pairs of 32-bit loads / stores.
10461    SDValue LoAddr = Ld->getBasePtr();
10462    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
10463                                 DAG.getConstant(4, MVT::i32));
10464
10465    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
10466                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
10467                               Ld->isVolatile(), Ld->isNonTemporal(),
10468                               Ld->getAlignment());
10469    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
10470                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
10471                               Ld->isVolatile(), Ld->isNonTemporal(),
10472                               MinAlign(Ld->getAlignment(), 4));
10473
10474    SDValue NewChain = LoLd.getValue(1);
10475    if (TokenFactorIndex != -1) {
10476      Ops.push_back(LoLd);
10477      Ops.push_back(HiLd);
10478      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10479                             Ops.size());
10480    }
10481
10482    LoAddr = St->getBasePtr();
10483    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
10484                         DAG.getConstant(4, MVT::i32));
10485
10486    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
10487                                St->getSrcValue(), St->getSrcValueOffset(),
10488                                St->isVolatile(), St->isNonTemporal(),
10489                                St->getAlignment());
10490    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
10491                                St->getSrcValue(),
10492                                St->getSrcValueOffset() + 4,
10493                                St->isVolatile(),
10494                                St->isNonTemporal(),
10495                                MinAlign(St->getAlignment(), 4));
10496    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
10497  }
10498  return SDValue();
10499}
10500
10501/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
10502/// X86ISD::FXOR nodes.
10503static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
10504  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
10505  // F[X]OR(0.0, x) -> x
10506  // F[X]OR(x, 0.0) -> x
10507  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10508    if (C->getValueAPF().isPosZero())
10509      return N->getOperand(1);
10510  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10511    if (C->getValueAPF().isPosZero())
10512      return N->getOperand(0);
10513  return SDValue();
10514}
10515
10516/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
10517static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
10518  // FAND(0.0, x) -> 0.0
10519  // FAND(x, 0.0) -> 0.0
10520  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10521    if (C->getValueAPF().isPosZero())
10522      return N->getOperand(0);
10523  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10524    if (C->getValueAPF().isPosZero())
10525      return N->getOperand(1);
10526  return SDValue();
10527}
10528
10529static SDValue PerformBTCombine(SDNode *N,
10530                                SelectionDAG &DAG,
10531                                TargetLowering::DAGCombinerInfo &DCI) {
10532  // BT ignores high bits in the bit index operand.
10533  SDValue Op1 = N->getOperand(1);
10534  if (Op1.hasOneUse()) {
10535    unsigned BitWidth = Op1.getValueSizeInBits();
10536    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
10537    APInt KnownZero, KnownOne;
10538    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10539                                          !DCI.isBeforeLegalizeOps());
10540    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10541    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
10542        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
10543      DCI.CommitTargetLoweringOpt(TLO);
10544  }
10545  return SDValue();
10546}
10547
10548static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
10549  SDValue Op = N->getOperand(0);
10550  if (Op.getOpcode() == ISD::BIT_CONVERT)
10551    Op = Op.getOperand(0);
10552  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
10553  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
10554      VT.getVectorElementType().getSizeInBits() ==
10555      OpVT.getVectorElementType().getSizeInBits()) {
10556    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
10557  }
10558  return SDValue();
10559}
10560
10561static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
10562  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
10563  //           (and (i32 x86isd::setcc_carry), 1)
10564  // This eliminates the zext. This transformation is necessary because
10565  // ISD::SETCC is always legalized to i8.
10566  DebugLoc dl = N->getDebugLoc();
10567  SDValue N0 = N->getOperand(0);
10568  EVT VT = N->getValueType(0);
10569  if (N0.getOpcode() == ISD::AND &&
10570      N0.hasOneUse() &&
10571      N0.getOperand(0).hasOneUse()) {
10572    SDValue N00 = N0.getOperand(0);
10573    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
10574      return SDValue();
10575    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10576    if (!C || C->getZExtValue() != 1)
10577      return SDValue();
10578    return DAG.getNode(ISD::AND, dl, VT,
10579                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
10580                                   N00.getOperand(0), N00.getOperand(1)),
10581                       DAG.getConstant(1, VT));
10582  }
10583
10584  return SDValue();
10585}
10586
10587SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
10588                                             DAGCombinerInfo &DCI) const {
10589  SelectionDAG &DAG = DCI.DAG;
10590  switch (N->getOpcode()) {
10591  default: break;
10592  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
10593  case ISD::EXTRACT_VECTOR_ELT:
10594                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
10595  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
10596  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
10597  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
10598  case ISD::SHL:
10599  case ISD::SRA:
10600  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
10601  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
10602  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
10603  case X86ISD::FXOR:
10604  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
10605  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
10606  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
10607  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
10608  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
10609  }
10610
10611  return SDValue();
10612}
10613
10614/// isTypeDesirableForOp - Return true if the target has native support for
10615/// the specified value type and it is 'desirable' to use the type for the
10616/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
10617/// instruction encodings are longer and some i16 instructions are slow.
10618bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
10619  if (!isTypeLegal(VT))
10620    return false;
10621  if (VT != MVT::i16)
10622    return true;
10623
10624  switch (Opc) {
10625  default:
10626    return true;
10627  case ISD::LOAD:
10628  case ISD::SIGN_EXTEND:
10629  case ISD::ZERO_EXTEND:
10630  case ISD::ANY_EXTEND:
10631  case ISD::SHL:
10632  case ISD::SRL:
10633  case ISD::SUB:
10634  case ISD::ADD:
10635  case ISD::MUL:
10636  case ISD::AND:
10637  case ISD::OR:
10638  case ISD::XOR:
10639    return false;
10640  }
10641}
10642
10643/// IsDesirableToPromoteOp - This method query the target whether it is
10644/// beneficial for dag combiner to promote the specified node. If true, it
10645/// should return the desired promotion type by reference.
10646bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
10647  EVT VT = Op.getValueType();
10648  if (VT != MVT::i16)
10649    return false;
10650
10651  bool Promote = false;
10652  bool Commute = false;
10653  switch (Op.getOpcode()) {
10654  default: break;
10655  case ISD::LOAD: {
10656    LoadSDNode *LD = cast<LoadSDNode>(Op);
10657    // If the non-extending load has a single use and it's not live out, then it
10658    // might be folded.
10659    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
10660                                                     Op.hasOneUse()*/) {
10661      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
10662             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
10663        // The only case where we'd want to promote LOAD (rather then it being
10664        // promoted as an operand is when it's only use is liveout.
10665        if (UI->getOpcode() != ISD::CopyToReg)
10666          return false;
10667      }
10668    }
10669    Promote = true;
10670    break;
10671  }
10672  case ISD::SIGN_EXTEND:
10673  case ISD::ZERO_EXTEND:
10674  case ISD::ANY_EXTEND:
10675    Promote = true;
10676    break;
10677  case ISD::SHL:
10678  case ISD::SRL: {
10679    SDValue N0 = Op.getOperand(0);
10680    // Look out for (store (shl (load), x)).
10681    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
10682      return false;
10683    Promote = true;
10684    break;
10685  }
10686  case ISD::ADD:
10687  case ISD::MUL:
10688  case ISD::AND:
10689  case ISD::OR:
10690  case ISD::XOR:
10691    Commute = true;
10692    // fallthrough
10693  case ISD::SUB: {
10694    SDValue N0 = Op.getOperand(0);
10695    SDValue N1 = Op.getOperand(1);
10696    if (!Commute && MayFoldLoad(N1))
10697      return false;
10698    // Avoid disabling potential load folding opportunities.
10699    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
10700      return false;
10701    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
10702      return false;
10703    Promote = true;
10704  }
10705  }
10706
10707  PVT = MVT::i32;
10708  return Promote;
10709}
10710
10711//===----------------------------------------------------------------------===//
10712//                           X86 Inline Assembly Support
10713//===----------------------------------------------------------------------===//
10714
10715static bool LowerToBSwap(CallInst *CI) {
10716  // FIXME: this should verify that we are targetting a 486 or better.  If not,
10717  // we will turn this bswap into something that will be lowered to logical ops
10718  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
10719  // so don't worry about this.
10720
10721  // Verify this is a simple bswap.
10722  if (CI->getNumArgOperands() != 1 ||
10723      CI->getType() != CI->getArgOperand(0)->getType() ||
10724      !CI->getType()->isIntegerTy())
10725    return false;
10726
10727  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10728  if (!Ty || Ty->getBitWidth() % 16 != 0)
10729    return false;
10730
10731  // Okay, we can do this xform, do so now.
10732  const Type *Tys[] = { Ty };
10733  Module *M = CI->getParent()->getParent()->getParent();
10734  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
10735
10736  Value *Op = CI->getArgOperand(0);
10737  Op = CallInst::Create(Int, Op, CI->getName(), CI);
10738
10739  CI->replaceAllUsesWith(Op);
10740  CI->eraseFromParent();
10741  return true;
10742}
10743
10744bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
10745  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10746  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
10747
10748  std::string AsmStr = IA->getAsmString();
10749
10750  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
10751  SmallVector<StringRef, 4> AsmPieces;
10752  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
10753
10754  switch (AsmPieces.size()) {
10755  default: return false;
10756  case 1:
10757    AsmStr = AsmPieces[0];
10758    AsmPieces.clear();
10759    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
10760
10761    // bswap $0
10762    if (AsmPieces.size() == 2 &&
10763        (AsmPieces[0] == "bswap" ||
10764         AsmPieces[0] == "bswapq" ||
10765         AsmPieces[0] == "bswapl") &&
10766        (AsmPieces[1] == "$0" ||
10767         AsmPieces[1] == "${0:q}")) {
10768      // No need to check constraints, nothing other than the equivalent of
10769      // "=r,0" would be valid here.
10770      return LowerToBSwap(CI);
10771    }
10772    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
10773    if (CI->getType()->isIntegerTy(16) &&
10774        AsmPieces.size() == 3 &&
10775        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
10776        AsmPieces[1] == "$$8," &&
10777        AsmPieces[2] == "${0:w}" &&
10778        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
10779      AsmPieces.clear();
10780      const std::string &Constraints = IA->getConstraintString();
10781      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
10782      std::sort(AsmPieces.begin(), AsmPieces.end());
10783      if (AsmPieces.size() == 4 &&
10784          AsmPieces[0] == "~{cc}" &&
10785          AsmPieces[1] == "~{dirflag}" &&
10786          AsmPieces[2] == "~{flags}" &&
10787          AsmPieces[3] == "~{fpsr}") {
10788        return LowerToBSwap(CI);
10789      }
10790    }
10791    break;
10792  case 3:
10793    if (CI->getType()->isIntegerTy(64) &&
10794        Constraints.size() >= 2 &&
10795        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
10796        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
10797      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
10798      SmallVector<StringRef, 4> Words;
10799      SplitString(AsmPieces[0], Words, " \t");
10800      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
10801        Words.clear();
10802        SplitString(AsmPieces[1], Words, " \t");
10803        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
10804          Words.clear();
10805          SplitString(AsmPieces[2], Words, " \t,");
10806          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10807              Words[2] == "%edx") {
10808            return LowerToBSwap(CI);
10809          }
10810        }
10811      }
10812    }
10813    break;
10814  }
10815  return false;
10816}
10817
10818
10819
10820/// getConstraintType - Given a constraint letter, return the type of
10821/// constraint it is for this target.
10822X86TargetLowering::ConstraintType
10823X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10824  if (Constraint.size() == 1) {
10825    switch (Constraint[0]) {
10826    case 'A':
10827      return C_Register;
10828    case 'f':
10829    case 'r':
10830    case 'R':
10831    case 'l':
10832    case 'q':
10833    case 'Q':
10834    case 'x':
10835    case 'y':
10836    case 'Y':
10837      return C_RegisterClass;
10838    case 'e':
10839    case 'Z':
10840      return C_Other;
10841    default:
10842      break;
10843    }
10844  }
10845  return TargetLowering::getConstraintType(Constraint);
10846}
10847
10848/// LowerXConstraint - try to replace an X constraint, which matches anything,
10849/// with another that has more specific requirements based on the type of the
10850/// corresponding operand.
10851const char *X86TargetLowering::
10852LowerXConstraint(EVT ConstraintVT) const {
10853  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10854  // 'f' like normal targets.
10855  if (ConstraintVT.isFloatingPoint()) {
10856    if (Subtarget->hasSSE2())
10857      return "Y";
10858    if (Subtarget->hasSSE1())
10859      return "x";
10860  }
10861
10862  return TargetLowering::LowerXConstraint(ConstraintVT);
10863}
10864
10865/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10866/// vector.  If it is invalid, don't add anything to Ops.
10867void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10868                                                     char Constraint,
10869                                                     std::vector<SDValue>&Ops,
10870                                                     SelectionDAG &DAG) const {
10871  SDValue Result(0, 0);
10872
10873  switch (Constraint) {
10874  default: break;
10875  case 'I':
10876    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10877      if (C->getZExtValue() <= 31) {
10878        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10879        break;
10880      }
10881    }
10882    return;
10883  case 'J':
10884    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10885      if (C->getZExtValue() <= 63) {
10886        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10887        break;
10888      }
10889    }
10890    return;
10891  case 'K':
10892    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10893      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10894        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10895        break;
10896      }
10897    }
10898    return;
10899  case 'N':
10900    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10901      if (C->getZExtValue() <= 255) {
10902        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10903        break;
10904      }
10905    }
10906    return;
10907  case 'e': {
10908    // 32-bit signed value
10909    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10910      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10911                                           C->getSExtValue())) {
10912        // Widen to 64 bits here to get it sign extended.
10913        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10914        break;
10915      }
10916    // FIXME gcc accepts some relocatable values here too, but only in certain
10917    // memory models; it's complicated.
10918    }
10919    return;
10920  }
10921  case 'Z': {
10922    // 32-bit unsigned value
10923    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10924      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10925                                           C->getZExtValue())) {
10926        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10927        break;
10928      }
10929    }
10930    // FIXME gcc accepts some relocatable values here too, but only in certain
10931    // memory models; it's complicated.
10932    return;
10933  }
10934  case 'i': {
10935    // Literal immediates are always ok.
10936    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10937      // Widen to 64 bits here to get it sign extended.
10938      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10939      break;
10940    }
10941
10942    // In any sort of PIC mode addresses need to be computed at runtime by
10943    // adding in a register or some sort of table lookup.  These can't
10944    // be used as immediates.
10945    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
10946      return;
10947
10948    // If we are in non-pic codegen mode, we allow the address of a global (with
10949    // an optional displacement) to be used with 'i'.
10950    GlobalAddressSDNode *GA = 0;
10951    int64_t Offset = 0;
10952
10953    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10954    while (1) {
10955      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10956        Offset += GA->getOffset();
10957        break;
10958      } else if (Op.getOpcode() == ISD::ADD) {
10959        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10960          Offset += C->getZExtValue();
10961          Op = Op.getOperand(0);
10962          continue;
10963        }
10964      } else if (Op.getOpcode() == ISD::SUB) {
10965        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10966          Offset += -C->getZExtValue();
10967          Op = Op.getOperand(0);
10968          continue;
10969        }
10970      }
10971
10972      // Otherwise, this isn't something we can handle, reject it.
10973      return;
10974    }
10975
10976    const GlobalValue *GV = GA->getGlobal();
10977    // If we require an extra load to get this address, as in PIC mode, we
10978    // can't accept it.
10979    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10980                                                        getTargetMachine())))
10981      return;
10982
10983    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
10984                                        GA->getValueType(0), Offset);
10985    break;
10986  }
10987  }
10988
10989  if (Result.getNode()) {
10990    Ops.push_back(Result);
10991    return;
10992  }
10993  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10994}
10995
10996std::vector<unsigned> X86TargetLowering::
10997getRegClassForInlineAsmConstraint(const std::string &Constraint,
10998                                  EVT VT) const {
10999  if (Constraint.size() == 1) {
11000    // FIXME: not handling fp-stack yet!
11001    switch (Constraint[0]) {      // GCC X86 Constraint Letters
11002    default: break;  // Unknown constraint letter
11003    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
11004      if (Subtarget->is64Bit()) {
11005        if (VT == MVT::i32)
11006          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
11007                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
11008                                       X86::R10D,X86::R11D,X86::R12D,
11009                                       X86::R13D,X86::R14D,X86::R15D,
11010                                       X86::EBP, X86::ESP, 0);
11011        else if (VT == MVT::i16)
11012          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
11013                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
11014                                       X86::R10W,X86::R11W,X86::R12W,
11015                                       X86::R13W,X86::R14W,X86::R15W,
11016                                       X86::BP,  X86::SP, 0);
11017        else if (VT == MVT::i8)
11018          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
11019                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
11020                                       X86::R10B,X86::R11B,X86::R12B,
11021                                       X86::R13B,X86::R14B,X86::R15B,
11022                                       X86::BPL, X86::SPL, 0);
11023
11024        else if (VT == MVT::i64)
11025          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
11026                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
11027                                       X86::R10, X86::R11, X86::R12,
11028                                       X86::R13, X86::R14, X86::R15,
11029                                       X86::RBP, X86::RSP, 0);
11030
11031        break;
11032      }
11033      // 32-bit fallthrough
11034    case 'Q':   // Q_REGS
11035      if (VT == MVT::i32)
11036        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
11037      else if (VT == MVT::i16)
11038        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
11039      else if (VT == MVT::i8)
11040        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
11041      else if (VT == MVT::i64)
11042        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
11043      break;
11044    }
11045  }
11046
11047  return std::vector<unsigned>();
11048}
11049
11050std::pair<unsigned, const TargetRegisterClass*>
11051X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
11052                                                EVT VT) const {
11053  // First, see if this is a constraint that directly corresponds to an LLVM
11054  // register class.
11055  if (Constraint.size() == 1) {
11056    // GCC Constraint Letters
11057    switch (Constraint[0]) {
11058    default: break;
11059    case 'r':   // GENERAL_REGS
11060    case 'l':   // INDEX_REGS
11061      if (VT == MVT::i8)
11062        return std::make_pair(0U, X86::GR8RegisterClass);
11063      if (VT == MVT::i16)
11064        return std::make_pair(0U, X86::GR16RegisterClass);
11065      if (VT == MVT::i32 || !Subtarget->is64Bit())
11066        return std::make_pair(0U, X86::GR32RegisterClass);
11067      return std::make_pair(0U, X86::GR64RegisterClass);
11068    case 'R':   // LEGACY_REGS
11069      if (VT == MVT::i8)
11070        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
11071      if (VT == MVT::i16)
11072        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
11073      if (VT == MVT::i32 || !Subtarget->is64Bit())
11074        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
11075      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
11076    case 'f':  // FP Stack registers.
11077      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
11078      // value to the correct fpstack register class.
11079      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
11080        return std::make_pair(0U, X86::RFP32RegisterClass);
11081      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
11082        return std::make_pair(0U, X86::RFP64RegisterClass);
11083      return std::make_pair(0U, X86::RFP80RegisterClass);
11084    case 'y':   // MMX_REGS if MMX allowed.
11085      if (!Subtarget->hasMMX()) break;
11086      return std::make_pair(0U, X86::VR64RegisterClass);
11087    case 'Y':   // SSE_REGS if SSE2 allowed
11088      if (!Subtarget->hasSSE2()) break;
11089      // FALL THROUGH.
11090    case 'x':   // SSE_REGS if SSE1 allowed
11091      if (!Subtarget->hasSSE1()) break;
11092
11093      switch (VT.getSimpleVT().SimpleTy) {
11094      default: break;
11095      // Scalar SSE types.
11096      case MVT::f32:
11097      case MVT::i32:
11098        return std::make_pair(0U, X86::FR32RegisterClass);
11099      case MVT::f64:
11100      case MVT::i64:
11101        return std::make_pair(0U, X86::FR64RegisterClass);
11102      // Vector types.
11103      case MVT::v16i8:
11104      case MVT::v8i16:
11105      case MVT::v4i32:
11106      case MVT::v2i64:
11107      case MVT::v4f32:
11108      case MVT::v2f64:
11109        return std::make_pair(0U, X86::VR128RegisterClass);
11110      }
11111      break;
11112    }
11113  }
11114
11115  // Use the default implementation in TargetLowering to convert the register
11116  // constraint into a member of a register class.
11117  std::pair<unsigned, const TargetRegisterClass*> Res;
11118  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
11119
11120  // Not found as a standard register?
11121  if (Res.second == 0) {
11122    // Map st(0) -> st(7) -> ST0
11123    if (Constraint.size() == 7 && Constraint[0] == '{' &&
11124        tolower(Constraint[1]) == 's' &&
11125        tolower(Constraint[2]) == 't' &&
11126        Constraint[3] == '(' &&
11127        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
11128        Constraint[5] == ')' &&
11129        Constraint[6] == '}') {
11130
11131      Res.first = X86::ST0+Constraint[4]-'0';
11132      Res.second = X86::RFP80RegisterClass;
11133      return Res;
11134    }
11135
11136    // GCC allows "st(0)" to be called just plain "st".
11137    if (StringRef("{st}").equals_lower(Constraint)) {
11138      Res.first = X86::ST0;
11139      Res.second = X86::RFP80RegisterClass;
11140      return Res;
11141    }
11142
11143    // flags -> EFLAGS
11144    if (StringRef("{flags}").equals_lower(Constraint)) {
11145      Res.first = X86::EFLAGS;
11146      Res.second = X86::CCRRegisterClass;
11147      return Res;
11148    }
11149
11150    // 'A' means EAX + EDX.
11151    if (Constraint == "A") {
11152      Res.first = X86::EAX;
11153      Res.second = X86::GR32_ADRegisterClass;
11154      return Res;
11155    }
11156    return Res;
11157  }
11158
11159  // Otherwise, check to see if this is a register class of the wrong value
11160  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
11161  // turn into {ax},{dx}.
11162  if (Res.second->hasType(VT))
11163    return Res;   // Correct type already, nothing to do.
11164
11165  // All of the single-register GCC register classes map their values onto
11166  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
11167  // really want an 8-bit or 32-bit register, map to the appropriate register
11168  // class and return the appropriate register.
11169  if (Res.second == X86::GR16RegisterClass) {
11170    if (VT == MVT::i8) {
11171      unsigned DestReg = 0;
11172      switch (Res.first) {
11173      default: break;
11174      case X86::AX: DestReg = X86::AL; break;
11175      case X86::DX: DestReg = X86::DL; break;
11176      case X86::CX: DestReg = X86::CL; break;
11177      case X86::BX: DestReg = X86::BL; break;
11178      }
11179      if (DestReg) {
11180        Res.first = DestReg;
11181        Res.second = X86::GR8RegisterClass;
11182      }
11183    } else if (VT == MVT::i32) {
11184      unsigned DestReg = 0;
11185      switch (Res.first) {
11186      default: break;
11187      case X86::AX: DestReg = X86::EAX; break;
11188      case X86::DX: DestReg = X86::EDX; break;
11189      case X86::CX: DestReg = X86::ECX; break;
11190      case X86::BX: DestReg = X86::EBX; break;
11191      case X86::SI: DestReg = X86::ESI; break;
11192      case X86::DI: DestReg = X86::EDI; break;
11193      case X86::BP: DestReg = X86::EBP; break;
11194      case X86::SP: DestReg = X86::ESP; break;
11195      }
11196      if (DestReg) {
11197        Res.first = DestReg;
11198        Res.second = X86::GR32RegisterClass;
11199      }
11200    } else if (VT == MVT::i64) {
11201      unsigned DestReg = 0;
11202      switch (Res.first) {
11203      default: break;
11204      case X86::AX: DestReg = X86::RAX; break;
11205      case X86::DX: DestReg = X86::RDX; break;
11206      case X86::CX: DestReg = X86::RCX; break;
11207      case X86::BX: DestReg = X86::RBX; break;
11208      case X86::SI: DestReg = X86::RSI; break;
11209      case X86::DI: DestReg = X86::RDI; break;
11210      case X86::BP: DestReg = X86::RBP; break;
11211      case X86::SP: DestReg = X86::RSP; break;
11212      }
11213      if (DestReg) {
11214        Res.first = DestReg;
11215        Res.second = X86::GR64RegisterClass;
11216      }
11217    }
11218  } else if (Res.second == X86::FR32RegisterClass ||
11219             Res.second == X86::FR64RegisterClass ||
11220             Res.second == X86::VR128RegisterClass) {
11221    // Handle references to XMM physical registers that got mapped into the
11222    // wrong class.  This can happen with constraints like {xmm0} where the
11223    // target independent register mapper will just pick the first match it can
11224    // find, ignoring the required type.
11225    if (VT == MVT::f32)
11226      Res.second = X86::FR32RegisterClass;
11227    else if (VT == MVT::f64)
11228      Res.second = X86::FR64RegisterClass;
11229    else if (X86::VR128RegisterClass->hasType(VT))
11230      Res.second = X86::VR128RegisterClass;
11231  }
11232
11233  return Res;
11234}
11235