X86ISelLowering.cpp revision d0cf565e799063555f3a3e2858d2ccf53056a0c4
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// Forward declarations.
57static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58                       SDValue V2);
59
60/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62/// simple subregister reference.  Idx is an index in the 128 bits we
63/// want.  It need not be aligned to a 128-bit bounday.  That makes
64/// lowering EXTRACT_VECTOR_ELT operations easier.
65static SDValue Extract128BitVector(SDValue Vec,
66                                   SDValue Idx,
67                                   SelectionDAG &DAG,
68                                   DebugLoc dl) {
69  EVT VT = Vec.getValueType();
70  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
71  EVT ElVT = VT.getVectorElementType();
72  int Factor = VT.getSizeInBits()/128;
73  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
74                                  VT.getVectorNumElements()/Factor);
75
76  // Extract from UNDEF is UNDEF.
77  if (Vec.getOpcode() == ISD::UNDEF)
78    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
79
80  if (isa<ConstantSDNode>(Idx)) {
81    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
82
83    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
84    // we can match to VEXTRACTF128.
85    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
86
87    // This is the index of the first element of the 128-bit chunk
88    // we want.
89    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
90                                 * ElemsPerChunk);
91
92    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
93    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
94                                 VecIdx);
95
96    return Result;
97  }
98
99  return SDValue();
100}
101
102/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
103/// sets things up to match to an AVX VINSERTF128 instruction or a
104/// simple superregister reference.  Idx is an index in the 128 bits
105/// we want.  It need not be aligned to a 128-bit bounday.  That makes
106/// lowering INSERT_VECTOR_ELT operations easier.
107static SDValue Insert128BitVector(SDValue Result,
108                                  SDValue Vec,
109                                  SDValue Idx,
110                                  SelectionDAG &DAG,
111                                  DebugLoc dl) {
112  if (isa<ConstantSDNode>(Idx)) {
113    EVT VT = Vec.getValueType();
114    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
115
116    EVT ElVT = VT.getVectorElementType();
117    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
118    EVT ResultVT = Result.getValueType();
119
120    // Insert the relevant 128 bits.
121    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
122
123    // This is the index of the first element of the 128-bit chunk
124    // we want.
125    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
126                                 * ElemsPerChunk);
127
128    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
129    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
130                         VecIdx);
131    return Result;
132  }
133
134  return SDValue();
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X8664_MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetELF())
148    return new TargetLoweringObjectFileELF();
149  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
150    return new TargetLoweringObjectFileCOFF();
151  llvm_unreachable("unknown subtarget type");
152}
153
154X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
155  : TargetLowering(TM, createTLOF(TM)) {
156  Subtarget = &TM.getSubtarget<X86Subtarget>();
157  X86ScalarSSEf64 = Subtarget->hasSSE2();
158  X86ScalarSSEf32 = Subtarget->hasSSE1();
159  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
160
161  RegInfo = TM.getRegisterInfo();
162  TD = getTargetData();
163
164  // Set up the TargetLowering object.
165  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
166
167  // X86 is weird, it always uses i8 for shift amounts and setcc results.
168  setBooleanContents(ZeroOrOneBooleanContent);
169  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
170  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
171
172  // For 64-bit since we have so many registers use the ILP scheduler, for
173  // 32-bit code use the register pressure specific scheduling.
174  // For 32 bit Atom, use Hybrid (register pressure + latency) scheduling.
175  if (Subtarget->is64Bit())
176    setSchedulingPreference(Sched::ILP);
177  else if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::Hybrid);
179  else
180    setSchedulingPreference(Sched::RegPressure);
181  setStackPointerRegisterToSaveRestore(X86StackPtr);
182
183  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
184    // Setup Windows compiler runtime calls.
185    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
186    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
187    setLibcallName(RTLIB::SREM_I64, "_allrem");
188    setLibcallName(RTLIB::UREM_I64, "_aullrem");
189    setLibcallName(RTLIB::MUL_I64, "_allmul");
190    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
191    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
192    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
193    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
194    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
195
196    // The _ftol2 runtime function has an unusual calling conv, which
197    // is modeled by a special pseudo-instruction.
198    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
199    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
200    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
201    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
202  }
203
204  if (Subtarget->isTargetDarwin()) {
205    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
206    setUseUnderscoreSetJmp(false);
207    setUseUnderscoreLongJmp(false);
208  } else if (Subtarget->isTargetMingw()) {
209    // MS runtime is weird: it exports _setjmp, but longjmp!
210    setUseUnderscoreSetJmp(true);
211    setUseUnderscoreLongJmp(false);
212  } else {
213    setUseUnderscoreSetJmp(true);
214    setUseUnderscoreLongJmp(true);
215  }
216
217  // Set up the register classes.
218  addRegisterClass(MVT::i8, &X86::GR8RegClass);
219  addRegisterClass(MVT::i16, &X86::GR16RegClass);
220  addRegisterClass(MVT::i32, &X86::GR32RegClass);
221  if (Subtarget->is64Bit())
222    addRegisterClass(MVT::i64, &X86::GR64RegClass);
223
224  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
225
226  // We don't accept any truncstore of integer registers.
227  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
228  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
229  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
230  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
231  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
232  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
233
234  // SETOEQ and SETUNE require checking two conditions.
235  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
236  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
237  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
238  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
241
242  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
243  // operation.
244  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
245  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
247
248  if (Subtarget->is64Bit()) {
249    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
251  } else if (!TM.Options.UseSoftFloat) {
252    // We have an algorithm for SSE2->double, and we turn this into a
253    // 64-bit FILD followed by conditional FADD for other targets.
254    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
255    // We have an algorithm for SSE2, and we turn this into a 64-bit
256    // FILD for other targets.
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
258  }
259
260  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
261  // this operation.
262  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
263  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
264
265  if (!TM.Options.UseSoftFloat) {
266    // SSE has no i16 to fp conversion, only i32
267    if (X86ScalarSSEf32) {
268      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
269      // f32 and f64 cases are Legal, f80 case is not
270      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
271    } else {
272      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
274    }
275  } else {
276    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
278  }
279
280  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
281  // are Legal, f80 is custom lowered.
282  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
283  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
284
285  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
286  // this operation.
287  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
288  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
289
290  if (X86ScalarSSEf32) {
291    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
292    // f32 and f64 cases are Legal, f80 case is not
293    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
294  } else {
295    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
297  }
298
299  // Handle FP_TO_UINT by promoting the destination to a larger signed
300  // conversion.
301  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
302  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
304
305  if (Subtarget->is64Bit()) {
306    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
307    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
308  } else if (!TM.Options.UseSoftFloat) {
309    // Since AVX is a superset of SSE3, only check for SSE here.
310    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
311      // Expand FP_TO_UINT into a select.
312      // FIXME: We would like to use a Custom expander here eventually to do
313      // the optimal thing for SSE vs. the default expansion in the legalizer.
314      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
315    else
316      // With SSE3 we can use fisttpll to convert to a signed i64; without
317      // SSE, we're stuck with a fistpll.
318      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
319  }
320
321  if (isTargetFTOL()) {
322    // Use the _ftol2 runtime function, which has a pseudo-instruction
323    // to handle its weird calling convention.
324    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
325  }
326
327  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
328  if (!X86ScalarSSEf64) {
329    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
330    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
331    if (Subtarget->is64Bit()) {
332      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
333      // Without SSE, i64->f64 goes through memory.
334      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
335    }
336  }
337
338  // Scalar integer divide and remainder are lowered to use operations that
339  // produce two results, to match the available instructions. This exposes
340  // the two-result form to trivial CSE, which is able to combine x/y and x%y
341  // into a single instruction.
342  //
343  // Scalar integer multiply-high is also lowered to use two-result
344  // operations, to match the available instructions. However, plain multiply
345  // (low) operations are left as Legal, as there are single-result
346  // instructions for this in x86. Using the two-result multiply instructions
347  // when both high and low results are needed must be arranged by dagcombine.
348  for (unsigned i = 0, e = 4; i != e; ++i) {
349    MVT VT = IntVTs[i];
350    setOperationAction(ISD::MULHS, VT, Expand);
351    setOperationAction(ISD::MULHU, VT, Expand);
352    setOperationAction(ISD::SDIV, VT, Expand);
353    setOperationAction(ISD::UDIV, VT, Expand);
354    setOperationAction(ISD::SREM, VT, Expand);
355    setOperationAction(ISD::UREM, VT, Expand);
356
357    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
358    setOperationAction(ISD::ADDC, VT, Custom);
359    setOperationAction(ISD::ADDE, VT, Custom);
360    setOperationAction(ISD::SUBC, VT, Custom);
361    setOperationAction(ISD::SUBE, VT, Custom);
362  }
363
364  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
365  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
366  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
367  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
368  if (Subtarget->is64Bit())
369    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
373  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
377  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
378
379  // Promote the i8 variants and force them on up to i32 which has a shorter
380  // encoding.
381  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
382  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
383  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
384  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
385  if (Subtarget->hasBMI()) {
386    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
387    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
388    if (Subtarget->is64Bit())
389      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
390  } else {
391    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
392    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
393    if (Subtarget->is64Bit())
394      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
395  }
396
397  if (Subtarget->hasLZCNT()) {
398    // When promoting the i8 variants, force them to i32 for a shorter
399    // encoding.
400    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
401    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
402    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
403    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
404    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
405    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
406    if (Subtarget->is64Bit())
407      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
408  } else {
409    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
410    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
411    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
412    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
413    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
415    if (Subtarget->is64Bit()) {
416      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
417      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
418    }
419  }
420
421  if (Subtarget->hasPOPCNT()) {
422    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
423  } else {
424    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
425    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
426    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
427    if (Subtarget->is64Bit())
428      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
429  }
430
431  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
432  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
433
434  // These should be promoted to a larger select which is supported.
435  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
436  // X86 wants to expand cmov itself.
437  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
438  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
439  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
440  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
444  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
446  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
449  if (Subtarget->is64Bit()) {
450    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
451    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
452  }
453  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
454
455  // Darwin ABI issue.
456  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
457  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
458  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
459  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
460  if (Subtarget->is64Bit())
461    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
462  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
463  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
464  if (Subtarget->is64Bit()) {
465    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
466    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
467    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
468    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
469    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
470  }
471  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
472  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
473  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
474  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
475  if (Subtarget->is64Bit()) {
476    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
477    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
478    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
479  }
480
481  if (Subtarget->hasSSE1())
482    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
483
484  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
485  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
486
487  // On X86 and X86-64, atomic operations are lowered to locked instructions.
488  // Locked instructions, in turn, have implicit fence semantics (all memory
489  // operations are flushed before issuing the locked instruction, and they
490  // are not buffered), so we can fold away the common pattern of
491  // fence-atomic-fence.
492  setShouldFoldAtomicFences(true);
493
494  // Expand certain atomics
495  for (unsigned i = 0, e = 4; i != e; ++i) {
496    MVT VT = IntVTs[i];
497    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
498    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
499    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
500  }
501
502  if (!Subtarget->is64Bit()) {
503    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
511  }
512
513  if (Subtarget->hasCmpxchg16b()) {
514    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
515  }
516
517  // FIXME - use subtarget debug flags
518  if (!Subtarget->isTargetDarwin() &&
519      !Subtarget->isTargetELF() &&
520      !Subtarget->isTargetCygMing()) {
521    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
522  }
523
524  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
525  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
526  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
527  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
528  if (Subtarget->is64Bit()) {
529    setExceptionPointerRegister(X86::RAX);
530    setExceptionSelectorRegister(X86::RDX);
531  } else {
532    setExceptionPointerRegister(X86::EAX);
533    setExceptionSelectorRegister(X86::EDX);
534  }
535  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
536  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
537
538  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
539  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
540
541  setOperationAction(ISD::TRAP, MVT::Other, Legal);
542
543  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
544  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
545  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
546  if (Subtarget->is64Bit()) {
547    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
548    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
549  } else {
550    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
551    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
552  }
553
554  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
555  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
556
557  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
558    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
559                       MVT::i64 : MVT::i32, Custom);
560  else if (TM.Options.EnableSegmentedStacks)
561    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
562                       MVT::i64 : MVT::i32, Custom);
563  else
564    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565                       MVT::i64 : MVT::i32, Expand);
566
567  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
568    // f32 and f64 use SSE.
569    // Set up the FP register classes.
570    addRegisterClass(MVT::f32, &X86::FR32RegClass);
571    addRegisterClass(MVT::f64, &X86::FR64RegClass);
572
573    // Use ANDPD to simulate FABS.
574    setOperationAction(ISD::FABS , MVT::f64, Custom);
575    setOperationAction(ISD::FABS , MVT::f32, Custom);
576
577    // Use XORP to simulate FNEG.
578    setOperationAction(ISD::FNEG , MVT::f64, Custom);
579    setOperationAction(ISD::FNEG , MVT::f32, Custom);
580
581    // Use ANDPD and ORPD to simulate FCOPYSIGN.
582    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
583    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
584
585    // Lower this to FGETSIGNx86 plus an AND.
586    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
587    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
588
589    // We don't support sin/cos/fmod
590    setOperationAction(ISD::FSIN , MVT::f64, Expand);
591    setOperationAction(ISD::FCOS , MVT::f64, Expand);
592    setOperationAction(ISD::FSIN , MVT::f32, Expand);
593    setOperationAction(ISD::FCOS , MVT::f32, Expand);
594
595    // Expand FP immediates into loads from the stack, except for the special
596    // cases we handle.
597    addLegalFPImmediate(APFloat(+0.0)); // xorpd
598    addLegalFPImmediate(APFloat(+0.0f)); // xorps
599  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
600    // Use SSE for f32, x87 for f64.
601    // Set up the FP register classes.
602    addRegisterClass(MVT::f32, &X86::FR32RegClass);
603    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
604
605    // Use ANDPS to simulate FABS.
606    setOperationAction(ISD::FABS , MVT::f32, Custom);
607
608    // Use XORP to simulate FNEG.
609    setOperationAction(ISD::FNEG , MVT::f32, Custom);
610
611    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
612
613    // Use ANDPS and ORPS to simulate FCOPYSIGN.
614    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
615    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
616
617    // We don't support sin/cos/fmod
618    setOperationAction(ISD::FSIN , MVT::f32, Expand);
619    setOperationAction(ISD::FCOS , MVT::f32, Expand);
620
621    // Special cases we handle for FP constants.
622    addLegalFPImmediate(APFloat(+0.0f)); // xorps
623    addLegalFPImmediate(APFloat(+0.0)); // FLD0
624    addLegalFPImmediate(APFloat(+1.0)); // FLD1
625    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
626    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
627
628    if (!TM.Options.UnsafeFPMath) {
629      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
630      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
631    }
632  } else if (!TM.Options.UseSoftFloat) {
633    // f32 and f64 in x87.
634    // Set up the FP register classes.
635    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
636    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
637
638    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
639    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
640    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
641    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
642
643    if (!TM.Options.UnsafeFPMath) {
644      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
645      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
646    }
647    addLegalFPImmediate(APFloat(+0.0)); // FLD0
648    addLegalFPImmediate(APFloat(+1.0)); // FLD1
649    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
650    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
651    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
652    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
653    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
654    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
655  }
656
657  // We don't support FMA.
658  setOperationAction(ISD::FMA, MVT::f64, Expand);
659  setOperationAction(ISD::FMA, MVT::f32, Expand);
660
661  // Long double always uses X87.
662  if (!TM.Options.UseSoftFloat) {
663    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
664    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
665    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
666    {
667      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
668      addLegalFPImmediate(TmpFlt);  // FLD0
669      TmpFlt.changeSign();
670      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
671
672      bool ignored;
673      APFloat TmpFlt2(+1.0);
674      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
675                      &ignored);
676      addLegalFPImmediate(TmpFlt2);  // FLD1
677      TmpFlt2.changeSign();
678      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
679    }
680
681    if (!TM.Options.UnsafeFPMath) {
682      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
683      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
684    }
685
686    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
687    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
688    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
689    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
690    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
691    setOperationAction(ISD::FMA, MVT::f80, Expand);
692  }
693
694  // Always use a library call for pow.
695  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
696  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
697  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
698
699  setOperationAction(ISD::FLOG, MVT::f80, Expand);
700  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
701  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
702  setOperationAction(ISD::FEXP, MVT::f80, Expand);
703  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
704
705  // First set operation action for all vector types to either promote
706  // (for widening) or expand (for scalarization). Then we will selectively
707  // turn on ones that can be effectively codegen'd.
708  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
709       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
710    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
725    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
728    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
762    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
767    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
768         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
769      setTruncStoreAction((MVT::SimpleValueType)VT,
770                          (MVT::SimpleValueType)InnerVT, Expand);
771    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
772    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
773    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
774  }
775
776  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
777  // with -msoft-float, disable use of MMX as well.
778  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
779    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
780    // No operations on x86mmx supported, everything uses intrinsics.
781  }
782
783  // MMX-sized vectors (other than x86mmx) are expected to be expanded
784  // into smaller operations.
785  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
786  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
787  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
788  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
789  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
790  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
791  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
792  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
793  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
794  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
795  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
796  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
797  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
798  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
799  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
800  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
801  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
802  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
805  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
806  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
807  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
808  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
809  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
810  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
811  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
814
815  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
816    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
817
818    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
819    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
820    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
823    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
824    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
825    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
826    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
827    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
828    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
829    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
830  }
831
832  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
833    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
834
835    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
836    // registers cannot be used even for integer operations.
837    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
838    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
839    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
840    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
841
842    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
843    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
844    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
845    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
846    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
847    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
848    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
849    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
850    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
851    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
852    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
853    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
854    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
857    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
858
859    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
860    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
861    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
863
864    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
865    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
866    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
867    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
869
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
871    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
875
876    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
877    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
878      EVT VT = (MVT::SimpleValueType)i;
879      // Do not attempt to custom lower non-power-of-2 vectors
880      if (!isPowerOf2_32(VT.getVectorNumElements()))
881        continue;
882      // Do not attempt to custom lower non-128-bit vectors
883      if (!VT.is128BitVector())
884        continue;
885      setOperationAction(ISD::BUILD_VECTOR,
886                         VT.getSimpleVT().SimpleTy, Custom);
887      setOperationAction(ISD::VECTOR_SHUFFLE,
888                         VT.getSimpleVT().SimpleTy, Custom);
889      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
890                         VT.getSimpleVT().SimpleTy, Custom);
891    }
892
893    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
894    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
895    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
896    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
897    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
898    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
899
900    if (Subtarget->is64Bit()) {
901      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
902      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
903    }
904
905    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
906    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
907      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
908      EVT VT = SVT;
909
910      // Do not attempt to promote non-128-bit vectors
911      if (!VT.is128BitVector())
912        continue;
913
914      setOperationAction(ISD::AND,    SVT, Promote);
915      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
916      setOperationAction(ISD::OR,     SVT, Promote);
917      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
918      setOperationAction(ISD::XOR,    SVT, Promote);
919      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
920      setOperationAction(ISD::LOAD,   SVT, Promote);
921      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
922      setOperationAction(ISD::SELECT, SVT, Promote);
923      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
924    }
925
926    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
927
928    // Custom lower v2i64 and v2f64 selects.
929    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
930    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
931    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
932    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
933
934    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
935    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
936  }
937
938  if (Subtarget->hasSSE41()) {
939    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
940    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
941    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
942    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
943    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
944    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
945    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
946    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
947    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
948    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
949
950    // FIXME: Do we need to handle scalar-to-vector here?
951    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
952
953    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
954    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
955    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
958
959    // i8 and i16 vectors are custom , because the source register and source
960    // source memory operand types are not the same width.  f32 vectors are
961    // custom since the immediate controlling the insert encodes additional
962    // information.
963    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
967
968    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
969    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
972
973    // FIXME: these should be Legal but thats only for the case where
974    // the index is constant.  For now custom expand to deal with that.
975    if (Subtarget->is64Bit()) {
976      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
977      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
978    }
979  }
980
981  if (Subtarget->hasSSE2()) {
982    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
983    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
984
985    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
986    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
987
988    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
989    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
990
991    if (Subtarget->hasAVX2()) {
992      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
993      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
994
995      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
996      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
997
998      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
999    } else {
1000      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1001      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1002
1003      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1004      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1005
1006      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1007    }
1008  }
1009
1010  if (Subtarget->hasSSE42())
1011    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1012
1013  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1014    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1015    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1016    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1017    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1018    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1019    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1020
1021    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1023    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1024
1025    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1026    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1027    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1030    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1031
1032    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1033    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1034    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1037    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1038
1039    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1040    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1041    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1042
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1049
1050    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1051    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1052
1053    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1054    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1055
1056    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1057    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1058
1059    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1060    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1061    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1063
1064    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1065    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1066    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1067
1068    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1069    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1070    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1072
1073    if (Subtarget->hasAVX2()) {
1074      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1075      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1076      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1077      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1078
1079      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1080      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1081      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1082      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1083
1084      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1085      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1086      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1087      // Don't lower v32i8 because there is no 128-bit byte mul
1088
1089      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1090
1091      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1092      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1093
1094      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1095      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1096
1097      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1098    } else {
1099      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1100      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1101      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1102      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1103
1104      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1105      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1106      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1107      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1108
1109      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1110      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1111      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1112      // Don't lower v32i8 because there is no 128-bit byte mul
1113
1114      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1115      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1116
1117      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1118      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1119
1120      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1121    }
1122
1123    // Custom lower several nodes for 256-bit types.
1124    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1125                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1126      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1127      EVT VT = SVT;
1128
1129      // Extract subvector is special because the value type
1130      // (result) is 128-bit but the source is 256-bit wide.
1131      if (VT.is128BitVector())
1132        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1133
1134      // Do not attempt to custom lower other non-256-bit vectors
1135      if (!VT.is256BitVector())
1136        continue;
1137
1138      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1139      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1140      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1141      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1142      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1143      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1144    }
1145
1146    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1147    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1148      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1149      EVT VT = SVT;
1150
1151      // Do not attempt to promote non-256-bit vectors
1152      if (!VT.is256BitVector())
1153        continue;
1154
1155      setOperationAction(ISD::AND,    SVT, Promote);
1156      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1157      setOperationAction(ISD::OR,     SVT, Promote);
1158      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1159      setOperationAction(ISD::XOR,    SVT, Promote);
1160      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1161      setOperationAction(ISD::LOAD,   SVT, Promote);
1162      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1163      setOperationAction(ISD::SELECT, SVT, Promote);
1164      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1165    }
1166  }
1167
1168  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1169  // of this type with custom code.
1170  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1171         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1172    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1173                       Custom);
1174  }
1175
1176  // We want to custom lower some of our intrinsics.
1177  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1178
1179
1180  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1181  // handle type legalization for these operations here.
1182  //
1183  // FIXME: We really should do custom legalization for addition and
1184  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1185  // than generic legalization for 64-bit multiplication-with-overflow, though.
1186  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1187    // Add/Sub/Mul with overflow operations are custom lowered.
1188    MVT VT = IntVTs[i];
1189    setOperationAction(ISD::SADDO, VT, Custom);
1190    setOperationAction(ISD::UADDO, VT, Custom);
1191    setOperationAction(ISD::SSUBO, VT, Custom);
1192    setOperationAction(ISD::USUBO, VT, Custom);
1193    setOperationAction(ISD::SMULO, VT, Custom);
1194    setOperationAction(ISD::UMULO, VT, Custom);
1195  }
1196
1197  // There are no 8-bit 3-address imul/mul instructions
1198  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1199  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1200
1201  if (!Subtarget->is64Bit()) {
1202    // These libcalls are not available in 32-bit.
1203    setLibcallName(RTLIB::SHL_I128, 0);
1204    setLibcallName(RTLIB::SRL_I128, 0);
1205    setLibcallName(RTLIB::SRA_I128, 0);
1206  }
1207
1208  // We have target-specific dag combine patterns for the following nodes:
1209  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1210  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1211  setTargetDAGCombine(ISD::VSELECT);
1212  setTargetDAGCombine(ISD::SELECT);
1213  setTargetDAGCombine(ISD::SHL);
1214  setTargetDAGCombine(ISD::SRA);
1215  setTargetDAGCombine(ISD::SRL);
1216  setTargetDAGCombine(ISD::OR);
1217  setTargetDAGCombine(ISD::AND);
1218  setTargetDAGCombine(ISD::ADD);
1219  setTargetDAGCombine(ISD::FADD);
1220  setTargetDAGCombine(ISD::FSUB);
1221  setTargetDAGCombine(ISD::SUB);
1222  setTargetDAGCombine(ISD::LOAD);
1223  setTargetDAGCombine(ISD::STORE);
1224  setTargetDAGCombine(ISD::ZERO_EXTEND);
1225  setTargetDAGCombine(ISD::SIGN_EXTEND);
1226  setTargetDAGCombine(ISD::TRUNCATE);
1227  setTargetDAGCombine(ISD::SINT_TO_FP);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  setPrefFunctionAlignment(4); // 2^4 bytes.
1247}
1248
1249
1250EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1251  if (!VT.isVector()) return MVT::i8;
1252  return VT.changeVectorElementTypeToInteger();
1253}
1254
1255
1256/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1257/// the desired ByVal argument alignment.
1258static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1259  if (MaxAlign == 16)
1260    return;
1261  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262    if (VTy->getBitWidth() == 128)
1263      MaxAlign = 16;
1264  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1265    unsigned EltAlign = 0;
1266    getMaxByValAlign(ATy->getElementType(), EltAlign);
1267    if (EltAlign > MaxAlign)
1268      MaxAlign = EltAlign;
1269  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1270    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1271      unsigned EltAlign = 0;
1272      getMaxByValAlign(STy->getElementType(i), EltAlign);
1273      if (EltAlign > MaxAlign)
1274        MaxAlign = EltAlign;
1275      if (MaxAlign == 16)
1276        break;
1277    }
1278  }
1279  return;
1280}
1281
1282/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1283/// function arguments in the caller parameter area. For X86, aggregates
1284/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1285/// are at 4-byte boundaries.
1286unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1287  if (Subtarget->is64Bit()) {
1288    // Max of 8 and alignment of type.
1289    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1290    if (TyAlign > 8)
1291      return TyAlign;
1292    return 8;
1293  }
1294
1295  unsigned Align = 4;
1296  if (Subtarget->hasSSE1())
1297    getMaxByValAlign(Ty, Align);
1298  return Align;
1299}
1300
1301/// getOptimalMemOpType - Returns the target specific optimal type for load
1302/// and store operations as a result of memset, memcpy, and memmove
1303/// lowering. If DstAlign is zero that means it's safe to destination
1304/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1305/// means there isn't a need to check it against alignment requirement,
1306/// probably because the source does not need to be loaded. If
1307/// 'IsZeroVal' is true, that means it's safe to return a
1308/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1309/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1310/// constant so it does not need to be loaded.
1311/// It returns EVT::Other if the type should be determined using generic
1312/// target-independent logic.
1313EVT
1314X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1315                                       unsigned DstAlign, unsigned SrcAlign,
1316                                       bool IsZeroVal,
1317                                       bool MemcpyStrSrc,
1318                                       MachineFunction &MF) const {
1319  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1320  // linux.  This is because the stack realignment code can't handle certain
1321  // cases like PR2962.  This should be removed when PR2962 is fixed.
1322  const Function *F = MF.getFunction();
1323  if (IsZeroVal &&
1324      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1325    if (Size >= 16 &&
1326        (Subtarget->isUnalignedMemAccessFast() ||
1327         ((DstAlign == 0 || DstAlign >= 16) &&
1328          (SrcAlign == 0 || SrcAlign >= 16))) &&
1329        Subtarget->getStackAlignment() >= 16) {
1330      if (Subtarget->getStackAlignment() >= 32) {
1331        if (Subtarget->hasAVX2())
1332          return MVT::v8i32;
1333        if (Subtarget->hasAVX())
1334          return MVT::v8f32;
1335      }
1336      if (Subtarget->hasSSE2())
1337        return MVT::v4i32;
1338      if (Subtarget->hasSSE1())
1339        return MVT::v4f32;
1340    } else if (!MemcpyStrSrc && Size >= 8 &&
1341               !Subtarget->is64Bit() &&
1342               Subtarget->getStackAlignment() >= 8 &&
1343               Subtarget->hasSSE2()) {
1344      // Do not use f64 to lower memcpy if source is string constant. It's
1345      // better to use i32 to avoid the loads.
1346      return MVT::f64;
1347    }
1348  }
1349  if (Subtarget->is64Bit() && Size >= 8)
1350    return MVT::i64;
1351  return MVT::i32;
1352}
1353
1354/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1355/// current function.  The returned value is a member of the
1356/// MachineJumpTableInfo::JTEntryKind enum.
1357unsigned X86TargetLowering::getJumpTableEncoding() const {
1358  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1359  // symbol.
1360  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1361      Subtarget->isPICStyleGOT())
1362    return MachineJumpTableInfo::EK_Custom32;
1363
1364  // Otherwise, use the normal jump table encoding heuristics.
1365  return TargetLowering::getJumpTableEncoding();
1366}
1367
1368const MCExpr *
1369X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1370                                             const MachineBasicBlock *MBB,
1371                                             unsigned uid,MCContext &Ctx) const{
1372  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1373         Subtarget->isPICStyleGOT());
1374  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1375  // entries.
1376  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1377                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1378}
1379
1380/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1381/// jumptable.
1382SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1383                                                    SelectionDAG &DAG) const {
1384  if (!Subtarget->is64Bit())
1385    // This doesn't have DebugLoc associated with it, but is not really the
1386    // same as a Register.
1387    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1388  return Table;
1389}
1390
1391/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1392/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1393/// MCExpr.
1394const MCExpr *X86TargetLowering::
1395getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1396                             MCContext &Ctx) const {
1397  // X86-64 uses RIP relative addressing based on the jump table label.
1398  if (Subtarget->isPICStyleRIPRel())
1399    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1400
1401  // Otherwise, the reference is relative to the PIC base.
1402  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1403}
1404
1405// FIXME: Why this routine is here? Move to RegInfo!
1406std::pair<const TargetRegisterClass*, uint8_t>
1407X86TargetLowering::findRepresentativeClass(EVT VT) const{
1408  const TargetRegisterClass *RRC = 0;
1409  uint8_t Cost = 1;
1410  switch (VT.getSimpleVT().SimpleTy) {
1411  default:
1412    return TargetLowering::findRepresentativeClass(VT);
1413  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1414    RRC = Subtarget->is64Bit() ?
1415      (const TargetRegisterClass*)&X86::GR64RegClass :
1416      (const TargetRegisterClass*)&X86::GR32RegClass;
1417    break;
1418  case MVT::x86mmx:
1419    RRC = &X86::VR64RegClass;
1420    break;
1421  case MVT::f32: case MVT::f64:
1422  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1423  case MVT::v4f32: case MVT::v2f64:
1424  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1425  case MVT::v4f64:
1426    RRC = &X86::VR128RegClass;
1427    break;
1428  }
1429  return std::make_pair(RRC, Cost);
1430}
1431
1432bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1433                                               unsigned &Offset) const {
1434  if (!Subtarget->isTargetLinux())
1435    return false;
1436
1437  if (Subtarget->is64Bit()) {
1438    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1439    Offset = 0x28;
1440    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1441      AddressSpace = 256;
1442    else
1443      AddressSpace = 257;
1444  } else {
1445    // %gs:0x14 on i386
1446    Offset = 0x14;
1447    AddressSpace = 256;
1448  }
1449  return true;
1450}
1451
1452
1453//===----------------------------------------------------------------------===//
1454//               Return Value Calling Convention Implementation
1455//===----------------------------------------------------------------------===//
1456
1457#include "X86GenCallingConv.inc"
1458
1459bool
1460X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1461				  MachineFunction &MF, bool isVarArg,
1462                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1463                        LLVMContext &Context) const {
1464  SmallVector<CCValAssign, 16> RVLocs;
1465  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1466                 RVLocs, Context);
1467  return CCInfo.CheckReturn(Outs, RetCC_X86);
1468}
1469
1470SDValue
1471X86TargetLowering::LowerReturn(SDValue Chain,
1472                               CallingConv::ID CallConv, bool isVarArg,
1473                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1474                               const SmallVectorImpl<SDValue> &OutVals,
1475                               DebugLoc dl, SelectionDAG &DAG) const {
1476  MachineFunction &MF = DAG.getMachineFunction();
1477  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1478
1479  SmallVector<CCValAssign, 16> RVLocs;
1480  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1481                 RVLocs, *DAG.getContext());
1482  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1483
1484  // Add the regs to the liveout set for the function.
1485  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1486  for (unsigned i = 0; i != RVLocs.size(); ++i)
1487    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1488      MRI.addLiveOut(RVLocs[i].getLocReg());
1489
1490  SDValue Flag;
1491
1492  SmallVector<SDValue, 6> RetOps;
1493  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1494  // Operand #1 = Bytes To Pop
1495  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1496                   MVT::i16));
1497
1498  // Copy the result values into the output registers.
1499  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1500    CCValAssign &VA = RVLocs[i];
1501    assert(VA.isRegLoc() && "Can only return in registers!");
1502    SDValue ValToCopy = OutVals[i];
1503    EVT ValVT = ValToCopy.getValueType();
1504
1505    // If this is x86-64, and we disabled SSE, we can't return FP values,
1506    // or SSE or MMX vectors.
1507    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1508         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1509          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1510      report_fatal_error("SSE register return with SSE disabled");
1511    }
1512    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1513    // llvm-gcc has never done it right and no one has noticed, so this
1514    // should be OK for now.
1515    if (ValVT == MVT::f64 &&
1516        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1517      report_fatal_error("SSE2 register return with SSE2 disabled");
1518
1519    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1520    // the RET instruction and handled by the FP Stackifier.
1521    if (VA.getLocReg() == X86::ST0 ||
1522        VA.getLocReg() == X86::ST1) {
1523      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1524      // change the value to the FP stack register class.
1525      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1526        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1527      RetOps.push_back(ValToCopy);
1528      // Don't emit a copytoreg.
1529      continue;
1530    }
1531
1532    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1533    // which is returned in RAX / RDX.
1534    if (Subtarget->is64Bit()) {
1535      if (ValVT == MVT::x86mmx) {
1536        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1537          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1538          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1539                                  ValToCopy);
1540          // If we don't have SSE2 available, convert to v4f32 so the generated
1541          // register is legal.
1542          if (!Subtarget->hasSSE2())
1543            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1544        }
1545      }
1546    }
1547
1548    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1549    Flag = Chain.getValue(1);
1550  }
1551
1552  // The x86-64 ABI for returning structs by value requires that we copy
1553  // the sret argument into %rax for the return. We saved the argument into
1554  // a virtual register in the entry block, so now we copy the value out
1555  // and into %rax.
1556  if (Subtarget->is64Bit() &&
1557      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1558    MachineFunction &MF = DAG.getMachineFunction();
1559    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1560    unsigned Reg = FuncInfo->getSRetReturnReg();
1561    assert(Reg &&
1562           "SRetReturnReg should have been set in LowerFormalArguments().");
1563    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1564
1565    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1566    Flag = Chain.getValue(1);
1567
1568    // RAX now acts like a return value.
1569    MRI.addLiveOut(X86::RAX);
1570  }
1571
1572  RetOps[0] = Chain;  // Update chain.
1573
1574  // Add the flag if we have it.
1575  if (Flag.getNode())
1576    RetOps.push_back(Flag);
1577
1578  return DAG.getNode(X86ISD::RET_FLAG, dl,
1579                     MVT::Other, &RetOps[0], RetOps.size());
1580}
1581
1582bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1583  if (N->getNumValues() != 1)
1584    return false;
1585  if (!N->hasNUsesOfValue(1, 0))
1586    return false;
1587
1588  SDValue TCChain = Chain;
1589  SDNode *Copy = *N->use_begin();
1590  if (Copy->getOpcode() == ISD::CopyToReg) {
1591    // If the copy has a glue operand, we conservatively assume it isn't safe to
1592    // perform a tail call.
1593    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1594      return false;
1595    TCChain = Copy->getOperand(0);
1596  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1597    return false;
1598
1599  bool HasRet = false;
1600  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1601       UI != UE; ++UI) {
1602    if (UI->getOpcode() != X86ISD::RET_FLAG)
1603      return false;
1604    HasRet = true;
1605  }
1606
1607  if (!HasRet)
1608    return false;
1609
1610  Chain = TCChain;
1611  return true;
1612}
1613
1614EVT
1615X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1616                                            ISD::NodeType ExtendKind) const {
1617  MVT ReturnMVT;
1618  // TODO: Is this also valid on 32-bit?
1619  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1620    ReturnMVT = MVT::i8;
1621  else
1622    ReturnMVT = MVT::i32;
1623
1624  EVT MinVT = getRegisterType(Context, ReturnMVT);
1625  return VT.bitsLT(MinVT) ? MinVT : VT;
1626}
1627
1628/// LowerCallResult - Lower the result values of a call into the
1629/// appropriate copies out of appropriate physical registers.
1630///
1631SDValue
1632X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1633                                   CallingConv::ID CallConv, bool isVarArg,
1634                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1635                                   DebugLoc dl, SelectionDAG &DAG,
1636                                   SmallVectorImpl<SDValue> &InVals) const {
1637
1638  // Assign locations to each value returned by this call.
1639  SmallVector<CCValAssign, 16> RVLocs;
1640  bool Is64Bit = Subtarget->is64Bit();
1641  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1642		 getTargetMachine(), RVLocs, *DAG.getContext());
1643  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1644
1645  // Copy all of the result registers out of their specified physreg.
1646  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1647    CCValAssign &VA = RVLocs[i];
1648    EVT CopyVT = VA.getValVT();
1649
1650    // If this is x86-64, and we disabled SSE, we can't return FP values
1651    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1652        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1653      report_fatal_error("SSE register return with SSE disabled");
1654    }
1655
1656    SDValue Val;
1657
1658    // If this is a call to a function that returns an fp value on the floating
1659    // point stack, we must guarantee the the value is popped from the stack, so
1660    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1661    // if the return value is not used. We use the FpPOP_RETVAL instruction
1662    // instead.
1663    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1664      // If we prefer to use the value in xmm registers, copy it out as f80 and
1665      // use a truncate to move it from fp stack reg to xmm reg.
1666      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1667      SDValue Ops[] = { Chain, InFlag };
1668      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1669                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1670      Val = Chain.getValue(0);
1671
1672      // Round the f80 to the right size, which also moves it to the appropriate
1673      // xmm register.
1674      if (CopyVT != VA.getValVT())
1675        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1676                          // This truncation won't change the value.
1677                          DAG.getIntPtrConstant(1));
1678    } else {
1679      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1680                                 CopyVT, InFlag).getValue(1);
1681      Val = Chain.getValue(0);
1682    }
1683    InFlag = Chain.getValue(2);
1684    InVals.push_back(Val);
1685  }
1686
1687  return Chain;
1688}
1689
1690
1691//===----------------------------------------------------------------------===//
1692//                C & StdCall & Fast Calling Convention implementation
1693//===----------------------------------------------------------------------===//
1694//  StdCall calling convention seems to be standard for many Windows' API
1695//  routines and around. It differs from C calling convention just a little:
1696//  callee should clean up the stack, not caller. Symbols should be also
1697//  decorated in some fancy way :) It doesn't support any vector arguments.
1698//  For info on fast calling convention see Fast Calling Convention (tail call)
1699//  implementation LowerX86_32FastCCCallTo.
1700
1701/// CallIsStructReturn - Determines whether a call uses struct return
1702/// semantics.
1703static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1704  if (Outs.empty())
1705    return false;
1706
1707  return Outs[0].Flags.isSRet();
1708}
1709
1710/// ArgsAreStructReturn - Determines whether a function uses struct
1711/// return semantics.
1712static bool
1713ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1714  if (Ins.empty())
1715    return false;
1716
1717  return Ins[0].Flags.isSRet();
1718}
1719
1720/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1721/// by "Src" to address "Dst" with size and alignment information specified by
1722/// the specific parameter attribute. The copy will be passed as a byval
1723/// function parameter.
1724static SDValue
1725CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1726                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1727                          DebugLoc dl) {
1728  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1729
1730  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1731                       /*isVolatile*/false, /*AlwaysInline=*/true,
1732                       MachinePointerInfo(), MachinePointerInfo());
1733}
1734
1735/// IsTailCallConvention - Return true if the calling convention is one that
1736/// supports tail call optimization.
1737static bool IsTailCallConvention(CallingConv::ID CC) {
1738  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1739}
1740
1741bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1742  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1743    return false;
1744
1745  CallSite CS(CI);
1746  CallingConv::ID CalleeCC = CS.getCallingConv();
1747  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1748    return false;
1749
1750  return true;
1751}
1752
1753/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1754/// a tailcall target by changing its ABI.
1755static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1756                                   bool GuaranteedTailCallOpt) {
1757  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1758}
1759
1760SDValue
1761X86TargetLowering::LowerMemArgument(SDValue Chain,
1762                                    CallingConv::ID CallConv,
1763                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1764                                    DebugLoc dl, SelectionDAG &DAG,
1765                                    const CCValAssign &VA,
1766                                    MachineFrameInfo *MFI,
1767                                    unsigned i) const {
1768  // Create the nodes corresponding to a load from this parameter slot.
1769  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1770  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1771                              getTargetMachine().Options.GuaranteedTailCallOpt);
1772  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1773  EVT ValVT;
1774
1775  // If value is passed by pointer we have address passed instead of the value
1776  // itself.
1777  if (VA.getLocInfo() == CCValAssign::Indirect)
1778    ValVT = VA.getLocVT();
1779  else
1780    ValVT = VA.getValVT();
1781
1782  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1783  // changed with more analysis.
1784  // In case of tail call optimization mark all arguments mutable. Since they
1785  // could be overwritten by lowering of arguments in case of a tail call.
1786  if (Flags.isByVal()) {
1787    unsigned Bytes = Flags.getByValSize();
1788    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1789    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1790    return DAG.getFrameIndex(FI, getPointerTy());
1791  } else {
1792    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1793                                    VA.getLocMemOffset(), isImmutable);
1794    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1795    return DAG.getLoad(ValVT, dl, Chain, FIN,
1796                       MachinePointerInfo::getFixedStack(FI),
1797                       false, false, false, 0);
1798  }
1799}
1800
1801SDValue
1802X86TargetLowering::LowerFormalArguments(SDValue Chain,
1803                                        CallingConv::ID CallConv,
1804                                        bool isVarArg,
1805                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1806                                        DebugLoc dl,
1807                                        SelectionDAG &DAG,
1808                                        SmallVectorImpl<SDValue> &InVals)
1809                                          const {
1810  MachineFunction &MF = DAG.getMachineFunction();
1811  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1812
1813  const Function* Fn = MF.getFunction();
1814  if (Fn->hasExternalLinkage() &&
1815      Subtarget->isTargetCygMing() &&
1816      Fn->getName() == "main")
1817    FuncInfo->setForceFramePointer(true);
1818
1819  MachineFrameInfo *MFI = MF.getFrameInfo();
1820  bool Is64Bit = Subtarget->is64Bit();
1821  bool IsWindows = Subtarget->isTargetWindows();
1822  bool IsWin64 = Subtarget->isTargetWin64();
1823
1824  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1825         "Var args not supported with calling convention fastcc or ghc");
1826
1827  // Assign locations to all of the incoming arguments.
1828  SmallVector<CCValAssign, 16> ArgLocs;
1829  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1830                 ArgLocs, *DAG.getContext());
1831
1832  // Allocate shadow area for Win64
1833  if (IsWin64) {
1834    CCInfo.AllocateStack(32, 8);
1835  }
1836
1837  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1838
1839  unsigned LastVal = ~0U;
1840  SDValue ArgValue;
1841  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1842    CCValAssign &VA = ArgLocs[i];
1843    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1844    // places.
1845    assert(VA.getValNo() != LastVal &&
1846           "Don't support value assigned to multiple locs yet");
1847    (void)LastVal;
1848    LastVal = VA.getValNo();
1849
1850    if (VA.isRegLoc()) {
1851      EVT RegVT = VA.getLocVT();
1852      const TargetRegisterClass *RC;
1853      if (RegVT == MVT::i32)
1854        RC = &X86::GR32RegClass;
1855      else if (Is64Bit && RegVT == MVT::i64)
1856        RC = &X86::GR64RegClass;
1857      else if (RegVT == MVT::f32)
1858        RC = &X86::FR32RegClass;
1859      else if (RegVT == MVT::f64)
1860        RC = &X86::FR64RegClass;
1861      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1862        RC = &X86::VR256RegClass;
1863      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1864        RC = &X86::VR128RegClass;
1865      else if (RegVT == MVT::x86mmx)
1866        RC = &X86::VR64RegClass;
1867      else
1868        llvm_unreachable("Unknown argument type!");
1869
1870      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1871      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1872
1873      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1874      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1875      // right size.
1876      if (VA.getLocInfo() == CCValAssign::SExt)
1877        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1878                               DAG.getValueType(VA.getValVT()));
1879      else if (VA.getLocInfo() == CCValAssign::ZExt)
1880        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1881                               DAG.getValueType(VA.getValVT()));
1882      else if (VA.getLocInfo() == CCValAssign::BCvt)
1883        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1884
1885      if (VA.isExtInLoc()) {
1886        // Handle MMX values passed in XMM regs.
1887        if (RegVT.isVector()) {
1888          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1889                                 ArgValue);
1890        } else
1891          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1892      }
1893    } else {
1894      assert(VA.isMemLoc());
1895      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1896    }
1897
1898    // If value is passed via pointer - do a load.
1899    if (VA.getLocInfo() == CCValAssign::Indirect)
1900      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1901                             MachinePointerInfo(), false, false, false, 0);
1902
1903    InVals.push_back(ArgValue);
1904  }
1905
1906  // The x86-64 ABI for returning structs by value requires that we copy
1907  // the sret argument into %rax for the return. Save the argument into
1908  // a virtual register so that we can access it from the return points.
1909  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1910    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1911    unsigned Reg = FuncInfo->getSRetReturnReg();
1912    if (!Reg) {
1913      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1914      FuncInfo->setSRetReturnReg(Reg);
1915    }
1916    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1917    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1918  }
1919
1920  unsigned StackSize = CCInfo.getNextStackOffset();
1921  // Align stack specially for tail calls.
1922  if (FuncIsMadeTailCallSafe(CallConv,
1923                             MF.getTarget().Options.GuaranteedTailCallOpt))
1924    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1925
1926  // If the function takes variable number of arguments, make a frame index for
1927  // the start of the first vararg value... for expansion of llvm.va_start.
1928  if (isVarArg) {
1929    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1930                    CallConv != CallingConv::X86_ThisCall)) {
1931      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1932    }
1933    if (Is64Bit) {
1934      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1935
1936      // FIXME: We should really autogenerate these arrays
1937      static const uint16_t GPR64ArgRegsWin64[] = {
1938        X86::RCX, X86::RDX, X86::R8,  X86::R9
1939      };
1940      static const uint16_t GPR64ArgRegs64Bit[] = {
1941        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1942      };
1943      static const uint16_t XMMArgRegs64Bit[] = {
1944        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1945        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1946      };
1947      const uint16_t *GPR64ArgRegs;
1948      unsigned NumXMMRegs = 0;
1949
1950      if (IsWin64) {
1951        // The XMM registers which might contain var arg parameters are shadowed
1952        // in their paired GPR.  So we only need to save the GPR to their home
1953        // slots.
1954        TotalNumIntRegs = 4;
1955        GPR64ArgRegs = GPR64ArgRegsWin64;
1956      } else {
1957        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1958        GPR64ArgRegs = GPR64ArgRegs64Bit;
1959
1960        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1961                                                TotalNumXMMRegs);
1962      }
1963      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1964                                                       TotalNumIntRegs);
1965
1966      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1967      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1968             "SSE register cannot be used when SSE is disabled!");
1969      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1970               NoImplicitFloatOps) &&
1971             "SSE register cannot be used when SSE is disabled!");
1972      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1973          !Subtarget->hasSSE1())
1974        // Kernel mode asks for SSE to be disabled, so don't push them
1975        // on the stack.
1976        TotalNumXMMRegs = 0;
1977
1978      if (IsWin64) {
1979        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1980        // Get to the caller-allocated home save location.  Add 8 to account
1981        // for the return address.
1982        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1983        FuncInfo->setRegSaveFrameIndex(
1984          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1985        // Fixup to set vararg frame on shadow area (4 x i64).
1986        if (NumIntRegs < 4)
1987          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1988      } else {
1989        // For X86-64, if there are vararg parameters that are passed via
1990        // registers, then we must store them to their spots on the stack so
1991        // they may be loaded by deferencing the result of va_next.
1992        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1993        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1994        FuncInfo->setRegSaveFrameIndex(
1995          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1996                               false));
1997      }
1998
1999      // Store the integer parameter registers.
2000      SmallVector<SDValue, 8> MemOps;
2001      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2002                                        getPointerTy());
2003      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2004      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2005        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2006                                  DAG.getIntPtrConstant(Offset));
2007        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2008                                     &X86::GR64RegClass);
2009        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2010        SDValue Store =
2011          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2012                       MachinePointerInfo::getFixedStack(
2013                         FuncInfo->getRegSaveFrameIndex(), Offset),
2014                       false, false, 0);
2015        MemOps.push_back(Store);
2016        Offset += 8;
2017      }
2018
2019      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2020        // Now store the XMM (fp + vector) parameter registers.
2021        SmallVector<SDValue, 11> SaveXMMOps;
2022        SaveXMMOps.push_back(Chain);
2023
2024        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2025        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2026        SaveXMMOps.push_back(ALVal);
2027
2028        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2029                               FuncInfo->getRegSaveFrameIndex()));
2030        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2031                               FuncInfo->getVarArgsFPOffset()));
2032
2033        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2034          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2035                                       &X86::VR128RegClass);
2036          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2037          SaveXMMOps.push_back(Val);
2038        }
2039        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2040                                     MVT::Other,
2041                                     &SaveXMMOps[0], SaveXMMOps.size()));
2042      }
2043
2044      if (!MemOps.empty())
2045        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2046                            &MemOps[0], MemOps.size());
2047    }
2048  }
2049
2050  // Some CCs need callee pop.
2051  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2052                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2053    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2054  } else {
2055    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2056    // If this is an sret function, the return should pop the hidden pointer.
2057    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2058        ArgsAreStructReturn(Ins))
2059      FuncInfo->setBytesToPopOnReturn(4);
2060  }
2061
2062  if (!Is64Bit) {
2063    // RegSaveFrameIndex is X86-64 only.
2064    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2065    if (CallConv == CallingConv::X86_FastCall ||
2066        CallConv == CallingConv::X86_ThisCall)
2067      // fastcc functions can't have varargs.
2068      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2069  }
2070
2071  FuncInfo->setArgumentStackSize(StackSize);
2072
2073  return Chain;
2074}
2075
2076SDValue
2077X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2078                                    SDValue StackPtr, SDValue Arg,
2079                                    DebugLoc dl, SelectionDAG &DAG,
2080                                    const CCValAssign &VA,
2081                                    ISD::ArgFlagsTy Flags) const {
2082  unsigned LocMemOffset = VA.getLocMemOffset();
2083  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2084  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2085  if (Flags.isByVal())
2086    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2087
2088  return DAG.getStore(Chain, dl, Arg, PtrOff,
2089                      MachinePointerInfo::getStack(LocMemOffset),
2090                      false, false, 0);
2091}
2092
2093/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2094/// optimization is performed and it is required.
2095SDValue
2096X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2097                                           SDValue &OutRetAddr, SDValue Chain,
2098                                           bool IsTailCall, bool Is64Bit,
2099                                           int FPDiff, DebugLoc dl) const {
2100  // Adjust the Return address stack slot.
2101  EVT VT = getPointerTy();
2102  OutRetAddr = getReturnAddressFrameIndex(DAG);
2103
2104  // Load the "old" Return address.
2105  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2106                           false, false, false, 0);
2107  return SDValue(OutRetAddr.getNode(), 1);
2108}
2109
2110/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2111/// optimization is performed and it is required (FPDiff!=0).
2112static SDValue
2113EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2114                         SDValue Chain, SDValue RetAddrFrIdx,
2115                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2116  // Store the return address to the appropriate stack slot.
2117  if (!FPDiff) return Chain;
2118  // Calculate the new stack slot for the return address.
2119  int SlotSize = Is64Bit ? 8 : 4;
2120  int NewReturnAddrFI =
2121    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2122  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2123  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2124  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2125                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2126                       false, false, 0);
2127  return Chain;
2128}
2129
2130SDValue
2131X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2132                             CallingConv::ID CallConv, bool isVarArg,
2133                             bool doesNotRet, bool &isTailCall,
2134                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2135                             const SmallVectorImpl<SDValue> &OutVals,
2136                             const SmallVectorImpl<ISD::InputArg> &Ins,
2137                             DebugLoc dl, SelectionDAG &DAG,
2138                             SmallVectorImpl<SDValue> &InVals) const {
2139  MachineFunction &MF = DAG.getMachineFunction();
2140  bool Is64Bit        = Subtarget->is64Bit();
2141  bool IsWin64        = Subtarget->isTargetWin64();
2142  bool IsWindows      = Subtarget->isTargetWindows();
2143  bool IsStructRet    = CallIsStructReturn(Outs);
2144  bool IsSibcall      = false;
2145
2146  if (MF.getTarget().Options.DisableTailCalls)
2147    isTailCall = false;
2148
2149  if (isTailCall) {
2150    // Check if it's really possible to do a tail call.
2151    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2152                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2153                                                   Outs, OutVals, Ins, DAG);
2154
2155    // Sibcalls are automatically detected tailcalls which do not require
2156    // ABI changes.
2157    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2158      IsSibcall = true;
2159
2160    if (isTailCall)
2161      ++NumTailCalls;
2162  }
2163
2164  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2165         "Var args not supported with calling convention fastcc or ghc");
2166
2167  // Analyze operands of the call, assigning locations to each operand.
2168  SmallVector<CCValAssign, 16> ArgLocs;
2169  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2170                 ArgLocs, *DAG.getContext());
2171
2172  // Allocate shadow area for Win64
2173  if (IsWin64) {
2174    CCInfo.AllocateStack(32, 8);
2175  }
2176
2177  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2178
2179  // Get a count of how many bytes are to be pushed on the stack.
2180  unsigned NumBytes = CCInfo.getNextStackOffset();
2181  if (IsSibcall)
2182    // This is a sibcall. The memory operands are available in caller's
2183    // own caller's stack.
2184    NumBytes = 0;
2185  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2186           IsTailCallConvention(CallConv))
2187    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2188
2189  int FPDiff = 0;
2190  if (isTailCall && !IsSibcall) {
2191    // Lower arguments at fp - stackoffset + fpdiff.
2192    unsigned NumBytesCallerPushed =
2193      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2194    FPDiff = NumBytesCallerPushed - NumBytes;
2195
2196    // Set the delta of movement of the returnaddr stackslot.
2197    // But only set if delta is greater than previous delta.
2198    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2199      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2200  }
2201
2202  if (!IsSibcall)
2203    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2204
2205  SDValue RetAddrFrIdx;
2206  // Load return address for tail calls.
2207  if (isTailCall && FPDiff)
2208    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2209                                    Is64Bit, FPDiff, dl);
2210
2211  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2212  SmallVector<SDValue, 8> MemOpChains;
2213  SDValue StackPtr;
2214
2215  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2216  // of tail call optimization arguments are handle later.
2217  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2218    CCValAssign &VA = ArgLocs[i];
2219    EVT RegVT = VA.getLocVT();
2220    SDValue Arg = OutVals[i];
2221    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2222    bool isByVal = Flags.isByVal();
2223
2224    // Promote the value if needed.
2225    switch (VA.getLocInfo()) {
2226    default: llvm_unreachable("Unknown loc info!");
2227    case CCValAssign::Full: break;
2228    case CCValAssign::SExt:
2229      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2230      break;
2231    case CCValAssign::ZExt:
2232      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2233      break;
2234    case CCValAssign::AExt:
2235      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2236        // Special case: passing MMX values in XMM registers.
2237        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2238        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2239        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2240      } else
2241        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2242      break;
2243    case CCValAssign::BCvt:
2244      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2245      break;
2246    case CCValAssign::Indirect: {
2247      // Store the argument.
2248      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2249      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2250      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2251                           MachinePointerInfo::getFixedStack(FI),
2252                           false, false, 0);
2253      Arg = SpillSlot;
2254      break;
2255    }
2256    }
2257
2258    if (VA.isRegLoc()) {
2259      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2260      if (isVarArg && IsWin64) {
2261        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2262        // shadow reg if callee is a varargs function.
2263        unsigned ShadowReg = 0;
2264        switch (VA.getLocReg()) {
2265        case X86::XMM0: ShadowReg = X86::RCX; break;
2266        case X86::XMM1: ShadowReg = X86::RDX; break;
2267        case X86::XMM2: ShadowReg = X86::R8; break;
2268        case X86::XMM3: ShadowReg = X86::R9; break;
2269        }
2270        if (ShadowReg)
2271          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2272      }
2273    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2274      assert(VA.isMemLoc());
2275      if (StackPtr.getNode() == 0)
2276        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2277      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2278                                             dl, DAG, VA, Flags));
2279    }
2280  }
2281
2282  if (!MemOpChains.empty())
2283    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2284                        &MemOpChains[0], MemOpChains.size());
2285
2286  // Build a sequence of copy-to-reg nodes chained together with token chain
2287  // and flag operands which copy the outgoing args into registers.
2288  SDValue InFlag;
2289  // Tail call byval lowering might overwrite argument registers so in case of
2290  // tail call optimization the copies to registers are lowered later.
2291  if (!isTailCall)
2292    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2293      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2294                               RegsToPass[i].second, InFlag);
2295      InFlag = Chain.getValue(1);
2296    }
2297
2298  if (Subtarget->isPICStyleGOT()) {
2299    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2300    // GOT pointer.
2301    if (!isTailCall) {
2302      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2303                               DAG.getNode(X86ISD::GlobalBaseReg,
2304                                           DebugLoc(), getPointerTy()),
2305                               InFlag);
2306      InFlag = Chain.getValue(1);
2307    } else {
2308      // If we are tail calling and generating PIC/GOT style code load the
2309      // address of the callee into ECX. The value in ecx is used as target of
2310      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2311      // for tail calls on PIC/GOT architectures. Normally we would just put the
2312      // address of GOT into ebx and then call target@PLT. But for tail calls
2313      // ebx would be restored (since ebx is callee saved) before jumping to the
2314      // target@PLT.
2315
2316      // Note: The actual moving to ECX is done further down.
2317      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2318      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2319          !G->getGlobal()->hasProtectedVisibility())
2320        Callee = LowerGlobalAddress(Callee, DAG);
2321      else if (isa<ExternalSymbolSDNode>(Callee))
2322        Callee = LowerExternalSymbol(Callee, DAG);
2323    }
2324  }
2325
2326  if (Is64Bit && isVarArg && !IsWin64) {
2327    // From AMD64 ABI document:
2328    // For calls that may call functions that use varargs or stdargs
2329    // (prototype-less calls or calls to functions containing ellipsis (...) in
2330    // the declaration) %al is used as hidden argument to specify the number
2331    // of SSE registers used. The contents of %al do not need to match exactly
2332    // the number of registers, but must be an ubound on the number of SSE
2333    // registers used and is in the range 0 - 8 inclusive.
2334
2335    // Count the number of XMM registers allocated.
2336    static const uint16_t XMMArgRegs[] = {
2337      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2338      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2339    };
2340    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2341    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2342           && "SSE registers cannot be used when SSE is disabled");
2343
2344    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2345                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2346    InFlag = Chain.getValue(1);
2347  }
2348
2349
2350  // For tail calls lower the arguments to the 'real' stack slot.
2351  if (isTailCall) {
2352    // Force all the incoming stack arguments to be loaded from the stack
2353    // before any new outgoing arguments are stored to the stack, because the
2354    // outgoing stack slots may alias the incoming argument stack slots, and
2355    // the alias isn't otherwise explicit. This is slightly more conservative
2356    // than necessary, because it means that each store effectively depends
2357    // on every argument instead of just those arguments it would clobber.
2358    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2359
2360    SmallVector<SDValue, 8> MemOpChains2;
2361    SDValue FIN;
2362    int FI = 0;
2363    // Do not flag preceding copytoreg stuff together with the following stuff.
2364    InFlag = SDValue();
2365    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2366      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2367        CCValAssign &VA = ArgLocs[i];
2368        if (VA.isRegLoc())
2369          continue;
2370        assert(VA.isMemLoc());
2371        SDValue Arg = OutVals[i];
2372        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2373        // Create frame index.
2374        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2375        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2376        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2377        FIN = DAG.getFrameIndex(FI, getPointerTy());
2378
2379        if (Flags.isByVal()) {
2380          // Copy relative to framepointer.
2381          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2382          if (StackPtr.getNode() == 0)
2383            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2384                                          getPointerTy());
2385          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2386
2387          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2388                                                           ArgChain,
2389                                                           Flags, DAG, dl));
2390        } else {
2391          // Store relative to framepointer.
2392          MemOpChains2.push_back(
2393            DAG.getStore(ArgChain, dl, Arg, FIN,
2394                         MachinePointerInfo::getFixedStack(FI),
2395                         false, false, 0));
2396        }
2397      }
2398    }
2399
2400    if (!MemOpChains2.empty())
2401      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2402                          &MemOpChains2[0], MemOpChains2.size());
2403
2404    // Copy arguments to their registers.
2405    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2406      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2407                               RegsToPass[i].second, InFlag);
2408      InFlag = Chain.getValue(1);
2409    }
2410    InFlag =SDValue();
2411
2412    // Store the return address to the appropriate stack slot.
2413    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2414                                     FPDiff, dl);
2415  }
2416
2417  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2418    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2419    // In the 64-bit large code model, we have to make all calls
2420    // through a register, since the call instruction's 32-bit
2421    // pc-relative offset may not be large enough to hold the whole
2422    // address.
2423  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2424    // If the callee is a GlobalAddress node (quite common, every direct call
2425    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2426    // it.
2427
2428    // We should use extra load for direct calls to dllimported functions in
2429    // non-JIT mode.
2430    const GlobalValue *GV = G->getGlobal();
2431    if (!GV->hasDLLImportLinkage()) {
2432      unsigned char OpFlags = 0;
2433      bool ExtraLoad = false;
2434      unsigned WrapperKind = ISD::DELETED_NODE;
2435
2436      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2437      // external symbols most go through the PLT in PIC mode.  If the symbol
2438      // has hidden or protected visibility, or if it is static or local, then
2439      // we don't need to use the PLT - we can directly call it.
2440      if (Subtarget->isTargetELF() &&
2441          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2442          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2443        OpFlags = X86II::MO_PLT;
2444      } else if (Subtarget->isPICStyleStubAny() &&
2445                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2446                 (!Subtarget->getTargetTriple().isMacOSX() ||
2447                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2448        // PC-relative references to external symbols should go through $stub,
2449        // unless we're building with the leopard linker or later, which
2450        // automatically synthesizes these stubs.
2451        OpFlags = X86II::MO_DARWIN_STUB;
2452      } else if (Subtarget->isPICStyleRIPRel() &&
2453                 isa<Function>(GV) &&
2454                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2455        // If the function is marked as non-lazy, generate an indirect call
2456        // which loads from the GOT directly. This avoids runtime overhead
2457        // at the cost of eager binding (and one extra byte of encoding).
2458        OpFlags = X86II::MO_GOTPCREL;
2459        WrapperKind = X86ISD::WrapperRIP;
2460        ExtraLoad = true;
2461      }
2462
2463      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2464                                          G->getOffset(), OpFlags);
2465
2466      // Add a wrapper if needed.
2467      if (WrapperKind != ISD::DELETED_NODE)
2468        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2469      // Add extra indirection if needed.
2470      if (ExtraLoad)
2471        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2472                             MachinePointerInfo::getGOT(),
2473                             false, false, false, 0);
2474    }
2475  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2476    unsigned char OpFlags = 0;
2477
2478    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2479    // external symbols should go through the PLT.
2480    if (Subtarget->isTargetELF() &&
2481        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2482      OpFlags = X86II::MO_PLT;
2483    } else if (Subtarget->isPICStyleStubAny() &&
2484               (!Subtarget->getTargetTriple().isMacOSX() ||
2485                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2486      // PC-relative references to external symbols should go through $stub,
2487      // unless we're building with the leopard linker or later, which
2488      // automatically synthesizes these stubs.
2489      OpFlags = X86II::MO_DARWIN_STUB;
2490    }
2491
2492    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2493                                         OpFlags);
2494  }
2495
2496  // Returns a chain & a flag for retval copy to use.
2497  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2498  SmallVector<SDValue, 8> Ops;
2499
2500  if (!IsSibcall && isTailCall) {
2501    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2502                           DAG.getIntPtrConstant(0, true), InFlag);
2503    InFlag = Chain.getValue(1);
2504  }
2505
2506  Ops.push_back(Chain);
2507  Ops.push_back(Callee);
2508
2509  if (isTailCall)
2510    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2511
2512  // Add argument registers to the end of the list so that they are known live
2513  // into the call.
2514  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2515    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2516                                  RegsToPass[i].second.getValueType()));
2517
2518  // Add an implicit use GOT pointer in EBX.
2519  if (!isTailCall && Subtarget->isPICStyleGOT())
2520    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2521
2522  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2523  if (Is64Bit && isVarArg && !IsWin64)
2524    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2525
2526  // Add a register mask operand representing the call-preserved registers.
2527  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2528  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2529  assert(Mask && "Missing call preserved mask for calling convention");
2530  Ops.push_back(DAG.getRegisterMask(Mask));
2531
2532  if (InFlag.getNode())
2533    Ops.push_back(InFlag);
2534
2535  if (isTailCall) {
2536    // We used to do:
2537    //// If this is the first return lowered for this function, add the regs
2538    //// to the liveout set for the function.
2539    // This isn't right, although it's probably harmless on x86; liveouts
2540    // should be computed from returns not tail calls.  Consider a void
2541    // function making a tail call to a function returning int.
2542    return DAG.getNode(X86ISD::TC_RETURN, dl,
2543                       NodeTys, &Ops[0], Ops.size());
2544  }
2545
2546  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2547  InFlag = Chain.getValue(1);
2548
2549  // Create the CALLSEQ_END node.
2550  unsigned NumBytesForCalleeToPush;
2551  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2552                       getTargetMachine().Options.GuaranteedTailCallOpt))
2553    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2554  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2555           IsStructRet)
2556    // If this is a call to a struct-return function, the callee
2557    // pops the hidden struct pointer, so we have to push it back.
2558    // This is common for Darwin/X86, Linux & Mingw32 targets.
2559    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2560    NumBytesForCalleeToPush = 4;
2561  else
2562    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2563
2564  // Returns a flag for retval copy to use.
2565  if (!IsSibcall) {
2566    Chain = DAG.getCALLSEQ_END(Chain,
2567                               DAG.getIntPtrConstant(NumBytes, true),
2568                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2569                                                     true),
2570                               InFlag);
2571    InFlag = Chain.getValue(1);
2572  }
2573
2574  // Handle result values, copying them out of physregs into vregs that we
2575  // return.
2576  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2577                         Ins, dl, DAG, InVals);
2578}
2579
2580
2581//===----------------------------------------------------------------------===//
2582//                Fast Calling Convention (tail call) implementation
2583//===----------------------------------------------------------------------===//
2584
2585//  Like std call, callee cleans arguments, convention except that ECX is
2586//  reserved for storing the tail called function address. Only 2 registers are
2587//  free for argument passing (inreg). Tail call optimization is performed
2588//  provided:
2589//                * tailcallopt is enabled
2590//                * caller/callee are fastcc
2591//  On X86_64 architecture with GOT-style position independent code only local
2592//  (within module) calls are supported at the moment.
2593//  To keep the stack aligned according to platform abi the function
2594//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2595//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2596//  If a tail called function callee has more arguments than the caller the
2597//  caller needs to make sure that there is room to move the RETADDR to. This is
2598//  achieved by reserving an area the size of the argument delta right after the
2599//  original REtADDR, but before the saved framepointer or the spilled registers
2600//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2601//  stack layout:
2602//    arg1
2603//    arg2
2604//    RETADDR
2605//    [ new RETADDR
2606//      move area ]
2607//    (possible EBP)
2608//    ESI
2609//    EDI
2610//    local1 ..
2611
2612/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2613/// for a 16 byte align requirement.
2614unsigned
2615X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2616                                               SelectionDAG& DAG) const {
2617  MachineFunction &MF = DAG.getMachineFunction();
2618  const TargetMachine &TM = MF.getTarget();
2619  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2620  unsigned StackAlignment = TFI.getStackAlignment();
2621  uint64_t AlignMask = StackAlignment - 1;
2622  int64_t Offset = StackSize;
2623  uint64_t SlotSize = TD->getPointerSize();
2624  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2625    // Number smaller than 12 so just add the difference.
2626    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2627  } else {
2628    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2629    Offset = ((~AlignMask) & Offset) + StackAlignment +
2630      (StackAlignment-SlotSize);
2631  }
2632  return Offset;
2633}
2634
2635/// MatchingStackOffset - Return true if the given stack call argument is
2636/// already available in the same position (relatively) of the caller's
2637/// incoming argument stack.
2638static
2639bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2640                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2641                         const X86InstrInfo *TII) {
2642  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2643  int FI = INT_MAX;
2644  if (Arg.getOpcode() == ISD::CopyFromReg) {
2645    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2646    if (!TargetRegisterInfo::isVirtualRegister(VR))
2647      return false;
2648    MachineInstr *Def = MRI->getVRegDef(VR);
2649    if (!Def)
2650      return false;
2651    if (!Flags.isByVal()) {
2652      if (!TII->isLoadFromStackSlot(Def, FI))
2653        return false;
2654    } else {
2655      unsigned Opcode = Def->getOpcode();
2656      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2657          Def->getOperand(1).isFI()) {
2658        FI = Def->getOperand(1).getIndex();
2659        Bytes = Flags.getByValSize();
2660      } else
2661        return false;
2662    }
2663  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2664    if (Flags.isByVal())
2665      // ByVal argument is passed in as a pointer but it's now being
2666      // dereferenced. e.g.
2667      // define @foo(%struct.X* %A) {
2668      //   tail call @bar(%struct.X* byval %A)
2669      // }
2670      return false;
2671    SDValue Ptr = Ld->getBasePtr();
2672    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2673    if (!FINode)
2674      return false;
2675    FI = FINode->getIndex();
2676  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2677    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2678    FI = FINode->getIndex();
2679    Bytes = Flags.getByValSize();
2680  } else
2681    return false;
2682
2683  assert(FI != INT_MAX);
2684  if (!MFI->isFixedObjectIndex(FI))
2685    return false;
2686  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2687}
2688
2689/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2690/// for tail call optimization. Targets which want to do tail call
2691/// optimization should implement this function.
2692bool
2693X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2694                                                     CallingConv::ID CalleeCC,
2695                                                     bool isVarArg,
2696                                                     bool isCalleeStructRet,
2697                                                     bool isCallerStructRet,
2698                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2699                                    const SmallVectorImpl<SDValue> &OutVals,
2700                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2701                                                     SelectionDAG& DAG) const {
2702  if (!IsTailCallConvention(CalleeCC) &&
2703      CalleeCC != CallingConv::C)
2704    return false;
2705
2706  // If -tailcallopt is specified, make fastcc functions tail-callable.
2707  const MachineFunction &MF = DAG.getMachineFunction();
2708  const Function *CallerF = DAG.getMachineFunction().getFunction();
2709  CallingConv::ID CallerCC = CallerF->getCallingConv();
2710  bool CCMatch = CallerCC == CalleeCC;
2711
2712  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2713    if (IsTailCallConvention(CalleeCC) && CCMatch)
2714      return true;
2715    return false;
2716  }
2717
2718  // Look for obvious safe cases to perform tail call optimization that do not
2719  // require ABI changes. This is what gcc calls sibcall.
2720
2721  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2722  // emit a special epilogue.
2723  if (RegInfo->needsStackRealignment(MF))
2724    return false;
2725
2726  // Also avoid sibcall optimization if either caller or callee uses struct
2727  // return semantics.
2728  if (isCalleeStructRet || isCallerStructRet)
2729    return false;
2730
2731  // An stdcall caller is expected to clean up its arguments; the callee
2732  // isn't going to do that.
2733  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2734    return false;
2735
2736  // Do not sibcall optimize vararg calls unless all arguments are passed via
2737  // registers.
2738  if (isVarArg && !Outs.empty()) {
2739
2740    // Optimizing for varargs on Win64 is unlikely to be safe without
2741    // additional testing.
2742    if (Subtarget->isTargetWin64())
2743      return false;
2744
2745    SmallVector<CCValAssign, 16> ArgLocs;
2746    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2747		   getTargetMachine(), ArgLocs, *DAG.getContext());
2748
2749    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2750    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2751      if (!ArgLocs[i].isRegLoc())
2752        return false;
2753  }
2754
2755  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2756  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2757  // this into a sibcall.
2758  bool Unused = false;
2759  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2760    if (!Ins[i].Used) {
2761      Unused = true;
2762      break;
2763    }
2764  }
2765  if (Unused) {
2766    SmallVector<CCValAssign, 16> RVLocs;
2767    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2768		   getTargetMachine(), RVLocs, *DAG.getContext());
2769    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2770    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2771      CCValAssign &VA = RVLocs[i];
2772      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2773        return false;
2774    }
2775  }
2776
2777  // If the calling conventions do not match, then we'd better make sure the
2778  // results are returned in the same way as what the caller expects.
2779  if (!CCMatch) {
2780    SmallVector<CCValAssign, 16> RVLocs1;
2781    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2782		    getTargetMachine(), RVLocs1, *DAG.getContext());
2783    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2784
2785    SmallVector<CCValAssign, 16> RVLocs2;
2786    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2787		    getTargetMachine(), RVLocs2, *DAG.getContext());
2788    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2789
2790    if (RVLocs1.size() != RVLocs2.size())
2791      return false;
2792    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2793      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2794        return false;
2795      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2796        return false;
2797      if (RVLocs1[i].isRegLoc()) {
2798        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2799          return false;
2800      } else {
2801        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2802          return false;
2803      }
2804    }
2805  }
2806
2807  // If the callee takes no arguments then go on to check the results of the
2808  // call.
2809  if (!Outs.empty()) {
2810    // Check if stack adjustment is needed. For now, do not do this if any
2811    // argument is passed on the stack.
2812    SmallVector<CCValAssign, 16> ArgLocs;
2813    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2814		   getTargetMachine(), ArgLocs, *DAG.getContext());
2815
2816    // Allocate shadow area for Win64
2817    if (Subtarget->isTargetWin64()) {
2818      CCInfo.AllocateStack(32, 8);
2819    }
2820
2821    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2822    if (CCInfo.getNextStackOffset()) {
2823      MachineFunction &MF = DAG.getMachineFunction();
2824      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2825        return false;
2826
2827      // Check if the arguments are already laid out in the right way as
2828      // the caller's fixed stack objects.
2829      MachineFrameInfo *MFI = MF.getFrameInfo();
2830      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2831      const X86InstrInfo *TII =
2832        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2833      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2834        CCValAssign &VA = ArgLocs[i];
2835        SDValue Arg = OutVals[i];
2836        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2837        if (VA.getLocInfo() == CCValAssign::Indirect)
2838          return false;
2839        if (!VA.isRegLoc()) {
2840          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2841                                   MFI, MRI, TII))
2842            return false;
2843        }
2844      }
2845    }
2846
2847    // If the tailcall address may be in a register, then make sure it's
2848    // possible to register allocate for it. In 32-bit, the call address can
2849    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2850    // callee-saved registers are restored. These happen to be the same
2851    // registers used to pass 'inreg' arguments so watch out for those.
2852    if (!Subtarget->is64Bit() &&
2853        !isa<GlobalAddressSDNode>(Callee) &&
2854        !isa<ExternalSymbolSDNode>(Callee)) {
2855      unsigned NumInRegs = 0;
2856      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2857        CCValAssign &VA = ArgLocs[i];
2858        if (!VA.isRegLoc())
2859          continue;
2860        unsigned Reg = VA.getLocReg();
2861        switch (Reg) {
2862        default: break;
2863        case X86::EAX: case X86::EDX: case X86::ECX:
2864          if (++NumInRegs == 3)
2865            return false;
2866          break;
2867        }
2868      }
2869    }
2870  }
2871
2872  return true;
2873}
2874
2875FastISel *
2876X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2877  return X86::createFastISel(funcInfo);
2878}
2879
2880
2881//===----------------------------------------------------------------------===//
2882//                           Other Lowering Hooks
2883//===----------------------------------------------------------------------===//
2884
2885static bool MayFoldLoad(SDValue Op) {
2886  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2887}
2888
2889static bool MayFoldIntoStore(SDValue Op) {
2890  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2891}
2892
2893static bool isTargetShuffle(unsigned Opcode) {
2894  switch(Opcode) {
2895  default: return false;
2896  case X86ISD::PSHUFD:
2897  case X86ISD::PSHUFHW:
2898  case X86ISD::PSHUFLW:
2899  case X86ISD::SHUFP:
2900  case X86ISD::PALIGN:
2901  case X86ISD::MOVLHPS:
2902  case X86ISD::MOVLHPD:
2903  case X86ISD::MOVHLPS:
2904  case X86ISD::MOVLPS:
2905  case X86ISD::MOVLPD:
2906  case X86ISD::MOVSHDUP:
2907  case X86ISD::MOVSLDUP:
2908  case X86ISD::MOVDDUP:
2909  case X86ISD::MOVSS:
2910  case X86ISD::MOVSD:
2911  case X86ISD::UNPCKL:
2912  case X86ISD::UNPCKH:
2913  case X86ISD::VPERMILP:
2914  case X86ISD::VPERM2X128:
2915    return true;
2916  }
2917}
2918
2919static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2920                                    SDValue V1, SelectionDAG &DAG) {
2921  switch(Opc) {
2922  default: llvm_unreachable("Unknown x86 shuffle node");
2923  case X86ISD::MOVSHDUP:
2924  case X86ISD::MOVSLDUP:
2925  case X86ISD::MOVDDUP:
2926    return DAG.getNode(Opc, dl, VT, V1);
2927  }
2928}
2929
2930static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2931                                    SDValue V1, unsigned TargetMask,
2932                                    SelectionDAG &DAG) {
2933  switch(Opc) {
2934  default: llvm_unreachable("Unknown x86 shuffle node");
2935  case X86ISD::PSHUFD:
2936  case X86ISD::PSHUFHW:
2937  case X86ISD::PSHUFLW:
2938  case X86ISD::VPERMILP:
2939  case X86ISD::VPERMI:
2940    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2941  }
2942}
2943
2944static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2945                                    SDValue V1, SDValue V2, unsigned TargetMask,
2946                                    SelectionDAG &DAG) {
2947  switch(Opc) {
2948  default: llvm_unreachable("Unknown x86 shuffle node");
2949  case X86ISD::PALIGN:
2950  case X86ISD::SHUFP:
2951  case X86ISD::VPERM2X128:
2952    return DAG.getNode(Opc, dl, VT, V1, V2,
2953                       DAG.getConstant(TargetMask, MVT::i8));
2954  }
2955}
2956
2957static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2958                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2959  switch(Opc) {
2960  default: llvm_unreachable("Unknown x86 shuffle node");
2961  case X86ISD::MOVLHPS:
2962  case X86ISD::MOVLHPD:
2963  case X86ISD::MOVHLPS:
2964  case X86ISD::MOVLPS:
2965  case X86ISD::MOVLPD:
2966  case X86ISD::MOVSS:
2967  case X86ISD::MOVSD:
2968  case X86ISD::UNPCKL:
2969  case X86ISD::UNPCKH:
2970    return DAG.getNode(Opc, dl, VT, V1, V2);
2971  }
2972}
2973
2974SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2975  MachineFunction &MF = DAG.getMachineFunction();
2976  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2977  int ReturnAddrIndex = FuncInfo->getRAIndex();
2978
2979  if (ReturnAddrIndex == 0) {
2980    // Set up a frame object for the return address.
2981    uint64_t SlotSize = TD->getPointerSize();
2982    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2983                                                           false);
2984    FuncInfo->setRAIndex(ReturnAddrIndex);
2985  }
2986
2987  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2988}
2989
2990
2991bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2992                                       bool hasSymbolicDisplacement) {
2993  // Offset should fit into 32 bit immediate field.
2994  if (!isInt<32>(Offset))
2995    return false;
2996
2997  // If we don't have a symbolic displacement - we don't have any extra
2998  // restrictions.
2999  if (!hasSymbolicDisplacement)
3000    return true;
3001
3002  // FIXME: Some tweaks might be needed for medium code model.
3003  if (M != CodeModel::Small && M != CodeModel::Kernel)
3004    return false;
3005
3006  // For small code model we assume that latest object is 16MB before end of 31
3007  // bits boundary. We may also accept pretty large negative constants knowing
3008  // that all objects are in the positive half of address space.
3009  if (M == CodeModel::Small && Offset < 16*1024*1024)
3010    return true;
3011
3012  // For kernel code model we know that all object resist in the negative half
3013  // of 32bits address space. We may not accept negative offsets, since they may
3014  // be just off and we may accept pretty large positive ones.
3015  if (M == CodeModel::Kernel && Offset > 0)
3016    return true;
3017
3018  return false;
3019}
3020
3021/// isCalleePop - Determines whether the callee is required to pop its
3022/// own arguments. Callee pop is necessary to support tail calls.
3023bool X86::isCalleePop(CallingConv::ID CallingConv,
3024                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3025  if (IsVarArg)
3026    return false;
3027
3028  switch (CallingConv) {
3029  default:
3030    return false;
3031  case CallingConv::X86_StdCall:
3032    return !is64Bit;
3033  case CallingConv::X86_FastCall:
3034    return !is64Bit;
3035  case CallingConv::X86_ThisCall:
3036    return !is64Bit;
3037  case CallingConv::Fast:
3038    return TailCallOpt;
3039  case CallingConv::GHC:
3040    return TailCallOpt;
3041  }
3042}
3043
3044/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3045/// specific condition code, returning the condition code and the LHS/RHS of the
3046/// comparison to make.
3047static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3048                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3049  if (!isFP) {
3050    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3051      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3052        // X > -1   -> X == 0, jump !sign.
3053        RHS = DAG.getConstant(0, RHS.getValueType());
3054        return X86::COND_NS;
3055      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3056        // X < 0   -> X == 0, jump on sign.
3057        return X86::COND_S;
3058      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3059        // X < 1   -> X <= 0
3060        RHS = DAG.getConstant(0, RHS.getValueType());
3061        return X86::COND_LE;
3062      }
3063    }
3064
3065    switch (SetCCOpcode) {
3066    default: llvm_unreachable("Invalid integer condition!");
3067    case ISD::SETEQ:  return X86::COND_E;
3068    case ISD::SETGT:  return X86::COND_G;
3069    case ISD::SETGE:  return X86::COND_GE;
3070    case ISD::SETLT:  return X86::COND_L;
3071    case ISD::SETLE:  return X86::COND_LE;
3072    case ISD::SETNE:  return X86::COND_NE;
3073    case ISD::SETULT: return X86::COND_B;
3074    case ISD::SETUGT: return X86::COND_A;
3075    case ISD::SETULE: return X86::COND_BE;
3076    case ISD::SETUGE: return X86::COND_AE;
3077    }
3078  }
3079
3080  // First determine if it is required or is profitable to flip the operands.
3081
3082  // If LHS is a foldable load, but RHS is not, flip the condition.
3083  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3084      !ISD::isNON_EXTLoad(RHS.getNode())) {
3085    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3086    std::swap(LHS, RHS);
3087  }
3088
3089  switch (SetCCOpcode) {
3090  default: break;
3091  case ISD::SETOLT:
3092  case ISD::SETOLE:
3093  case ISD::SETUGT:
3094  case ISD::SETUGE:
3095    std::swap(LHS, RHS);
3096    break;
3097  }
3098
3099  // On a floating point condition, the flags are set as follows:
3100  // ZF  PF  CF   op
3101  //  0 | 0 | 0 | X > Y
3102  //  0 | 0 | 1 | X < Y
3103  //  1 | 0 | 0 | X == Y
3104  //  1 | 1 | 1 | unordered
3105  switch (SetCCOpcode) {
3106  default: llvm_unreachable("Condcode should be pre-legalized away");
3107  case ISD::SETUEQ:
3108  case ISD::SETEQ:   return X86::COND_E;
3109  case ISD::SETOLT:              // flipped
3110  case ISD::SETOGT:
3111  case ISD::SETGT:   return X86::COND_A;
3112  case ISD::SETOLE:              // flipped
3113  case ISD::SETOGE:
3114  case ISD::SETGE:   return X86::COND_AE;
3115  case ISD::SETUGT:              // flipped
3116  case ISD::SETULT:
3117  case ISD::SETLT:   return X86::COND_B;
3118  case ISD::SETUGE:              // flipped
3119  case ISD::SETULE:
3120  case ISD::SETLE:   return X86::COND_BE;
3121  case ISD::SETONE:
3122  case ISD::SETNE:   return X86::COND_NE;
3123  case ISD::SETUO:   return X86::COND_P;
3124  case ISD::SETO:    return X86::COND_NP;
3125  case ISD::SETOEQ:
3126  case ISD::SETUNE:  return X86::COND_INVALID;
3127  }
3128}
3129
3130/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3131/// code. Current x86 isa includes the following FP cmov instructions:
3132/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3133static bool hasFPCMov(unsigned X86CC) {
3134  switch (X86CC) {
3135  default:
3136    return false;
3137  case X86::COND_B:
3138  case X86::COND_BE:
3139  case X86::COND_E:
3140  case X86::COND_P:
3141  case X86::COND_A:
3142  case X86::COND_AE:
3143  case X86::COND_NE:
3144  case X86::COND_NP:
3145    return true;
3146  }
3147}
3148
3149/// isFPImmLegal - Returns true if the target can instruction select the
3150/// specified FP immediate natively. If false, the legalizer will
3151/// materialize the FP immediate as a load from a constant pool.
3152bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3153  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3154    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3155      return true;
3156  }
3157  return false;
3158}
3159
3160/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3161/// the specified range (L, H].
3162static bool isUndefOrInRange(int Val, int Low, int Hi) {
3163  return (Val < 0) || (Val >= Low && Val < Hi);
3164}
3165
3166/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3167/// specified value.
3168static bool isUndefOrEqual(int Val, int CmpVal) {
3169  if (Val < 0 || Val == CmpVal)
3170    return true;
3171  return false;
3172}
3173
3174/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3175/// from position Pos and ending in Pos+Size, falls within the specified
3176/// sequential range (L, L+Pos]. or is undef.
3177static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3178                                       int Pos, int Size, int Low) {
3179  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3180    if (!isUndefOrEqual(Mask[i], Low))
3181      return false;
3182  return true;
3183}
3184
3185/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3186/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3187/// the second operand.
3188static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3189  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3190    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3191  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3192    return (Mask[0] < 2 && Mask[1] < 2);
3193  return false;
3194}
3195
3196/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3197/// is suitable for input to PSHUFHW.
3198static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3199  if (VT != MVT::v8i16)
3200    return false;
3201
3202  // Lower quadword copied in order or undef.
3203  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3204    return false;
3205
3206  // Upper quadword shuffled.
3207  for (unsigned i = 4; i != 8; ++i)
3208    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3209      return false;
3210
3211  return true;
3212}
3213
3214/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3215/// is suitable for input to PSHUFLW.
3216static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3217  if (VT != MVT::v8i16)
3218    return false;
3219
3220  // Upper quadword copied in order.
3221  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3222    return false;
3223
3224  // Lower quadword shuffled.
3225  for (unsigned i = 0; i != 4; ++i)
3226    if (Mask[i] >= 4)
3227      return false;
3228
3229  return true;
3230}
3231
3232/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3233/// is suitable for input to PALIGNR.
3234static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3235                          const X86Subtarget *Subtarget) {
3236  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3237      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3238    return false;
3239
3240  unsigned NumElts = VT.getVectorNumElements();
3241  unsigned NumLanes = VT.getSizeInBits()/128;
3242  unsigned NumLaneElts = NumElts/NumLanes;
3243
3244  // Do not handle 64-bit element shuffles with palignr.
3245  if (NumLaneElts == 2)
3246    return false;
3247
3248  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3249    unsigned i;
3250    for (i = 0; i != NumLaneElts; ++i) {
3251      if (Mask[i+l] >= 0)
3252        break;
3253    }
3254
3255    // Lane is all undef, go to next lane
3256    if (i == NumLaneElts)
3257      continue;
3258
3259    int Start = Mask[i+l];
3260
3261    // Make sure its in this lane in one of the sources
3262    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3263        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3264      return false;
3265
3266    // If not lane 0, then we must match lane 0
3267    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3268      return false;
3269
3270    // Correct second source to be contiguous with first source
3271    if (Start >= (int)NumElts)
3272      Start -= NumElts - NumLaneElts;
3273
3274    // Make sure we're shifting in the right direction.
3275    if (Start <= (int)(i+l))
3276      return false;
3277
3278    Start -= i;
3279
3280    // Check the rest of the elements to see if they are consecutive.
3281    for (++i; i != NumLaneElts; ++i) {
3282      int Idx = Mask[i+l];
3283
3284      // Make sure its in this lane
3285      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3286          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3287        return false;
3288
3289      // If not lane 0, then we must match lane 0
3290      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3291        return false;
3292
3293      if (Idx >= (int)NumElts)
3294        Idx -= NumElts - NumLaneElts;
3295
3296      if (!isUndefOrEqual(Idx, Start+i))
3297        return false;
3298
3299    }
3300  }
3301
3302  return true;
3303}
3304
3305/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3306/// the two vector operands have swapped position.
3307static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3308                                     unsigned NumElems) {
3309  for (unsigned i = 0; i != NumElems; ++i) {
3310    int idx = Mask[i];
3311    if (idx < 0)
3312      continue;
3313    else if (idx < (int)NumElems)
3314      Mask[i] = idx + NumElems;
3315    else
3316      Mask[i] = idx - NumElems;
3317  }
3318}
3319
3320/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3321/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3322/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3323/// reverse of what x86 shuffles want.
3324static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3325                        bool Commuted = false) {
3326  if (!HasAVX && VT.getSizeInBits() == 256)
3327    return false;
3328
3329  unsigned NumElems = VT.getVectorNumElements();
3330  unsigned NumLanes = VT.getSizeInBits()/128;
3331  unsigned NumLaneElems = NumElems/NumLanes;
3332
3333  if (NumLaneElems != 2 && NumLaneElems != 4)
3334    return false;
3335
3336  // VSHUFPSY divides the resulting vector into 4 chunks.
3337  // The sources are also splitted into 4 chunks, and each destination
3338  // chunk must come from a different source chunk.
3339  //
3340  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3341  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3342  //
3343  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3344  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3345  //
3346  // VSHUFPDY divides the resulting vector into 4 chunks.
3347  // The sources are also splitted into 4 chunks, and each destination
3348  // chunk must come from a different source chunk.
3349  //
3350  //  SRC1 =>      X3       X2       X1       X0
3351  //  SRC2 =>      Y3       Y2       Y1       Y0
3352  //
3353  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3354  //
3355  unsigned HalfLaneElems = NumLaneElems/2;
3356  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3357    for (unsigned i = 0; i != NumLaneElems; ++i) {
3358      int Idx = Mask[i+l];
3359      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3360      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3361        return false;
3362      // For VSHUFPSY, the mask of the second half must be the same as the
3363      // first but with the appropriate offsets. This works in the same way as
3364      // VPERMILPS works with masks.
3365      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3366        continue;
3367      if (!isUndefOrEqual(Idx, Mask[i]+l))
3368        return false;
3369    }
3370  }
3371
3372  return true;
3373}
3374
3375/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3376/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3377static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3378  unsigned NumElems = VT.getVectorNumElements();
3379
3380  if (VT.getSizeInBits() != 128)
3381    return false;
3382
3383  if (NumElems != 4)
3384    return false;
3385
3386  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3387  return isUndefOrEqual(Mask[0], 6) &&
3388         isUndefOrEqual(Mask[1], 7) &&
3389         isUndefOrEqual(Mask[2], 2) &&
3390         isUndefOrEqual(Mask[3], 3);
3391}
3392
3393/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3394/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3395/// <2, 3, 2, 3>
3396static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3397  unsigned NumElems = VT.getVectorNumElements();
3398
3399  if (VT.getSizeInBits() != 128)
3400    return false;
3401
3402  if (NumElems != 4)
3403    return false;
3404
3405  return isUndefOrEqual(Mask[0], 2) &&
3406         isUndefOrEqual(Mask[1], 3) &&
3407         isUndefOrEqual(Mask[2], 2) &&
3408         isUndefOrEqual(Mask[3], 3);
3409}
3410
3411/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3412/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3413static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3414  if (VT.getSizeInBits() != 128)
3415    return false;
3416
3417  unsigned NumElems = VT.getVectorNumElements();
3418
3419  if (NumElems != 2 && NumElems != 4)
3420    return false;
3421
3422  for (unsigned i = 0; i != NumElems/2; ++i)
3423    if (!isUndefOrEqual(Mask[i], i + NumElems))
3424      return false;
3425
3426  for (unsigned i = NumElems/2; i != NumElems; ++i)
3427    if (!isUndefOrEqual(Mask[i], i))
3428      return false;
3429
3430  return true;
3431}
3432
3433/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3434/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3435static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3436  unsigned NumElems = VT.getVectorNumElements();
3437
3438  if ((NumElems != 2 && NumElems != 4)
3439      || VT.getSizeInBits() > 128)
3440    return false;
3441
3442  for (unsigned i = 0; i != NumElems/2; ++i)
3443    if (!isUndefOrEqual(Mask[i], i))
3444      return false;
3445
3446  for (unsigned i = 0; i != NumElems/2; ++i)
3447    if (!isUndefOrEqual(Mask[i + NumElems/2], i + NumElems))
3448      return false;
3449
3450  return true;
3451}
3452
3453/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3454/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3455static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3456                         bool HasAVX2, bool V2IsSplat = false) {
3457  unsigned NumElts = VT.getVectorNumElements();
3458
3459  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3460         "Unsupported vector type for unpckh");
3461
3462  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3463      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3464    return false;
3465
3466  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3467  // independently on 128-bit lanes.
3468  unsigned NumLanes = VT.getSizeInBits()/128;
3469  unsigned NumLaneElts = NumElts/NumLanes;
3470
3471  for (unsigned l = 0; l != NumLanes; ++l) {
3472    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3473         i != (l+1)*NumLaneElts;
3474         i += 2, ++j) {
3475      int BitI  = Mask[i];
3476      int BitI1 = Mask[i+1];
3477      if (!isUndefOrEqual(BitI, j))
3478        return false;
3479      if (V2IsSplat) {
3480        if (!isUndefOrEqual(BitI1, NumElts))
3481          return false;
3482      } else {
3483        if (!isUndefOrEqual(BitI1, j + NumElts))
3484          return false;
3485      }
3486    }
3487  }
3488
3489  return true;
3490}
3491
3492/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3493/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3494static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3495                         bool HasAVX2, bool V2IsSplat = false) {
3496  unsigned NumElts = VT.getVectorNumElements();
3497
3498  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3499         "Unsupported vector type for unpckh");
3500
3501  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3502      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3503    return false;
3504
3505  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3506  // independently on 128-bit lanes.
3507  unsigned NumLanes = VT.getSizeInBits()/128;
3508  unsigned NumLaneElts = NumElts/NumLanes;
3509
3510  for (unsigned l = 0; l != NumLanes; ++l) {
3511    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3512         i != (l+1)*NumLaneElts; i += 2, ++j) {
3513      int BitI  = Mask[i];
3514      int BitI1 = Mask[i+1];
3515      if (!isUndefOrEqual(BitI, j))
3516        return false;
3517      if (V2IsSplat) {
3518        if (isUndefOrEqual(BitI1, NumElts))
3519          return false;
3520      } else {
3521        if (!isUndefOrEqual(BitI1, j+NumElts))
3522          return false;
3523      }
3524    }
3525  }
3526  return true;
3527}
3528
3529/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3530/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3531/// <0, 0, 1, 1>
3532static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3533                                  bool HasAVX2) {
3534  unsigned NumElts = VT.getVectorNumElements();
3535
3536  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3537         "Unsupported vector type for unpckh");
3538
3539  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3540      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3541    return false;
3542
3543  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3544  // FIXME: Need a better way to get rid of this, there's no latency difference
3545  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3546  // the former later. We should also remove the "_undef" special mask.
3547  if (NumElts == 4 && VT.getSizeInBits() == 256)
3548    return false;
3549
3550  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3551  // independently on 128-bit lanes.
3552  unsigned NumLanes = VT.getSizeInBits()/128;
3553  unsigned NumLaneElts = NumElts/NumLanes;
3554
3555  for (unsigned l = 0; l != NumLanes; ++l) {
3556    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3557         i != (l+1)*NumLaneElts;
3558         i += 2, ++j) {
3559      int BitI  = Mask[i];
3560      int BitI1 = Mask[i+1];
3561
3562      if (!isUndefOrEqual(BitI, j))
3563        return false;
3564      if (!isUndefOrEqual(BitI1, j))
3565        return false;
3566    }
3567  }
3568
3569  return true;
3570}
3571
3572/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3573/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3574/// <2, 2, 3, 3>
3575static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3576  unsigned NumElts = VT.getVectorNumElements();
3577
3578  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3579         "Unsupported vector type for unpckh");
3580
3581  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3582      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3583    return false;
3584
3585  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3586  // independently on 128-bit lanes.
3587  unsigned NumLanes = VT.getSizeInBits()/128;
3588  unsigned NumLaneElts = NumElts/NumLanes;
3589
3590  for (unsigned l = 0; l != NumLanes; ++l) {
3591    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3592         i != (l+1)*NumLaneElts; i += 2, ++j) {
3593      int BitI  = Mask[i];
3594      int BitI1 = Mask[i+1];
3595      if (!isUndefOrEqual(BitI, j))
3596        return false;
3597      if (!isUndefOrEqual(BitI1, j))
3598        return false;
3599    }
3600  }
3601  return true;
3602}
3603
3604/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3605/// specifies a shuffle of elements that is suitable for input to MOVSS,
3606/// MOVSD, and MOVD, i.e. setting the lowest element.
3607static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3608  if (VT.getVectorElementType().getSizeInBits() < 32)
3609    return false;
3610  if (VT.getSizeInBits() == 256)
3611    return false;
3612
3613  unsigned NumElts = VT.getVectorNumElements();
3614
3615  if (!isUndefOrEqual(Mask[0], NumElts))
3616    return false;
3617
3618  for (unsigned i = 1; i != NumElts; ++i)
3619    if (!isUndefOrEqual(Mask[i], i))
3620      return false;
3621
3622  return true;
3623}
3624
3625/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3626/// as permutations between 128-bit chunks or halves. As an example: this
3627/// shuffle bellow:
3628///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3629/// The first half comes from the second half of V1 and the second half from the
3630/// the second half of V2.
3631static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3632  if (!HasAVX || VT.getSizeInBits() != 256)
3633    return false;
3634
3635  // The shuffle result is divided into half A and half B. In total the two
3636  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3637  // B must come from C, D, E or F.
3638  unsigned HalfSize = VT.getVectorNumElements()/2;
3639  bool MatchA = false, MatchB = false;
3640
3641  // Check if A comes from one of C, D, E, F.
3642  for (unsigned Half = 0; Half != 4; ++Half) {
3643    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3644      MatchA = true;
3645      break;
3646    }
3647  }
3648
3649  // Check if B comes from one of C, D, E, F.
3650  for (unsigned Half = 0; Half != 4; ++Half) {
3651    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3652      MatchB = true;
3653      break;
3654    }
3655  }
3656
3657  return MatchA && MatchB;
3658}
3659
3660/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3661/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3662static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3663  EVT VT = SVOp->getValueType(0);
3664
3665  unsigned HalfSize = VT.getVectorNumElements()/2;
3666
3667  unsigned FstHalf = 0, SndHalf = 0;
3668  for (unsigned i = 0; i < HalfSize; ++i) {
3669    if (SVOp->getMaskElt(i) > 0) {
3670      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3671      break;
3672    }
3673  }
3674  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3675    if (SVOp->getMaskElt(i) > 0) {
3676      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3677      break;
3678    }
3679  }
3680
3681  return (FstHalf | (SndHalf << 4));
3682}
3683
3684/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3685/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3686/// Note that VPERMIL mask matching is different depending whether theunderlying
3687/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3688/// to the same elements of the low, but to the higher half of the source.
3689/// In VPERMILPD the two lanes could be shuffled independently of each other
3690/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3691static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3692  if (!HasAVX)
3693    return false;
3694
3695  unsigned NumElts = VT.getVectorNumElements();
3696  // Only match 256-bit with 32/64-bit types
3697  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3698    return false;
3699
3700  unsigned NumLanes = VT.getSizeInBits()/128;
3701  unsigned LaneSize = NumElts/NumLanes;
3702  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3703    for (unsigned i = 0; i != LaneSize; ++i) {
3704      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3705        return false;
3706      if (NumElts != 8 || l == 0)
3707        continue;
3708      // VPERMILPS handling
3709      if (Mask[i] < 0)
3710        continue;
3711      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3712        return false;
3713    }
3714  }
3715
3716  return true;
3717}
3718
3719/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3720/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3721/// element of vector 2 and the other elements to come from vector 1 in order.
3722static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3723                               bool V2IsSplat = false, bool V2IsUndef = false) {
3724  unsigned NumOps = VT.getVectorNumElements();
3725  if (VT.getSizeInBits() == 256)
3726    return false;
3727  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3728    return false;
3729
3730  if (!isUndefOrEqual(Mask[0], 0))
3731    return false;
3732
3733  for (unsigned i = 1; i != NumOps; ++i)
3734    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3735          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3736          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3737      return false;
3738
3739  return true;
3740}
3741
3742/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3743/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3744/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3745static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3746                           const X86Subtarget *Subtarget) {
3747  if (!Subtarget->hasSSE3())
3748    return false;
3749
3750  unsigned NumElems = VT.getVectorNumElements();
3751
3752  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3753      (VT.getSizeInBits() == 256 && NumElems != 8))
3754    return false;
3755
3756  // "i+1" is the value the indexed mask element must have
3757  for (unsigned i = 0; i != NumElems; i += 2)
3758    if (!isUndefOrEqual(Mask[i], i+1) ||
3759        !isUndefOrEqual(Mask[i+1], i+1))
3760      return false;
3761
3762  return true;
3763}
3764
3765/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3766/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3767/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3768static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3769                           const X86Subtarget *Subtarget) {
3770  if (!Subtarget->hasSSE3())
3771    return false;
3772
3773  unsigned NumElems = VT.getVectorNumElements();
3774
3775  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3776      (VT.getSizeInBits() == 256 && NumElems != 8))
3777    return false;
3778
3779  // "i" is the value the indexed mask element must have
3780  for (unsigned i = 0; i != NumElems; i += 2)
3781    if (!isUndefOrEqual(Mask[i], i) ||
3782        !isUndefOrEqual(Mask[i+1], i))
3783      return false;
3784
3785  return true;
3786}
3787
3788/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3789/// specifies a shuffle of elements that is suitable for input to 256-bit
3790/// version of MOVDDUP.
3791static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3792  unsigned NumElts = VT.getVectorNumElements();
3793
3794  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3795    return false;
3796
3797  for (unsigned i = 0; i != NumElts/2; ++i)
3798    if (!isUndefOrEqual(Mask[i], 0))
3799      return false;
3800  for (unsigned i = NumElts/2; i != NumElts; ++i)
3801    if (!isUndefOrEqual(Mask[i], NumElts/2))
3802      return false;
3803  return true;
3804}
3805
3806/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3807/// specifies a shuffle of elements that is suitable for input to 128-bit
3808/// version of MOVDDUP.
3809static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3810  if (VT.getSizeInBits() != 128)
3811    return false;
3812
3813  unsigned e = VT.getVectorNumElements() / 2;
3814  for (unsigned i = 0; i != e; ++i)
3815    if (!isUndefOrEqual(Mask[i], i))
3816      return false;
3817  for (unsigned i = 0; i != e; ++i)
3818    if (!isUndefOrEqual(Mask[e+i], i))
3819      return false;
3820  return true;
3821}
3822
3823/// isVEXTRACTF128Index - Return true if the specified
3824/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3825/// suitable for input to VEXTRACTF128.
3826bool X86::isVEXTRACTF128Index(SDNode *N) {
3827  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3828    return false;
3829
3830  // The index should be aligned on a 128-bit boundary.
3831  uint64_t Index =
3832    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3833
3834  unsigned VL = N->getValueType(0).getVectorNumElements();
3835  unsigned VBits = N->getValueType(0).getSizeInBits();
3836  unsigned ElSize = VBits / VL;
3837  bool Result = (Index * ElSize) % 128 == 0;
3838
3839  return Result;
3840}
3841
3842/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3843/// operand specifies a subvector insert that is suitable for input to
3844/// VINSERTF128.
3845bool X86::isVINSERTF128Index(SDNode *N) {
3846  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3847    return false;
3848
3849  // The index should be aligned on a 128-bit boundary.
3850  uint64_t Index =
3851    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3852
3853  unsigned VL = N->getValueType(0).getVectorNumElements();
3854  unsigned VBits = N->getValueType(0).getSizeInBits();
3855  unsigned ElSize = VBits / VL;
3856  bool Result = (Index * ElSize) % 128 == 0;
3857
3858  return Result;
3859}
3860
3861/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3862/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3863/// Handles 128-bit and 256-bit.
3864static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3865  EVT VT = N->getValueType(0);
3866
3867  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3868         "Unsupported vector type for PSHUF/SHUFP");
3869
3870  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3871  // independently on 128-bit lanes.
3872  unsigned NumElts = VT.getVectorNumElements();
3873  unsigned NumLanes = VT.getSizeInBits()/128;
3874  unsigned NumLaneElts = NumElts/NumLanes;
3875
3876  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3877         "Only supports 2 or 4 elements per lane");
3878
3879  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3880  unsigned Mask = 0;
3881  for (unsigned i = 0; i != NumElts; ++i) {
3882    int Elt = N->getMaskElt(i);
3883    if (Elt < 0) continue;
3884    Elt %= NumLaneElts;
3885    unsigned ShAmt = i << Shift;
3886    if (ShAmt >= 8) ShAmt -= 8;
3887    Mask |= Elt << ShAmt;
3888  }
3889
3890  return Mask;
3891}
3892
3893/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3894/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3895static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3896  unsigned Mask = 0;
3897  // 8 nodes, but we only care about the last 4.
3898  for (unsigned i = 7; i >= 4; --i) {
3899    int Val = N->getMaskElt(i);
3900    if (Val >= 0)
3901      Mask |= (Val - 4);
3902    if (i != 4)
3903      Mask <<= 2;
3904  }
3905  return Mask;
3906}
3907
3908/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3909/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3910static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
3911  unsigned Mask = 0;
3912  // 8 nodes, but we only care about the first 4.
3913  for (int i = 3; i >= 0; --i) {
3914    int Val = N->getMaskElt(i);
3915    if (Val >= 0)
3916      Mask |= Val;
3917    if (i != 0)
3918      Mask <<= 2;
3919  }
3920  return Mask;
3921}
3922
3923/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3924/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3925static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3926  EVT VT = SVOp->getValueType(0);
3927  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3928
3929  unsigned NumElts = VT.getVectorNumElements();
3930  unsigned NumLanes = VT.getSizeInBits()/128;
3931  unsigned NumLaneElts = NumElts/NumLanes;
3932
3933  int Val = 0;
3934  unsigned i;
3935  for (i = 0; i != NumElts; ++i) {
3936    Val = SVOp->getMaskElt(i);
3937    if (Val >= 0)
3938      break;
3939  }
3940  if (Val >= (int)NumElts)
3941    Val -= NumElts - NumLaneElts;
3942
3943  assert(Val - i > 0 && "PALIGNR imm should be positive");
3944  return (Val - i) * EltSize;
3945}
3946
3947/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3948/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3949/// instructions.
3950unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3951  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3952    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3953
3954  uint64_t Index =
3955    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3956
3957  EVT VecVT = N->getOperand(0).getValueType();
3958  EVT ElVT = VecVT.getVectorElementType();
3959
3960  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3961  return Index / NumElemsPerChunk;
3962}
3963
3964/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3965/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3966/// instructions.
3967unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3968  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3969    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3970
3971  uint64_t Index =
3972    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3973
3974  EVT VecVT = N->getValueType(0);
3975  EVT ElVT = VecVT.getVectorElementType();
3976
3977  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3978  return Index / NumElemsPerChunk;
3979}
3980
3981/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
3982/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
3983/// Handles 256-bit.
3984static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
3985  EVT VT = N->getValueType(0);
3986
3987  unsigned NumElts = VT.getVectorNumElements();
3988
3989  assert((VT.is256BitVector() && NumElts == 4) &&
3990         "Unsupported vector type for VPERMQ/VPERMPD");
3991
3992  unsigned Mask = 0;
3993  for (unsigned i = 0; i != NumElts; ++i) {
3994    int Elt = N->getMaskElt(i);
3995    if (Elt < 0)
3996      continue;
3997    Mask |= Elt << (i*2);
3998  }
3999
4000  return Mask;
4001}
4002/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4003/// constant +0.0.
4004bool X86::isZeroNode(SDValue Elt) {
4005  return ((isa<ConstantSDNode>(Elt) &&
4006           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4007          (isa<ConstantFPSDNode>(Elt) &&
4008           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4009}
4010
4011/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4012/// their permute mask.
4013static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4014                                    SelectionDAG &DAG) {
4015  EVT VT = SVOp->getValueType(0);
4016  unsigned NumElems = VT.getVectorNumElements();
4017  SmallVector<int, 8> MaskVec;
4018
4019  for (unsigned i = 0; i != NumElems; ++i) {
4020    int idx = SVOp->getMaskElt(i);
4021    if (idx < 0)
4022      MaskVec.push_back(idx);
4023    else if (idx < (int)NumElems)
4024      MaskVec.push_back(idx + NumElems);
4025    else
4026      MaskVec.push_back(idx - NumElems);
4027  }
4028  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4029                              SVOp->getOperand(0), &MaskVec[0]);
4030}
4031
4032/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4033/// match movhlps. The lower half elements should come from upper half of
4034/// V1 (and in order), and the upper half elements should come from the upper
4035/// half of V2 (and in order).
4036static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4037  if (VT.getSizeInBits() != 128)
4038    return false;
4039  if (VT.getVectorNumElements() != 4)
4040    return false;
4041  for (unsigned i = 0, e = 2; i != e; ++i)
4042    if (!isUndefOrEqual(Mask[i], i+2))
4043      return false;
4044  for (unsigned i = 2; i != 4; ++i)
4045    if (!isUndefOrEqual(Mask[i], i+4))
4046      return false;
4047  return true;
4048}
4049
4050/// isScalarLoadToVector - Returns true if the node is a scalar load that
4051/// is promoted to a vector. It also returns the LoadSDNode by reference if
4052/// required.
4053static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4054  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4055    return false;
4056  N = N->getOperand(0).getNode();
4057  if (!ISD::isNON_EXTLoad(N))
4058    return false;
4059  if (LD)
4060    *LD = cast<LoadSDNode>(N);
4061  return true;
4062}
4063
4064// Test whether the given value is a vector value which will be legalized
4065// into a load.
4066static bool WillBeConstantPoolLoad(SDNode *N) {
4067  if (N->getOpcode() != ISD::BUILD_VECTOR)
4068    return false;
4069
4070  // Check for any non-constant elements.
4071  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4072    switch (N->getOperand(i).getNode()->getOpcode()) {
4073    case ISD::UNDEF:
4074    case ISD::ConstantFP:
4075    case ISD::Constant:
4076      break;
4077    default:
4078      return false;
4079    }
4080
4081  // Vectors of all-zeros and all-ones are materialized with special
4082  // instructions rather than being loaded.
4083  return !ISD::isBuildVectorAllZeros(N) &&
4084         !ISD::isBuildVectorAllOnes(N);
4085}
4086
4087/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4088/// match movlp{s|d}. The lower half elements should come from lower half of
4089/// V1 (and in order), and the upper half elements should come from the upper
4090/// half of V2 (and in order). And since V1 will become the source of the
4091/// MOVLP, it must be either a vector load or a scalar load to vector.
4092static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4093                               ArrayRef<int> Mask, EVT VT) {
4094  if (VT.getSizeInBits() != 128)
4095    return false;
4096
4097  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4098    return false;
4099  // Is V2 is a vector load, don't do this transformation. We will try to use
4100  // load folding shufps op.
4101  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4102    return false;
4103
4104  unsigned NumElems = VT.getVectorNumElements();
4105
4106  if (NumElems != 2 && NumElems != 4)
4107    return false;
4108  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4109    if (!isUndefOrEqual(Mask[i], i))
4110      return false;
4111  for (unsigned i = NumElems/2; i != NumElems; ++i)
4112    if (!isUndefOrEqual(Mask[i], i+NumElems))
4113      return false;
4114  return true;
4115}
4116
4117/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4118/// all the same.
4119static bool isSplatVector(SDNode *N) {
4120  if (N->getOpcode() != ISD::BUILD_VECTOR)
4121    return false;
4122
4123  SDValue SplatValue = N->getOperand(0);
4124  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4125    if (N->getOperand(i) != SplatValue)
4126      return false;
4127  return true;
4128}
4129
4130/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4131/// to an zero vector.
4132/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4133static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4134  SDValue V1 = N->getOperand(0);
4135  SDValue V2 = N->getOperand(1);
4136  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4137  for (unsigned i = 0; i != NumElems; ++i) {
4138    int Idx = N->getMaskElt(i);
4139    if (Idx >= (int)NumElems) {
4140      unsigned Opc = V2.getOpcode();
4141      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4142        continue;
4143      if (Opc != ISD::BUILD_VECTOR ||
4144          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4145        return false;
4146    } else if (Idx >= 0) {
4147      unsigned Opc = V1.getOpcode();
4148      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4149        continue;
4150      if (Opc != ISD::BUILD_VECTOR ||
4151          !X86::isZeroNode(V1.getOperand(Idx)))
4152        return false;
4153    }
4154  }
4155  return true;
4156}
4157
4158/// getZeroVector - Returns a vector of specified type with all zero elements.
4159///
4160static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4161                             SelectionDAG &DAG, DebugLoc dl) {
4162  assert(VT.isVector() && "Expected a vector type");
4163
4164  // Always build SSE zero vectors as <4 x i32> bitcasted
4165  // to their dest type. This ensures they get CSE'd.
4166  SDValue Vec;
4167  if (VT.getSizeInBits() == 128) {  // SSE
4168    if (Subtarget->hasSSE2()) {  // SSE2
4169      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4170      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4171    } else { // SSE1
4172      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4173      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4174    }
4175  } else if (VT.getSizeInBits() == 256) { // AVX
4176    if (Subtarget->hasAVX2()) { // AVX2
4177      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4178      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4179      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4180    } else {
4181      // 256-bit logic and arithmetic instructions in AVX are all
4182      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4183      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4184      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4185      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4186    }
4187  }
4188  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4189}
4190
4191/// getOnesVector - Returns a vector of specified type with all bits set.
4192/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4193/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4194/// Then bitcast to their original type, ensuring they get CSE'd.
4195static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4196                             DebugLoc dl) {
4197  assert(VT.isVector() && "Expected a vector type");
4198  assert((VT.is128BitVector() || VT.is256BitVector())
4199         && "Expected a 128-bit or 256-bit vector type");
4200
4201  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4202  SDValue Vec;
4203  if (VT.getSizeInBits() == 256) {
4204    if (HasAVX2) { // AVX2
4205      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4206      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4207    } else { // AVX
4208      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4209      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4210                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4211      Vec = Insert128BitVector(InsV, Vec,
4212                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4213    }
4214  } else {
4215    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4216  }
4217
4218  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4219}
4220
4221/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4222/// that point to V2 points to its first element.
4223static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4224  for (unsigned i = 0; i != NumElems; ++i) {
4225    if (Mask[i] > (int)NumElems) {
4226      Mask[i] = NumElems;
4227    }
4228  }
4229}
4230
4231/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4232/// operation of specified width.
4233static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4234                       SDValue V2) {
4235  unsigned NumElems = VT.getVectorNumElements();
4236  SmallVector<int, 8> Mask;
4237  Mask.push_back(NumElems);
4238  for (unsigned i = 1; i != NumElems; ++i)
4239    Mask.push_back(i);
4240  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4241}
4242
4243/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4244static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4245                          SDValue V2) {
4246  unsigned NumElems = VT.getVectorNumElements();
4247  SmallVector<int, 8> Mask;
4248  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4249    Mask.push_back(i);
4250    Mask.push_back(i + NumElems);
4251  }
4252  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4253}
4254
4255/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4256static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4257                          SDValue V2) {
4258  unsigned NumElems = VT.getVectorNumElements();
4259  unsigned Half = NumElems/2;
4260  SmallVector<int, 8> Mask;
4261  for (unsigned i = 0; i != Half; ++i) {
4262    Mask.push_back(i + Half);
4263    Mask.push_back(i + NumElems + Half);
4264  }
4265  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4266}
4267
4268// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4269// a generic shuffle instruction because the target has no such instructions.
4270// Generate shuffles which repeat i16 and i8 several times until they can be
4271// represented by v4f32 and then be manipulated by target suported shuffles.
4272static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4273  EVT VT = V.getValueType();
4274  int NumElems = VT.getVectorNumElements();
4275  DebugLoc dl = V.getDebugLoc();
4276
4277  while (NumElems > 4) {
4278    if (EltNo < NumElems/2) {
4279      V = getUnpackl(DAG, dl, VT, V, V);
4280    } else {
4281      V = getUnpackh(DAG, dl, VT, V, V);
4282      EltNo -= NumElems/2;
4283    }
4284    NumElems >>= 1;
4285  }
4286  return V;
4287}
4288
4289/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4290static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4291  EVT VT = V.getValueType();
4292  DebugLoc dl = V.getDebugLoc();
4293  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4294         && "Vector size not supported");
4295
4296  if (VT.getSizeInBits() == 128) {
4297    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4298    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4299    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4300                             &SplatMask[0]);
4301  } else {
4302    // To use VPERMILPS to splat scalars, the second half of indicies must
4303    // refer to the higher part, which is a duplication of the lower one,
4304    // because VPERMILPS can only handle in-lane permutations.
4305    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4306                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4307
4308    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4309    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4310                             &SplatMask[0]);
4311  }
4312
4313  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4314}
4315
4316/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4317static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4318  EVT SrcVT = SV->getValueType(0);
4319  SDValue V1 = SV->getOperand(0);
4320  DebugLoc dl = SV->getDebugLoc();
4321
4322  int EltNo = SV->getSplatIndex();
4323  int NumElems = SrcVT.getVectorNumElements();
4324  unsigned Size = SrcVT.getSizeInBits();
4325
4326  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4327          "Unknown how to promote splat for type");
4328
4329  // Extract the 128-bit part containing the splat element and update
4330  // the splat element index when it refers to the higher register.
4331  if (Size == 256) {
4332    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4333    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4334    if (Idx > 0)
4335      EltNo -= NumElems/2;
4336  }
4337
4338  // All i16 and i8 vector types can't be used directly by a generic shuffle
4339  // instruction because the target has no such instruction. Generate shuffles
4340  // which repeat i16 and i8 several times until they fit in i32, and then can
4341  // be manipulated by target suported shuffles.
4342  EVT EltVT = SrcVT.getVectorElementType();
4343  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4344    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4345
4346  // Recreate the 256-bit vector and place the same 128-bit vector
4347  // into the low and high part. This is necessary because we want
4348  // to use VPERM* to shuffle the vectors
4349  if (Size == 256) {
4350    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4351                         DAG.getConstant(0, MVT::i32), DAG, dl);
4352    V1 = Insert128BitVector(InsV, V1,
4353               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4354  }
4355
4356  return getLegalSplat(DAG, V1, EltNo);
4357}
4358
4359/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4360/// vector of zero or undef vector.  This produces a shuffle where the low
4361/// element of V2 is swizzled into the zero/undef vector, landing at element
4362/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4363static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4364                                           bool IsZero,
4365                                           const X86Subtarget *Subtarget,
4366                                           SelectionDAG &DAG) {
4367  EVT VT = V2.getValueType();
4368  SDValue V1 = IsZero
4369    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4370  unsigned NumElems = VT.getVectorNumElements();
4371  SmallVector<int, 16> MaskVec;
4372  for (unsigned i = 0; i != NumElems; ++i)
4373    // If this is the insertion idx, put the low elt of V2 here.
4374    MaskVec.push_back(i == Idx ? NumElems : i);
4375  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4376}
4377
4378/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4379/// target specific opcode. Returns true if the Mask could be calculated.
4380/// Sets IsUnary to true if only uses one source.
4381static bool getTargetShuffleMask(SDNode *N, EVT VT,
4382                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4383  unsigned NumElems = VT.getVectorNumElements();
4384  SDValue ImmN;
4385
4386  IsUnary = false;
4387  switch(N->getOpcode()) {
4388  case X86ISD::SHUFP:
4389    ImmN = N->getOperand(N->getNumOperands()-1);
4390    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4391    break;
4392  case X86ISD::UNPCKH:
4393    DecodeUNPCKHMask(VT, Mask);
4394    break;
4395  case X86ISD::UNPCKL:
4396    DecodeUNPCKLMask(VT, Mask);
4397    break;
4398  case X86ISD::MOVHLPS:
4399    DecodeMOVHLPSMask(NumElems, Mask);
4400    break;
4401  case X86ISD::MOVLHPS:
4402    DecodeMOVLHPSMask(NumElems, Mask);
4403    break;
4404  case X86ISD::PSHUFD:
4405  case X86ISD::VPERMILP:
4406    ImmN = N->getOperand(N->getNumOperands()-1);
4407    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4408    IsUnary = true;
4409    break;
4410  case X86ISD::PSHUFHW:
4411    ImmN = N->getOperand(N->getNumOperands()-1);
4412    DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4413    IsUnary = true;
4414    break;
4415  case X86ISD::PSHUFLW:
4416    ImmN = N->getOperand(N->getNumOperands()-1);
4417    DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4418    IsUnary = true;
4419    break;
4420  case X86ISD::MOVSS:
4421  case X86ISD::MOVSD: {
4422    // The index 0 always comes from the first element of the second source,
4423    // this is why MOVSS and MOVSD are used in the first place. The other
4424    // elements come from the other positions of the first source vector
4425    Mask.push_back(NumElems);
4426    for (unsigned i = 1; i != NumElems; ++i) {
4427      Mask.push_back(i);
4428    }
4429    break;
4430  }
4431  case X86ISD::VPERM2X128:
4432    ImmN = N->getOperand(N->getNumOperands()-1);
4433    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4434    if (Mask.empty()) return false;
4435    break;
4436  case X86ISD::MOVDDUP:
4437  case X86ISD::MOVLHPD:
4438  case X86ISD::MOVLPD:
4439  case X86ISD::MOVLPS:
4440  case X86ISD::MOVSHDUP:
4441  case X86ISD::MOVSLDUP:
4442  case X86ISD::PALIGN:
4443    // Not yet implemented
4444    return false;
4445  default: llvm_unreachable("unknown target shuffle node");
4446  }
4447
4448  return true;
4449}
4450
4451/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4452/// element of the result of the vector shuffle.
4453static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4454                                   unsigned Depth) {
4455  if (Depth == 6)
4456    return SDValue();  // Limit search depth.
4457
4458  SDValue V = SDValue(N, 0);
4459  EVT VT = V.getValueType();
4460  unsigned Opcode = V.getOpcode();
4461
4462  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4463  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4464    int Elt = SV->getMaskElt(Index);
4465
4466    if (Elt < 0)
4467      return DAG.getUNDEF(VT.getVectorElementType());
4468
4469    unsigned NumElems = VT.getVectorNumElements();
4470    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4471                                         : SV->getOperand(1);
4472    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4473  }
4474
4475  // Recurse into target specific vector shuffles to find scalars.
4476  if (isTargetShuffle(Opcode)) {
4477    unsigned NumElems = VT.getVectorNumElements();
4478    SmallVector<int, 16> ShuffleMask;
4479    SDValue ImmN;
4480    bool IsUnary;
4481
4482    if (!getTargetShuffleMask(N, VT, ShuffleMask, IsUnary))
4483      return SDValue();
4484
4485    int Elt = ShuffleMask[Index];
4486    if (Elt < 0)
4487      return DAG.getUNDEF(VT.getVectorElementType());
4488
4489    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4490                                           : N->getOperand(1);
4491    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4492                               Depth+1);
4493  }
4494
4495  // Actual nodes that may contain scalar elements
4496  if (Opcode == ISD::BITCAST) {
4497    V = V.getOperand(0);
4498    EVT SrcVT = V.getValueType();
4499    unsigned NumElems = VT.getVectorNumElements();
4500
4501    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4502      return SDValue();
4503  }
4504
4505  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4506    return (Index == 0) ? V.getOperand(0)
4507                        : DAG.getUNDEF(VT.getVectorElementType());
4508
4509  if (V.getOpcode() == ISD::BUILD_VECTOR)
4510    return V.getOperand(Index);
4511
4512  return SDValue();
4513}
4514
4515/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4516/// shuffle operation which come from a consecutively from a zero. The
4517/// search can start in two different directions, from left or right.
4518static
4519unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4520                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4521  unsigned i;
4522  for (i = 0; i != NumElems; ++i) {
4523    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4524    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4525    if (!(Elt.getNode() &&
4526         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4527      break;
4528  }
4529
4530  return i;
4531}
4532
4533/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4534/// correspond consecutively to elements from one of the vector operands,
4535/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4536static
4537bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4538                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4539                              unsigned NumElems, unsigned &OpNum) {
4540  bool SeenV1 = false;
4541  bool SeenV2 = false;
4542
4543  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4544    int Idx = SVOp->getMaskElt(i);
4545    // Ignore undef indicies
4546    if (Idx < 0)
4547      continue;
4548
4549    if (Idx < (int)NumElems)
4550      SeenV1 = true;
4551    else
4552      SeenV2 = true;
4553
4554    // Only accept consecutive elements from the same vector
4555    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4556      return false;
4557  }
4558
4559  OpNum = SeenV1 ? 0 : 1;
4560  return true;
4561}
4562
4563/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4564/// logical left shift of a vector.
4565static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4566                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4567  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4568  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4569              false /* check zeros from right */, DAG);
4570  unsigned OpSrc;
4571
4572  if (!NumZeros)
4573    return false;
4574
4575  // Considering the elements in the mask that are not consecutive zeros,
4576  // check if they consecutively come from only one of the source vectors.
4577  //
4578  //               V1 = {X, A, B, C}     0
4579  //                         \  \  \    /
4580  //   vector_shuffle V1, V2 <1, 2, 3, X>
4581  //
4582  if (!isShuffleMaskConsecutive(SVOp,
4583            0,                   // Mask Start Index
4584            NumElems-NumZeros,   // Mask End Index(exclusive)
4585            NumZeros,            // Where to start looking in the src vector
4586            NumElems,            // Number of elements in vector
4587            OpSrc))              // Which source operand ?
4588    return false;
4589
4590  isLeft = false;
4591  ShAmt = NumZeros;
4592  ShVal = SVOp->getOperand(OpSrc);
4593  return true;
4594}
4595
4596/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4597/// logical left shift of a vector.
4598static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4599                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4600  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4601  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4602              true /* check zeros from left */, DAG);
4603  unsigned OpSrc;
4604
4605  if (!NumZeros)
4606    return false;
4607
4608  // Considering the elements in the mask that are not consecutive zeros,
4609  // check if they consecutively come from only one of the source vectors.
4610  //
4611  //                           0    { A, B, X, X } = V2
4612  //                          / \    /  /
4613  //   vector_shuffle V1, V2 <X, X, 4, 5>
4614  //
4615  if (!isShuffleMaskConsecutive(SVOp,
4616            NumZeros,     // Mask Start Index
4617            NumElems,     // Mask End Index(exclusive)
4618            0,            // Where to start looking in the src vector
4619            NumElems,     // Number of elements in vector
4620            OpSrc))       // Which source operand ?
4621    return false;
4622
4623  isLeft = true;
4624  ShAmt = NumZeros;
4625  ShVal = SVOp->getOperand(OpSrc);
4626  return true;
4627}
4628
4629/// isVectorShift - Returns true if the shuffle can be implemented as a
4630/// logical left or right shift of a vector.
4631static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4632                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4633  // Although the logic below support any bitwidth size, there are no
4634  // shift instructions which handle more than 128-bit vectors.
4635  if (SVOp->getValueType(0).getSizeInBits() > 128)
4636    return false;
4637
4638  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4639      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4640    return true;
4641
4642  return false;
4643}
4644
4645/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4646///
4647static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4648                                       unsigned NumNonZero, unsigned NumZero,
4649                                       SelectionDAG &DAG,
4650                                       const X86Subtarget* Subtarget,
4651                                       const TargetLowering &TLI) {
4652  if (NumNonZero > 8)
4653    return SDValue();
4654
4655  DebugLoc dl = Op.getDebugLoc();
4656  SDValue V(0, 0);
4657  bool First = true;
4658  for (unsigned i = 0; i < 16; ++i) {
4659    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4660    if (ThisIsNonZero && First) {
4661      if (NumZero)
4662        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4663      else
4664        V = DAG.getUNDEF(MVT::v8i16);
4665      First = false;
4666    }
4667
4668    if ((i & 1) != 0) {
4669      SDValue ThisElt(0, 0), LastElt(0, 0);
4670      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4671      if (LastIsNonZero) {
4672        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4673                              MVT::i16, Op.getOperand(i-1));
4674      }
4675      if (ThisIsNonZero) {
4676        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4677        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4678                              ThisElt, DAG.getConstant(8, MVT::i8));
4679        if (LastIsNonZero)
4680          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4681      } else
4682        ThisElt = LastElt;
4683
4684      if (ThisElt.getNode())
4685        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4686                        DAG.getIntPtrConstant(i/2));
4687    }
4688  }
4689
4690  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4691}
4692
4693/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4694///
4695static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4696                                     unsigned NumNonZero, unsigned NumZero,
4697                                     SelectionDAG &DAG,
4698                                     const X86Subtarget* Subtarget,
4699                                     const TargetLowering &TLI) {
4700  if (NumNonZero > 4)
4701    return SDValue();
4702
4703  DebugLoc dl = Op.getDebugLoc();
4704  SDValue V(0, 0);
4705  bool First = true;
4706  for (unsigned i = 0; i < 8; ++i) {
4707    bool isNonZero = (NonZeros & (1 << i)) != 0;
4708    if (isNonZero) {
4709      if (First) {
4710        if (NumZero)
4711          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4712        else
4713          V = DAG.getUNDEF(MVT::v8i16);
4714        First = false;
4715      }
4716      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4717                      MVT::v8i16, V, Op.getOperand(i),
4718                      DAG.getIntPtrConstant(i));
4719    }
4720  }
4721
4722  return V;
4723}
4724
4725/// getVShift - Return a vector logical shift node.
4726///
4727static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4728                         unsigned NumBits, SelectionDAG &DAG,
4729                         const TargetLowering &TLI, DebugLoc dl) {
4730  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4731  EVT ShVT = MVT::v2i64;
4732  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4733  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4734  return DAG.getNode(ISD::BITCAST, dl, VT,
4735                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4736                             DAG.getConstant(NumBits,
4737                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4738}
4739
4740SDValue
4741X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4742                                          SelectionDAG &DAG) const {
4743
4744  // Check if the scalar load can be widened into a vector load. And if
4745  // the address is "base + cst" see if the cst can be "absorbed" into
4746  // the shuffle mask.
4747  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4748    SDValue Ptr = LD->getBasePtr();
4749    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4750      return SDValue();
4751    EVT PVT = LD->getValueType(0);
4752    if (PVT != MVT::i32 && PVT != MVT::f32)
4753      return SDValue();
4754
4755    int FI = -1;
4756    int64_t Offset = 0;
4757    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4758      FI = FINode->getIndex();
4759      Offset = 0;
4760    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4761               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4762      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4763      Offset = Ptr.getConstantOperandVal(1);
4764      Ptr = Ptr.getOperand(0);
4765    } else {
4766      return SDValue();
4767    }
4768
4769    // FIXME: 256-bit vector instructions don't require a strict alignment,
4770    // improve this code to support it better.
4771    unsigned RequiredAlign = VT.getSizeInBits()/8;
4772    SDValue Chain = LD->getChain();
4773    // Make sure the stack object alignment is at least 16 or 32.
4774    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4775    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4776      if (MFI->isFixedObjectIndex(FI)) {
4777        // Can't change the alignment. FIXME: It's possible to compute
4778        // the exact stack offset and reference FI + adjust offset instead.
4779        // If someone *really* cares about this. That's the way to implement it.
4780        return SDValue();
4781      } else {
4782        MFI->setObjectAlignment(FI, RequiredAlign);
4783      }
4784    }
4785
4786    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4787    // Ptr + (Offset & ~15).
4788    if (Offset < 0)
4789      return SDValue();
4790    if ((Offset % RequiredAlign) & 3)
4791      return SDValue();
4792    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4793    if (StartOffset)
4794      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4795                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4796
4797    int EltNo = (Offset - StartOffset) >> 2;
4798    int NumElems = VT.getVectorNumElements();
4799
4800    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4801    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4802                             LD->getPointerInfo().getWithOffset(StartOffset),
4803                             false, false, false, 0);
4804
4805    SmallVector<int, 8> Mask;
4806    for (int i = 0; i < NumElems; ++i)
4807      Mask.push_back(EltNo);
4808
4809    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4810  }
4811
4812  return SDValue();
4813}
4814
4815/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4816/// vector of type 'VT', see if the elements can be replaced by a single large
4817/// load which has the same value as a build_vector whose operands are 'elts'.
4818///
4819/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4820///
4821/// FIXME: we'd also like to handle the case where the last elements are zero
4822/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4823/// There's even a handy isZeroNode for that purpose.
4824static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4825                                        DebugLoc &DL, SelectionDAG &DAG) {
4826  EVT EltVT = VT.getVectorElementType();
4827  unsigned NumElems = Elts.size();
4828
4829  LoadSDNode *LDBase = NULL;
4830  unsigned LastLoadedElt = -1U;
4831
4832  // For each element in the initializer, see if we've found a load or an undef.
4833  // If we don't find an initial load element, or later load elements are
4834  // non-consecutive, bail out.
4835  for (unsigned i = 0; i < NumElems; ++i) {
4836    SDValue Elt = Elts[i];
4837
4838    if (!Elt.getNode() ||
4839        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4840      return SDValue();
4841    if (!LDBase) {
4842      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4843        return SDValue();
4844      LDBase = cast<LoadSDNode>(Elt.getNode());
4845      LastLoadedElt = i;
4846      continue;
4847    }
4848    if (Elt.getOpcode() == ISD::UNDEF)
4849      continue;
4850
4851    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4852    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4853      return SDValue();
4854    LastLoadedElt = i;
4855  }
4856
4857  // If we have found an entire vector of loads and undefs, then return a large
4858  // load of the entire vector width starting at the base pointer.  If we found
4859  // consecutive loads for the low half, generate a vzext_load node.
4860  if (LastLoadedElt == NumElems - 1) {
4861    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4862      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4863                         LDBase->getPointerInfo(),
4864                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4865                         LDBase->isInvariant(), 0);
4866    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4867                       LDBase->getPointerInfo(),
4868                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4869                       LDBase->isInvariant(), LDBase->getAlignment());
4870  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4871             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4872    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4873    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4874    SDValue ResNode =
4875        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4876                                LDBase->getPointerInfo(),
4877                                LDBase->getAlignment(),
4878                                false/*isVolatile*/, true/*ReadMem*/,
4879                                false/*WriteMem*/);
4880    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4881  }
4882  return SDValue();
4883}
4884
4885/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4886/// to generate a splat value for the following cases:
4887/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
4888/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4889/// a scalar load, or a constant.
4890/// The VBROADCAST node is returned when a pattern is found,
4891/// or SDValue() otherwise.
4892SDValue
4893X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
4894  if (!Subtarget->hasAVX())
4895    return SDValue();
4896
4897  EVT VT = Op.getValueType();
4898  DebugLoc dl = Op.getDebugLoc();
4899
4900  SDValue Ld;
4901  bool ConstSplatVal;
4902
4903  switch (Op.getOpcode()) {
4904    default:
4905      // Unknown pattern found.
4906      return SDValue();
4907
4908    case ISD::BUILD_VECTOR: {
4909      // The BUILD_VECTOR node must be a splat.
4910      if (!isSplatVector(Op.getNode()))
4911        return SDValue();
4912
4913      Ld = Op.getOperand(0);
4914      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4915                     Ld.getOpcode() == ISD::ConstantFP);
4916
4917      // The suspected load node has several users. Make sure that all
4918      // of its users are from the BUILD_VECTOR node.
4919      // Constants may have multiple users.
4920      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4921        return SDValue();
4922      break;
4923    }
4924
4925    case ISD::VECTOR_SHUFFLE: {
4926      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4927
4928      // Shuffles must have a splat mask where the first element is
4929      // broadcasted.
4930      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4931        return SDValue();
4932
4933      SDValue Sc = Op.getOperand(0);
4934      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4935        return SDValue();
4936
4937      Ld = Sc.getOperand(0);
4938      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4939                       Ld.getOpcode() == ISD::ConstantFP);
4940
4941      // The scalar_to_vector node and the suspected
4942      // load node must have exactly one user.
4943      // Constants may have multiple users.
4944      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
4945        return SDValue();
4946      break;
4947    }
4948  }
4949
4950  bool Is256 = VT.getSizeInBits() == 256;
4951  bool Is128 = VT.getSizeInBits() == 128;
4952
4953  // Handle the broadcasting a single constant scalar from the constant pool
4954  // into a vector. On Sandybridge it is still better to load a constant vector
4955  // from the constant pool and not to broadcast it from a scalar.
4956  if (ConstSplatVal && Subtarget->hasAVX2()) {
4957    EVT CVT = Ld.getValueType();
4958    assert(!CVT.isVector() && "Must not broadcast a vector type");
4959    unsigned ScalarSize = CVT.getSizeInBits();
4960
4961    if ((Is256 && (ScalarSize == 32 || ScalarSize == 64)) ||
4962        (Is128 && (ScalarSize == 32))) {
4963
4964      const Constant *C = 0;
4965      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
4966        C = CI->getConstantIntValue();
4967      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
4968        C = CF->getConstantFPValue();
4969
4970      assert(C && "Invalid constant type");
4971
4972      SDValue CP = DAG.getConstantPool(C, getPointerTy());
4973      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
4974      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
4975                         MachinePointerInfo::getConstantPool(),
4976                         false, false, false, Alignment);
4977
4978      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4979    }
4980  }
4981
4982  // The scalar source must be a normal load.
4983  if (!ISD::isNormalLoad(Ld.getNode()))
4984    return SDValue();
4985
4986  // Reject loads that have uses of the chain result
4987  if (Ld->hasAnyUseOfValue(1))
4988    return SDValue();
4989
4990  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
4991
4992  // VBroadcast to YMM
4993  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
4994    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4995
4996  // VBroadcast to XMM
4997  if (Is128 && (ScalarSize == 32))
4998    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4999
5000  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5001  // double since there is vbroadcastsd xmm
5002  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5003    // VBroadcast to YMM
5004    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
5005      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5006
5007    // VBroadcast to XMM
5008    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
5009      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5010  }
5011
5012  // Unsupported broadcast.
5013  return SDValue();
5014}
5015
5016SDValue
5017X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5018  DebugLoc dl = Op.getDebugLoc();
5019
5020  EVT VT = Op.getValueType();
5021  EVT ExtVT = VT.getVectorElementType();
5022  unsigned NumElems = Op.getNumOperands();
5023
5024  // Vectors containing all zeros can be matched by pxor and xorps later
5025  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5026    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5027    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5028    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5029      return Op;
5030
5031    return getZeroVector(VT, Subtarget, DAG, dl);
5032  }
5033
5034  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5035  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5036  // vpcmpeqd on 256-bit vectors.
5037  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5038    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5039      return Op;
5040
5041    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5042  }
5043
5044  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5045  if (Broadcast.getNode())
5046    return Broadcast;
5047
5048  unsigned EVTBits = ExtVT.getSizeInBits();
5049
5050  unsigned NumZero  = 0;
5051  unsigned NumNonZero = 0;
5052  unsigned NonZeros = 0;
5053  bool IsAllConstants = true;
5054  SmallSet<SDValue, 8> Values;
5055  for (unsigned i = 0; i < NumElems; ++i) {
5056    SDValue Elt = Op.getOperand(i);
5057    if (Elt.getOpcode() == ISD::UNDEF)
5058      continue;
5059    Values.insert(Elt);
5060    if (Elt.getOpcode() != ISD::Constant &&
5061        Elt.getOpcode() != ISD::ConstantFP)
5062      IsAllConstants = false;
5063    if (X86::isZeroNode(Elt))
5064      NumZero++;
5065    else {
5066      NonZeros |= (1 << i);
5067      NumNonZero++;
5068    }
5069  }
5070
5071  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5072  if (NumNonZero == 0)
5073    return DAG.getUNDEF(VT);
5074
5075  // Special case for single non-zero, non-undef, element.
5076  if (NumNonZero == 1) {
5077    unsigned Idx = CountTrailingZeros_32(NonZeros);
5078    SDValue Item = Op.getOperand(Idx);
5079
5080    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5081    // the value are obviously zero, truncate the value to i32 and do the
5082    // insertion that way.  Only do this if the value is non-constant or if the
5083    // value is a constant being inserted into element 0.  It is cheaper to do
5084    // a constant pool load than it is to do a movd + shuffle.
5085    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5086        (!IsAllConstants || Idx == 0)) {
5087      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5088        // Handle SSE only.
5089        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5090        EVT VecVT = MVT::v4i32;
5091        unsigned VecElts = 4;
5092
5093        // Truncate the value (which may itself be a constant) to i32, and
5094        // convert it to a vector with movd (S2V+shuffle to zero extend).
5095        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5096        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5097        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5098
5099        // Now we have our 32-bit value zero extended in the low element of
5100        // a vector.  If Idx != 0, swizzle it into place.
5101        if (Idx != 0) {
5102          SmallVector<int, 4> Mask;
5103          Mask.push_back(Idx);
5104          for (unsigned i = 1; i != VecElts; ++i)
5105            Mask.push_back(i);
5106          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5107                                      DAG.getUNDEF(Item.getValueType()),
5108                                      &Mask[0]);
5109        }
5110        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5111      }
5112    }
5113
5114    // If we have a constant or non-constant insertion into the low element of
5115    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5116    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5117    // depending on what the source datatype is.
5118    if (Idx == 0) {
5119      if (NumZero == 0)
5120        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5121
5122      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5123          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5124        if (VT.getSizeInBits() == 256) {
5125          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5126          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5127                             Item, DAG.getIntPtrConstant(0));
5128        }
5129        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5130        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5131        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5132        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5133      }
5134
5135      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5136        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5137        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5138        if (VT.getSizeInBits() == 256) {
5139          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5140          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5141                                    DAG, dl);
5142        } else {
5143          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5144          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5145        }
5146        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5147      }
5148    }
5149
5150    // Is it a vector logical left shift?
5151    if (NumElems == 2 && Idx == 1 &&
5152        X86::isZeroNode(Op.getOperand(0)) &&
5153        !X86::isZeroNode(Op.getOperand(1))) {
5154      unsigned NumBits = VT.getSizeInBits();
5155      return getVShift(true, VT,
5156                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5157                                   VT, Op.getOperand(1)),
5158                       NumBits/2, DAG, *this, dl);
5159    }
5160
5161    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5162      return SDValue();
5163
5164    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5165    // is a non-constant being inserted into an element other than the low one,
5166    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5167    // movd/movss) to move this into the low element, then shuffle it into
5168    // place.
5169    if (EVTBits == 32) {
5170      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5171
5172      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5173      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5174      SmallVector<int, 8> MaskVec;
5175      for (unsigned i = 0; i < NumElems; i++)
5176        MaskVec.push_back(i == Idx ? 0 : 1);
5177      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5178    }
5179  }
5180
5181  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5182  if (Values.size() == 1) {
5183    if (EVTBits == 32) {
5184      // Instead of a shuffle like this:
5185      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5186      // Check if it's possible to issue this instead.
5187      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5188      unsigned Idx = CountTrailingZeros_32(NonZeros);
5189      SDValue Item = Op.getOperand(Idx);
5190      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5191        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5192    }
5193    return SDValue();
5194  }
5195
5196  // A vector full of immediates; various special cases are already
5197  // handled, so this is best done with a single constant-pool load.
5198  if (IsAllConstants)
5199    return SDValue();
5200
5201  // For AVX-length vectors, build the individual 128-bit pieces and use
5202  // shuffles to put them in place.
5203  if (VT.getSizeInBits() == 256) {
5204    SmallVector<SDValue, 32> V;
5205    for (unsigned i = 0; i != NumElems; ++i)
5206      V.push_back(Op.getOperand(i));
5207
5208    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5209
5210    // Build both the lower and upper subvector.
5211    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5212    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5213                                NumElems/2);
5214
5215    // Recreate the wider vector with the lower and upper part.
5216    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5217                                DAG.getConstant(0, MVT::i32), DAG, dl);
5218    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5219                              DAG, dl);
5220  }
5221
5222  // Let legalizer expand 2-wide build_vectors.
5223  if (EVTBits == 64) {
5224    if (NumNonZero == 1) {
5225      // One half is zero or undef.
5226      unsigned Idx = CountTrailingZeros_32(NonZeros);
5227      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5228                                 Op.getOperand(Idx));
5229      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5230    }
5231    return SDValue();
5232  }
5233
5234  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5235  if (EVTBits == 8 && NumElems == 16) {
5236    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5237                                        Subtarget, *this);
5238    if (V.getNode()) return V;
5239  }
5240
5241  if (EVTBits == 16 && NumElems == 8) {
5242    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5243                                      Subtarget, *this);
5244    if (V.getNode()) return V;
5245  }
5246
5247  // If element VT is == 32 bits, turn it into a number of shuffles.
5248  SmallVector<SDValue, 8> V(NumElems);
5249  if (NumElems == 4 && NumZero > 0) {
5250    for (unsigned i = 0; i < 4; ++i) {
5251      bool isZero = !(NonZeros & (1 << i));
5252      if (isZero)
5253        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5254      else
5255        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5256    }
5257
5258    for (unsigned i = 0; i < 2; ++i) {
5259      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5260        default: break;
5261        case 0:
5262          V[i] = V[i*2];  // Must be a zero vector.
5263          break;
5264        case 1:
5265          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5266          break;
5267        case 2:
5268          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5269          break;
5270        case 3:
5271          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5272          break;
5273      }
5274    }
5275
5276    bool Reverse1 = (NonZeros & 0x3) == 2;
5277    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5278    int MaskVec[] = {
5279      Reverse1 ? 1 : 0,
5280      Reverse1 ? 0 : 1,
5281      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5282      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5283    };
5284    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5285  }
5286
5287  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5288    // Check for a build vector of consecutive loads.
5289    for (unsigned i = 0; i < NumElems; ++i)
5290      V[i] = Op.getOperand(i);
5291
5292    // Check for elements which are consecutive loads.
5293    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5294    if (LD.getNode())
5295      return LD;
5296
5297    // For SSE 4.1, use insertps to put the high elements into the low element.
5298    if (getSubtarget()->hasSSE41()) {
5299      SDValue Result;
5300      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5301        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5302      else
5303        Result = DAG.getUNDEF(VT);
5304
5305      for (unsigned i = 1; i < NumElems; ++i) {
5306        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5307        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5308                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5309      }
5310      return Result;
5311    }
5312
5313    // Otherwise, expand into a number of unpckl*, start by extending each of
5314    // our (non-undef) elements to the full vector width with the element in the
5315    // bottom slot of the vector (which generates no code for SSE).
5316    for (unsigned i = 0; i < NumElems; ++i) {
5317      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5318        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5319      else
5320        V[i] = DAG.getUNDEF(VT);
5321    }
5322
5323    // Next, we iteratively mix elements, e.g. for v4f32:
5324    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5325    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5326    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5327    unsigned EltStride = NumElems >> 1;
5328    while (EltStride != 0) {
5329      for (unsigned i = 0; i < EltStride; ++i) {
5330        // If V[i+EltStride] is undef and this is the first round of mixing,
5331        // then it is safe to just drop this shuffle: V[i] is already in the
5332        // right place, the one element (since it's the first round) being
5333        // inserted as undef can be dropped.  This isn't safe for successive
5334        // rounds because they will permute elements within both vectors.
5335        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5336            EltStride == NumElems/2)
5337          continue;
5338
5339        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5340      }
5341      EltStride >>= 1;
5342    }
5343    return V[0];
5344  }
5345  return SDValue();
5346}
5347
5348// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5349// them in a MMX register.  This is better than doing a stack convert.
5350static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5351  DebugLoc dl = Op.getDebugLoc();
5352  EVT ResVT = Op.getValueType();
5353
5354  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5355         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5356  int Mask[2];
5357  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5358  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5359  InVec = Op.getOperand(1);
5360  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5361    unsigned NumElts = ResVT.getVectorNumElements();
5362    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5363    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5364                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5365  } else {
5366    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5367    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5368    Mask[0] = 0; Mask[1] = 2;
5369    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5370  }
5371  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5372}
5373
5374// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5375// to create 256-bit vectors from two other 128-bit ones.
5376static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5377  DebugLoc dl = Op.getDebugLoc();
5378  EVT ResVT = Op.getValueType();
5379
5380  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5381
5382  SDValue V1 = Op.getOperand(0);
5383  SDValue V2 = Op.getOperand(1);
5384  unsigned NumElems = ResVT.getVectorNumElements();
5385
5386  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5387                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5388  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5389                            DAG, dl);
5390}
5391
5392SDValue
5393X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5394  EVT ResVT = Op.getValueType();
5395
5396  assert(Op.getNumOperands() == 2);
5397  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5398         "Unsupported CONCAT_VECTORS for value type");
5399
5400  // We support concatenate two MMX registers and place them in a MMX register.
5401  // This is better than doing a stack convert.
5402  if (ResVT.is128BitVector())
5403    return LowerMMXCONCAT_VECTORS(Op, DAG);
5404
5405  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5406  // from two other 128-bit ones.
5407  return LowerAVXCONCAT_VECTORS(Op, DAG);
5408}
5409
5410// Try to lower a shuffle node into a simple blend instruction.
5411static SDValue LowerVECTOR_SHUFFLEtoBlend(SDValue Op,
5412                                          const X86Subtarget *Subtarget,
5413                                          SelectionDAG &DAG) {
5414  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5415  SDValue V1 = SVOp->getOperand(0);
5416  SDValue V2 = SVOp->getOperand(1);
5417  DebugLoc dl = SVOp->getDebugLoc();
5418  EVT VT = Op.getValueType();
5419  EVT InVT = V1.getValueType();
5420  int MaskSize = VT.getVectorNumElements();
5421  int InSize = InVT.getVectorNumElements();
5422
5423  if (!Subtarget->hasSSE41())
5424    return SDValue();
5425
5426  if (MaskSize != InSize)
5427    return SDValue();
5428
5429  int ISDNo = 0;
5430  MVT OpTy;
5431
5432  switch (VT.getSimpleVT().SimpleTy) {
5433  default: return SDValue();
5434  case MVT::v8i16:
5435           ISDNo = X86ISD::BLENDPW;
5436           OpTy = MVT::v8i16;
5437           break;
5438  case MVT::v4i32:
5439  case MVT::v4f32:
5440           ISDNo = X86ISD::BLENDPS;
5441           OpTy = MVT::v4f32;
5442           break;
5443  case MVT::v2i64:
5444  case MVT::v2f64:
5445           ISDNo = X86ISD::BLENDPD;
5446           OpTy = MVT::v2f64;
5447           break;
5448  case MVT::v8i32:
5449  case MVT::v8f32:
5450           if (!Subtarget->hasAVX())
5451             return SDValue();
5452           ISDNo = X86ISD::BLENDPS;
5453           OpTy = MVT::v8f32;
5454           break;
5455  case MVT::v4i64:
5456  case MVT::v4f64:
5457           if (!Subtarget->hasAVX())
5458             return SDValue();
5459           ISDNo = X86ISD::BLENDPD;
5460           OpTy = MVT::v4f64;
5461           break;
5462  case MVT::v16i16:
5463           if (!Subtarget->hasAVX2())
5464             return SDValue();
5465           ISDNo = X86ISD::BLENDPW;
5466           OpTy = MVT::v16i16;
5467           break;
5468  }
5469  assert(ISDNo && "Invalid Op Number");
5470
5471  unsigned MaskVals = 0;
5472
5473  for (int i = 0; i < MaskSize; ++i) {
5474    int EltIdx = SVOp->getMaskElt(i);
5475    if (EltIdx == i || EltIdx == -1)
5476      MaskVals |= (1<<i);
5477    else if (EltIdx == (i + MaskSize))
5478      continue; // Bit is set to zero;
5479    else return SDValue();
5480  }
5481
5482  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5483  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5484  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5485                             DAG.getConstant(MaskVals, MVT::i32));
5486  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5487}
5488
5489// v8i16 shuffles - Prefer shuffles in the following order:
5490// 1. [all]   pshuflw, pshufhw, optional move
5491// 2. [ssse3] 1 x pshufb
5492// 3. [ssse3] 2 x pshufb + 1 x por
5493// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5494SDValue
5495X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5496                                            SelectionDAG &DAG) const {
5497  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5498  SDValue V1 = SVOp->getOperand(0);
5499  SDValue V2 = SVOp->getOperand(1);
5500  DebugLoc dl = SVOp->getDebugLoc();
5501  SmallVector<int, 8> MaskVals;
5502
5503  // Determine if more than 1 of the words in each of the low and high quadwords
5504  // of the result come from the same quadword of one of the two inputs.  Undef
5505  // mask values count as coming from any quadword, for better codegen.
5506  unsigned LoQuad[] = { 0, 0, 0, 0 };
5507  unsigned HiQuad[] = { 0, 0, 0, 0 };
5508  std::bitset<4> InputQuads;
5509  for (unsigned i = 0; i < 8; ++i) {
5510    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5511    int EltIdx = SVOp->getMaskElt(i);
5512    MaskVals.push_back(EltIdx);
5513    if (EltIdx < 0) {
5514      ++Quad[0];
5515      ++Quad[1];
5516      ++Quad[2];
5517      ++Quad[3];
5518      continue;
5519    }
5520    ++Quad[EltIdx / 4];
5521    InputQuads.set(EltIdx / 4);
5522  }
5523
5524  int BestLoQuad = -1;
5525  unsigned MaxQuad = 1;
5526  for (unsigned i = 0; i < 4; ++i) {
5527    if (LoQuad[i] > MaxQuad) {
5528      BestLoQuad = i;
5529      MaxQuad = LoQuad[i];
5530    }
5531  }
5532
5533  int BestHiQuad = -1;
5534  MaxQuad = 1;
5535  for (unsigned i = 0; i < 4; ++i) {
5536    if (HiQuad[i] > MaxQuad) {
5537      BestHiQuad = i;
5538      MaxQuad = HiQuad[i];
5539    }
5540  }
5541
5542  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5543  // of the two input vectors, shuffle them into one input vector so only a
5544  // single pshufb instruction is necessary. If There are more than 2 input
5545  // quads, disable the next transformation since it does not help SSSE3.
5546  bool V1Used = InputQuads[0] || InputQuads[1];
5547  bool V2Used = InputQuads[2] || InputQuads[3];
5548  if (Subtarget->hasSSSE3()) {
5549    if (InputQuads.count() == 2 && V1Used && V2Used) {
5550      BestLoQuad = InputQuads[0] ? 0 : 1;
5551      BestHiQuad = InputQuads[2] ? 2 : 3;
5552    }
5553    if (InputQuads.count() > 2) {
5554      BestLoQuad = -1;
5555      BestHiQuad = -1;
5556    }
5557  }
5558
5559  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5560  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5561  // words from all 4 input quadwords.
5562  SDValue NewV;
5563  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5564    int MaskV[] = {
5565      BestLoQuad < 0 ? 0 : BestLoQuad,
5566      BestHiQuad < 0 ? 1 : BestHiQuad
5567    };
5568    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5569                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5570                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5571    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5572
5573    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5574    // source words for the shuffle, to aid later transformations.
5575    bool AllWordsInNewV = true;
5576    bool InOrder[2] = { true, true };
5577    for (unsigned i = 0; i != 8; ++i) {
5578      int idx = MaskVals[i];
5579      if (idx != (int)i)
5580        InOrder[i/4] = false;
5581      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5582        continue;
5583      AllWordsInNewV = false;
5584      break;
5585    }
5586
5587    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5588    if (AllWordsInNewV) {
5589      for (int i = 0; i != 8; ++i) {
5590        int idx = MaskVals[i];
5591        if (idx < 0)
5592          continue;
5593        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5594        if ((idx != i) && idx < 4)
5595          pshufhw = false;
5596        if ((idx != i) && idx > 3)
5597          pshuflw = false;
5598      }
5599      V1 = NewV;
5600      V2Used = false;
5601      BestLoQuad = 0;
5602      BestHiQuad = 1;
5603    }
5604
5605    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5606    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5607    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5608      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5609      unsigned TargetMask = 0;
5610      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5611                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5612      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5613      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5614                             getShufflePSHUFLWImmediate(SVOp);
5615      V1 = NewV.getOperand(0);
5616      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5617    }
5618  }
5619
5620  // If we have SSSE3, and all words of the result are from 1 input vector,
5621  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5622  // is present, fall back to case 4.
5623  if (Subtarget->hasSSSE3()) {
5624    SmallVector<SDValue,16> pshufbMask;
5625
5626    // If we have elements from both input vectors, set the high bit of the
5627    // shuffle mask element to zero out elements that come from V2 in the V1
5628    // mask, and elements that come from V1 in the V2 mask, so that the two
5629    // results can be OR'd together.
5630    bool TwoInputs = V1Used && V2Used;
5631    for (unsigned i = 0; i != 8; ++i) {
5632      int EltIdx = MaskVals[i] * 2;
5633      if (TwoInputs && (EltIdx >= 16)) {
5634        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5635        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5636        continue;
5637      }
5638      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5639      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5640    }
5641    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5642    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5643                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5644                                 MVT::v16i8, &pshufbMask[0], 16));
5645    if (!TwoInputs)
5646      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5647
5648    // Calculate the shuffle mask for the second input, shuffle it, and
5649    // OR it with the first shuffled input.
5650    pshufbMask.clear();
5651    for (unsigned i = 0; i != 8; ++i) {
5652      int EltIdx = MaskVals[i] * 2;
5653      if (EltIdx < 16) {
5654        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5655        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5656        continue;
5657      }
5658      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5659      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5660    }
5661    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5662    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5663                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5664                                 MVT::v16i8, &pshufbMask[0], 16));
5665    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5666    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5667  }
5668
5669  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5670  // and update MaskVals with new element order.
5671  std::bitset<8> InOrder;
5672  if (BestLoQuad >= 0) {
5673    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5674    for (int i = 0; i != 4; ++i) {
5675      int idx = MaskVals[i];
5676      if (idx < 0) {
5677        InOrder.set(i);
5678      } else if ((idx / 4) == BestLoQuad) {
5679        MaskV[i] = idx & 3;
5680        InOrder.set(i);
5681      }
5682    }
5683    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5684                                &MaskV[0]);
5685
5686    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5687      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5688      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5689                                  NewV.getOperand(0),
5690                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5691    }
5692  }
5693
5694  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5695  // and update MaskVals with the new element order.
5696  if (BestHiQuad >= 0) {
5697    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5698    for (unsigned i = 4; i != 8; ++i) {
5699      int idx = MaskVals[i];
5700      if (idx < 0) {
5701        InOrder.set(i);
5702      } else if ((idx / 4) == BestHiQuad) {
5703        MaskV[i] = (idx & 3) + 4;
5704        InOrder.set(i);
5705      }
5706    }
5707    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5708                                &MaskV[0]);
5709
5710    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5711      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5712      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5713                                  NewV.getOperand(0),
5714                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5715    }
5716  }
5717
5718  // In case BestHi & BestLo were both -1, which means each quadword has a word
5719  // from each of the four input quadwords, calculate the InOrder bitvector now
5720  // before falling through to the insert/extract cleanup.
5721  if (BestLoQuad == -1 && BestHiQuad == -1) {
5722    NewV = V1;
5723    for (int i = 0; i != 8; ++i)
5724      if (MaskVals[i] < 0 || MaskVals[i] == i)
5725        InOrder.set(i);
5726  }
5727
5728  // The other elements are put in the right place using pextrw and pinsrw.
5729  for (unsigned i = 0; i != 8; ++i) {
5730    if (InOrder[i])
5731      continue;
5732    int EltIdx = MaskVals[i];
5733    if (EltIdx < 0)
5734      continue;
5735    SDValue ExtOp = (EltIdx < 8)
5736    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5737                  DAG.getIntPtrConstant(EltIdx))
5738    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5739                  DAG.getIntPtrConstant(EltIdx - 8));
5740    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5741                       DAG.getIntPtrConstant(i));
5742  }
5743  return NewV;
5744}
5745
5746// v16i8 shuffles - Prefer shuffles in the following order:
5747// 1. [ssse3] 1 x pshufb
5748// 2. [ssse3] 2 x pshufb + 1 x por
5749// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5750static
5751SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5752                                 SelectionDAG &DAG,
5753                                 const X86TargetLowering &TLI) {
5754  SDValue V1 = SVOp->getOperand(0);
5755  SDValue V2 = SVOp->getOperand(1);
5756  DebugLoc dl = SVOp->getDebugLoc();
5757  ArrayRef<int> MaskVals = SVOp->getMask();
5758
5759  // If we have SSSE3, case 1 is generated when all result bytes come from
5760  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5761  // present, fall back to case 3.
5762  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5763  bool V1Only = true;
5764  bool V2Only = true;
5765  for (unsigned i = 0; i < 16; ++i) {
5766    int EltIdx = MaskVals[i];
5767    if (EltIdx < 0)
5768      continue;
5769    if (EltIdx < 16)
5770      V2Only = false;
5771    else
5772      V1Only = false;
5773  }
5774
5775  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5776  if (TLI.getSubtarget()->hasSSSE3()) {
5777    SmallVector<SDValue,16> pshufbMask;
5778
5779    // If all result elements are from one input vector, then only translate
5780    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5781    //
5782    // Otherwise, we have elements from both input vectors, and must zero out
5783    // elements that come from V2 in the first mask, and V1 in the second mask
5784    // so that we can OR them together.
5785    bool TwoInputs = !(V1Only || V2Only);
5786    for (unsigned i = 0; i != 16; ++i) {
5787      int EltIdx = MaskVals[i];
5788      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5789        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5790        continue;
5791      }
5792      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5793    }
5794    // If all the elements are from V2, assign it to V1 and return after
5795    // building the first pshufb.
5796    if (V2Only)
5797      V1 = V2;
5798    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5799                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5800                                 MVT::v16i8, &pshufbMask[0], 16));
5801    if (!TwoInputs)
5802      return V1;
5803
5804    // Calculate the shuffle mask for the second input, shuffle it, and
5805    // OR it with the first shuffled input.
5806    pshufbMask.clear();
5807    for (unsigned i = 0; i != 16; ++i) {
5808      int EltIdx = MaskVals[i];
5809      if (EltIdx < 16) {
5810        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5811        continue;
5812      }
5813      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5814    }
5815    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5816                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5817                                 MVT::v16i8, &pshufbMask[0], 16));
5818    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5819  }
5820
5821  // No SSSE3 - Calculate in place words and then fix all out of place words
5822  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5823  // the 16 different words that comprise the two doublequadword input vectors.
5824  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5825  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5826  SDValue NewV = V2Only ? V2 : V1;
5827  for (int i = 0; i != 8; ++i) {
5828    int Elt0 = MaskVals[i*2];
5829    int Elt1 = MaskVals[i*2+1];
5830
5831    // This word of the result is all undef, skip it.
5832    if (Elt0 < 0 && Elt1 < 0)
5833      continue;
5834
5835    // This word of the result is already in the correct place, skip it.
5836    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5837      continue;
5838    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5839      continue;
5840
5841    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5842    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5843    SDValue InsElt;
5844
5845    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5846    // using a single extract together, load it and store it.
5847    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5848      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5849                           DAG.getIntPtrConstant(Elt1 / 2));
5850      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5851                        DAG.getIntPtrConstant(i));
5852      continue;
5853    }
5854
5855    // If Elt1 is defined, extract it from the appropriate source.  If the
5856    // source byte is not also odd, shift the extracted word left 8 bits
5857    // otherwise clear the bottom 8 bits if we need to do an or.
5858    if (Elt1 >= 0) {
5859      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5860                           DAG.getIntPtrConstant(Elt1 / 2));
5861      if ((Elt1 & 1) == 0)
5862        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5863                             DAG.getConstant(8,
5864                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5865      else if (Elt0 >= 0)
5866        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5867                             DAG.getConstant(0xFF00, MVT::i16));
5868    }
5869    // If Elt0 is defined, extract it from the appropriate source.  If the
5870    // source byte is not also even, shift the extracted word right 8 bits. If
5871    // Elt1 was also defined, OR the extracted values together before
5872    // inserting them in the result.
5873    if (Elt0 >= 0) {
5874      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5875                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5876      if ((Elt0 & 1) != 0)
5877        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5878                              DAG.getConstant(8,
5879                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5880      else if (Elt1 >= 0)
5881        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5882                             DAG.getConstant(0x00FF, MVT::i16));
5883      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5884                         : InsElt0;
5885    }
5886    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5887                       DAG.getIntPtrConstant(i));
5888  }
5889  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5890}
5891
5892/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5893/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5894/// done when every pair / quad of shuffle mask elements point to elements in
5895/// the right sequence. e.g.
5896/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5897static
5898SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5899                                 SelectionDAG &DAG, DebugLoc dl) {
5900  EVT VT = SVOp->getValueType(0);
5901  SDValue V1 = SVOp->getOperand(0);
5902  SDValue V2 = SVOp->getOperand(1);
5903  unsigned NumElems = VT.getVectorNumElements();
5904  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5905  EVT NewVT;
5906  switch (VT.getSimpleVT().SimpleTy) {
5907  default: llvm_unreachable("Unexpected!");
5908  case MVT::v4f32: NewVT = MVT::v2f64; break;
5909  case MVT::v4i32: NewVT = MVT::v2i64; break;
5910  case MVT::v8i16: NewVT = MVT::v4i32; break;
5911  case MVT::v16i8: NewVT = MVT::v4i32; break;
5912  }
5913
5914  int Scale = NumElems / NewWidth;
5915  SmallVector<int, 8> MaskVec;
5916  for (unsigned i = 0; i < NumElems; i += Scale) {
5917    int StartIdx = -1;
5918    for (int j = 0; j < Scale; ++j) {
5919      int EltIdx = SVOp->getMaskElt(i+j);
5920      if (EltIdx < 0)
5921        continue;
5922      if (StartIdx == -1)
5923        StartIdx = EltIdx - (EltIdx % Scale);
5924      if (EltIdx != StartIdx + j)
5925        return SDValue();
5926    }
5927    if (StartIdx == -1)
5928      MaskVec.push_back(-1);
5929    else
5930      MaskVec.push_back(StartIdx / Scale);
5931  }
5932
5933  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5934  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5935  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5936}
5937
5938/// getVZextMovL - Return a zero-extending vector move low node.
5939///
5940static SDValue getVZextMovL(EVT VT, EVT OpVT,
5941                            SDValue SrcOp, SelectionDAG &DAG,
5942                            const X86Subtarget *Subtarget, DebugLoc dl) {
5943  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5944    LoadSDNode *LD = NULL;
5945    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5946      LD = dyn_cast<LoadSDNode>(SrcOp);
5947    if (!LD) {
5948      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5949      // instead.
5950      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5951      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5952          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5953          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5954          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5955        // PR2108
5956        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5957        return DAG.getNode(ISD::BITCAST, dl, VT,
5958                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5959                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5960                                                   OpVT,
5961                                                   SrcOp.getOperand(0)
5962                                                          .getOperand(0))));
5963      }
5964    }
5965  }
5966
5967  return DAG.getNode(ISD::BITCAST, dl, VT,
5968                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5969                                 DAG.getNode(ISD::BITCAST, dl,
5970                                             OpVT, SrcOp)));
5971}
5972
5973/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5974/// which could not be matched by any known target speficic shuffle
5975static SDValue
5976LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5977  EVT VT = SVOp->getValueType(0);
5978
5979  unsigned NumElems = VT.getVectorNumElements();
5980  unsigned NumLaneElems = NumElems / 2;
5981
5982  DebugLoc dl = SVOp->getDebugLoc();
5983  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5984  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
5985  SDValue Shufs[2];
5986
5987  SmallVector<int, 16> Mask;
5988  for (unsigned l = 0; l < 2; ++l) {
5989    // Build a shuffle mask for the output, discovering on the fly which
5990    // input vectors to use as shuffle operands (recorded in InputUsed).
5991    // If building a suitable shuffle vector proves too hard, then bail
5992    // out with useBuildVector set.
5993    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
5994    unsigned LaneStart = l * NumLaneElems;
5995    for (unsigned i = 0; i != NumLaneElems; ++i) {
5996      // The mask element.  This indexes into the input.
5997      int Idx = SVOp->getMaskElt(i+LaneStart);
5998      if (Idx < 0) {
5999        // the mask element does not index into any input vector.
6000        Mask.push_back(-1);
6001        continue;
6002      }
6003
6004      // The input vector this mask element indexes into.
6005      int Input = Idx / NumLaneElems;
6006
6007      // Turn the index into an offset from the start of the input vector.
6008      Idx -= Input * NumLaneElems;
6009
6010      // Find or create a shuffle vector operand to hold this input.
6011      unsigned OpNo;
6012      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6013        if (InputUsed[OpNo] == Input)
6014          // This input vector is already an operand.
6015          break;
6016        if (InputUsed[OpNo] < 0) {
6017          // Create a new operand for this input vector.
6018          InputUsed[OpNo] = Input;
6019          break;
6020        }
6021      }
6022
6023      if (OpNo >= array_lengthof(InputUsed)) {
6024        // More than two input vectors used! Give up.
6025        return SDValue();
6026      }
6027
6028      // Add the mask index for the new shuffle vector.
6029      Mask.push_back(Idx + OpNo * NumLaneElems);
6030    }
6031
6032    if (InputUsed[0] < 0) {
6033      // No input vectors were used! The result is undefined.
6034      Shufs[l] = DAG.getUNDEF(NVT);
6035    } else {
6036      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6037                   DAG.getConstant((InputUsed[0] % 2) * NumLaneElems, MVT::i32),
6038                                   DAG, dl);
6039      // If only one input was used, use an undefined vector for the other.
6040      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6041        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6042                   DAG.getConstant((InputUsed[1] % 2) * NumLaneElems, MVT::i32),
6043                                   DAG, dl);
6044      // At least one input vector was used. Create a new shuffle vector.
6045      Shufs[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6046    }
6047
6048    Mask.clear();
6049  }
6050
6051  // Concatenate the result back
6052  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shufs[0],
6053                                 DAG.getConstant(0, MVT::i32), DAG, dl);
6054  return Insert128BitVector(V, Shufs[1],DAG.getConstant(NumLaneElems, MVT::i32),
6055                            DAG, dl);
6056}
6057
6058/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6059/// 4 elements, and match them with several different shuffle types.
6060static SDValue
6061LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6062  SDValue V1 = SVOp->getOperand(0);
6063  SDValue V2 = SVOp->getOperand(1);
6064  DebugLoc dl = SVOp->getDebugLoc();
6065  EVT VT = SVOp->getValueType(0);
6066
6067  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6068
6069  std::pair<int, int> Locs[4];
6070  int Mask1[] = { -1, -1, -1, -1 };
6071  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6072
6073  unsigned NumHi = 0;
6074  unsigned NumLo = 0;
6075  for (unsigned i = 0; i != 4; ++i) {
6076    int Idx = PermMask[i];
6077    if (Idx < 0) {
6078      Locs[i] = std::make_pair(-1, -1);
6079    } else {
6080      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6081      if (Idx < 4) {
6082        Locs[i] = std::make_pair(0, NumLo);
6083        Mask1[NumLo] = Idx;
6084        NumLo++;
6085      } else {
6086        Locs[i] = std::make_pair(1, NumHi);
6087        if (2+NumHi < 4)
6088          Mask1[2+NumHi] = Idx;
6089        NumHi++;
6090      }
6091    }
6092  }
6093
6094  if (NumLo <= 2 && NumHi <= 2) {
6095    // If no more than two elements come from either vector. This can be
6096    // implemented with two shuffles. First shuffle gather the elements.
6097    // The second shuffle, which takes the first shuffle as both of its
6098    // vector operands, put the elements into the right order.
6099    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6100
6101    int Mask2[] = { -1, -1, -1, -1 };
6102
6103    for (unsigned i = 0; i != 4; ++i)
6104      if (Locs[i].first != -1) {
6105        unsigned Idx = (i < 2) ? 0 : 4;
6106        Idx += Locs[i].first * 2 + Locs[i].second;
6107        Mask2[i] = Idx;
6108      }
6109
6110    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6111  } else if (NumLo == 3 || NumHi == 3) {
6112    // Otherwise, we must have three elements from one vector, call it X, and
6113    // one element from the other, call it Y.  First, use a shufps to build an
6114    // intermediate vector with the one element from Y and the element from X
6115    // that will be in the same half in the final destination (the indexes don't
6116    // matter). Then, use a shufps to build the final vector, taking the half
6117    // containing the element from Y from the intermediate, and the other half
6118    // from X.
6119    if (NumHi == 3) {
6120      // Normalize it so the 3 elements come from V1.
6121      CommuteVectorShuffleMask(PermMask, 4);
6122      std::swap(V1, V2);
6123    }
6124
6125    // Find the element from V2.
6126    unsigned HiIndex;
6127    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6128      int Val = PermMask[HiIndex];
6129      if (Val < 0)
6130        continue;
6131      if (Val >= 4)
6132        break;
6133    }
6134
6135    Mask1[0] = PermMask[HiIndex];
6136    Mask1[1] = -1;
6137    Mask1[2] = PermMask[HiIndex^1];
6138    Mask1[3] = -1;
6139    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6140
6141    if (HiIndex >= 2) {
6142      Mask1[0] = PermMask[0];
6143      Mask1[1] = PermMask[1];
6144      Mask1[2] = HiIndex & 1 ? 6 : 4;
6145      Mask1[3] = HiIndex & 1 ? 4 : 6;
6146      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6147    } else {
6148      Mask1[0] = HiIndex & 1 ? 2 : 0;
6149      Mask1[1] = HiIndex & 1 ? 0 : 2;
6150      Mask1[2] = PermMask[2];
6151      Mask1[3] = PermMask[3];
6152      if (Mask1[2] >= 0)
6153        Mask1[2] += 4;
6154      if (Mask1[3] >= 0)
6155        Mask1[3] += 4;
6156      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6157    }
6158  }
6159
6160  // Break it into (shuffle shuffle_hi, shuffle_lo).
6161  int LoMask[] = { -1, -1, -1, -1 };
6162  int HiMask[] = { -1, -1, -1, -1 };
6163
6164  int *MaskPtr = LoMask;
6165  unsigned MaskIdx = 0;
6166  unsigned LoIdx = 0;
6167  unsigned HiIdx = 2;
6168  for (unsigned i = 0; i != 4; ++i) {
6169    if (i == 2) {
6170      MaskPtr = HiMask;
6171      MaskIdx = 1;
6172      LoIdx = 0;
6173      HiIdx = 2;
6174    }
6175    int Idx = PermMask[i];
6176    if (Idx < 0) {
6177      Locs[i] = std::make_pair(-1, -1);
6178    } else if (Idx < 4) {
6179      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6180      MaskPtr[LoIdx] = Idx;
6181      LoIdx++;
6182    } else {
6183      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6184      MaskPtr[HiIdx] = Idx;
6185      HiIdx++;
6186    }
6187  }
6188
6189  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6190  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6191  int MaskOps[] = { -1, -1, -1, -1 };
6192  for (unsigned i = 0; i != 4; ++i)
6193    if (Locs[i].first != -1)
6194      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6195  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6196}
6197
6198static bool MayFoldVectorLoad(SDValue V) {
6199  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6200    V = V.getOperand(0);
6201  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6202    V = V.getOperand(0);
6203  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6204      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6205    // BUILD_VECTOR (load), undef
6206    V = V.getOperand(0);
6207  if (MayFoldLoad(V))
6208    return true;
6209  return false;
6210}
6211
6212// FIXME: the version above should always be used. Since there's
6213// a bug where several vector shuffles can't be folded because the
6214// DAG is not updated during lowering and a node claims to have two
6215// uses while it only has one, use this version, and let isel match
6216// another instruction if the load really happens to have more than
6217// one use. Remove this version after this bug get fixed.
6218// rdar://8434668, PR8156
6219static bool RelaxedMayFoldVectorLoad(SDValue V) {
6220  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6221    V = V.getOperand(0);
6222  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6223    V = V.getOperand(0);
6224  if (ISD::isNormalLoad(V.getNode()))
6225    return true;
6226  return false;
6227}
6228
6229static
6230SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6231  EVT VT = Op.getValueType();
6232
6233  // Canonizalize to v2f64.
6234  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6235  return DAG.getNode(ISD::BITCAST, dl, VT,
6236                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6237                                          V1, DAG));
6238}
6239
6240static
6241SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6242                        bool HasSSE2) {
6243  SDValue V1 = Op.getOperand(0);
6244  SDValue V2 = Op.getOperand(1);
6245  EVT VT = Op.getValueType();
6246
6247  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6248
6249  if (HasSSE2 && VT == MVT::v2f64)
6250    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6251
6252  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6253  return DAG.getNode(ISD::BITCAST, dl, VT,
6254                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6255                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6256                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6257}
6258
6259static
6260SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6261  SDValue V1 = Op.getOperand(0);
6262  SDValue V2 = Op.getOperand(1);
6263  EVT VT = Op.getValueType();
6264
6265  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6266         "unsupported shuffle type");
6267
6268  if (V2.getOpcode() == ISD::UNDEF)
6269    V2 = V1;
6270
6271  // v4i32 or v4f32
6272  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6273}
6274
6275static
6276SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6277  SDValue V1 = Op.getOperand(0);
6278  SDValue V2 = Op.getOperand(1);
6279  EVT VT = Op.getValueType();
6280  unsigned NumElems = VT.getVectorNumElements();
6281
6282  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6283  // operand of these instructions is only memory, so check if there's a
6284  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6285  // same masks.
6286  bool CanFoldLoad = false;
6287
6288  // Trivial case, when V2 comes from a load.
6289  if (MayFoldVectorLoad(V2))
6290    CanFoldLoad = true;
6291
6292  // When V1 is a load, it can be folded later into a store in isel, example:
6293  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6294  //    turns into:
6295  //  (MOVLPSmr addr:$src1, VR128:$src2)
6296  // So, recognize this potential and also use MOVLPS or MOVLPD
6297  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6298    CanFoldLoad = true;
6299
6300  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6301  if (CanFoldLoad) {
6302    if (HasSSE2 && NumElems == 2)
6303      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6304
6305    if (NumElems == 4)
6306      // If we don't care about the second element, procede to use movss.
6307      if (SVOp->getMaskElt(1) != -1)
6308        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6309  }
6310
6311  // movl and movlp will both match v2i64, but v2i64 is never matched by
6312  // movl earlier because we make it strict to avoid messing with the movlp load
6313  // folding logic (see the code above getMOVLP call). Match it here then,
6314  // this is horrible, but will stay like this until we move all shuffle
6315  // matching to x86 specific nodes. Note that for the 1st condition all
6316  // types are matched with movsd.
6317  if (HasSSE2) {
6318    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6319    // as to remove this logic from here, as much as possible
6320    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6321      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6322    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6323  }
6324
6325  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6326
6327  // Invert the operand order and use SHUFPS to match it.
6328  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6329                              getShuffleSHUFImmediate(SVOp), DAG);
6330}
6331
6332SDValue
6333X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6334  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6335  EVT VT = Op.getValueType();
6336  DebugLoc dl = Op.getDebugLoc();
6337  SDValue V1 = Op.getOperand(0);
6338  SDValue V2 = Op.getOperand(1);
6339
6340  if (isZeroShuffle(SVOp))
6341    return getZeroVector(VT, Subtarget, DAG, dl);
6342
6343  // Handle splat operations
6344  if (SVOp->isSplat()) {
6345    unsigned NumElem = VT.getVectorNumElements();
6346    int Size = VT.getSizeInBits();
6347
6348    // Use vbroadcast whenever the splat comes from a foldable load
6349    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6350    if (Broadcast.getNode())
6351      return Broadcast;
6352
6353    // Handle splats by matching through known shuffle masks
6354    if ((Size == 128 && NumElem <= 4) ||
6355        (Size == 256 && NumElem < 8))
6356      return SDValue();
6357
6358    // All remaning splats are promoted to target supported vector shuffles.
6359    return PromoteSplat(SVOp, DAG);
6360  }
6361
6362  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6363  // do it!
6364  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6365    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6366    if (NewOp.getNode())
6367      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6368  } else if ((VT == MVT::v4i32 ||
6369             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6370    // FIXME: Figure out a cleaner way to do this.
6371    // Try to make use of movq to zero out the top part.
6372    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6373      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6374      if (NewOp.getNode()) {
6375        EVT NewVT = NewOp.getValueType();
6376        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6377                               NewVT, true, false))
6378          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6379                              DAG, Subtarget, dl);
6380      }
6381    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6382      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6383      if (NewOp.getNode()) {
6384        EVT NewVT = NewOp.getValueType();
6385        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6386          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6387                              DAG, Subtarget, dl);
6388      }
6389    }
6390  }
6391  return SDValue();
6392}
6393
6394SDValue
6395X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6396  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6397  SDValue V1 = Op.getOperand(0);
6398  SDValue V2 = Op.getOperand(1);
6399  EVT VT = Op.getValueType();
6400  DebugLoc dl = Op.getDebugLoc();
6401  unsigned NumElems = VT.getVectorNumElements();
6402  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6403  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6404  bool V1IsSplat = false;
6405  bool V2IsSplat = false;
6406  bool HasSSE2 = Subtarget->hasSSE2();
6407  bool HasAVX    = Subtarget->hasAVX();
6408  bool HasAVX2   = Subtarget->hasAVX2();
6409  MachineFunction &MF = DAG.getMachineFunction();
6410  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6411
6412  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6413
6414  if (V1IsUndef && V2IsUndef)
6415    return DAG.getUNDEF(VT);
6416
6417  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6418
6419  // Vector shuffle lowering takes 3 steps:
6420  //
6421  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6422  //    narrowing and commutation of operands should be handled.
6423  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6424  //    shuffle nodes.
6425  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6426  //    so the shuffle can be broken into other shuffles and the legalizer can
6427  //    try the lowering again.
6428  //
6429  // The general idea is that no vector_shuffle operation should be left to
6430  // be matched during isel, all of them must be converted to a target specific
6431  // node here.
6432
6433  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6434  // narrowing and commutation of operands should be handled. The actual code
6435  // doesn't include all of those, work in progress...
6436  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6437  if (NewOp.getNode())
6438    return NewOp;
6439
6440  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6441
6442  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6443  // unpckh_undef). Only use pshufd if speed is more important than size.
6444  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6445    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6446  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6447    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6448
6449  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6450      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6451    return getMOVDDup(Op, dl, V1, DAG);
6452
6453  if (isMOVHLPS_v_undef_Mask(M, VT))
6454    return getMOVHighToLow(Op, dl, DAG);
6455
6456  // Use to match splats
6457  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6458      (VT == MVT::v2f64 || VT == MVT::v2i64))
6459    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6460
6461  if (isPSHUFDMask(M, VT)) {
6462    // The actual implementation will match the mask in the if above and then
6463    // during isel it can match several different instructions, not only pshufd
6464    // as its name says, sad but true, emulate the behavior for now...
6465    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6466      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6467
6468    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6469
6470    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6471      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6472
6473    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6474      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6475
6476    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6477                                TargetMask, DAG);
6478  }
6479
6480  // Check if this can be converted into a logical shift.
6481  bool isLeft = false;
6482  unsigned ShAmt = 0;
6483  SDValue ShVal;
6484  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6485  if (isShift && ShVal.hasOneUse()) {
6486    // If the shifted value has multiple uses, it may be cheaper to use
6487    // v_set0 + movlhps or movhlps, etc.
6488    EVT EltVT = VT.getVectorElementType();
6489    ShAmt *= EltVT.getSizeInBits();
6490    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6491  }
6492
6493  if (isMOVLMask(M, VT)) {
6494    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6495      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6496    if (!isMOVLPMask(M, VT)) {
6497      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6498        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6499
6500      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6501        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6502    }
6503  }
6504
6505  // FIXME: fold these into legal mask.
6506  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6507    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6508
6509  if (isMOVHLPSMask(M, VT))
6510    return getMOVHighToLow(Op, dl, DAG);
6511
6512  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6513    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6514
6515  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6516    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6517
6518  if (isMOVLPMask(M, VT))
6519    return getMOVLP(Op, dl, DAG, HasSSE2);
6520
6521  if (ShouldXformToMOVHLPS(M, VT) ||
6522      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6523    return CommuteVectorShuffle(SVOp, DAG);
6524
6525  if (isShift) {
6526    // No better options. Use a vshldq / vsrldq.
6527    EVT EltVT = VT.getVectorElementType();
6528    ShAmt *= EltVT.getSizeInBits();
6529    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6530  }
6531
6532  bool Commuted = false;
6533  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6534  // 1,1,1,1 -> v8i16 though.
6535  V1IsSplat = isSplatVector(V1.getNode());
6536  V2IsSplat = isSplatVector(V2.getNode());
6537
6538  // Canonicalize the splat or undef, if present, to be on the RHS.
6539  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6540    CommuteVectorShuffleMask(M, NumElems);
6541    std::swap(V1, V2);
6542    std::swap(V1IsSplat, V2IsSplat);
6543    Commuted = true;
6544  }
6545
6546  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6547    // Shuffling low element of v1 into undef, just return v1.
6548    if (V2IsUndef)
6549      return V1;
6550    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6551    // the instruction selector will not match, so get a canonical MOVL with
6552    // swapped operands to undo the commute.
6553    return getMOVL(DAG, dl, VT, V2, V1);
6554  }
6555
6556  if (isUNPCKLMask(M, VT, HasAVX2))
6557    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6558
6559  if (isUNPCKHMask(M, VT, HasAVX2))
6560    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6561
6562  if (V2IsSplat) {
6563    // Normalize mask so all entries that point to V2 points to its first
6564    // element then try to match unpck{h|l} again. If match, return a
6565    // new vector_shuffle with the corrected mask.p
6566    SmallVector<int, 8> NewMask(M.begin(), M.end());
6567    NormalizeMask(NewMask, NumElems);
6568    if (isUNPCKLMask(NewMask, VT, HasAVX2, true)) {
6569      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6570    } else if (isUNPCKHMask(NewMask, VT, HasAVX2, true)) {
6571      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6572    }
6573  }
6574
6575  if (Commuted) {
6576    // Commute is back and try unpck* again.
6577    // FIXME: this seems wrong.
6578    CommuteVectorShuffleMask(M, NumElems);
6579    std::swap(V1, V2);
6580    std::swap(V1IsSplat, V2IsSplat);
6581    Commuted = false;
6582
6583    if (isUNPCKLMask(M, VT, HasAVX2))
6584      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6585
6586    if (isUNPCKHMask(M, VT, HasAVX2))
6587      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6588  }
6589
6590  // Normalize the node to match x86 shuffle ops if needed
6591  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6592    return CommuteVectorShuffle(SVOp, DAG);
6593
6594  // The checks below are all present in isShuffleMaskLegal, but they are
6595  // inlined here right now to enable us to directly emit target specific
6596  // nodes, and remove one by one until they don't return Op anymore.
6597
6598  if (isPALIGNRMask(M, VT, Subtarget))
6599    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6600                                getShufflePALIGNRImmediate(SVOp),
6601                                DAG);
6602
6603  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6604      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6605    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6606      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6607  }
6608
6609  if (isPSHUFHWMask(M, VT))
6610    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6611                                getShufflePSHUFHWImmediate(SVOp),
6612                                DAG);
6613
6614  if (isPSHUFLWMask(M, VT))
6615    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6616                                getShufflePSHUFLWImmediate(SVOp),
6617                                DAG);
6618
6619  if (isSHUFPMask(M, VT, HasAVX))
6620    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6621                                getShuffleSHUFImmediate(SVOp), DAG);
6622
6623  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6624    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6625  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6626    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6627
6628  //===--------------------------------------------------------------------===//
6629  // Generate target specific nodes for 128 or 256-bit shuffles only
6630  // supported in the AVX instruction set.
6631  //
6632
6633  // Handle VMOVDDUPY permutations
6634  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6635    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6636
6637  // Handle VPERMILPS/D* permutations
6638  if (isVPERMILPMask(M, VT, HasAVX)) {
6639    if (HasAVX2 && VT == MVT::v8i32)
6640      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6641                                  getShuffleSHUFImmediate(SVOp), DAG);
6642    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6643                                getShuffleSHUFImmediate(SVOp), DAG);
6644  }
6645
6646  // Handle VPERM2F128/VPERM2I128 permutations
6647  if (isVPERM2X128Mask(M, VT, HasAVX))
6648    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6649                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6650
6651  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(Op, Subtarget, DAG);
6652  if (BlendOp.getNode())
6653    return BlendOp;
6654
6655  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6656    SmallVector<SDValue, 8> permclMask;
6657    for (unsigned i = 0; i != 8; ++i) {
6658      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6659    }
6660    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6661                               &permclMask[0], 8);
6662    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6663    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6664                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6665  }
6666
6667  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6668    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6669                                getShuffleCLImmediate(SVOp), DAG);
6670
6671
6672  //===--------------------------------------------------------------------===//
6673  // Since no target specific shuffle was selected for this generic one,
6674  // lower it into other known shuffles. FIXME: this isn't true yet, but
6675  // this is the plan.
6676  //
6677
6678  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6679  if (VT == MVT::v8i16) {
6680    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6681    if (NewOp.getNode())
6682      return NewOp;
6683  }
6684
6685  if (VT == MVT::v16i8) {
6686    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6687    if (NewOp.getNode())
6688      return NewOp;
6689  }
6690
6691  // Handle all 128-bit wide vectors with 4 elements, and match them with
6692  // several different shuffle types.
6693  if (NumElems == 4 && VT.getSizeInBits() == 128)
6694    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6695
6696  // Handle general 256-bit shuffles
6697  if (VT.is256BitVector())
6698    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6699
6700  return SDValue();
6701}
6702
6703SDValue
6704X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6705                                                SelectionDAG &DAG) const {
6706  EVT VT = Op.getValueType();
6707  DebugLoc dl = Op.getDebugLoc();
6708
6709  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6710    return SDValue();
6711
6712  if (VT.getSizeInBits() == 8) {
6713    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6714                                    Op.getOperand(0), Op.getOperand(1));
6715    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6716                                    DAG.getValueType(VT));
6717    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6718  } else if (VT.getSizeInBits() == 16) {
6719    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6720    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6721    if (Idx == 0)
6722      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6723                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6724                                     DAG.getNode(ISD::BITCAST, dl,
6725                                                 MVT::v4i32,
6726                                                 Op.getOperand(0)),
6727                                     Op.getOperand(1)));
6728    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6729                                    Op.getOperand(0), Op.getOperand(1));
6730    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6731                                    DAG.getValueType(VT));
6732    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6733  } else if (VT == MVT::f32) {
6734    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6735    // the result back to FR32 register. It's only worth matching if the
6736    // result has a single use which is a store or a bitcast to i32.  And in
6737    // the case of a store, it's not worth it if the index is a constant 0,
6738    // because a MOVSSmr can be used instead, which is smaller and faster.
6739    if (!Op.hasOneUse())
6740      return SDValue();
6741    SDNode *User = *Op.getNode()->use_begin();
6742    if ((User->getOpcode() != ISD::STORE ||
6743         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6744          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6745        (User->getOpcode() != ISD::BITCAST ||
6746         User->getValueType(0) != MVT::i32))
6747      return SDValue();
6748    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6749                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6750                                              Op.getOperand(0)),
6751                                              Op.getOperand(1));
6752    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6753  } else if (VT == MVT::i32 || VT == MVT::i64) {
6754    // ExtractPS/pextrq works with constant index.
6755    if (isa<ConstantSDNode>(Op.getOperand(1)))
6756      return Op;
6757  }
6758  return SDValue();
6759}
6760
6761
6762SDValue
6763X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6764                                           SelectionDAG &DAG) const {
6765  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6766    return SDValue();
6767
6768  SDValue Vec = Op.getOperand(0);
6769  EVT VecVT = Vec.getValueType();
6770
6771  // If this is a 256-bit vector result, first extract the 128-bit vector and
6772  // then extract the element from the 128-bit vector.
6773  if (VecVT.getSizeInBits() == 256) {
6774    DebugLoc dl = Op.getNode()->getDebugLoc();
6775    unsigned NumElems = VecVT.getVectorNumElements();
6776    SDValue Idx = Op.getOperand(1);
6777    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6778
6779    // Get the 128-bit vector.
6780    bool Upper = IdxVal >= NumElems/2;
6781    Vec = Extract128BitVector(Vec,
6782                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6783
6784    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6785                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6786  }
6787
6788  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6789
6790  if (Subtarget->hasSSE41()) {
6791    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6792    if (Res.getNode())
6793      return Res;
6794  }
6795
6796  EVT VT = Op.getValueType();
6797  DebugLoc dl = Op.getDebugLoc();
6798  // TODO: handle v16i8.
6799  if (VT.getSizeInBits() == 16) {
6800    SDValue Vec = Op.getOperand(0);
6801    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6802    if (Idx == 0)
6803      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6804                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6805                                     DAG.getNode(ISD::BITCAST, dl,
6806                                                 MVT::v4i32, Vec),
6807                                     Op.getOperand(1)));
6808    // Transform it so it match pextrw which produces a 32-bit result.
6809    EVT EltVT = MVT::i32;
6810    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6811                                    Op.getOperand(0), Op.getOperand(1));
6812    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6813                                    DAG.getValueType(VT));
6814    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6815  } else if (VT.getSizeInBits() == 32) {
6816    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6817    if (Idx == 0)
6818      return Op;
6819
6820    // SHUFPS the element to the lowest double word, then movss.
6821    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6822    EVT VVT = Op.getOperand(0).getValueType();
6823    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6824                                       DAG.getUNDEF(VVT), Mask);
6825    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6826                       DAG.getIntPtrConstant(0));
6827  } else if (VT.getSizeInBits() == 64) {
6828    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6829    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6830    //        to match extract_elt for f64.
6831    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6832    if (Idx == 0)
6833      return Op;
6834
6835    // UNPCKHPD the element to the lowest double word, then movsd.
6836    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6837    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6838    int Mask[2] = { 1, -1 };
6839    EVT VVT = Op.getOperand(0).getValueType();
6840    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6841                                       DAG.getUNDEF(VVT), Mask);
6842    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6843                       DAG.getIntPtrConstant(0));
6844  }
6845
6846  return SDValue();
6847}
6848
6849SDValue
6850X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6851                                               SelectionDAG &DAG) const {
6852  EVT VT = Op.getValueType();
6853  EVT EltVT = VT.getVectorElementType();
6854  DebugLoc dl = Op.getDebugLoc();
6855
6856  SDValue N0 = Op.getOperand(0);
6857  SDValue N1 = Op.getOperand(1);
6858  SDValue N2 = Op.getOperand(2);
6859
6860  if (VT.getSizeInBits() == 256)
6861    return SDValue();
6862
6863  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6864      isa<ConstantSDNode>(N2)) {
6865    unsigned Opc;
6866    if (VT == MVT::v8i16)
6867      Opc = X86ISD::PINSRW;
6868    else if (VT == MVT::v16i8)
6869      Opc = X86ISD::PINSRB;
6870    else
6871      Opc = X86ISD::PINSRB;
6872
6873    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6874    // argument.
6875    if (N1.getValueType() != MVT::i32)
6876      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6877    if (N2.getValueType() != MVT::i32)
6878      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6879    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6880  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6881    // Bits [7:6] of the constant are the source select.  This will always be
6882    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6883    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6884    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6885    // Bits [5:4] of the constant are the destination select.  This is the
6886    //  value of the incoming immediate.
6887    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6888    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6889    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6890    // Create this as a scalar to vector..
6891    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6892    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6893  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6894             isa<ConstantSDNode>(N2)) {
6895    // PINSR* works with constant index.
6896    return Op;
6897  }
6898  return SDValue();
6899}
6900
6901SDValue
6902X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6903  EVT VT = Op.getValueType();
6904  EVT EltVT = VT.getVectorElementType();
6905
6906  DebugLoc dl = Op.getDebugLoc();
6907  SDValue N0 = Op.getOperand(0);
6908  SDValue N1 = Op.getOperand(1);
6909  SDValue N2 = Op.getOperand(2);
6910
6911  // If this is a 256-bit vector result, first extract the 128-bit vector,
6912  // insert the element into the extracted half and then place it back.
6913  if (VT.getSizeInBits() == 256) {
6914    if (!isa<ConstantSDNode>(N2))
6915      return SDValue();
6916
6917    // Get the desired 128-bit vector half.
6918    unsigned NumElems = VT.getVectorNumElements();
6919    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6920    bool Upper = IdxVal >= NumElems/2;
6921    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6922    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6923
6924    // Insert the element into the desired half.
6925    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6926                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6927
6928    // Insert the changed part back to the 256-bit vector
6929    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6930  }
6931
6932  if (Subtarget->hasSSE41())
6933    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6934
6935  if (EltVT == MVT::i8)
6936    return SDValue();
6937
6938  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6939    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6940    // as its second argument.
6941    if (N1.getValueType() != MVT::i32)
6942      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6943    if (N2.getValueType() != MVT::i32)
6944      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6945    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6946  }
6947  return SDValue();
6948}
6949
6950SDValue
6951X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6952  LLVMContext *Context = DAG.getContext();
6953  DebugLoc dl = Op.getDebugLoc();
6954  EVT OpVT = Op.getValueType();
6955
6956  // If this is a 256-bit vector result, first insert into a 128-bit
6957  // vector and then insert into the 256-bit vector.
6958  if (OpVT.getSizeInBits() > 128) {
6959    // Insert into a 128-bit vector.
6960    EVT VT128 = EVT::getVectorVT(*Context,
6961                                 OpVT.getVectorElementType(),
6962                                 OpVT.getVectorNumElements() / 2);
6963
6964    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6965
6966    // Insert the 128-bit vector.
6967    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6968                              DAG.getConstant(0, MVT::i32),
6969                              DAG, dl);
6970  }
6971
6972  if (Op.getValueType() == MVT::v1i64 &&
6973      Op.getOperand(0).getValueType() == MVT::i64)
6974    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6975
6976  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6977  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6978         "Expected an SSE type!");
6979  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6980                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6981}
6982
6983// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6984// a simple subregister reference or explicit instructions to grab
6985// upper bits of a vector.
6986SDValue
6987X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6988  if (Subtarget->hasAVX()) {
6989    DebugLoc dl = Op.getNode()->getDebugLoc();
6990    SDValue Vec = Op.getNode()->getOperand(0);
6991    SDValue Idx = Op.getNode()->getOperand(1);
6992
6993    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6994        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6995        return Extract128BitVector(Vec, Idx, DAG, dl);
6996    }
6997  }
6998  return SDValue();
6999}
7000
7001// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7002// simple superregister reference or explicit instructions to insert
7003// the upper bits of a vector.
7004SDValue
7005X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7006  if (Subtarget->hasAVX()) {
7007    DebugLoc dl = Op.getNode()->getDebugLoc();
7008    SDValue Vec = Op.getNode()->getOperand(0);
7009    SDValue SubVec = Op.getNode()->getOperand(1);
7010    SDValue Idx = Op.getNode()->getOperand(2);
7011
7012    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7013        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7014      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7015    }
7016  }
7017  return SDValue();
7018}
7019
7020// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7021// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7022// one of the above mentioned nodes. It has to be wrapped because otherwise
7023// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7024// be used to form addressing mode. These wrapped nodes will be selected
7025// into MOV32ri.
7026SDValue
7027X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7028  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7029
7030  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7031  // global base reg.
7032  unsigned char OpFlag = 0;
7033  unsigned WrapperKind = X86ISD::Wrapper;
7034  CodeModel::Model M = getTargetMachine().getCodeModel();
7035
7036  if (Subtarget->isPICStyleRIPRel() &&
7037      (M == CodeModel::Small || M == CodeModel::Kernel))
7038    WrapperKind = X86ISD::WrapperRIP;
7039  else if (Subtarget->isPICStyleGOT())
7040    OpFlag = X86II::MO_GOTOFF;
7041  else if (Subtarget->isPICStyleStubPIC())
7042    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7043
7044  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7045                                             CP->getAlignment(),
7046                                             CP->getOffset(), OpFlag);
7047  DebugLoc DL = CP->getDebugLoc();
7048  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7049  // With PIC, the address is actually $g + Offset.
7050  if (OpFlag) {
7051    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7052                         DAG.getNode(X86ISD::GlobalBaseReg,
7053                                     DebugLoc(), getPointerTy()),
7054                         Result);
7055  }
7056
7057  return Result;
7058}
7059
7060SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7061  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7062
7063  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7064  // global base reg.
7065  unsigned char OpFlag = 0;
7066  unsigned WrapperKind = X86ISD::Wrapper;
7067  CodeModel::Model M = getTargetMachine().getCodeModel();
7068
7069  if (Subtarget->isPICStyleRIPRel() &&
7070      (M == CodeModel::Small || M == CodeModel::Kernel))
7071    WrapperKind = X86ISD::WrapperRIP;
7072  else if (Subtarget->isPICStyleGOT())
7073    OpFlag = X86II::MO_GOTOFF;
7074  else if (Subtarget->isPICStyleStubPIC())
7075    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7076
7077  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7078                                          OpFlag);
7079  DebugLoc DL = JT->getDebugLoc();
7080  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7081
7082  // With PIC, the address is actually $g + Offset.
7083  if (OpFlag)
7084    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7085                         DAG.getNode(X86ISD::GlobalBaseReg,
7086                                     DebugLoc(), getPointerTy()),
7087                         Result);
7088
7089  return Result;
7090}
7091
7092SDValue
7093X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7094  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7095
7096  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7097  // global base reg.
7098  unsigned char OpFlag = 0;
7099  unsigned WrapperKind = X86ISD::Wrapper;
7100  CodeModel::Model M = getTargetMachine().getCodeModel();
7101
7102  if (Subtarget->isPICStyleRIPRel() &&
7103      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7104    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7105      OpFlag = X86II::MO_GOTPCREL;
7106    WrapperKind = X86ISD::WrapperRIP;
7107  } else if (Subtarget->isPICStyleGOT()) {
7108    OpFlag = X86II::MO_GOT;
7109  } else if (Subtarget->isPICStyleStubPIC()) {
7110    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7111  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7112    OpFlag = X86II::MO_DARWIN_NONLAZY;
7113  }
7114
7115  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7116
7117  DebugLoc DL = Op.getDebugLoc();
7118  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7119
7120
7121  // With PIC, the address is actually $g + Offset.
7122  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7123      !Subtarget->is64Bit()) {
7124    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7125                         DAG.getNode(X86ISD::GlobalBaseReg,
7126                                     DebugLoc(), getPointerTy()),
7127                         Result);
7128  }
7129
7130  // For symbols that require a load from a stub to get the address, emit the
7131  // load.
7132  if (isGlobalStubReference(OpFlag))
7133    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7134                         MachinePointerInfo::getGOT(), false, false, false, 0);
7135
7136  return Result;
7137}
7138
7139SDValue
7140X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7141  // Create the TargetBlockAddressAddress node.
7142  unsigned char OpFlags =
7143    Subtarget->ClassifyBlockAddressReference();
7144  CodeModel::Model M = getTargetMachine().getCodeModel();
7145  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7146  DebugLoc dl = Op.getDebugLoc();
7147  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7148                                       /*isTarget=*/true, OpFlags);
7149
7150  if (Subtarget->isPICStyleRIPRel() &&
7151      (M == CodeModel::Small || M == CodeModel::Kernel))
7152    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7153  else
7154    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7155
7156  // With PIC, the address is actually $g + Offset.
7157  if (isGlobalRelativeToPICBase(OpFlags)) {
7158    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7159                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7160                         Result);
7161  }
7162
7163  return Result;
7164}
7165
7166SDValue
7167X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7168                                      int64_t Offset,
7169                                      SelectionDAG &DAG) const {
7170  // Create the TargetGlobalAddress node, folding in the constant
7171  // offset if it is legal.
7172  unsigned char OpFlags =
7173    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7174  CodeModel::Model M = getTargetMachine().getCodeModel();
7175  SDValue Result;
7176  if (OpFlags == X86II::MO_NO_FLAG &&
7177      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7178    // A direct static reference to a global.
7179    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7180    Offset = 0;
7181  } else {
7182    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7183  }
7184
7185  if (Subtarget->isPICStyleRIPRel() &&
7186      (M == CodeModel::Small || M == CodeModel::Kernel))
7187    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7188  else
7189    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7190
7191  // With PIC, the address is actually $g + Offset.
7192  if (isGlobalRelativeToPICBase(OpFlags)) {
7193    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7194                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7195                         Result);
7196  }
7197
7198  // For globals that require a load from a stub to get the address, emit the
7199  // load.
7200  if (isGlobalStubReference(OpFlags))
7201    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7202                         MachinePointerInfo::getGOT(), false, false, false, 0);
7203
7204  // If there was a non-zero offset that we didn't fold, create an explicit
7205  // addition for it.
7206  if (Offset != 0)
7207    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7208                         DAG.getConstant(Offset, getPointerTy()));
7209
7210  return Result;
7211}
7212
7213SDValue
7214X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7215  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7216  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7217  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7218}
7219
7220static SDValue
7221GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7222           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7223           unsigned char OperandFlags) {
7224  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7225  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7226  DebugLoc dl = GA->getDebugLoc();
7227  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7228                                           GA->getValueType(0),
7229                                           GA->getOffset(),
7230                                           OperandFlags);
7231  if (InFlag) {
7232    SDValue Ops[] = { Chain,  TGA, *InFlag };
7233    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7234  } else {
7235    SDValue Ops[]  = { Chain, TGA };
7236    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7237  }
7238
7239  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7240  MFI->setAdjustsStack(true);
7241
7242  SDValue Flag = Chain.getValue(1);
7243  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7244}
7245
7246// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7247static SDValue
7248LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7249                                const EVT PtrVT) {
7250  SDValue InFlag;
7251  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7252  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7253                                     DAG.getNode(X86ISD::GlobalBaseReg,
7254                                                 DebugLoc(), PtrVT), InFlag);
7255  InFlag = Chain.getValue(1);
7256
7257  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7258}
7259
7260// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7261static SDValue
7262LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7263                                const EVT PtrVT) {
7264  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7265                    X86::RAX, X86II::MO_TLSGD);
7266}
7267
7268// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7269// "local exec" model.
7270static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7271                                   const EVT PtrVT, TLSModel::Model model,
7272                                   bool is64Bit) {
7273  DebugLoc dl = GA->getDebugLoc();
7274
7275  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7276  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7277                                                         is64Bit ? 257 : 256));
7278
7279  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7280                                      DAG.getIntPtrConstant(0),
7281                                      MachinePointerInfo(Ptr),
7282                                      false, false, false, 0);
7283
7284  unsigned char OperandFlags = 0;
7285  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7286  // initialexec.
7287  unsigned WrapperKind = X86ISD::Wrapper;
7288  if (model == TLSModel::LocalExec) {
7289    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7290  } else if (is64Bit) {
7291    assert(model == TLSModel::InitialExec);
7292    OperandFlags = X86II::MO_GOTTPOFF;
7293    WrapperKind = X86ISD::WrapperRIP;
7294  } else {
7295    assert(model == TLSModel::InitialExec);
7296    OperandFlags = X86II::MO_INDNTPOFF;
7297  }
7298
7299  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7300  // exec)
7301  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7302                                           GA->getValueType(0),
7303                                           GA->getOffset(), OperandFlags);
7304  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7305
7306  if (model == TLSModel::InitialExec)
7307    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7308                         MachinePointerInfo::getGOT(), false, false, false, 0);
7309
7310  // The address of the thread local variable is the add of the thread
7311  // pointer with the offset of the variable.
7312  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7313}
7314
7315SDValue
7316X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7317
7318  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7319  const GlobalValue *GV = GA->getGlobal();
7320
7321  if (Subtarget->isTargetELF()) {
7322    // TODO: implement the "local dynamic" model
7323    // TODO: implement the "initial exec"model for pic executables
7324
7325    // If GV is an alias then use the aliasee for determining
7326    // thread-localness.
7327    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7328      GV = GA->resolveAliasedGlobal(false);
7329
7330    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7331
7332    switch (model) {
7333      case TLSModel::GeneralDynamic:
7334      case TLSModel::LocalDynamic: // not implemented
7335        if (Subtarget->is64Bit())
7336          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7337        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7338
7339      case TLSModel::InitialExec:
7340      case TLSModel::LocalExec:
7341        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7342                                   Subtarget->is64Bit());
7343    }
7344  } else if (Subtarget->isTargetDarwin()) {
7345    // Darwin only has one model of TLS.  Lower to that.
7346    unsigned char OpFlag = 0;
7347    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7348                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7349
7350    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7351    // global base reg.
7352    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7353                  !Subtarget->is64Bit();
7354    if (PIC32)
7355      OpFlag = X86II::MO_TLVP_PIC_BASE;
7356    else
7357      OpFlag = X86II::MO_TLVP;
7358    DebugLoc DL = Op.getDebugLoc();
7359    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7360                                                GA->getValueType(0),
7361                                                GA->getOffset(), OpFlag);
7362    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7363
7364    // With PIC32, the address is actually $g + Offset.
7365    if (PIC32)
7366      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7367                           DAG.getNode(X86ISD::GlobalBaseReg,
7368                                       DebugLoc(), getPointerTy()),
7369                           Offset);
7370
7371    // Lowering the machine isd will make sure everything is in the right
7372    // location.
7373    SDValue Chain = DAG.getEntryNode();
7374    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7375    SDValue Args[] = { Chain, Offset };
7376    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7377
7378    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7379    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7380    MFI->setAdjustsStack(true);
7381
7382    // And our return value (tls address) is in the standard call return value
7383    // location.
7384    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7385    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7386                              Chain.getValue(1));
7387  } else if (Subtarget->isTargetWindows()) {
7388    // Just use the implicit TLS architecture
7389    // Need to generate someting similar to:
7390    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7391    //                                  ; from TEB
7392    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7393    //   mov     rcx, qword [rdx+rcx*8]
7394    //   mov     eax, .tls$:tlsvar
7395    //   [rax+rcx] contains the address
7396    // Windows 64bit: gs:0x58
7397    // Windows 32bit: fs:__tls_array
7398
7399    // If GV is an alias then use the aliasee for determining
7400    // thread-localness.
7401    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7402      GV = GA->resolveAliasedGlobal(false);
7403    DebugLoc dl = GA->getDebugLoc();
7404    SDValue Chain = DAG.getEntryNode();
7405
7406    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7407    // %gs:0x58 (64-bit).
7408    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7409                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7410                                                             256)
7411                                        : Type::getInt32PtrTy(*DAG.getContext(),
7412                                                              257));
7413
7414    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7415                                        Subtarget->is64Bit()
7416                                        ? DAG.getIntPtrConstant(0x58)
7417                                        : DAG.getExternalSymbol("_tls_array",
7418                                                                getPointerTy()),
7419                                        MachinePointerInfo(Ptr),
7420                                        false, false, false, 0);
7421
7422    // Load the _tls_index variable
7423    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7424    if (Subtarget->is64Bit())
7425      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7426                           IDX, MachinePointerInfo(), MVT::i32,
7427                           false, false, 0);
7428    else
7429      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7430                        false, false, false, 0);
7431
7432    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7433		                            getPointerTy());
7434    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7435
7436    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7437    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7438                      false, false, false, 0);
7439
7440    // Get the offset of start of .tls section
7441    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7442                                             GA->getValueType(0),
7443                                             GA->getOffset(), X86II::MO_SECREL);
7444    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7445
7446    // The address of the thread local variable is the add of the thread
7447    // pointer with the offset of the variable.
7448    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7449  }
7450
7451  llvm_unreachable("TLS not implemented for this target.");
7452}
7453
7454
7455/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7456/// and take a 2 x i32 value to shift plus a shift amount.
7457SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7458  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7459  EVT VT = Op.getValueType();
7460  unsigned VTBits = VT.getSizeInBits();
7461  DebugLoc dl = Op.getDebugLoc();
7462  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7463  SDValue ShOpLo = Op.getOperand(0);
7464  SDValue ShOpHi = Op.getOperand(1);
7465  SDValue ShAmt  = Op.getOperand(2);
7466  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7467                                     DAG.getConstant(VTBits - 1, MVT::i8))
7468                       : DAG.getConstant(0, VT);
7469
7470  SDValue Tmp2, Tmp3;
7471  if (Op.getOpcode() == ISD::SHL_PARTS) {
7472    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7473    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7474  } else {
7475    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7476    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7477  }
7478
7479  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7480                                DAG.getConstant(VTBits, MVT::i8));
7481  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7482                             AndNode, DAG.getConstant(0, MVT::i8));
7483
7484  SDValue Hi, Lo;
7485  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7486  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7487  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7488
7489  if (Op.getOpcode() == ISD::SHL_PARTS) {
7490    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7491    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7492  } else {
7493    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7494    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7495  }
7496
7497  SDValue Ops[2] = { Lo, Hi };
7498  return DAG.getMergeValues(Ops, 2, dl);
7499}
7500
7501SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7502                                           SelectionDAG &DAG) const {
7503  EVT SrcVT = Op.getOperand(0).getValueType();
7504
7505  if (SrcVT.isVector())
7506    return SDValue();
7507
7508  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7509         "Unknown SINT_TO_FP to lower!");
7510
7511  // These are really Legal; return the operand so the caller accepts it as
7512  // Legal.
7513  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7514    return Op;
7515  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7516      Subtarget->is64Bit()) {
7517    return Op;
7518  }
7519
7520  DebugLoc dl = Op.getDebugLoc();
7521  unsigned Size = SrcVT.getSizeInBits()/8;
7522  MachineFunction &MF = DAG.getMachineFunction();
7523  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7524  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7525  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7526                               StackSlot,
7527                               MachinePointerInfo::getFixedStack(SSFI),
7528                               false, false, 0);
7529  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7530}
7531
7532SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7533                                     SDValue StackSlot,
7534                                     SelectionDAG &DAG) const {
7535  // Build the FILD
7536  DebugLoc DL = Op.getDebugLoc();
7537  SDVTList Tys;
7538  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7539  if (useSSE)
7540    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7541  else
7542    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7543
7544  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7545
7546  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7547  MachineMemOperand *MMO;
7548  if (FI) {
7549    int SSFI = FI->getIndex();
7550    MMO =
7551      DAG.getMachineFunction()
7552      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7553                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7554  } else {
7555    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7556    StackSlot = StackSlot.getOperand(1);
7557  }
7558  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7559  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7560                                           X86ISD::FILD, DL,
7561                                           Tys, Ops, array_lengthof(Ops),
7562                                           SrcVT, MMO);
7563
7564  if (useSSE) {
7565    Chain = Result.getValue(1);
7566    SDValue InFlag = Result.getValue(2);
7567
7568    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7569    // shouldn't be necessary except that RFP cannot be live across
7570    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7571    MachineFunction &MF = DAG.getMachineFunction();
7572    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7573    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7574    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7575    Tys = DAG.getVTList(MVT::Other);
7576    SDValue Ops[] = {
7577      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7578    };
7579    MachineMemOperand *MMO =
7580      DAG.getMachineFunction()
7581      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7582                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7583
7584    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7585                                    Ops, array_lengthof(Ops),
7586                                    Op.getValueType(), MMO);
7587    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7588                         MachinePointerInfo::getFixedStack(SSFI),
7589                         false, false, false, 0);
7590  }
7591
7592  return Result;
7593}
7594
7595// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7596SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7597                                               SelectionDAG &DAG) const {
7598  // This algorithm is not obvious. Here it is what we're trying to output:
7599  /*
7600     movq       %rax,  %xmm0
7601     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7602     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7603     #ifdef __SSE3__
7604       haddpd   %xmm0, %xmm0
7605     #else
7606       pshufd   $0x4e, %xmm0, %xmm1
7607       addpd    %xmm1, %xmm0
7608     #endif
7609  */
7610
7611  DebugLoc dl = Op.getDebugLoc();
7612  LLVMContext *Context = DAG.getContext();
7613
7614  // Build some magic constants.
7615  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7616  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7617  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7618
7619  SmallVector<Constant*,2> CV1;
7620  CV1.push_back(
7621        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7622  CV1.push_back(
7623        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7624  Constant *C1 = ConstantVector::get(CV1);
7625  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7626
7627  // Load the 64-bit value into an XMM register.
7628  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7629                            Op.getOperand(0));
7630  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7631                              MachinePointerInfo::getConstantPool(),
7632                              false, false, false, 16);
7633  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7634                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7635                              CLod0);
7636
7637  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7638                              MachinePointerInfo::getConstantPool(),
7639                              false, false, false, 16);
7640  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7641  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7642  SDValue Result;
7643
7644  if (Subtarget->hasSSE3()) {
7645    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7646    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7647  } else {
7648    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7649    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7650                                           S2F, 0x4E, DAG);
7651    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7652                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7653                         Sub);
7654  }
7655
7656  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7657                     DAG.getIntPtrConstant(0));
7658}
7659
7660// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7661SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7662                                               SelectionDAG &DAG) const {
7663  DebugLoc dl = Op.getDebugLoc();
7664  // FP constant to bias correct the final result.
7665  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7666                                   MVT::f64);
7667
7668  // Load the 32-bit value into an XMM register.
7669  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7670                             Op.getOperand(0));
7671
7672  // Zero out the upper parts of the register.
7673  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7674
7675  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7676                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7677                     DAG.getIntPtrConstant(0));
7678
7679  // Or the load with the bias.
7680  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7681                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7682                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7683                                                   MVT::v2f64, Load)),
7684                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7685                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7686                                                   MVT::v2f64, Bias)));
7687  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7688                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7689                   DAG.getIntPtrConstant(0));
7690
7691  // Subtract the bias.
7692  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7693
7694  // Handle final rounding.
7695  EVT DestVT = Op.getValueType();
7696
7697  if (DestVT.bitsLT(MVT::f64)) {
7698    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7699                       DAG.getIntPtrConstant(0));
7700  } else if (DestVT.bitsGT(MVT::f64)) {
7701    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7702  }
7703
7704  // Handle final rounding.
7705  return Sub;
7706}
7707
7708SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7709                                           SelectionDAG &DAG) const {
7710  SDValue N0 = Op.getOperand(0);
7711  DebugLoc dl = Op.getDebugLoc();
7712
7713  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7714  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7715  // the optimization here.
7716  if (DAG.SignBitIsZero(N0))
7717    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7718
7719  EVT SrcVT = N0.getValueType();
7720  EVT DstVT = Op.getValueType();
7721  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7722    return LowerUINT_TO_FP_i64(Op, DAG);
7723  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7724    return LowerUINT_TO_FP_i32(Op, DAG);
7725  else if (Subtarget->is64Bit() &&
7726           SrcVT == MVT::i64 && DstVT == MVT::f32)
7727    return SDValue();
7728
7729  // Make a 64-bit buffer, and use it to build an FILD.
7730  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7731  if (SrcVT == MVT::i32) {
7732    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7733    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7734                                     getPointerTy(), StackSlot, WordOff);
7735    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7736                                  StackSlot, MachinePointerInfo(),
7737                                  false, false, 0);
7738    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7739                                  OffsetSlot, MachinePointerInfo(),
7740                                  false, false, 0);
7741    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7742    return Fild;
7743  }
7744
7745  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7746  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7747                               StackSlot, MachinePointerInfo(),
7748                               false, false, 0);
7749  // For i64 source, we need to add the appropriate power of 2 if the input
7750  // was negative.  This is the same as the optimization in
7751  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7752  // we must be careful to do the computation in x87 extended precision, not
7753  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7754  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7755  MachineMemOperand *MMO =
7756    DAG.getMachineFunction()
7757    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7758                          MachineMemOperand::MOLoad, 8, 8);
7759
7760  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7761  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7762  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7763                                         MVT::i64, MMO);
7764
7765  APInt FF(32, 0x5F800000ULL);
7766
7767  // Check whether the sign bit is set.
7768  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7769                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7770                                 ISD::SETLT);
7771
7772  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7773  SDValue FudgePtr = DAG.getConstantPool(
7774                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7775                                         getPointerTy());
7776
7777  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7778  SDValue Zero = DAG.getIntPtrConstant(0);
7779  SDValue Four = DAG.getIntPtrConstant(4);
7780  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7781                               Zero, Four);
7782  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7783
7784  // Load the value out, extending it from f32 to f80.
7785  // FIXME: Avoid the extend by constructing the right constant pool?
7786  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7787                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7788                                 MVT::f32, false, false, 4);
7789  // Extend everything to 80 bits to force it to be done on x87.
7790  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7791  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7792}
7793
7794std::pair<SDValue,SDValue> X86TargetLowering::
7795FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7796  DebugLoc DL = Op.getDebugLoc();
7797
7798  EVT DstTy = Op.getValueType();
7799
7800  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7801    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7802    DstTy = MVT::i64;
7803  }
7804
7805  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7806         DstTy.getSimpleVT() >= MVT::i16 &&
7807         "Unknown FP_TO_INT to lower!");
7808
7809  // These are really Legal.
7810  if (DstTy == MVT::i32 &&
7811      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7812    return std::make_pair(SDValue(), SDValue());
7813  if (Subtarget->is64Bit() &&
7814      DstTy == MVT::i64 &&
7815      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7816    return std::make_pair(SDValue(), SDValue());
7817
7818  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7819  // stack slot, or into the FTOL runtime function.
7820  MachineFunction &MF = DAG.getMachineFunction();
7821  unsigned MemSize = DstTy.getSizeInBits()/8;
7822  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7823  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7824
7825  unsigned Opc;
7826  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7827    Opc = X86ISD::WIN_FTOL;
7828  else
7829    switch (DstTy.getSimpleVT().SimpleTy) {
7830    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7831    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7832    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7833    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7834    }
7835
7836  SDValue Chain = DAG.getEntryNode();
7837  SDValue Value = Op.getOperand(0);
7838  EVT TheVT = Op.getOperand(0).getValueType();
7839  // FIXME This causes a redundant load/store if the SSE-class value is already
7840  // in memory, such as if it is on the callstack.
7841  if (isScalarFPTypeInSSEReg(TheVT)) {
7842    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7843    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7844                         MachinePointerInfo::getFixedStack(SSFI),
7845                         false, false, 0);
7846    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7847    SDValue Ops[] = {
7848      Chain, StackSlot, DAG.getValueType(TheVT)
7849    };
7850
7851    MachineMemOperand *MMO =
7852      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7853                              MachineMemOperand::MOLoad, MemSize, MemSize);
7854    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7855                                    DstTy, MMO);
7856    Chain = Value.getValue(1);
7857    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7858    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7859  }
7860
7861  MachineMemOperand *MMO =
7862    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7863                            MachineMemOperand::MOStore, MemSize, MemSize);
7864
7865  if (Opc != X86ISD::WIN_FTOL) {
7866    // Build the FP_TO_INT*_IN_MEM
7867    SDValue Ops[] = { Chain, Value, StackSlot };
7868    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7869                                           Ops, 3, DstTy, MMO);
7870    return std::make_pair(FIST, StackSlot);
7871  } else {
7872    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
7873      DAG.getVTList(MVT::Other, MVT::Glue),
7874      Chain, Value);
7875    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
7876      MVT::i32, ftol.getValue(1));
7877    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
7878      MVT::i32, eax.getValue(2));
7879    SDValue Ops[] = { eax, edx };
7880    SDValue pair = IsReplace
7881      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
7882      : DAG.getMergeValues(Ops, 2, DL);
7883    return std::make_pair(pair, SDValue());
7884  }
7885}
7886
7887SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7888                                           SelectionDAG &DAG) const {
7889  if (Op.getValueType().isVector())
7890    return SDValue();
7891
7892  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7893    /*IsSigned=*/ true, /*IsReplace=*/ false);
7894  SDValue FIST = Vals.first, StackSlot = Vals.second;
7895  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7896  if (FIST.getNode() == 0) return Op;
7897
7898  if (StackSlot.getNode())
7899    // Load the result.
7900    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7901                       FIST, StackSlot, MachinePointerInfo(),
7902                       false, false, false, 0);
7903  else
7904    // The node is the result.
7905    return FIST;
7906}
7907
7908SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7909                                           SelectionDAG &DAG) const {
7910  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7911    /*IsSigned=*/ false, /*IsReplace=*/ false);
7912  SDValue FIST = Vals.first, StackSlot = Vals.second;
7913  assert(FIST.getNode() && "Unexpected failure");
7914
7915  if (StackSlot.getNode())
7916    // Load the result.
7917    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7918                       FIST, StackSlot, MachinePointerInfo(),
7919                       false, false, false, 0);
7920  else
7921    // The node is the result.
7922    return FIST;
7923}
7924
7925SDValue X86TargetLowering::LowerFABS(SDValue Op,
7926                                     SelectionDAG &DAG) const {
7927  LLVMContext *Context = DAG.getContext();
7928  DebugLoc dl = Op.getDebugLoc();
7929  EVT VT = Op.getValueType();
7930  EVT EltVT = VT;
7931  if (VT.isVector())
7932    EltVT = VT.getVectorElementType();
7933  Constant *C;
7934  if (EltVT == MVT::f64) {
7935    C = ConstantVector::getSplat(2,
7936                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7937  } else {
7938    C = ConstantVector::getSplat(4,
7939               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7940  }
7941  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7942  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7943                             MachinePointerInfo::getConstantPool(),
7944                             false, false, false, 16);
7945  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7946}
7947
7948SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7949  LLVMContext *Context = DAG.getContext();
7950  DebugLoc dl = Op.getDebugLoc();
7951  EVT VT = Op.getValueType();
7952  EVT EltVT = VT;
7953  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7954  if (VT.isVector()) {
7955    EltVT = VT.getVectorElementType();
7956    NumElts = VT.getVectorNumElements();
7957  }
7958  Constant *C;
7959  if (EltVT == MVT::f64)
7960    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7961  else
7962    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7963  C = ConstantVector::getSplat(NumElts, C);
7964  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7965  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7966                             MachinePointerInfo::getConstantPool(),
7967                             false, false, false, 16);
7968  if (VT.isVector()) {
7969    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7970    return DAG.getNode(ISD::BITCAST, dl, VT,
7971                       DAG.getNode(ISD::XOR, dl, XORVT,
7972                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7973                                Op.getOperand(0)),
7974                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7975  } else {
7976    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7977  }
7978}
7979
7980SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7981  LLVMContext *Context = DAG.getContext();
7982  SDValue Op0 = Op.getOperand(0);
7983  SDValue Op1 = Op.getOperand(1);
7984  DebugLoc dl = Op.getDebugLoc();
7985  EVT VT = Op.getValueType();
7986  EVT SrcVT = Op1.getValueType();
7987
7988  // If second operand is smaller, extend it first.
7989  if (SrcVT.bitsLT(VT)) {
7990    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7991    SrcVT = VT;
7992  }
7993  // And if it is bigger, shrink it first.
7994  if (SrcVT.bitsGT(VT)) {
7995    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7996    SrcVT = VT;
7997  }
7998
7999  // At this point the operands and the result should have the same
8000  // type, and that won't be f80 since that is not custom lowered.
8001
8002  // First get the sign bit of second operand.
8003  SmallVector<Constant*,4> CV;
8004  if (SrcVT == MVT::f64) {
8005    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8006    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8007  } else {
8008    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8009    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8010    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8011    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8012  }
8013  Constant *C = ConstantVector::get(CV);
8014  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8015  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8016                              MachinePointerInfo::getConstantPool(),
8017                              false, false, false, 16);
8018  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8019
8020  // Shift sign bit right or left if the two operands have different types.
8021  if (SrcVT.bitsGT(VT)) {
8022    // Op0 is MVT::f32, Op1 is MVT::f64.
8023    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8024    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8025                          DAG.getConstant(32, MVT::i32));
8026    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8027    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8028                          DAG.getIntPtrConstant(0));
8029  }
8030
8031  // Clear first operand sign bit.
8032  CV.clear();
8033  if (VT == MVT::f64) {
8034    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8035    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8036  } else {
8037    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8038    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8039    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8040    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8041  }
8042  C = ConstantVector::get(CV);
8043  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8044  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8045                              MachinePointerInfo::getConstantPool(),
8046                              false, false, false, 16);
8047  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8048
8049  // Or the value with the sign bit.
8050  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8051}
8052
8053SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8054  SDValue N0 = Op.getOperand(0);
8055  DebugLoc dl = Op.getDebugLoc();
8056  EVT VT = Op.getValueType();
8057
8058  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8059  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8060                                  DAG.getConstant(1, VT));
8061  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8062}
8063
8064/// Emit nodes that will be selected as "test Op0,Op0", or something
8065/// equivalent.
8066SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8067                                    SelectionDAG &DAG) const {
8068  DebugLoc dl = Op.getDebugLoc();
8069
8070  // CF and OF aren't always set the way we want. Determine which
8071  // of these we need.
8072  bool NeedCF = false;
8073  bool NeedOF = false;
8074  switch (X86CC) {
8075  default: break;
8076  case X86::COND_A: case X86::COND_AE:
8077  case X86::COND_B: case X86::COND_BE:
8078    NeedCF = true;
8079    break;
8080  case X86::COND_G: case X86::COND_GE:
8081  case X86::COND_L: case X86::COND_LE:
8082  case X86::COND_O: case X86::COND_NO:
8083    NeedOF = true;
8084    break;
8085  }
8086
8087  // See if we can use the EFLAGS value from the operand instead of
8088  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8089  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8090  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8091    // Emit a CMP with 0, which is the TEST pattern.
8092    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8093                       DAG.getConstant(0, Op.getValueType()));
8094
8095  unsigned Opcode = 0;
8096  unsigned NumOperands = 0;
8097  switch (Op.getNode()->getOpcode()) {
8098  case ISD::ADD:
8099    // Due to an isel shortcoming, be conservative if this add is likely to be
8100    // selected as part of a load-modify-store instruction. When the root node
8101    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8102    // uses of other nodes in the match, such as the ADD in this case. This
8103    // leads to the ADD being left around and reselected, with the result being
8104    // two adds in the output.  Alas, even if none our users are stores, that
8105    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8106    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8107    // climbing the DAG back to the root, and it doesn't seem to be worth the
8108    // effort.
8109    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8110         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8111      if (UI->getOpcode() != ISD::CopyToReg &&
8112          UI->getOpcode() != ISD::SETCC &&
8113          UI->getOpcode() != ISD::STORE)
8114        goto default_case;
8115
8116    if (ConstantSDNode *C =
8117        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8118      // An add of one will be selected as an INC.
8119      if (C->getAPIntValue() == 1) {
8120        Opcode = X86ISD::INC;
8121        NumOperands = 1;
8122        break;
8123      }
8124
8125      // An add of negative one (subtract of one) will be selected as a DEC.
8126      if (C->getAPIntValue().isAllOnesValue()) {
8127        Opcode = X86ISD::DEC;
8128        NumOperands = 1;
8129        break;
8130      }
8131    }
8132
8133    // Otherwise use a regular EFLAGS-setting add.
8134    Opcode = X86ISD::ADD;
8135    NumOperands = 2;
8136    break;
8137  case ISD::AND: {
8138    // If the primary and result isn't used, don't bother using X86ISD::AND,
8139    // because a TEST instruction will be better.
8140    bool NonFlagUse = false;
8141    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8142           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8143      SDNode *User = *UI;
8144      unsigned UOpNo = UI.getOperandNo();
8145      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8146        // Look pass truncate.
8147        UOpNo = User->use_begin().getOperandNo();
8148        User = *User->use_begin();
8149      }
8150
8151      if (User->getOpcode() != ISD::BRCOND &&
8152          User->getOpcode() != ISD::SETCC &&
8153          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8154        NonFlagUse = true;
8155        break;
8156      }
8157    }
8158
8159    if (!NonFlagUse)
8160      break;
8161  }
8162    // FALL THROUGH
8163  case ISD::SUB:
8164  case ISD::OR:
8165  case ISD::XOR:
8166    // Due to the ISEL shortcoming noted above, be conservative if this op is
8167    // likely to be selected as part of a load-modify-store instruction.
8168    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8169           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8170      if (UI->getOpcode() == ISD::STORE)
8171        goto default_case;
8172
8173    // Otherwise use a regular EFLAGS-setting instruction.
8174    switch (Op.getNode()->getOpcode()) {
8175    default: llvm_unreachable("unexpected operator!");
8176    case ISD::SUB: Opcode = X86ISD::SUB; break;
8177    case ISD::OR:  Opcode = X86ISD::OR;  break;
8178    case ISD::XOR: Opcode = X86ISD::XOR; break;
8179    case ISD::AND: Opcode = X86ISD::AND; break;
8180    }
8181
8182    NumOperands = 2;
8183    break;
8184  case X86ISD::ADD:
8185  case X86ISD::SUB:
8186  case X86ISD::INC:
8187  case X86ISD::DEC:
8188  case X86ISD::OR:
8189  case X86ISD::XOR:
8190  case X86ISD::AND:
8191    return SDValue(Op.getNode(), 1);
8192  default:
8193  default_case:
8194    break;
8195  }
8196
8197  if (Opcode == 0)
8198    // Emit a CMP with 0, which is the TEST pattern.
8199    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8200                       DAG.getConstant(0, Op.getValueType()));
8201
8202  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8203  SmallVector<SDValue, 4> Ops;
8204  for (unsigned i = 0; i != NumOperands; ++i)
8205    Ops.push_back(Op.getOperand(i));
8206
8207  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8208  DAG.ReplaceAllUsesWith(Op, New);
8209  return SDValue(New.getNode(), 1);
8210}
8211
8212/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8213/// equivalent.
8214SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8215                                   SelectionDAG &DAG) const {
8216  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8217    if (C->getAPIntValue() == 0)
8218      return EmitTest(Op0, X86CC, DAG);
8219
8220  DebugLoc dl = Op0.getDebugLoc();
8221  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8222}
8223
8224/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8225/// if it's possible.
8226SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8227                                     DebugLoc dl, SelectionDAG &DAG) const {
8228  SDValue Op0 = And.getOperand(0);
8229  SDValue Op1 = And.getOperand(1);
8230  if (Op0.getOpcode() == ISD::TRUNCATE)
8231    Op0 = Op0.getOperand(0);
8232  if (Op1.getOpcode() == ISD::TRUNCATE)
8233    Op1 = Op1.getOperand(0);
8234
8235  SDValue LHS, RHS;
8236  if (Op1.getOpcode() == ISD::SHL)
8237    std::swap(Op0, Op1);
8238  if (Op0.getOpcode() == ISD::SHL) {
8239    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8240      if (And00C->getZExtValue() == 1) {
8241        // If we looked past a truncate, check that it's only truncating away
8242        // known zeros.
8243        unsigned BitWidth = Op0.getValueSizeInBits();
8244        unsigned AndBitWidth = And.getValueSizeInBits();
8245        if (BitWidth > AndBitWidth) {
8246          APInt Zeros, Ones;
8247          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8248          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8249            return SDValue();
8250        }
8251        LHS = Op1;
8252        RHS = Op0.getOperand(1);
8253      }
8254  } else if (Op1.getOpcode() == ISD::Constant) {
8255    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8256    uint64_t AndRHSVal = AndRHS->getZExtValue();
8257    SDValue AndLHS = Op0;
8258
8259    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8260      LHS = AndLHS.getOperand(0);
8261      RHS = AndLHS.getOperand(1);
8262    }
8263
8264    // Use BT if the immediate can't be encoded in a TEST instruction.
8265    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8266      LHS = AndLHS;
8267      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8268    }
8269  }
8270
8271  if (LHS.getNode()) {
8272    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8273    // instruction.  Since the shift amount is in-range-or-undefined, we know
8274    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8275    // the encoding for the i16 version is larger than the i32 version.
8276    // Also promote i16 to i32 for performance / code size reason.
8277    if (LHS.getValueType() == MVT::i8 ||
8278        LHS.getValueType() == MVT::i16)
8279      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8280
8281    // If the operand types disagree, extend the shift amount to match.  Since
8282    // BT ignores high bits (like shifts) we can use anyextend.
8283    if (LHS.getValueType() != RHS.getValueType())
8284      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8285
8286    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8287    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8288    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8289                       DAG.getConstant(Cond, MVT::i8), BT);
8290  }
8291
8292  return SDValue();
8293}
8294
8295SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8296
8297  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8298
8299  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8300  SDValue Op0 = Op.getOperand(0);
8301  SDValue Op1 = Op.getOperand(1);
8302  DebugLoc dl = Op.getDebugLoc();
8303  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8304
8305  // Optimize to BT if possible.
8306  // Lower (X & (1 << N)) == 0 to BT(X, N).
8307  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8308  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8309  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8310      Op1.getOpcode() == ISD::Constant &&
8311      cast<ConstantSDNode>(Op1)->isNullValue() &&
8312      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8313    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8314    if (NewSetCC.getNode())
8315      return NewSetCC;
8316  }
8317
8318  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8319  // these.
8320  if (Op1.getOpcode() == ISD::Constant &&
8321      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8322       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8323      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8324
8325    // If the input is a setcc, then reuse the input setcc or use a new one with
8326    // the inverted condition.
8327    if (Op0.getOpcode() == X86ISD::SETCC) {
8328      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8329      bool Invert = (CC == ISD::SETNE) ^
8330        cast<ConstantSDNode>(Op1)->isNullValue();
8331      if (!Invert) return Op0;
8332
8333      CCode = X86::GetOppositeBranchCondition(CCode);
8334      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8335                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8336    }
8337  }
8338
8339  bool isFP = Op1.getValueType().isFloatingPoint();
8340  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8341  if (X86CC == X86::COND_INVALID)
8342    return SDValue();
8343
8344  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8345  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8346                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8347}
8348
8349// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8350// ones, and then concatenate the result back.
8351static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8352  EVT VT = Op.getValueType();
8353
8354  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8355         "Unsupported value type for operation");
8356
8357  int NumElems = VT.getVectorNumElements();
8358  DebugLoc dl = Op.getDebugLoc();
8359  SDValue CC = Op.getOperand(2);
8360  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8361  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8362
8363  // Extract the LHS vectors
8364  SDValue LHS = Op.getOperand(0);
8365  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8366  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8367
8368  // Extract the RHS vectors
8369  SDValue RHS = Op.getOperand(1);
8370  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8371  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8372
8373  // Issue the operation on the smaller types and concatenate the result back
8374  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8375  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8376  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8377                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8378                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8379}
8380
8381
8382SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8383  SDValue Cond;
8384  SDValue Op0 = Op.getOperand(0);
8385  SDValue Op1 = Op.getOperand(1);
8386  SDValue CC = Op.getOperand(2);
8387  EVT VT = Op.getValueType();
8388  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8389  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8390  DebugLoc dl = Op.getDebugLoc();
8391
8392  if (isFP) {
8393    unsigned SSECC = 8;
8394    EVT EltVT = Op0.getValueType().getVectorElementType();
8395    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8396
8397    bool Swap = false;
8398
8399    // SSE Condition code mapping:
8400    //  0 - EQ
8401    //  1 - LT
8402    //  2 - LE
8403    //  3 - UNORD
8404    //  4 - NEQ
8405    //  5 - NLT
8406    //  6 - NLE
8407    //  7 - ORD
8408    switch (SetCCOpcode) {
8409    default: break;
8410    case ISD::SETOEQ:
8411    case ISD::SETEQ:  SSECC = 0; break;
8412    case ISD::SETOGT:
8413    case ISD::SETGT: Swap = true; // Fallthrough
8414    case ISD::SETLT:
8415    case ISD::SETOLT: SSECC = 1; break;
8416    case ISD::SETOGE:
8417    case ISD::SETGE: Swap = true; // Fallthrough
8418    case ISD::SETLE:
8419    case ISD::SETOLE: SSECC = 2; break;
8420    case ISD::SETUO:  SSECC = 3; break;
8421    case ISD::SETUNE:
8422    case ISD::SETNE:  SSECC = 4; break;
8423    case ISD::SETULE: Swap = true;
8424    case ISD::SETUGE: SSECC = 5; break;
8425    case ISD::SETULT: Swap = true;
8426    case ISD::SETUGT: SSECC = 6; break;
8427    case ISD::SETO:   SSECC = 7; break;
8428    }
8429    if (Swap)
8430      std::swap(Op0, Op1);
8431
8432    // In the two special cases we can't handle, emit two comparisons.
8433    if (SSECC == 8) {
8434      if (SetCCOpcode == ISD::SETUEQ) {
8435        SDValue UNORD, EQ;
8436        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8437                            DAG.getConstant(3, MVT::i8));
8438        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8439                         DAG.getConstant(0, MVT::i8));
8440        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8441      } else if (SetCCOpcode == ISD::SETONE) {
8442        SDValue ORD, NEQ;
8443        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8444                          DAG.getConstant(7, MVT::i8));
8445        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8446                          DAG.getConstant(4, MVT::i8));
8447        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8448      }
8449      llvm_unreachable("Illegal FP comparison");
8450    }
8451    // Handle all other FP comparisons here.
8452    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8453                       DAG.getConstant(SSECC, MVT::i8));
8454  }
8455
8456  // Break 256-bit integer vector compare into smaller ones.
8457  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8458    return Lower256IntVSETCC(Op, DAG);
8459
8460  // We are handling one of the integer comparisons here.  Since SSE only has
8461  // GT and EQ comparisons for integer, swapping operands and multiple
8462  // operations may be required for some comparisons.
8463  unsigned Opc = 0;
8464  bool Swap = false, Invert = false, FlipSigns = false;
8465
8466  switch (SetCCOpcode) {
8467  default: break;
8468  case ISD::SETNE:  Invert = true;
8469  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8470  case ISD::SETLT:  Swap = true;
8471  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8472  case ISD::SETGE:  Swap = true;
8473  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8474  case ISD::SETULT: Swap = true;
8475  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8476  case ISD::SETUGE: Swap = true;
8477  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8478  }
8479  if (Swap)
8480    std::swap(Op0, Op1);
8481
8482  // Check that the operation in question is available (most are plain SSE2,
8483  // but PCMPGTQ and PCMPEQQ have different requirements).
8484  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8485    return SDValue();
8486  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8487    return SDValue();
8488
8489  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8490  // bits of the inputs before performing those operations.
8491  if (FlipSigns) {
8492    EVT EltVT = VT.getVectorElementType();
8493    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8494                                      EltVT);
8495    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8496    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8497                                    SignBits.size());
8498    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8499    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8500  }
8501
8502  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8503
8504  // If the logical-not of the result is required, perform that now.
8505  if (Invert)
8506    Result = DAG.getNOT(dl, Result, VT);
8507
8508  return Result;
8509}
8510
8511// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8512static bool isX86LogicalCmp(SDValue Op) {
8513  unsigned Opc = Op.getNode()->getOpcode();
8514  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8515    return true;
8516  if (Op.getResNo() == 1 &&
8517      (Opc == X86ISD::ADD ||
8518       Opc == X86ISD::SUB ||
8519       Opc == X86ISD::ADC ||
8520       Opc == X86ISD::SBB ||
8521       Opc == X86ISD::SMUL ||
8522       Opc == X86ISD::UMUL ||
8523       Opc == X86ISD::INC ||
8524       Opc == X86ISD::DEC ||
8525       Opc == X86ISD::OR ||
8526       Opc == X86ISD::XOR ||
8527       Opc == X86ISD::AND))
8528    return true;
8529
8530  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8531    return true;
8532
8533  return false;
8534}
8535
8536static bool isZero(SDValue V) {
8537  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8538  return C && C->isNullValue();
8539}
8540
8541static bool isAllOnes(SDValue V) {
8542  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8543  return C && C->isAllOnesValue();
8544}
8545
8546SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8547  bool addTest = true;
8548  SDValue Cond  = Op.getOperand(0);
8549  SDValue Op1 = Op.getOperand(1);
8550  SDValue Op2 = Op.getOperand(2);
8551  DebugLoc DL = Op.getDebugLoc();
8552  SDValue CC;
8553
8554  if (Cond.getOpcode() == ISD::SETCC) {
8555    SDValue NewCond = LowerSETCC(Cond, DAG);
8556    if (NewCond.getNode())
8557      Cond = NewCond;
8558  }
8559
8560  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8561  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8562  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8563  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8564  if (Cond.getOpcode() == X86ISD::SETCC &&
8565      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8566      isZero(Cond.getOperand(1).getOperand(1))) {
8567    SDValue Cmp = Cond.getOperand(1);
8568
8569    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8570
8571    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8572        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8573      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8574
8575      SDValue CmpOp0 = Cmp.getOperand(0);
8576      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8577                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8578
8579      SDValue Res =   // Res = 0 or -1.
8580        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8581                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8582
8583      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8584        Res = DAG.getNOT(DL, Res, Res.getValueType());
8585
8586      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8587      if (N2C == 0 || !N2C->isNullValue())
8588        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8589      return Res;
8590    }
8591  }
8592
8593  // Look past (and (setcc_carry (cmp ...)), 1).
8594  if (Cond.getOpcode() == ISD::AND &&
8595      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8596    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8597    if (C && C->getAPIntValue() == 1)
8598      Cond = Cond.getOperand(0);
8599  }
8600
8601  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8602  // setting operand in place of the X86ISD::SETCC.
8603  unsigned CondOpcode = Cond.getOpcode();
8604  if (CondOpcode == X86ISD::SETCC ||
8605      CondOpcode == X86ISD::SETCC_CARRY) {
8606    CC = Cond.getOperand(0);
8607
8608    SDValue Cmp = Cond.getOperand(1);
8609    unsigned Opc = Cmp.getOpcode();
8610    EVT VT = Op.getValueType();
8611
8612    bool IllegalFPCMov = false;
8613    if (VT.isFloatingPoint() && !VT.isVector() &&
8614        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8615      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8616
8617    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8618        Opc == X86ISD::BT) { // FIXME
8619      Cond = Cmp;
8620      addTest = false;
8621    }
8622  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8623             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8624             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8625              Cond.getOperand(0).getValueType() != MVT::i8)) {
8626    SDValue LHS = Cond.getOperand(0);
8627    SDValue RHS = Cond.getOperand(1);
8628    unsigned X86Opcode;
8629    unsigned X86Cond;
8630    SDVTList VTs;
8631    switch (CondOpcode) {
8632    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8633    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8634    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8635    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8636    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8637    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8638    default: llvm_unreachable("unexpected overflowing operator");
8639    }
8640    if (CondOpcode == ISD::UMULO)
8641      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8642                          MVT::i32);
8643    else
8644      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8645
8646    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8647
8648    if (CondOpcode == ISD::UMULO)
8649      Cond = X86Op.getValue(2);
8650    else
8651      Cond = X86Op.getValue(1);
8652
8653    CC = DAG.getConstant(X86Cond, MVT::i8);
8654    addTest = false;
8655  }
8656
8657  if (addTest) {
8658    // Look pass the truncate.
8659    if (Cond.getOpcode() == ISD::TRUNCATE)
8660      Cond = Cond.getOperand(0);
8661
8662    // We know the result of AND is compared against zero. Try to match
8663    // it to BT.
8664    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8665      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8666      if (NewSetCC.getNode()) {
8667        CC = NewSetCC.getOperand(0);
8668        Cond = NewSetCC.getOperand(1);
8669        addTest = false;
8670      }
8671    }
8672  }
8673
8674  if (addTest) {
8675    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8676    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8677  }
8678
8679  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8680  // a <  b ?  0 : -1 -> RES = setcc_carry
8681  // a >= b ? -1 :  0 -> RES = setcc_carry
8682  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8683  if (Cond.getOpcode() == X86ISD::CMP) {
8684    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8685
8686    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8687        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8688      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8689                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8690      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8691        return DAG.getNOT(DL, Res, Res.getValueType());
8692      return Res;
8693    }
8694  }
8695
8696  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8697  // condition is true.
8698  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8699  SDValue Ops[] = { Op2, Op1, CC, Cond };
8700  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8701}
8702
8703// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8704// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8705// from the AND / OR.
8706static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8707  Opc = Op.getOpcode();
8708  if (Opc != ISD::OR && Opc != ISD::AND)
8709    return false;
8710  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8711          Op.getOperand(0).hasOneUse() &&
8712          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8713          Op.getOperand(1).hasOneUse());
8714}
8715
8716// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8717// 1 and that the SETCC node has a single use.
8718static bool isXor1OfSetCC(SDValue Op) {
8719  if (Op.getOpcode() != ISD::XOR)
8720    return false;
8721  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8722  if (N1C && N1C->getAPIntValue() == 1) {
8723    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8724      Op.getOperand(0).hasOneUse();
8725  }
8726  return false;
8727}
8728
8729SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8730  bool addTest = true;
8731  SDValue Chain = Op.getOperand(0);
8732  SDValue Cond  = Op.getOperand(1);
8733  SDValue Dest  = Op.getOperand(2);
8734  DebugLoc dl = Op.getDebugLoc();
8735  SDValue CC;
8736  bool Inverted = false;
8737
8738  if (Cond.getOpcode() == ISD::SETCC) {
8739    // Check for setcc([su]{add,sub,mul}o == 0).
8740    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8741        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8742        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8743        Cond.getOperand(0).getResNo() == 1 &&
8744        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8745         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8746         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8747         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8748         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8749         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8750      Inverted = true;
8751      Cond = Cond.getOperand(0);
8752    } else {
8753      SDValue NewCond = LowerSETCC(Cond, DAG);
8754      if (NewCond.getNode())
8755        Cond = NewCond;
8756    }
8757  }
8758#if 0
8759  // FIXME: LowerXALUO doesn't handle these!!
8760  else if (Cond.getOpcode() == X86ISD::ADD  ||
8761           Cond.getOpcode() == X86ISD::SUB  ||
8762           Cond.getOpcode() == X86ISD::SMUL ||
8763           Cond.getOpcode() == X86ISD::UMUL)
8764    Cond = LowerXALUO(Cond, DAG);
8765#endif
8766
8767  // Look pass (and (setcc_carry (cmp ...)), 1).
8768  if (Cond.getOpcode() == ISD::AND &&
8769      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8770    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8771    if (C && C->getAPIntValue() == 1)
8772      Cond = Cond.getOperand(0);
8773  }
8774
8775  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8776  // setting operand in place of the X86ISD::SETCC.
8777  unsigned CondOpcode = Cond.getOpcode();
8778  if (CondOpcode == X86ISD::SETCC ||
8779      CondOpcode == X86ISD::SETCC_CARRY) {
8780    CC = Cond.getOperand(0);
8781
8782    SDValue Cmp = Cond.getOperand(1);
8783    unsigned Opc = Cmp.getOpcode();
8784    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8785    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8786      Cond = Cmp;
8787      addTest = false;
8788    } else {
8789      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8790      default: break;
8791      case X86::COND_O:
8792      case X86::COND_B:
8793        // These can only come from an arithmetic instruction with overflow,
8794        // e.g. SADDO, UADDO.
8795        Cond = Cond.getNode()->getOperand(1);
8796        addTest = false;
8797        break;
8798      }
8799    }
8800  }
8801  CondOpcode = Cond.getOpcode();
8802  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8803      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8804      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8805       Cond.getOperand(0).getValueType() != MVT::i8)) {
8806    SDValue LHS = Cond.getOperand(0);
8807    SDValue RHS = Cond.getOperand(1);
8808    unsigned X86Opcode;
8809    unsigned X86Cond;
8810    SDVTList VTs;
8811    switch (CondOpcode) {
8812    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8813    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8814    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8815    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8816    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8817    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8818    default: llvm_unreachable("unexpected overflowing operator");
8819    }
8820    if (Inverted)
8821      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8822    if (CondOpcode == ISD::UMULO)
8823      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8824                          MVT::i32);
8825    else
8826      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8827
8828    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8829
8830    if (CondOpcode == ISD::UMULO)
8831      Cond = X86Op.getValue(2);
8832    else
8833      Cond = X86Op.getValue(1);
8834
8835    CC = DAG.getConstant(X86Cond, MVT::i8);
8836    addTest = false;
8837  } else {
8838    unsigned CondOpc;
8839    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8840      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8841      if (CondOpc == ISD::OR) {
8842        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8843        // two branches instead of an explicit OR instruction with a
8844        // separate test.
8845        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8846            isX86LogicalCmp(Cmp)) {
8847          CC = Cond.getOperand(0).getOperand(0);
8848          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8849                              Chain, Dest, CC, Cmp);
8850          CC = Cond.getOperand(1).getOperand(0);
8851          Cond = Cmp;
8852          addTest = false;
8853        }
8854      } else { // ISD::AND
8855        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8856        // two branches instead of an explicit AND instruction with a
8857        // separate test. However, we only do this if this block doesn't
8858        // have a fall-through edge, because this requires an explicit
8859        // jmp when the condition is false.
8860        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8861            isX86LogicalCmp(Cmp) &&
8862            Op.getNode()->hasOneUse()) {
8863          X86::CondCode CCode =
8864            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8865          CCode = X86::GetOppositeBranchCondition(CCode);
8866          CC = DAG.getConstant(CCode, MVT::i8);
8867          SDNode *User = *Op.getNode()->use_begin();
8868          // Look for an unconditional branch following this conditional branch.
8869          // We need this because we need to reverse the successors in order
8870          // to implement FCMP_OEQ.
8871          if (User->getOpcode() == ISD::BR) {
8872            SDValue FalseBB = User->getOperand(1);
8873            SDNode *NewBR =
8874              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8875            assert(NewBR == User);
8876            (void)NewBR;
8877            Dest = FalseBB;
8878
8879            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8880                                Chain, Dest, CC, Cmp);
8881            X86::CondCode CCode =
8882              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8883            CCode = X86::GetOppositeBranchCondition(CCode);
8884            CC = DAG.getConstant(CCode, MVT::i8);
8885            Cond = Cmp;
8886            addTest = false;
8887          }
8888        }
8889      }
8890    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8891      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8892      // It should be transformed during dag combiner except when the condition
8893      // is set by a arithmetics with overflow node.
8894      X86::CondCode CCode =
8895        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8896      CCode = X86::GetOppositeBranchCondition(CCode);
8897      CC = DAG.getConstant(CCode, MVT::i8);
8898      Cond = Cond.getOperand(0).getOperand(1);
8899      addTest = false;
8900    } else if (Cond.getOpcode() == ISD::SETCC &&
8901               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8902      // For FCMP_OEQ, we can emit
8903      // two branches instead of an explicit AND instruction with a
8904      // separate test. However, we only do this if this block doesn't
8905      // have a fall-through edge, because this requires an explicit
8906      // jmp when the condition is false.
8907      if (Op.getNode()->hasOneUse()) {
8908        SDNode *User = *Op.getNode()->use_begin();
8909        // Look for an unconditional branch following this conditional branch.
8910        // We need this because we need to reverse the successors in order
8911        // to implement FCMP_OEQ.
8912        if (User->getOpcode() == ISD::BR) {
8913          SDValue FalseBB = User->getOperand(1);
8914          SDNode *NewBR =
8915            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8916          assert(NewBR == User);
8917          (void)NewBR;
8918          Dest = FalseBB;
8919
8920          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8921                                    Cond.getOperand(0), Cond.getOperand(1));
8922          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8923          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8924                              Chain, Dest, CC, Cmp);
8925          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8926          Cond = Cmp;
8927          addTest = false;
8928        }
8929      }
8930    } else if (Cond.getOpcode() == ISD::SETCC &&
8931               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8932      // For FCMP_UNE, we can emit
8933      // two branches instead of an explicit AND instruction with a
8934      // separate test. However, we only do this if this block doesn't
8935      // have a fall-through edge, because this requires an explicit
8936      // jmp when the condition is false.
8937      if (Op.getNode()->hasOneUse()) {
8938        SDNode *User = *Op.getNode()->use_begin();
8939        // Look for an unconditional branch following this conditional branch.
8940        // We need this because we need to reverse the successors in order
8941        // to implement FCMP_UNE.
8942        if (User->getOpcode() == ISD::BR) {
8943          SDValue FalseBB = User->getOperand(1);
8944          SDNode *NewBR =
8945            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8946          assert(NewBR == User);
8947          (void)NewBR;
8948
8949          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8950                                    Cond.getOperand(0), Cond.getOperand(1));
8951          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8952          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8953                              Chain, Dest, CC, Cmp);
8954          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8955          Cond = Cmp;
8956          addTest = false;
8957          Dest = FalseBB;
8958        }
8959      }
8960    }
8961  }
8962
8963  if (addTest) {
8964    // Look pass the truncate.
8965    if (Cond.getOpcode() == ISD::TRUNCATE)
8966      Cond = Cond.getOperand(0);
8967
8968    // We know the result of AND is compared against zero. Try to match
8969    // it to BT.
8970    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8971      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8972      if (NewSetCC.getNode()) {
8973        CC = NewSetCC.getOperand(0);
8974        Cond = NewSetCC.getOperand(1);
8975        addTest = false;
8976      }
8977    }
8978  }
8979
8980  if (addTest) {
8981    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8982    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8983  }
8984  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8985                     Chain, Dest, CC, Cond);
8986}
8987
8988
8989// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8990// Calls to _alloca is needed to probe the stack when allocating more than 4k
8991// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8992// that the guard pages used by the OS virtual memory manager are allocated in
8993// correct sequence.
8994SDValue
8995X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8996                                           SelectionDAG &DAG) const {
8997  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8998          getTargetMachine().Options.EnableSegmentedStacks) &&
8999         "This should be used only on Windows targets or when segmented stacks "
9000         "are being used");
9001  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9002  DebugLoc dl = Op.getDebugLoc();
9003
9004  // Get the inputs.
9005  SDValue Chain = Op.getOperand(0);
9006  SDValue Size  = Op.getOperand(1);
9007  // FIXME: Ensure alignment here
9008
9009  bool Is64Bit = Subtarget->is64Bit();
9010  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9011
9012  if (getTargetMachine().Options.EnableSegmentedStacks) {
9013    MachineFunction &MF = DAG.getMachineFunction();
9014    MachineRegisterInfo &MRI = MF.getRegInfo();
9015
9016    if (Is64Bit) {
9017      // The 64 bit implementation of segmented stacks needs to clobber both r10
9018      // r11. This makes it impossible to use it along with nested parameters.
9019      const Function *F = MF.getFunction();
9020
9021      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9022           I != E; I++)
9023        if (I->hasNestAttr())
9024          report_fatal_error("Cannot use segmented stacks with functions that "
9025                             "have nested arguments.");
9026    }
9027
9028    const TargetRegisterClass *AddrRegClass =
9029      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9030    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9031    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9032    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9033                                DAG.getRegister(Vreg, SPTy));
9034    SDValue Ops1[2] = { Value, Chain };
9035    return DAG.getMergeValues(Ops1, 2, dl);
9036  } else {
9037    SDValue Flag;
9038    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9039
9040    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9041    Flag = Chain.getValue(1);
9042    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9043
9044    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9045    Flag = Chain.getValue(1);
9046
9047    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9048
9049    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9050    return DAG.getMergeValues(Ops1, 2, dl);
9051  }
9052}
9053
9054SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9055  MachineFunction &MF = DAG.getMachineFunction();
9056  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9057
9058  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9059  DebugLoc DL = Op.getDebugLoc();
9060
9061  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9062    // vastart just stores the address of the VarArgsFrameIndex slot into the
9063    // memory location argument.
9064    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9065                                   getPointerTy());
9066    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9067                        MachinePointerInfo(SV), false, false, 0);
9068  }
9069
9070  // __va_list_tag:
9071  //   gp_offset         (0 - 6 * 8)
9072  //   fp_offset         (48 - 48 + 8 * 16)
9073  //   overflow_arg_area (point to parameters coming in memory).
9074  //   reg_save_area
9075  SmallVector<SDValue, 8> MemOps;
9076  SDValue FIN = Op.getOperand(1);
9077  // Store gp_offset
9078  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9079                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9080                                               MVT::i32),
9081                               FIN, MachinePointerInfo(SV), false, false, 0);
9082  MemOps.push_back(Store);
9083
9084  // Store fp_offset
9085  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9086                    FIN, DAG.getIntPtrConstant(4));
9087  Store = DAG.getStore(Op.getOperand(0), DL,
9088                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9089                                       MVT::i32),
9090                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9091  MemOps.push_back(Store);
9092
9093  // Store ptr to overflow_arg_area
9094  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9095                    FIN, DAG.getIntPtrConstant(4));
9096  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9097                                    getPointerTy());
9098  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9099                       MachinePointerInfo(SV, 8),
9100                       false, false, 0);
9101  MemOps.push_back(Store);
9102
9103  // Store ptr to reg_save_area.
9104  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9105                    FIN, DAG.getIntPtrConstant(8));
9106  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9107                                    getPointerTy());
9108  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9109                       MachinePointerInfo(SV, 16), false, false, 0);
9110  MemOps.push_back(Store);
9111  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9112                     &MemOps[0], MemOps.size());
9113}
9114
9115SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9116  assert(Subtarget->is64Bit() &&
9117         "LowerVAARG only handles 64-bit va_arg!");
9118  assert((Subtarget->isTargetLinux() ||
9119          Subtarget->isTargetDarwin()) &&
9120          "Unhandled target in LowerVAARG");
9121  assert(Op.getNode()->getNumOperands() == 4);
9122  SDValue Chain = Op.getOperand(0);
9123  SDValue SrcPtr = Op.getOperand(1);
9124  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9125  unsigned Align = Op.getConstantOperandVal(3);
9126  DebugLoc dl = Op.getDebugLoc();
9127
9128  EVT ArgVT = Op.getNode()->getValueType(0);
9129  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9130  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9131  uint8_t ArgMode;
9132
9133  // Decide which area this value should be read from.
9134  // TODO: Implement the AMD64 ABI in its entirety. This simple
9135  // selection mechanism works only for the basic types.
9136  if (ArgVT == MVT::f80) {
9137    llvm_unreachable("va_arg for f80 not yet implemented");
9138  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9139    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9140  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9141    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9142  } else {
9143    llvm_unreachable("Unhandled argument type in LowerVAARG");
9144  }
9145
9146  if (ArgMode == 2) {
9147    // Sanity Check: Make sure using fp_offset makes sense.
9148    assert(!getTargetMachine().Options.UseSoftFloat &&
9149           !(DAG.getMachineFunction()
9150                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9151           Subtarget->hasSSE1());
9152  }
9153
9154  // Insert VAARG_64 node into the DAG
9155  // VAARG_64 returns two values: Variable Argument Address, Chain
9156  SmallVector<SDValue, 11> InstOps;
9157  InstOps.push_back(Chain);
9158  InstOps.push_back(SrcPtr);
9159  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9160  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9161  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9162  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9163  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9164                                          VTs, &InstOps[0], InstOps.size(),
9165                                          MVT::i64,
9166                                          MachinePointerInfo(SV),
9167                                          /*Align=*/0,
9168                                          /*Volatile=*/false,
9169                                          /*ReadMem=*/true,
9170                                          /*WriteMem=*/true);
9171  Chain = VAARG.getValue(1);
9172
9173  // Load the next argument and return it
9174  return DAG.getLoad(ArgVT, dl,
9175                     Chain,
9176                     VAARG,
9177                     MachinePointerInfo(),
9178                     false, false, false, 0);
9179}
9180
9181SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9182  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9183  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9184  SDValue Chain = Op.getOperand(0);
9185  SDValue DstPtr = Op.getOperand(1);
9186  SDValue SrcPtr = Op.getOperand(2);
9187  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9188  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9189  DebugLoc DL = Op.getDebugLoc();
9190
9191  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9192                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9193                       false,
9194                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9195}
9196
9197// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9198// may or may not be a constant. Takes immediate version of shift as input.
9199static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9200                                   SDValue SrcOp, SDValue ShAmt,
9201                                   SelectionDAG &DAG) {
9202  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9203
9204  if (isa<ConstantSDNode>(ShAmt)) {
9205    switch (Opc) {
9206      default: llvm_unreachable("Unknown target vector shift node");
9207      case X86ISD::VSHLI:
9208      case X86ISD::VSRLI:
9209      case X86ISD::VSRAI:
9210        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9211    }
9212  }
9213
9214  // Change opcode to non-immediate version
9215  switch (Opc) {
9216    default: llvm_unreachable("Unknown target vector shift node");
9217    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9218    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9219    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9220  }
9221
9222  // Need to build a vector containing shift amount
9223  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9224  SDValue ShOps[4];
9225  ShOps[0] = ShAmt;
9226  ShOps[1] = DAG.getConstant(0, MVT::i32);
9227  ShOps[2] = DAG.getUNDEF(MVT::i32);
9228  ShOps[3] = DAG.getUNDEF(MVT::i32);
9229  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9230  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9231  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9232}
9233
9234SDValue
9235X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9236  DebugLoc dl = Op.getDebugLoc();
9237  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9238  switch (IntNo) {
9239  default: return SDValue();    // Don't custom lower most intrinsics.
9240  // Comparison intrinsics.
9241  case Intrinsic::x86_sse_comieq_ss:
9242  case Intrinsic::x86_sse_comilt_ss:
9243  case Intrinsic::x86_sse_comile_ss:
9244  case Intrinsic::x86_sse_comigt_ss:
9245  case Intrinsic::x86_sse_comige_ss:
9246  case Intrinsic::x86_sse_comineq_ss:
9247  case Intrinsic::x86_sse_ucomieq_ss:
9248  case Intrinsic::x86_sse_ucomilt_ss:
9249  case Intrinsic::x86_sse_ucomile_ss:
9250  case Intrinsic::x86_sse_ucomigt_ss:
9251  case Intrinsic::x86_sse_ucomige_ss:
9252  case Intrinsic::x86_sse_ucomineq_ss:
9253  case Intrinsic::x86_sse2_comieq_sd:
9254  case Intrinsic::x86_sse2_comilt_sd:
9255  case Intrinsic::x86_sse2_comile_sd:
9256  case Intrinsic::x86_sse2_comigt_sd:
9257  case Intrinsic::x86_sse2_comige_sd:
9258  case Intrinsic::x86_sse2_comineq_sd:
9259  case Intrinsic::x86_sse2_ucomieq_sd:
9260  case Intrinsic::x86_sse2_ucomilt_sd:
9261  case Intrinsic::x86_sse2_ucomile_sd:
9262  case Intrinsic::x86_sse2_ucomigt_sd:
9263  case Intrinsic::x86_sse2_ucomige_sd:
9264  case Intrinsic::x86_sse2_ucomineq_sd: {
9265    unsigned Opc = 0;
9266    ISD::CondCode CC = ISD::SETCC_INVALID;
9267    switch (IntNo) {
9268    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9269    case Intrinsic::x86_sse_comieq_ss:
9270    case Intrinsic::x86_sse2_comieq_sd:
9271      Opc = X86ISD::COMI;
9272      CC = ISD::SETEQ;
9273      break;
9274    case Intrinsic::x86_sse_comilt_ss:
9275    case Intrinsic::x86_sse2_comilt_sd:
9276      Opc = X86ISD::COMI;
9277      CC = ISD::SETLT;
9278      break;
9279    case Intrinsic::x86_sse_comile_ss:
9280    case Intrinsic::x86_sse2_comile_sd:
9281      Opc = X86ISD::COMI;
9282      CC = ISD::SETLE;
9283      break;
9284    case Intrinsic::x86_sse_comigt_ss:
9285    case Intrinsic::x86_sse2_comigt_sd:
9286      Opc = X86ISD::COMI;
9287      CC = ISD::SETGT;
9288      break;
9289    case Intrinsic::x86_sse_comige_ss:
9290    case Intrinsic::x86_sse2_comige_sd:
9291      Opc = X86ISD::COMI;
9292      CC = ISD::SETGE;
9293      break;
9294    case Intrinsic::x86_sse_comineq_ss:
9295    case Intrinsic::x86_sse2_comineq_sd:
9296      Opc = X86ISD::COMI;
9297      CC = ISD::SETNE;
9298      break;
9299    case Intrinsic::x86_sse_ucomieq_ss:
9300    case Intrinsic::x86_sse2_ucomieq_sd:
9301      Opc = X86ISD::UCOMI;
9302      CC = ISD::SETEQ;
9303      break;
9304    case Intrinsic::x86_sse_ucomilt_ss:
9305    case Intrinsic::x86_sse2_ucomilt_sd:
9306      Opc = X86ISD::UCOMI;
9307      CC = ISD::SETLT;
9308      break;
9309    case Intrinsic::x86_sse_ucomile_ss:
9310    case Intrinsic::x86_sse2_ucomile_sd:
9311      Opc = X86ISD::UCOMI;
9312      CC = ISD::SETLE;
9313      break;
9314    case Intrinsic::x86_sse_ucomigt_ss:
9315    case Intrinsic::x86_sse2_ucomigt_sd:
9316      Opc = X86ISD::UCOMI;
9317      CC = ISD::SETGT;
9318      break;
9319    case Intrinsic::x86_sse_ucomige_ss:
9320    case Intrinsic::x86_sse2_ucomige_sd:
9321      Opc = X86ISD::UCOMI;
9322      CC = ISD::SETGE;
9323      break;
9324    case Intrinsic::x86_sse_ucomineq_ss:
9325    case Intrinsic::x86_sse2_ucomineq_sd:
9326      Opc = X86ISD::UCOMI;
9327      CC = ISD::SETNE;
9328      break;
9329    }
9330
9331    SDValue LHS = Op.getOperand(1);
9332    SDValue RHS = Op.getOperand(2);
9333    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9334    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9335    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9336    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9337                                DAG.getConstant(X86CC, MVT::i8), Cond);
9338    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9339  }
9340  // XOP comparison intrinsics
9341  case Intrinsic::x86_xop_vpcomltb:
9342  case Intrinsic::x86_xop_vpcomltw:
9343  case Intrinsic::x86_xop_vpcomltd:
9344  case Intrinsic::x86_xop_vpcomltq:
9345  case Intrinsic::x86_xop_vpcomltub:
9346  case Intrinsic::x86_xop_vpcomltuw:
9347  case Intrinsic::x86_xop_vpcomltud:
9348  case Intrinsic::x86_xop_vpcomltuq:
9349  case Intrinsic::x86_xop_vpcomleb:
9350  case Intrinsic::x86_xop_vpcomlew:
9351  case Intrinsic::x86_xop_vpcomled:
9352  case Intrinsic::x86_xop_vpcomleq:
9353  case Intrinsic::x86_xop_vpcomleub:
9354  case Intrinsic::x86_xop_vpcomleuw:
9355  case Intrinsic::x86_xop_vpcomleud:
9356  case Intrinsic::x86_xop_vpcomleuq:
9357  case Intrinsic::x86_xop_vpcomgtb:
9358  case Intrinsic::x86_xop_vpcomgtw:
9359  case Intrinsic::x86_xop_vpcomgtd:
9360  case Intrinsic::x86_xop_vpcomgtq:
9361  case Intrinsic::x86_xop_vpcomgtub:
9362  case Intrinsic::x86_xop_vpcomgtuw:
9363  case Intrinsic::x86_xop_vpcomgtud:
9364  case Intrinsic::x86_xop_vpcomgtuq:
9365  case Intrinsic::x86_xop_vpcomgeb:
9366  case Intrinsic::x86_xop_vpcomgew:
9367  case Intrinsic::x86_xop_vpcomged:
9368  case Intrinsic::x86_xop_vpcomgeq:
9369  case Intrinsic::x86_xop_vpcomgeub:
9370  case Intrinsic::x86_xop_vpcomgeuw:
9371  case Intrinsic::x86_xop_vpcomgeud:
9372  case Intrinsic::x86_xop_vpcomgeuq:
9373  case Intrinsic::x86_xop_vpcomeqb:
9374  case Intrinsic::x86_xop_vpcomeqw:
9375  case Intrinsic::x86_xop_vpcomeqd:
9376  case Intrinsic::x86_xop_vpcomeqq:
9377  case Intrinsic::x86_xop_vpcomequb:
9378  case Intrinsic::x86_xop_vpcomequw:
9379  case Intrinsic::x86_xop_vpcomequd:
9380  case Intrinsic::x86_xop_vpcomequq:
9381  case Intrinsic::x86_xop_vpcomneb:
9382  case Intrinsic::x86_xop_vpcomnew:
9383  case Intrinsic::x86_xop_vpcomned:
9384  case Intrinsic::x86_xop_vpcomneq:
9385  case Intrinsic::x86_xop_vpcomneub:
9386  case Intrinsic::x86_xop_vpcomneuw:
9387  case Intrinsic::x86_xop_vpcomneud:
9388  case Intrinsic::x86_xop_vpcomneuq:
9389  case Intrinsic::x86_xop_vpcomfalseb:
9390  case Intrinsic::x86_xop_vpcomfalsew:
9391  case Intrinsic::x86_xop_vpcomfalsed:
9392  case Intrinsic::x86_xop_vpcomfalseq:
9393  case Intrinsic::x86_xop_vpcomfalseub:
9394  case Intrinsic::x86_xop_vpcomfalseuw:
9395  case Intrinsic::x86_xop_vpcomfalseud:
9396  case Intrinsic::x86_xop_vpcomfalseuq:
9397  case Intrinsic::x86_xop_vpcomtrueb:
9398  case Intrinsic::x86_xop_vpcomtruew:
9399  case Intrinsic::x86_xop_vpcomtrued:
9400  case Intrinsic::x86_xop_vpcomtrueq:
9401  case Intrinsic::x86_xop_vpcomtrueub:
9402  case Intrinsic::x86_xop_vpcomtrueuw:
9403  case Intrinsic::x86_xop_vpcomtrueud:
9404  case Intrinsic::x86_xop_vpcomtrueuq: {
9405    unsigned CC = 0;
9406    unsigned Opc = 0;
9407
9408    switch (IntNo) {
9409    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9410    case Intrinsic::x86_xop_vpcomltb:
9411    case Intrinsic::x86_xop_vpcomltw:
9412    case Intrinsic::x86_xop_vpcomltd:
9413    case Intrinsic::x86_xop_vpcomltq:
9414      CC = 0;
9415      Opc = X86ISD::VPCOM;
9416      break;
9417    case Intrinsic::x86_xop_vpcomltub:
9418    case Intrinsic::x86_xop_vpcomltuw:
9419    case Intrinsic::x86_xop_vpcomltud:
9420    case Intrinsic::x86_xop_vpcomltuq:
9421      CC = 0;
9422      Opc = X86ISD::VPCOMU;
9423      break;
9424    case Intrinsic::x86_xop_vpcomleb:
9425    case Intrinsic::x86_xop_vpcomlew:
9426    case Intrinsic::x86_xop_vpcomled:
9427    case Intrinsic::x86_xop_vpcomleq:
9428      CC = 1;
9429      Opc = X86ISD::VPCOM;
9430      break;
9431    case Intrinsic::x86_xop_vpcomleub:
9432    case Intrinsic::x86_xop_vpcomleuw:
9433    case Intrinsic::x86_xop_vpcomleud:
9434    case Intrinsic::x86_xop_vpcomleuq:
9435      CC = 1;
9436      Opc = X86ISD::VPCOMU;
9437      break;
9438    case Intrinsic::x86_xop_vpcomgtb:
9439    case Intrinsic::x86_xop_vpcomgtw:
9440    case Intrinsic::x86_xop_vpcomgtd:
9441    case Intrinsic::x86_xop_vpcomgtq:
9442      CC = 2;
9443      Opc = X86ISD::VPCOM;
9444      break;
9445    case Intrinsic::x86_xop_vpcomgtub:
9446    case Intrinsic::x86_xop_vpcomgtuw:
9447    case Intrinsic::x86_xop_vpcomgtud:
9448    case Intrinsic::x86_xop_vpcomgtuq:
9449      CC = 2;
9450      Opc = X86ISD::VPCOMU;
9451      break;
9452    case Intrinsic::x86_xop_vpcomgeb:
9453    case Intrinsic::x86_xop_vpcomgew:
9454    case Intrinsic::x86_xop_vpcomged:
9455    case Intrinsic::x86_xop_vpcomgeq:
9456      CC = 3;
9457      Opc = X86ISD::VPCOM;
9458      break;
9459    case Intrinsic::x86_xop_vpcomgeub:
9460    case Intrinsic::x86_xop_vpcomgeuw:
9461    case Intrinsic::x86_xop_vpcomgeud:
9462    case Intrinsic::x86_xop_vpcomgeuq:
9463      CC = 3;
9464      Opc = X86ISD::VPCOMU;
9465      break;
9466    case Intrinsic::x86_xop_vpcomeqb:
9467    case Intrinsic::x86_xop_vpcomeqw:
9468    case Intrinsic::x86_xop_vpcomeqd:
9469    case Intrinsic::x86_xop_vpcomeqq:
9470      CC = 4;
9471      Opc = X86ISD::VPCOM;
9472      break;
9473    case Intrinsic::x86_xop_vpcomequb:
9474    case Intrinsic::x86_xop_vpcomequw:
9475    case Intrinsic::x86_xop_vpcomequd:
9476    case Intrinsic::x86_xop_vpcomequq:
9477      CC = 4;
9478      Opc = X86ISD::VPCOMU;
9479      break;
9480    case Intrinsic::x86_xop_vpcomneb:
9481    case Intrinsic::x86_xop_vpcomnew:
9482    case Intrinsic::x86_xop_vpcomned:
9483    case Intrinsic::x86_xop_vpcomneq:
9484      CC = 5;
9485      Opc = X86ISD::VPCOM;
9486      break;
9487    case Intrinsic::x86_xop_vpcomneub:
9488    case Intrinsic::x86_xop_vpcomneuw:
9489    case Intrinsic::x86_xop_vpcomneud:
9490    case Intrinsic::x86_xop_vpcomneuq:
9491      CC = 5;
9492      Opc = X86ISD::VPCOMU;
9493      break;
9494    case Intrinsic::x86_xop_vpcomfalseb:
9495    case Intrinsic::x86_xop_vpcomfalsew:
9496    case Intrinsic::x86_xop_vpcomfalsed:
9497    case Intrinsic::x86_xop_vpcomfalseq:
9498      CC = 6;
9499      Opc = X86ISD::VPCOM;
9500      break;
9501    case Intrinsic::x86_xop_vpcomfalseub:
9502    case Intrinsic::x86_xop_vpcomfalseuw:
9503    case Intrinsic::x86_xop_vpcomfalseud:
9504    case Intrinsic::x86_xop_vpcomfalseuq:
9505      CC = 6;
9506      Opc = X86ISD::VPCOMU;
9507      break;
9508    case Intrinsic::x86_xop_vpcomtrueb:
9509    case Intrinsic::x86_xop_vpcomtruew:
9510    case Intrinsic::x86_xop_vpcomtrued:
9511    case Intrinsic::x86_xop_vpcomtrueq:
9512      CC = 7;
9513      Opc = X86ISD::VPCOM;
9514      break;
9515    case Intrinsic::x86_xop_vpcomtrueub:
9516    case Intrinsic::x86_xop_vpcomtrueuw:
9517    case Intrinsic::x86_xop_vpcomtrueud:
9518    case Intrinsic::x86_xop_vpcomtrueuq:
9519      CC = 7;
9520      Opc = X86ISD::VPCOMU;
9521      break;
9522    }
9523
9524    SDValue LHS = Op.getOperand(1);
9525    SDValue RHS = Op.getOperand(2);
9526    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9527                       DAG.getConstant(CC, MVT::i8));
9528  }
9529
9530  // Arithmetic intrinsics.
9531  case Intrinsic::x86_sse2_pmulu_dq:
9532  case Intrinsic::x86_avx2_pmulu_dq:
9533    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9534                       Op.getOperand(1), Op.getOperand(2));
9535  case Intrinsic::x86_sse3_hadd_ps:
9536  case Intrinsic::x86_sse3_hadd_pd:
9537  case Intrinsic::x86_avx_hadd_ps_256:
9538  case Intrinsic::x86_avx_hadd_pd_256:
9539    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9540                       Op.getOperand(1), Op.getOperand(2));
9541  case Intrinsic::x86_sse3_hsub_ps:
9542  case Intrinsic::x86_sse3_hsub_pd:
9543  case Intrinsic::x86_avx_hsub_ps_256:
9544  case Intrinsic::x86_avx_hsub_pd_256:
9545    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9546                       Op.getOperand(1), Op.getOperand(2));
9547  case Intrinsic::x86_ssse3_phadd_w_128:
9548  case Intrinsic::x86_ssse3_phadd_d_128:
9549  case Intrinsic::x86_avx2_phadd_w:
9550  case Intrinsic::x86_avx2_phadd_d:
9551    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9552                       Op.getOperand(1), Op.getOperand(2));
9553  case Intrinsic::x86_ssse3_phsub_w_128:
9554  case Intrinsic::x86_ssse3_phsub_d_128:
9555  case Intrinsic::x86_avx2_phsub_w:
9556  case Intrinsic::x86_avx2_phsub_d:
9557    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9558                       Op.getOperand(1), Op.getOperand(2));
9559  case Intrinsic::x86_avx2_psllv_d:
9560  case Intrinsic::x86_avx2_psllv_q:
9561  case Intrinsic::x86_avx2_psllv_d_256:
9562  case Intrinsic::x86_avx2_psllv_q_256:
9563    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9564                      Op.getOperand(1), Op.getOperand(2));
9565  case Intrinsic::x86_avx2_psrlv_d:
9566  case Intrinsic::x86_avx2_psrlv_q:
9567  case Intrinsic::x86_avx2_psrlv_d_256:
9568  case Intrinsic::x86_avx2_psrlv_q_256:
9569    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9570                      Op.getOperand(1), Op.getOperand(2));
9571  case Intrinsic::x86_avx2_psrav_d:
9572  case Intrinsic::x86_avx2_psrav_d_256:
9573    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9574                      Op.getOperand(1), Op.getOperand(2));
9575  case Intrinsic::x86_ssse3_pshuf_b_128:
9576  case Intrinsic::x86_avx2_pshuf_b:
9577    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9578                       Op.getOperand(1), Op.getOperand(2));
9579  case Intrinsic::x86_ssse3_psign_b_128:
9580  case Intrinsic::x86_ssse3_psign_w_128:
9581  case Intrinsic::x86_ssse3_psign_d_128:
9582  case Intrinsic::x86_avx2_psign_b:
9583  case Intrinsic::x86_avx2_psign_w:
9584  case Intrinsic::x86_avx2_psign_d:
9585    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9586                       Op.getOperand(1), Op.getOperand(2));
9587  case Intrinsic::x86_sse41_insertps:
9588    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9589                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9590  case Intrinsic::x86_avx_vperm2f128_ps_256:
9591  case Intrinsic::x86_avx_vperm2f128_pd_256:
9592  case Intrinsic::x86_avx_vperm2f128_si_256:
9593  case Intrinsic::x86_avx2_vperm2i128:
9594    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9595                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9596  case Intrinsic::x86_avx2_permd:
9597  case Intrinsic::x86_avx2_permps:
9598    // Operands intentionally swapped. Mask is last operand to intrinsic,
9599    // but second operand for node/intruction.
9600    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9601                       Op.getOperand(2), Op.getOperand(1));
9602
9603  // ptest and testp intrinsics. The intrinsic these come from are designed to
9604  // return an integer value, not just an instruction so lower it to the ptest
9605  // or testp pattern and a setcc for the result.
9606  case Intrinsic::x86_sse41_ptestz:
9607  case Intrinsic::x86_sse41_ptestc:
9608  case Intrinsic::x86_sse41_ptestnzc:
9609  case Intrinsic::x86_avx_ptestz_256:
9610  case Intrinsic::x86_avx_ptestc_256:
9611  case Intrinsic::x86_avx_ptestnzc_256:
9612  case Intrinsic::x86_avx_vtestz_ps:
9613  case Intrinsic::x86_avx_vtestc_ps:
9614  case Intrinsic::x86_avx_vtestnzc_ps:
9615  case Intrinsic::x86_avx_vtestz_pd:
9616  case Intrinsic::x86_avx_vtestc_pd:
9617  case Intrinsic::x86_avx_vtestnzc_pd:
9618  case Intrinsic::x86_avx_vtestz_ps_256:
9619  case Intrinsic::x86_avx_vtestc_ps_256:
9620  case Intrinsic::x86_avx_vtestnzc_ps_256:
9621  case Intrinsic::x86_avx_vtestz_pd_256:
9622  case Intrinsic::x86_avx_vtestc_pd_256:
9623  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9624    bool IsTestPacked = false;
9625    unsigned X86CC = 0;
9626    switch (IntNo) {
9627    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9628    case Intrinsic::x86_avx_vtestz_ps:
9629    case Intrinsic::x86_avx_vtestz_pd:
9630    case Intrinsic::x86_avx_vtestz_ps_256:
9631    case Intrinsic::x86_avx_vtestz_pd_256:
9632      IsTestPacked = true; // Fallthrough
9633    case Intrinsic::x86_sse41_ptestz:
9634    case Intrinsic::x86_avx_ptestz_256:
9635      // ZF = 1
9636      X86CC = X86::COND_E;
9637      break;
9638    case Intrinsic::x86_avx_vtestc_ps:
9639    case Intrinsic::x86_avx_vtestc_pd:
9640    case Intrinsic::x86_avx_vtestc_ps_256:
9641    case Intrinsic::x86_avx_vtestc_pd_256:
9642      IsTestPacked = true; // Fallthrough
9643    case Intrinsic::x86_sse41_ptestc:
9644    case Intrinsic::x86_avx_ptestc_256:
9645      // CF = 1
9646      X86CC = X86::COND_B;
9647      break;
9648    case Intrinsic::x86_avx_vtestnzc_ps:
9649    case Intrinsic::x86_avx_vtestnzc_pd:
9650    case Intrinsic::x86_avx_vtestnzc_ps_256:
9651    case Intrinsic::x86_avx_vtestnzc_pd_256:
9652      IsTestPacked = true; // Fallthrough
9653    case Intrinsic::x86_sse41_ptestnzc:
9654    case Intrinsic::x86_avx_ptestnzc_256:
9655      // ZF and CF = 0
9656      X86CC = X86::COND_A;
9657      break;
9658    }
9659
9660    SDValue LHS = Op.getOperand(1);
9661    SDValue RHS = Op.getOperand(2);
9662    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9663    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9664    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9665    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9666    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9667  }
9668
9669  // SSE/AVX shift intrinsics
9670  case Intrinsic::x86_sse2_psll_w:
9671  case Intrinsic::x86_sse2_psll_d:
9672  case Intrinsic::x86_sse2_psll_q:
9673  case Intrinsic::x86_avx2_psll_w:
9674  case Intrinsic::x86_avx2_psll_d:
9675  case Intrinsic::x86_avx2_psll_q:
9676    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9677                       Op.getOperand(1), Op.getOperand(2));
9678  case Intrinsic::x86_sse2_psrl_w:
9679  case Intrinsic::x86_sse2_psrl_d:
9680  case Intrinsic::x86_sse2_psrl_q:
9681  case Intrinsic::x86_avx2_psrl_w:
9682  case Intrinsic::x86_avx2_psrl_d:
9683  case Intrinsic::x86_avx2_psrl_q:
9684    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9685                       Op.getOperand(1), Op.getOperand(2));
9686  case Intrinsic::x86_sse2_psra_w:
9687  case Intrinsic::x86_sse2_psra_d:
9688  case Intrinsic::x86_avx2_psra_w:
9689  case Intrinsic::x86_avx2_psra_d:
9690    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9691                       Op.getOperand(1), Op.getOperand(2));
9692  case Intrinsic::x86_sse2_pslli_w:
9693  case Intrinsic::x86_sse2_pslli_d:
9694  case Intrinsic::x86_sse2_pslli_q:
9695  case Intrinsic::x86_avx2_pslli_w:
9696  case Intrinsic::x86_avx2_pslli_d:
9697  case Intrinsic::x86_avx2_pslli_q:
9698    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9699                               Op.getOperand(1), Op.getOperand(2), DAG);
9700  case Intrinsic::x86_sse2_psrli_w:
9701  case Intrinsic::x86_sse2_psrli_d:
9702  case Intrinsic::x86_sse2_psrli_q:
9703  case Intrinsic::x86_avx2_psrli_w:
9704  case Intrinsic::x86_avx2_psrli_d:
9705  case Intrinsic::x86_avx2_psrli_q:
9706    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9707                               Op.getOperand(1), Op.getOperand(2), DAG);
9708  case Intrinsic::x86_sse2_psrai_w:
9709  case Intrinsic::x86_sse2_psrai_d:
9710  case Intrinsic::x86_avx2_psrai_w:
9711  case Intrinsic::x86_avx2_psrai_d:
9712    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9713                               Op.getOperand(1), Op.getOperand(2), DAG);
9714  // Fix vector shift instructions where the last operand is a non-immediate
9715  // i32 value.
9716  case Intrinsic::x86_mmx_pslli_w:
9717  case Intrinsic::x86_mmx_pslli_d:
9718  case Intrinsic::x86_mmx_pslli_q:
9719  case Intrinsic::x86_mmx_psrli_w:
9720  case Intrinsic::x86_mmx_psrli_d:
9721  case Intrinsic::x86_mmx_psrli_q:
9722  case Intrinsic::x86_mmx_psrai_w:
9723  case Intrinsic::x86_mmx_psrai_d: {
9724    SDValue ShAmt = Op.getOperand(2);
9725    if (isa<ConstantSDNode>(ShAmt))
9726      return SDValue();
9727
9728    unsigned NewIntNo = 0;
9729    switch (IntNo) {
9730    case Intrinsic::x86_mmx_pslli_w:
9731      NewIntNo = Intrinsic::x86_mmx_psll_w;
9732      break;
9733    case Intrinsic::x86_mmx_pslli_d:
9734      NewIntNo = Intrinsic::x86_mmx_psll_d;
9735      break;
9736    case Intrinsic::x86_mmx_pslli_q:
9737      NewIntNo = Intrinsic::x86_mmx_psll_q;
9738      break;
9739    case Intrinsic::x86_mmx_psrli_w:
9740      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9741      break;
9742    case Intrinsic::x86_mmx_psrli_d:
9743      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9744      break;
9745    case Intrinsic::x86_mmx_psrli_q:
9746      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9747      break;
9748    case Intrinsic::x86_mmx_psrai_w:
9749      NewIntNo = Intrinsic::x86_mmx_psra_w;
9750      break;
9751    case Intrinsic::x86_mmx_psrai_d:
9752      NewIntNo = Intrinsic::x86_mmx_psra_d;
9753      break;
9754    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9755    }
9756
9757    // The vector shift intrinsics with scalars uses 32b shift amounts but
9758    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9759    // to be zero.
9760    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9761                         DAG.getConstant(0, MVT::i32));
9762// FIXME this must be lowered to get rid of the invalid type.
9763
9764    EVT VT = Op.getValueType();
9765    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9766    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9767                       DAG.getConstant(NewIntNo, MVT::i32),
9768                       Op.getOperand(1), ShAmt);
9769  }
9770  }
9771}
9772
9773SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9774                                           SelectionDAG &DAG) const {
9775  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9776  MFI->setReturnAddressIsTaken(true);
9777
9778  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9779  DebugLoc dl = Op.getDebugLoc();
9780
9781  if (Depth > 0) {
9782    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9783    SDValue Offset =
9784      DAG.getConstant(TD->getPointerSize(),
9785                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9786    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9787                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9788                                   FrameAddr, Offset),
9789                       MachinePointerInfo(), false, false, false, 0);
9790  }
9791
9792  // Just load the return address.
9793  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9794  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9795                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9796}
9797
9798SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9799  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9800  MFI->setFrameAddressIsTaken(true);
9801
9802  EVT VT = Op.getValueType();
9803  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9804  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9805  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9806  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9807  while (Depth--)
9808    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9809                            MachinePointerInfo(),
9810                            false, false, false, 0);
9811  return FrameAddr;
9812}
9813
9814SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9815                                                     SelectionDAG &DAG) const {
9816  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9817}
9818
9819SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9820  MachineFunction &MF = DAG.getMachineFunction();
9821  SDValue Chain     = Op.getOperand(0);
9822  SDValue Offset    = Op.getOperand(1);
9823  SDValue Handler   = Op.getOperand(2);
9824  DebugLoc dl       = Op.getDebugLoc();
9825
9826  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9827                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9828                                     getPointerTy());
9829  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9830
9831  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9832                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9833  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9834  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9835                       false, false, 0);
9836  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9837  MF.getRegInfo().addLiveOut(StoreAddrReg);
9838
9839  return DAG.getNode(X86ISD::EH_RETURN, dl,
9840                     MVT::Other,
9841                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9842}
9843
9844SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9845                                                  SelectionDAG &DAG) const {
9846  return Op.getOperand(0);
9847}
9848
9849SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9850                                                SelectionDAG &DAG) const {
9851  SDValue Root = Op.getOperand(0);
9852  SDValue Trmp = Op.getOperand(1); // trampoline
9853  SDValue FPtr = Op.getOperand(2); // nested function
9854  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9855  DebugLoc dl  = Op.getDebugLoc();
9856
9857  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9858
9859  if (Subtarget->is64Bit()) {
9860    SDValue OutChains[6];
9861
9862    // Large code-model.
9863    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9864    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9865
9866    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9867    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9868
9869    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9870
9871    // Load the pointer to the nested function into R11.
9872    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9873    SDValue Addr = Trmp;
9874    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9875                                Addr, MachinePointerInfo(TrmpAddr),
9876                                false, false, 0);
9877
9878    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9879                       DAG.getConstant(2, MVT::i64));
9880    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9881                                MachinePointerInfo(TrmpAddr, 2),
9882                                false, false, 2);
9883
9884    // Load the 'nest' parameter value into R10.
9885    // R10 is specified in X86CallingConv.td
9886    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9887    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9888                       DAG.getConstant(10, MVT::i64));
9889    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9890                                Addr, MachinePointerInfo(TrmpAddr, 10),
9891                                false, false, 0);
9892
9893    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9894                       DAG.getConstant(12, MVT::i64));
9895    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9896                                MachinePointerInfo(TrmpAddr, 12),
9897                                false, false, 2);
9898
9899    // Jump to the nested function.
9900    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9901    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9902                       DAG.getConstant(20, MVT::i64));
9903    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9904                                Addr, MachinePointerInfo(TrmpAddr, 20),
9905                                false, false, 0);
9906
9907    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9908    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9909                       DAG.getConstant(22, MVT::i64));
9910    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9911                                MachinePointerInfo(TrmpAddr, 22),
9912                                false, false, 0);
9913
9914    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9915  } else {
9916    const Function *Func =
9917      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9918    CallingConv::ID CC = Func->getCallingConv();
9919    unsigned NestReg;
9920
9921    switch (CC) {
9922    default:
9923      llvm_unreachable("Unsupported calling convention");
9924    case CallingConv::C:
9925    case CallingConv::X86_StdCall: {
9926      // Pass 'nest' parameter in ECX.
9927      // Must be kept in sync with X86CallingConv.td
9928      NestReg = X86::ECX;
9929
9930      // Check that ECX wasn't needed by an 'inreg' parameter.
9931      FunctionType *FTy = Func->getFunctionType();
9932      const AttrListPtr &Attrs = Func->getAttributes();
9933
9934      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9935        unsigned InRegCount = 0;
9936        unsigned Idx = 1;
9937
9938        for (FunctionType::param_iterator I = FTy->param_begin(),
9939             E = FTy->param_end(); I != E; ++I, ++Idx)
9940          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9941            // FIXME: should only count parameters that are lowered to integers.
9942            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9943
9944        if (InRegCount > 2) {
9945          report_fatal_error("Nest register in use - reduce number of inreg"
9946                             " parameters!");
9947        }
9948      }
9949      break;
9950    }
9951    case CallingConv::X86_FastCall:
9952    case CallingConv::X86_ThisCall:
9953    case CallingConv::Fast:
9954      // Pass 'nest' parameter in EAX.
9955      // Must be kept in sync with X86CallingConv.td
9956      NestReg = X86::EAX;
9957      break;
9958    }
9959
9960    SDValue OutChains[4];
9961    SDValue Addr, Disp;
9962
9963    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9964                       DAG.getConstant(10, MVT::i32));
9965    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9966
9967    // This is storing the opcode for MOV32ri.
9968    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9969    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9970    OutChains[0] = DAG.getStore(Root, dl,
9971                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9972                                Trmp, MachinePointerInfo(TrmpAddr),
9973                                false, false, 0);
9974
9975    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9976                       DAG.getConstant(1, MVT::i32));
9977    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9978                                MachinePointerInfo(TrmpAddr, 1),
9979                                false, false, 1);
9980
9981    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9982    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9983                       DAG.getConstant(5, MVT::i32));
9984    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9985                                MachinePointerInfo(TrmpAddr, 5),
9986                                false, false, 1);
9987
9988    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9989                       DAG.getConstant(6, MVT::i32));
9990    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9991                                MachinePointerInfo(TrmpAddr, 6),
9992                                false, false, 1);
9993
9994    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9995  }
9996}
9997
9998SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9999                                            SelectionDAG &DAG) const {
10000  /*
10001   The rounding mode is in bits 11:10 of FPSR, and has the following
10002   settings:
10003     00 Round to nearest
10004     01 Round to -inf
10005     10 Round to +inf
10006     11 Round to 0
10007
10008  FLT_ROUNDS, on the other hand, expects the following:
10009    -1 Undefined
10010     0 Round to 0
10011     1 Round to nearest
10012     2 Round to +inf
10013     3 Round to -inf
10014
10015  To perform the conversion, we do:
10016    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10017  */
10018
10019  MachineFunction &MF = DAG.getMachineFunction();
10020  const TargetMachine &TM = MF.getTarget();
10021  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10022  unsigned StackAlignment = TFI.getStackAlignment();
10023  EVT VT = Op.getValueType();
10024  DebugLoc DL = Op.getDebugLoc();
10025
10026  // Save FP Control Word to stack slot
10027  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10028  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10029
10030
10031  MachineMemOperand *MMO =
10032   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10033                           MachineMemOperand::MOStore, 2, 2);
10034
10035  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10036  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10037                                          DAG.getVTList(MVT::Other),
10038                                          Ops, 2, MVT::i16, MMO);
10039
10040  // Load FP Control Word from stack slot
10041  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10042                            MachinePointerInfo(), false, false, false, 0);
10043
10044  // Transform as necessary
10045  SDValue CWD1 =
10046    DAG.getNode(ISD::SRL, DL, MVT::i16,
10047                DAG.getNode(ISD::AND, DL, MVT::i16,
10048                            CWD, DAG.getConstant(0x800, MVT::i16)),
10049                DAG.getConstant(11, MVT::i8));
10050  SDValue CWD2 =
10051    DAG.getNode(ISD::SRL, DL, MVT::i16,
10052                DAG.getNode(ISD::AND, DL, MVT::i16,
10053                            CWD, DAG.getConstant(0x400, MVT::i16)),
10054                DAG.getConstant(9, MVT::i8));
10055
10056  SDValue RetVal =
10057    DAG.getNode(ISD::AND, DL, MVT::i16,
10058                DAG.getNode(ISD::ADD, DL, MVT::i16,
10059                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10060                            DAG.getConstant(1, MVT::i16)),
10061                DAG.getConstant(3, MVT::i16));
10062
10063
10064  return DAG.getNode((VT.getSizeInBits() < 16 ?
10065                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10066}
10067
10068SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10069  EVT VT = Op.getValueType();
10070  EVT OpVT = VT;
10071  unsigned NumBits = VT.getSizeInBits();
10072  DebugLoc dl = Op.getDebugLoc();
10073
10074  Op = Op.getOperand(0);
10075  if (VT == MVT::i8) {
10076    // Zero extend to i32 since there is not an i8 bsr.
10077    OpVT = MVT::i32;
10078    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10079  }
10080
10081  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10082  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10083  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10084
10085  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10086  SDValue Ops[] = {
10087    Op,
10088    DAG.getConstant(NumBits+NumBits-1, OpVT),
10089    DAG.getConstant(X86::COND_E, MVT::i8),
10090    Op.getValue(1)
10091  };
10092  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10093
10094  // Finally xor with NumBits-1.
10095  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10096
10097  if (VT == MVT::i8)
10098    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10099  return Op;
10100}
10101
10102SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10103                                                SelectionDAG &DAG) const {
10104  EVT VT = Op.getValueType();
10105  EVT OpVT = VT;
10106  unsigned NumBits = VT.getSizeInBits();
10107  DebugLoc dl = Op.getDebugLoc();
10108
10109  Op = Op.getOperand(0);
10110  if (VT == MVT::i8) {
10111    // Zero extend to i32 since there is not an i8 bsr.
10112    OpVT = MVT::i32;
10113    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10114  }
10115
10116  // Issue a bsr (scan bits in reverse).
10117  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10118  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10119
10120  // And xor with NumBits-1.
10121  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10122
10123  if (VT == MVT::i8)
10124    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10125  return Op;
10126}
10127
10128SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10129  EVT VT = Op.getValueType();
10130  unsigned NumBits = VT.getSizeInBits();
10131  DebugLoc dl = Op.getDebugLoc();
10132  Op = Op.getOperand(0);
10133
10134  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10135  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10136  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10137
10138  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10139  SDValue Ops[] = {
10140    Op,
10141    DAG.getConstant(NumBits, VT),
10142    DAG.getConstant(X86::COND_E, MVT::i8),
10143    Op.getValue(1)
10144  };
10145  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10146}
10147
10148// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10149// ones, and then concatenate the result back.
10150static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10151  EVT VT = Op.getValueType();
10152
10153  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10154         "Unsupported value type for operation");
10155
10156  int NumElems = VT.getVectorNumElements();
10157  DebugLoc dl = Op.getDebugLoc();
10158  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10159  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10160
10161  // Extract the LHS vectors
10162  SDValue LHS = Op.getOperand(0);
10163  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10164  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10165
10166  // Extract the RHS vectors
10167  SDValue RHS = Op.getOperand(1);
10168  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10169  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10170
10171  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10172  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10173
10174  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10175                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10176                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10177}
10178
10179SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10180  assert(Op.getValueType().getSizeInBits() == 256 &&
10181         Op.getValueType().isInteger() &&
10182         "Only handle AVX 256-bit vector integer operation");
10183  return Lower256IntArith(Op, DAG);
10184}
10185
10186SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10187  assert(Op.getValueType().getSizeInBits() == 256 &&
10188         Op.getValueType().isInteger() &&
10189         "Only handle AVX 256-bit vector integer operation");
10190  return Lower256IntArith(Op, DAG);
10191}
10192
10193SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10194  EVT VT = Op.getValueType();
10195
10196  // Decompose 256-bit ops into smaller 128-bit ops.
10197  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10198    return Lower256IntArith(Op, DAG);
10199
10200  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10201         "Only know how to lower V2I64/V4I64 multiply");
10202
10203  DebugLoc dl = Op.getDebugLoc();
10204
10205  //  Ahi = psrlqi(a, 32);
10206  //  Bhi = psrlqi(b, 32);
10207  //
10208  //  AloBlo = pmuludq(a, b);
10209  //  AloBhi = pmuludq(a, Bhi);
10210  //  AhiBlo = pmuludq(Ahi, b);
10211
10212  //  AloBhi = psllqi(AloBhi, 32);
10213  //  AhiBlo = psllqi(AhiBlo, 32);
10214  //  return AloBlo + AloBhi + AhiBlo;
10215
10216  SDValue A = Op.getOperand(0);
10217  SDValue B = Op.getOperand(1);
10218
10219  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10220
10221  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10222  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10223
10224  // Bit cast to 32-bit vectors for MULUDQ
10225  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10226  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10227  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10228  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10229  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10230
10231  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10232  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10233  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10234
10235  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10236  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10237
10238  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10239  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10240}
10241
10242SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10243
10244  EVT VT = Op.getValueType();
10245  DebugLoc dl = Op.getDebugLoc();
10246  SDValue R = Op.getOperand(0);
10247  SDValue Amt = Op.getOperand(1);
10248  LLVMContext *Context = DAG.getContext();
10249
10250  if (!Subtarget->hasSSE2())
10251    return SDValue();
10252
10253  // Optimize shl/srl/sra with constant shift amount.
10254  if (isSplatVector(Amt.getNode())) {
10255    SDValue SclrAmt = Amt->getOperand(0);
10256    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10257      uint64_t ShiftAmt = C->getZExtValue();
10258
10259      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10260          (Subtarget->hasAVX2() &&
10261           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10262        if (Op.getOpcode() == ISD::SHL)
10263          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10264                             DAG.getConstant(ShiftAmt, MVT::i32));
10265        if (Op.getOpcode() == ISD::SRL)
10266          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10267                             DAG.getConstant(ShiftAmt, MVT::i32));
10268        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10269          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10270                             DAG.getConstant(ShiftAmt, MVT::i32));
10271      }
10272
10273      if (VT == MVT::v16i8) {
10274        if (Op.getOpcode() == ISD::SHL) {
10275          // Make a large shift.
10276          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10277                                    DAG.getConstant(ShiftAmt, MVT::i32));
10278          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10279          // Zero out the rightmost bits.
10280          SmallVector<SDValue, 16> V(16,
10281                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10282                                                     MVT::i8));
10283          return DAG.getNode(ISD::AND, dl, VT, SHL,
10284                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10285        }
10286        if (Op.getOpcode() == ISD::SRL) {
10287          // Make a large shift.
10288          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10289                                    DAG.getConstant(ShiftAmt, MVT::i32));
10290          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10291          // Zero out the leftmost bits.
10292          SmallVector<SDValue, 16> V(16,
10293                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10294                                                     MVT::i8));
10295          return DAG.getNode(ISD::AND, dl, VT, SRL,
10296                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10297        }
10298        if (Op.getOpcode() == ISD::SRA) {
10299          if (ShiftAmt == 7) {
10300            // R s>> 7  ===  R s< 0
10301            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10302            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10303          }
10304
10305          // R s>> a === ((R u>> a) ^ m) - m
10306          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10307          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10308                                                         MVT::i8));
10309          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10310          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10311          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10312          return Res;
10313        }
10314      }
10315
10316      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10317        if (Op.getOpcode() == ISD::SHL) {
10318          // Make a large shift.
10319          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10320                                    DAG.getConstant(ShiftAmt, MVT::i32));
10321          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10322          // Zero out the rightmost bits.
10323          SmallVector<SDValue, 32> V(32,
10324                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10325                                                     MVT::i8));
10326          return DAG.getNode(ISD::AND, dl, VT, SHL,
10327                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10328        }
10329        if (Op.getOpcode() == ISD::SRL) {
10330          // Make a large shift.
10331          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10332                                    DAG.getConstant(ShiftAmt, MVT::i32));
10333          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10334          // Zero out the leftmost bits.
10335          SmallVector<SDValue, 32> V(32,
10336                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10337                                                     MVT::i8));
10338          return DAG.getNode(ISD::AND, dl, VT, SRL,
10339                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10340        }
10341        if (Op.getOpcode() == ISD::SRA) {
10342          if (ShiftAmt == 7) {
10343            // R s>> 7  ===  R s< 0
10344            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10345            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10346          }
10347
10348          // R s>> a === ((R u>> a) ^ m) - m
10349          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10350          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10351                                                         MVT::i8));
10352          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10353          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10354          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10355          return Res;
10356        }
10357      }
10358    }
10359  }
10360
10361  // Lower SHL with variable shift amount.
10362  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10363    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10364                     DAG.getConstant(23, MVT::i32));
10365
10366    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10367    Constant *C = ConstantDataVector::get(*Context, CV);
10368    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10369    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10370                                 MachinePointerInfo::getConstantPool(),
10371                                 false, false, false, 16);
10372
10373    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10374    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10375    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10376    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10377  }
10378  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10379    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10380
10381    // a = a << 5;
10382    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10383                     DAG.getConstant(5, MVT::i32));
10384    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10385
10386    // Turn 'a' into a mask suitable for VSELECT
10387    SDValue VSelM = DAG.getConstant(0x80, VT);
10388    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10389    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10390
10391    SDValue CM1 = DAG.getConstant(0x0f, VT);
10392    SDValue CM2 = DAG.getConstant(0x3f, VT);
10393
10394    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10395    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10396    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10397                            DAG.getConstant(4, MVT::i32), DAG);
10398    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10399    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10400
10401    // a += a
10402    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10403    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10404    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10405
10406    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10407    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10408    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10409                            DAG.getConstant(2, MVT::i32), DAG);
10410    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10411    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10412
10413    // a += a
10414    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10415    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10416    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10417
10418    // return VSELECT(r, r+r, a);
10419    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10420                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10421    return R;
10422  }
10423
10424  // Decompose 256-bit shifts into smaller 128-bit shifts.
10425  if (VT.getSizeInBits() == 256) {
10426    unsigned NumElems = VT.getVectorNumElements();
10427    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10428    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10429
10430    // Extract the two vectors
10431    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10432    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10433                                     DAG, dl);
10434
10435    // Recreate the shift amount vectors
10436    SDValue Amt1, Amt2;
10437    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10438      // Constant shift amount
10439      SmallVector<SDValue, 4> Amt1Csts;
10440      SmallVector<SDValue, 4> Amt2Csts;
10441      for (unsigned i = 0; i != NumElems/2; ++i)
10442        Amt1Csts.push_back(Amt->getOperand(i));
10443      for (unsigned i = NumElems/2; i != NumElems; ++i)
10444        Amt2Csts.push_back(Amt->getOperand(i));
10445
10446      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10447                                 &Amt1Csts[0], NumElems/2);
10448      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10449                                 &Amt2Csts[0], NumElems/2);
10450    } else {
10451      // Variable shift amount
10452      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10453      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10454                                 DAG, dl);
10455    }
10456
10457    // Issue new vector shifts for the smaller types
10458    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10459    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10460
10461    // Concatenate the result back
10462    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10463  }
10464
10465  return SDValue();
10466}
10467
10468SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10469  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10470  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10471  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10472  // has only one use.
10473  SDNode *N = Op.getNode();
10474  SDValue LHS = N->getOperand(0);
10475  SDValue RHS = N->getOperand(1);
10476  unsigned BaseOp = 0;
10477  unsigned Cond = 0;
10478  DebugLoc DL = Op.getDebugLoc();
10479  switch (Op.getOpcode()) {
10480  default: llvm_unreachable("Unknown ovf instruction!");
10481  case ISD::SADDO:
10482    // A subtract of one will be selected as a INC. Note that INC doesn't
10483    // set CF, so we can't do this for UADDO.
10484    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10485      if (C->isOne()) {
10486        BaseOp = X86ISD::INC;
10487        Cond = X86::COND_O;
10488        break;
10489      }
10490    BaseOp = X86ISD::ADD;
10491    Cond = X86::COND_O;
10492    break;
10493  case ISD::UADDO:
10494    BaseOp = X86ISD::ADD;
10495    Cond = X86::COND_B;
10496    break;
10497  case ISD::SSUBO:
10498    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10499    // set CF, so we can't do this for USUBO.
10500    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10501      if (C->isOne()) {
10502        BaseOp = X86ISD::DEC;
10503        Cond = X86::COND_O;
10504        break;
10505      }
10506    BaseOp = X86ISD::SUB;
10507    Cond = X86::COND_O;
10508    break;
10509  case ISD::USUBO:
10510    BaseOp = X86ISD::SUB;
10511    Cond = X86::COND_B;
10512    break;
10513  case ISD::SMULO:
10514    BaseOp = X86ISD::SMUL;
10515    Cond = X86::COND_O;
10516    break;
10517  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10518    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10519                                 MVT::i32);
10520    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10521
10522    SDValue SetCC =
10523      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10524                  DAG.getConstant(X86::COND_O, MVT::i32),
10525                  SDValue(Sum.getNode(), 2));
10526
10527    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10528  }
10529  }
10530
10531  // Also sets EFLAGS.
10532  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10533  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10534
10535  SDValue SetCC =
10536    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10537                DAG.getConstant(Cond, MVT::i32),
10538                SDValue(Sum.getNode(), 1));
10539
10540  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10541}
10542
10543SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10544                                                  SelectionDAG &DAG) const {
10545  DebugLoc dl = Op.getDebugLoc();
10546  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10547  EVT VT = Op.getValueType();
10548
10549  if (!Subtarget->hasSSE2() || !VT.isVector())
10550    return SDValue();
10551
10552  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10553                      ExtraVT.getScalarType().getSizeInBits();
10554  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10555
10556  switch (VT.getSimpleVT().SimpleTy) {
10557    default: return SDValue();
10558    case MVT::v8i32:
10559    case MVT::v16i16:
10560      if (!Subtarget->hasAVX())
10561        return SDValue();
10562      if (!Subtarget->hasAVX2()) {
10563        // needs to be split
10564        int NumElems = VT.getVectorNumElements();
10565        SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10566        SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10567
10568        // Extract the LHS vectors
10569        SDValue LHS = Op.getOperand(0);
10570        SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10571        SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10572
10573        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10574        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10575
10576        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10577        int ExtraNumElems = ExtraVT.getVectorNumElements();
10578        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10579                                   ExtraNumElems/2);
10580        SDValue Extra = DAG.getValueType(ExtraVT);
10581
10582        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10583        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10584
10585        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10586      }
10587      // fall through
10588    case MVT::v4i32:
10589    case MVT::v8i16: {
10590      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10591                                         Op.getOperand(0), ShAmt, DAG);
10592      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10593    }
10594  }
10595}
10596
10597
10598SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10599  DebugLoc dl = Op.getDebugLoc();
10600
10601  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10602  // There isn't any reason to disable it if the target processor supports it.
10603  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10604    SDValue Chain = Op.getOperand(0);
10605    SDValue Zero = DAG.getConstant(0, MVT::i32);
10606    SDValue Ops[] = {
10607      DAG.getRegister(X86::ESP, MVT::i32), // Base
10608      DAG.getTargetConstant(1, MVT::i8),   // Scale
10609      DAG.getRegister(0, MVT::i32),        // Index
10610      DAG.getTargetConstant(0, MVT::i32),  // Disp
10611      DAG.getRegister(0, MVT::i32),        // Segment.
10612      Zero,
10613      Chain
10614    };
10615    SDNode *Res =
10616      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10617                          array_lengthof(Ops));
10618    return SDValue(Res, 0);
10619  }
10620
10621  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10622  if (!isDev)
10623    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10624
10625  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10626  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10627  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10628  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10629
10630  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10631  if (!Op1 && !Op2 && !Op3 && Op4)
10632    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10633
10634  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10635  if (Op1 && !Op2 && !Op3 && !Op4)
10636    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10637
10638  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10639  //           (MFENCE)>;
10640  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10641}
10642
10643SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10644                                             SelectionDAG &DAG) const {
10645  DebugLoc dl = Op.getDebugLoc();
10646  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10647    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10648  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10649    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10650
10651  // The only fence that needs an instruction is a sequentially-consistent
10652  // cross-thread fence.
10653  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10654    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10655    // no-sse2). There isn't any reason to disable it if the target processor
10656    // supports it.
10657    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10658      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10659
10660    SDValue Chain = Op.getOperand(0);
10661    SDValue Zero = DAG.getConstant(0, MVT::i32);
10662    SDValue Ops[] = {
10663      DAG.getRegister(X86::ESP, MVT::i32), // Base
10664      DAG.getTargetConstant(1, MVT::i8),   // Scale
10665      DAG.getRegister(0, MVT::i32),        // Index
10666      DAG.getTargetConstant(0, MVT::i32),  // Disp
10667      DAG.getRegister(0, MVT::i32),        // Segment.
10668      Zero,
10669      Chain
10670    };
10671    SDNode *Res =
10672      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10673                         array_lengthof(Ops));
10674    return SDValue(Res, 0);
10675  }
10676
10677  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10678  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10679}
10680
10681
10682SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10683  EVT T = Op.getValueType();
10684  DebugLoc DL = Op.getDebugLoc();
10685  unsigned Reg = 0;
10686  unsigned size = 0;
10687  switch(T.getSimpleVT().SimpleTy) {
10688  default: llvm_unreachable("Invalid value type!");
10689  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10690  case MVT::i16: Reg = X86::AX;  size = 2; break;
10691  case MVT::i32: Reg = X86::EAX; size = 4; break;
10692  case MVT::i64:
10693    assert(Subtarget->is64Bit() && "Node not type legal!");
10694    Reg = X86::RAX; size = 8;
10695    break;
10696  }
10697  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10698                                    Op.getOperand(2), SDValue());
10699  SDValue Ops[] = { cpIn.getValue(0),
10700                    Op.getOperand(1),
10701                    Op.getOperand(3),
10702                    DAG.getTargetConstant(size, MVT::i8),
10703                    cpIn.getValue(1) };
10704  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10705  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10706  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10707                                           Ops, 5, T, MMO);
10708  SDValue cpOut =
10709    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10710  return cpOut;
10711}
10712
10713SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10714                                                 SelectionDAG &DAG) const {
10715  assert(Subtarget->is64Bit() && "Result not type legalized?");
10716  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10717  SDValue TheChain = Op.getOperand(0);
10718  DebugLoc dl = Op.getDebugLoc();
10719  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10720  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10721  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10722                                   rax.getValue(2));
10723  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10724                            DAG.getConstant(32, MVT::i8));
10725  SDValue Ops[] = {
10726    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10727    rdx.getValue(1)
10728  };
10729  return DAG.getMergeValues(Ops, 2, dl);
10730}
10731
10732SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10733                                            SelectionDAG &DAG) const {
10734  EVT SrcVT = Op.getOperand(0).getValueType();
10735  EVT DstVT = Op.getValueType();
10736  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10737         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10738  assert((DstVT == MVT::i64 ||
10739          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10740         "Unexpected custom BITCAST");
10741  // i64 <=> MMX conversions are Legal.
10742  if (SrcVT==MVT::i64 && DstVT.isVector())
10743    return Op;
10744  if (DstVT==MVT::i64 && SrcVT.isVector())
10745    return Op;
10746  // MMX <=> MMX conversions are Legal.
10747  if (SrcVT.isVector() && DstVT.isVector())
10748    return Op;
10749  // All other conversions need to be expanded.
10750  return SDValue();
10751}
10752
10753SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10754  SDNode *Node = Op.getNode();
10755  DebugLoc dl = Node->getDebugLoc();
10756  EVT T = Node->getValueType(0);
10757  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10758                              DAG.getConstant(0, T), Node->getOperand(2));
10759  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10760                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10761                       Node->getOperand(0),
10762                       Node->getOperand(1), negOp,
10763                       cast<AtomicSDNode>(Node)->getSrcValue(),
10764                       cast<AtomicSDNode>(Node)->getAlignment(),
10765                       cast<AtomicSDNode>(Node)->getOrdering(),
10766                       cast<AtomicSDNode>(Node)->getSynchScope());
10767}
10768
10769static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10770  SDNode *Node = Op.getNode();
10771  DebugLoc dl = Node->getDebugLoc();
10772  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10773
10774  // Convert seq_cst store -> xchg
10775  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10776  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10777  //        (The only way to get a 16-byte store is cmpxchg16b)
10778  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10779  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10780      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10781    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10782                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10783                                 Node->getOperand(0),
10784                                 Node->getOperand(1), Node->getOperand(2),
10785                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10786                                 cast<AtomicSDNode>(Node)->getOrdering(),
10787                                 cast<AtomicSDNode>(Node)->getSynchScope());
10788    return Swap.getValue(1);
10789  }
10790  // Other atomic stores have a simple pattern.
10791  return Op;
10792}
10793
10794static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10795  EVT VT = Op.getNode()->getValueType(0);
10796
10797  // Let legalize expand this if it isn't a legal type yet.
10798  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10799    return SDValue();
10800
10801  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10802
10803  unsigned Opc;
10804  bool ExtraOp = false;
10805  switch (Op.getOpcode()) {
10806  default: llvm_unreachable("Invalid code");
10807  case ISD::ADDC: Opc = X86ISD::ADD; break;
10808  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10809  case ISD::SUBC: Opc = X86ISD::SUB; break;
10810  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10811  }
10812
10813  if (!ExtraOp)
10814    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10815                       Op.getOperand(1));
10816  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10817                     Op.getOperand(1), Op.getOperand(2));
10818}
10819
10820/// LowerOperation - Provide custom lowering hooks for some operations.
10821///
10822SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10823  switch (Op.getOpcode()) {
10824  default: llvm_unreachable("Should not custom lower this!");
10825  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10826  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10827  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10828  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10829  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10830  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10831  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10832  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10833  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10834  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10835  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10836  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10837  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10838  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10839  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10840  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10841  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10842  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10843  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10844  case ISD::SHL_PARTS:
10845  case ISD::SRA_PARTS:
10846  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10847  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10848  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10849  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10850  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10851  case ISD::FABS:               return LowerFABS(Op, DAG);
10852  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10853  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10854  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10855  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10856  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10857  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10858  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10859  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10860  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10861  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10862  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10863  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10864  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10865  case ISD::FRAME_TO_ARGS_OFFSET:
10866                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10867  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10868  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10869  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10870  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10871  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10872  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10873  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10874  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10875  case ISD::MUL:                return LowerMUL(Op, DAG);
10876  case ISD::SRA:
10877  case ISD::SRL:
10878  case ISD::SHL:                return LowerShift(Op, DAG);
10879  case ISD::SADDO:
10880  case ISD::UADDO:
10881  case ISD::SSUBO:
10882  case ISD::USUBO:
10883  case ISD::SMULO:
10884  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10885  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10886  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10887  case ISD::ADDC:
10888  case ISD::ADDE:
10889  case ISD::SUBC:
10890  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10891  case ISD::ADD:                return LowerADD(Op, DAG);
10892  case ISD::SUB:                return LowerSUB(Op, DAG);
10893  }
10894}
10895
10896static void ReplaceATOMIC_LOAD(SDNode *Node,
10897                                  SmallVectorImpl<SDValue> &Results,
10898                                  SelectionDAG &DAG) {
10899  DebugLoc dl = Node->getDebugLoc();
10900  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10901
10902  // Convert wide load -> cmpxchg8b/cmpxchg16b
10903  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10904  //        (The only way to get a 16-byte load is cmpxchg16b)
10905  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10906  SDValue Zero = DAG.getConstant(0, VT);
10907  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10908                               Node->getOperand(0),
10909                               Node->getOperand(1), Zero, Zero,
10910                               cast<AtomicSDNode>(Node)->getMemOperand(),
10911                               cast<AtomicSDNode>(Node)->getOrdering(),
10912                               cast<AtomicSDNode>(Node)->getSynchScope());
10913  Results.push_back(Swap.getValue(0));
10914  Results.push_back(Swap.getValue(1));
10915}
10916
10917void X86TargetLowering::
10918ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10919                        SelectionDAG &DAG, unsigned NewOp) const {
10920  DebugLoc dl = Node->getDebugLoc();
10921  assert (Node->getValueType(0) == MVT::i64 &&
10922          "Only know how to expand i64 atomics");
10923
10924  SDValue Chain = Node->getOperand(0);
10925  SDValue In1 = Node->getOperand(1);
10926  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10927                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10928  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10929                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10930  SDValue Ops[] = { Chain, In1, In2L, In2H };
10931  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10932  SDValue Result =
10933    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10934                            cast<MemSDNode>(Node)->getMemOperand());
10935  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10936  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10937  Results.push_back(Result.getValue(2));
10938}
10939
10940/// ReplaceNodeResults - Replace a node with an illegal result type
10941/// with a new node built out of custom code.
10942void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10943                                           SmallVectorImpl<SDValue>&Results,
10944                                           SelectionDAG &DAG) const {
10945  DebugLoc dl = N->getDebugLoc();
10946  switch (N->getOpcode()) {
10947  default:
10948    llvm_unreachable("Do not know how to custom type legalize this operation!");
10949  case ISD::SIGN_EXTEND_INREG:
10950  case ISD::ADDC:
10951  case ISD::ADDE:
10952  case ISD::SUBC:
10953  case ISD::SUBE:
10954    // We don't want to expand or promote these.
10955    return;
10956  case ISD::FP_TO_SINT:
10957  case ISD::FP_TO_UINT: {
10958    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
10959
10960    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
10961      return;
10962
10963    std::pair<SDValue,SDValue> Vals =
10964        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
10965    SDValue FIST = Vals.first, StackSlot = Vals.second;
10966    if (FIST.getNode() != 0) {
10967      EVT VT = N->getValueType(0);
10968      // Return a load from the stack slot.
10969      if (StackSlot.getNode() != 0)
10970        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10971                                      MachinePointerInfo(),
10972                                      false, false, false, 0));
10973      else
10974        Results.push_back(FIST);
10975    }
10976    return;
10977  }
10978  case ISD::READCYCLECOUNTER: {
10979    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10980    SDValue TheChain = N->getOperand(0);
10981    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10982    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10983                                     rd.getValue(1));
10984    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10985                                     eax.getValue(2));
10986    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10987    SDValue Ops[] = { eax, edx };
10988    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10989    Results.push_back(edx.getValue(1));
10990    return;
10991  }
10992  case ISD::ATOMIC_CMP_SWAP: {
10993    EVT T = N->getValueType(0);
10994    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10995    bool Regs64bit = T == MVT::i128;
10996    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10997    SDValue cpInL, cpInH;
10998    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10999                        DAG.getConstant(0, HalfT));
11000    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11001                        DAG.getConstant(1, HalfT));
11002    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11003                             Regs64bit ? X86::RAX : X86::EAX,
11004                             cpInL, SDValue());
11005    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11006                             Regs64bit ? X86::RDX : X86::EDX,
11007                             cpInH, cpInL.getValue(1));
11008    SDValue swapInL, swapInH;
11009    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11010                          DAG.getConstant(0, HalfT));
11011    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11012                          DAG.getConstant(1, HalfT));
11013    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11014                               Regs64bit ? X86::RBX : X86::EBX,
11015                               swapInL, cpInH.getValue(1));
11016    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11017                               Regs64bit ? X86::RCX : X86::ECX,
11018                               swapInH, swapInL.getValue(1));
11019    SDValue Ops[] = { swapInH.getValue(0),
11020                      N->getOperand(1),
11021                      swapInH.getValue(1) };
11022    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11023    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11024    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11025                                  X86ISD::LCMPXCHG8_DAG;
11026    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11027                                             Ops, 3, T, MMO);
11028    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11029                                        Regs64bit ? X86::RAX : X86::EAX,
11030                                        HalfT, Result.getValue(1));
11031    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11032                                        Regs64bit ? X86::RDX : X86::EDX,
11033                                        HalfT, cpOutL.getValue(2));
11034    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11035    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11036    Results.push_back(cpOutH.getValue(1));
11037    return;
11038  }
11039  case ISD::ATOMIC_LOAD_ADD:
11040    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
11041    return;
11042  case ISD::ATOMIC_LOAD_AND:
11043    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
11044    return;
11045  case ISD::ATOMIC_LOAD_NAND:
11046    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11047    return;
11048  case ISD::ATOMIC_LOAD_OR:
11049    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11050    return;
11051  case ISD::ATOMIC_LOAD_SUB:
11052    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11053    return;
11054  case ISD::ATOMIC_LOAD_XOR:
11055    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11056    return;
11057  case ISD::ATOMIC_SWAP:
11058    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11059    return;
11060  case ISD::ATOMIC_LOAD:
11061    ReplaceATOMIC_LOAD(N, Results, DAG);
11062  }
11063}
11064
11065const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11066  switch (Opcode) {
11067  default: return NULL;
11068  case X86ISD::BSF:                return "X86ISD::BSF";
11069  case X86ISD::BSR:                return "X86ISD::BSR";
11070  case X86ISD::SHLD:               return "X86ISD::SHLD";
11071  case X86ISD::SHRD:               return "X86ISD::SHRD";
11072  case X86ISD::FAND:               return "X86ISD::FAND";
11073  case X86ISD::FOR:                return "X86ISD::FOR";
11074  case X86ISD::FXOR:               return "X86ISD::FXOR";
11075  case X86ISD::FSRL:               return "X86ISD::FSRL";
11076  case X86ISD::FILD:               return "X86ISD::FILD";
11077  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11078  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11079  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11080  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11081  case X86ISD::FLD:                return "X86ISD::FLD";
11082  case X86ISD::FST:                return "X86ISD::FST";
11083  case X86ISD::CALL:               return "X86ISD::CALL";
11084  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11085  case X86ISD::BT:                 return "X86ISD::BT";
11086  case X86ISD::CMP:                return "X86ISD::CMP";
11087  case X86ISD::COMI:               return "X86ISD::COMI";
11088  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11089  case X86ISD::SETCC:              return "X86ISD::SETCC";
11090  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11091  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11092  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11093  case X86ISD::CMOV:               return "X86ISD::CMOV";
11094  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11095  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11096  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11097  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11098  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11099  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11100  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11101  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11102  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11103  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11104  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11105  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11106  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11107  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11108  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11109  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11110  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11111  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11112  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11113  case X86ISD::HADD:               return "X86ISD::HADD";
11114  case X86ISD::HSUB:               return "X86ISD::HSUB";
11115  case X86ISD::FHADD:              return "X86ISD::FHADD";
11116  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11117  case X86ISD::FMAX:               return "X86ISD::FMAX";
11118  case X86ISD::FMIN:               return "X86ISD::FMIN";
11119  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11120  case X86ISD::FRCP:               return "X86ISD::FRCP";
11121  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11122  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11123  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11124  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11125  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11126  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11127  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11128  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11129  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11130  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11131  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11132  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11133  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11134  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11135  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11136  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11137  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11138  case X86ISD::VSHL:               return "X86ISD::VSHL";
11139  case X86ISD::VSRL:               return "X86ISD::VSRL";
11140  case X86ISD::VSRA:               return "X86ISD::VSRA";
11141  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11142  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11143  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11144  case X86ISD::CMPP:               return "X86ISD::CMPP";
11145  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11146  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11147  case X86ISD::ADD:                return "X86ISD::ADD";
11148  case X86ISD::SUB:                return "X86ISD::SUB";
11149  case X86ISD::ADC:                return "X86ISD::ADC";
11150  case X86ISD::SBB:                return "X86ISD::SBB";
11151  case X86ISD::SMUL:               return "X86ISD::SMUL";
11152  case X86ISD::UMUL:               return "X86ISD::UMUL";
11153  case X86ISD::INC:                return "X86ISD::INC";
11154  case X86ISD::DEC:                return "X86ISD::DEC";
11155  case X86ISD::OR:                 return "X86ISD::OR";
11156  case X86ISD::XOR:                return "X86ISD::XOR";
11157  case X86ISD::AND:                return "X86ISD::AND";
11158  case X86ISD::ANDN:               return "X86ISD::ANDN";
11159  case X86ISD::BLSI:               return "X86ISD::BLSI";
11160  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11161  case X86ISD::BLSR:               return "X86ISD::BLSR";
11162  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11163  case X86ISD::PTEST:              return "X86ISD::PTEST";
11164  case X86ISD::TESTP:              return "X86ISD::TESTP";
11165  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11166  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11167  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11168  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11169  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11170  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11171  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11172  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11173  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11174  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11175  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11176  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11177  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11178  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11179  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11180  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11181  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11182  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11183  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11184  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11185  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11186  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11187  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11188  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11189  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11190  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11191  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11192  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11193  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11194  }
11195}
11196
11197// isLegalAddressingMode - Return true if the addressing mode represented
11198// by AM is legal for this target, for a load/store of the specified type.
11199bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11200                                              Type *Ty) const {
11201  // X86 supports extremely general addressing modes.
11202  CodeModel::Model M = getTargetMachine().getCodeModel();
11203  Reloc::Model R = getTargetMachine().getRelocationModel();
11204
11205  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11206  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11207    return false;
11208
11209  if (AM.BaseGV) {
11210    unsigned GVFlags =
11211      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11212
11213    // If a reference to this global requires an extra load, we can't fold it.
11214    if (isGlobalStubReference(GVFlags))
11215      return false;
11216
11217    // If BaseGV requires a register for the PIC base, we cannot also have a
11218    // BaseReg specified.
11219    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11220      return false;
11221
11222    // If lower 4G is not available, then we must use rip-relative addressing.
11223    if ((M != CodeModel::Small || R != Reloc::Static) &&
11224        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11225      return false;
11226  }
11227
11228  switch (AM.Scale) {
11229  case 0:
11230  case 1:
11231  case 2:
11232  case 4:
11233  case 8:
11234    // These scales always work.
11235    break;
11236  case 3:
11237  case 5:
11238  case 9:
11239    // These scales are formed with basereg+scalereg.  Only accept if there is
11240    // no basereg yet.
11241    if (AM.HasBaseReg)
11242      return false;
11243    break;
11244  default:  // Other stuff never works.
11245    return false;
11246  }
11247
11248  return true;
11249}
11250
11251
11252bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11253  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11254    return false;
11255  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11256  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11257  if (NumBits1 <= NumBits2)
11258    return false;
11259  return true;
11260}
11261
11262bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11263  if (!VT1.isInteger() || !VT2.isInteger())
11264    return false;
11265  unsigned NumBits1 = VT1.getSizeInBits();
11266  unsigned NumBits2 = VT2.getSizeInBits();
11267  if (NumBits1 <= NumBits2)
11268    return false;
11269  return true;
11270}
11271
11272bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11273  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11274  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11275}
11276
11277bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11278  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11279  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11280}
11281
11282bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11283  // i16 instructions are longer (0x66 prefix) and potentially slower.
11284  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11285}
11286
11287/// isShuffleMaskLegal - Targets can use this to indicate that they only
11288/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11289/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11290/// are assumed to be legal.
11291bool
11292X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11293                                      EVT VT) const {
11294  // Very little shuffling can be done for 64-bit vectors right now.
11295  if (VT.getSizeInBits() == 64)
11296    return false;
11297
11298  // FIXME: pshufb, blends, shifts.
11299  return (VT.getVectorNumElements() == 2 ||
11300          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11301          isMOVLMask(M, VT) ||
11302          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11303          isPSHUFDMask(M, VT) ||
11304          isPSHUFHWMask(M, VT) ||
11305          isPSHUFLWMask(M, VT) ||
11306          isPALIGNRMask(M, VT, Subtarget) ||
11307          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11308          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11309          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11310          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11311}
11312
11313bool
11314X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11315                                          EVT VT) const {
11316  unsigned NumElts = VT.getVectorNumElements();
11317  // FIXME: This collection of masks seems suspect.
11318  if (NumElts == 2)
11319    return true;
11320  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11321    return (isMOVLMask(Mask, VT)  ||
11322            isCommutedMOVLMask(Mask, VT, true) ||
11323            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11324            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11325  }
11326  return false;
11327}
11328
11329//===----------------------------------------------------------------------===//
11330//                           X86 Scheduler Hooks
11331//===----------------------------------------------------------------------===//
11332
11333// private utility function
11334MachineBasicBlock *
11335X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11336                                                       MachineBasicBlock *MBB,
11337                                                       unsigned regOpc,
11338                                                       unsigned immOpc,
11339                                                       unsigned LoadOpc,
11340                                                       unsigned CXchgOpc,
11341                                                       unsigned notOpc,
11342                                                       unsigned EAXreg,
11343                                                 const TargetRegisterClass *RC,
11344                                                       bool Invert) const {
11345  // For the atomic bitwise operator, we generate
11346  //   thisMBB:
11347  //   newMBB:
11348  //     ld  t1 = [bitinstr.addr]
11349  //     op  t2 = t1, [bitinstr.val]
11350  //     not t3 = t2  (if Invert)
11351  //     mov EAX = t1
11352  //     lcs dest = [bitinstr.addr], t3  [EAX is implicit]
11353  //     bz  newMBB
11354  //     fallthrough -->nextMBB
11355  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11356  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11357  MachineFunction::iterator MBBIter = MBB;
11358  ++MBBIter;
11359
11360  /// First build the CFG
11361  MachineFunction *F = MBB->getParent();
11362  MachineBasicBlock *thisMBB = MBB;
11363  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11364  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11365  F->insert(MBBIter, newMBB);
11366  F->insert(MBBIter, nextMBB);
11367
11368  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11369  nextMBB->splice(nextMBB->begin(), thisMBB,
11370                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11371                  thisMBB->end());
11372  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11373
11374  // Update thisMBB to fall through to newMBB
11375  thisMBB->addSuccessor(newMBB);
11376
11377  // newMBB jumps to itself and fall through to nextMBB
11378  newMBB->addSuccessor(nextMBB);
11379  newMBB->addSuccessor(newMBB);
11380
11381  // Insert instructions into newMBB based on incoming instruction
11382  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11383         "unexpected number of operands");
11384  DebugLoc dl = bInstr->getDebugLoc();
11385  MachineOperand& destOper = bInstr->getOperand(0);
11386  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11387  int numArgs = bInstr->getNumOperands() - 1;
11388  for (int i=0; i < numArgs; ++i)
11389    argOpers[i] = &bInstr->getOperand(i+1);
11390
11391  // x86 address has 4 operands: base, index, scale, and displacement
11392  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11393  int valArgIndx = lastAddrIndx + 1;
11394
11395  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11396  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11397  for (int i=0; i <= lastAddrIndx; ++i)
11398    (*MIB).addOperand(*argOpers[i]);
11399
11400  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11401  assert((argOpers[valArgIndx]->isReg() ||
11402          argOpers[valArgIndx]->isImm()) &&
11403         "invalid operand");
11404  if (argOpers[valArgIndx]->isReg())
11405    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11406  else
11407    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11408  MIB.addReg(t1);
11409  (*MIB).addOperand(*argOpers[valArgIndx]);
11410
11411  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11412  if (Invert) {
11413    MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2);
11414  }
11415  else
11416    t3 = t2;
11417
11418  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11419  MIB.addReg(t1);
11420
11421  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11422  for (int i=0; i <= lastAddrIndx; ++i)
11423    (*MIB).addOperand(*argOpers[i]);
11424  MIB.addReg(t3);
11425  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11426  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11427                    bInstr->memoperands_end());
11428
11429  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11430  MIB.addReg(EAXreg);
11431
11432  // insert branch
11433  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11434
11435  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11436  return nextMBB;
11437}
11438
11439// private utility function:  64 bit atomics on 32 bit host.
11440MachineBasicBlock *
11441X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11442                                                       MachineBasicBlock *MBB,
11443                                                       unsigned regOpcL,
11444                                                       unsigned regOpcH,
11445                                                       unsigned immOpcL,
11446                                                       unsigned immOpcH,
11447                                                       bool Invert) const {
11448  // For the atomic bitwise operator, we generate
11449  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11450  //     ld t1,t2 = [bitinstr.addr]
11451  //   newMBB:
11452  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11453  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11454  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11455  //     neg t7, t8 < t5, t6  (if Invert)
11456  //     mov ECX, EBX <- t5, t6
11457  //     mov EAX, EDX <- t1, t2
11458  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11459  //     mov t3, t4 <- EAX, EDX
11460  //     bz  newMBB
11461  //     result in out1, out2
11462  //     fallthrough -->nextMBB
11463
11464  const TargetRegisterClass *RC = &X86::GR32RegClass;
11465  const unsigned LoadOpc = X86::MOV32rm;
11466  const unsigned NotOpc = X86::NOT32r;
11467  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11468  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11469  MachineFunction::iterator MBBIter = MBB;
11470  ++MBBIter;
11471
11472  /// First build the CFG
11473  MachineFunction *F = MBB->getParent();
11474  MachineBasicBlock *thisMBB = MBB;
11475  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11476  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11477  F->insert(MBBIter, newMBB);
11478  F->insert(MBBIter, nextMBB);
11479
11480  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11481  nextMBB->splice(nextMBB->begin(), thisMBB,
11482                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11483                  thisMBB->end());
11484  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11485
11486  // Update thisMBB to fall through to newMBB
11487  thisMBB->addSuccessor(newMBB);
11488
11489  // newMBB jumps to itself and fall through to nextMBB
11490  newMBB->addSuccessor(nextMBB);
11491  newMBB->addSuccessor(newMBB);
11492
11493  DebugLoc dl = bInstr->getDebugLoc();
11494  // Insert instructions into newMBB based on incoming instruction
11495  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11496  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11497         "unexpected number of operands");
11498  MachineOperand& dest1Oper = bInstr->getOperand(0);
11499  MachineOperand& dest2Oper = bInstr->getOperand(1);
11500  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11501  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11502    argOpers[i] = &bInstr->getOperand(i+2);
11503
11504    // We use some of the operands multiple times, so conservatively just
11505    // clear any kill flags that might be present.
11506    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11507      argOpers[i]->setIsKill(false);
11508  }
11509
11510  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11511  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11512
11513  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11514  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11515  for (int i=0; i <= lastAddrIndx; ++i)
11516    (*MIB).addOperand(*argOpers[i]);
11517  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11518  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11519  // add 4 to displacement.
11520  for (int i=0; i <= lastAddrIndx-2; ++i)
11521    (*MIB).addOperand(*argOpers[i]);
11522  MachineOperand newOp3 = *(argOpers[3]);
11523  if (newOp3.isImm())
11524    newOp3.setImm(newOp3.getImm()+4);
11525  else
11526    newOp3.setOffset(newOp3.getOffset()+4);
11527  (*MIB).addOperand(newOp3);
11528  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11529
11530  // t3/4 are defined later, at the bottom of the loop
11531  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11532  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11533  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11534    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11535  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11536    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11537
11538  // The subsequent operations should be using the destination registers of
11539  // the PHI instructions.
11540  t1 = dest1Oper.getReg();
11541  t2 = dest2Oper.getReg();
11542
11543  int valArgIndx = lastAddrIndx + 1;
11544  assert((argOpers[valArgIndx]->isReg() ||
11545          argOpers[valArgIndx]->isImm()) &&
11546         "invalid operand");
11547  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11548  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11549  if (argOpers[valArgIndx]->isReg())
11550    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11551  else
11552    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11553  if (regOpcL != X86::MOV32rr)
11554    MIB.addReg(t1);
11555  (*MIB).addOperand(*argOpers[valArgIndx]);
11556  assert(argOpers[valArgIndx + 1]->isReg() ==
11557         argOpers[valArgIndx]->isReg());
11558  assert(argOpers[valArgIndx + 1]->isImm() ==
11559         argOpers[valArgIndx]->isImm());
11560  if (argOpers[valArgIndx + 1]->isReg())
11561    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11562  else
11563    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11564  if (regOpcH != X86::MOV32rr)
11565    MIB.addReg(t2);
11566  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11567
11568  unsigned t7, t8;
11569  if (Invert) {
11570    t7 = F->getRegInfo().createVirtualRegister(RC);
11571    t8 = F->getRegInfo().createVirtualRegister(RC);
11572    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5);
11573    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6);
11574  } else {
11575    t7 = t5;
11576    t8 = t6;
11577  }
11578
11579  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11580  MIB.addReg(t1);
11581  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11582  MIB.addReg(t2);
11583
11584  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11585  MIB.addReg(t7);
11586  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11587  MIB.addReg(t8);
11588
11589  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11590  for (int i=0; i <= lastAddrIndx; ++i)
11591    (*MIB).addOperand(*argOpers[i]);
11592
11593  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11594  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11595                    bInstr->memoperands_end());
11596
11597  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11598  MIB.addReg(X86::EAX);
11599  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11600  MIB.addReg(X86::EDX);
11601
11602  // insert branch
11603  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11604
11605  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11606  return nextMBB;
11607}
11608
11609// private utility function
11610MachineBasicBlock *
11611X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11612                                                      MachineBasicBlock *MBB,
11613                                                      unsigned cmovOpc) const {
11614  // For the atomic min/max operator, we generate
11615  //   thisMBB:
11616  //   newMBB:
11617  //     ld t1 = [min/max.addr]
11618  //     mov t2 = [min/max.val]
11619  //     cmp  t1, t2
11620  //     cmov[cond] t2 = t1
11621  //     mov EAX = t1
11622  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11623  //     bz   newMBB
11624  //     fallthrough -->nextMBB
11625  //
11626  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11627  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11628  MachineFunction::iterator MBBIter = MBB;
11629  ++MBBIter;
11630
11631  /// First build the CFG
11632  MachineFunction *F = MBB->getParent();
11633  MachineBasicBlock *thisMBB = MBB;
11634  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11635  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11636  F->insert(MBBIter, newMBB);
11637  F->insert(MBBIter, nextMBB);
11638
11639  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11640  nextMBB->splice(nextMBB->begin(), thisMBB,
11641                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11642                  thisMBB->end());
11643  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11644
11645  // Update thisMBB to fall through to newMBB
11646  thisMBB->addSuccessor(newMBB);
11647
11648  // newMBB jumps to newMBB and fall through to nextMBB
11649  newMBB->addSuccessor(nextMBB);
11650  newMBB->addSuccessor(newMBB);
11651
11652  DebugLoc dl = mInstr->getDebugLoc();
11653  // Insert instructions into newMBB based on incoming instruction
11654  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11655         "unexpected number of operands");
11656  MachineOperand& destOper = mInstr->getOperand(0);
11657  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11658  int numArgs = mInstr->getNumOperands() - 1;
11659  for (int i=0; i < numArgs; ++i)
11660    argOpers[i] = &mInstr->getOperand(i+1);
11661
11662  // x86 address has 4 operands: base, index, scale, and displacement
11663  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11664  int valArgIndx = lastAddrIndx + 1;
11665
11666  unsigned t1 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11667  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11668  for (int i=0; i <= lastAddrIndx; ++i)
11669    (*MIB).addOperand(*argOpers[i]);
11670
11671  // We only support register and immediate values
11672  assert((argOpers[valArgIndx]->isReg() ||
11673          argOpers[valArgIndx]->isImm()) &&
11674         "invalid operand");
11675
11676  unsigned t2 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11677  if (argOpers[valArgIndx]->isReg())
11678    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11679  else
11680    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11681  (*MIB).addOperand(*argOpers[valArgIndx]);
11682
11683  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11684  MIB.addReg(t1);
11685
11686  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11687  MIB.addReg(t1);
11688  MIB.addReg(t2);
11689
11690  // Generate movc
11691  unsigned t3 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11692  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11693  MIB.addReg(t2);
11694  MIB.addReg(t1);
11695
11696  // Cmp and exchange if none has modified the memory location
11697  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11698  for (int i=0; i <= lastAddrIndx; ++i)
11699    (*MIB).addOperand(*argOpers[i]);
11700  MIB.addReg(t3);
11701  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11702  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11703                    mInstr->memoperands_end());
11704
11705  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11706  MIB.addReg(X86::EAX);
11707
11708  // insert branch
11709  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11710
11711  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11712  return nextMBB;
11713}
11714
11715// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11716// or XMM0_V32I8 in AVX all of this code can be replaced with that
11717// in the .td file.
11718MachineBasicBlock *
11719X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11720                            unsigned numArgs, bool memArg) const {
11721  assert(Subtarget->hasSSE42() &&
11722         "Target must have SSE4.2 or AVX features enabled");
11723
11724  DebugLoc dl = MI->getDebugLoc();
11725  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11726  unsigned Opc;
11727  if (!Subtarget->hasAVX()) {
11728    if (memArg)
11729      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11730    else
11731      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11732  } else {
11733    if (memArg)
11734      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11735    else
11736      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11737  }
11738
11739  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11740  for (unsigned i = 0; i < numArgs; ++i) {
11741    MachineOperand &Op = MI->getOperand(i+1);
11742    if (!(Op.isReg() && Op.isImplicit()))
11743      MIB.addOperand(Op);
11744  }
11745  BuildMI(*BB, MI, dl,
11746    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11747             MI->getOperand(0).getReg())
11748    .addReg(X86::XMM0);
11749
11750  MI->eraseFromParent();
11751  return BB;
11752}
11753
11754MachineBasicBlock *
11755X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11756  DebugLoc dl = MI->getDebugLoc();
11757  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11758
11759  // Address into RAX/EAX, other two args into ECX, EDX.
11760  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11761  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11762  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11763  for (int i = 0; i < X86::AddrNumOperands; ++i)
11764    MIB.addOperand(MI->getOperand(i));
11765
11766  unsigned ValOps = X86::AddrNumOperands;
11767  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11768    .addReg(MI->getOperand(ValOps).getReg());
11769  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11770    .addReg(MI->getOperand(ValOps+1).getReg());
11771
11772  // The instruction doesn't actually take any operands though.
11773  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11774
11775  MI->eraseFromParent(); // The pseudo is gone now.
11776  return BB;
11777}
11778
11779MachineBasicBlock *
11780X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11781  DebugLoc dl = MI->getDebugLoc();
11782  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11783
11784  // First arg in ECX, the second in EAX.
11785  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11786    .addReg(MI->getOperand(0).getReg());
11787  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11788    .addReg(MI->getOperand(1).getReg());
11789
11790  // The instruction doesn't actually take any operands though.
11791  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11792
11793  MI->eraseFromParent(); // The pseudo is gone now.
11794  return BB;
11795}
11796
11797MachineBasicBlock *
11798X86TargetLowering::EmitVAARG64WithCustomInserter(
11799                   MachineInstr *MI,
11800                   MachineBasicBlock *MBB) const {
11801  // Emit va_arg instruction on X86-64.
11802
11803  // Operands to this pseudo-instruction:
11804  // 0  ) Output        : destination address (reg)
11805  // 1-5) Input         : va_list address (addr, i64mem)
11806  // 6  ) ArgSize       : Size (in bytes) of vararg type
11807  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11808  // 8  ) Align         : Alignment of type
11809  // 9  ) EFLAGS (implicit-def)
11810
11811  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11812  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11813
11814  unsigned DestReg = MI->getOperand(0).getReg();
11815  MachineOperand &Base = MI->getOperand(1);
11816  MachineOperand &Scale = MI->getOperand(2);
11817  MachineOperand &Index = MI->getOperand(3);
11818  MachineOperand &Disp = MI->getOperand(4);
11819  MachineOperand &Segment = MI->getOperand(5);
11820  unsigned ArgSize = MI->getOperand(6).getImm();
11821  unsigned ArgMode = MI->getOperand(7).getImm();
11822  unsigned Align = MI->getOperand(8).getImm();
11823
11824  // Memory Reference
11825  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11826  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11827  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11828
11829  // Machine Information
11830  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11831  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11832  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11833  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11834  DebugLoc DL = MI->getDebugLoc();
11835
11836  // struct va_list {
11837  //   i32   gp_offset
11838  //   i32   fp_offset
11839  //   i64   overflow_area (address)
11840  //   i64   reg_save_area (address)
11841  // }
11842  // sizeof(va_list) = 24
11843  // alignment(va_list) = 8
11844
11845  unsigned TotalNumIntRegs = 6;
11846  unsigned TotalNumXMMRegs = 8;
11847  bool UseGPOffset = (ArgMode == 1);
11848  bool UseFPOffset = (ArgMode == 2);
11849  unsigned MaxOffset = TotalNumIntRegs * 8 +
11850                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11851
11852  /* Align ArgSize to a multiple of 8 */
11853  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11854  bool NeedsAlign = (Align > 8);
11855
11856  MachineBasicBlock *thisMBB = MBB;
11857  MachineBasicBlock *overflowMBB;
11858  MachineBasicBlock *offsetMBB;
11859  MachineBasicBlock *endMBB;
11860
11861  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11862  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11863  unsigned OffsetReg = 0;
11864
11865  if (!UseGPOffset && !UseFPOffset) {
11866    // If we only pull from the overflow region, we don't create a branch.
11867    // We don't need to alter control flow.
11868    OffsetDestReg = 0; // unused
11869    OverflowDestReg = DestReg;
11870
11871    offsetMBB = NULL;
11872    overflowMBB = thisMBB;
11873    endMBB = thisMBB;
11874  } else {
11875    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11876    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11877    // If not, pull from overflow_area. (branch to overflowMBB)
11878    //
11879    //       thisMBB
11880    //         |     .
11881    //         |        .
11882    //     offsetMBB   overflowMBB
11883    //         |        .
11884    //         |     .
11885    //        endMBB
11886
11887    // Registers for the PHI in endMBB
11888    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11889    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11890
11891    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11892    MachineFunction *MF = MBB->getParent();
11893    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11894    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11895    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11896
11897    MachineFunction::iterator MBBIter = MBB;
11898    ++MBBIter;
11899
11900    // Insert the new basic blocks
11901    MF->insert(MBBIter, offsetMBB);
11902    MF->insert(MBBIter, overflowMBB);
11903    MF->insert(MBBIter, endMBB);
11904
11905    // Transfer the remainder of MBB and its successor edges to endMBB.
11906    endMBB->splice(endMBB->begin(), thisMBB,
11907                    llvm::next(MachineBasicBlock::iterator(MI)),
11908                    thisMBB->end());
11909    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11910
11911    // Make offsetMBB and overflowMBB successors of thisMBB
11912    thisMBB->addSuccessor(offsetMBB);
11913    thisMBB->addSuccessor(overflowMBB);
11914
11915    // endMBB is a successor of both offsetMBB and overflowMBB
11916    offsetMBB->addSuccessor(endMBB);
11917    overflowMBB->addSuccessor(endMBB);
11918
11919    // Load the offset value into a register
11920    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11921    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11922      .addOperand(Base)
11923      .addOperand(Scale)
11924      .addOperand(Index)
11925      .addDisp(Disp, UseFPOffset ? 4 : 0)
11926      .addOperand(Segment)
11927      .setMemRefs(MMOBegin, MMOEnd);
11928
11929    // Check if there is enough room left to pull this argument.
11930    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11931      .addReg(OffsetReg)
11932      .addImm(MaxOffset + 8 - ArgSizeA8);
11933
11934    // Branch to "overflowMBB" if offset >= max
11935    // Fall through to "offsetMBB" otherwise
11936    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11937      .addMBB(overflowMBB);
11938  }
11939
11940  // In offsetMBB, emit code to use the reg_save_area.
11941  if (offsetMBB) {
11942    assert(OffsetReg != 0);
11943
11944    // Read the reg_save_area address.
11945    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11946    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11947      .addOperand(Base)
11948      .addOperand(Scale)
11949      .addOperand(Index)
11950      .addDisp(Disp, 16)
11951      .addOperand(Segment)
11952      .setMemRefs(MMOBegin, MMOEnd);
11953
11954    // Zero-extend the offset
11955    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11956      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11957        .addImm(0)
11958        .addReg(OffsetReg)
11959        .addImm(X86::sub_32bit);
11960
11961    // Add the offset to the reg_save_area to get the final address.
11962    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11963      .addReg(OffsetReg64)
11964      .addReg(RegSaveReg);
11965
11966    // Compute the offset for the next argument
11967    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11968    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11969      .addReg(OffsetReg)
11970      .addImm(UseFPOffset ? 16 : 8);
11971
11972    // Store it back into the va_list.
11973    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11974      .addOperand(Base)
11975      .addOperand(Scale)
11976      .addOperand(Index)
11977      .addDisp(Disp, UseFPOffset ? 4 : 0)
11978      .addOperand(Segment)
11979      .addReg(NextOffsetReg)
11980      .setMemRefs(MMOBegin, MMOEnd);
11981
11982    // Jump to endMBB
11983    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11984      .addMBB(endMBB);
11985  }
11986
11987  //
11988  // Emit code to use overflow area
11989  //
11990
11991  // Load the overflow_area address into a register.
11992  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11993  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11994    .addOperand(Base)
11995    .addOperand(Scale)
11996    .addOperand(Index)
11997    .addDisp(Disp, 8)
11998    .addOperand(Segment)
11999    .setMemRefs(MMOBegin, MMOEnd);
12000
12001  // If we need to align it, do so. Otherwise, just copy the address
12002  // to OverflowDestReg.
12003  if (NeedsAlign) {
12004    // Align the overflow address
12005    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12006    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12007
12008    // aligned_addr = (addr + (align-1)) & ~(align-1)
12009    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12010      .addReg(OverflowAddrReg)
12011      .addImm(Align-1);
12012
12013    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12014      .addReg(TmpReg)
12015      .addImm(~(uint64_t)(Align-1));
12016  } else {
12017    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12018      .addReg(OverflowAddrReg);
12019  }
12020
12021  // Compute the next overflow address after this argument.
12022  // (the overflow address should be kept 8-byte aligned)
12023  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12024  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12025    .addReg(OverflowDestReg)
12026    .addImm(ArgSizeA8);
12027
12028  // Store the new overflow address.
12029  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12030    .addOperand(Base)
12031    .addOperand(Scale)
12032    .addOperand(Index)
12033    .addDisp(Disp, 8)
12034    .addOperand(Segment)
12035    .addReg(NextAddrReg)
12036    .setMemRefs(MMOBegin, MMOEnd);
12037
12038  // If we branched, emit the PHI to the front of endMBB.
12039  if (offsetMBB) {
12040    BuildMI(*endMBB, endMBB->begin(), DL,
12041            TII->get(X86::PHI), DestReg)
12042      .addReg(OffsetDestReg).addMBB(offsetMBB)
12043      .addReg(OverflowDestReg).addMBB(overflowMBB);
12044  }
12045
12046  // Erase the pseudo instruction
12047  MI->eraseFromParent();
12048
12049  return endMBB;
12050}
12051
12052MachineBasicBlock *
12053X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12054                                                 MachineInstr *MI,
12055                                                 MachineBasicBlock *MBB) const {
12056  // Emit code to save XMM registers to the stack. The ABI says that the
12057  // number of registers to save is given in %al, so it's theoretically
12058  // possible to do an indirect jump trick to avoid saving all of them,
12059  // however this code takes a simpler approach and just executes all
12060  // of the stores if %al is non-zero. It's less code, and it's probably
12061  // easier on the hardware branch predictor, and stores aren't all that
12062  // expensive anyway.
12063
12064  // Create the new basic blocks. One block contains all the XMM stores,
12065  // and one block is the final destination regardless of whether any
12066  // stores were performed.
12067  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12068  MachineFunction *F = MBB->getParent();
12069  MachineFunction::iterator MBBIter = MBB;
12070  ++MBBIter;
12071  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12072  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12073  F->insert(MBBIter, XMMSaveMBB);
12074  F->insert(MBBIter, EndMBB);
12075
12076  // Transfer the remainder of MBB and its successor edges to EndMBB.
12077  EndMBB->splice(EndMBB->begin(), MBB,
12078                 llvm::next(MachineBasicBlock::iterator(MI)),
12079                 MBB->end());
12080  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12081
12082  // The original block will now fall through to the XMM save block.
12083  MBB->addSuccessor(XMMSaveMBB);
12084  // The XMMSaveMBB will fall through to the end block.
12085  XMMSaveMBB->addSuccessor(EndMBB);
12086
12087  // Now add the instructions.
12088  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12089  DebugLoc DL = MI->getDebugLoc();
12090
12091  unsigned CountReg = MI->getOperand(0).getReg();
12092  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12093  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12094
12095  if (!Subtarget->isTargetWin64()) {
12096    // If %al is 0, branch around the XMM save block.
12097    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12098    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12099    MBB->addSuccessor(EndMBB);
12100  }
12101
12102  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12103  // In the XMM save block, save all the XMM argument registers.
12104  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12105    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12106    MachineMemOperand *MMO =
12107      F->getMachineMemOperand(
12108          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12109        MachineMemOperand::MOStore,
12110        /*Size=*/16, /*Align=*/16);
12111    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12112      .addFrameIndex(RegSaveFrameIndex)
12113      .addImm(/*Scale=*/1)
12114      .addReg(/*IndexReg=*/0)
12115      .addImm(/*Disp=*/Offset)
12116      .addReg(/*Segment=*/0)
12117      .addReg(MI->getOperand(i).getReg())
12118      .addMemOperand(MMO);
12119  }
12120
12121  MI->eraseFromParent();   // The pseudo instruction is gone now.
12122
12123  return EndMBB;
12124}
12125
12126// The EFLAGS operand of SelectItr might be missing a kill marker
12127// because there were multiple uses of EFLAGS, and ISel didn't know
12128// which to mark. Figure out whether SelectItr should have had a
12129// kill marker, and set it if it should. Returns the correct kill
12130// marker value.
12131static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12132                                     MachineBasicBlock* BB,
12133                                     const TargetRegisterInfo* TRI) {
12134  // Scan forward through BB for a use/def of EFLAGS.
12135  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12136  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12137    const MachineInstr& mi = *miI;
12138    if (mi.readsRegister(X86::EFLAGS))
12139      return false;
12140    if (mi.definesRegister(X86::EFLAGS))
12141      break; // Should have kill-flag - update below.
12142  }
12143
12144  // If we hit the end of the block, check whether EFLAGS is live into a
12145  // successor.
12146  if (miI == BB->end()) {
12147    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12148                                          sEnd = BB->succ_end();
12149         sItr != sEnd; ++sItr) {
12150      MachineBasicBlock* succ = *sItr;
12151      if (succ->isLiveIn(X86::EFLAGS))
12152        return false;
12153    }
12154  }
12155
12156  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12157  // out. SelectMI should have a kill flag on EFLAGS.
12158  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12159  return true;
12160}
12161
12162MachineBasicBlock *
12163X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12164                                     MachineBasicBlock *BB) const {
12165  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12166  DebugLoc DL = MI->getDebugLoc();
12167
12168  // To "insert" a SELECT_CC instruction, we actually have to insert the
12169  // diamond control-flow pattern.  The incoming instruction knows the
12170  // destination vreg to set, the condition code register to branch on, the
12171  // true/false values to select between, and a branch opcode to use.
12172  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12173  MachineFunction::iterator It = BB;
12174  ++It;
12175
12176  //  thisMBB:
12177  //  ...
12178  //   TrueVal = ...
12179  //   cmpTY ccX, r1, r2
12180  //   bCC copy1MBB
12181  //   fallthrough --> copy0MBB
12182  MachineBasicBlock *thisMBB = BB;
12183  MachineFunction *F = BB->getParent();
12184  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12185  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12186  F->insert(It, copy0MBB);
12187  F->insert(It, sinkMBB);
12188
12189  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12190  // live into the sink and copy blocks.
12191  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12192  if (!MI->killsRegister(X86::EFLAGS) &&
12193      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12194    copy0MBB->addLiveIn(X86::EFLAGS);
12195    sinkMBB->addLiveIn(X86::EFLAGS);
12196  }
12197
12198  // Transfer the remainder of BB and its successor edges to sinkMBB.
12199  sinkMBB->splice(sinkMBB->begin(), BB,
12200                  llvm::next(MachineBasicBlock::iterator(MI)),
12201                  BB->end());
12202  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12203
12204  // Add the true and fallthrough blocks as its successors.
12205  BB->addSuccessor(copy0MBB);
12206  BB->addSuccessor(sinkMBB);
12207
12208  // Create the conditional branch instruction.
12209  unsigned Opc =
12210    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12211  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12212
12213  //  copy0MBB:
12214  //   %FalseValue = ...
12215  //   # fallthrough to sinkMBB
12216  copy0MBB->addSuccessor(sinkMBB);
12217
12218  //  sinkMBB:
12219  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12220  //  ...
12221  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12222          TII->get(X86::PHI), MI->getOperand(0).getReg())
12223    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12224    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12225
12226  MI->eraseFromParent();   // The pseudo instruction is gone now.
12227  return sinkMBB;
12228}
12229
12230MachineBasicBlock *
12231X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12232                                        bool Is64Bit) const {
12233  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12234  DebugLoc DL = MI->getDebugLoc();
12235  MachineFunction *MF = BB->getParent();
12236  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12237
12238  assert(getTargetMachine().Options.EnableSegmentedStacks);
12239
12240  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12241  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12242
12243  // BB:
12244  //  ... [Till the alloca]
12245  // If stacklet is not large enough, jump to mallocMBB
12246  //
12247  // bumpMBB:
12248  //  Allocate by subtracting from RSP
12249  //  Jump to continueMBB
12250  //
12251  // mallocMBB:
12252  //  Allocate by call to runtime
12253  //
12254  // continueMBB:
12255  //  ...
12256  //  [rest of original BB]
12257  //
12258
12259  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12260  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12261  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12262
12263  MachineRegisterInfo &MRI = MF->getRegInfo();
12264  const TargetRegisterClass *AddrRegClass =
12265    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12266
12267  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12268    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12269    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12270    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12271    sizeVReg = MI->getOperand(1).getReg(),
12272    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12273
12274  MachineFunction::iterator MBBIter = BB;
12275  ++MBBIter;
12276
12277  MF->insert(MBBIter, bumpMBB);
12278  MF->insert(MBBIter, mallocMBB);
12279  MF->insert(MBBIter, continueMBB);
12280
12281  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12282                      (MachineBasicBlock::iterator(MI)), BB->end());
12283  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12284
12285  // Add code to the main basic block to check if the stack limit has been hit,
12286  // and if so, jump to mallocMBB otherwise to bumpMBB.
12287  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12288  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12289    .addReg(tmpSPVReg).addReg(sizeVReg);
12290  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12291    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12292    .addReg(SPLimitVReg);
12293  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12294
12295  // bumpMBB simply decreases the stack pointer, since we know the current
12296  // stacklet has enough space.
12297  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12298    .addReg(SPLimitVReg);
12299  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12300    .addReg(SPLimitVReg);
12301  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12302
12303  // Calls into a routine in libgcc to allocate more space from the heap.
12304  const uint32_t *RegMask =
12305    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12306  if (Is64Bit) {
12307    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12308      .addReg(sizeVReg);
12309    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12310      .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12311      .addRegMask(RegMask)
12312      .addReg(X86::RAX, RegState::ImplicitDefine);
12313  } else {
12314    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12315      .addImm(12);
12316    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12317    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12318      .addExternalSymbol("__morestack_allocate_stack_space")
12319      .addRegMask(RegMask)
12320      .addReg(X86::EAX, RegState::ImplicitDefine);
12321  }
12322
12323  if (!Is64Bit)
12324    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12325      .addImm(16);
12326
12327  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12328    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12329  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12330
12331  // Set up the CFG correctly.
12332  BB->addSuccessor(bumpMBB);
12333  BB->addSuccessor(mallocMBB);
12334  mallocMBB->addSuccessor(continueMBB);
12335  bumpMBB->addSuccessor(continueMBB);
12336
12337  // Take care of the PHI nodes.
12338  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12339          MI->getOperand(0).getReg())
12340    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12341    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12342
12343  // Delete the original pseudo instruction.
12344  MI->eraseFromParent();
12345
12346  // And we're done.
12347  return continueMBB;
12348}
12349
12350MachineBasicBlock *
12351X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12352                                          MachineBasicBlock *BB) const {
12353  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12354  DebugLoc DL = MI->getDebugLoc();
12355
12356  assert(!Subtarget->isTargetEnvMacho());
12357
12358  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12359  // non-trivial part is impdef of ESP.
12360
12361  if (Subtarget->isTargetWin64()) {
12362    if (Subtarget->isTargetCygMing()) {
12363      // ___chkstk(Mingw64):
12364      // Clobbers R10, R11, RAX and EFLAGS.
12365      // Updates RSP.
12366      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12367        .addExternalSymbol("___chkstk")
12368        .addReg(X86::RAX, RegState::Implicit)
12369        .addReg(X86::RSP, RegState::Implicit)
12370        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12371        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12372        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12373    } else {
12374      // __chkstk(MSVCRT): does not update stack pointer.
12375      // Clobbers R10, R11 and EFLAGS.
12376      // FIXME: RAX(allocated size) might be reused and not killed.
12377      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12378        .addExternalSymbol("__chkstk")
12379        .addReg(X86::RAX, RegState::Implicit)
12380        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12381      // RAX has the offset to subtracted from RSP.
12382      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12383        .addReg(X86::RSP)
12384        .addReg(X86::RAX);
12385    }
12386  } else {
12387    const char *StackProbeSymbol =
12388      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12389
12390    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12391      .addExternalSymbol(StackProbeSymbol)
12392      .addReg(X86::EAX, RegState::Implicit)
12393      .addReg(X86::ESP, RegState::Implicit)
12394      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12395      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12396      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12397  }
12398
12399  MI->eraseFromParent();   // The pseudo instruction is gone now.
12400  return BB;
12401}
12402
12403MachineBasicBlock *
12404X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12405                                      MachineBasicBlock *BB) const {
12406  // This is pretty easy.  We're taking the value that we received from
12407  // our load from the relocation, sticking it in either RDI (x86-64)
12408  // or EAX and doing an indirect call.  The return value will then
12409  // be in the normal return register.
12410  const X86InstrInfo *TII
12411    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12412  DebugLoc DL = MI->getDebugLoc();
12413  MachineFunction *F = BB->getParent();
12414
12415  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12416  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12417
12418  // Get a register mask for the lowered call.
12419  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12420  // proper register mask.
12421  const uint32_t *RegMask =
12422    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12423  if (Subtarget->is64Bit()) {
12424    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12425                                      TII->get(X86::MOV64rm), X86::RDI)
12426    .addReg(X86::RIP)
12427    .addImm(0).addReg(0)
12428    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12429                      MI->getOperand(3).getTargetFlags())
12430    .addReg(0);
12431    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12432    addDirectMem(MIB, X86::RDI);
12433    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12434  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12435    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12436                                      TII->get(X86::MOV32rm), X86::EAX)
12437    .addReg(0)
12438    .addImm(0).addReg(0)
12439    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12440                      MI->getOperand(3).getTargetFlags())
12441    .addReg(0);
12442    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12443    addDirectMem(MIB, X86::EAX);
12444    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12445  } else {
12446    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12447                                      TII->get(X86::MOV32rm), X86::EAX)
12448    .addReg(TII->getGlobalBaseReg(F))
12449    .addImm(0).addReg(0)
12450    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12451                      MI->getOperand(3).getTargetFlags())
12452    .addReg(0);
12453    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12454    addDirectMem(MIB, X86::EAX);
12455    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12456  }
12457
12458  MI->eraseFromParent(); // The pseudo instruction is gone now.
12459  return BB;
12460}
12461
12462MachineBasicBlock *
12463X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12464                                               MachineBasicBlock *BB) const {
12465  switch (MI->getOpcode()) {
12466  default: llvm_unreachable("Unexpected instr type to insert");
12467  case X86::TAILJMPd64:
12468  case X86::TAILJMPr64:
12469  case X86::TAILJMPm64:
12470    llvm_unreachable("TAILJMP64 would not be touched here.");
12471  case X86::TCRETURNdi64:
12472  case X86::TCRETURNri64:
12473  case X86::TCRETURNmi64:
12474    return BB;
12475  case X86::WIN_ALLOCA:
12476    return EmitLoweredWinAlloca(MI, BB);
12477  case X86::SEG_ALLOCA_32:
12478    return EmitLoweredSegAlloca(MI, BB, false);
12479  case X86::SEG_ALLOCA_64:
12480    return EmitLoweredSegAlloca(MI, BB, true);
12481  case X86::TLSCall_32:
12482  case X86::TLSCall_64:
12483    return EmitLoweredTLSCall(MI, BB);
12484  case X86::CMOV_GR8:
12485  case X86::CMOV_FR32:
12486  case X86::CMOV_FR64:
12487  case X86::CMOV_V4F32:
12488  case X86::CMOV_V2F64:
12489  case X86::CMOV_V2I64:
12490  case X86::CMOV_V8F32:
12491  case X86::CMOV_V4F64:
12492  case X86::CMOV_V4I64:
12493  case X86::CMOV_GR16:
12494  case X86::CMOV_GR32:
12495  case X86::CMOV_RFP32:
12496  case X86::CMOV_RFP64:
12497  case X86::CMOV_RFP80:
12498    return EmitLoweredSelect(MI, BB);
12499
12500  case X86::FP32_TO_INT16_IN_MEM:
12501  case X86::FP32_TO_INT32_IN_MEM:
12502  case X86::FP32_TO_INT64_IN_MEM:
12503  case X86::FP64_TO_INT16_IN_MEM:
12504  case X86::FP64_TO_INT32_IN_MEM:
12505  case X86::FP64_TO_INT64_IN_MEM:
12506  case X86::FP80_TO_INT16_IN_MEM:
12507  case X86::FP80_TO_INT32_IN_MEM:
12508  case X86::FP80_TO_INT64_IN_MEM: {
12509    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12510    DebugLoc DL = MI->getDebugLoc();
12511
12512    // Change the floating point control register to use "round towards zero"
12513    // mode when truncating to an integer value.
12514    MachineFunction *F = BB->getParent();
12515    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12516    addFrameReference(BuildMI(*BB, MI, DL,
12517                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12518
12519    // Load the old value of the high byte of the control word...
12520    unsigned OldCW =
12521      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
12522    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12523                      CWFrameIdx);
12524
12525    // Set the high part to be round to zero...
12526    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12527      .addImm(0xC7F);
12528
12529    // Reload the modified control word now...
12530    addFrameReference(BuildMI(*BB, MI, DL,
12531                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12532
12533    // Restore the memory image of control word to original value
12534    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12535      .addReg(OldCW);
12536
12537    // Get the X86 opcode to use.
12538    unsigned Opc;
12539    switch (MI->getOpcode()) {
12540    default: llvm_unreachable("illegal opcode!");
12541    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12542    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12543    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12544    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12545    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12546    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12547    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12548    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12549    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12550    }
12551
12552    X86AddressMode AM;
12553    MachineOperand &Op = MI->getOperand(0);
12554    if (Op.isReg()) {
12555      AM.BaseType = X86AddressMode::RegBase;
12556      AM.Base.Reg = Op.getReg();
12557    } else {
12558      AM.BaseType = X86AddressMode::FrameIndexBase;
12559      AM.Base.FrameIndex = Op.getIndex();
12560    }
12561    Op = MI->getOperand(1);
12562    if (Op.isImm())
12563      AM.Scale = Op.getImm();
12564    Op = MI->getOperand(2);
12565    if (Op.isImm())
12566      AM.IndexReg = Op.getImm();
12567    Op = MI->getOperand(3);
12568    if (Op.isGlobal()) {
12569      AM.GV = Op.getGlobal();
12570    } else {
12571      AM.Disp = Op.getImm();
12572    }
12573    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12574                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12575
12576    // Reload the original control word now.
12577    addFrameReference(BuildMI(*BB, MI, DL,
12578                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12579
12580    MI->eraseFromParent();   // The pseudo instruction is gone now.
12581    return BB;
12582  }
12583    // String/text processing lowering.
12584  case X86::PCMPISTRM128REG:
12585  case X86::VPCMPISTRM128REG:
12586    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12587  case X86::PCMPISTRM128MEM:
12588  case X86::VPCMPISTRM128MEM:
12589    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12590  case X86::PCMPESTRM128REG:
12591  case X86::VPCMPESTRM128REG:
12592    return EmitPCMP(MI, BB, 5, false /* in mem */);
12593  case X86::PCMPESTRM128MEM:
12594  case X86::VPCMPESTRM128MEM:
12595    return EmitPCMP(MI, BB, 5, true /* in mem */);
12596
12597    // Thread synchronization.
12598  case X86::MONITOR:
12599    return EmitMonitor(MI, BB);
12600  case X86::MWAIT:
12601    return EmitMwait(MI, BB);
12602
12603    // Atomic Lowering.
12604  case X86::ATOMAND32:
12605    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12606                                               X86::AND32ri, X86::MOV32rm,
12607                                               X86::LCMPXCHG32,
12608                                               X86::NOT32r, X86::EAX,
12609                                               &X86::GR32RegClass);
12610  case X86::ATOMOR32:
12611    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12612                                               X86::OR32ri, X86::MOV32rm,
12613                                               X86::LCMPXCHG32,
12614                                               X86::NOT32r, X86::EAX,
12615                                               &X86::GR32RegClass);
12616  case X86::ATOMXOR32:
12617    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12618                                               X86::XOR32ri, X86::MOV32rm,
12619                                               X86::LCMPXCHG32,
12620                                               X86::NOT32r, X86::EAX,
12621                                               &X86::GR32RegClass);
12622  case X86::ATOMNAND32:
12623    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12624                                               X86::AND32ri, X86::MOV32rm,
12625                                               X86::LCMPXCHG32,
12626                                               X86::NOT32r, X86::EAX,
12627                                               &X86::GR32RegClass, true);
12628  case X86::ATOMMIN32:
12629    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12630  case X86::ATOMMAX32:
12631    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12632  case X86::ATOMUMIN32:
12633    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12634  case X86::ATOMUMAX32:
12635    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12636
12637  case X86::ATOMAND16:
12638    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12639                                               X86::AND16ri, X86::MOV16rm,
12640                                               X86::LCMPXCHG16,
12641                                               X86::NOT16r, X86::AX,
12642                                               &X86::GR16RegClass);
12643  case X86::ATOMOR16:
12644    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12645                                               X86::OR16ri, X86::MOV16rm,
12646                                               X86::LCMPXCHG16,
12647                                               X86::NOT16r, X86::AX,
12648                                               &X86::GR16RegClass);
12649  case X86::ATOMXOR16:
12650    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12651                                               X86::XOR16ri, X86::MOV16rm,
12652                                               X86::LCMPXCHG16,
12653                                               X86::NOT16r, X86::AX,
12654                                               &X86::GR16RegClass);
12655  case X86::ATOMNAND16:
12656    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12657                                               X86::AND16ri, X86::MOV16rm,
12658                                               X86::LCMPXCHG16,
12659                                               X86::NOT16r, X86::AX,
12660                                               &X86::GR16RegClass, true);
12661  case X86::ATOMMIN16:
12662    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12663  case X86::ATOMMAX16:
12664    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12665  case X86::ATOMUMIN16:
12666    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12667  case X86::ATOMUMAX16:
12668    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12669
12670  case X86::ATOMAND8:
12671    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12672                                               X86::AND8ri, X86::MOV8rm,
12673                                               X86::LCMPXCHG8,
12674                                               X86::NOT8r, X86::AL,
12675                                               &X86::GR8RegClass);
12676  case X86::ATOMOR8:
12677    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12678                                               X86::OR8ri, X86::MOV8rm,
12679                                               X86::LCMPXCHG8,
12680                                               X86::NOT8r, X86::AL,
12681                                               &X86::GR8RegClass);
12682  case X86::ATOMXOR8:
12683    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12684                                               X86::XOR8ri, X86::MOV8rm,
12685                                               X86::LCMPXCHG8,
12686                                               X86::NOT8r, X86::AL,
12687                                               &X86::GR8RegClass);
12688  case X86::ATOMNAND8:
12689    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12690                                               X86::AND8ri, X86::MOV8rm,
12691                                               X86::LCMPXCHG8,
12692                                               X86::NOT8r, X86::AL,
12693                                               &X86::GR8RegClass, true);
12694  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12695  // This group is for 64-bit host.
12696  case X86::ATOMAND64:
12697    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12698                                               X86::AND64ri32, X86::MOV64rm,
12699                                               X86::LCMPXCHG64,
12700                                               X86::NOT64r, X86::RAX,
12701                                               &X86::GR64RegClass);
12702  case X86::ATOMOR64:
12703    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12704                                               X86::OR64ri32, X86::MOV64rm,
12705                                               X86::LCMPXCHG64,
12706                                               X86::NOT64r, X86::RAX,
12707                                               &X86::GR64RegClass);
12708  case X86::ATOMXOR64:
12709    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12710                                               X86::XOR64ri32, X86::MOV64rm,
12711                                               X86::LCMPXCHG64,
12712                                               X86::NOT64r, X86::RAX,
12713                                               &X86::GR64RegClass);
12714  case X86::ATOMNAND64:
12715    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12716                                               X86::AND64ri32, X86::MOV64rm,
12717                                               X86::LCMPXCHG64,
12718                                               X86::NOT64r, X86::RAX,
12719                                               &X86::GR64RegClass, true);
12720  case X86::ATOMMIN64:
12721    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12722  case X86::ATOMMAX64:
12723    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12724  case X86::ATOMUMIN64:
12725    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12726  case X86::ATOMUMAX64:
12727    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12728
12729  // This group does 64-bit operations on a 32-bit host.
12730  case X86::ATOMAND6432:
12731    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12732                                               X86::AND32rr, X86::AND32rr,
12733                                               X86::AND32ri, X86::AND32ri,
12734                                               false);
12735  case X86::ATOMOR6432:
12736    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12737                                               X86::OR32rr, X86::OR32rr,
12738                                               X86::OR32ri, X86::OR32ri,
12739                                               false);
12740  case X86::ATOMXOR6432:
12741    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12742                                               X86::XOR32rr, X86::XOR32rr,
12743                                               X86::XOR32ri, X86::XOR32ri,
12744                                               false);
12745  case X86::ATOMNAND6432:
12746    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12747                                               X86::AND32rr, X86::AND32rr,
12748                                               X86::AND32ri, X86::AND32ri,
12749                                               true);
12750  case X86::ATOMADD6432:
12751    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12752                                               X86::ADD32rr, X86::ADC32rr,
12753                                               X86::ADD32ri, X86::ADC32ri,
12754                                               false);
12755  case X86::ATOMSUB6432:
12756    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12757                                               X86::SUB32rr, X86::SBB32rr,
12758                                               X86::SUB32ri, X86::SBB32ri,
12759                                               false);
12760  case X86::ATOMSWAP6432:
12761    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12762                                               X86::MOV32rr, X86::MOV32rr,
12763                                               X86::MOV32ri, X86::MOV32ri,
12764                                               false);
12765  case X86::VASTART_SAVE_XMM_REGS:
12766    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12767
12768  case X86::VAARG_64:
12769    return EmitVAARG64WithCustomInserter(MI, BB);
12770  }
12771}
12772
12773//===----------------------------------------------------------------------===//
12774//                           X86 Optimization Hooks
12775//===----------------------------------------------------------------------===//
12776
12777void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12778                                                       APInt &KnownZero,
12779                                                       APInt &KnownOne,
12780                                                       const SelectionDAG &DAG,
12781                                                       unsigned Depth) const {
12782  unsigned BitWidth = KnownZero.getBitWidth();
12783  unsigned Opc = Op.getOpcode();
12784  assert((Opc >= ISD::BUILTIN_OP_END ||
12785          Opc == ISD::INTRINSIC_WO_CHAIN ||
12786          Opc == ISD::INTRINSIC_W_CHAIN ||
12787          Opc == ISD::INTRINSIC_VOID) &&
12788         "Should use MaskedValueIsZero if you don't know whether Op"
12789         " is a target node!");
12790
12791  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
12792  switch (Opc) {
12793  default: break;
12794  case X86ISD::ADD:
12795  case X86ISD::SUB:
12796  case X86ISD::ADC:
12797  case X86ISD::SBB:
12798  case X86ISD::SMUL:
12799  case X86ISD::UMUL:
12800  case X86ISD::INC:
12801  case X86ISD::DEC:
12802  case X86ISD::OR:
12803  case X86ISD::XOR:
12804  case X86ISD::AND:
12805    // These nodes' second result is a boolean.
12806    if (Op.getResNo() == 0)
12807      break;
12808    // Fallthrough
12809  case X86ISD::SETCC:
12810    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12811    break;
12812  case ISD::INTRINSIC_WO_CHAIN: {
12813    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12814    unsigned NumLoBits = 0;
12815    switch (IntId) {
12816    default: break;
12817    case Intrinsic::x86_sse_movmsk_ps:
12818    case Intrinsic::x86_avx_movmsk_ps_256:
12819    case Intrinsic::x86_sse2_movmsk_pd:
12820    case Intrinsic::x86_avx_movmsk_pd_256:
12821    case Intrinsic::x86_mmx_pmovmskb:
12822    case Intrinsic::x86_sse2_pmovmskb_128:
12823    case Intrinsic::x86_avx2_pmovmskb: {
12824      // High bits of movmskp{s|d}, pmovmskb are known zero.
12825      switch (IntId) {
12826        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12827        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12828        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12829        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12830        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12831        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12832        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12833        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12834      }
12835      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12836      break;
12837    }
12838    }
12839    break;
12840  }
12841  }
12842}
12843
12844unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12845                                                         unsigned Depth) const {
12846  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12847  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12848    return Op.getValueType().getScalarType().getSizeInBits();
12849
12850  // Fallback case.
12851  return 1;
12852}
12853
12854/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12855/// node is a GlobalAddress + offset.
12856bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12857                                       const GlobalValue* &GA,
12858                                       int64_t &Offset) const {
12859  if (N->getOpcode() == X86ISD::Wrapper) {
12860    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12861      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12862      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12863      return true;
12864    }
12865  }
12866  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12867}
12868
12869/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12870/// same as extracting the high 128-bit part of 256-bit vector and then
12871/// inserting the result into the low part of a new 256-bit vector
12872static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12873  EVT VT = SVOp->getValueType(0);
12874  int NumElems = VT.getVectorNumElements();
12875
12876  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12877  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12878    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12879        SVOp->getMaskElt(j) >= 0)
12880      return false;
12881
12882  return true;
12883}
12884
12885/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12886/// same as extracting the low 128-bit part of 256-bit vector and then
12887/// inserting the result into the high part of a new 256-bit vector
12888static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12889  EVT VT = SVOp->getValueType(0);
12890  int NumElems = VT.getVectorNumElements();
12891
12892  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12893  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12894    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12895        SVOp->getMaskElt(j) >= 0)
12896      return false;
12897
12898  return true;
12899}
12900
12901/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12902static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12903                                        TargetLowering::DAGCombinerInfo &DCI,
12904                                        const X86Subtarget* Subtarget) {
12905  DebugLoc dl = N->getDebugLoc();
12906  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12907  SDValue V1 = SVOp->getOperand(0);
12908  SDValue V2 = SVOp->getOperand(1);
12909  EVT VT = SVOp->getValueType(0);
12910  int NumElems = VT.getVectorNumElements();
12911
12912  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12913      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12914    //
12915    //                   0,0,0,...
12916    //                      |
12917    //    V      UNDEF    BUILD_VECTOR    UNDEF
12918    //     \      /           \           /
12919    //  CONCAT_VECTOR         CONCAT_VECTOR
12920    //         \                  /
12921    //          \                /
12922    //          RESULT: V + zero extended
12923    //
12924    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12925        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12926        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12927      return SDValue();
12928
12929    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12930      return SDValue();
12931
12932    // To match the shuffle mask, the first half of the mask should
12933    // be exactly the first vector, and all the rest a splat with the
12934    // first element of the second one.
12935    for (int i = 0; i < NumElems/2; ++i)
12936      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12937          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12938        return SDValue();
12939
12940    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12941    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12942      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12943      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12944      SDValue ResNode =
12945        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12946                                Ld->getMemoryVT(),
12947                                Ld->getPointerInfo(),
12948                                Ld->getAlignment(),
12949                                false/*isVolatile*/, true/*ReadMem*/,
12950                                false/*WriteMem*/);
12951      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12952    }
12953
12954    // Emit a zeroed vector and insert the desired subvector on its
12955    // first half.
12956    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12957    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12958                         DAG.getConstant(0, MVT::i32), DAG, dl);
12959    return DCI.CombineTo(N, InsV);
12960  }
12961
12962  //===--------------------------------------------------------------------===//
12963  // Combine some shuffles into subvector extracts and inserts:
12964  //
12965
12966  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12967  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12968    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12969                                    DAG, dl);
12970    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12971                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12972    return DCI.CombineTo(N, InsV);
12973  }
12974
12975  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12976  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12977    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12978    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12979                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12980    return DCI.CombineTo(N, InsV);
12981  }
12982
12983  return SDValue();
12984}
12985
12986/// PerformShuffleCombine - Performs several different shuffle combines.
12987static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12988                                     TargetLowering::DAGCombinerInfo &DCI,
12989                                     const X86Subtarget *Subtarget) {
12990  DebugLoc dl = N->getDebugLoc();
12991  EVT VT = N->getValueType(0);
12992
12993  // Don't create instructions with illegal types after legalize types has run.
12994  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12995  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12996    return SDValue();
12997
12998  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12999  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
13000      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13001    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13002
13003  // Only handle 128 wide vector from here on.
13004  if (VT.getSizeInBits() != 128)
13005    return SDValue();
13006
13007  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13008  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13009  // consecutive, non-overlapping, and in the right order.
13010  SmallVector<SDValue, 16> Elts;
13011  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13012    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13013
13014  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13015}
13016
13017
13018/// PerformTruncateCombine - Converts truncate operation to
13019/// a sequence of vector shuffle operations.
13020/// It is possible when we truncate 256-bit vector to 128-bit vector
13021
13022SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13023                                                  DAGCombinerInfo &DCI) const {
13024  if (!DCI.isBeforeLegalizeOps())
13025    return SDValue();
13026
13027  if (!Subtarget->hasAVX()) return SDValue();
13028
13029  EVT VT = N->getValueType(0);
13030  SDValue Op = N->getOperand(0);
13031  EVT OpVT = Op.getValueType();
13032  DebugLoc dl = N->getDebugLoc();
13033
13034  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13035
13036    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13037                          DAG.getIntPtrConstant(0));
13038
13039    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13040                          DAG.getIntPtrConstant(2));
13041
13042    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13043    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13044
13045    // PSHUFD
13046    int ShufMask1[] = {0, 2, 0, 0};
13047
13048    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT),
13049                                ShufMask1);
13050    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT),
13051                                ShufMask1);
13052
13053    // MOVLHPS
13054    int ShufMask2[] = {0, 1, 4, 5};
13055
13056    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13057  }
13058  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13059
13060    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13061                          DAG.getIntPtrConstant(0));
13062
13063    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13064                          DAG.getIntPtrConstant(4));
13065
13066    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13067    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13068
13069    // PSHUFB
13070    int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13071                      -1, -1, -1, -1, -1, -1, -1, -1};
13072
13073    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo,
13074                                DAG.getUNDEF(MVT::v16i8),
13075                                ShufMask1);
13076    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi,
13077                                DAG.getUNDEF(MVT::v16i8),
13078                                ShufMask1);
13079
13080    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13081    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13082
13083    // MOVLHPS
13084    int ShufMask2[] = {0, 1, 4, 5};
13085
13086    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13087    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13088  }
13089
13090  return SDValue();
13091}
13092
13093/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13094/// specific shuffle of a load can be folded into a single element load.
13095/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13096/// shuffles have been customed lowered so we need to handle those here.
13097static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13098                                         TargetLowering::DAGCombinerInfo &DCI) {
13099  if (DCI.isBeforeLegalizeOps())
13100    return SDValue();
13101
13102  SDValue InVec = N->getOperand(0);
13103  SDValue EltNo = N->getOperand(1);
13104
13105  if (!isa<ConstantSDNode>(EltNo))
13106    return SDValue();
13107
13108  EVT VT = InVec.getValueType();
13109
13110  bool HasShuffleIntoBitcast = false;
13111  if (InVec.getOpcode() == ISD::BITCAST) {
13112    // Don't duplicate a load with other uses.
13113    if (!InVec.hasOneUse())
13114      return SDValue();
13115    EVT BCVT = InVec.getOperand(0).getValueType();
13116    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13117      return SDValue();
13118    InVec = InVec.getOperand(0);
13119    HasShuffleIntoBitcast = true;
13120  }
13121
13122  if (!isTargetShuffle(InVec.getOpcode()))
13123    return SDValue();
13124
13125  // Don't duplicate a load with other uses.
13126  if (!InVec.hasOneUse())
13127    return SDValue();
13128
13129  SmallVector<int, 16> ShuffleMask;
13130  bool UnaryShuffle;
13131  if (!getTargetShuffleMask(InVec.getNode(), VT, ShuffleMask, UnaryShuffle))
13132    return SDValue();
13133
13134  // Select the input vector, guarding against out of range extract vector.
13135  unsigned NumElems = VT.getVectorNumElements();
13136  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13137  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13138  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13139                                         : InVec.getOperand(1);
13140
13141  // If inputs to shuffle are the same for both ops, then allow 2 uses
13142  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13143
13144  if (LdNode.getOpcode() == ISD::BITCAST) {
13145    // Don't duplicate a load with other uses.
13146    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13147      return SDValue();
13148
13149    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13150    LdNode = LdNode.getOperand(0);
13151  }
13152
13153  if (!ISD::isNormalLoad(LdNode.getNode()))
13154    return SDValue();
13155
13156  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13157
13158  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13159    return SDValue();
13160
13161  if (HasShuffleIntoBitcast) {
13162    // If there's a bitcast before the shuffle, check if the load type and
13163    // alignment is valid.
13164    unsigned Align = LN0->getAlignment();
13165    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13166    unsigned NewAlign = TLI.getTargetData()->
13167      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13168
13169    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13170      return SDValue();
13171  }
13172
13173  // All checks match so transform back to vector_shuffle so that DAG combiner
13174  // can finish the job
13175  DebugLoc dl = N->getDebugLoc();
13176
13177  // Create shuffle node taking into account the case that its a unary shuffle
13178  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13179  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13180                                 InVec.getOperand(0), Shuffle,
13181                                 &ShuffleMask[0]);
13182  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13183  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13184                     EltNo);
13185}
13186
13187/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13188/// generation and convert it from being a bunch of shuffles and extracts
13189/// to a simple store and scalar loads to extract the elements.
13190static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13191                                         TargetLowering::DAGCombinerInfo &DCI) {
13192  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13193  if (NewOp.getNode())
13194    return NewOp;
13195
13196  SDValue InputVector = N->getOperand(0);
13197
13198  // Only operate on vectors of 4 elements, where the alternative shuffling
13199  // gets to be more expensive.
13200  if (InputVector.getValueType() != MVT::v4i32)
13201    return SDValue();
13202
13203  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13204  // single use which is a sign-extend or zero-extend, and all elements are
13205  // used.
13206  SmallVector<SDNode *, 4> Uses;
13207  unsigned ExtractedElements = 0;
13208  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13209       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13210    if (UI.getUse().getResNo() != InputVector.getResNo())
13211      return SDValue();
13212
13213    SDNode *Extract = *UI;
13214    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13215      return SDValue();
13216
13217    if (Extract->getValueType(0) != MVT::i32)
13218      return SDValue();
13219    if (!Extract->hasOneUse())
13220      return SDValue();
13221    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13222        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13223      return SDValue();
13224    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13225      return SDValue();
13226
13227    // Record which element was extracted.
13228    ExtractedElements |=
13229      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13230
13231    Uses.push_back(Extract);
13232  }
13233
13234  // If not all the elements were used, this may not be worthwhile.
13235  if (ExtractedElements != 15)
13236    return SDValue();
13237
13238  // Ok, we've now decided to do the transformation.
13239  DebugLoc dl = InputVector.getDebugLoc();
13240
13241  // Store the value to a temporary stack slot.
13242  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13243  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13244                            MachinePointerInfo(), false, false, 0);
13245
13246  // Replace each use (extract) with a load of the appropriate element.
13247  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13248       UE = Uses.end(); UI != UE; ++UI) {
13249    SDNode *Extract = *UI;
13250
13251    // cOMpute the element's address.
13252    SDValue Idx = Extract->getOperand(1);
13253    unsigned EltSize =
13254        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13255    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13256    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13257    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13258
13259    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13260                                     StackPtr, OffsetVal);
13261
13262    // Load the scalar.
13263    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13264                                     ScalarAddr, MachinePointerInfo(),
13265                                     false, false, false, 0);
13266
13267    // Replace the exact with the load.
13268    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13269  }
13270
13271  // The replacement was made in place; don't return anything.
13272  return SDValue();
13273}
13274
13275/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13276/// nodes.
13277static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13278                                    TargetLowering::DAGCombinerInfo &DCI,
13279                                    const X86Subtarget *Subtarget) {
13280
13281
13282  DebugLoc DL = N->getDebugLoc();
13283  SDValue Cond = N->getOperand(0);
13284  // Get the LHS/RHS of the select.
13285  SDValue LHS = N->getOperand(1);
13286  SDValue RHS = N->getOperand(2);
13287  EVT VT = LHS.getValueType();
13288
13289  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13290  // instructions match the semantics of the common C idiom x<y?x:y but not
13291  // x<=y?x:y, because of how they handle negative zero (which can be
13292  // ignored in unsafe-math mode).
13293  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13294      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13295      (Subtarget->hasSSE2() ||
13296       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13297    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13298
13299    unsigned Opcode = 0;
13300    // Check for x CC y ? x : y.
13301    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13302        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13303      switch (CC) {
13304      default: break;
13305      case ISD::SETULT:
13306        // Converting this to a min would handle NaNs incorrectly, and swapping
13307        // the operands would cause it to handle comparisons between positive
13308        // and negative zero incorrectly.
13309        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13310          if (!DAG.getTarget().Options.UnsafeFPMath &&
13311              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13312            break;
13313          std::swap(LHS, RHS);
13314        }
13315        Opcode = X86ISD::FMIN;
13316        break;
13317      case ISD::SETOLE:
13318        // Converting this to a min would handle comparisons between positive
13319        // and negative zero incorrectly.
13320        if (!DAG.getTarget().Options.UnsafeFPMath &&
13321            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13322          break;
13323        Opcode = X86ISD::FMIN;
13324        break;
13325      case ISD::SETULE:
13326        // Converting this to a min would handle both negative zeros and NaNs
13327        // incorrectly, but we can swap the operands to fix both.
13328        std::swap(LHS, RHS);
13329      case ISD::SETOLT:
13330      case ISD::SETLT:
13331      case ISD::SETLE:
13332        Opcode = X86ISD::FMIN;
13333        break;
13334
13335      case ISD::SETOGE:
13336        // Converting this to a max would handle comparisons between positive
13337        // and negative zero incorrectly.
13338        if (!DAG.getTarget().Options.UnsafeFPMath &&
13339            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13340          break;
13341        Opcode = X86ISD::FMAX;
13342        break;
13343      case ISD::SETUGT:
13344        // Converting this to a max would handle NaNs incorrectly, and swapping
13345        // the operands would cause it to handle comparisons between positive
13346        // and negative zero incorrectly.
13347        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13348          if (!DAG.getTarget().Options.UnsafeFPMath &&
13349              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13350            break;
13351          std::swap(LHS, RHS);
13352        }
13353        Opcode = X86ISD::FMAX;
13354        break;
13355      case ISD::SETUGE:
13356        // Converting this to a max would handle both negative zeros and NaNs
13357        // incorrectly, but we can swap the operands to fix both.
13358        std::swap(LHS, RHS);
13359      case ISD::SETOGT:
13360      case ISD::SETGT:
13361      case ISD::SETGE:
13362        Opcode = X86ISD::FMAX;
13363        break;
13364      }
13365    // Check for x CC y ? y : x -- a min/max with reversed arms.
13366    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13367               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13368      switch (CC) {
13369      default: break;
13370      case ISD::SETOGE:
13371        // Converting this to a min would handle comparisons between positive
13372        // and negative zero incorrectly, and swapping the operands would
13373        // cause it to handle NaNs incorrectly.
13374        if (!DAG.getTarget().Options.UnsafeFPMath &&
13375            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13376          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13377            break;
13378          std::swap(LHS, RHS);
13379        }
13380        Opcode = X86ISD::FMIN;
13381        break;
13382      case ISD::SETUGT:
13383        // Converting this to a min would handle NaNs incorrectly.
13384        if (!DAG.getTarget().Options.UnsafeFPMath &&
13385            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13386          break;
13387        Opcode = X86ISD::FMIN;
13388        break;
13389      case ISD::SETUGE:
13390        // Converting this to a min would handle both negative zeros and NaNs
13391        // incorrectly, but we can swap the operands to fix both.
13392        std::swap(LHS, RHS);
13393      case ISD::SETOGT:
13394      case ISD::SETGT:
13395      case ISD::SETGE:
13396        Opcode = X86ISD::FMIN;
13397        break;
13398
13399      case ISD::SETULT:
13400        // Converting this to a max would handle NaNs incorrectly.
13401        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13402          break;
13403        Opcode = X86ISD::FMAX;
13404        break;
13405      case ISD::SETOLE:
13406        // Converting this to a max would handle comparisons between positive
13407        // and negative zero incorrectly, and swapping the operands would
13408        // cause it to handle NaNs incorrectly.
13409        if (!DAG.getTarget().Options.UnsafeFPMath &&
13410            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13411          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13412            break;
13413          std::swap(LHS, RHS);
13414        }
13415        Opcode = X86ISD::FMAX;
13416        break;
13417      case ISD::SETULE:
13418        // Converting this to a max would handle both negative zeros and NaNs
13419        // incorrectly, but we can swap the operands to fix both.
13420        std::swap(LHS, RHS);
13421      case ISD::SETOLT:
13422      case ISD::SETLT:
13423      case ISD::SETLE:
13424        Opcode = X86ISD::FMAX;
13425        break;
13426      }
13427    }
13428
13429    if (Opcode)
13430      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13431  }
13432
13433  // If this is a select between two integer constants, try to do some
13434  // optimizations.
13435  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13436    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13437      // Don't do this for crazy integer types.
13438      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13439        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13440        // so that TrueC (the true value) is larger than FalseC.
13441        bool NeedsCondInvert = false;
13442
13443        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13444            // Efficiently invertible.
13445            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13446             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13447              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13448          NeedsCondInvert = true;
13449          std::swap(TrueC, FalseC);
13450        }
13451
13452        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13453        if (FalseC->getAPIntValue() == 0 &&
13454            TrueC->getAPIntValue().isPowerOf2()) {
13455          if (NeedsCondInvert) // Invert the condition if needed.
13456            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13457                               DAG.getConstant(1, Cond.getValueType()));
13458
13459          // Zero extend the condition if needed.
13460          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13461
13462          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13463          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13464                             DAG.getConstant(ShAmt, MVT::i8));
13465        }
13466
13467        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13468        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13469          if (NeedsCondInvert) // Invert the condition if needed.
13470            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13471                               DAG.getConstant(1, Cond.getValueType()));
13472
13473          // Zero extend the condition if needed.
13474          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13475                             FalseC->getValueType(0), Cond);
13476          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13477                             SDValue(FalseC, 0));
13478        }
13479
13480        // Optimize cases that will turn into an LEA instruction.  This requires
13481        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13482        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13483          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13484          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13485
13486          bool isFastMultiplier = false;
13487          if (Diff < 10) {
13488            switch ((unsigned char)Diff) {
13489              default: break;
13490              case 1:  // result = add base, cond
13491              case 2:  // result = lea base(    , cond*2)
13492              case 3:  // result = lea base(cond, cond*2)
13493              case 4:  // result = lea base(    , cond*4)
13494              case 5:  // result = lea base(cond, cond*4)
13495              case 8:  // result = lea base(    , cond*8)
13496              case 9:  // result = lea base(cond, cond*8)
13497                isFastMultiplier = true;
13498                break;
13499            }
13500          }
13501
13502          if (isFastMultiplier) {
13503            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13504            if (NeedsCondInvert) // Invert the condition if needed.
13505              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13506                                 DAG.getConstant(1, Cond.getValueType()));
13507
13508            // Zero extend the condition if needed.
13509            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13510                               Cond);
13511            // Scale the condition by the difference.
13512            if (Diff != 1)
13513              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13514                                 DAG.getConstant(Diff, Cond.getValueType()));
13515
13516            // Add the base if non-zero.
13517            if (FalseC->getAPIntValue() != 0)
13518              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13519                                 SDValue(FalseC, 0));
13520            return Cond;
13521          }
13522        }
13523      }
13524  }
13525
13526  // Canonicalize max and min:
13527  // (x > y) ? x : y -> (x >= y) ? x : y
13528  // (x < y) ? x : y -> (x <= y) ? x : y
13529  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13530  // the need for an extra compare
13531  // against zero. e.g.
13532  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13533  // subl   %esi, %edi
13534  // testl  %edi, %edi
13535  // movl   $0, %eax
13536  // cmovgl %edi, %eax
13537  // =>
13538  // xorl   %eax, %eax
13539  // subl   %esi, $edi
13540  // cmovsl %eax, %edi
13541  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13542      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13543      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13544    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13545    switch (CC) {
13546    default: break;
13547    case ISD::SETLT:
13548    case ISD::SETGT: {
13549      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13550      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13551                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13552      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13553    }
13554    }
13555  }
13556
13557  // If we know that this node is legal then we know that it is going to be
13558  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13559  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13560  // to simplify previous instructions.
13561  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13562  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13563      !DCI.isBeforeLegalize() &&
13564      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13565    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13566    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13567    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13568
13569    APInt KnownZero, KnownOne;
13570    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13571                                          DCI.isBeforeLegalizeOps());
13572    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13573        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13574      DCI.CommitTargetLoweringOpt(TLO);
13575  }
13576
13577  return SDValue();
13578}
13579
13580/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13581static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13582                                  TargetLowering::DAGCombinerInfo &DCI) {
13583  DebugLoc DL = N->getDebugLoc();
13584
13585  // If the flag operand isn't dead, don't touch this CMOV.
13586  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13587    return SDValue();
13588
13589  SDValue FalseOp = N->getOperand(0);
13590  SDValue TrueOp = N->getOperand(1);
13591  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13592  SDValue Cond = N->getOperand(3);
13593  if (CC == X86::COND_E || CC == X86::COND_NE) {
13594    switch (Cond.getOpcode()) {
13595    default: break;
13596    case X86ISD::BSR:
13597    case X86ISD::BSF:
13598      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13599      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13600        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13601    }
13602  }
13603
13604  // If this is a select between two integer constants, try to do some
13605  // optimizations.  Note that the operands are ordered the opposite of SELECT
13606  // operands.
13607  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13608    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13609      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13610      // larger than FalseC (the false value).
13611      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13612        CC = X86::GetOppositeBranchCondition(CC);
13613        std::swap(TrueC, FalseC);
13614      }
13615
13616      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13617      // This is efficient for any integer data type (including i8/i16) and
13618      // shift amount.
13619      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13620        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13621                           DAG.getConstant(CC, MVT::i8), Cond);
13622
13623        // Zero extend the condition if needed.
13624        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13625
13626        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13627        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13628                           DAG.getConstant(ShAmt, MVT::i8));
13629        if (N->getNumValues() == 2)  // Dead flag value?
13630          return DCI.CombineTo(N, Cond, SDValue());
13631        return Cond;
13632      }
13633
13634      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13635      // for any integer data type, including i8/i16.
13636      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13637        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13638                           DAG.getConstant(CC, MVT::i8), Cond);
13639
13640        // Zero extend the condition if needed.
13641        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13642                           FalseC->getValueType(0), Cond);
13643        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13644                           SDValue(FalseC, 0));
13645
13646        if (N->getNumValues() == 2)  // Dead flag value?
13647          return DCI.CombineTo(N, Cond, SDValue());
13648        return Cond;
13649      }
13650
13651      // Optimize cases that will turn into an LEA instruction.  This requires
13652      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13653      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13654        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13655        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13656
13657        bool isFastMultiplier = false;
13658        if (Diff < 10) {
13659          switch ((unsigned char)Diff) {
13660          default: break;
13661          case 1:  // result = add base, cond
13662          case 2:  // result = lea base(    , cond*2)
13663          case 3:  // result = lea base(cond, cond*2)
13664          case 4:  // result = lea base(    , cond*4)
13665          case 5:  // result = lea base(cond, cond*4)
13666          case 8:  // result = lea base(    , cond*8)
13667          case 9:  // result = lea base(cond, cond*8)
13668            isFastMultiplier = true;
13669            break;
13670          }
13671        }
13672
13673        if (isFastMultiplier) {
13674          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13675          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13676                             DAG.getConstant(CC, MVT::i8), Cond);
13677          // Zero extend the condition if needed.
13678          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13679                             Cond);
13680          // Scale the condition by the difference.
13681          if (Diff != 1)
13682            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13683                               DAG.getConstant(Diff, Cond.getValueType()));
13684
13685          // Add the base if non-zero.
13686          if (FalseC->getAPIntValue() != 0)
13687            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13688                               SDValue(FalseC, 0));
13689          if (N->getNumValues() == 2)  // Dead flag value?
13690            return DCI.CombineTo(N, Cond, SDValue());
13691          return Cond;
13692        }
13693      }
13694    }
13695  }
13696  return SDValue();
13697}
13698
13699
13700/// PerformMulCombine - Optimize a single multiply with constant into two
13701/// in order to implement it with two cheaper instructions, e.g.
13702/// LEA + SHL, LEA + LEA.
13703static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13704                                 TargetLowering::DAGCombinerInfo &DCI) {
13705  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13706    return SDValue();
13707
13708  EVT VT = N->getValueType(0);
13709  if (VT != MVT::i64)
13710    return SDValue();
13711
13712  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13713  if (!C)
13714    return SDValue();
13715  uint64_t MulAmt = C->getZExtValue();
13716  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13717    return SDValue();
13718
13719  uint64_t MulAmt1 = 0;
13720  uint64_t MulAmt2 = 0;
13721  if ((MulAmt % 9) == 0) {
13722    MulAmt1 = 9;
13723    MulAmt2 = MulAmt / 9;
13724  } else if ((MulAmt % 5) == 0) {
13725    MulAmt1 = 5;
13726    MulAmt2 = MulAmt / 5;
13727  } else if ((MulAmt % 3) == 0) {
13728    MulAmt1 = 3;
13729    MulAmt2 = MulAmt / 3;
13730  }
13731  if (MulAmt2 &&
13732      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13733    DebugLoc DL = N->getDebugLoc();
13734
13735    if (isPowerOf2_64(MulAmt2) &&
13736        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13737      // If second multiplifer is pow2, issue it first. We want the multiply by
13738      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13739      // is an add.
13740      std::swap(MulAmt1, MulAmt2);
13741
13742    SDValue NewMul;
13743    if (isPowerOf2_64(MulAmt1))
13744      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13745                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13746    else
13747      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13748                           DAG.getConstant(MulAmt1, VT));
13749
13750    if (isPowerOf2_64(MulAmt2))
13751      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13752                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13753    else
13754      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13755                           DAG.getConstant(MulAmt2, VT));
13756
13757    // Do not add new nodes to DAG combiner worklist.
13758    DCI.CombineTo(N, NewMul, false);
13759  }
13760  return SDValue();
13761}
13762
13763static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13764  SDValue N0 = N->getOperand(0);
13765  SDValue N1 = N->getOperand(1);
13766  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13767  EVT VT = N0.getValueType();
13768
13769  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13770  // since the result of setcc_c is all zero's or all ones.
13771  if (VT.isInteger() && !VT.isVector() &&
13772      N1C && N0.getOpcode() == ISD::AND &&
13773      N0.getOperand(1).getOpcode() == ISD::Constant) {
13774    SDValue N00 = N0.getOperand(0);
13775    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13776        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13777          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13778         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13779      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13780      APInt ShAmt = N1C->getAPIntValue();
13781      Mask = Mask.shl(ShAmt);
13782      if (Mask != 0)
13783        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13784                           N00, DAG.getConstant(Mask, VT));
13785    }
13786  }
13787
13788
13789  // Hardware support for vector shifts is sparse which makes us scalarize the
13790  // vector operations in many cases. Also, on sandybridge ADD is faster than
13791  // shl.
13792  // (shl V, 1) -> add V,V
13793  if (isSplatVector(N1.getNode())) {
13794    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13795    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13796    // We shift all of the values by one. In many cases we do not have
13797    // hardware support for this operation. This is better expressed as an ADD
13798    // of two values.
13799    if (N1C && (1 == N1C->getZExtValue())) {
13800      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13801    }
13802  }
13803
13804  return SDValue();
13805}
13806
13807/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13808///                       when possible.
13809static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13810                                   TargetLowering::DAGCombinerInfo &DCI,
13811                                   const X86Subtarget *Subtarget) {
13812  EVT VT = N->getValueType(0);
13813  if (N->getOpcode() == ISD::SHL) {
13814    SDValue V = PerformSHLCombine(N, DAG);
13815    if (V.getNode()) return V;
13816  }
13817
13818  // On X86 with SSE2 support, we can transform this to a vector shift if
13819  // all elements are shifted by the same amount.  We can't do this in legalize
13820  // because the a constant vector is typically transformed to a constant pool
13821  // so we have no knowledge of the shift amount.
13822  if (!Subtarget->hasSSE2())
13823    return SDValue();
13824
13825  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13826      (!Subtarget->hasAVX2() ||
13827       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13828    return SDValue();
13829
13830  SDValue ShAmtOp = N->getOperand(1);
13831  EVT EltVT = VT.getVectorElementType();
13832  DebugLoc DL = N->getDebugLoc();
13833  SDValue BaseShAmt = SDValue();
13834  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13835    unsigned NumElts = VT.getVectorNumElements();
13836    unsigned i = 0;
13837    for (; i != NumElts; ++i) {
13838      SDValue Arg = ShAmtOp.getOperand(i);
13839      if (Arg.getOpcode() == ISD::UNDEF) continue;
13840      BaseShAmt = Arg;
13841      break;
13842    }
13843    // Handle the case where the build_vector is all undef
13844    // FIXME: Should DAG allow this?
13845    if (i == NumElts)
13846      return SDValue();
13847
13848    for (; i != NumElts; ++i) {
13849      SDValue Arg = ShAmtOp.getOperand(i);
13850      if (Arg.getOpcode() == ISD::UNDEF) continue;
13851      if (Arg != BaseShAmt) {
13852        return SDValue();
13853      }
13854    }
13855  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13856             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13857    SDValue InVec = ShAmtOp.getOperand(0);
13858    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13859      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13860      unsigned i = 0;
13861      for (; i != NumElts; ++i) {
13862        SDValue Arg = InVec.getOperand(i);
13863        if (Arg.getOpcode() == ISD::UNDEF) continue;
13864        BaseShAmt = Arg;
13865        break;
13866      }
13867    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13868       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13869         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13870         if (C->getZExtValue() == SplatIdx)
13871           BaseShAmt = InVec.getOperand(1);
13872       }
13873    }
13874    if (BaseShAmt.getNode() == 0) {
13875      // Don't create instructions with illegal types after legalize
13876      // types has run.
13877      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
13878          !DCI.isBeforeLegalize())
13879        return SDValue();
13880
13881      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13882                              DAG.getIntPtrConstant(0));
13883    }
13884  } else
13885    return SDValue();
13886
13887  // The shift amount is an i32.
13888  if (EltVT.bitsGT(MVT::i32))
13889    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13890  else if (EltVT.bitsLT(MVT::i32))
13891    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13892
13893  // The shift amount is identical so we can do a vector shift.
13894  SDValue  ValOp = N->getOperand(0);
13895  switch (N->getOpcode()) {
13896  default:
13897    llvm_unreachable("Unknown shift opcode!");
13898  case ISD::SHL:
13899    switch (VT.getSimpleVT().SimpleTy) {
13900    default: return SDValue();
13901    case MVT::v2i64:
13902    case MVT::v4i32:
13903    case MVT::v8i16:
13904    case MVT::v4i64:
13905    case MVT::v8i32:
13906    case MVT::v16i16:
13907      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13908    }
13909  case ISD::SRA:
13910    switch (VT.getSimpleVT().SimpleTy) {
13911    default: return SDValue();
13912    case MVT::v4i32:
13913    case MVT::v8i16:
13914    case MVT::v8i32:
13915    case MVT::v16i16:
13916      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13917    }
13918  case ISD::SRL:
13919    switch (VT.getSimpleVT().SimpleTy) {
13920    default: return SDValue();
13921    case MVT::v2i64:
13922    case MVT::v4i32:
13923    case MVT::v8i16:
13924    case MVT::v4i64:
13925    case MVT::v8i32:
13926    case MVT::v16i16:
13927      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13928    }
13929  }
13930}
13931
13932
13933// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13934// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13935// and friends.  Likewise for OR -> CMPNEQSS.
13936static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13937                            TargetLowering::DAGCombinerInfo &DCI,
13938                            const X86Subtarget *Subtarget) {
13939  unsigned opcode;
13940
13941  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13942  // we're requiring SSE2 for both.
13943  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13944    SDValue N0 = N->getOperand(0);
13945    SDValue N1 = N->getOperand(1);
13946    SDValue CMP0 = N0->getOperand(1);
13947    SDValue CMP1 = N1->getOperand(1);
13948    DebugLoc DL = N->getDebugLoc();
13949
13950    // The SETCCs should both refer to the same CMP.
13951    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13952      return SDValue();
13953
13954    SDValue CMP00 = CMP0->getOperand(0);
13955    SDValue CMP01 = CMP0->getOperand(1);
13956    EVT     VT    = CMP00.getValueType();
13957
13958    if (VT == MVT::f32 || VT == MVT::f64) {
13959      bool ExpectingFlags = false;
13960      // Check for any users that want flags:
13961      for (SDNode::use_iterator UI = N->use_begin(),
13962             UE = N->use_end();
13963           !ExpectingFlags && UI != UE; ++UI)
13964        switch (UI->getOpcode()) {
13965        default:
13966        case ISD::BR_CC:
13967        case ISD::BRCOND:
13968        case ISD::SELECT:
13969          ExpectingFlags = true;
13970          break;
13971        case ISD::CopyToReg:
13972        case ISD::SIGN_EXTEND:
13973        case ISD::ZERO_EXTEND:
13974        case ISD::ANY_EXTEND:
13975          break;
13976        }
13977
13978      if (!ExpectingFlags) {
13979        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13980        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13981
13982        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13983          X86::CondCode tmp = cc0;
13984          cc0 = cc1;
13985          cc1 = tmp;
13986        }
13987
13988        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13989            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13990          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13991          X86ISD::NodeType NTOperator = is64BitFP ?
13992            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13993          // FIXME: need symbolic constants for these magic numbers.
13994          // See X86ATTInstPrinter.cpp:printSSECC().
13995          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13996          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13997                                              DAG.getConstant(x86cc, MVT::i8));
13998          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13999                                              OnesOrZeroesF);
14000          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14001                                      DAG.getConstant(1, MVT::i32));
14002          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14003          return OneBitOfTruth;
14004        }
14005      }
14006    }
14007  }
14008  return SDValue();
14009}
14010
14011/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14012/// so it can be folded inside ANDNP.
14013static bool CanFoldXORWithAllOnes(const SDNode *N) {
14014  EVT VT = N->getValueType(0);
14015
14016  // Match direct AllOnes for 128 and 256-bit vectors
14017  if (ISD::isBuildVectorAllOnes(N))
14018    return true;
14019
14020  // Look through a bit convert.
14021  if (N->getOpcode() == ISD::BITCAST)
14022    N = N->getOperand(0).getNode();
14023
14024  // Sometimes the operand may come from a insert_subvector building a 256-bit
14025  // allones vector
14026  if (VT.getSizeInBits() == 256 &&
14027      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14028    SDValue V1 = N->getOperand(0);
14029    SDValue V2 = N->getOperand(1);
14030
14031    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14032        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14033        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14034        ISD::isBuildVectorAllOnes(V2.getNode()))
14035      return true;
14036  }
14037
14038  return false;
14039}
14040
14041static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14042                                 TargetLowering::DAGCombinerInfo &DCI,
14043                                 const X86Subtarget *Subtarget) {
14044  if (DCI.isBeforeLegalizeOps())
14045    return SDValue();
14046
14047  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14048  if (R.getNode())
14049    return R;
14050
14051  EVT VT = N->getValueType(0);
14052
14053  // Create ANDN, BLSI, and BLSR instructions
14054  // BLSI is X & (-X)
14055  // BLSR is X & (X-1)
14056  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14057    SDValue N0 = N->getOperand(0);
14058    SDValue N1 = N->getOperand(1);
14059    DebugLoc DL = N->getDebugLoc();
14060
14061    // Check LHS for not
14062    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14063      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14064    // Check RHS for not
14065    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14066      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14067
14068    // Check LHS for neg
14069    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14070        isZero(N0.getOperand(0)))
14071      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14072
14073    // Check RHS for neg
14074    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14075        isZero(N1.getOperand(0)))
14076      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14077
14078    // Check LHS for X-1
14079    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14080        isAllOnes(N0.getOperand(1)))
14081      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14082
14083    // Check RHS for X-1
14084    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14085        isAllOnes(N1.getOperand(1)))
14086      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14087
14088    return SDValue();
14089  }
14090
14091  // Want to form ANDNP nodes:
14092  // 1) In the hopes of then easily combining them with OR and AND nodes
14093  //    to form PBLEND/PSIGN.
14094  // 2) To match ANDN packed intrinsics
14095  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14096    return SDValue();
14097
14098  SDValue N0 = N->getOperand(0);
14099  SDValue N1 = N->getOperand(1);
14100  DebugLoc DL = N->getDebugLoc();
14101
14102  // Check LHS for vnot
14103  if (N0.getOpcode() == ISD::XOR &&
14104      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14105      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14106    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14107
14108  // Check RHS for vnot
14109  if (N1.getOpcode() == ISD::XOR &&
14110      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14111      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14112    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14113
14114  return SDValue();
14115}
14116
14117static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14118                                TargetLowering::DAGCombinerInfo &DCI,
14119                                const X86Subtarget *Subtarget) {
14120  if (DCI.isBeforeLegalizeOps())
14121    return SDValue();
14122
14123  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14124  if (R.getNode())
14125    return R;
14126
14127  EVT VT = N->getValueType(0);
14128
14129  SDValue N0 = N->getOperand(0);
14130  SDValue N1 = N->getOperand(1);
14131
14132  // look for psign/blend
14133  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14134    if (!Subtarget->hasSSSE3() ||
14135        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14136      return SDValue();
14137
14138    // Canonicalize pandn to RHS
14139    if (N0.getOpcode() == X86ISD::ANDNP)
14140      std::swap(N0, N1);
14141    // or (and (m, y), (pandn m, x))
14142    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14143      SDValue Mask = N1.getOperand(0);
14144      SDValue X    = N1.getOperand(1);
14145      SDValue Y;
14146      if (N0.getOperand(0) == Mask)
14147        Y = N0.getOperand(1);
14148      if (N0.getOperand(1) == Mask)
14149        Y = N0.getOperand(0);
14150
14151      // Check to see if the mask appeared in both the AND and ANDNP and
14152      if (!Y.getNode())
14153        return SDValue();
14154
14155      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14156      // Look through mask bitcast.
14157      if (Mask.getOpcode() == ISD::BITCAST)
14158        Mask = Mask.getOperand(0);
14159      if (X.getOpcode() == ISD::BITCAST)
14160        X = X.getOperand(0);
14161      if (Y.getOpcode() == ISD::BITCAST)
14162        Y = Y.getOperand(0);
14163
14164      EVT MaskVT = Mask.getValueType();
14165
14166      // Validate that the Mask operand is a vector sra node.
14167      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14168      // there is no psrai.b
14169      if (Mask.getOpcode() != X86ISD::VSRAI)
14170        return SDValue();
14171
14172      // Check that the SRA is all signbits.
14173      SDValue SraC = Mask.getOperand(1);
14174      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14175      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14176      if ((SraAmt + 1) != EltBits)
14177        return SDValue();
14178
14179      DebugLoc DL = N->getDebugLoc();
14180
14181      // Now we know we at least have a plendvb with the mask val.  See if
14182      // we can form a psignb/w/d.
14183      // psign = x.type == y.type == mask.type && y = sub(0, x);
14184      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14185          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14186          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14187        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14188               "Unsupported VT for PSIGN");
14189        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14190        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14191      }
14192      // PBLENDVB only available on SSE 4.1
14193      if (!Subtarget->hasSSE41())
14194        return SDValue();
14195
14196      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14197
14198      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14199      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14200      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14201      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14202      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14203    }
14204  }
14205
14206  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14207    return SDValue();
14208
14209  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14210  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14211    std::swap(N0, N1);
14212  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14213    return SDValue();
14214  if (!N0.hasOneUse() || !N1.hasOneUse())
14215    return SDValue();
14216
14217  SDValue ShAmt0 = N0.getOperand(1);
14218  if (ShAmt0.getValueType() != MVT::i8)
14219    return SDValue();
14220  SDValue ShAmt1 = N1.getOperand(1);
14221  if (ShAmt1.getValueType() != MVT::i8)
14222    return SDValue();
14223  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14224    ShAmt0 = ShAmt0.getOperand(0);
14225  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14226    ShAmt1 = ShAmt1.getOperand(0);
14227
14228  DebugLoc DL = N->getDebugLoc();
14229  unsigned Opc = X86ISD::SHLD;
14230  SDValue Op0 = N0.getOperand(0);
14231  SDValue Op1 = N1.getOperand(0);
14232  if (ShAmt0.getOpcode() == ISD::SUB) {
14233    Opc = X86ISD::SHRD;
14234    std::swap(Op0, Op1);
14235    std::swap(ShAmt0, ShAmt1);
14236  }
14237
14238  unsigned Bits = VT.getSizeInBits();
14239  if (ShAmt1.getOpcode() == ISD::SUB) {
14240    SDValue Sum = ShAmt1.getOperand(0);
14241    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14242      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14243      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14244        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14245      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14246        return DAG.getNode(Opc, DL, VT,
14247                           Op0, Op1,
14248                           DAG.getNode(ISD::TRUNCATE, DL,
14249                                       MVT::i8, ShAmt0));
14250    }
14251  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14252    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14253    if (ShAmt0C &&
14254        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14255      return DAG.getNode(Opc, DL, VT,
14256                         N0.getOperand(0), N1.getOperand(0),
14257                         DAG.getNode(ISD::TRUNCATE, DL,
14258                                       MVT::i8, ShAmt0));
14259  }
14260
14261  return SDValue();
14262}
14263
14264// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14265static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14266                                 TargetLowering::DAGCombinerInfo &DCI,
14267                                 const X86Subtarget *Subtarget) {
14268  if (DCI.isBeforeLegalizeOps())
14269    return SDValue();
14270
14271  EVT VT = N->getValueType(0);
14272
14273  if (VT != MVT::i32 && VT != MVT::i64)
14274    return SDValue();
14275
14276  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14277
14278  // Create BLSMSK instructions by finding X ^ (X-1)
14279  SDValue N0 = N->getOperand(0);
14280  SDValue N1 = N->getOperand(1);
14281  DebugLoc DL = N->getDebugLoc();
14282
14283  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14284      isAllOnes(N0.getOperand(1)))
14285    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14286
14287  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14288      isAllOnes(N1.getOperand(1)))
14289    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14290
14291  return SDValue();
14292}
14293
14294/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14295static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14296                                   const X86Subtarget *Subtarget) {
14297  LoadSDNode *Ld = cast<LoadSDNode>(N);
14298  EVT RegVT = Ld->getValueType(0);
14299  EVT MemVT = Ld->getMemoryVT();
14300  DebugLoc dl = Ld->getDebugLoc();
14301  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14302
14303  ISD::LoadExtType Ext = Ld->getExtensionType();
14304
14305  // If this is a vector EXT Load then attempt to optimize it using a
14306  // shuffle. We need SSE4 for the shuffles.
14307  // TODO: It is possible to support ZExt by zeroing the undef values
14308  // during the shuffle phase or after the shuffle.
14309  if (RegVT.isVector() && RegVT.isInteger() &&
14310      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14311    assert(MemVT != RegVT && "Cannot extend to the same type");
14312    assert(MemVT.isVector() && "Must load a vector from memory");
14313
14314    unsigned NumElems = RegVT.getVectorNumElements();
14315    unsigned RegSz = RegVT.getSizeInBits();
14316    unsigned MemSz = MemVT.getSizeInBits();
14317    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14318    // All sizes must be a power of two
14319    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14320
14321    // Attempt to load the original value using a single load op.
14322    // Find a scalar type which is equal to the loaded word size.
14323    MVT SclrLoadTy = MVT::i8;
14324    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14325         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14326      MVT Tp = (MVT::SimpleValueType)tp;
14327      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14328        SclrLoadTy = Tp;
14329        break;
14330      }
14331    }
14332
14333    // Proceed if a load word is found.
14334    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14335
14336    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14337      RegSz/SclrLoadTy.getSizeInBits());
14338
14339    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14340                                  RegSz/MemVT.getScalarType().getSizeInBits());
14341    // Can't shuffle using an illegal type.
14342    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14343
14344    // Perform a single load.
14345    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14346                                  Ld->getBasePtr(),
14347                                  Ld->getPointerInfo(), Ld->isVolatile(),
14348                                  Ld->isNonTemporal(), Ld->isInvariant(),
14349                                  Ld->getAlignment());
14350
14351    // Insert the word loaded into a vector.
14352    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14353      LoadUnitVecVT, ScalarLoad);
14354
14355    // Bitcast the loaded value to a vector of the original element type, in
14356    // the size of the target vector type.
14357    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14358                                    ScalarInVector);
14359    unsigned SizeRatio = RegSz/MemSz;
14360
14361    // Redistribute the loaded elements into the different locations.
14362    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14363    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14364
14365    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14366                                DAG.getUNDEF(SlicedVec.getValueType()),
14367                                ShuffleVec.data());
14368
14369    // Bitcast to the requested type.
14370    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14371    // Replace the original load with the new sequence
14372    // and return the new chain.
14373    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14374    return SDValue(ScalarLoad.getNode(), 1);
14375  }
14376
14377  return SDValue();
14378}
14379
14380/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14381static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14382                                   const X86Subtarget *Subtarget) {
14383  StoreSDNode *St = cast<StoreSDNode>(N);
14384  EVT VT = St->getValue().getValueType();
14385  EVT StVT = St->getMemoryVT();
14386  DebugLoc dl = St->getDebugLoc();
14387  SDValue StoredVal = St->getOperand(1);
14388  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14389
14390  // If we are saving a concatenation of two XMM registers, perform two stores.
14391  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14392  // 128-bit ones. If in the future the cost becomes only one memory access the
14393  // first version would be better.
14394  if (VT.getSizeInBits() == 256 &&
14395    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14396    StoredVal.getNumOperands() == 2) {
14397
14398    SDValue Value0 = StoredVal.getOperand(0);
14399    SDValue Value1 = StoredVal.getOperand(1);
14400
14401    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14402    SDValue Ptr0 = St->getBasePtr();
14403    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14404
14405    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14406                                St->getPointerInfo(), St->isVolatile(),
14407                                St->isNonTemporal(), St->getAlignment());
14408    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14409                                St->getPointerInfo(), St->isVolatile(),
14410                                St->isNonTemporal(), St->getAlignment());
14411    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14412  }
14413
14414  // Optimize trunc store (of multiple scalars) to shuffle and store.
14415  // First, pack all of the elements in one place. Next, store to memory
14416  // in fewer chunks.
14417  if (St->isTruncatingStore() && VT.isVector()) {
14418    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14419    unsigned NumElems = VT.getVectorNumElements();
14420    assert(StVT != VT && "Cannot truncate to the same type");
14421    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14422    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14423
14424    // From, To sizes and ElemCount must be pow of two
14425    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14426    // We are going to use the original vector elt for storing.
14427    // Accumulated smaller vector elements must be a multiple of the store size.
14428    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14429
14430    unsigned SizeRatio  = FromSz / ToSz;
14431
14432    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14433
14434    // Create a type on which we perform the shuffle
14435    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14436            StVT.getScalarType(), NumElems*SizeRatio);
14437
14438    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14439
14440    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14441    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14442    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14443
14444    // Can't shuffle using an illegal type
14445    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14446
14447    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14448                                DAG.getUNDEF(WideVec.getValueType()),
14449                                ShuffleVec.data());
14450    // At this point all of the data is stored at the bottom of the
14451    // register. We now need to save it to mem.
14452
14453    // Find the largest store unit
14454    MVT StoreType = MVT::i8;
14455    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14456         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14457      MVT Tp = (MVT::SimpleValueType)tp;
14458      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14459        StoreType = Tp;
14460    }
14461
14462    // Bitcast the original vector into a vector of store-size units
14463    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14464            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14465    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14466    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14467    SmallVector<SDValue, 8> Chains;
14468    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14469                                        TLI.getPointerTy());
14470    SDValue Ptr = St->getBasePtr();
14471
14472    // Perform one or more big stores into memory.
14473    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14474      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14475                                   StoreType, ShuffWide,
14476                                   DAG.getIntPtrConstant(i));
14477      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14478                                St->getPointerInfo(), St->isVolatile(),
14479                                St->isNonTemporal(), St->getAlignment());
14480      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14481      Chains.push_back(Ch);
14482    }
14483
14484    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14485                               Chains.size());
14486  }
14487
14488
14489  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14490  // the FP state in cases where an emms may be missing.
14491  // A preferable solution to the general problem is to figure out the right
14492  // places to insert EMMS.  This qualifies as a quick hack.
14493
14494  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14495  if (VT.getSizeInBits() != 64)
14496    return SDValue();
14497
14498  const Function *F = DAG.getMachineFunction().getFunction();
14499  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14500  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14501                     && Subtarget->hasSSE2();
14502  if ((VT.isVector() ||
14503       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14504      isa<LoadSDNode>(St->getValue()) &&
14505      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14506      St->getChain().hasOneUse() && !St->isVolatile()) {
14507    SDNode* LdVal = St->getValue().getNode();
14508    LoadSDNode *Ld = 0;
14509    int TokenFactorIndex = -1;
14510    SmallVector<SDValue, 8> Ops;
14511    SDNode* ChainVal = St->getChain().getNode();
14512    // Must be a store of a load.  We currently handle two cases:  the load
14513    // is a direct child, and it's under an intervening TokenFactor.  It is
14514    // possible to dig deeper under nested TokenFactors.
14515    if (ChainVal == LdVal)
14516      Ld = cast<LoadSDNode>(St->getChain());
14517    else if (St->getValue().hasOneUse() &&
14518             ChainVal->getOpcode() == ISD::TokenFactor) {
14519      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14520        if (ChainVal->getOperand(i).getNode() == LdVal) {
14521          TokenFactorIndex = i;
14522          Ld = cast<LoadSDNode>(St->getValue());
14523        } else
14524          Ops.push_back(ChainVal->getOperand(i));
14525      }
14526    }
14527
14528    if (!Ld || !ISD::isNormalLoad(Ld))
14529      return SDValue();
14530
14531    // If this is not the MMX case, i.e. we are just turning i64 load/store
14532    // into f64 load/store, avoid the transformation if there are multiple
14533    // uses of the loaded value.
14534    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14535      return SDValue();
14536
14537    DebugLoc LdDL = Ld->getDebugLoc();
14538    DebugLoc StDL = N->getDebugLoc();
14539    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14540    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14541    // pair instead.
14542    if (Subtarget->is64Bit() || F64IsLegal) {
14543      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14544      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14545                                  Ld->getPointerInfo(), Ld->isVolatile(),
14546                                  Ld->isNonTemporal(), Ld->isInvariant(),
14547                                  Ld->getAlignment());
14548      SDValue NewChain = NewLd.getValue(1);
14549      if (TokenFactorIndex != -1) {
14550        Ops.push_back(NewChain);
14551        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14552                               Ops.size());
14553      }
14554      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14555                          St->getPointerInfo(),
14556                          St->isVolatile(), St->isNonTemporal(),
14557                          St->getAlignment());
14558    }
14559
14560    // Otherwise, lower to two pairs of 32-bit loads / stores.
14561    SDValue LoAddr = Ld->getBasePtr();
14562    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14563                                 DAG.getConstant(4, MVT::i32));
14564
14565    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14566                               Ld->getPointerInfo(),
14567                               Ld->isVolatile(), Ld->isNonTemporal(),
14568                               Ld->isInvariant(), Ld->getAlignment());
14569    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14570                               Ld->getPointerInfo().getWithOffset(4),
14571                               Ld->isVolatile(), Ld->isNonTemporal(),
14572                               Ld->isInvariant(),
14573                               MinAlign(Ld->getAlignment(), 4));
14574
14575    SDValue NewChain = LoLd.getValue(1);
14576    if (TokenFactorIndex != -1) {
14577      Ops.push_back(LoLd);
14578      Ops.push_back(HiLd);
14579      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14580                             Ops.size());
14581    }
14582
14583    LoAddr = St->getBasePtr();
14584    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14585                         DAG.getConstant(4, MVT::i32));
14586
14587    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14588                                St->getPointerInfo(),
14589                                St->isVolatile(), St->isNonTemporal(),
14590                                St->getAlignment());
14591    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14592                                St->getPointerInfo().getWithOffset(4),
14593                                St->isVolatile(),
14594                                St->isNonTemporal(),
14595                                MinAlign(St->getAlignment(), 4));
14596    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14597  }
14598  return SDValue();
14599}
14600
14601/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14602/// and return the operands for the horizontal operation in LHS and RHS.  A
14603/// horizontal operation performs the binary operation on successive elements
14604/// of its first operand, then on successive elements of its second operand,
14605/// returning the resulting values in a vector.  For example, if
14606///   A = < float a0, float a1, float a2, float a3 >
14607/// and
14608///   B = < float b0, float b1, float b2, float b3 >
14609/// then the result of doing a horizontal operation on A and B is
14610///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14611/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14612/// A horizontal-op B, for some already available A and B, and if so then LHS is
14613/// set to A, RHS to B, and the routine returns 'true'.
14614/// Note that the binary operation should have the property that if one of the
14615/// operands is UNDEF then the result is UNDEF.
14616static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14617  // Look for the following pattern: if
14618  //   A = < float a0, float a1, float a2, float a3 >
14619  //   B = < float b0, float b1, float b2, float b3 >
14620  // and
14621  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14622  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14623  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14624  // which is A horizontal-op B.
14625
14626  // At least one of the operands should be a vector shuffle.
14627  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14628      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14629    return false;
14630
14631  EVT VT = LHS.getValueType();
14632
14633  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14634         "Unsupported vector type for horizontal add/sub");
14635
14636  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14637  // operate independently on 128-bit lanes.
14638  unsigned NumElts = VT.getVectorNumElements();
14639  unsigned NumLanes = VT.getSizeInBits()/128;
14640  unsigned NumLaneElts = NumElts / NumLanes;
14641  assert((NumLaneElts % 2 == 0) &&
14642         "Vector type should have an even number of elements in each lane");
14643  unsigned HalfLaneElts = NumLaneElts/2;
14644
14645  // View LHS in the form
14646  //   LHS = VECTOR_SHUFFLE A, B, LMask
14647  // If LHS is not a shuffle then pretend it is the shuffle
14648  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14649  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14650  // type VT.
14651  SDValue A, B;
14652  SmallVector<int, 16> LMask(NumElts);
14653  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14654    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14655      A = LHS.getOperand(0);
14656    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14657      B = LHS.getOperand(1);
14658    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14659    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14660  } else {
14661    if (LHS.getOpcode() != ISD::UNDEF)
14662      A = LHS;
14663    for (unsigned i = 0; i != NumElts; ++i)
14664      LMask[i] = i;
14665  }
14666
14667  // Likewise, view RHS in the form
14668  //   RHS = VECTOR_SHUFFLE C, D, RMask
14669  SDValue C, D;
14670  SmallVector<int, 16> RMask(NumElts);
14671  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14672    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14673      C = RHS.getOperand(0);
14674    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14675      D = RHS.getOperand(1);
14676    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14677    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14678  } else {
14679    if (RHS.getOpcode() != ISD::UNDEF)
14680      C = RHS;
14681    for (unsigned i = 0; i != NumElts; ++i)
14682      RMask[i] = i;
14683  }
14684
14685  // Check that the shuffles are both shuffling the same vectors.
14686  if (!(A == C && B == D) && !(A == D && B == C))
14687    return false;
14688
14689  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14690  if (!A.getNode() && !B.getNode())
14691    return false;
14692
14693  // If A and B occur in reverse order in RHS, then "swap" them (which means
14694  // rewriting the mask).
14695  if (A != C)
14696    CommuteVectorShuffleMask(RMask, NumElts);
14697
14698  // At this point LHS and RHS are equivalent to
14699  //   LHS = VECTOR_SHUFFLE A, B, LMask
14700  //   RHS = VECTOR_SHUFFLE A, B, RMask
14701  // Check that the masks correspond to performing a horizontal operation.
14702  for (unsigned i = 0; i != NumElts; ++i) {
14703    int LIdx = LMask[i], RIdx = RMask[i];
14704
14705    // Ignore any UNDEF components.
14706    if (LIdx < 0 || RIdx < 0 ||
14707        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14708        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14709      continue;
14710
14711    // Check that successive elements are being operated on.  If not, this is
14712    // not a horizontal operation.
14713    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14714    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14715    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14716    if (!(LIdx == Index && RIdx == Index + 1) &&
14717        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14718      return false;
14719  }
14720
14721  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14722  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14723  return true;
14724}
14725
14726/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14727static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14728                                  const X86Subtarget *Subtarget) {
14729  EVT VT = N->getValueType(0);
14730  SDValue LHS = N->getOperand(0);
14731  SDValue RHS = N->getOperand(1);
14732
14733  // Try to synthesize horizontal adds from adds of shuffles.
14734  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14735       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14736      isHorizontalBinOp(LHS, RHS, true))
14737    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14738  return SDValue();
14739}
14740
14741/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14742static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14743                                  const X86Subtarget *Subtarget) {
14744  EVT VT = N->getValueType(0);
14745  SDValue LHS = N->getOperand(0);
14746  SDValue RHS = N->getOperand(1);
14747
14748  // Try to synthesize horizontal subs from subs of shuffles.
14749  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14750       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14751      isHorizontalBinOp(LHS, RHS, false))
14752    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14753  return SDValue();
14754}
14755
14756/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14757/// X86ISD::FXOR nodes.
14758static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14759  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14760  // F[X]OR(0.0, x) -> x
14761  // F[X]OR(x, 0.0) -> x
14762  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14763    if (C->getValueAPF().isPosZero())
14764      return N->getOperand(1);
14765  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14766    if (C->getValueAPF().isPosZero())
14767      return N->getOperand(0);
14768  return SDValue();
14769}
14770
14771/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14772static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14773  // FAND(0.0, x) -> 0.0
14774  // FAND(x, 0.0) -> 0.0
14775  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14776    if (C->getValueAPF().isPosZero())
14777      return N->getOperand(0);
14778  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14779    if (C->getValueAPF().isPosZero())
14780      return N->getOperand(1);
14781  return SDValue();
14782}
14783
14784static SDValue PerformBTCombine(SDNode *N,
14785                                SelectionDAG &DAG,
14786                                TargetLowering::DAGCombinerInfo &DCI) {
14787  // BT ignores high bits in the bit index operand.
14788  SDValue Op1 = N->getOperand(1);
14789  if (Op1.hasOneUse()) {
14790    unsigned BitWidth = Op1.getValueSizeInBits();
14791    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14792    APInt KnownZero, KnownOne;
14793    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14794                                          !DCI.isBeforeLegalizeOps());
14795    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14796    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14797        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14798      DCI.CommitTargetLoweringOpt(TLO);
14799  }
14800  return SDValue();
14801}
14802
14803static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14804  SDValue Op = N->getOperand(0);
14805  if (Op.getOpcode() == ISD::BITCAST)
14806    Op = Op.getOperand(0);
14807  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14808  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14809      VT.getVectorElementType().getSizeInBits() ==
14810      OpVT.getVectorElementType().getSizeInBits()) {
14811    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14812  }
14813  return SDValue();
14814}
14815
14816static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14817                                  TargetLowering::DAGCombinerInfo &DCI,
14818                                  const X86Subtarget *Subtarget) {
14819  if (!DCI.isBeforeLegalizeOps())
14820    return SDValue();
14821
14822  if (!Subtarget->hasAVX())
14823    return SDValue();
14824
14825  // Optimize vectors in AVX mode
14826  // Sign extend  v8i16 to v8i32 and
14827  //              v4i32 to v4i64
14828  //
14829  // Divide input vector into two parts
14830  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14831  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14832  // concat the vectors to original VT
14833
14834  EVT VT = N->getValueType(0);
14835  SDValue Op = N->getOperand(0);
14836  EVT OpVT = Op.getValueType();
14837  DebugLoc dl = N->getDebugLoc();
14838
14839  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14840      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14841
14842    unsigned NumElems = OpVT.getVectorNumElements();
14843    SmallVector<int,8> ShufMask1(NumElems, -1);
14844    for (unsigned i = 0; i < NumElems/2; i++) ShufMask1[i] = i;
14845
14846    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14847                                        ShufMask1.data());
14848
14849    SmallVector<int,8> ShufMask2(NumElems, -1);
14850    for (unsigned i = 0; i < NumElems/2; i++) ShufMask2[i] = i + NumElems/2;
14851
14852    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14853                                        ShufMask2.data());
14854
14855    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
14856                                  VT.getVectorNumElements()/2);
14857
14858    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
14859    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
14860
14861    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14862  }
14863  return SDValue();
14864}
14865
14866static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14867                                  const X86Subtarget *Subtarget) {
14868  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14869  //           (and (i32 x86isd::setcc_carry), 1)
14870  // This eliminates the zext. This transformation is necessary because
14871  // ISD::SETCC is always legalized to i8.
14872  DebugLoc dl = N->getDebugLoc();
14873  SDValue N0 = N->getOperand(0);
14874  EVT VT = N->getValueType(0);
14875  EVT OpVT = N0.getValueType();
14876
14877  if (N0.getOpcode() == ISD::AND &&
14878      N0.hasOneUse() &&
14879      N0.getOperand(0).hasOneUse()) {
14880    SDValue N00 = N0.getOperand(0);
14881    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14882      return SDValue();
14883    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14884    if (!C || C->getZExtValue() != 1)
14885      return SDValue();
14886    return DAG.getNode(ISD::AND, dl, VT,
14887                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14888                                   N00.getOperand(0), N00.getOperand(1)),
14889                       DAG.getConstant(1, VT));
14890  }
14891
14892  // Optimize vectors in AVX mode:
14893  //
14894  //   v8i16 -> v8i32
14895  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
14896  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
14897  //   Concat upper and lower parts.
14898  //
14899  //   v4i32 -> v4i64
14900  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
14901  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
14902  //   Concat upper and lower parts.
14903  //
14904  if (Subtarget->hasAVX()) {
14905
14906    if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
14907        ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
14908
14909      SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
14910      SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec,
14911                                          DAG);
14912      SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec,
14913                                          DAG);
14914
14915      EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14916                                 VT.getVectorNumElements()/2);
14917
14918      OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14919      OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14920
14921      return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14922    }
14923  }
14924
14925  return SDValue();
14926}
14927
14928// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14929static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14930  unsigned X86CC = N->getConstantOperandVal(0);
14931  SDValue EFLAG = N->getOperand(1);
14932  DebugLoc DL = N->getDebugLoc();
14933
14934  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14935  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14936  // cases.
14937  if (X86CC == X86::COND_B)
14938    return DAG.getNode(ISD::AND, DL, MVT::i8,
14939                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14940                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14941                       DAG.getConstant(1, MVT::i8));
14942
14943  return SDValue();
14944}
14945
14946static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14947                                        const X86TargetLowering *XTLI) {
14948  SDValue Op0 = N->getOperand(0);
14949  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14950  // a 32-bit target where SSE doesn't support i64->FP operations.
14951  if (Op0.getOpcode() == ISD::LOAD) {
14952    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14953    EVT VT = Ld->getValueType(0);
14954    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14955        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14956        !XTLI->getSubtarget()->is64Bit() &&
14957        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14958      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14959                                          Ld->getChain(), Op0, DAG);
14960      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14961      return FILDChain;
14962    }
14963  }
14964  return SDValue();
14965}
14966
14967// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14968static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14969                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14970  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14971  // the result is either zero or one (depending on the input carry bit).
14972  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14973  if (X86::isZeroNode(N->getOperand(0)) &&
14974      X86::isZeroNode(N->getOperand(1)) &&
14975      // We don't have a good way to replace an EFLAGS use, so only do this when
14976      // dead right now.
14977      SDValue(N, 1).use_empty()) {
14978    DebugLoc DL = N->getDebugLoc();
14979    EVT VT = N->getValueType(0);
14980    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14981    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14982                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14983                                           DAG.getConstant(X86::COND_B,MVT::i8),
14984                                           N->getOperand(2)),
14985                               DAG.getConstant(1, VT));
14986    return DCI.CombineTo(N, Res1, CarryOut);
14987  }
14988
14989  return SDValue();
14990}
14991
14992// fold (add Y, (sete  X, 0)) -> adc  0, Y
14993//      (add Y, (setne X, 0)) -> sbb -1, Y
14994//      (sub (sete  X, 0), Y) -> sbb  0, Y
14995//      (sub (setne X, 0), Y) -> adc -1, Y
14996static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14997  DebugLoc DL = N->getDebugLoc();
14998
14999  // Look through ZExts.
15000  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
15001  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
15002    return SDValue();
15003
15004  SDValue SetCC = Ext.getOperand(0);
15005  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
15006    return SDValue();
15007
15008  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
15009  if (CC != X86::COND_E && CC != X86::COND_NE)
15010    return SDValue();
15011
15012  SDValue Cmp = SetCC.getOperand(1);
15013  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
15014      !X86::isZeroNode(Cmp.getOperand(1)) ||
15015      !Cmp.getOperand(0).getValueType().isInteger())
15016    return SDValue();
15017
15018  SDValue CmpOp0 = Cmp.getOperand(0);
15019  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
15020                               DAG.getConstant(1, CmpOp0.getValueType()));
15021
15022  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
15023  if (CC == X86::COND_NE)
15024    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
15025                       DL, OtherVal.getValueType(), OtherVal,
15026                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
15027  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
15028                     DL, OtherVal.getValueType(), OtherVal,
15029                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
15030}
15031
15032/// PerformADDCombine - Do target-specific dag combines on integer adds.
15033static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
15034                                 const X86Subtarget *Subtarget) {
15035  EVT VT = N->getValueType(0);
15036  SDValue Op0 = N->getOperand(0);
15037  SDValue Op1 = N->getOperand(1);
15038
15039  // Try to synthesize horizontal adds from adds of shuffles.
15040  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15041       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15042      isHorizontalBinOp(Op0, Op1, true))
15043    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
15044
15045  return OptimizeConditionalInDecrement(N, DAG);
15046}
15047
15048static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
15049                                 const X86Subtarget *Subtarget) {
15050  SDValue Op0 = N->getOperand(0);
15051  SDValue Op1 = N->getOperand(1);
15052
15053  // X86 can't encode an immediate LHS of a sub. See if we can push the
15054  // negation into a preceding instruction.
15055  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
15056    // If the RHS of the sub is a XOR with one use and a constant, invert the
15057    // immediate. Then add one to the LHS of the sub so we can turn
15058    // X-Y -> X+~Y+1, saving one register.
15059    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
15060        isa<ConstantSDNode>(Op1.getOperand(1))) {
15061      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
15062      EVT VT = Op0.getValueType();
15063      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
15064                                   Op1.getOperand(0),
15065                                   DAG.getConstant(~XorC, VT));
15066      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
15067                         DAG.getConstant(C->getAPIntValue()+1, VT));
15068    }
15069  }
15070
15071  // Try to synthesize horizontal adds from adds of shuffles.
15072  EVT VT = N->getValueType(0);
15073  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15074       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15075      isHorizontalBinOp(Op0, Op1, true))
15076    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15077
15078  return OptimizeConditionalInDecrement(N, DAG);
15079}
15080
15081SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15082                                             DAGCombinerInfo &DCI) const {
15083  SelectionDAG &DAG = DCI.DAG;
15084  switch (N->getOpcode()) {
15085  default: break;
15086  case ISD::EXTRACT_VECTOR_ELT:
15087    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15088  case ISD::VSELECT:
15089  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15090  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
15091  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15092  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15093  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15094  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15095  case ISD::SHL:
15096  case ISD::SRA:
15097  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15098  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15099  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15100  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15101  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
15102  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15103  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15104  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15105  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15106  case X86ISD::FXOR:
15107  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15108  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15109  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15110  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
15111  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, Subtarget);
15112  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
15113  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
15114  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
15115  case X86ISD::SHUFP:       // Handle all target specific shuffles
15116  case X86ISD::PALIGN:
15117  case X86ISD::UNPCKH:
15118  case X86ISD::UNPCKL:
15119  case X86ISD::MOVHLPS:
15120  case X86ISD::MOVLHPS:
15121  case X86ISD::PSHUFD:
15122  case X86ISD::PSHUFHW:
15123  case X86ISD::PSHUFLW:
15124  case X86ISD::MOVSS:
15125  case X86ISD::MOVSD:
15126  case X86ISD::VPERMILP:
15127  case X86ISD::VPERM2X128:
15128  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
15129  }
15130
15131  return SDValue();
15132}
15133
15134/// isTypeDesirableForOp - Return true if the target has native support for
15135/// the specified value type and it is 'desirable' to use the type for the
15136/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
15137/// instruction encodings are longer and some i16 instructions are slow.
15138bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
15139  if (!isTypeLegal(VT))
15140    return false;
15141  if (VT != MVT::i16)
15142    return true;
15143
15144  switch (Opc) {
15145  default:
15146    return true;
15147  case ISD::LOAD:
15148  case ISD::SIGN_EXTEND:
15149  case ISD::ZERO_EXTEND:
15150  case ISD::ANY_EXTEND:
15151  case ISD::SHL:
15152  case ISD::SRL:
15153  case ISD::SUB:
15154  case ISD::ADD:
15155  case ISD::MUL:
15156  case ISD::AND:
15157  case ISD::OR:
15158  case ISD::XOR:
15159    return false;
15160  }
15161}
15162
15163/// IsDesirableToPromoteOp - This method query the target whether it is
15164/// beneficial for dag combiner to promote the specified node. If true, it
15165/// should return the desired promotion type by reference.
15166bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15167  EVT VT = Op.getValueType();
15168  if (VT != MVT::i16)
15169    return false;
15170
15171  bool Promote = false;
15172  bool Commute = false;
15173  switch (Op.getOpcode()) {
15174  default: break;
15175  case ISD::LOAD: {
15176    LoadSDNode *LD = cast<LoadSDNode>(Op);
15177    // If the non-extending load has a single use and it's not live out, then it
15178    // might be folded.
15179    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15180                                                     Op.hasOneUse()*/) {
15181      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15182             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15183        // The only case where we'd want to promote LOAD (rather then it being
15184        // promoted as an operand is when it's only use is liveout.
15185        if (UI->getOpcode() != ISD::CopyToReg)
15186          return false;
15187      }
15188    }
15189    Promote = true;
15190    break;
15191  }
15192  case ISD::SIGN_EXTEND:
15193  case ISD::ZERO_EXTEND:
15194  case ISD::ANY_EXTEND:
15195    Promote = true;
15196    break;
15197  case ISD::SHL:
15198  case ISD::SRL: {
15199    SDValue N0 = Op.getOperand(0);
15200    // Look out for (store (shl (load), x)).
15201    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15202      return false;
15203    Promote = true;
15204    break;
15205  }
15206  case ISD::ADD:
15207  case ISD::MUL:
15208  case ISD::AND:
15209  case ISD::OR:
15210  case ISD::XOR:
15211    Commute = true;
15212    // fallthrough
15213  case ISD::SUB: {
15214    SDValue N0 = Op.getOperand(0);
15215    SDValue N1 = Op.getOperand(1);
15216    if (!Commute && MayFoldLoad(N1))
15217      return false;
15218    // Avoid disabling potential load folding opportunities.
15219    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15220      return false;
15221    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15222      return false;
15223    Promote = true;
15224  }
15225  }
15226
15227  PVT = MVT::i32;
15228  return Promote;
15229}
15230
15231//===----------------------------------------------------------------------===//
15232//                           X86 Inline Assembly Support
15233//===----------------------------------------------------------------------===//
15234
15235namespace {
15236  // Helper to match a string separated by whitespace.
15237  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15238    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15239
15240    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15241      StringRef piece(*args[i]);
15242      if (!s.startswith(piece)) // Check if the piece matches.
15243        return false;
15244
15245      s = s.substr(piece.size());
15246      StringRef::size_type pos = s.find_first_not_of(" \t");
15247      if (pos == 0) // We matched a prefix.
15248        return false;
15249
15250      s = s.substr(pos);
15251    }
15252
15253    return s.empty();
15254  }
15255  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15256}
15257
15258bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15259  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15260
15261  std::string AsmStr = IA->getAsmString();
15262
15263  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15264  if (!Ty || Ty->getBitWidth() % 16 != 0)
15265    return false;
15266
15267  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15268  SmallVector<StringRef, 4> AsmPieces;
15269  SplitString(AsmStr, AsmPieces, ";\n");
15270
15271  switch (AsmPieces.size()) {
15272  default: return false;
15273  case 1:
15274    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15275    // we will turn this bswap into something that will be lowered to logical
15276    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15277    // lower so don't worry about this.
15278    // bswap $0
15279    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15280        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15281        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15282        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15283        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15284        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15285      // No need to check constraints, nothing other than the equivalent of
15286      // "=r,0" would be valid here.
15287      return IntrinsicLowering::LowerToByteSwap(CI);
15288    }
15289
15290    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15291    if (CI->getType()->isIntegerTy(16) &&
15292        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15293        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15294         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15295      AsmPieces.clear();
15296      const std::string &ConstraintsStr = IA->getConstraintString();
15297      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15298      std::sort(AsmPieces.begin(), AsmPieces.end());
15299      if (AsmPieces.size() == 4 &&
15300          AsmPieces[0] == "~{cc}" &&
15301          AsmPieces[1] == "~{dirflag}" &&
15302          AsmPieces[2] == "~{flags}" &&
15303          AsmPieces[3] == "~{fpsr}")
15304      return IntrinsicLowering::LowerToByteSwap(CI);
15305    }
15306    break;
15307  case 3:
15308    if (CI->getType()->isIntegerTy(32) &&
15309        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15310        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15311        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15312        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15313      AsmPieces.clear();
15314      const std::string &ConstraintsStr = IA->getConstraintString();
15315      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15316      std::sort(AsmPieces.begin(), AsmPieces.end());
15317      if (AsmPieces.size() == 4 &&
15318          AsmPieces[0] == "~{cc}" &&
15319          AsmPieces[1] == "~{dirflag}" &&
15320          AsmPieces[2] == "~{flags}" &&
15321          AsmPieces[3] == "~{fpsr}")
15322        return IntrinsicLowering::LowerToByteSwap(CI);
15323    }
15324
15325    if (CI->getType()->isIntegerTy(64)) {
15326      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15327      if (Constraints.size() >= 2 &&
15328          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15329          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15330        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15331        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15332            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15333            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15334          return IntrinsicLowering::LowerToByteSwap(CI);
15335      }
15336    }
15337    break;
15338  }
15339  return false;
15340}
15341
15342
15343
15344/// getConstraintType - Given a constraint letter, return the type of
15345/// constraint it is for this target.
15346X86TargetLowering::ConstraintType
15347X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15348  if (Constraint.size() == 1) {
15349    switch (Constraint[0]) {
15350    case 'R':
15351    case 'q':
15352    case 'Q':
15353    case 'f':
15354    case 't':
15355    case 'u':
15356    case 'y':
15357    case 'x':
15358    case 'Y':
15359    case 'l':
15360      return C_RegisterClass;
15361    case 'a':
15362    case 'b':
15363    case 'c':
15364    case 'd':
15365    case 'S':
15366    case 'D':
15367    case 'A':
15368      return C_Register;
15369    case 'I':
15370    case 'J':
15371    case 'K':
15372    case 'L':
15373    case 'M':
15374    case 'N':
15375    case 'G':
15376    case 'C':
15377    case 'e':
15378    case 'Z':
15379      return C_Other;
15380    default:
15381      break;
15382    }
15383  }
15384  return TargetLowering::getConstraintType(Constraint);
15385}
15386
15387/// Examine constraint type and operand type and determine a weight value.
15388/// This object must already have been set up with the operand type
15389/// and the current alternative constraint selected.
15390TargetLowering::ConstraintWeight
15391  X86TargetLowering::getSingleConstraintMatchWeight(
15392    AsmOperandInfo &info, const char *constraint) const {
15393  ConstraintWeight weight = CW_Invalid;
15394  Value *CallOperandVal = info.CallOperandVal;
15395    // If we don't have a value, we can't do a match,
15396    // but allow it at the lowest weight.
15397  if (CallOperandVal == NULL)
15398    return CW_Default;
15399  Type *type = CallOperandVal->getType();
15400  // Look at the constraint type.
15401  switch (*constraint) {
15402  default:
15403    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15404  case 'R':
15405  case 'q':
15406  case 'Q':
15407  case 'a':
15408  case 'b':
15409  case 'c':
15410  case 'd':
15411  case 'S':
15412  case 'D':
15413  case 'A':
15414    if (CallOperandVal->getType()->isIntegerTy())
15415      weight = CW_SpecificReg;
15416    break;
15417  case 'f':
15418  case 't':
15419  case 'u':
15420      if (type->isFloatingPointTy())
15421        weight = CW_SpecificReg;
15422      break;
15423  case 'y':
15424      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15425        weight = CW_SpecificReg;
15426      break;
15427  case 'x':
15428  case 'Y':
15429    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15430        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15431      weight = CW_Register;
15432    break;
15433  case 'I':
15434    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15435      if (C->getZExtValue() <= 31)
15436        weight = CW_Constant;
15437    }
15438    break;
15439  case 'J':
15440    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15441      if (C->getZExtValue() <= 63)
15442        weight = CW_Constant;
15443    }
15444    break;
15445  case 'K':
15446    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15447      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15448        weight = CW_Constant;
15449    }
15450    break;
15451  case 'L':
15452    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15453      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15454        weight = CW_Constant;
15455    }
15456    break;
15457  case 'M':
15458    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15459      if (C->getZExtValue() <= 3)
15460        weight = CW_Constant;
15461    }
15462    break;
15463  case 'N':
15464    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15465      if (C->getZExtValue() <= 0xff)
15466        weight = CW_Constant;
15467    }
15468    break;
15469  case 'G':
15470  case 'C':
15471    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15472      weight = CW_Constant;
15473    }
15474    break;
15475  case 'e':
15476    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15477      if ((C->getSExtValue() >= -0x80000000LL) &&
15478          (C->getSExtValue() <= 0x7fffffffLL))
15479        weight = CW_Constant;
15480    }
15481    break;
15482  case 'Z':
15483    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15484      if (C->getZExtValue() <= 0xffffffff)
15485        weight = CW_Constant;
15486    }
15487    break;
15488  }
15489  return weight;
15490}
15491
15492/// LowerXConstraint - try to replace an X constraint, which matches anything,
15493/// with another that has more specific requirements based on the type of the
15494/// corresponding operand.
15495const char *X86TargetLowering::
15496LowerXConstraint(EVT ConstraintVT) const {
15497  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15498  // 'f' like normal targets.
15499  if (ConstraintVT.isFloatingPoint()) {
15500    if (Subtarget->hasSSE2())
15501      return "Y";
15502    if (Subtarget->hasSSE1())
15503      return "x";
15504  }
15505
15506  return TargetLowering::LowerXConstraint(ConstraintVT);
15507}
15508
15509/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15510/// vector.  If it is invalid, don't add anything to Ops.
15511void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15512                                                     std::string &Constraint,
15513                                                     std::vector<SDValue>&Ops,
15514                                                     SelectionDAG &DAG) const {
15515  SDValue Result(0, 0);
15516
15517  // Only support length 1 constraints for now.
15518  if (Constraint.length() > 1) return;
15519
15520  char ConstraintLetter = Constraint[0];
15521  switch (ConstraintLetter) {
15522  default: break;
15523  case 'I':
15524    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15525      if (C->getZExtValue() <= 31) {
15526        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15527        break;
15528      }
15529    }
15530    return;
15531  case 'J':
15532    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15533      if (C->getZExtValue() <= 63) {
15534        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15535        break;
15536      }
15537    }
15538    return;
15539  case 'K':
15540    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15541      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15542        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15543        break;
15544      }
15545    }
15546    return;
15547  case 'N':
15548    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15549      if (C->getZExtValue() <= 255) {
15550        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15551        break;
15552      }
15553    }
15554    return;
15555  case 'e': {
15556    // 32-bit signed value
15557    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15558      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15559                                           C->getSExtValue())) {
15560        // Widen to 64 bits here to get it sign extended.
15561        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15562        break;
15563      }
15564    // FIXME gcc accepts some relocatable values here too, but only in certain
15565    // memory models; it's complicated.
15566    }
15567    return;
15568  }
15569  case 'Z': {
15570    // 32-bit unsigned value
15571    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15572      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15573                                           C->getZExtValue())) {
15574        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15575        break;
15576      }
15577    }
15578    // FIXME gcc accepts some relocatable values here too, but only in certain
15579    // memory models; it's complicated.
15580    return;
15581  }
15582  case 'i': {
15583    // Literal immediates are always ok.
15584    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15585      // Widen to 64 bits here to get it sign extended.
15586      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15587      break;
15588    }
15589
15590    // In any sort of PIC mode addresses need to be computed at runtime by
15591    // adding in a register or some sort of table lookup.  These can't
15592    // be used as immediates.
15593    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15594      return;
15595
15596    // If we are in non-pic codegen mode, we allow the address of a global (with
15597    // an optional displacement) to be used with 'i'.
15598    GlobalAddressSDNode *GA = 0;
15599    int64_t Offset = 0;
15600
15601    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15602    while (1) {
15603      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15604        Offset += GA->getOffset();
15605        break;
15606      } else if (Op.getOpcode() == ISD::ADD) {
15607        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15608          Offset += C->getZExtValue();
15609          Op = Op.getOperand(0);
15610          continue;
15611        }
15612      } else if (Op.getOpcode() == ISD::SUB) {
15613        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15614          Offset += -C->getZExtValue();
15615          Op = Op.getOperand(0);
15616          continue;
15617        }
15618      }
15619
15620      // Otherwise, this isn't something we can handle, reject it.
15621      return;
15622    }
15623
15624    const GlobalValue *GV = GA->getGlobal();
15625    // If we require an extra load to get this address, as in PIC mode, we
15626    // can't accept it.
15627    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15628                                                        getTargetMachine())))
15629      return;
15630
15631    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15632                                        GA->getValueType(0), Offset);
15633    break;
15634  }
15635  }
15636
15637  if (Result.getNode()) {
15638    Ops.push_back(Result);
15639    return;
15640  }
15641  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15642}
15643
15644std::pair<unsigned, const TargetRegisterClass*>
15645X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15646                                                EVT VT) const {
15647  // First, see if this is a constraint that directly corresponds to an LLVM
15648  // register class.
15649  if (Constraint.size() == 1) {
15650    // GCC Constraint Letters
15651    switch (Constraint[0]) {
15652    default: break;
15653      // TODO: Slight differences here in allocation order and leaving
15654      // RIP in the class. Do they matter any more here than they do
15655      // in the normal allocation?
15656    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15657      if (Subtarget->is64Bit()) {
15658        if (VT == MVT::i32 || VT == MVT::f32)
15659          return std::make_pair(0U, &X86::GR32RegClass);
15660        if (VT == MVT::i16)
15661          return std::make_pair(0U, &X86::GR16RegClass);
15662        if (VT == MVT::i8 || VT == MVT::i1)
15663          return std::make_pair(0U, &X86::GR8RegClass);
15664        if (VT == MVT::i64 || VT == MVT::f64)
15665          return std::make_pair(0U, &X86::GR64RegClass);
15666        break;
15667      }
15668      // 32-bit fallthrough
15669    case 'Q':   // Q_REGS
15670      if (VT == MVT::i32 || VT == MVT::f32)
15671        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
15672      if (VT == MVT::i16)
15673        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
15674      if (VT == MVT::i8 || VT == MVT::i1)
15675        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
15676      if (VT == MVT::i64)
15677        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
15678      break;
15679    case 'r':   // GENERAL_REGS
15680    case 'l':   // INDEX_REGS
15681      if (VT == MVT::i8 || VT == MVT::i1)
15682        return std::make_pair(0U, &X86::GR8RegClass);
15683      if (VT == MVT::i16)
15684        return std::make_pair(0U, &X86::GR16RegClass);
15685      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15686        return std::make_pair(0U, &X86::GR32RegClass);
15687      return std::make_pair(0U, &X86::GR64RegClass);
15688    case 'R':   // LEGACY_REGS
15689      if (VT == MVT::i8 || VT == MVT::i1)
15690        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
15691      if (VT == MVT::i16)
15692        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
15693      if (VT == MVT::i32 || !Subtarget->is64Bit())
15694        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
15695      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
15696    case 'f':  // FP Stack registers.
15697      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15698      // value to the correct fpstack register class.
15699      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15700        return std::make_pair(0U, &X86::RFP32RegClass);
15701      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15702        return std::make_pair(0U, &X86::RFP64RegClass);
15703      return std::make_pair(0U, &X86::RFP80RegClass);
15704    case 'y':   // MMX_REGS if MMX allowed.
15705      if (!Subtarget->hasMMX()) break;
15706      return std::make_pair(0U, &X86::VR64RegClass);
15707    case 'Y':   // SSE_REGS if SSE2 allowed
15708      if (!Subtarget->hasSSE2()) break;
15709      // FALL THROUGH.
15710    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15711      if (!Subtarget->hasSSE1()) break;
15712
15713      switch (VT.getSimpleVT().SimpleTy) {
15714      default: break;
15715      // Scalar SSE types.
15716      case MVT::f32:
15717      case MVT::i32:
15718        return std::make_pair(0U, &X86::FR32RegClass);
15719      case MVT::f64:
15720      case MVT::i64:
15721        return std::make_pair(0U, &X86::FR64RegClass);
15722      // Vector types.
15723      case MVT::v16i8:
15724      case MVT::v8i16:
15725      case MVT::v4i32:
15726      case MVT::v2i64:
15727      case MVT::v4f32:
15728      case MVT::v2f64:
15729        return std::make_pair(0U, &X86::VR128RegClass);
15730      // AVX types.
15731      case MVT::v32i8:
15732      case MVT::v16i16:
15733      case MVT::v8i32:
15734      case MVT::v4i64:
15735      case MVT::v8f32:
15736      case MVT::v4f64:
15737        return std::make_pair(0U, &X86::VR256RegClass);
15738      }
15739      break;
15740    }
15741  }
15742
15743  // Use the default implementation in TargetLowering to convert the register
15744  // constraint into a member of a register class.
15745  std::pair<unsigned, const TargetRegisterClass*> Res;
15746  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15747
15748  // Not found as a standard register?
15749  if (Res.second == 0) {
15750    // Map st(0) -> st(7) -> ST0
15751    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15752        tolower(Constraint[1]) == 's' &&
15753        tolower(Constraint[2]) == 't' &&
15754        Constraint[3] == '(' &&
15755        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15756        Constraint[5] == ')' &&
15757        Constraint[6] == '}') {
15758
15759      Res.first = X86::ST0+Constraint[4]-'0';
15760      Res.second = &X86::RFP80RegClass;
15761      return Res;
15762    }
15763
15764    // GCC allows "st(0)" to be called just plain "st".
15765    if (StringRef("{st}").equals_lower(Constraint)) {
15766      Res.first = X86::ST0;
15767      Res.second = &X86::RFP80RegClass;
15768      return Res;
15769    }
15770
15771    // flags -> EFLAGS
15772    if (StringRef("{flags}").equals_lower(Constraint)) {
15773      Res.first = X86::EFLAGS;
15774      Res.second = &X86::CCRRegClass;
15775      return Res;
15776    }
15777
15778    // 'A' means EAX + EDX.
15779    if (Constraint == "A") {
15780      Res.first = X86::EAX;
15781      Res.second = &X86::GR32_ADRegClass;
15782      return Res;
15783    }
15784    return Res;
15785  }
15786
15787  // Otherwise, check to see if this is a register class of the wrong value
15788  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15789  // turn into {ax},{dx}.
15790  if (Res.second->hasType(VT))
15791    return Res;   // Correct type already, nothing to do.
15792
15793  // All of the single-register GCC register classes map their values onto
15794  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15795  // really want an 8-bit or 32-bit register, map to the appropriate register
15796  // class and return the appropriate register.
15797  if (Res.second == &X86::GR16RegClass) {
15798    if (VT == MVT::i8) {
15799      unsigned DestReg = 0;
15800      switch (Res.first) {
15801      default: break;
15802      case X86::AX: DestReg = X86::AL; break;
15803      case X86::DX: DestReg = X86::DL; break;
15804      case X86::CX: DestReg = X86::CL; break;
15805      case X86::BX: DestReg = X86::BL; break;
15806      }
15807      if (DestReg) {
15808        Res.first = DestReg;
15809        Res.second = &X86::GR8RegClass;
15810      }
15811    } else if (VT == MVT::i32) {
15812      unsigned DestReg = 0;
15813      switch (Res.first) {
15814      default: break;
15815      case X86::AX: DestReg = X86::EAX; break;
15816      case X86::DX: DestReg = X86::EDX; break;
15817      case X86::CX: DestReg = X86::ECX; break;
15818      case X86::BX: DestReg = X86::EBX; break;
15819      case X86::SI: DestReg = X86::ESI; break;
15820      case X86::DI: DestReg = X86::EDI; break;
15821      case X86::BP: DestReg = X86::EBP; break;
15822      case X86::SP: DestReg = X86::ESP; break;
15823      }
15824      if (DestReg) {
15825        Res.first = DestReg;
15826        Res.second = &X86::GR32RegClass;
15827      }
15828    } else if (VT == MVT::i64) {
15829      unsigned DestReg = 0;
15830      switch (Res.first) {
15831      default: break;
15832      case X86::AX: DestReg = X86::RAX; break;
15833      case X86::DX: DestReg = X86::RDX; break;
15834      case X86::CX: DestReg = X86::RCX; break;
15835      case X86::BX: DestReg = X86::RBX; break;
15836      case X86::SI: DestReg = X86::RSI; break;
15837      case X86::DI: DestReg = X86::RDI; break;
15838      case X86::BP: DestReg = X86::RBP; break;
15839      case X86::SP: DestReg = X86::RSP; break;
15840      }
15841      if (DestReg) {
15842        Res.first = DestReg;
15843        Res.second = &X86::GR64RegClass;
15844      }
15845    }
15846  } else if (Res.second == &X86::FR32RegClass ||
15847             Res.second == &X86::FR64RegClass ||
15848             Res.second == &X86::VR128RegClass) {
15849    // Handle references to XMM physical registers that got mapped into the
15850    // wrong class.  This can happen with constraints like {xmm0} where the
15851    // target independent register mapper will just pick the first match it can
15852    // find, ignoring the required type.
15853    if (VT == MVT::f32)
15854      Res.second = &X86::FR32RegClass;
15855    else if (VT == MVT::f64)
15856      Res.second = &X86::FR64RegClass;
15857    else if (X86::VR128RegClass.hasType(VT))
15858      Res.second = &X86::VR128RegClass;
15859  }
15860
15861  return Res;
15862}
15863