X86ISelLowering.cpp revision d2070b00efb97ee32e360d53edfd7bf6de88d62c
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VariadicFunction.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/Target/TargetOptions.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasSSE2();
172  X86ScalarSSEf32 = Subtarget->hasSSE1();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
184  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
185
186  // For 64-bit since we have so many registers use the ILP scheduler, for
187  // 32-bit code use the register pressure specific scheduling.
188  if (Subtarget->is64Bit())
189    setSchedulingPreference(Sched::ILP);
190  else
191    setSchedulingPreference(Sched::RegPressure);
192  setStackPointerRegisterToSaveRestore(X86StackPtr);
193
194  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
195    // Setup Windows compiler runtime calls.
196    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
197    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
198    setLibcallName(RTLIB::SREM_I64, "_allrem");
199    setLibcallName(RTLIB::UREM_I64, "_aullrem");
200    setLibcallName(RTLIB::MUL_I64, "_allmul");
201    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
202    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
203    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
210  }
211
212  if (Subtarget->isTargetDarwin()) {
213    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
214    setUseUnderscoreSetJmp(false);
215    setUseUnderscoreLongJmp(false);
216  } else if (Subtarget->isTargetMingw()) {
217    // MS runtime is weird: it exports _setjmp, but longjmp!
218    setUseUnderscoreSetJmp(true);
219    setUseUnderscoreLongJmp(false);
220  } else {
221    setUseUnderscoreSetJmp(true);
222    setUseUnderscoreLongJmp(true);
223  }
224
225  // Set up the register classes.
226  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
227  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
228  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
229  if (Subtarget->is64Bit())
230    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
231
232  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
233
234  // We don't accept any truncstore of integer registers.
235  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
236  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
239  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
240  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
241
242  // SETOEQ and SETUNE require checking two conditions.
243  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
249
250  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
251  // operation.
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
255
256  if (Subtarget->is64Bit()) {
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
259  } else if (!TM.Options.UseSoftFloat) {
260    // We have an algorithm for SSE2->double, and we turn this into a
261    // 64-bit FILD followed by conditional FADD for other targets.
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
263    // We have an algorithm for SSE2, and we turn this into a 64-bit
264    // FILD for other targets.
265    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
266  }
267
268  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
269  // this operation.
270  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
272
273  if (!TM.Options.UseSoftFloat) {
274    // SSE has no i16 to fp conversion, only i32
275    if (X86ScalarSSEf32) {
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277      // f32 and f64 cases are Legal, f80 case is not
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
279    } else {
280      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
282    }
283  } else {
284    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
286  }
287
288  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
289  // are Legal, f80 is custom lowered.
290  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
291  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
292
293  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
294  // this operation.
295  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
297
298  if (X86ScalarSSEf32) {
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
300    // f32 and f64 cases are Legal, f80 case is not
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
302  } else {
303    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
305  }
306
307  // Handle FP_TO_UINT by promoting the destination to a larger signed
308  // conversion.
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
312
313  if (Subtarget->is64Bit()) {
314    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
316  } else if (!TM.Options.UseSoftFloat) {
317    // Since AVX is a superset of SSE3, only check for SSE here.
318    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
319      // Expand FP_TO_UINT into a select.
320      // FIXME: We would like to use a Custom expander here eventually to do
321      // the optimal thing for SSE vs. the default expansion in the legalizer.
322      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
323    else
324      // With SSE3 we can use fisttpll to convert to a signed i64; without
325      // SSE, we're stuck with a fistpll.
326      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
327  }
328
329  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
330  if (!X86ScalarSSEf64) {
331    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
332    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
333    if (Subtarget->is64Bit()) {
334      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
335      // Without SSE, i64->f64 goes through memory.
336      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
337    }
338  }
339
340  // Scalar integer divide and remainder are lowered to use operations that
341  // produce two results, to match the available instructions. This exposes
342  // the two-result form to trivial CSE, which is able to combine x/y and x%y
343  // into a single instruction.
344  //
345  // Scalar integer multiply-high is also lowered to use two-result
346  // operations, to match the available instructions. However, plain multiply
347  // (low) operations are left as Legal, as there are single-result
348  // instructions for this in x86. Using the two-result multiply instructions
349  // when both high and low results are needed must be arranged by dagcombine.
350  for (unsigned i = 0, e = 4; i != e; ++i) {
351    MVT VT = IntVTs[i];
352    setOperationAction(ISD::MULHS, VT, Expand);
353    setOperationAction(ISD::MULHU, VT, Expand);
354    setOperationAction(ISD::SDIV, VT, Expand);
355    setOperationAction(ISD::UDIV, VT, Expand);
356    setOperationAction(ISD::SREM, VT, Expand);
357    setOperationAction(ISD::UREM, VT, Expand);
358
359    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
360    setOperationAction(ISD::ADDC, VT, Custom);
361    setOperationAction(ISD::ADDE, VT, Custom);
362    setOperationAction(ISD::SUBC, VT, Custom);
363    setOperationAction(ISD::SUBE, VT, Custom);
364  }
365
366  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
367  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
368  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
369  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
370  if (Subtarget->is64Bit())
371    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
375  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
379  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
380
381  // Promote the i8 variants and force them on up to i32 which has a shorter
382  // encoding.
383  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
384  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
385  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
386  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
387  if (Subtarget->hasBMI()) {
388    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
389    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
390    if (Subtarget->is64Bit())
391      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
392  } else {
393    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
394    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
397  }
398
399  if (Subtarget->hasLZCNT()) {
400    // When promoting the i8 variants, force them to i32 for a shorter
401    // encoding.
402    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
403    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
404    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
405    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
406    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
407    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
408    if (Subtarget->is64Bit())
409      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
410  } else {
411    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
412    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
413    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
415    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
416    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
417    if (Subtarget->is64Bit()) {
418      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
419      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
420    }
421  }
422
423  if (Subtarget->hasPOPCNT()) {
424    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
425  } else {
426    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
427    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
428    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
429    if (Subtarget->is64Bit())
430      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
431  }
432
433  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
434  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
435
436  // These should be promoted to a larger select which is supported.
437  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
438  // X86 wants to expand cmov itself.
439  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
440  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
443  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
446  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
451  if (Subtarget->is64Bit()) {
452    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
453    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
454  }
455  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
456
457  // Darwin ABI issue.
458  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
459  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
460  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
461  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
462  if (Subtarget->is64Bit())
463    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
464  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
465  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
466  if (Subtarget->is64Bit()) {
467    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
468    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
469    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
470    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
471    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
472  }
473  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
474  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
475  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
476  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
477  if (Subtarget->is64Bit()) {
478    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
479    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
480    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
481  }
482
483  if (Subtarget->hasSSE1())
484    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
485
486  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
487  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
488
489  // On X86 and X86-64, atomic operations are lowered to locked instructions.
490  // Locked instructions, in turn, have implicit fence semantics (all memory
491  // operations are flushed before issuing the locked instruction, and they
492  // are not buffered), so we can fold away the common pattern of
493  // fence-atomic-fence.
494  setShouldFoldAtomicFences(true);
495
496  // Expand certain atomics
497  for (unsigned i = 0, e = 4; i != e; ++i) {
498    MVT VT = IntVTs[i];
499    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
501    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
502  }
503
504  if (!Subtarget->is64Bit()) {
505    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
513  }
514
515  if (Subtarget->hasCmpxchg16b()) {
516    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
517  }
518
519  // FIXME - use subtarget debug flags
520  if (!Subtarget->isTargetDarwin() &&
521      !Subtarget->isTargetELF() &&
522      !Subtarget->isTargetCygMing()) {
523    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
524  }
525
526  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
527  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
528  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
529  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
530  if (Subtarget->is64Bit()) {
531    setExceptionPointerRegister(X86::RAX);
532    setExceptionSelectorRegister(X86::RDX);
533  } else {
534    setExceptionPointerRegister(X86::EAX);
535    setExceptionSelectorRegister(X86::EDX);
536  }
537  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
538  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
539
540  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
541  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
542
543  setOperationAction(ISD::TRAP, MVT::Other, Legal);
544
545  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
546  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
547  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
548  if (Subtarget->is64Bit()) {
549    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
550    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
551  } else {
552    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
553    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
554  }
555
556  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
557  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
558
559  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
560    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
561                       MVT::i64 : MVT::i32, Custom);
562  else if (TM.Options.EnableSegmentedStacks)
563    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
564                       MVT::i64 : MVT::i32, Custom);
565  else
566    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
567                       MVT::i64 : MVT::i32, Expand);
568
569  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
570    // f32 and f64 use SSE.
571    // Set up the FP register classes.
572    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
573    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
574
575    // Use ANDPD to simulate FABS.
576    setOperationAction(ISD::FABS , MVT::f64, Custom);
577    setOperationAction(ISD::FABS , MVT::f32, Custom);
578
579    // Use XORP to simulate FNEG.
580    setOperationAction(ISD::FNEG , MVT::f64, Custom);
581    setOperationAction(ISD::FNEG , MVT::f32, Custom);
582
583    // Use ANDPD and ORPD to simulate FCOPYSIGN.
584    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
585    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
586
587    // Lower this to FGETSIGNx86 plus an AND.
588    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
589    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
590
591    // We don't support sin/cos/fmod
592    setOperationAction(ISD::FSIN , MVT::f64, Expand);
593    setOperationAction(ISD::FCOS , MVT::f64, Expand);
594    setOperationAction(ISD::FSIN , MVT::f32, Expand);
595    setOperationAction(ISD::FCOS , MVT::f32, Expand);
596
597    // Expand FP immediates into loads from the stack, except for the special
598    // cases we handle.
599    addLegalFPImmediate(APFloat(+0.0)); // xorpd
600    addLegalFPImmediate(APFloat(+0.0f)); // xorps
601  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
602    // Use SSE for f32, x87 for f64.
603    // Set up the FP register classes.
604    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
605    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
606
607    // Use ANDPS to simulate FABS.
608    setOperationAction(ISD::FABS , MVT::f32, Custom);
609
610    // Use XORP to simulate FNEG.
611    setOperationAction(ISD::FNEG , MVT::f32, Custom);
612
613    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
614
615    // Use ANDPS and ORPS to simulate FCOPYSIGN.
616    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
617    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
618
619    // We don't support sin/cos/fmod
620    setOperationAction(ISD::FSIN , MVT::f32, Expand);
621    setOperationAction(ISD::FCOS , MVT::f32, Expand);
622
623    // Special cases we handle for FP constants.
624    addLegalFPImmediate(APFloat(+0.0f)); // xorps
625    addLegalFPImmediate(APFloat(+0.0)); // FLD0
626    addLegalFPImmediate(APFloat(+1.0)); // FLD1
627    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
628    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
629
630    if (!TM.Options.UnsafeFPMath) {
631      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
632      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
633    }
634  } else if (!TM.Options.UseSoftFloat) {
635    // f32 and f64 in x87.
636    // Set up the FP register classes.
637    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
638    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
639
640    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
641    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
642    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
643    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
644
645    if (!TM.Options.UnsafeFPMath) {
646      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
647      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
648    }
649    addLegalFPImmediate(APFloat(+0.0)); // FLD0
650    addLegalFPImmediate(APFloat(+1.0)); // FLD1
651    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
652    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
653    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
654    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
655    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
656    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
657  }
658
659  // We don't support FMA.
660  setOperationAction(ISD::FMA, MVT::f64, Expand);
661  setOperationAction(ISD::FMA, MVT::f32, Expand);
662
663  // Long double always uses X87.
664  if (!TM.Options.UseSoftFloat) {
665    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
666    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
667    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
668    {
669      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
670      addLegalFPImmediate(TmpFlt);  // FLD0
671      TmpFlt.changeSign();
672      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
673
674      bool ignored;
675      APFloat TmpFlt2(+1.0);
676      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
677                      &ignored);
678      addLegalFPImmediate(TmpFlt2);  // FLD1
679      TmpFlt2.changeSign();
680      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
681    }
682
683    if (!TM.Options.UnsafeFPMath) {
684      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
685      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
686    }
687
688    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
689    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
690    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
691    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
692    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
693    setOperationAction(ISD::FMA, MVT::f80, Expand);
694  }
695
696  // Always use a library call for pow.
697  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
698  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
699  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
700
701  setOperationAction(ISD::FLOG, MVT::f80, Expand);
702  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
703  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
704  setOperationAction(ISD::FEXP, MVT::f80, Expand);
705  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
706
707  // First set operation action for all vector types to either promote
708  // (for widening) or expand (for scalarization). Then we will selectively
709  // turn on ones that can be effectively codegen'd.
710  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
711       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
712    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
729    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
730    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
764    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
768    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
769    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
770         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
771      setTruncStoreAction((MVT::SimpleValueType)VT,
772                          (MVT::SimpleValueType)InnerVT, Expand);
773    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
774    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
775    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
776  }
777
778  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
779  // with -msoft-float, disable use of MMX as well.
780  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
781    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
782    // No operations on x86mmx supported, everything uses intrinsics.
783  }
784
785  // MMX-sized vectors (other than x86mmx) are expected to be expanded
786  // into smaller operations.
787  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
788  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
789  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
790  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
791  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
792  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
793  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
794  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
795  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
796  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
797  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
798  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
799  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
800  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
801  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
802  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
805  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
806  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
807  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
808  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
809  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
810  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
811  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
814  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
815  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
816
817  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
818    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
819
820    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
823    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
824    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
825    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
826    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
827    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
828    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
829    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
830    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
831    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
832  }
833
834  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
835    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
836
837    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
838    // registers cannot be used even for integer operations.
839    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
840    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
841    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
842    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
843
844    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
845    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
846    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
847    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
848    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
849    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
850    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
851    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
852    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
853    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
854    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
857    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
858    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
859    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
860
861    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
863    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
864    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
865
866    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
867    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
869    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
870    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
871
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
875    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
876    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
877
878    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
879    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
880      EVT VT = (MVT::SimpleValueType)i;
881      // Do not attempt to custom lower non-power-of-2 vectors
882      if (!isPowerOf2_32(VT.getVectorNumElements()))
883        continue;
884      // Do not attempt to custom lower non-128-bit vectors
885      if (!VT.is128BitVector())
886        continue;
887      setOperationAction(ISD::BUILD_VECTOR,
888                         VT.getSimpleVT().SimpleTy, Custom);
889      setOperationAction(ISD::VECTOR_SHUFFLE,
890                         VT.getSimpleVT().SimpleTy, Custom);
891      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
892                         VT.getSimpleVT().SimpleTy, Custom);
893    }
894
895    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
896    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
897    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
898    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
899    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
900    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
901
902    if (Subtarget->is64Bit()) {
903      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
904      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
905    }
906
907    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
908    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
909      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
910      EVT VT = SVT;
911
912      // Do not attempt to promote non-128-bit vectors
913      if (!VT.is128BitVector())
914        continue;
915
916      setOperationAction(ISD::AND,    SVT, Promote);
917      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
918      setOperationAction(ISD::OR,     SVT, Promote);
919      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
920      setOperationAction(ISD::XOR,    SVT, Promote);
921      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
922      setOperationAction(ISD::LOAD,   SVT, Promote);
923      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
924      setOperationAction(ISD::SELECT, SVT, Promote);
925      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
926    }
927
928    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
929
930    // Custom lower v2i64 and v2f64 selects.
931    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
932    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
933    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
934    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
935
936    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
937    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
938  }
939
940  if (Subtarget->hasSSE41()) {
941    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
942    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
943    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
944    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
945    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
946    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
947    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
948    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
949    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
950    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
951
952    // FIXME: Do we need to handle scalar-to-vector here?
953    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
954
955    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
958    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
959    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
960
961    // i8 and i16 vectors are custom , because the source register and source
962    // source memory operand types are not the same width.  f32 vectors are
963    // custom since the immediate controlling the insert encodes additional
964    // information.
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
967    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
968    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
969
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
972    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
973    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
974
975    // FIXME: these should be Legal but thats only for the case where
976    // the index is constant.  For now custom expand to deal with that.
977    if (Subtarget->is64Bit()) {
978      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
979      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
980    }
981  }
982
983  if (Subtarget->hasSSE2()) {
984    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
985    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
986
987    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
988    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
989
990    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
991    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
992
993    if (Subtarget->hasAVX2()) {
994      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
995      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
996
997      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
998      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
999
1000      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1001    } else {
1002      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1003      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1004
1005      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1006      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1007
1008      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1009    }
1010  }
1011
1012  if (Subtarget->hasSSE42())
1013    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1014
1015  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1016    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1017    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1018    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1019    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1020    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1021    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1022
1023    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1024    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1025    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1026
1027    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1030    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1031    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1032    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1033
1034    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1037    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1038    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1039    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1040
1041    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1042    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1043    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1044
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1049    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1050    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1051
1052    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1053    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1054
1055    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1056    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1057
1058    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1059    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1060
1061    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1063    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1064    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1065
1066    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1067    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1068    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1069
1070    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1072    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1073    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1074
1075    if (Subtarget->hasAVX2()) {
1076      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1077      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1078      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1079      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1080
1081      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1082      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1083      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1084      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1085
1086      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1087      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1088      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1089      // Don't lower v32i8 because there is no 128-bit byte mul
1090
1091      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1092
1093      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1094      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1095
1096      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1097      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1098
1099      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1100    } else {
1101      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1102      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1103      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1104      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1105
1106      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1107      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1108      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1109      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1110
1111      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1112      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1113      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1114      // Don't lower v32i8 because there is no 128-bit byte mul
1115
1116      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1117      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1118
1119      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1120      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1121
1122      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1123    }
1124
1125    // Custom lower several nodes for 256-bit types.
1126    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1127                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1128      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1129      EVT VT = SVT;
1130
1131      // Extract subvector is special because the value type
1132      // (result) is 128-bit but the source is 256-bit wide.
1133      if (VT.is128BitVector())
1134        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1135
1136      // Do not attempt to custom lower other non-256-bit vectors
1137      if (!VT.is256BitVector())
1138        continue;
1139
1140      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1141      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1142      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1143      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1144      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1145      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1146    }
1147
1148    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1149    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1150      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1151      EVT VT = SVT;
1152
1153      // Do not attempt to promote non-256-bit vectors
1154      if (!VT.is256BitVector())
1155        continue;
1156
1157      setOperationAction(ISD::AND,    SVT, Promote);
1158      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1159      setOperationAction(ISD::OR,     SVT, Promote);
1160      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1161      setOperationAction(ISD::XOR,    SVT, Promote);
1162      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1163      setOperationAction(ISD::LOAD,   SVT, Promote);
1164      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1165      setOperationAction(ISD::SELECT, SVT, Promote);
1166      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1167    }
1168  }
1169
1170  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1171  // of this type with custom code.
1172  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1173         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1174    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1175                       Custom);
1176  }
1177
1178  // We want to custom lower some of our intrinsics.
1179  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1180
1181
1182  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1183  // handle type legalization for these operations here.
1184  //
1185  // FIXME: We really should do custom legalization for addition and
1186  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1187  // than generic legalization for 64-bit multiplication-with-overflow, though.
1188  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1189    // Add/Sub/Mul with overflow operations are custom lowered.
1190    MVT VT = IntVTs[i];
1191    setOperationAction(ISD::SADDO, VT, Custom);
1192    setOperationAction(ISD::UADDO, VT, Custom);
1193    setOperationAction(ISD::SSUBO, VT, Custom);
1194    setOperationAction(ISD::USUBO, VT, Custom);
1195    setOperationAction(ISD::SMULO, VT, Custom);
1196    setOperationAction(ISD::UMULO, VT, Custom);
1197  }
1198
1199  // There are no 8-bit 3-address imul/mul instructions
1200  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1201  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1202
1203  if (!Subtarget->is64Bit()) {
1204    // These libcalls are not available in 32-bit.
1205    setLibcallName(RTLIB::SHL_I128, 0);
1206    setLibcallName(RTLIB::SRL_I128, 0);
1207    setLibcallName(RTLIB::SRA_I128, 0);
1208  }
1209
1210  // We have target-specific dag combine patterns for the following nodes:
1211  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1212  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1213  setTargetDAGCombine(ISD::VSELECT);
1214  setTargetDAGCombine(ISD::SELECT);
1215  setTargetDAGCombine(ISD::SHL);
1216  setTargetDAGCombine(ISD::SRA);
1217  setTargetDAGCombine(ISD::SRL);
1218  setTargetDAGCombine(ISD::OR);
1219  setTargetDAGCombine(ISD::AND);
1220  setTargetDAGCombine(ISD::ADD);
1221  setTargetDAGCombine(ISD::FADD);
1222  setTargetDAGCombine(ISD::FSUB);
1223  setTargetDAGCombine(ISD::SUB);
1224  setTargetDAGCombine(ISD::LOAD);
1225  setTargetDAGCombine(ISD::STORE);
1226  setTargetDAGCombine(ISD::ZERO_EXTEND);
1227  setTargetDAGCombine(ISD::SINT_TO_FP);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  setPrefFunctionAlignment(4); // 2^4 bytes.
1247}
1248
1249
1250EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1251  if (!VT.isVector()) return MVT::i8;
1252  return VT.changeVectorElementTypeToInteger();
1253}
1254
1255
1256/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1257/// the desired ByVal argument alignment.
1258static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1259  if (MaxAlign == 16)
1260    return;
1261  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262    if (VTy->getBitWidth() == 128)
1263      MaxAlign = 16;
1264  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1265    unsigned EltAlign = 0;
1266    getMaxByValAlign(ATy->getElementType(), EltAlign);
1267    if (EltAlign > MaxAlign)
1268      MaxAlign = EltAlign;
1269  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1270    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1271      unsigned EltAlign = 0;
1272      getMaxByValAlign(STy->getElementType(i), EltAlign);
1273      if (EltAlign > MaxAlign)
1274        MaxAlign = EltAlign;
1275      if (MaxAlign == 16)
1276        break;
1277    }
1278  }
1279  return;
1280}
1281
1282/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1283/// function arguments in the caller parameter area. For X86, aggregates
1284/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1285/// are at 4-byte boundaries.
1286unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1287  if (Subtarget->is64Bit()) {
1288    // Max of 8 and alignment of type.
1289    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1290    if (TyAlign > 8)
1291      return TyAlign;
1292    return 8;
1293  }
1294
1295  unsigned Align = 4;
1296  if (Subtarget->hasSSE1())
1297    getMaxByValAlign(Ty, Align);
1298  return Align;
1299}
1300
1301/// getOptimalMemOpType - Returns the target specific optimal type for load
1302/// and store operations as a result of memset, memcpy, and memmove
1303/// lowering. If DstAlign is zero that means it's safe to destination
1304/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1305/// means there isn't a need to check it against alignment requirement,
1306/// probably because the source does not need to be loaded. If
1307/// 'IsZeroVal' is true, that means it's safe to return a
1308/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1309/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1310/// constant so it does not need to be loaded.
1311/// It returns EVT::Other if the type should be determined using generic
1312/// target-independent logic.
1313EVT
1314X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1315                                       unsigned DstAlign, unsigned SrcAlign,
1316                                       bool IsZeroVal,
1317                                       bool MemcpyStrSrc,
1318                                       MachineFunction &MF) const {
1319  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1320  // linux.  This is because the stack realignment code can't handle certain
1321  // cases like PR2962.  This should be removed when PR2962 is fixed.
1322  const Function *F = MF.getFunction();
1323  if (IsZeroVal &&
1324      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1325    if (Size >= 16 &&
1326        (Subtarget->isUnalignedMemAccessFast() ||
1327         ((DstAlign == 0 || DstAlign >= 16) &&
1328          (SrcAlign == 0 || SrcAlign >= 16))) &&
1329        Subtarget->getStackAlignment() >= 16) {
1330      if (Subtarget->hasAVX() &&
1331          Subtarget->getStackAlignment() >= 32)
1332        return MVT::v8f32;
1333      if (Subtarget->hasSSE2())
1334        return MVT::v4i32;
1335      if (Subtarget->hasSSE1())
1336        return MVT::v4f32;
1337    } else if (!MemcpyStrSrc && Size >= 8 &&
1338               !Subtarget->is64Bit() &&
1339               Subtarget->getStackAlignment() >= 8 &&
1340               Subtarget->hasSSE2()) {
1341      // Do not use f64 to lower memcpy if source is string constant. It's
1342      // better to use i32 to avoid the loads.
1343      return MVT::f64;
1344    }
1345  }
1346  if (Subtarget->is64Bit() && Size >= 8)
1347    return MVT::i64;
1348  return MVT::i32;
1349}
1350
1351/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1352/// current function.  The returned value is a member of the
1353/// MachineJumpTableInfo::JTEntryKind enum.
1354unsigned X86TargetLowering::getJumpTableEncoding() const {
1355  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1356  // symbol.
1357  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1358      Subtarget->isPICStyleGOT())
1359    return MachineJumpTableInfo::EK_Custom32;
1360
1361  // Otherwise, use the normal jump table encoding heuristics.
1362  return TargetLowering::getJumpTableEncoding();
1363}
1364
1365const MCExpr *
1366X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1367                                             const MachineBasicBlock *MBB,
1368                                             unsigned uid,MCContext &Ctx) const{
1369  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1370         Subtarget->isPICStyleGOT());
1371  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1372  // entries.
1373  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1374                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1375}
1376
1377/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1378/// jumptable.
1379SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1380                                                    SelectionDAG &DAG) const {
1381  if (!Subtarget->is64Bit())
1382    // This doesn't have DebugLoc associated with it, but is not really the
1383    // same as a Register.
1384    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1385  return Table;
1386}
1387
1388/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1389/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1390/// MCExpr.
1391const MCExpr *X86TargetLowering::
1392getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1393                             MCContext &Ctx) const {
1394  // X86-64 uses RIP relative addressing based on the jump table label.
1395  if (Subtarget->isPICStyleRIPRel())
1396    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1397
1398  // Otherwise, the reference is relative to the PIC base.
1399  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1400}
1401
1402// FIXME: Why this routine is here? Move to RegInfo!
1403std::pair<const TargetRegisterClass*, uint8_t>
1404X86TargetLowering::findRepresentativeClass(EVT VT) const{
1405  const TargetRegisterClass *RRC = 0;
1406  uint8_t Cost = 1;
1407  switch (VT.getSimpleVT().SimpleTy) {
1408  default:
1409    return TargetLowering::findRepresentativeClass(VT);
1410  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1411    RRC = (Subtarget->is64Bit()
1412           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1413    break;
1414  case MVT::x86mmx:
1415    RRC = X86::VR64RegisterClass;
1416    break;
1417  case MVT::f32: case MVT::f64:
1418  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1419  case MVT::v4f32: case MVT::v2f64:
1420  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1421  case MVT::v4f64:
1422    RRC = X86::VR128RegisterClass;
1423    break;
1424  }
1425  return std::make_pair(RRC, Cost);
1426}
1427
1428bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1429                                               unsigned &Offset) const {
1430  if (!Subtarget->isTargetLinux())
1431    return false;
1432
1433  if (Subtarget->is64Bit()) {
1434    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1435    Offset = 0x28;
1436    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1437      AddressSpace = 256;
1438    else
1439      AddressSpace = 257;
1440  } else {
1441    // %gs:0x14 on i386
1442    Offset = 0x14;
1443    AddressSpace = 256;
1444  }
1445  return true;
1446}
1447
1448
1449//===----------------------------------------------------------------------===//
1450//               Return Value Calling Convention Implementation
1451//===----------------------------------------------------------------------===//
1452
1453#include "X86GenCallingConv.inc"
1454
1455bool
1456X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1457				  MachineFunction &MF, bool isVarArg,
1458                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1459                        LLVMContext &Context) const {
1460  SmallVector<CCValAssign, 16> RVLocs;
1461  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1462                 RVLocs, Context);
1463  return CCInfo.CheckReturn(Outs, RetCC_X86);
1464}
1465
1466SDValue
1467X86TargetLowering::LowerReturn(SDValue Chain,
1468                               CallingConv::ID CallConv, bool isVarArg,
1469                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1470                               const SmallVectorImpl<SDValue> &OutVals,
1471                               DebugLoc dl, SelectionDAG &DAG) const {
1472  MachineFunction &MF = DAG.getMachineFunction();
1473  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1474
1475  SmallVector<CCValAssign, 16> RVLocs;
1476  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1477                 RVLocs, *DAG.getContext());
1478  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1479
1480  // Add the regs to the liveout set for the function.
1481  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1482  for (unsigned i = 0; i != RVLocs.size(); ++i)
1483    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1484      MRI.addLiveOut(RVLocs[i].getLocReg());
1485
1486  SDValue Flag;
1487
1488  SmallVector<SDValue, 6> RetOps;
1489  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1490  // Operand #1 = Bytes To Pop
1491  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1492                   MVT::i16));
1493
1494  // Copy the result values into the output registers.
1495  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1496    CCValAssign &VA = RVLocs[i];
1497    assert(VA.isRegLoc() && "Can only return in registers!");
1498    SDValue ValToCopy = OutVals[i];
1499    EVT ValVT = ValToCopy.getValueType();
1500
1501    // If this is x86-64, and we disabled SSE, we can't return FP values,
1502    // or SSE or MMX vectors.
1503    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1504         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1505          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1506      report_fatal_error("SSE register return with SSE disabled");
1507    }
1508    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1509    // llvm-gcc has never done it right and no one has noticed, so this
1510    // should be OK for now.
1511    if (ValVT == MVT::f64 &&
1512        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1513      report_fatal_error("SSE2 register return with SSE2 disabled");
1514
1515    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1516    // the RET instruction and handled by the FP Stackifier.
1517    if (VA.getLocReg() == X86::ST0 ||
1518        VA.getLocReg() == X86::ST1) {
1519      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1520      // change the value to the FP stack register class.
1521      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1522        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1523      RetOps.push_back(ValToCopy);
1524      // Don't emit a copytoreg.
1525      continue;
1526    }
1527
1528    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1529    // which is returned in RAX / RDX.
1530    if (Subtarget->is64Bit()) {
1531      if (ValVT == MVT::x86mmx) {
1532        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1533          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1534          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1535                                  ValToCopy);
1536          // If we don't have SSE2 available, convert to v4f32 so the generated
1537          // register is legal.
1538          if (!Subtarget->hasSSE2())
1539            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1540        }
1541      }
1542    }
1543
1544    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1545    Flag = Chain.getValue(1);
1546  }
1547
1548  // The x86-64 ABI for returning structs by value requires that we copy
1549  // the sret argument into %rax for the return. We saved the argument into
1550  // a virtual register in the entry block, so now we copy the value out
1551  // and into %rax.
1552  if (Subtarget->is64Bit() &&
1553      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1554    MachineFunction &MF = DAG.getMachineFunction();
1555    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1556    unsigned Reg = FuncInfo->getSRetReturnReg();
1557    assert(Reg &&
1558           "SRetReturnReg should have been set in LowerFormalArguments().");
1559    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1560
1561    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1562    Flag = Chain.getValue(1);
1563
1564    // RAX now acts like a return value.
1565    MRI.addLiveOut(X86::RAX);
1566  }
1567
1568  RetOps[0] = Chain;  // Update chain.
1569
1570  // Add the flag if we have it.
1571  if (Flag.getNode())
1572    RetOps.push_back(Flag);
1573
1574  return DAG.getNode(X86ISD::RET_FLAG, dl,
1575                     MVT::Other, &RetOps[0], RetOps.size());
1576}
1577
1578bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1579  if (N->getNumValues() != 1)
1580    return false;
1581  if (!N->hasNUsesOfValue(1, 0))
1582    return false;
1583
1584  SDNode *Copy = *N->use_begin();
1585  if (Copy->getOpcode() != ISD::CopyToReg &&
1586      Copy->getOpcode() != ISD::FP_EXTEND)
1587    return false;
1588
1589  bool HasRet = false;
1590  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1591       UI != UE; ++UI) {
1592    if (UI->getOpcode() != X86ISD::RET_FLAG)
1593      return false;
1594    HasRet = true;
1595  }
1596
1597  return HasRet;
1598}
1599
1600EVT
1601X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1602                                            ISD::NodeType ExtendKind) const {
1603  MVT ReturnMVT;
1604  // TODO: Is this also valid on 32-bit?
1605  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1606    ReturnMVT = MVT::i8;
1607  else
1608    ReturnMVT = MVT::i32;
1609
1610  EVT MinVT = getRegisterType(Context, ReturnMVT);
1611  return VT.bitsLT(MinVT) ? MinVT : VT;
1612}
1613
1614/// LowerCallResult - Lower the result values of a call into the
1615/// appropriate copies out of appropriate physical registers.
1616///
1617SDValue
1618X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1619                                   CallingConv::ID CallConv, bool isVarArg,
1620                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1621                                   DebugLoc dl, SelectionDAG &DAG,
1622                                   SmallVectorImpl<SDValue> &InVals) const {
1623
1624  // Assign locations to each value returned by this call.
1625  SmallVector<CCValAssign, 16> RVLocs;
1626  bool Is64Bit = Subtarget->is64Bit();
1627  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1628		 getTargetMachine(), RVLocs, *DAG.getContext());
1629  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1630
1631  // Copy all of the result registers out of their specified physreg.
1632  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1633    CCValAssign &VA = RVLocs[i];
1634    EVT CopyVT = VA.getValVT();
1635
1636    // If this is x86-64, and we disabled SSE, we can't return FP values
1637    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1638        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1639      report_fatal_error("SSE register return with SSE disabled");
1640    }
1641
1642    SDValue Val;
1643
1644    // If this is a call to a function that returns an fp value on the floating
1645    // point stack, we must guarantee the the value is popped from the stack, so
1646    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1647    // if the return value is not used. We use the FpPOP_RETVAL instruction
1648    // instead.
1649    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1650      // If we prefer to use the value in xmm registers, copy it out as f80 and
1651      // use a truncate to move it from fp stack reg to xmm reg.
1652      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1653      SDValue Ops[] = { Chain, InFlag };
1654      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1655                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1656      Val = Chain.getValue(0);
1657
1658      // Round the f80 to the right size, which also moves it to the appropriate
1659      // xmm register.
1660      if (CopyVT != VA.getValVT())
1661        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1662                          // This truncation won't change the value.
1663                          DAG.getIntPtrConstant(1));
1664    } else {
1665      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1666                                 CopyVT, InFlag).getValue(1);
1667      Val = Chain.getValue(0);
1668    }
1669    InFlag = Chain.getValue(2);
1670    InVals.push_back(Val);
1671  }
1672
1673  return Chain;
1674}
1675
1676
1677//===----------------------------------------------------------------------===//
1678//                C & StdCall & Fast Calling Convention implementation
1679//===----------------------------------------------------------------------===//
1680//  StdCall calling convention seems to be standard for many Windows' API
1681//  routines and around. It differs from C calling convention just a little:
1682//  callee should clean up the stack, not caller. Symbols should be also
1683//  decorated in some fancy way :) It doesn't support any vector arguments.
1684//  For info on fast calling convention see Fast Calling Convention (tail call)
1685//  implementation LowerX86_32FastCCCallTo.
1686
1687/// CallIsStructReturn - Determines whether a call uses struct return
1688/// semantics.
1689static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1690  if (Outs.empty())
1691    return false;
1692
1693  return Outs[0].Flags.isSRet();
1694}
1695
1696/// ArgsAreStructReturn - Determines whether a function uses struct
1697/// return semantics.
1698static bool
1699ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1700  if (Ins.empty())
1701    return false;
1702
1703  return Ins[0].Flags.isSRet();
1704}
1705
1706/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1707/// by "Src" to address "Dst" with size and alignment information specified by
1708/// the specific parameter attribute. The copy will be passed as a byval
1709/// function parameter.
1710static SDValue
1711CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1712                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1713                          DebugLoc dl) {
1714  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1715
1716  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1717                       /*isVolatile*/false, /*AlwaysInline=*/true,
1718                       MachinePointerInfo(), MachinePointerInfo());
1719}
1720
1721/// IsTailCallConvention - Return true if the calling convention is one that
1722/// supports tail call optimization.
1723static bool IsTailCallConvention(CallingConv::ID CC) {
1724  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1725}
1726
1727bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1728  if (!CI->isTailCall())
1729    return false;
1730
1731  CallSite CS(CI);
1732  CallingConv::ID CalleeCC = CS.getCallingConv();
1733  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1734    return false;
1735
1736  return true;
1737}
1738
1739/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1740/// a tailcall target by changing its ABI.
1741static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1742                                   bool GuaranteedTailCallOpt) {
1743  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1744}
1745
1746SDValue
1747X86TargetLowering::LowerMemArgument(SDValue Chain,
1748                                    CallingConv::ID CallConv,
1749                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1750                                    DebugLoc dl, SelectionDAG &DAG,
1751                                    const CCValAssign &VA,
1752                                    MachineFrameInfo *MFI,
1753                                    unsigned i) const {
1754  // Create the nodes corresponding to a load from this parameter slot.
1755  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1756  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1757                              getTargetMachine().Options.GuaranteedTailCallOpt);
1758  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1759  EVT ValVT;
1760
1761  // If value is passed by pointer we have address passed instead of the value
1762  // itself.
1763  if (VA.getLocInfo() == CCValAssign::Indirect)
1764    ValVT = VA.getLocVT();
1765  else
1766    ValVT = VA.getValVT();
1767
1768  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1769  // changed with more analysis.
1770  // In case of tail call optimization mark all arguments mutable. Since they
1771  // could be overwritten by lowering of arguments in case of a tail call.
1772  if (Flags.isByVal()) {
1773    unsigned Bytes = Flags.getByValSize();
1774    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1775    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1776    return DAG.getFrameIndex(FI, getPointerTy());
1777  } else {
1778    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1779                                    VA.getLocMemOffset(), isImmutable);
1780    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1781    return DAG.getLoad(ValVT, dl, Chain, FIN,
1782                       MachinePointerInfo::getFixedStack(FI),
1783                       false, false, false, 0);
1784  }
1785}
1786
1787SDValue
1788X86TargetLowering::LowerFormalArguments(SDValue Chain,
1789                                        CallingConv::ID CallConv,
1790                                        bool isVarArg,
1791                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1792                                        DebugLoc dl,
1793                                        SelectionDAG &DAG,
1794                                        SmallVectorImpl<SDValue> &InVals)
1795                                          const {
1796  MachineFunction &MF = DAG.getMachineFunction();
1797  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1798
1799  const Function* Fn = MF.getFunction();
1800  if (Fn->hasExternalLinkage() &&
1801      Subtarget->isTargetCygMing() &&
1802      Fn->getName() == "main")
1803    FuncInfo->setForceFramePointer(true);
1804
1805  MachineFrameInfo *MFI = MF.getFrameInfo();
1806  bool Is64Bit = Subtarget->is64Bit();
1807  bool IsWin64 = Subtarget->isTargetWin64();
1808
1809  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1810         "Var args not supported with calling convention fastcc or ghc");
1811
1812  // Assign locations to all of the incoming arguments.
1813  SmallVector<CCValAssign, 16> ArgLocs;
1814  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1815                 ArgLocs, *DAG.getContext());
1816
1817  // Allocate shadow area for Win64
1818  if (IsWin64) {
1819    CCInfo.AllocateStack(32, 8);
1820  }
1821
1822  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1823
1824  unsigned LastVal = ~0U;
1825  SDValue ArgValue;
1826  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1827    CCValAssign &VA = ArgLocs[i];
1828    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1829    // places.
1830    assert(VA.getValNo() != LastVal &&
1831           "Don't support value assigned to multiple locs yet");
1832    (void)LastVal;
1833    LastVal = VA.getValNo();
1834
1835    if (VA.isRegLoc()) {
1836      EVT RegVT = VA.getLocVT();
1837      TargetRegisterClass *RC = NULL;
1838      if (RegVT == MVT::i32)
1839        RC = X86::GR32RegisterClass;
1840      else if (Is64Bit && RegVT == MVT::i64)
1841        RC = X86::GR64RegisterClass;
1842      else if (RegVT == MVT::f32)
1843        RC = X86::FR32RegisterClass;
1844      else if (RegVT == MVT::f64)
1845        RC = X86::FR64RegisterClass;
1846      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1847        RC = X86::VR256RegisterClass;
1848      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1849        RC = X86::VR128RegisterClass;
1850      else if (RegVT == MVT::x86mmx)
1851        RC = X86::VR64RegisterClass;
1852      else
1853        llvm_unreachable("Unknown argument type!");
1854
1855      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1856      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1857
1858      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1859      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1860      // right size.
1861      if (VA.getLocInfo() == CCValAssign::SExt)
1862        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1863                               DAG.getValueType(VA.getValVT()));
1864      else if (VA.getLocInfo() == CCValAssign::ZExt)
1865        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1866                               DAG.getValueType(VA.getValVT()));
1867      else if (VA.getLocInfo() == CCValAssign::BCvt)
1868        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1869
1870      if (VA.isExtInLoc()) {
1871        // Handle MMX values passed in XMM regs.
1872        if (RegVT.isVector()) {
1873          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1874                                 ArgValue);
1875        } else
1876          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1877      }
1878    } else {
1879      assert(VA.isMemLoc());
1880      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1881    }
1882
1883    // If value is passed via pointer - do a load.
1884    if (VA.getLocInfo() == CCValAssign::Indirect)
1885      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1886                             MachinePointerInfo(), false, false, false, 0);
1887
1888    InVals.push_back(ArgValue);
1889  }
1890
1891  // The x86-64 ABI for returning structs by value requires that we copy
1892  // the sret argument into %rax for the return. Save the argument into
1893  // a virtual register so that we can access it from the return points.
1894  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1895    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1896    unsigned Reg = FuncInfo->getSRetReturnReg();
1897    if (!Reg) {
1898      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1899      FuncInfo->setSRetReturnReg(Reg);
1900    }
1901    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1902    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1903  }
1904
1905  unsigned StackSize = CCInfo.getNextStackOffset();
1906  // Align stack specially for tail calls.
1907  if (FuncIsMadeTailCallSafe(CallConv,
1908                             MF.getTarget().Options.GuaranteedTailCallOpt))
1909    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1910
1911  // If the function takes variable number of arguments, make a frame index for
1912  // the start of the first vararg value... for expansion of llvm.va_start.
1913  if (isVarArg) {
1914    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1915                    CallConv != CallingConv::X86_ThisCall)) {
1916      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1917    }
1918    if (Is64Bit) {
1919      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1920
1921      // FIXME: We should really autogenerate these arrays
1922      static const unsigned GPR64ArgRegsWin64[] = {
1923        X86::RCX, X86::RDX, X86::R8,  X86::R9
1924      };
1925      static const unsigned GPR64ArgRegs64Bit[] = {
1926        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1927      };
1928      static const unsigned XMMArgRegs64Bit[] = {
1929        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1930        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1931      };
1932      const unsigned *GPR64ArgRegs;
1933      unsigned NumXMMRegs = 0;
1934
1935      if (IsWin64) {
1936        // The XMM registers which might contain var arg parameters are shadowed
1937        // in their paired GPR.  So we only need to save the GPR to their home
1938        // slots.
1939        TotalNumIntRegs = 4;
1940        GPR64ArgRegs = GPR64ArgRegsWin64;
1941      } else {
1942        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1943        GPR64ArgRegs = GPR64ArgRegs64Bit;
1944
1945        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1946                                                TotalNumXMMRegs);
1947      }
1948      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1949                                                       TotalNumIntRegs);
1950
1951      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1952      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1953             "SSE register cannot be used when SSE is disabled!");
1954      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1955               NoImplicitFloatOps) &&
1956             "SSE register cannot be used when SSE is disabled!");
1957      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1958          !Subtarget->hasSSE1())
1959        // Kernel mode asks for SSE to be disabled, so don't push them
1960        // on the stack.
1961        TotalNumXMMRegs = 0;
1962
1963      if (IsWin64) {
1964        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1965        // Get to the caller-allocated home save location.  Add 8 to account
1966        // for the return address.
1967        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1968        FuncInfo->setRegSaveFrameIndex(
1969          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1970        // Fixup to set vararg frame on shadow area (4 x i64).
1971        if (NumIntRegs < 4)
1972          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1973      } else {
1974        // For X86-64, if there are vararg parameters that are passed via
1975        // registers, then we must store them to their spots on the stack so
1976        // they may be loaded by deferencing the result of va_next.
1977        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1978        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1979        FuncInfo->setRegSaveFrameIndex(
1980          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1981                               false));
1982      }
1983
1984      // Store the integer parameter registers.
1985      SmallVector<SDValue, 8> MemOps;
1986      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1987                                        getPointerTy());
1988      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1989      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1990        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1991                                  DAG.getIntPtrConstant(Offset));
1992        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1993                                     X86::GR64RegisterClass);
1994        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1995        SDValue Store =
1996          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1997                       MachinePointerInfo::getFixedStack(
1998                         FuncInfo->getRegSaveFrameIndex(), Offset),
1999                       false, false, 0);
2000        MemOps.push_back(Store);
2001        Offset += 8;
2002      }
2003
2004      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2005        // Now store the XMM (fp + vector) parameter registers.
2006        SmallVector<SDValue, 11> SaveXMMOps;
2007        SaveXMMOps.push_back(Chain);
2008
2009        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2010        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2011        SaveXMMOps.push_back(ALVal);
2012
2013        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2014                               FuncInfo->getRegSaveFrameIndex()));
2015        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2016                               FuncInfo->getVarArgsFPOffset()));
2017
2018        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2019          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2020                                       X86::VR128RegisterClass);
2021          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2022          SaveXMMOps.push_back(Val);
2023        }
2024        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2025                                     MVT::Other,
2026                                     &SaveXMMOps[0], SaveXMMOps.size()));
2027      }
2028
2029      if (!MemOps.empty())
2030        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2031                            &MemOps[0], MemOps.size());
2032    }
2033  }
2034
2035  // Some CCs need callee pop.
2036  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2037                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2038    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2039  } else {
2040    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2041    // If this is an sret function, the return should pop the hidden pointer.
2042    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
2043      FuncInfo->setBytesToPopOnReturn(4);
2044  }
2045
2046  if (!Is64Bit) {
2047    // RegSaveFrameIndex is X86-64 only.
2048    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2049    if (CallConv == CallingConv::X86_FastCall ||
2050        CallConv == CallingConv::X86_ThisCall)
2051      // fastcc functions can't have varargs.
2052      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2053  }
2054
2055  FuncInfo->setArgumentStackSize(StackSize);
2056
2057  return Chain;
2058}
2059
2060SDValue
2061X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2062                                    SDValue StackPtr, SDValue Arg,
2063                                    DebugLoc dl, SelectionDAG &DAG,
2064                                    const CCValAssign &VA,
2065                                    ISD::ArgFlagsTy Flags) const {
2066  unsigned LocMemOffset = VA.getLocMemOffset();
2067  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2068  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2069  if (Flags.isByVal())
2070    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2071
2072  return DAG.getStore(Chain, dl, Arg, PtrOff,
2073                      MachinePointerInfo::getStack(LocMemOffset),
2074                      false, false, 0);
2075}
2076
2077/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2078/// optimization is performed and it is required.
2079SDValue
2080X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2081                                           SDValue &OutRetAddr, SDValue Chain,
2082                                           bool IsTailCall, bool Is64Bit,
2083                                           int FPDiff, DebugLoc dl) const {
2084  // Adjust the Return address stack slot.
2085  EVT VT = getPointerTy();
2086  OutRetAddr = getReturnAddressFrameIndex(DAG);
2087
2088  // Load the "old" Return address.
2089  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2090                           false, false, false, 0);
2091  return SDValue(OutRetAddr.getNode(), 1);
2092}
2093
2094/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2095/// optimization is performed and it is required (FPDiff!=0).
2096static SDValue
2097EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2098                         SDValue Chain, SDValue RetAddrFrIdx,
2099                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2100  // Store the return address to the appropriate stack slot.
2101  if (!FPDiff) return Chain;
2102  // Calculate the new stack slot for the return address.
2103  int SlotSize = Is64Bit ? 8 : 4;
2104  int NewReturnAddrFI =
2105    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2106  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2107  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2108  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2109                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2110                       false, false, 0);
2111  return Chain;
2112}
2113
2114SDValue
2115X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2116                             CallingConv::ID CallConv, bool isVarArg,
2117                             bool &isTailCall,
2118                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2119                             const SmallVectorImpl<SDValue> &OutVals,
2120                             const SmallVectorImpl<ISD::InputArg> &Ins,
2121                             DebugLoc dl, SelectionDAG &DAG,
2122                             SmallVectorImpl<SDValue> &InVals) const {
2123  MachineFunction &MF = DAG.getMachineFunction();
2124  bool Is64Bit        = Subtarget->is64Bit();
2125  bool IsWin64        = Subtarget->isTargetWin64();
2126  bool IsStructRet    = CallIsStructReturn(Outs);
2127  bool IsSibcall      = false;
2128
2129  if (isTailCall) {
2130    // Check if it's really possible to do a tail call.
2131    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2132                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2133                                                   Outs, OutVals, Ins, DAG);
2134
2135    // Sibcalls are automatically detected tailcalls which do not require
2136    // ABI changes.
2137    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2138      IsSibcall = true;
2139
2140    if (isTailCall)
2141      ++NumTailCalls;
2142  }
2143
2144  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2145         "Var args not supported with calling convention fastcc or ghc");
2146
2147  // Analyze operands of the call, assigning locations to each operand.
2148  SmallVector<CCValAssign, 16> ArgLocs;
2149  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2150                 ArgLocs, *DAG.getContext());
2151
2152  // Allocate shadow area for Win64
2153  if (IsWin64) {
2154    CCInfo.AllocateStack(32, 8);
2155  }
2156
2157  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2158
2159  // Get a count of how many bytes are to be pushed on the stack.
2160  unsigned NumBytes = CCInfo.getNextStackOffset();
2161  if (IsSibcall)
2162    // This is a sibcall. The memory operands are available in caller's
2163    // own caller's stack.
2164    NumBytes = 0;
2165  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2166           IsTailCallConvention(CallConv))
2167    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2168
2169  int FPDiff = 0;
2170  if (isTailCall && !IsSibcall) {
2171    // Lower arguments at fp - stackoffset + fpdiff.
2172    unsigned NumBytesCallerPushed =
2173      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2174    FPDiff = NumBytesCallerPushed - NumBytes;
2175
2176    // Set the delta of movement of the returnaddr stackslot.
2177    // But only set if delta is greater than previous delta.
2178    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2179      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2180  }
2181
2182  if (!IsSibcall)
2183    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2184
2185  SDValue RetAddrFrIdx;
2186  // Load return address for tail calls.
2187  if (isTailCall && FPDiff)
2188    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2189                                    Is64Bit, FPDiff, dl);
2190
2191  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2192  SmallVector<SDValue, 8> MemOpChains;
2193  SDValue StackPtr;
2194
2195  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2196  // of tail call optimization arguments are handle later.
2197  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2198    CCValAssign &VA = ArgLocs[i];
2199    EVT RegVT = VA.getLocVT();
2200    SDValue Arg = OutVals[i];
2201    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2202    bool isByVal = Flags.isByVal();
2203
2204    // Promote the value if needed.
2205    switch (VA.getLocInfo()) {
2206    default: llvm_unreachable("Unknown loc info!");
2207    case CCValAssign::Full: break;
2208    case CCValAssign::SExt:
2209      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2210      break;
2211    case CCValAssign::ZExt:
2212      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2213      break;
2214    case CCValAssign::AExt:
2215      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2216        // Special case: passing MMX values in XMM registers.
2217        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2218        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2219        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2220      } else
2221        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2222      break;
2223    case CCValAssign::BCvt:
2224      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2225      break;
2226    case CCValAssign::Indirect: {
2227      // Store the argument.
2228      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2229      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2230      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2231                           MachinePointerInfo::getFixedStack(FI),
2232                           false, false, 0);
2233      Arg = SpillSlot;
2234      break;
2235    }
2236    }
2237
2238    if (VA.isRegLoc()) {
2239      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2240      if (isVarArg && IsWin64) {
2241        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2242        // shadow reg if callee is a varargs function.
2243        unsigned ShadowReg = 0;
2244        switch (VA.getLocReg()) {
2245        case X86::XMM0: ShadowReg = X86::RCX; break;
2246        case X86::XMM1: ShadowReg = X86::RDX; break;
2247        case X86::XMM2: ShadowReg = X86::R8; break;
2248        case X86::XMM3: ShadowReg = X86::R9; break;
2249        }
2250        if (ShadowReg)
2251          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2252      }
2253    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2254      assert(VA.isMemLoc());
2255      if (StackPtr.getNode() == 0)
2256        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2257      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2258                                             dl, DAG, VA, Flags));
2259    }
2260  }
2261
2262  if (!MemOpChains.empty())
2263    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2264                        &MemOpChains[0], MemOpChains.size());
2265
2266  // Build a sequence of copy-to-reg nodes chained together with token chain
2267  // and flag operands which copy the outgoing args into registers.
2268  SDValue InFlag;
2269  // Tail call byval lowering might overwrite argument registers so in case of
2270  // tail call optimization the copies to registers are lowered later.
2271  if (!isTailCall)
2272    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2273      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2274                               RegsToPass[i].second, InFlag);
2275      InFlag = Chain.getValue(1);
2276    }
2277
2278  if (Subtarget->isPICStyleGOT()) {
2279    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2280    // GOT pointer.
2281    if (!isTailCall) {
2282      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2283                               DAG.getNode(X86ISD::GlobalBaseReg,
2284                                           DebugLoc(), getPointerTy()),
2285                               InFlag);
2286      InFlag = Chain.getValue(1);
2287    } else {
2288      // If we are tail calling and generating PIC/GOT style code load the
2289      // address of the callee into ECX. The value in ecx is used as target of
2290      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2291      // for tail calls on PIC/GOT architectures. Normally we would just put the
2292      // address of GOT into ebx and then call target@PLT. But for tail calls
2293      // ebx would be restored (since ebx is callee saved) before jumping to the
2294      // target@PLT.
2295
2296      // Note: The actual moving to ECX is done further down.
2297      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2298      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2299          !G->getGlobal()->hasProtectedVisibility())
2300        Callee = LowerGlobalAddress(Callee, DAG);
2301      else if (isa<ExternalSymbolSDNode>(Callee))
2302        Callee = LowerExternalSymbol(Callee, DAG);
2303    }
2304  }
2305
2306  if (Is64Bit && isVarArg && !IsWin64) {
2307    // From AMD64 ABI document:
2308    // For calls that may call functions that use varargs or stdargs
2309    // (prototype-less calls or calls to functions containing ellipsis (...) in
2310    // the declaration) %al is used as hidden argument to specify the number
2311    // of SSE registers used. The contents of %al do not need to match exactly
2312    // the number of registers, but must be an ubound on the number of SSE
2313    // registers used and is in the range 0 - 8 inclusive.
2314
2315    // Count the number of XMM registers allocated.
2316    static const unsigned XMMArgRegs[] = {
2317      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2318      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2319    };
2320    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2321    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2322           && "SSE registers cannot be used when SSE is disabled");
2323
2324    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2325                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2326    InFlag = Chain.getValue(1);
2327  }
2328
2329
2330  // For tail calls lower the arguments to the 'real' stack slot.
2331  if (isTailCall) {
2332    // Force all the incoming stack arguments to be loaded from the stack
2333    // before any new outgoing arguments are stored to the stack, because the
2334    // outgoing stack slots may alias the incoming argument stack slots, and
2335    // the alias isn't otherwise explicit. This is slightly more conservative
2336    // than necessary, because it means that each store effectively depends
2337    // on every argument instead of just those arguments it would clobber.
2338    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2339
2340    SmallVector<SDValue, 8> MemOpChains2;
2341    SDValue FIN;
2342    int FI = 0;
2343    // Do not flag preceding copytoreg stuff together with the following stuff.
2344    InFlag = SDValue();
2345    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2346      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2347        CCValAssign &VA = ArgLocs[i];
2348        if (VA.isRegLoc())
2349          continue;
2350        assert(VA.isMemLoc());
2351        SDValue Arg = OutVals[i];
2352        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2353        // Create frame index.
2354        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2355        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2356        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2357        FIN = DAG.getFrameIndex(FI, getPointerTy());
2358
2359        if (Flags.isByVal()) {
2360          // Copy relative to framepointer.
2361          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2362          if (StackPtr.getNode() == 0)
2363            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2364                                          getPointerTy());
2365          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2366
2367          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2368                                                           ArgChain,
2369                                                           Flags, DAG, dl));
2370        } else {
2371          // Store relative to framepointer.
2372          MemOpChains2.push_back(
2373            DAG.getStore(ArgChain, dl, Arg, FIN,
2374                         MachinePointerInfo::getFixedStack(FI),
2375                         false, false, 0));
2376        }
2377      }
2378    }
2379
2380    if (!MemOpChains2.empty())
2381      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2382                          &MemOpChains2[0], MemOpChains2.size());
2383
2384    // Copy arguments to their registers.
2385    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2386      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2387                               RegsToPass[i].second, InFlag);
2388      InFlag = Chain.getValue(1);
2389    }
2390    InFlag =SDValue();
2391
2392    // Store the return address to the appropriate stack slot.
2393    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2394                                     FPDiff, dl);
2395  }
2396
2397  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2398    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2399    // In the 64-bit large code model, we have to make all calls
2400    // through a register, since the call instruction's 32-bit
2401    // pc-relative offset may not be large enough to hold the whole
2402    // address.
2403  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2404    // If the callee is a GlobalAddress node (quite common, every direct call
2405    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2406    // it.
2407
2408    // We should use extra load for direct calls to dllimported functions in
2409    // non-JIT mode.
2410    const GlobalValue *GV = G->getGlobal();
2411    if (!GV->hasDLLImportLinkage()) {
2412      unsigned char OpFlags = 0;
2413      bool ExtraLoad = false;
2414      unsigned WrapperKind = ISD::DELETED_NODE;
2415
2416      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2417      // external symbols most go through the PLT in PIC mode.  If the symbol
2418      // has hidden or protected visibility, or if it is static or local, then
2419      // we don't need to use the PLT - we can directly call it.
2420      if (Subtarget->isTargetELF() &&
2421          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2422          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2423        OpFlags = X86II::MO_PLT;
2424      } else if (Subtarget->isPICStyleStubAny() &&
2425                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2426                 (!Subtarget->getTargetTriple().isMacOSX() ||
2427                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2428        // PC-relative references to external symbols should go through $stub,
2429        // unless we're building with the leopard linker or later, which
2430        // automatically synthesizes these stubs.
2431        OpFlags = X86II::MO_DARWIN_STUB;
2432      } else if (Subtarget->isPICStyleRIPRel() &&
2433                 isa<Function>(GV) &&
2434                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2435        // If the function is marked as non-lazy, generate an indirect call
2436        // which loads from the GOT directly. This avoids runtime overhead
2437        // at the cost of eager binding (and one extra byte of encoding).
2438        OpFlags = X86II::MO_GOTPCREL;
2439        WrapperKind = X86ISD::WrapperRIP;
2440        ExtraLoad = true;
2441      }
2442
2443      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2444                                          G->getOffset(), OpFlags);
2445
2446      // Add a wrapper if needed.
2447      if (WrapperKind != ISD::DELETED_NODE)
2448        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2449      // Add extra indirection if needed.
2450      if (ExtraLoad)
2451        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2452                             MachinePointerInfo::getGOT(),
2453                             false, false, false, 0);
2454    }
2455  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2456    unsigned char OpFlags = 0;
2457
2458    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2459    // external symbols should go through the PLT.
2460    if (Subtarget->isTargetELF() &&
2461        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2462      OpFlags = X86II::MO_PLT;
2463    } else if (Subtarget->isPICStyleStubAny() &&
2464               (!Subtarget->getTargetTriple().isMacOSX() ||
2465                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2466      // PC-relative references to external symbols should go through $stub,
2467      // unless we're building with the leopard linker or later, which
2468      // automatically synthesizes these stubs.
2469      OpFlags = X86II::MO_DARWIN_STUB;
2470    }
2471
2472    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2473                                         OpFlags);
2474  }
2475
2476  // Returns a chain & a flag for retval copy to use.
2477  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2478  SmallVector<SDValue, 8> Ops;
2479
2480  if (!IsSibcall && isTailCall) {
2481    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2482                           DAG.getIntPtrConstant(0, true), InFlag);
2483    InFlag = Chain.getValue(1);
2484  }
2485
2486  Ops.push_back(Chain);
2487  Ops.push_back(Callee);
2488
2489  if (isTailCall)
2490    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2491
2492  // Add argument registers to the end of the list so that they are known live
2493  // into the call.
2494  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2495    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2496                                  RegsToPass[i].second.getValueType()));
2497
2498  // Add an implicit use GOT pointer in EBX.
2499  if (!isTailCall && Subtarget->isPICStyleGOT())
2500    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2501
2502  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2503  if (Is64Bit && isVarArg && !IsWin64)
2504    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2505
2506  if (InFlag.getNode())
2507    Ops.push_back(InFlag);
2508
2509  if (isTailCall) {
2510    // We used to do:
2511    //// If this is the first return lowered for this function, add the regs
2512    //// to the liveout set for the function.
2513    // This isn't right, although it's probably harmless on x86; liveouts
2514    // should be computed from returns not tail calls.  Consider a void
2515    // function making a tail call to a function returning int.
2516    return DAG.getNode(X86ISD::TC_RETURN, dl,
2517                       NodeTys, &Ops[0], Ops.size());
2518  }
2519
2520  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2521  InFlag = Chain.getValue(1);
2522
2523  // Create the CALLSEQ_END node.
2524  unsigned NumBytesForCalleeToPush;
2525  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2526                       getTargetMachine().Options.GuaranteedTailCallOpt))
2527    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2528  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2529    // If this is a call to a struct-return function, the callee
2530    // pops the hidden struct pointer, so we have to push it back.
2531    // This is common for Darwin/X86, Linux & Mingw32 targets.
2532    NumBytesForCalleeToPush = 4;
2533  else
2534    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2535
2536  // Returns a flag for retval copy to use.
2537  if (!IsSibcall) {
2538    Chain = DAG.getCALLSEQ_END(Chain,
2539                               DAG.getIntPtrConstant(NumBytes, true),
2540                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2541                                                     true),
2542                               InFlag);
2543    InFlag = Chain.getValue(1);
2544  }
2545
2546  // Handle result values, copying them out of physregs into vregs that we
2547  // return.
2548  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2549                         Ins, dl, DAG, InVals);
2550}
2551
2552
2553//===----------------------------------------------------------------------===//
2554//                Fast Calling Convention (tail call) implementation
2555//===----------------------------------------------------------------------===//
2556
2557//  Like std call, callee cleans arguments, convention except that ECX is
2558//  reserved for storing the tail called function address. Only 2 registers are
2559//  free for argument passing (inreg). Tail call optimization is performed
2560//  provided:
2561//                * tailcallopt is enabled
2562//                * caller/callee are fastcc
2563//  On X86_64 architecture with GOT-style position independent code only local
2564//  (within module) calls are supported at the moment.
2565//  To keep the stack aligned according to platform abi the function
2566//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2567//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2568//  If a tail called function callee has more arguments than the caller the
2569//  caller needs to make sure that there is room to move the RETADDR to. This is
2570//  achieved by reserving an area the size of the argument delta right after the
2571//  original REtADDR, but before the saved framepointer or the spilled registers
2572//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2573//  stack layout:
2574//    arg1
2575//    arg2
2576//    RETADDR
2577//    [ new RETADDR
2578//      move area ]
2579//    (possible EBP)
2580//    ESI
2581//    EDI
2582//    local1 ..
2583
2584/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2585/// for a 16 byte align requirement.
2586unsigned
2587X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2588                                               SelectionDAG& DAG) const {
2589  MachineFunction &MF = DAG.getMachineFunction();
2590  const TargetMachine &TM = MF.getTarget();
2591  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2592  unsigned StackAlignment = TFI.getStackAlignment();
2593  uint64_t AlignMask = StackAlignment - 1;
2594  int64_t Offset = StackSize;
2595  uint64_t SlotSize = TD->getPointerSize();
2596  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2597    // Number smaller than 12 so just add the difference.
2598    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2599  } else {
2600    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2601    Offset = ((~AlignMask) & Offset) + StackAlignment +
2602      (StackAlignment-SlotSize);
2603  }
2604  return Offset;
2605}
2606
2607/// MatchingStackOffset - Return true if the given stack call argument is
2608/// already available in the same position (relatively) of the caller's
2609/// incoming argument stack.
2610static
2611bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2612                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2613                         const X86InstrInfo *TII) {
2614  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2615  int FI = INT_MAX;
2616  if (Arg.getOpcode() == ISD::CopyFromReg) {
2617    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2618    if (!TargetRegisterInfo::isVirtualRegister(VR))
2619      return false;
2620    MachineInstr *Def = MRI->getVRegDef(VR);
2621    if (!Def)
2622      return false;
2623    if (!Flags.isByVal()) {
2624      if (!TII->isLoadFromStackSlot(Def, FI))
2625        return false;
2626    } else {
2627      unsigned Opcode = Def->getOpcode();
2628      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2629          Def->getOperand(1).isFI()) {
2630        FI = Def->getOperand(1).getIndex();
2631        Bytes = Flags.getByValSize();
2632      } else
2633        return false;
2634    }
2635  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2636    if (Flags.isByVal())
2637      // ByVal argument is passed in as a pointer but it's now being
2638      // dereferenced. e.g.
2639      // define @foo(%struct.X* %A) {
2640      //   tail call @bar(%struct.X* byval %A)
2641      // }
2642      return false;
2643    SDValue Ptr = Ld->getBasePtr();
2644    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2645    if (!FINode)
2646      return false;
2647    FI = FINode->getIndex();
2648  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2649    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2650    FI = FINode->getIndex();
2651    Bytes = Flags.getByValSize();
2652  } else
2653    return false;
2654
2655  assert(FI != INT_MAX);
2656  if (!MFI->isFixedObjectIndex(FI))
2657    return false;
2658  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2659}
2660
2661/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2662/// for tail call optimization. Targets which want to do tail call
2663/// optimization should implement this function.
2664bool
2665X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2666                                                     CallingConv::ID CalleeCC,
2667                                                     bool isVarArg,
2668                                                     bool isCalleeStructRet,
2669                                                     bool isCallerStructRet,
2670                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2671                                    const SmallVectorImpl<SDValue> &OutVals,
2672                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2673                                                     SelectionDAG& DAG) const {
2674  if (!IsTailCallConvention(CalleeCC) &&
2675      CalleeCC != CallingConv::C)
2676    return false;
2677
2678  // If -tailcallopt is specified, make fastcc functions tail-callable.
2679  const MachineFunction &MF = DAG.getMachineFunction();
2680  const Function *CallerF = DAG.getMachineFunction().getFunction();
2681  CallingConv::ID CallerCC = CallerF->getCallingConv();
2682  bool CCMatch = CallerCC == CalleeCC;
2683
2684  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2685    if (IsTailCallConvention(CalleeCC) && CCMatch)
2686      return true;
2687    return false;
2688  }
2689
2690  // Look for obvious safe cases to perform tail call optimization that do not
2691  // require ABI changes. This is what gcc calls sibcall.
2692
2693  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2694  // emit a special epilogue.
2695  if (RegInfo->needsStackRealignment(MF))
2696    return false;
2697
2698  // Also avoid sibcall optimization if either caller or callee uses struct
2699  // return semantics.
2700  if (isCalleeStructRet || isCallerStructRet)
2701    return false;
2702
2703  // An stdcall caller is expected to clean up its arguments; the callee
2704  // isn't going to do that.
2705  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2706    return false;
2707
2708  // Do not sibcall optimize vararg calls unless all arguments are passed via
2709  // registers.
2710  if (isVarArg && !Outs.empty()) {
2711
2712    // Optimizing for varargs on Win64 is unlikely to be safe without
2713    // additional testing.
2714    if (Subtarget->isTargetWin64())
2715      return false;
2716
2717    SmallVector<CCValAssign, 16> ArgLocs;
2718    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2719		   getTargetMachine(), ArgLocs, *DAG.getContext());
2720
2721    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2722    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2723      if (!ArgLocs[i].isRegLoc())
2724        return false;
2725  }
2726
2727  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2728  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2729  // this into a sibcall.
2730  bool Unused = false;
2731  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2732    if (!Ins[i].Used) {
2733      Unused = true;
2734      break;
2735    }
2736  }
2737  if (Unused) {
2738    SmallVector<CCValAssign, 16> RVLocs;
2739    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2740		   getTargetMachine(), RVLocs, *DAG.getContext());
2741    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2742    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2743      CCValAssign &VA = RVLocs[i];
2744      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2745        return false;
2746    }
2747  }
2748
2749  // If the calling conventions do not match, then we'd better make sure the
2750  // results are returned in the same way as what the caller expects.
2751  if (!CCMatch) {
2752    SmallVector<CCValAssign, 16> RVLocs1;
2753    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2754		    getTargetMachine(), RVLocs1, *DAG.getContext());
2755    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2756
2757    SmallVector<CCValAssign, 16> RVLocs2;
2758    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2759		    getTargetMachine(), RVLocs2, *DAG.getContext());
2760    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2761
2762    if (RVLocs1.size() != RVLocs2.size())
2763      return false;
2764    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2765      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2766        return false;
2767      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2768        return false;
2769      if (RVLocs1[i].isRegLoc()) {
2770        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2771          return false;
2772      } else {
2773        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2774          return false;
2775      }
2776    }
2777  }
2778
2779  // If the callee takes no arguments then go on to check the results of the
2780  // call.
2781  if (!Outs.empty()) {
2782    // Check if stack adjustment is needed. For now, do not do this if any
2783    // argument is passed on the stack.
2784    SmallVector<CCValAssign, 16> ArgLocs;
2785    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2786		   getTargetMachine(), ArgLocs, *DAG.getContext());
2787
2788    // Allocate shadow area for Win64
2789    if (Subtarget->isTargetWin64()) {
2790      CCInfo.AllocateStack(32, 8);
2791    }
2792
2793    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2794    if (CCInfo.getNextStackOffset()) {
2795      MachineFunction &MF = DAG.getMachineFunction();
2796      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2797        return false;
2798
2799      // Check if the arguments are already laid out in the right way as
2800      // the caller's fixed stack objects.
2801      MachineFrameInfo *MFI = MF.getFrameInfo();
2802      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2803      const X86InstrInfo *TII =
2804        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2805      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2806        CCValAssign &VA = ArgLocs[i];
2807        SDValue Arg = OutVals[i];
2808        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2809        if (VA.getLocInfo() == CCValAssign::Indirect)
2810          return false;
2811        if (!VA.isRegLoc()) {
2812          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2813                                   MFI, MRI, TII))
2814            return false;
2815        }
2816      }
2817    }
2818
2819    // If the tailcall address may be in a register, then make sure it's
2820    // possible to register allocate for it. In 32-bit, the call address can
2821    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2822    // callee-saved registers are restored. These happen to be the same
2823    // registers used to pass 'inreg' arguments so watch out for those.
2824    if (!Subtarget->is64Bit() &&
2825        !isa<GlobalAddressSDNode>(Callee) &&
2826        !isa<ExternalSymbolSDNode>(Callee)) {
2827      unsigned NumInRegs = 0;
2828      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2829        CCValAssign &VA = ArgLocs[i];
2830        if (!VA.isRegLoc())
2831          continue;
2832        unsigned Reg = VA.getLocReg();
2833        switch (Reg) {
2834        default: break;
2835        case X86::EAX: case X86::EDX: case X86::ECX:
2836          if (++NumInRegs == 3)
2837            return false;
2838          break;
2839        }
2840      }
2841    }
2842  }
2843
2844  return true;
2845}
2846
2847FastISel *
2848X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2849  return X86::createFastISel(funcInfo);
2850}
2851
2852
2853//===----------------------------------------------------------------------===//
2854//                           Other Lowering Hooks
2855//===----------------------------------------------------------------------===//
2856
2857static bool MayFoldLoad(SDValue Op) {
2858  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2859}
2860
2861static bool MayFoldIntoStore(SDValue Op) {
2862  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2863}
2864
2865static bool isTargetShuffle(unsigned Opcode) {
2866  switch(Opcode) {
2867  default: return false;
2868  case X86ISD::PSHUFD:
2869  case X86ISD::PSHUFHW:
2870  case X86ISD::PSHUFLW:
2871  case X86ISD::SHUFP:
2872  case X86ISD::PALIGN:
2873  case X86ISD::MOVLHPS:
2874  case X86ISD::MOVLHPD:
2875  case X86ISD::MOVHLPS:
2876  case X86ISD::MOVLPS:
2877  case X86ISD::MOVLPD:
2878  case X86ISD::MOVSHDUP:
2879  case X86ISD::MOVSLDUP:
2880  case X86ISD::MOVDDUP:
2881  case X86ISD::MOVSS:
2882  case X86ISD::MOVSD:
2883  case X86ISD::UNPCKL:
2884  case X86ISD::UNPCKH:
2885  case X86ISD::VPERMILP:
2886  case X86ISD::VPERM2X128:
2887    return true;
2888  }
2889  return false;
2890}
2891
2892static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2893                                               SDValue V1, SelectionDAG &DAG) {
2894  switch(Opc) {
2895  default: llvm_unreachable("Unknown x86 shuffle node");
2896  case X86ISD::MOVSHDUP:
2897  case X86ISD::MOVSLDUP:
2898  case X86ISD::MOVDDUP:
2899    return DAG.getNode(Opc, dl, VT, V1);
2900  }
2901
2902  return SDValue();
2903}
2904
2905static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2906                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2907  switch(Opc) {
2908  default: llvm_unreachable("Unknown x86 shuffle node");
2909  case X86ISD::PSHUFD:
2910  case X86ISD::PSHUFHW:
2911  case X86ISD::PSHUFLW:
2912  case X86ISD::VPERMILP:
2913    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2914  }
2915
2916  return SDValue();
2917}
2918
2919static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2920               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2921  switch(Opc) {
2922  default: llvm_unreachable("Unknown x86 shuffle node");
2923  case X86ISD::PALIGN:
2924  case X86ISD::SHUFP:
2925  case X86ISD::VPERM2X128:
2926    return DAG.getNode(Opc, dl, VT, V1, V2,
2927                       DAG.getConstant(TargetMask, MVT::i8));
2928  }
2929  return SDValue();
2930}
2931
2932static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2933                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2934  switch(Opc) {
2935  default: llvm_unreachable("Unknown x86 shuffle node");
2936  case X86ISD::MOVLHPS:
2937  case X86ISD::MOVLHPD:
2938  case X86ISD::MOVHLPS:
2939  case X86ISD::MOVLPS:
2940  case X86ISD::MOVLPD:
2941  case X86ISD::MOVSS:
2942  case X86ISD::MOVSD:
2943  case X86ISD::UNPCKL:
2944  case X86ISD::UNPCKH:
2945    return DAG.getNode(Opc, dl, VT, V1, V2);
2946  }
2947  return SDValue();
2948}
2949
2950SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2951  MachineFunction &MF = DAG.getMachineFunction();
2952  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2953  int ReturnAddrIndex = FuncInfo->getRAIndex();
2954
2955  if (ReturnAddrIndex == 0) {
2956    // Set up a frame object for the return address.
2957    uint64_t SlotSize = TD->getPointerSize();
2958    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2959                                                           false);
2960    FuncInfo->setRAIndex(ReturnAddrIndex);
2961  }
2962
2963  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2964}
2965
2966
2967bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2968                                       bool hasSymbolicDisplacement) {
2969  // Offset should fit into 32 bit immediate field.
2970  if (!isInt<32>(Offset))
2971    return false;
2972
2973  // If we don't have a symbolic displacement - we don't have any extra
2974  // restrictions.
2975  if (!hasSymbolicDisplacement)
2976    return true;
2977
2978  // FIXME: Some tweaks might be needed for medium code model.
2979  if (M != CodeModel::Small && M != CodeModel::Kernel)
2980    return false;
2981
2982  // For small code model we assume that latest object is 16MB before end of 31
2983  // bits boundary. We may also accept pretty large negative constants knowing
2984  // that all objects are in the positive half of address space.
2985  if (M == CodeModel::Small && Offset < 16*1024*1024)
2986    return true;
2987
2988  // For kernel code model we know that all object resist in the negative half
2989  // of 32bits address space. We may not accept negative offsets, since they may
2990  // be just off and we may accept pretty large positive ones.
2991  if (M == CodeModel::Kernel && Offset > 0)
2992    return true;
2993
2994  return false;
2995}
2996
2997/// isCalleePop - Determines whether the callee is required to pop its
2998/// own arguments. Callee pop is necessary to support tail calls.
2999bool X86::isCalleePop(CallingConv::ID CallingConv,
3000                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3001  if (IsVarArg)
3002    return false;
3003
3004  switch (CallingConv) {
3005  default:
3006    return false;
3007  case CallingConv::X86_StdCall:
3008    return !is64Bit;
3009  case CallingConv::X86_FastCall:
3010    return !is64Bit;
3011  case CallingConv::X86_ThisCall:
3012    return !is64Bit;
3013  case CallingConv::Fast:
3014    return TailCallOpt;
3015  case CallingConv::GHC:
3016    return TailCallOpt;
3017  }
3018}
3019
3020/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3021/// specific condition code, returning the condition code and the LHS/RHS of the
3022/// comparison to make.
3023static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3024                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3025  if (!isFP) {
3026    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3027      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3028        // X > -1   -> X == 0, jump !sign.
3029        RHS = DAG.getConstant(0, RHS.getValueType());
3030        return X86::COND_NS;
3031      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3032        // X < 0   -> X == 0, jump on sign.
3033        return X86::COND_S;
3034      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3035        // X < 1   -> X <= 0
3036        RHS = DAG.getConstant(0, RHS.getValueType());
3037        return X86::COND_LE;
3038      }
3039    }
3040
3041    switch (SetCCOpcode) {
3042    default: llvm_unreachable("Invalid integer condition!");
3043    case ISD::SETEQ:  return X86::COND_E;
3044    case ISD::SETGT:  return X86::COND_G;
3045    case ISD::SETGE:  return X86::COND_GE;
3046    case ISD::SETLT:  return X86::COND_L;
3047    case ISD::SETLE:  return X86::COND_LE;
3048    case ISD::SETNE:  return X86::COND_NE;
3049    case ISD::SETULT: return X86::COND_B;
3050    case ISD::SETUGT: return X86::COND_A;
3051    case ISD::SETULE: return X86::COND_BE;
3052    case ISD::SETUGE: return X86::COND_AE;
3053    }
3054  }
3055
3056  // First determine if it is required or is profitable to flip the operands.
3057
3058  // If LHS is a foldable load, but RHS is not, flip the condition.
3059  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3060      !ISD::isNON_EXTLoad(RHS.getNode())) {
3061    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3062    std::swap(LHS, RHS);
3063  }
3064
3065  switch (SetCCOpcode) {
3066  default: break;
3067  case ISD::SETOLT:
3068  case ISD::SETOLE:
3069  case ISD::SETUGT:
3070  case ISD::SETUGE:
3071    std::swap(LHS, RHS);
3072    break;
3073  }
3074
3075  // On a floating point condition, the flags are set as follows:
3076  // ZF  PF  CF   op
3077  //  0 | 0 | 0 | X > Y
3078  //  0 | 0 | 1 | X < Y
3079  //  1 | 0 | 0 | X == Y
3080  //  1 | 1 | 1 | unordered
3081  switch (SetCCOpcode) {
3082  default: llvm_unreachable("Condcode should be pre-legalized away");
3083  case ISD::SETUEQ:
3084  case ISD::SETEQ:   return X86::COND_E;
3085  case ISD::SETOLT:              // flipped
3086  case ISD::SETOGT:
3087  case ISD::SETGT:   return X86::COND_A;
3088  case ISD::SETOLE:              // flipped
3089  case ISD::SETOGE:
3090  case ISD::SETGE:   return X86::COND_AE;
3091  case ISD::SETUGT:              // flipped
3092  case ISD::SETULT:
3093  case ISD::SETLT:   return X86::COND_B;
3094  case ISD::SETUGE:              // flipped
3095  case ISD::SETULE:
3096  case ISD::SETLE:   return X86::COND_BE;
3097  case ISD::SETONE:
3098  case ISD::SETNE:   return X86::COND_NE;
3099  case ISD::SETUO:   return X86::COND_P;
3100  case ISD::SETO:    return X86::COND_NP;
3101  case ISD::SETOEQ:
3102  case ISD::SETUNE:  return X86::COND_INVALID;
3103  }
3104}
3105
3106/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3107/// code. Current x86 isa includes the following FP cmov instructions:
3108/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3109static bool hasFPCMov(unsigned X86CC) {
3110  switch (X86CC) {
3111  default:
3112    return false;
3113  case X86::COND_B:
3114  case X86::COND_BE:
3115  case X86::COND_E:
3116  case X86::COND_P:
3117  case X86::COND_A:
3118  case X86::COND_AE:
3119  case X86::COND_NE:
3120  case X86::COND_NP:
3121    return true;
3122  }
3123}
3124
3125/// isFPImmLegal - Returns true if the target can instruction select the
3126/// specified FP immediate natively. If false, the legalizer will
3127/// materialize the FP immediate as a load from a constant pool.
3128bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3129  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3130    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3131      return true;
3132  }
3133  return false;
3134}
3135
3136/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3137/// the specified range (L, H].
3138static bool isUndefOrInRange(int Val, int Low, int Hi) {
3139  return (Val < 0) || (Val >= Low && Val < Hi);
3140}
3141
3142/// isUndefOrInRange - Return true if every element in Mask, begining
3143/// from position Pos and ending in Pos+Size, falls within the specified
3144/// range (L, L+Pos]. or is undef.
3145static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3146                             int Pos, int Size, int Low, int Hi) {
3147  for (int i = Pos, e = Pos+Size; i != e; ++i)
3148    if (!isUndefOrInRange(Mask[i], Low, Hi))
3149      return false;
3150  return true;
3151}
3152
3153/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3154/// specified value.
3155static bool isUndefOrEqual(int Val, int CmpVal) {
3156  if (Val < 0 || Val == CmpVal)
3157    return true;
3158  return false;
3159}
3160
3161/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3162/// from position Pos and ending in Pos+Size, falls within the specified
3163/// sequential range (L, L+Pos]. or is undef.
3164static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3165                                       int Pos, int Size, int Low) {
3166  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3167    if (!isUndefOrEqual(Mask[i], Low))
3168      return false;
3169  return true;
3170}
3171
3172/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3173/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3174/// the second operand.
3175static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3176  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3177    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3178  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3179    return (Mask[0] < 2 && Mask[1] < 2);
3180  return false;
3181}
3182
3183bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3184  SmallVector<int, 8> M;
3185  N->getMask(M);
3186  return ::isPSHUFDMask(M, N->getValueType(0));
3187}
3188
3189/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3190/// is suitable for input to PSHUFHW.
3191static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3192  if (VT != MVT::v8i16)
3193    return false;
3194
3195  // Lower quadword copied in order or undef.
3196  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3197    return false;
3198
3199  // Upper quadword shuffled.
3200  for (unsigned i = 4; i != 8; ++i)
3201    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3202      return false;
3203
3204  return true;
3205}
3206
3207bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3208  SmallVector<int, 8> M;
3209  N->getMask(M);
3210  return ::isPSHUFHWMask(M, N->getValueType(0));
3211}
3212
3213/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3214/// is suitable for input to PSHUFLW.
3215static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3216  if (VT != MVT::v8i16)
3217    return false;
3218
3219  // Upper quadword copied in order.
3220  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3221    return false;
3222
3223  // Lower quadword shuffled.
3224  for (unsigned i = 0; i != 4; ++i)
3225    if (Mask[i] >= 4)
3226      return false;
3227
3228  return true;
3229}
3230
3231bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3232  SmallVector<int, 8> M;
3233  N->getMask(M);
3234  return ::isPSHUFLWMask(M, N->getValueType(0));
3235}
3236
3237/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3238/// is suitable for input to PALIGNR.
3239static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3240                          bool hasSSSE3) {
3241  int i, e = VT.getVectorNumElements();
3242  if (VT.getSizeInBits() != 128)
3243    return false;
3244
3245  // Do not handle v2i64 / v2f64 shuffles with palignr.
3246  if (e < 4 || !hasSSSE3)
3247    return false;
3248
3249  for (i = 0; i != e; ++i)
3250    if (Mask[i] >= 0)
3251      break;
3252
3253  // All undef, not a palignr.
3254  if (i == e)
3255    return false;
3256
3257  // Make sure we're shifting in the right direction.
3258  if (Mask[i] <= i)
3259    return false;
3260
3261  int s = Mask[i] - i;
3262
3263  // Check the rest of the elements to see if they are consecutive.
3264  for (++i; i != e; ++i) {
3265    int m = Mask[i];
3266    if (m >= 0 && m != s+i)
3267      return false;
3268  }
3269  return true;
3270}
3271
3272/// isVSHUFPYMask - Return true if the specified VECTOR_SHUFFLE operand
3273/// specifies a shuffle of elements that is suitable for input to 256-bit
3274/// VSHUFPSY.
3275static bool isVSHUFPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3276                          bool HasAVX, bool Commuted = false) {
3277  int NumElems = VT.getVectorNumElements();
3278
3279  if (!HasAVX || VT.getSizeInBits() != 256)
3280    return false;
3281
3282  if (NumElems != 4 && NumElems != 8)
3283    return false;
3284
3285  // VSHUFPSY divides the resulting vector into 4 chunks.
3286  // The sources are also splitted into 4 chunks, and each destination
3287  // chunk must come from a different source chunk.
3288  //
3289  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3290  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3291  //
3292  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3293  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3294  //
3295  // VSHUFPDY divides the resulting vector into 4 chunks.
3296  // The sources are also splitted into 4 chunks, and each destination
3297  // chunk must come from a different source chunk.
3298  //
3299  //  SRC1 =>      X3       X2       X1       X0
3300  //  SRC2 =>      Y3       Y2       Y1       Y0
3301  //
3302  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3303  //
3304  unsigned QuarterSize = NumElems/4;
3305  unsigned HalfSize = QuarterSize*2;
3306  for (unsigned l = 0; l != 2; ++l) {
3307    unsigned LaneStart = l*HalfSize;
3308    for (unsigned s = 0; s != 2; ++s) {
3309      unsigned QuarterStart = s*QuarterSize;
3310      unsigned Src = (Commuted) ? (1-s) : s;
3311      unsigned SrcStart = Src*NumElems + LaneStart;
3312      for (unsigned i = 0; i != QuarterSize; ++i) {
3313        int Idx = Mask[i+QuarterStart+LaneStart];
3314        if (!isUndefOrInRange(Idx, SrcStart, SrcStart+HalfSize))
3315          return false;
3316        // For VSHUFPSY, the mask of the second half must be the same as the
3317        // first but with the appropriate offsets. This works in the same way as
3318        // VPERMILPS works with masks.
3319        if (NumElems == 4 || l == 0 || Mask[i+QuarterStart] < 0)
3320          continue;
3321        if (!isUndefOrEqual(Idx, Mask[i+QuarterStart]+LaneStart))
3322          return false;
3323      }
3324    }
3325  }
3326
3327  return true;
3328}
3329
3330/// getShuffleVSHUFPYImmediate - Return the appropriate immediate to shuffle
3331/// the specified VECTOR_MASK mask with VSHUFPSY/VSHUFPDY instructions.
3332static unsigned getShuffleVSHUFPYImmediate(ShuffleVectorSDNode *SVOp) {
3333  EVT VT = SVOp->getValueType(0);
3334  unsigned NumElems = VT.getVectorNumElements();
3335
3336  assert(VT.getSizeInBits() == 256 && "Only supports 256-bit types");
3337  assert((NumElems == 4 || NumElems == 8) && "Only supports v4 and v8 types");
3338
3339  unsigned HalfSize = NumElems/2;
3340  unsigned Mul = (NumElems == 8) ? 2 : 1;
3341  unsigned Mask = 0;
3342  for (unsigned i = 0; i != NumElems; ++i) {
3343    int Elt = SVOp->getMaskElt(i);
3344    if (Elt < 0)
3345      continue;
3346    Elt %= HalfSize;
3347    unsigned Shamt = i;
3348    // For VSHUFPSY, the mask of the first half must be equal to the second one.
3349    if (NumElems == 8) Shamt %= HalfSize;
3350    Mask |= Elt << (Shamt*Mul);
3351  }
3352
3353  return Mask;
3354}
3355
3356/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3357/// the two vector operands have swapped position.
3358static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3359                                     unsigned NumElems) {
3360  for (unsigned i = 0; i != NumElems; ++i) {
3361    int idx = Mask[i];
3362    if (idx < 0)
3363      continue;
3364    else if (idx < (int)NumElems)
3365      Mask[i] = idx + NumElems;
3366    else
3367      Mask[i] = idx - NumElems;
3368  }
3369}
3370
3371/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3372/// specifies a shuffle of elements that is suitable for input to 128-bit
3373/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3374/// reverse of what x86 shuffles want.
3375static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT,
3376                        bool Commuted = false) {
3377  unsigned NumElems = VT.getVectorNumElements();
3378
3379  if (VT.getSizeInBits() != 128)
3380    return false;
3381
3382  if (NumElems != 2 && NumElems != 4)
3383    return false;
3384
3385  unsigned Half = NumElems / 2;
3386  unsigned SrcStart = Commuted ? NumElems : 0;
3387  for (unsigned i = 0; i != Half; ++i)
3388    if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
3389      return false;
3390  SrcStart = Commuted ? 0 : NumElems;
3391  for (unsigned i = Half; i != NumElems; ++i)
3392    if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
3393      return false;
3394
3395  return true;
3396}
3397
3398bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3399  SmallVector<int, 8> M;
3400  N->getMask(M);
3401  return ::isSHUFPMask(M, N->getValueType(0));
3402}
3403
3404/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3405/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3406bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3407  EVT VT = N->getValueType(0);
3408  unsigned NumElems = VT.getVectorNumElements();
3409
3410  if (VT.getSizeInBits() != 128)
3411    return false;
3412
3413  if (NumElems != 4)
3414    return false;
3415
3416  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3417  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3418         isUndefOrEqual(N->getMaskElt(1), 7) &&
3419         isUndefOrEqual(N->getMaskElt(2), 2) &&
3420         isUndefOrEqual(N->getMaskElt(3), 3);
3421}
3422
3423/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3424/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3425/// <2, 3, 2, 3>
3426bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3427  EVT VT = N->getValueType(0);
3428  unsigned NumElems = VT.getVectorNumElements();
3429
3430  if (VT.getSizeInBits() != 128)
3431    return false;
3432
3433  if (NumElems != 4)
3434    return false;
3435
3436  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3437         isUndefOrEqual(N->getMaskElt(1), 3) &&
3438         isUndefOrEqual(N->getMaskElt(2), 2) &&
3439         isUndefOrEqual(N->getMaskElt(3), 3);
3440}
3441
3442/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3443/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3444bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3445  EVT VT = N->getValueType(0);
3446
3447  if (VT.getSizeInBits() != 128)
3448    return false;
3449
3450  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3451
3452  if (NumElems != 2 && NumElems != 4)
3453    return false;
3454
3455  for (unsigned i = 0; i < NumElems/2; ++i)
3456    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3457      return false;
3458
3459  for (unsigned i = NumElems/2; i < NumElems; ++i)
3460    if (!isUndefOrEqual(N->getMaskElt(i), i))
3461      return false;
3462
3463  return true;
3464}
3465
3466/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3467/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3468bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3469  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3470
3471  if ((NumElems != 2 && NumElems != 4)
3472      || N->getValueType(0).getSizeInBits() > 128)
3473    return false;
3474
3475  for (unsigned i = 0; i < NumElems/2; ++i)
3476    if (!isUndefOrEqual(N->getMaskElt(i), i))
3477      return false;
3478
3479  for (unsigned i = 0; i < NumElems/2; ++i)
3480    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3481      return false;
3482
3483  return true;
3484}
3485
3486/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3487/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3488static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3489                         bool HasAVX2, bool V2IsSplat = false) {
3490  unsigned NumElts = VT.getVectorNumElements();
3491
3492  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3493         "Unsupported vector type for unpckh");
3494
3495  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3496      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3497    return false;
3498
3499  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3500  // independently on 128-bit lanes.
3501  unsigned NumLanes = VT.getSizeInBits()/128;
3502  unsigned NumLaneElts = NumElts/NumLanes;
3503
3504  for (unsigned l = 0; l != NumLanes; ++l) {
3505    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3506         i != (l+1)*NumLaneElts;
3507         i += 2, ++j) {
3508      int BitI  = Mask[i];
3509      int BitI1 = Mask[i+1];
3510      if (!isUndefOrEqual(BitI, j))
3511        return false;
3512      if (V2IsSplat) {
3513        if (!isUndefOrEqual(BitI1, NumElts))
3514          return false;
3515      } else {
3516        if (!isUndefOrEqual(BitI1, j + NumElts))
3517          return false;
3518      }
3519    }
3520  }
3521
3522  return true;
3523}
3524
3525bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3526  SmallVector<int, 8> M;
3527  N->getMask(M);
3528  return ::isUNPCKLMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3529}
3530
3531/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3532/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3533static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3534                         bool HasAVX2, bool V2IsSplat = false) {
3535  unsigned NumElts = VT.getVectorNumElements();
3536
3537  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3538         "Unsupported vector type for unpckh");
3539
3540  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3541      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3542    return false;
3543
3544  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3545  // independently on 128-bit lanes.
3546  unsigned NumLanes = VT.getSizeInBits()/128;
3547  unsigned NumLaneElts = NumElts/NumLanes;
3548
3549  for (unsigned l = 0; l != NumLanes; ++l) {
3550    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3551         i != (l+1)*NumLaneElts; i += 2, ++j) {
3552      int BitI  = Mask[i];
3553      int BitI1 = Mask[i+1];
3554      if (!isUndefOrEqual(BitI, j))
3555        return false;
3556      if (V2IsSplat) {
3557        if (isUndefOrEqual(BitI1, NumElts))
3558          return false;
3559      } else {
3560        if (!isUndefOrEqual(BitI1, j+NumElts))
3561          return false;
3562      }
3563    }
3564  }
3565  return true;
3566}
3567
3568bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3569  SmallVector<int, 8> M;
3570  N->getMask(M);
3571  return ::isUNPCKHMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3572}
3573
3574/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3575/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3576/// <0, 0, 1, 1>
3577static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3578                                  bool HasAVX2) {
3579  unsigned NumElts = VT.getVectorNumElements();
3580
3581  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3582         "Unsupported vector type for unpckh");
3583
3584  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3585      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3586    return false;
3587
3588  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3589  // FIXME: Need a better way to get rid of this, there's no latency difference
3590  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3591  // the former later. We should also remove the "_undef" special mask.
3592  if (NumElts == 4 && VT.getSizeInBits() == 256)
3593    return false;
3594
3595  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3596  // independently on 128-bit lanes.
3597  unsigned NumLanes = VT.getSizeInBits()/128;
3598  unsigned NumLaneElts = NumElts/NumLanes;
3599
3600  for (unsigned l = 0; l != NumLanes; ++l) {
3601    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3602         i != (l+1)*NumLaneElts;
3603         i += 2, ++j) {
3604      int BitI  = Mask[i];
3605      int BitI1 = Mask[i+1];
3606
3607      if (!isUndefOrEqual(BitI, j))
3608        return false;
3609      if (!isUndefOrEqual(BitI1, j))
3610        return false;
3611    }
3612  }
3613
3614  return true;
3615}
3616
3617bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3618  SmallVector<int, 8> M;
3619  N->getMask(M);
3620  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0), HasAVX2);
3621}
3622
3623/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3624/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3625/// <2, 2, 3, 3>
3626static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3627                                  bool HasAVX2) {
3628  unsigned NumElts = VT.getVectorNumElements();
3629
3630  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3631         "Unsupported vector type for unpckh");
3632
3633  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3634      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3635    return false;
3636
3637  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3638  // independently on 128-bit lanes.
3639  unsigned NumLanes = VT.getSizeInBits()/128;
3640  unsigned NumLaneElts = NumElts/NumLanes;
3641
3642  for (unsigned l = 0; l != NumLanes; ++l) {
3643    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3644         i != (l+1)*NumLaneElts; i += 2, ++j) {
3645      int BitI  = Mask[i];
3646      int BitI1 = Mask[i+1];
3647      if (!isUndefOrEqual(BitI, j))
3648        return false;
3649      if (!isUndefOrEqual(BitI1, j))
3650        return false;
3651    }
3652  }
3653  return true;
3654}
3655
3656bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3657  SmallVector<int, 8> M;
3658  N->getMask(M);
3659  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0), HasAVX2);
3660}
3661
3662/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3663/// specifies a shuffle of elements that is suitable for input to MOVSS,
3664/// MOVSD, and MOVD, i.e. setting the lowest element.
3665static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3666  if (VT.getVectorElementType().getSizeInBits() < 32)
3667    return false;
3668  if (VT.getSizeInBits() == 256)
3669    return false;
3670
3671  unsigned NumElts = VT.getVectorNumElements();
3672
3673  if (!isUndefOrEqual(Mask[0], NumElts))
3674    return false;
3675
3676  for (unsigned i = 1; i != NumElts; ++i)
3677    if (!isUndefOrEqual(Mask[i], i))
3678      return false;
3679
3680  return true;
3681}
3682
3683bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3684  SmallVector<int, 8> M;
3685  N->getMask(M);
3686  return ::isMOVLMask(M, N->getValueType(0));
3687}
3688
3689/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3690/// as permutations between 128-bit chunks or halves. As an example: this
3691/// shuffle bellow:
3692///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3693/// The first half comes from the second half of V1 and the second half from the
3694/// the second half of V2.
3695static bool isVPERM2X128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3696                             bool HasAVX) {
3697  if (!HasAVX || VT.getSizeInBits() != 256)
3698    return false;
3699
3700  // The shuffle result is divided into half A and half B. In total the two
3701  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3702  // B must come from C, D, E or F.
3703  unsigned HalfSize = VT.getVectorNumElements()/2;
3704  bool MatchA = false, MatchB = false;
3705
3706  // Check if A comes from one of C, D, E, F.
3707  for (unsigned Half = 0; Half != 4; ++Half) {
3708    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3709      MatchA = true;
3710      break;
3711    }
3712  }
3713
3714  // Check if B comes from one of C, D, E, F.
3715  for (unsigned Half = 0; Half != 4; ++Half) {
3716    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3717      MatchB = true;
3718      break;
3719    }
3720  }
3721
3722  return MatchA && MatchB;
3723}
3724
3725/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3726/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3727static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3728  EVT VT = SVOp->getValueType(0);
3729
3730  unsigned HalfSize = VT.getVectorNumElements()/2;
3731
3732  unsigned FstHalf = 0, SndHalf = 0;
3733  for (unsigned i = 0; i < HalfSize; ++i) {
3734    if (SVOp->getMaskElt(i) > 0) {
3735      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3736      break;
3737    }
3738  }
3739  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3740    if (SVOp->getMaskElt(i) > 0) {
3741      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3742      break;
3743    }
3744  }
3745
3746  return (FstHalf | (SndHalf << 4));
3747}
3748
3749/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3750/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3751/// Note that VPERMIL mask matching is different depending whether theunderlying
3752/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3753/// to the same elements of the low, but to the higher half of the source.
3754/// In VPERMILPD the two lanes could be shuffled independently of each other
3755/// with the same restriction that lanes can't be crossed.
3756static bool isVPERMILPMask(const SmallVectorImpl<int> &Mask, EVT VT,
3757                           bool HasAVX) {
3758  if (!HasAVX)
3759    return false;
3760
3761  unsigned NumElts = VT.getVectorNumElements();
3762  // Only match 256-bit with 32/64-bit types
3763  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3764    return false;
3765
3766  unsigned NumLanes = VT.getSizeInBits()/128;
3767  unsigned LaneSize = NumElts/NumLanes;
3768  for (unsigned l = 0; l != NumLanes; ++l) {
3769    unsigned LaneStart = l*LaneSize;
3770    for (unsigned i = 0; i != LaneSize; ++i) {
3771      if (!isUndefOrInRange(Mask[i+LaneStart], LaneStart, LaneStart+LaneSize))
3772        return false;
3773      if (NumElts == 4 || l == 0)
3774        continue;
3775      // VPERMILPS handling
3776      if (Mask[i] < 0)
3777        continue;
3778      if (!isUndefOrEqual(Mask[i+LaneStart], Mask[i]+LaneStart))
3779        return false;
3780    }
3781  }
3782
3783  return true;
3784}
3785
3786/// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3787/// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3788static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
3789  EVT VT = SVOp->getValueType(0);
3790
3791  unsigned NumElts = VT.getVectorNumElements();
3792  unsigned NumLanes = VT.getSizeInBits()/128;
3793  unsigned LaneSize = NumElts/NumLanes;
3794
3795  // Although the mask is equal for both lanes do it twice to get the cases
3796  // where a mask will match because the same mask element is undef on the
3797  // first half but valid on the second. This would get pathological cases
3798  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3799  unsigned Shift = (LaneSize == 4) ? 2 : 1;
3800  unsigned Mask = 0;
3801  for (unsigned i = 0; i != NumElts; ++i) {
3802    int MaskElt = SVOp->getMaskElt(i);
3803    if (MaskElt < 0)
3804      continue;
3805    MaskElt %= LaneSize;
3806    unsigned Shamt = i;
3807    // VPERMILPSY, the mask of the first half must be equal to the second one
3808    if (NumElts == 8) Shamt %= LaneSize;
3809    Mask |= MaskElt << (Shamt*Shift);
3810  }
3811
3812  return Mask;
3813}
3814
3815/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3816/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3817/// element of vector 2 and the other elements to come from vector 1 in order.
3818static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3819                               bool V2IsSplat = false, bool V2IsUndef = false) {
3820  unsigned NumOps = VT.getVectorNumElements();
3821  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3822    return false;
3823
3824  if (!isUndefOrEqual(Mask[0], 0))
3825    return false;
3826
3827  for (unsigned i = 1; i != NumOps; ++i)
3828    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3829          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3830          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3831      return false;
3832
3833  return true;
3834}
3835
3836static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3837                           bool V2IsUndef = false) {
3838  SmallVector<int, 8> M;
3839  N->getMask(M);
3840  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3841}
3842
3843/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3844/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3845/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3846bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3847                         const X86Subtarget *Subtarget) {
3848  if (!Subtarget->hasSSE3())
3849    return false;
3850
3851  // The second vector must be undef
3852  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3853    return false;
3854
3855  EVT VT = N->getValueType(0);
3856  unsigned NumElems = VT.getVectorNumElements();
3857
3858  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3859      (VT.getSizeInBits() == 256 && NumElems != 8))
3860    return false;
3861
3862  // "i+1" is the value the indexed mask element must have
3863  for (unsigned i = 0; i < NumElems; i += 2)
3864    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3865        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3866      return false;
3867
3868  return true;
3869}
3870
3871/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3872/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3873/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3874bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3875                         const X86Subtarget *Subtarget) {
3876  if (!Subtarget->hasSSE3())
3877    return false;
3878
3879  // The second vector must be undef
3880  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3881    return false;
3882
3883  EVT VT = N->getValueType(0);
3884  unsigned NumElems = VT.getVectorNumElements();
3885
3886  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3887      (VT.getSizeInBits() == 256 && NumElems != 8))
3888    return false;
3889
3890  // "i" is the value the indexed mask element must have
3891  for (unsigned i = 0; i != NumElems; i += 2)
3892    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3893        !isUndefOrEqual(N->getMaskElt(i+1), i))
3894      return false;
3895
3896  return true;
3897}
3898
3899/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3900/// specifies a shuffle of elements that is suitable for input to 256-bit
3901/// version of MOVDDUP.
3902static bool isMOVDDUPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3903                           bool HasAVX) {
3904  unsigned NumElts = VT.getVectorNumElements();
3905
3906  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3907    return false;
3908
3909  for (unsigned i = 0; i != NumElts/2; ++i)
3910    if (!isUndefOrEqual(Mask[i], 0))
3911      return false;
3912  for (unsigned i = NumElts/2; i != NumElts; ++i)
3913    if (!isUndefOrEqual(Mask[i], NumElts/2))
3914      return false;
3915  return true;
3916}
3917
3918/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3919/// specifies a shuffle of elements that is suitable for input to 128-bit
3920/// version of MOVDDUP.
3921bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3922  EVT VT = N->getValueType(0);
3923
3924  if (VT.getSizeInBits() != 128)
3925    return false;
3926
3927  unsigned e = VT.getVectorNumElements() / 2;
3928  for (unsigned i = 0; i != e; ++i)
3929    if (!isUndefOrEqual(N->getMaskElt(i), i))
3930      return false;
3931  for (unsigned i = 0; i != e; ++i)
3932    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3933      return false;
3934  return true;
3935}
3936
3937/// isVEXTRACTF128Index - Return true if the specified
3938/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3939/// suitable for input to VEXTRACTF128.
3940bool X86::isVEXTRACTF128Index(SDNode *N) {
3941  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3942    return false;
3943
3944  // The index should be aligned on a 128-bit boundary.
3945  uint64_t Index =
3946    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3947
3948  unsigned VL = N->getValueType(0).getVectorNumElements();
3949  unsigned VBits = N->getValueType(0).getSizeInBits();
3950  unsigned ElSize = VBits / VL;
3951  bool Result = (Index * ElSize) % 128 == 0;
3952
3953  return Result;
3954}
3955
3956/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3957/// operand specifies a subvector insert that is suitable for input to
3958/// VINSERTF128.
3959bool X86::isVINSERTF128Index(SDNode *N) {
3960  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3961    return false;
3962
3963  // The index should be aligned on a 128-bit boundary.
3964  uint64_t Index =
3965    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3966
3967  unsigned VL = N->getValueType(0).getVectorNumElements();
3968  unsigned VBits = N->getValueType(0).getSizeInBits();
3969  unsigned ElSize = VBits / VL;
3970  bool Result = (Index * ElSize) % 128 == 0;
3971
3972  return Result;
3973}
3974
3975/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3976/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3977unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3978  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3979  unsigned NumOperands = SVOp->getValueType(0).getVectorNumElements();
3980
3981  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3982  unsigned Mask = 0;
3983  for (unsigned i = 0; i != NumOperands; ++i) {
3984    int Val = SVOp->getMaskElt(NumOperands-i-1);
3985    if (Val < 0) Val = 0;
3986    if (Val >= (int)NumOperands) Val -= NumOperands;
3987    Mask |= Val;
3988    if (i != NumOperands - 1)
3989      Mask <<= Shift;
3990  }
3991  return Mask;
3992}
3993
3994/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3995/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3996unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3997  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3998  unsigned Mask = 0;
3999  // 8 nodes, but we only care about the last 4.
4000  for (unsigned i = 7; i >= 4; --i) {
4001    int Val = SVOp->getMaskElt(i);
4002    if (Val >= 0)
4003      Mask |= (Val - 4);
4004    if (i != 4)
4005      Mask <<= 2;
4006  }
4007  return Mask;
4008}
4009
4010/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4011/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4012unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4013  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4014  unsigned Mask = 0;
4015  // 8 nodes, but we only care about the first 4.
4016  for (int i = 3; i >= 0; --i) {
4017    int Val = SVOp->getMaskElt(i);
4018    if (Val >= 0)
4019      Mask |= Val;
4020    if (i != 0)
4021      Mask <<= 2;
4022  }
4023  return Mask;
4024}
4025
4026/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4027/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4028static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4029  EVT VT = SVOp->getValueType(0);
4030  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4031  int Val = 0;
4032
4033  unsigned i, e;
4034  for (i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4035    Val = SVOp->getMaskElt(i);
4036    if (Val >= 0)
4037      break;
4038  }
4039  assert(Val - i > 0 && "PALIGNR imm should be positive");
4040  return (Val - i) * EltSize;
4041}
4042
4043/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4044/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4045/// instructions.
4046unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4047  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4048    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4049
4050  uint64_t Index =
4051    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4052
4053  EVT VecVT = N->getOperand(0).getValueType();
4054  EVT ElVT = VecVT.getVectorElementType();
4055
4056  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4057  return Index / NumElemsPerChunk;
4058}
4059
4060/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4061/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4062/// instructions.
4063unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4064  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4065    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4066
4067  uint64_t Index =
4068    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4069
4070  EVT VecVT = N->getValueType(0);
4071  EVT ElVT = VecVT.getVectorElementType();
4072
4073  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4074  return Index / NumElemsPerChunk;
4075}
4076
4077/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4078/// constant +0.0.
4079bool X86::isZeroNode(SDValue Elt) {
4080  return ((isa<ConstantSDNode>(Elt) &&
4081           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4082          (isa<ConstantFPSDNode>(Elt) &&
4083           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4084}
4085
4086/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4087/// their permute mask.
4088static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4089                                    SelectionDAG &DAG) {
4090  EVT VT = SVOp->getValueType(0);
4091  unsigned NumElems = VT.getVectorNumElements();
4092  SmallVector<int, 8> MaskVec;
4093
4094  for (unsigned i = 0; i != NumElems; ++i) {
4095    int idx = SVOp->getMaskElt(i);
4096    if (idx < 0)
4097      MaskVec.push_back(idx);
4098    else if (idx < (int)NumElems)
4099      MaskVec.push_back(idx + NumElems);
4100    else
4101      MaskVec.push_back(idx - NumElems);
4102  }
4103  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4104                              SVOp->getOperand(0), &MaskVec[0]);
4105}
4106
4107/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4108/// match movhlps. The lower half elements should come from upper half of
4109/// V1 (and in order), and the upper half elements should come from the upper
4110/// half of V2 (and in order).
4111static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4112  EVT VT = Op->getValueType(0);
4113  if (VT.getSizeInBits() != 128)
4114    return false;
4115  if (VT.getVectorNumElements() != 4)
4116    return false;
4117  for (unsigned i = 0, e = 2; i != e; ++i)
4118    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4119      return false;
4120  for (unsigned i = 2; i != 4; ++i)
4121    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4122      return false;
4123  return true;
4124}
4125
4126/// isScalarLoadToVector - Returns true if the node is a scalar load that
4127/// is promoted to a vector. It also returns the LoadSDNode by reference if
4128/// required.
4129static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4130  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4131    return false;
4132  N = N->getOperand(0).getNode();
4133  if (!ISD::isNON_EXTLoad(N))
4134    return false;
4135  if (LD)
4136    *LD = cast<LoadSDNode>(N);
4137  return true;
4138}
4139
4140// Test whether the given value is a vector value which will be legalized
4141// into a load.
4142static bool WillBeConstantPoolLoad(SDNode *N) {
4143  if (N->getOpcode() != ISD::BUILD_VECTOR)
4144    return false;
4145
4146  // Check for any non-constant elements.
4147  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4148    switch (N->getOperand(i).getNode()->getOpcode()) {
4149    case ISD::UNDEF:
4150    case ISD::ConstantFP:
4151    case ISD::Constant:
4152      break;
4153    default:
4154      return false;
4155    }
4156
4157  // Vectors of all-zeros and all-ones are materialized with special
4158  // instructions rather than being loaded.
4159  return !ISD::isBuildVectorAllZeros(N) &&
4160         !ISD::isBuildVectorAllOnes(N);
4161}
4162
4163/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4164/// match movlp{s|d}. The lower half elements should come from lower half of
4165/// V1 (and in order), and the upper half elements should come from the upper
4166/// half of V2 (and in order). And since V1 will become the source of the
4167/// MOVLP, it must be either a vector load or a scalar load to vector.
4168static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4169                               ShuffleVectorSDNode *Op) {
4170  EVT VT = Op->getValueType(0);
4171  if (VT.getSizeInBits() != 128)
4172    return false;
4173
4174  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4175    return false;
4176  // Is V2 is a vector load, don't do this transformation. We will try to use
4177  // load folding shufps op.
4178  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4179    return false;
4180
4181  unsigned NumElems = VT.getVectorNumElements();
4182
4183  if (NumElems != 2 && NumElems != 4)
4184    return false;
4185  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4186    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4187      return false;
4188  for (unsigned i = NumElems/2; i != NumElems; ++i)
4189    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4190      return false;
4191  return true;
4192}
4193
4194/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4195/// all the same.
4196static bool isSplatVector(SDNode *N) {
4197  if (N->getOpcode() != ISD::BUILD_VECTOR)
4198    return false;
4199
4200  SDValue SplatValue = N->getOperand(0);
4201  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4202    if (N->getOperand(i) != SplatValue)
4203      return false;
4204  return true;
4205}
4206
4207/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4208/// to an zero vector.
4209/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4210static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4211  SDValue V1 = N->getOperand(0);
4212  SDValue V2 = N->getOperand(1);
4213  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4214  for (unsigned i = 0; i != NumElems; ++i) {
4215    int Idx = N->getMaskElt(i);
4216    if (Idx >= (int)NumElems) {
4217      unsigned Opc = V2.getOpcode();
4218      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4219        continue;
4220      if (Opc != ISD::BUILD_VECTOR ||
4221          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4222        return false;
4223    } else if (Idx >= 0) {
4224      unsigned Opc = V1.getOpcode();
4225      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4226        continue;
4227      if (Opc != ISD::BUILD_VECTOR ||
4228          !X86::isZeroNode(V1.getOperand(Idx)))
4229        return false;
4230    }
4231  }
4232  return true;
4233}
4234
4235/// getZeroVector - Returns a vector of specified type with all zero elements.
4236///
4237static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
4238                             DebugLoc dl) {
4239  assert(VT.isVector() && "Expected a vector type");
4240
4241  // Always build SSE zero vectors as <4 x i32> bitcasted
4242  // to their dest type. This ensures they get CSE'd.
4243  SDValue Vec;
4244  if (VT.getSizeInBits() == 128) {  // SSE
4245    if (HasSSE2) {  // SSE2
4246      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4247      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4248    } else { // SSE1
4249      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4250      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4251    }
4252  } else if (VT.getSizeInBits() == 256) { // AVX
4253    // 256-bit logic and arithmetic instructions in AVX are
4254    // all floating-point, no support for integer ops. Default
4255    // to emitting fp zeroed vectors then.
4256    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4257    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4258    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4259  }
4260  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4261}
4262
4263/// getOnesVector - Returns a vector of specified type with all bits set.
4264/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4265/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4266/// Then bitcast to their original type, ensuring they get CSE'd.
4267static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4268                             DebugLoc dl) {
4269  assert(VT.isVector() && "Expected a vector type");
4270  assert((VT.is128BitVector() || VT.is256BitVector())
4271         && "Expected a 128-bit or 256-bit vector type");
4272
4273  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4274  SDValue Vec;
4275  if (VT.getSizeInBits() == 256) {
4276    if (HasAVX2) { // AVX2
4277      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4278      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4279    } else { // AVX
4280      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4281      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4282                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4283      Vec = Insert128BitVector(InsV, Vec,
4284                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4285    }
4286  } else {
4287    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4288  }
4289
4290  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4291}
4292
4293/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4294/// that point to V2 points to its first element.
4295static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4296  EVT VT = SVOp->getValueType(0);
4297  unsigned NumElems = VT.getVectorNumElements();
4298
4299  bool Changed = false;
4300  SmallVector<int, 8> MaskVec;
4301  SVOp->getMask(MaskVec);
4302
4303  for (unsigned i = 0; i != NumElems; ++i) {
4304    if (MaskVec[i] > (int)NumElems) {
4305      MaskVec[i] = NumElems;
4306      Changed = true;
4307    }
4308  }
4309  if (Changed)
4310    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4311                                SVOp->getOperand(1), &MaskVec[0]);
4312  return SDValue(SVOp, 0);
4313}
4314
4315/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4316/// operation of specified width.
4317static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4318                       SDValue V2) {
4319  unsigned NumElems = VT.getVectorNumElements();
4320  SmallVector<int, 8> Mask;
4321  Mask.push_back(NumElems);
4322  for (unsigned i = 1; i != NumElems; ++i)
4323    Mask.push_back(i);
4324  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4325}
4326
4327/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4328static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4329                          SDValue V2) {
4330  unsigned NumElems = VT.getVectorNumElements();
4331  SmallVector<int, 8> Mask;
4332  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4333    Mask.push_back(i);
4334    Mask.push_back(i + NumElems);
4335  }
4336  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4337}
4338
4339/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4340static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4341                          SDValue V2) {
4342  unsigned NumElems = VT.getVectorNumElements();
4343  unsigned Half = NumElems/2;
4344  SmallVector<int, 8> Mask;
4345  for (unsigned i = 0; i != Half; ++i) {
4346    Mask.push_back(i + Half);
4347    Mask.push_back(i + NumElems + Half);
4348  }
4349  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4350}
4351
4352// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4353// a generic shuffle instruction because the target has no such instructions.
4354// Generate shuffles which repeat i16 and i8 several times until they can be
4355// represented by v4f32 and then be manipulated by target suported shuffles.
4356static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4357  EVT VT = V.getValueType();
4358  int NumElems = VT.getVectorNumElements();
4359  DebugLoc dl = V.getDebugLoc();
4360
4361  while (NumElems > 4) {
4362    if (EltNo < NumElems/2) {
4363      V = getUnpackl(DAG, dl, VT, V, V);
4364    } else {
4365      V = getUnpackh(DAG, dl, VT, V, V);
4366      EltNo -= NumElems/2;
4367    }
4368    NumElems >>= 1;
4369  }
4370  return V;
4371}
4372
4373/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4374static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4375  EVT VT = V.getValueType();
4376  DebugLoc dl = V.getDebugLoc();
4377  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4378         && "Vector size not supported");
4379
4380  if (VT.getSizeInBits() == 128) {
4381    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4382    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4383    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4384                             &SplatMask[0]);
4385  } else {
4386    // To use VPERMILPS to splat scalars, the second half of indicies must
4387    // refer to the higher part, which is a duplication of the lower one,
4388    // because VPERMILPS can only handle in-lane permutations.
4389    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4390                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4391
4392    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4393    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4394                             &SplatMask[0]);
4395  }
4396
4397  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4398}
4399
4400/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4401static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4402  EVT SrcVT = SV->getValueType(0);
4403  SDValue V1 = SV->getOperand(0);
4404  DebugLoc dl = SV->getDebugLoc();
4405
4406  int EltNo = SV->getSplatIndex();
4407  int NumElems = SrcVT.getVectorNumElements();
4408  unsigned Size = SrcVT.getSizeInBits();
4409
4410  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4411          "Unknown how to promote splat for type");
4412
4413  // Extract the 128-bit part containing the splat element and update
4414  // the splat element index when it refers to the higher register.
4415  if (Size == 256) {
4416    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4417    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4418    if (Idx > 0)
4419      EltNo -= NumElems/2;
4420  }
4421
4422  // All i16 and i8 vector types can't be used directly by a generic shuffle
4423  // instruction because the target has no such instruction. Generate shuffles
4424  // which repeat i16 and i8 several times until they fit in i32, and then can
4425  // be manipulated by target suported shuffles.
4426  EVT EltVT = SrcVT.getVectorElementType();
4427  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4428    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4429
4430  // Recreate the 256-bit vector and place the same 128-bit vector
4431  // into the low and high part. This is necessary because we want
4432  // to use VPERM* to shuffle the vectors
4433  if (Size == 256) {
4434    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4435                         DAG.getConstant(0, MVT::i32), DAG, dl);
4436    V1 = Insert128BitVector(InsV, V1,
4437               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4438  }
4439
4440  return getLegalSplat(DAG, V1, EltNo);
4441}
4442
4443/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4444/// vector of zero or undef vector.  This produces a shuffle where the low
4445/// element of V2 is swizzled into the zero/undef vector, landing at element
4446/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4447static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4448                                           bool isZero, bool HasSSE2,
4449                                           SelectionDAG &DAG) {
4450  EVT VT = V2.getValueType();
4451  SDValue V1 = isZero
4452    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4453  unsigned NumElems = VT.getVectorNumElements();
4454  SmallVector<int, 16> MaskVec;
4455  for (unsigned i = 0; i != NumElems; ++i)
4456    // If this is the insertion idx, put the low elt of V2 here.
4457    MaskVec.push_back(i == Idx ? NumElems : i);
4458  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4459}
4460
4461/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4462/// element of the result of the vector shuffle.
4463static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4464                                   unsigned Depth) {
4465  if (Depth == 6)
4466    return SDValue();  // Limit search depth.
4467
4468  SDValue V = SDValue(N, 0);
4469  EVT VT = V.getValueType();
4470  unsigned Opcode = V.getOpcode();
4471
4472  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4473  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4474    Index = SV->getMaskElt(Index);
4475
4476    if (Index < 0)
4477      return DAG.getUNDEF(VT.getVectorElementType());
4478
4479    int NumElems = VT.getVectorNumElements();
4480    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4481    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4482  }
4483
4484  // Recurse into target specific vector shuffles to find scalars.
4485  if (isTargetShuffle(Opcode)) {
4486    int NumElems = VT.getVectorNumElements();
4487    SmallVector<unsigned, 16> ShuffleMask;
4488    SDValue ImmN;
4489
4490    switch(Opcode) {
4491    case X86ISD::SHUFP:
4492      ImmN = N->getOperand(N->getNumOperands()-1);
4493      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4494                      ShuffleMask);
4495      break;
4496    case X86ISD::UNPCKH:
4497      DecodeUNPCKHMask(VT, ShuffleMask);
4498      break;
4499    case X86ISD::UNPCKL:
4500      DecodeUNPCKLMask(VT, ShuffleMask);
4501      break;
4502    case X86ISD::MOVHLPS:
4503      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4504      break;
4505    case X86ISD::MOVLHPS:
4506      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4507      break;
4508    case X86ISD::PSHUFD:
4509      ImmN = N->getOperand(N->getNumOperands()-1);
4510      DecodePSHUFMask(NumElems,
4511                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4512                      ShuffleMask);
4513      break;
4514    case X86ISD::PSHUFHW:
4515      ImmN = N->getOperand(N->getNumOperands()-1);
4516      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4517                        ShuffleMask);
4518      break;
4519    case X86ISD::PSHUFLW:
4520      ImmN = N->getOperand(N->getNumOperands()-1);
4521      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4522                        ShuffleMask);
4523      break;
4524    case X86ISD::MOVSS:
4525    case X86ISD::MOVSD: {
4526      // The index 0 always comes from the first element of the second source,
4527      // this is why MOVSS and MOVSD are used in the first place. The other
4528      // elements come from the other positions of the first source vector.
4529      unsigned OpNum = (Index == 0) ? 1 : 0;
4530      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4531                                 Depth+1);
4532    }
4533    case X86ISD::VPERMILP:
4534      ImmN = N->getOperand(N->getNumOperands()-1);
4535      DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4536                        ShuffleMask);
4537      break;
4538    case X86ISD::VPERM2X128:
4539      ImmN = N->getOperand(N->getNumOperands()-1);
4540      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4541                           ShuffleMask);
4542      break;
4543    case X86ISD::MOVDDUP:
4544    case X86ISD::MOVLHPD:
4545    case X86ISD::MOVLPD:
4546    case X86ISD::MOVLPS:
4547    case X86ISD::MOVSHDUP:
4548    case X86ISD::MOVSLDUP:
4549    case X86ISD::PALIGN:
4550      return SDValue(); // Not yet implemented.
4551    default:
4552      assert(0 && "unknown target shuffle node");
4553      return SDValue();
4554    }
4555
4556    Index = ShuffleMask[Index];
4557    if (Index < 0)
4558      return DAG.getUNDEF(VT.getVectorElementType());
4559
4560    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4561    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4562                               Depth+1);
4563  }
4564
4565  // Actual nodes that may contain scalar elements
4566  if (Opcode == ISD::BITCAST) {
4567    V = V.getOperand(0);
4568    EVT SrcVT = V.getValueType();
4569    unsigned NumElems = VT.getVectorNumElements();
4570
4571    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4572      return SDValue();
4573  }
4574
4575  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4576    return (Index == 0) ? V.getOperand(0)
4577                          : DAG.getUNDEF(VT.getVectorElementType());
4578
4579  if (V.getOpcode() == ISD::BUILD_VECTOR)
4580    return V.getOperand(Index);
4581
4582  return SDValue();
4583}
4584
4585/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4586/// shuffle operation which come from a consecutively from a zero. The
4587/// search can start in two different directions, from left or right.
4588static
4589unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4590                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4591  int i = 0;
4592
4593  while (i < NumElems) {
4594    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4595    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4596    if (!(Elt.getNode() &&
4597         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4598      break;
4599    ++i;
4600  }
4601
4602  return i;
4603}
4604
4605/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4606/// MaskE correspond consecutively to elements from one of the vector operands,
4607/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4608static
4609bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4610                              int OpIdx, int NumElems, unsigned &OpNum) {
4611  bool SeenV1 = false;
4612  bool SeenV2 = false;
4613
4614  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4615    int Idx = SVOp->getMaskElt(i);
4616    // Ignore undef indicies
4617    if (Idx < 0)
4618      continue;
4619
4620    if (Idx < NumElems)
4621      SeenV1 = true;
4622    else
4623      SeenV2 = true;
4624
4625    // Only accept consecutive elements from the same vector
4626    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4627      return false;
4628  }
4629
4630  OpNum = SeenV1 ? 0 : 1;
4631  return true;
4632}
4633
4634/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4635/// logical left shift of a vector.
4636static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4637                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4638  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4639  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4640              false /* check zeros from right */, DAG);
4641  unsigned OpSrc;
4642
4643  if (!NumZeros)
4644    return false;
4645
4646  // Considering the elements in the mask that are not consecutive zeros,
4647  // check if they consecutively come from only one of the source vectors.
4648  //
4649  //               V1 = {X, A, B, C}     0
4650  //                         \  \  \    /
4651  //   vector_shuffle V1, V2 <1, 2, 3, X>
4652  //
4653  if (!isShuffleMaskConsecutive(SVOp,
4654            0,                   // Mask Start Index
4655            NumElems-NumZeros-1, // Mask End Index
4656            NumZeros,            // Where to start looking in the src vector
4657            NumElems,            // Number of elements in vector
4658            OpSrc))              // Which source operand ?
4659    return false;
4660
4661  isLeft = false;
4662  ShAmt = NumZeros;
4663  ShVal = SVOp->getOperand(OpSrc);
4664  return true;
4665}
4666
4667/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4668/// logical left shift of a vector.
4669static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4670                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4671  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4672  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4673              true /* check zeros from left */, DAG);
4674  unsigned OpSrc;
4675
4676  if (!NumZeros)
4677    return false;
4678
4679  // Considering the elements in the mask that are not consecutive zeros,
4680  // check if they consecutively come from only one of the source vectors.
4681  //
4682  //                           0    { A, B, X, X } = V2
4683  //                          / \    /  /
4684  //   vector_shuffle V1, V2 <X, X, 4, 5>
4685  //
4686  if (!isShuffleMaskConsecutive(SVOp,
4687            NumZeros,     // Mask Start Index
4688            NumElems-1,   // Mask End Index
4689            0,            // Where to start looking in the src vector
4690            NumElems,     // Number of elements in vector
4691            OpSrc))       // Which source operand ?
4692    return false;
4693
4694  isLeft = true;
4695  ShAmt = NumZeros;
4696  ShVal = SVOp->getOperand(OpSrc);
4697  return true;
4698}
4699
4700/// isVectorShift - Returns true if the shuffle can be implemented as a
4701/// logical left or right shift of a vector.
4702static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4703                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4704  // Although the logic below support any bitwidth size, there are no
4705  // shift instructions which handle more than 128-bit vectors.
4706  if (SVOp->getValueType(0).getSizeInBits() > 128)
4707    return false;
4708
4709  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4710      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4711    return true;
4712
4713  return false;
4714}
4715
4716/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4717///
4718static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4719                                       unsigned NumNonZero, unsigned NumZero,
4720                                       SelectionDAG &DAG,
4721                                       const TargetLowering &TLI) {
4722  if (NumNonZero > 8)
4723    return SDValue();
4724
4725  DebugLoc dl = Op.getDebugLoc();
4726  SDValue V(0, 0);
4727  bool First = true;
4728  for (unsigned i = 0; i < 16; ++i) {
4729    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4730    if (ThisIsNonZero && First) {
4731      if (NumZero)
4732        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4733      else
4734        V = DAG.getUNDEF(MVT::v8i16);
4735      First = false;
4736    }
4737
4738    if ((i & 1) != 0) {
4739      SDValue ThisElt(0, 0), LastElt(0, 0);
4740      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4741      if (LastIsNonZero) {
4742        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4743                              MVT::i16, Op.getOperand(i-1));
4744      }
4745      if (ThisIsNonZero) {
4746        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4747        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4748                              ThisElt, DAG.getConstant(8, MVT::i8));
4749        if (LastIsNonZero)
4750          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4751      } else
4752        ThisElt = LastElt;
4753
4754      if (ThisElt.getNode())
4755        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4756                        DAG.getIntPtrConstant(i/2));
4757    }
4758  }
4759
4760  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4761}
4762
4763/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4764///
4765static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4766                                     unsigned NumNonZero, unsigned NumZero,
4767                                     SelectionDAG &DAG,
4768                                     const TargetLowering &TLI) {
4769  if (NumNonZero > 4)
4770    return SDValue();
4771
4772  DebugLoc dl = Op.getDebugLoc();
4773  SDValue V(0, 0);
4774  bool First = true;
4775  for (unsigned i = 0; i < 8; ++i) {
4776    bool isNonZero = (NonZeros & (1 << i)) != 0;
4777    if (isNonZero) {
4778      if (First) {
4779        if (NumZero)
4780          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4781        else
4782          V = DAG.getUNDEF(MVT::v8i16);
4783        First = false;
4784      }
4785      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4786                      MVT::v8i16, V, Op.getOperand(i),
4787                      DAG.getIntPtrConstant(i));
4788    }
4789  }
4790
4791  return V;
4792}
4793
4794/// getVShift - Return a vector logical shift node.
4795///
4796static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4797                         unsigned NumBits, SelectionDAG &DAG,
4798                         const TargetLowering &TLI, DebugLoc dl) {
4799  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4800  EVT ShVT = MVT::v2i64;
4801  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4802  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4803  return DAG.getNode(ISD::BITCAST, dl, VT,
4804                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4805                             DAG.getConstant(NumBits,
4806                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4807}
4808
4809SDValue
4810X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4811                                          SelectionDAG &DAG) const {
4812
4813  // Check if the scalar load can be widened into a vector load. And if
4814  // the address is "base + cst" see if the cst can be "absorbed" into
4815  // the shuffle mask.
4816  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4817    SDValue Ptr = LD->getBasePtr();
4818    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4819      return SDValue();
4820    EVT PVT = LD->getValueType(0);
4821    if (PVT != MVT::i32 && PVT != MVT::f32)
4822      return SDValue();
4823
4824    int FI = -1;
4825    int64_t Offset = 0;
4826    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4827      FI = FINode->getIndex();
4828      Offset = 0;
4829    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4830               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4831      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4832      Offset = Ptr.getConstantOperandVal(1);
4833      Ptr = Ptr.getOperand(0);
4834    } else {
4835      return SDValue();
4836    }
4837
4838    // FIXME: 256-bit vector instructions don't require a strict alignment,
4839    // improve this code to support it better.
4840    unsigned RequiredAlign = VT.getSizeInBits()/8;
4841    SDValue Chain = LD->getChain();
4842    // Make sure the stack object alignment is at least 16 or 32.
4843    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4844    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4845      if (MFI->isFixedObjectIndex(FI)) {
4846        // Can't change the alignment. FIXME: It's possible to compute
4847        // the exact stack offset and reference FI + adjust offset instead.
4848        // If someone *really* cares about this. That's the way to implement it.
4849        return SDValue();
4850      } else {
4851        MFI->setObjectAlignment(FI, RequiredAlign);
4852      }
4853    }
4854
4855    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4856    // Ptr + (Offset & ~15).
4857    if (Offset < 0)
4858      return SDValue();
4859    if ((Offset % RequiredAlign) & 3)
4860      return SDValue();
4861    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4862    if (StartOffset)
4863      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4864                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4865
4866    int EltNo = (Offset - StartOffset) >> 2;
4867    int NumElems = VT.getVectorNumElements();
4868
4869    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4870    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4871    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4872                             LD->getPointerInfo().getWithOffset(StartOffset),
4873                             false, false, false, 0);
4874
4875    // Canonicalize it to a v4i32 or v8i32 shuffle.
4876    SmallVector<int, 8> Mask;
4877    for (int i = 0; i < NumElems; ++i)
4878      Mask.push_back(EltNo);
4879
4880    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4881    return DAG.getNode(ISD::BITCAST, dl, NVT,
4882                       DAG.getVectorShuffle(CanonVT, dl, V1,
4883                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4884  }
4885
4886  return SDValue();
4887}
4888
4889/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4890/// vector of type 'VT', see if the elements can be replaced by a single large
4891/// load which has the same value as a build_vector whose operands are 'elts'.
4892///
4893/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4894///
4895/// FIXME: we'd also like to handle the case where the last elements are zero
4896/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4897/// There's even a handy isZeroNode for that purpose.
4898static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4899                                        DebugLoc &DL, SelectionDAG &DAG) {
4900  EVT EltVT = VT.getVectorElementType();
4901  unsigned NumElems = Elts.size();
4902
4903  LoadSDNode *LDBase = NULL;
4904  unsigned LastLoadedElt = -1U;
4905
4906  // For each element in the initializer, see if we've found a load or an undef.
4907  // If we don't find an initial load element, or later load elements are
4908  // non-consecutive, bail out.
4909  for (unsigned i = 0; i < NumElems; ++i) {
4910    SDValue Elt = Elts[i];
4911
4912    if (!Elt.getNode() ||
4913        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4914      return SDValue();
4915    if (!LDBase) {
4916      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4917        return SDValue();
4918      LDBase = cast<LoadSDNode>(Elt.getNode());
4919      LastLoadedElt = i;
4920      continue;
4921    }
4922    if (Elt.getOpcode() == ISD::UNDEF)
4923      continue;
4924
4925    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4926    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4927      return SDValue();
4928    LastLoadedElt = i;
4929  }
4930
4931  // If we have found an entire vector of loads and undefs, then return a large
4932  // load of the entire vector width starting at the base pointer.  If we found
4933  // consecutive loads for the low half, generate a vzext_load node.
4934  if (LastLoadedElt == NumElems - 1) {
4935    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4936      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4937                         LDBase->getPointerInfo(),
4938                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4939                         LDBase->isInvariant(), 0);
4940    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4941                       LDBase->getPointerInfo(),
4942                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4943                       LDBase->isInvariant(), LDBase->getAlignment());
4944  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4945             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4946    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4947    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4948    SDValue ResNode =
4949        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4950                                LDBase->getPointerInfo(),
4951                                LDBase->getAlignment(),
4952                                false/*isVolatile*/, true/*ReadMem*/,
4953                                false/*WriteMem*/);
4954    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4955  }
4956  return SDValue();
4957}
4958
4959/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4960/// a vbroadcast node. We support two patterns:
4961/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4962/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4963/// a scalar load.
4964/// The scalar load node is returned when a pattern is found,
4965/// or SDValue() otherwise.
4966static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4967  if (!Subtarget->hasAVX())
4968    return SDValue();
4969
4970  EVT VT = Op.getValueType();
4971  SDValue V = Op;
4972
4973  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4974    V = V.getOperand(0);
4975
4976  //A suspected load to be broadcasted.
4977  SDValue Ld;
4978
4979  switch (V.getOpcode()) {
4980    default:
4981      // Unknown pattern found.
4982      return SDValue();
4983
4984    case ISD::BUILD_VECTOR: {
4985      // The BUILD_VECTOR node must be a splat.
4986      if (!isSplatVector(V.getNode()))
4987        return SDValue();
4988
4989      Ld = V.getOperand(0);
4990
4991      // The suspected load node has several users. Make sure that all
4992      // of its users are from the BUILD_VECTOR node.
4993      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4994        return SDValue();
4995      break;
4996    }
4997
4998    case ISD::VECTOR_SHUFFLE: {
4999      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5000
5001      // Shuffles must have a splat mask where the first element is
5002      // broadcasted.
5003      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5004        return SDValue();
5005
5006      SDValue Sc = Op.getOperand(0);
5007      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
5008        return SDValue();
5009
5010      Ld = Sc.getOperand(0);
5011
5012      // The scalar_to_vector node and the suspected
5013      // load node must have exactly one user.
5014      if (!Sc.hasOneUse() || !Ld.hasOneUse())
5015        return SDValue();
5016      break;
5017    }
5018  }
5019
5020  // The scalar source must be a normal load.
5021  if (!ISD::isNormalLoad(Ld.getNode()))
5022    return SDValue();
5023
5024  bool Is256 = VT.getSizeInBits() == 256;
5025  bool Is128 = VT.getSizeInBits() == 128;
5026  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5027
5028  // VBroadcast to YMM
5029  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5030    return Ld;
5031
5032  // VBroadcast to XMM
5033  if (Is128 && (ScalarSize == 32))
5034    return Ld;
5035
5036  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5037  // double since there is vbroadcastsd xmm
5038  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5039    // VBroadcast to YMM
5040    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
5041      return Ld;
5042
5043    // VBroadcast to XMM
5044    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
5045      return Ld;
5046  }
5047
5048  // Unsupported broadcast.
5049  return SDValue();
5050}
5051
5052SDValue
5053X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5054  DebugLoc dl = Op.getDebugLoc();
5055
5056  EVT VT = Op.getValueType();
5057  EVT ExtVT = VT.getVectorElementType();
5058  unsigned NumElems = Op.getNumOperands();
5059
5060  // Vectors containing all zeros can be matched by pxor and xorps later
5061  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5062    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5063    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5064    if (Op.getValueType() == MVT::v4i32 ||
5065        Op.getValueType() == MVT::v8i32)
5066      return Op;
5067
5068    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
5069  }
5070
5071  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5072  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5073  // vpcmpeqd on 256-bit vectors.
5074  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5075    if (Op.getValueType() == MVT::v4i32 ||
5076        (Op.getValueType() == MVT::v8i32 && Subtarget->hasAVX2()))
5077      return Op;
5078
5079    return getOnesVector(Op.getValueType(), Subtarget->hasAVX2(), DAG, dl);
5080  }
5081
5082  SDValue LD = isVectorBroadcast(Op, Subtarget);
5083  if (LD.getNode())
5084    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5085
5086  unsigned EVTBits = ExtVT.getSizeInBits();
5087
5088  unsigned NumZero  = 0;
5089  unsigned NumNonZero = 0;
5090  unsigned NonZeros = 0;
5091  bool IsAllConstants = true;
5092  SmallSet<SDValue, 8> Values;
5093  for (unsigned i = 0; i < NumElems; ++i) {
5094    SDValue Elt = Op.getOperand(i);
5095    if (Elt.getOpcode() == ISD::UNDEF)
5096      continue;
5097    Values.insert(Elt);
5098    if (Elt.getOpcode() != ISD::Constant &&
5099        Elt.getOpcode() != ISD::ConstantFP)
5100      IsAllConstants = false;
5101    if (X86::isZeroNode(Elt))
5102      NumZero++;
5103    else {
5104      NonZeros |= (1 << i);
5105      NumNonZero++;
5106    }
5107  }
5108
5109  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5110  if (NumNonZero == 0)
5111    return DAG.getUNDEF(VT);
5112
5113  // Special case for single non-zero, non-undef, element.
5114  if (NumNonZero == 1) {
5115    unsigned Idx = CountTrailingZeros_32(NonZeros);
5116    SDValue Item = Op.getOperand(Idx);
5117
5118    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5119    // the value are obviously zero, truncate the value to i32 and do the
5120    // insertion that way.  Only do this if the value is non-constant or if the
5121    // value is a constant being inserted into element 0.  It is cheaper to do
5122    // a constant pool load than it is to do a movd + shuffle.
5123    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5124        (!IsAllConstants || Idx == 0)) {
5125      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5126        // Handle SSE only.
5127        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5128        EVT VecVT = MVT::v4i32;
5129        unsigned VecElts = 4;
5130
5131        // Truncate the value (which may itself be a constant) to i32, and
5132        // convert it to a vector with movd (S2V+shuffle to zero extend).
5133        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5134        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5135        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5136                                           Subtarget->hasSSE2(), DAG);
5137
5138        // Now we have our 32-bit value zero extended in the low element of
5139        // a vector.  If Idx != 0, swizzle it into place.
5140        if (Idx != 0) {
5141          SmallVector<int, 4> Mask;
5142          Mask.push_back(Idx);
5143          for (unsigned i = 1; i != VecElts; ++i)
5144            Mask.push_back(i);
5145          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5146                                      DAG.getUNDEF(Item.getValueType()),
5147                                      &Mask[0]);
5148        }
5149        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5150      }
5151    }
5152
5153    // If we have a constant or non-constant insertion into the low element of
5154    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5155    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5156    // depending on what the source datatype is.
5157    if (Idx == 0) {
5158      if (NumZero == 0)
5159        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5160
5161      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5162          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5163        if (VT.getSizeInBits() == 256) {
5164          SDValue ZeroVec = getZeroVector(VT, true, DAG, dl);
5165          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5166                             Item, DAG.getIntPtrConstant(0));
5167        }
5168        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5169        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5170        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5171        return getShuffleVectorZeroOrUndef(Item, 0, true,
5172                                           Subtarget->hasSSE2(), DAG);
5173      }
5174
5175      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5176        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5177        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5178        if (VT.getSizeInBits() == 256) {
5179          SDValue ZeroVec = getZeroVector(MVT::v8i32, true, DAG, dl);
5180          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5181                                    DAG, dl);
5182        } else {
5183          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5184          Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5185                                             Subtarget->hasSSE2(), DAG);
5186        }
5187        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5188      }
5189    }
5190
5191    // Is it a vector logical left shift?
5192    if (NumElems == 2 && Idx == 1 &&
5193        X86::isZeroNode(Op.getOperand(0)) &&
5194        !X86::isZeroNode(Op.getOperand(1))) {
5195      unsigned NumBits = VT.getSizeInBits();
5196      return getVShift(true, VT,
5197                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5198                                   VT, Op.getOperand(1)),
5199                       NumBits/2, DAG, *this, dl);
5200    }
5201
5202    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5203      return SDValue();
5204
5205    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5206    // is a non-constant being inserted into an element other than the low one,
5207    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5208    // movd/movss) to move this into the low element, then shuffle it into
5209    // place.
5210    if (EVTBits == 32) {
5211      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5212
5213      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5214      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5215                                         Subtarget->hasSSE2(), DAG);
5216      SmallVector<int, 8> MaskVec;
5217      for (unsigned i = 0; i < NumElems; i++)
5218        MaskVec.push_back(i == Idx ? 0 : 1);
5219      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5220    }
5221  }
5222
5223  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5224  if (Values.size() == 1) {
5225    if (EVTBits == 32) {
5226      // Instead of a shuffle like this:
5227      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5228      // Check if it's possible to issue this instead.
5229      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5230      unsigned Idx = CountTrailingZeros_32(NonZeros);
5231      SDValue Item = Op.getOperand(Idx);
5232      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5233        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5234    }
5235    return SDValue();
5236  }
5237
5238  // A vector full of immediates; various special cases are already
5239  // handled, so this is best done with a single constant-pool load.
5240  if (IsAllConstants)
5241    return SDValue();
5242
5243  // For AVX-length vectors, build the individual 128-bit pieces and use
5244  // shuffles to put them in place.
5245  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5246    SmallVector<SDValue, 32> V;
5247    for (unsigned i = 0; i < NumElems; ++i)
5248      V.push_back(Op.getOperand(i));
5249
5250    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5251
5252    // Build both the lower and upper subvector.
5253    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5254    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5255                                NumElems/2);
5256
5257    // Recreate the wider vector with the lower and upper part.
5258    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5259                                DAG.getConstant(0, MVT::i32), DAG, dl);
5260    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5261                              DAG, dl);
5262  }
5263
5264  // Let legalizer expand 2-wide build_vectors.
5265  if (EVTBits == 64) {
5266    if (NumNonZero == 1) {
5267      // One half is zero or undef.
5268      unsigned Idx = CountTrailingZeros_32(NonZeros);
5269      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5270                                 Op.getOperand(Idx));
5271      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5272                                         Subtarget->hasSSE2(), DAG);
5273    }
5274    return SDValue();
5275  }
5276
5277  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5278  if (EVTBits == 8 && NumElems == 16) {
5279    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5280                                        *this);
5281    if (V.getNode()) return V;
5282  }
5283
5284  if (EVTBits == 16 && NumElems == 8) {
5285    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5286                                      *this);
5287    if (V.getNode()) return V;
5288  }
5289
5290  // If element VT is == 32 bits, turn it into a number of shuffles.
5291  SmallVector<SDValue, 8> V;
5292  V.resize(NumElems);
5293  if (NumElems == 4 && NumZero > 0) {
5294    for (unsigned i = 0; i < 4; ++i) {
5295      bool isZero = !(NonZeros & (1 << i));
5296      if (isZero)
5297        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5298      else
5299        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5300    }
5301
5302    for (unsigned i = 0; i < 2; ++i) {
5303      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5304        default: break;
5305        case 0:
5306          V[i] = V[i*2];  // Must be a zero vector.
5307          break;
5308        case 1:
5309          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5310          break;
5311        case 2:
5312          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5313          break;
5314        case 3:
5315          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5316          break;
5317      }
5318    }
5319
5320    SmallVector<int, 8> MaskVec;
5321    bool Reverse = (NonZeros & 0x3) == 2;
5322    for (unsigned i = 0; i < 2; ++i)
5323      MaskVec.push_back(Reverse ? 1-i : i);
5324    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5325    for (unsigned i = 0; i < 2; ++i)
5326      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5327    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5328  }
5329
5330  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5331    // Check for a build vector of consecutive loads.
5332    for (unsigned i = 0; i < NumElems; ++i)
5333      V[i] = Op.getOperand(i);
5334
5335    // Check for elements which are consecutive loads.
5336    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5337    if (LD.getNode())
5338      return LD;
5339
5340    // For SSE 4.1, use insertps to put the high elements into the low element.
5341    if (getSubtarget()->hasSSE41()) {
5342      SDValue Result;
5343      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5344        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5345      else
5346        Result = DAG.getUNDEF(VT);
5347
5348      for (unsigned i = 1; i < NumElems; ++i) {
5349        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5350        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5351                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5352      }
5353      return Result;
5354    }
5355
5356    // Otherwise, expand into a number of unpckl*, start by extending each of
5357    // our (non-undef) elements to the full vector width with the element in the
5358    // bottom slot of the vector (which generates no code for SSE).
5359    for (unsigned i = 0; i < NumElems; ++i) {
5360      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5361        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5362      else
5363        V[i] = DAG.getUNDEF(VT);
5364    }
5365
5366    // Next, we iteratively mix elements, e.g. for v4f32:
5367    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5368    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5369    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5370    unsigned EltStride = NumElems >> 1;
5371    while (EltStride != 0) {
5372      for (unsigned i = 0; i < EltStride; ++i) {
5373        // If V[i+EltStride] is undef and this is the first round of mixing,
5374        // then it is safe to just drop this shuffle: V[i] is already in the
5375        // right place, the one element (since it's the first round) being
5376        // inserted as undef can be dropped.  This isn't safe for successive
5377        // rounds because they will permute elements within both vectors.
5378        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5379            EltStride == NumElems/2)
5380          continue;
5381
5382        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5383      }
5384      EltStride >>= 1;
5385    }
5386    return V[0];
5387  }
5388  return SDValue();
5389}
5390
5391// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5392// them in a MMX register.  This is better than doing a stack convert.
5393static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5394  DebugLoc dl = Op.getDebugLoc();
5395  EVT ResVT = Op.getValueType();
5396
5397  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5398         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5399  int Mask[2];
5400  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5401  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5402  InVec = Op.getOperand(1);
5403  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5404    unsigned NumElts = ResVT.getVectorNumElements();
5405    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5406    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5407                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5408  } else {
5409    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5410    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5411    Mask[0] = 0; Mask[1] = 2;
5412    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5413  }
5414  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5415}
5416
5417// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5418// to create 256-bit vectors from two other 128-bit ones.
5419static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5420  DebugLoc dl = Op.getDebugLoc();
5421  EVT ResVT = Op.getValueType();
5422
5423  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5424
5425  SDValue V1 = Op.getOperand(0);
5426  SDValue V2 = Op.getOperand(1);
5427  unsigned NumElems = ResVT.getVectorNumElements();
5428
5429  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5430                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5431  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5432                            DAG, dl);
5433}
5434
5435SDValue
5436X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5437  EVT ResVT = Op.getValueType();
5438
5439  assert(Op.getNumOperands() == 2);
5440  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5441         "Unsupported CONCAT_VECTORS for value type");
5442
5443  // We support concatenate two MMX registers and place them in a MMX register.
5444  // This is better than doing a stack convert.
5445  if (ResVT.is128BitVector())
5446    return LowerMMXCONCAT_VECTORS(Op, DAG);
5447
5448  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5449  // from two other 128-bit ones.
5450  return LowerAVXCONCAT_VECTORS(Op, DAG);
5451}
5452
5453// v8i16 shuffles - Prefer shuffles in the following order:
5454// 1. [all]   pshuflw, pshufhw, optional move
5455// 2. [ssse3] 1 x pshufb
5456// 3. [ssse3] 2 x pshufb + 1 x por
5457// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5458SDValue
5459X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5460                                            SelectionDAG &DAG) const {
5461  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5462  SDValue V1 = SVOp->getOperand(0);
5463  SDValue V2 = SVOp->getOperand(1);
5464  DebugLoc dl = SVOp->getDebugLoc();
5465  SmallVector<int, 8> MaskVals;
5466
5467  // Determine if more than 1 of the words in each of the low and high quadwords
5468  // of the result come from the same quadword of one of the two inputs.  Undef
5469  // mask values count as coming from any quadword, for better codegen.
5470  unsigned LoQuad[] = { 0, 0, 0, 0 };
5471  unsigned HiQuad[] = { 0, 0, 0, 0 };
5472  BitVector InputQuads(4);
5473  for (unsigned i = 0; i < 8; ++i) {
5474    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5475    int EltIdx = SVOp->getMaskElt(i);
5476    MaskVals.push_back(EltIdx);
5477    if (EltIdx < 0) {
5478      ++Quad[0];
5479      ++Quad[1];
5480      ++Quad[2];
5481      ++Quad[3];
5482      continue;
5483    }
5484    ++Quad[EltIdx / 4];
5485    InputQuads.set(EltIdx / 4);
5486  }
5487
5488  int BestLoQuad = -1;
5489  unsigned MaxQuad = 1;
5490  for (unsigned i = 0; i < 4; ++i) {
5491    if (LoQuad[i] > MaxQuad) {
5492      BestLoQuad = i;
5493      MaxQuad = LoQuad[i];
5494    }
5495  }
5496
5497  int BestHiQuad = -1;
5498  MaxQuad = 1;
5499  for (unsigned i = 0; i < 4; ++i) {
5500    if (HiQuad[i] > MaxQuad) {
5501      BestHiQuad = i;
5502      MaxQuad = HiQuad[i];
5503    }
5504  }
5505
5506  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5507  // of the two input vectors, shuffle them into one input vector so only a
5508  // single pshufb instruction is necessary. If There are more than 2 input
5509  // quads, disable the next transformation since it does not help SSSE3.
5510  bool V1Used = InputQuads[0] || InputQuads[1];
5511  bool V2Used = InputQuads[2] || InputQuads[3];
5512  if (Subtarget->hasSSSE3()) {
5513    if (InputQuads.count() == 2 && V1Used && V2Used) {
5514      BestLoQuad = InputQuads.find_first();
5515      BestHiQuad = InputQuads.find_next(BestLoQuad);
5516    }
5517    if (InputQuads.count() > 2) {
5518      BestLoQuad = -1;
5519      BestHiQuad = -1;
5520    }
5521  }
5522
5523  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5524  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5525  // words from all 4 input quadwords.
5526  SDValue NewV;
5527  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5528    SmallVector<int, 8> MaskV;
5529    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5530    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5531    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5532                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5533                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5534    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5535
5536    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5537    // source words for the shuffle, to aid later transformations.
5538    bool AllWordsInNewV = true;
5539    bool InOrder[2] = { true, true };
5540    for (unsigned i = 0; i != 8; ++i) {
5541      int idx = MaskVals[i];
5542      if (idx != (int)i)
5543        InOrder[i/4] = false;
5544      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5545        continue;
5546      AllWordsInNewV = false;
5547      break;
5548    }
5549
5550    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5551    if (AllWordsInNewV) {
5552      for (int i = 0; i != 8; ++i) {
5553        int idx = MaskVals[i];
5554        if (idx < 0)
5555          continue;
5556        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5557        if ((idx != i) && idx < 4)
5558          pshufhw = false;
5559        if ((idx != i) && idx > 3)
5560          pshuflw = false;
5561      }
5562      V1 = NewV;
5563      V2Used = false;
5564      BestLoQuad = 0;
5565      BestHiQuad = 1;
5566    }
5567
5568    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5569    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5570    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5571      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5572      unsigned TargetMask = 0;
5573      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5574                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5575      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5576                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5577      V1 = NewV.getOperand(0);
5578      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5579    }
5580  }
5581
5582  // If we have SSSE3, and all words of the result are from 1 input vector,
5583  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5584  // is present, fall back to case 4.
5585  if (Subtarget->hasSSSE3()) {
5586    SmallVector<SDValue,16> pshufbMask;
5587
5588    // If we have elements from both input vectors, set the high bit of the
5589    // shuffle mask element to zero out elements that come from V2 in the V1
5590    // mask, and elements that come from V1 in the V2 mask, so that the two
5591    // results can be OR'd together.
5592    bool TwoInputs = V1Used && V2Used;
5593    for (unsigned i = 0; i != 8; ++i) {
5594      int EltIdx = MaskVals[i] * 2;
5595      if (TwoInputs && (EltIdx >= 16)) {
5596        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5597        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5598        continue;
5599      }
5600      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5601      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5602    }
5603    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5604    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5605                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5606                                 MVT::v16i8, &pshufbMask[0], 16));
5607    if (!TwoInputs)
5608      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5609
5610    // Calculate the shuffle mask for the second input, shuffle it, and
5611    // OR it with the first shuffled input.
5612    pshufbMask.clear();
5613    for (unsigned i = 0; i != 8; ++i) {
5614      int EltIdx = MaskVals[i] * 2;
5615      if (EltIdx < 16) {
5616        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5617        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5618        continue;
5619      }
5620      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5621      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5622    }
5623    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5624    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5625                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5626                                 MVT::v16i8, &pshufbMask[0], 16));
5627    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5628    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5629  }
5630
5631  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5632  // and update MaskVals with new element order.
5633  BitVector InOrder(8);
5634  if (BestLoQuad >= 0) {
5635    SmallVector<int, 8> MaskV;
5636    for (int i = 0; i != 4; ++i) {
5637      int idx = MaskVals[i];
5638      if (idx < 0) {
5639        MaskV.push_back(-1);
5640        InOrder.set(i);
5641      } else if ((idx / 4) == BestLoQuad) {
5642        MaskV.push_back(idx & 3);
5643        InOrder.set(i);
5644      } else {
5645        MaskV.push_back(-1);
5646      }
5647    }
5648    for (unsigned i = 4; i != 8; ++i)
5649      MaskV.push_back(i);
5650    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5651                                &MaskV[0]);
5652
5653    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5654      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5655                               NewV.getOperand(0),
5656                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5657                               DAG);
5658  }
5659
5660  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5661  // and update MaskVals with the new element order.
5662  if (BestHiQuad >= 0) {
5663    SmallVector<int, 8> MaskV;
5664    for (unsigned i = 0; i != 4; ++i)
5665      MaskV.push_back(i);
5666    for (unsigned i = 4; i != 8; ++i) {
5667      int idx = MaskVals[i];
5668      if (idx < 0) {
5669        MaskV.push_back(-1);
5670        InOrder.set(i);
5671      } else if ((idx / 4) == BestHiQuad) {
5672        MaskV.push_back((idx & 3) + 4);
5673        InOrder.set(i);
5674      } else {
5675        MaskV.push_back(-1);
5676      }
5677    }
5678    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5679                                &MaskV[0]);
5680
5681    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5682      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5683                              NewV.getOperand(0),
5684                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5685                              DAG);
5686  }
5687
5688  // In case BestHi & BestLo were both -1, which means each quadword has a word
5689  // from each of the four input quadwords, calculate the InOrder bitvector now
5690  // before falling through to the insert/extract cleanup.
5691  if (BestLoQuad == -1 && BestHiQuad == -1) {
5692    NewV = V1;
5693    for (int i = 0; i != 8; ++i)
5694      if (MaskVals[i] < 0 || MaskVals[i] == i)
5695        InOrder.set(i);
5696  }
5697
5698  // The other elements are put in the right place using pextrw and pinsrw.
5699  for (unsigned i = 0; i != 8; ++i) {
5700    if (InOrder[i])
5701      continue;
5702    int EltIdx = MaskVals[i];
5703    if (EltIdx < 0)
5704      continue;
5705    SDValue ExtOp = (EltIdx < 8)
5706    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5707                  DAG.getIntPtrConstant(EltIdx))
5708    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5709                  DAG.getIntPtrConstant(EltIdx - 8));
5710    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5711                       DAG.getIntPtrConstant(i));
5712  }
5713  return NewV;
5714}
5715
5716// v16i8 shuffles - Prefer shuffles in the following order:
5717// 1. [ssse3] 1 x pshufb
5718// 2. [ssse3] 2 x pshufb + 1 x por
5719// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5720static
5721SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5722                                 SelectionDAG &DAG,
5723                                 const X86TargetLowering &TLI) {
5724  SDValue V1 = SVOp->getOperand(0);
5725  SDValue V2 = SVOp->getOperand(1);
5726  DebugLoc dl = SVOp->getDebugLoc();
5727  SmallVector<int, 16> MaskVals;
5728  SVOp->getMask(MaskVals);
5729
5730  // If we have SSSE3, case 1 is generated when all result bytes come from
5731  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5732  // present, fall back to case 3.
5733  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5734  bool V1Only = true;
5735  bool V2Only = true;
5736  for (unsigned i = 0; i < 16; ++i) {
5737    int EltIdx = MaskVals[i];
5738    if (EltIdx < 0)
5739      continue;
5740    if (EltIdx < 16)
5741      V2Only = false;
5742    else
5743      V1Only = false;
5744  }
5745
5746  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5747  if (TLI.getSubtarget()->hasSSSE3()) {
5748    SmallVector<SDValue,16> pshufbMask;
5749
5750    // If all result elements are from one input vector, then only translate
5751    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5752    //
5753    // Otherwise, we have elements from both input vectors, and must zero out
5754    // elements that come from V2 in the first mask, and V1 in the second mask
5755    // so that we can OR them together.
5756    bool TwoInputs = !(V1Only || V2Only);
5757    for (unsigned i = 0; i != 16; ++i) {
5758      int EltIdx = MaskVals[i];
5759      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5760        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5761        continue;
5762      }
5763      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5764    }
5765    // If all the elements are from V2, assign it to V1 and return after
5766    // building the first pshufb.
5767    if (V2Only)
5768      V1 = V2;
5769    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5770                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5771                                 MVT::v16i8, &pshufbMask[0], 16));
5772    if (!TwoInputs)
5773      return V1;
5774
5775    // Calculate the shuffle mask for the second input, shuffle it, and
5776    // OR it with the first shuffled input.
5777    pshufbMask.clear();
5778    for (unsigned i = 0; i != 16; ++i) {
5779      int EltIdx = MaskVals[i];
5780      if (EltIdx < 16) {
5781        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5782        continue;
5783      }
5784      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5785    }
5786    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5787                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5788                                 MVT::v16i8, &pshufbMask[0], 16));
5789    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5790  }
5791
5792  // No SSSE3 - Calculate in place words and then fix all out of place words
5793  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5794  // the 16 different words that comprise the two doublequadword input vectors.
5795  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5796  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5797  SDValue NewV = V2Only ? V2 : V1;
5798  for (int i = 0; i != 8; ++i) {
5799    int Elt0 = MaskVals[i*2];
5800    int Elt1 = MaskVals[i*2+1];
5801
5802    // This word of the result is all undef, skip it.
5803    if (Elt0 < 0 && Elt1 < 0)
5804      continue;
5805
5806    // This word of the result is already in the correct place, skip it.
5807    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5808      continue;
5809    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5810      continue;
5811
5812    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5813    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5814    SDValue InsElt;
5815
5816    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5817    // using a single extract together, load it and store it.
5818    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5819      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5820                           DAG.getIntPtrConstant(Elt1 / 2));
5821      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5822                        DAG.getIntPtrConstant(i));
5823      continue;
5824    }
5825
5826    // If Elt1 is defined, extract it from the appropriate source.  If the
5827    // source byte is not also odd, shift the extracted word left 8 bits
5828    // otherwise clear the bottom 8 bits if we need to do an or.
5829    if (Elt1 >= 0) {
5830      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5831                           DAG.getIntPtrConstant(Elt1 / 2));
5832      if ((Elt1 & 1) == 0)
5833        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5834                             DAG.getConstant(8,
5835                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5836      else if (Elt0 >= 0)
5837        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5838                             DAG.getConstant(0xFF00, MVT::i16));
5839    }
5840    // If Elt0 is defined, extract it from the appropriate source.  If the
5841    // source byte is not also even, shift the extracted word right 8 bits. If
5842    // Elt1 was also defined, OR the extracted values together before
5843    // inserting them in the result.
5844    if (Elt0 >= 0) {
5845      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5846                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5847      if ((Elt0 & 1) != 0)
5848        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5849                              DAG.getConstant(8,
5850                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5851      else if (Elt1 >= 0)
5852        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5853                             DAG.getConstant(0x00FF, MVT::i16));
5854      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5855                         : InsElt0;
5856    }
5857    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5858                       DAG.getIntPtrConstant(i));
5859  }
5860  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5861}
5862
5863/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5864/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5865/// done when every pair / quad of shuffle mask elements point to elements in
5866/// the right sequence. e.g.
5867/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5868static
5869SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5870                                 SelectionDAG &DAG, DebugLoc dl) {
5871  EVT VT = SVOp->getValueType(0);
5872  SDValue V1 = SVOp->getOperand(0);
5873  SDValue V2 = SVOp->getOperand(1);
5874  unsigned NumElems = VT.getVectorNumElements();
5875  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5876  EVT NewVT;
5877  switch (VT.getSimpleVT().SimpleTy) {
5878  default: assert(false && "Unexpected!");
5879  case MVT::v4f32: NewVT = MVT::v2f64; break;
5880  case MVT::v4i32: NewVT = MVT::v2i64; break;
5881  case MVT::v8i16: NewVT = MVT::v4i32; break;
5882  case MVT::v16i8: NewVT = MVT::v4i32; break;
5883  }
5884
5885  int Scale = NumElems / NewWidth;
5886  SmallVector<int, 8> MaskVec;
5887  for (unsigned i = 0; i < NumElems; i += Scale) {
5888    int StartIdx = -1;
5889    for (int j = 0; j < Scale; ++j) {
5890      int EltIdx = SVOp->getMaskElt(i+j);
5891      if (EltIdx < 0)
5892        continue;
5893      if (StartIdx == -1)
5894        StartIdx = EltIdx - (EltIdx % Scale);
5895      if (EltIdx != StartIdx + j)
5896        return SDValue();
5897    }
5898    if (StartIdx == -1)
5899      MaskVec.push_back(-1);
5900    else
5901      MaskVec.push_back(StartIdx / Scale);
5902  }
5903
5904  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5905  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5906  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5907}
5908
5909/// getVZextMovL - Return a zero-extending vector move low node.
5910///
5911static SDValue getVZextMovL(EVT VT, EVT OpVT,
5912                            SDValue SrcOp, SelectionDAG &DAG,
5913                            const X86Subtarget *Subtarget, DebugLoc dl) {
5914  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5915    LoadSDNode *LD = NULL;
5916    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5917      LD = dyn_cast<LoadSDNode>(SrcOp);
5918    if (!LD) {
5919      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5920      // instead.
5921      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5922      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5923          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5924          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5925          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5926        // PR2108
5927        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5928        return DAG.getNode(ISD::BITCAST, dl, VT,
5929                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5930                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5931                                                   OpVT,
5932                                                   SrcOp.getOperand(0)
5933                                                          .getOperand(0))));
5934      }
5935    }
5936  }
5937
5938  return DAG.getNode(ISD::BITCAST, dl, VT,
5939                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5940                                 DAG.getNode(ISD::BITCAST, dl,
5941                                             OpVT, SrcOp)));
5942}
5943
5944/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5945/// shuffle node referes to only one lane in the sources.
5946static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5947  EVT VT = SVOp->getValueType(0);
5948  int NumElems = VT.getVectorNumElements();
5949  int HalfSize = NumElems/2;
5950  SmallVector<int, 16> M;
5951  SVOp->getMask(M);
5952  bool MatchA = false, MatchB = false;
5953
5954  for (int l = 0; l < NumElems*2; l += HalfSize) {
5955    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5956      MatchA = true;
5957      break;
5958    }
5959  }
5960
5961  for (int l = 0; l < NumElems*2; l += HalfSize) {
5962    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5963      MatchB = true;
5964      break;
5965    }
5966  }
5967
5968  return MatchA && MatchB;
5969}
5970
5971/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5972/// which could not be matched by any known target speficic shuffle
5973static SDValue
5974LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5975  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5976    // If each half of a vector shuffle node referes to only one lane in the
5977    // source vectors, extract each used 128-bit lane and shuffle them using
5978    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5979    // the work to the legalizer.
5980    DebugLoc dl = SVOp->getDebugLoc();
5981    EVT VT = SVOp->getValueType(0);
5982    int NumElems = VT.getVectorNumElements();
5983    int HalfSize = NumElems/2;
5984
5985    // Extract the reference for each half
5986    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5987    int FstVecOpNum = 0, SndVecOpNum = 0;
5988    for (int i = 0; i < HalfSize; ++i) {
5989      int Elt = SVOp->getMaskElt(i);
5990      if (SVOp->getMaskElt(i) < 0)
5991        continue;
5992      FstVecOpNum = Elt/NumElems;
5993      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5994      break;
5995    }
5996    for (int i = HalfSize; i < NumElems; ++i) {
5997      int Elt = SVOp->getMaskElt(i);
5998      if (SVOp->getMaskElt(i) < 0)
5999        continue;
6000      SndVecOpNum = Elt/NumElems;
6001      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
6002      break;
6003    }
6004
6005    // Extract the subvectors
6006    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
6007                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
6008    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
6009                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
6010
6011    // Generate 128-bit shuffles
6012    SmallVector<int, 16> MaskV1, MaskV2;
6013    for (int i = 0; i < HalfSize; ++i) {
6014      int Elt = SVOp->getMaskElt(i);
6015      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6016    }
6017    for (int i = HalfSize; i < NumElems; ++i) {
6018      int Elt = SVOp->getMaskElt(i);
6019      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
6020    }
6021
6022    EVT NVT = V1.getValueType();
6023    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
6024    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
6025
6026    // Concatenate the result back
6027    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
6028                                   DAG.getConstant(0, MVT::i32), DAG, dl);
6029    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6030                              DAG, dl);
6031  }
6032
6033  return SDValue();
6034}
6035
6036/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6037/// 4 elements, and match them with several different shuffle types.
6038static SDValue
6039LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6040  SDValue V1 = SVOp->getOperand(0);
6041  SDValue V2 = SVOp->getOperand(1);
6042  DebugLoc dl = SVOp->getDebugLoc();
6043  EVT VT = SVOp->getValueType(0);
6044
6045  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6046
6047  SmallVector<std::pair<int, int>, 8> Locs;
6048  Locs.resize(4);
6049  SmallVector<int, 8> Mask1(4U, -1);
6050  SmallVector<int, 8> PermMask;
6051  SVOp->getMask(PermMask);
6052
6053  unsigned NumHi = 0;
6054  unsigned NumLo = 0;
6055  for (unsigned i = 0; i != 4; ++i) {
6056    int Idx = PermMask[i];
6057    if (Idx < 0) {
6058      Locs[i] = std::make_pair(-1, -1);
6059    } else {
6060      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6061      if (Idx < 4) {
6062        Locs[i] = std::make_pair(0, NumLo);
6063        Mask1[NumLo] = Idx;
6064        NumLo++;
6065      } else {
6066        Locs[i] = std::make_pair(1, NumHi);
6067        if (2+NumHi < 4)
6068          Mask1[2+NumHi] = Idx;
6069        NumHi++;
6070      }
6071    }
6072  }
6073
6074  if (NumLo <= 2 && NumHi <= 2) {
6075    // If no more than two elements come from either vector. This can be
6076    // implemented with two shuffles. First shuffle gather the elements.
6077    // The second shuffle, which takes the first shuffle as both of its
6078    // vector operands, put the elements into the right order.
6079    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6080
6081    SmallVector<int, 8> Mask2(4U, -1);
6082
6083    for (unsigned i = 0; i != 4; ++i) {
6084      if (Locs[i].first == -1)
6085        continue;
6086      else {
6087        unsigned Idx = (i < 2) ? 0 : 4;
6088        Idx += Locs[i].first * 2 + Locs[i].second;
6089        Mask2[i] = Idx;
6090      }
6091    }
6092
6093    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6094  } else if (NumLo == 3 || NumHi == 3) {
6095    // Otherwise, we must have three elements from one vector, call it X, and
6096    // one element from the other, call it Y.  First, use a shufps to build an
6097    // intermediate vector with the one element from Y and the element from X
6098    // that will be in the same half in the final destination (the indexes don't
6099    // matter). Then, use a shufps to build the final vector, taking the half
6100    // containing the element from Y from the intermediate, and the other half
6101    // from X.
6102    if (NumHi == 3) {
6103      // Normalize it so the 3 elements come from V1.
6104      CommuteVectorShuffleMask(PermMask, 4);
6105      std::swap(V1, V2);
6106    }
6107
6108    // Find the element from V2.
6109    unsigned HiIndex;
6110    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6111      int Val = PermMask[HiIndex];
6112      if (Val < 0)
6113        continue;
6114      if (Val >= 4)
6115        break;
6116    }
6117
6118    Mask1[0] = PermMask[HiIndex];
6119    Mask1[1] = -1;
6120    Mask1[2] = PermMask[HiIndex^1];
6121    Mask1[3] = -1;
6122    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6123
6124    if (HiIndex >= 2) {
6125      Mask1[0] = PermMask[0];
6126      Mask1[1] = PermMask[1];
6127      Mask1[2] = HiIndex & 1 ? 6 : 4;
6128      Mask1[3] = HiIndex & 1 ? 4 : 6;
6129      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6130    } else {
6131      Mask1[0] = HiIndex & 1 ? 2 : 0;
6132      Mask1[1] = HiIndex & 1 ? 0 : 2;
6133      Mask1[2] = PermMask[2];
6134      Mask1[3] = PermMask[3];
6135      if (Mask1[2] >= 0)
6136        Mask1[2] += 4;
6137      if (Mask1[3] >= 0)
6138        Mask1[3] += 4;
6139      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6140    }
6141  }
6142
6143  // Break it into (shuffle shuffle_hi, shuffle_lo).
6144  Locs.clear();
6145  Locs.resize(4);
6146  SmallVector<int,8> LoMask(4U, -1);
6147  SmallVector<int,8> HiMask(4U, -1);
6148
6149  SmallVector<int,8> *MaskPtr = &LoMask;
6150  unsigned MaskIdx = 0;
6151  unsigned LoIdx = 0;
6152  unsigned HiIdx = 2;
6153  for (unsigned i = 0; i != 4; ++i) {
6154    if (i == 2) {
6155      MaskPtr = &HiMask;
6156      MaskIdx = 1;
6157      LoIdx = 0;
6158      HiIdx = 2;
6159    }
6160    int Idx = PermMask[i];
6161    if (Idx < 0) {
6162      Locs[i] = std::make_pair(-1, -1);
6163    } else if (Idx < 4) {
6164      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6165      (*MaskPtr)[LoIdx] = Idx;
6166      LoIdx++;
6167    } else {
6168      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6169      (*MaskPtr)[HiIdx] = Idx;
6170      HiIdx++;
6171    }
6172  }
6173
6174  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6175  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6176  SmallVector<int, 8> MaskOps;
6177  for (unsigned i = 0; i != 4; ++i) {
6178    if (Locs[i].first == -1) {
6179      MaskOps.push_back(-1);
6180    } else {
6181      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6182      MaskOps.push_back(Idx);
6183    }
6184  }
6185  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6186}
6187
6188static bool MayFoldVectorLoad(SDValue V) {
6189  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6190    V = V.getOperand(0);
6191  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6192    V = V.getOperand(0);
6193  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6194      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6195    // BUILD_VECTOR (load), undef
6196    V = V.getOperand(0);
6197  if (MayFoldLoad(V))
6198    return true;
6199  return false;
6200}
6201
6202// FIXME: the version above should always be used. Since there's
6203// a bug where several vector shuffles can't be folded because the
6204// DAG is not updated during lowering and a node claims to have two
6205// uses while it only has one, use this version, and let isel match
6206// another instruction if the load really happens to have more than
6207// one use. Remove this version after this bug get fixed.
6208// rdar://8434668, PR8156
6209static bool RelaxedMayFoldVectorLoad(SDValue V) {
6210  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6211    V = V.getOperand(0);
6212  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6213    V = V.getOperand(0);
6214  if (ISD::isNormalLoad(V.getNode()))
6215    return true;
6216  return false;
6217}
6218
6219/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6220/// a vector extract, and if both can be later optimized into a single load.
6221/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6222/// here because otherwise a target specific shuffle node is going to be
6223/// emitted for this shuffle, and the optimization not done.
6224/// FIXME: This is probably not the best approach, but fix the problem
6225/// until the right path is decided.
6226static
6227bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6228                                         const TargetLowering &TLI) {
6229  EVT VT = V.getValueType();
6230  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6231
6232  // Be sure that the vector shuffle is present in a pattern like this:
6233  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6234  if (!V.hasOneUse())
6235    return false;
6236
6237  SDNode *N = *V.getNode()->use_begin();
6238  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6239    return false;
6240
6241  SDValue EltNo = N->getOperand(1);
6242  if (!isa<ConstantSDNode>(EltNo))
6243    return false;
6244
6245  // If the bit convert changed the number of elements, it is unsafe
6246  // to examine the mask.
6247  bool HasShuffleIntoBitcast = false;
6248  if (V.getOpcode() == ISD::BITCAST) {
6249    EVT SrcVT = V.getOperand(0).getValueType();
6250    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6251      return false;
6252    V = V.getOperand(0);
6253    HasShuffleIntoBitcast = true;
6254  }
6255
6256  // Select the input vector, guarding against out of range extract vector.
6257  unsigned NumElems = VT.getVectorNumElements();
6258  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6259  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6260  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6261
6262  // Skip one more bit_convert if necessary
6263  if (V.getOpcode() == ISD::BITCAST)
6264    V = V.getOperand(0);
6265
6266  if (!ISD::isNormalLoad(V.getNode()))
6267    return false;
6268
6269  // Is the original load suitable?
6270  LoadSDNode *LN0 = cast<LoadSDNode>(V);
6271
6272  if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
6273    return false;
6274
6275  if (!HasShuffleIntoBitcast)
6276    return true;
6277
6278  // If there's a bitcast before the shuffle, check if the load type and
6279  // alignment is valid.
6280  unsigned Align = LN0->getAlignment();
6281  unsigned NewAlign =
6282    TLI.getTargetData()->getABITypeAlignment(
6283                                  VT.getTypeForEVT(*DAG.getContext()));
6284
6285  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6286    return false;
6287
6288  return true;
6289}
6290
6291static
6292SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6293  EVT VT = Op.getValueType();
6294
6295  // Canonizalize to v2f64.
6296  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6297  return DAG.getNode(ISD::BITCAST, dl, VT,
6298                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6299                                          V1, DAG));
6300}
6301
6302static
6303SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6304                        bool HasSSE2) {
6305  SDValue V1 = Op.getOperand(0);
6306  SDValue V2 = Op.getOperand(1);
6307  EVT VT = Op.getValueType();
6308
6309  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6310
6311  if (HasSSE2 && VT == MVT::v2f64)
6312    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6313
6314  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6315  return DAG.getNode(ISD::BITCAST, dl, VT,
6316                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6317                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6318                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6319}
6320
6321static
6322SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6323  SDValue V1 = Op.getOperand(0);
6324  SDValue V2 = Op.getOperand(1);
6325  EVT VT = Op.getValueType();
6326
6327  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6328         "unsupported shuffle type");
6329
6330  if (V2.getOpcode() == ISD::UNDEF)
6331    V2 = V1;
6332
6333  // v4i32 or v4f32
6334  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6335}
6336
6337static
6338SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6339  SDValue V1 = Op.getOperand(0);
6340  SDValue V2 = Op.getOperand(1);
6341  EVT VT = Op.getValueType();
6342  unsigned NumElems = VT.getVectorNumElements();
6343
6344  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6345  // operand of these instructions is only memory, so check if there's a
6346  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6347  // same masks.
6348  bool CanFoldLoad = false;
6349
6350  // Trivial case, when V2 comes from a load.
6351  if (MayFoldVectorLoad(V2))
6352    CanFoldLoad = true;
6353
6354  // When V1 is a load, it can be folded later into a store in isel, example:
6355  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6356  //    turns into:
6357  //  (MOVLPSmr addr:$src1, VR128:$src2)
6358  // So, recognize this potential and also use MOVLPS or MOVLPD
6359  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6360    CanFoldLoad = true;
6361
6362  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6363  if (CanFoldLoad) {
6364    if (HasSSE2 && NumElems == 2)
6365      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6366
6367    if (NumElems == 4)
6368      // If we don't care about the second element, procede to use movss.
6369      if (SVOp->getMaskElt(1) != -1)
6370        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6371  }
6372
6373  // movl and movlp will both match v2i64, but v2i64 is never matched by
6374  // movl earlier because we make it strict to avoid messing with the movlp load
6375  // folding logic (see the code above getMOVLP call). Match it here then,
6376  // this is horrible, but will stay like this until we move all shuffle
6377  // matching to x86 specific nodes. Note that for the 1st condition all
6378  // types are matched with movsd.
6379  if (HasSSE2) {
6380    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6381    // as to remove this logic from here, as much as possible
6382    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6383      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6384    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6385  }
6386
6387  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6388
6389  // Invert the operand order and use SHUFPS to match it.
6390  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6391                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6392}
6393
6394static
6395SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6396                               const TargetLowering &TLI,
6397                               const X86Subtarget *Subtarget) {
6398  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6399  EVT VT = Op.getValueType();
6400  DebugLoc dl = Op.getDebugLoc();
6401  SDValue V1 = Op.getOperand(0);
6402  SDValue V2 = Op.getOperand(1);
6403
6404  if (isZeroShuffle(SVOp))
6405    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
6406
6407  // Handle splat operations
6408  if (SVOp->isSplat()) {
6409    unsigned NumElem = VT.getVectorNumElements();
6410    int Size = VT.getSizeInBits();
6411    // Special case, this is the only place now where it's allowed to return
6412    // a vector_shuffle operation without using a target specific node, because
6413    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6414    // this be moved to DAGCombine instead?
6415    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6416      return Op;
6417
6418    // Use vbroadcast whenever the splat comes from a foldable load
6419    SDValue LD = isVectorBroadcast(Op, Subtarget);
6420    if (LD.getNode())
6421      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6422
6423    // Handle splats by matching through known shuffle masks
6424    if ((Size == 128 && NumElem <= 4) ||
6425        (Size == 256 && NumElem < 8))
6426      return SDValue();
6427
6428    // All remaning splats are promoted to target supported vector shuffles.
6429    return PromoteSplat(SVOp, DAG);
6430  }
6431
6432  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6433  // do it!
6434  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6435    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6436    if (NewOp.getNode())
6437      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6438  } else if ((VT == MVT::v4i32 ||
6439             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6440    // FIXME: Figure out a cleaner way to do this.
6441    // Try to make use of movq to zero out the top part.
6442    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6443      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6444      if (NewOp.getNode()) {
6445        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6446          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6447                              DAG, Subtarget, dl);
6448      }
6449    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6450      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6451      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6452        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6453                            DAG, Subtarget, dl);
6454    }
6455  }
6456  return SDValue();
6457}
6458
6459SDValue
6460X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6461  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6462  SDValue V1 = Op.getOperand(0);
6463  SDValue V2 = Op.getOperand(1);
6464  EVT VT = Op.getValueType();
6465  DebugLoc dl = Op.getDebugLoc();
6466  unsigned NumElems = VT.getVectorNumElements();
6467  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6468  bool V1IsSplat = false;
6469  bool V2IsSplat = false;
6470  bool HasSSE2 = Subtarget->hasSSE2();
6471  bool HasAVX    = Subtarget->hasAVX();
6472  bool HasAVX2   = Subtarget->hasAVX2();
6473  MachineFunction &MF = DAG.getMachineFunction();
6474  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6475
6476  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6477
6478  assert(V1.getOpcode() != ISD::UNDEF && "Op 1 of shuffle should not be undef");
6479
6480  // Vector shuffle lowering takes 3 steps:
6481  //
6482  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6483  //    narrowing and commutation of operands should be handled.
6484  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6485  //    shuffle nodes.
6486  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6487  //    so the shuffle can be broken into other shuffles and the legalizer can
6488  //    try the lowering again.
6489  //
6490  // The general idea is that no vector_shuffle operation should be left to
6491  // be matched during isel, all of them must be converted to a target specific
6492  // node here.
6493
6494  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6495  // narrowing and commutation of operands should be handled. The actual code
6496  // doesn't include all of those, work in progress...
6497  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6498  if (NewOp.getNode())
6499    return NewOp;
6500
6501  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6502  // unpckh_undef). Only use pshufd if speed is more important than size.
6503  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6504    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6505  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6506    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6507
6508  if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3() &&
6509      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6510    return getMOVDDup(Op, dl, V1, DAG);
6511
6512  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6513    return getMOVHighToLow(Op, dl, DAG);
6514
6515  // Use to match splats
6516  if (HasSSE2 && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6517      (VT == MVT::v2f64 || VT == MVT::v2i64))
6518    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6519
6520  if (X86::isPSHUFDMask(SVOp)) {
6521    // The actual implementation will match the mask in the if above and then
6522    // during isel it can match several different instructions, not only pshufd
6523    // as its name says, sad but true, emulate the behavior for now...
6524    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6525        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6526
6527    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6528
6529    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6530      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6531
6532    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6533                                TargetMask, DAG);
6534  }
6535
6536  // Check if this can be converted into a logical shift.
6537  bool isLeft = false;
6538  unsigned ShAmt = 0;
6539  SDValue ShVal;
6540  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6541  if (isShift && ShVal.hasOneUse()) {
6542    // If the shifted value has multiple uses, it may be cheaper to use
6543    // v_set0 + movlhps or movhlps, etc.
6544    EVT EltVT = VT.getVectorElementType();
6545    ShAmt *= EltVT.getSizeInBits();
6546    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6547  }
6548
6549  if (X86::isMOVLMask(SVOp)) {
6550    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6551      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6552    if (!X86::isMOVLPMask(SVOp)) {
6553      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6554        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6555
6556      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6557        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6558    }
6559  }
6560
6561  // FIXME: fold these into legal mask.
6562  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6563    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6564
6565  if (X86::isMOVHLPSMask(SVOp))
6566    return getMOVHighToLow(Op, dl, DAG);
6567
6568  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6569    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6570
6571  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6572    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6573
6574  if (X86::isMOVLPMask(SVOp))
6575    return getMOVLP(Op, dl, DAG, HasSSE2);
6576
6577  if (ShouldXformToMOVHLPS(SVOp) ||
6578      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6579    return CommuteVectorShuffle(SVOp, DAG);
6580
6581  if (isShift) {
6582    // No better options. Use a vshl / vsrl.
6583    EVT EltVT = VT.getVectorElementType();
6584    ShAmt *= EltVT.getSizeInBits();
6585    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6586  }
6587
6588  bool Commuted = false;
6589  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6590  // 1,1,1,1 -> v8i16 though.
6591  V1IsSplat = isSplatVector(V1.getNode());
6592  V2IsSplat = isSplatVector(V2.getNode());
6593
6594  // Canonicalize the splat or undef, if present, to be on the RHS.
6595  if (V1IsSplat && !V2IsSplat) {
6596    Op = CommuteVectorShuffle(SVOp, DAG);
6597    SVOp = cast<ShuffleVectorSDNode>(Op);
6598    V1 = SVOp->getOperand(0);
6599    V2 = SVOp->getOperand(1);
6600    std::swap(V1IsSplat, V2IsSplat);
6601    Commuted = true;
6602  }
6603
6604  SmallVector<int, 32> M;
6605  SVOp->getMask(M);
6606
6607  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6608    // Shuffling low element of v1 into undef, just return v1.
6609    if (V2IsUndef)
6610      return V1;
6611    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6612    // the instruction selector will not match, so get a canonical MOVL with
6613    // swapped operands to undo the commute.
6614    return getMOVL(DAG, dl, VT, V2, V1);
6615  }
6616
6617  if (isUNPCKLMask(M, VT, HasAVX2))
6618    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6619
6620  if (isUNPCKHMask(M, VT, HasAVX2))
6621    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6622
6623  if (V2IsSplat) {
6624    // Normalize mask so all entries that point to V2 points to its first
6625    // element then try to match unpck{h|l} again. If match, return a
6626    // new vector_shuffle with the corrected mask.
6627    SDValue NewMask = NormalizeMask(SVOp, DAG);
6628    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6629    if (NSVOp != SVOp) {
6630      if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6631        return NewMask;
6632      } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6633        return NewMask;
6634      }
6635    }
6636  }
6637
6638  if (Commuted) {
6639    // Commute is back and try unpck* again.
6640    // FIXME: this seems wrong.
6641    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6642    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6643
6644    if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6645      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6646
6647    if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6648      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6649  }
6650
6651  // Normalize the node to match x86 shuffle ops if needed
6652  if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true) ||
6653                     isVSHUFPYMask(M, VT, HasAVX, /* Commuted */ true)))
6654    return CommuteVectorShuffle(SVOp, DAG);
6655
6656  // The checks below are all present in isShuffleMaskLegal, but they are
6657  // inlined here right now to enable us to directly emit target specific
6658  // nodes, and remove one by one until they don't return Op anymore.
6659
6660  if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3()))
6661    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6662                                getShufflePALIGNRImmediate(SVOp),
6663                                DAG);
6664
6665  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6666      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6667    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6668      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6669  }
6670
6671  if (isPSHUFHWMask(M, VT))
6672    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6673                                X86::getShufflePSHUFHWImmediate(SVOp),
6674                                DAG);
6675
6676  if (isPSHUFLWMask(M, VT))
6677    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6678                                X86::getShufflePSHUFLWImmediate(SVOp),
6679                                DAG);
6680
6681  if (isSHUFPMask(M, VT))
6682    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6683                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6684
6685  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6686    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6687  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6688    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6689
6690  //===--------------------------------------------------------------------===//
6691  // Generate target specific nodes for 128 or 256-bit shuffles only
6692  // supported in the AVX instruction set.
6693  //
6694
6695  // Handle VMOVDDUPY permutations
6696  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6697    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6698
6699  // Handle VPERMILPS/D* permutations
6700  if (isVPERMILPMask(M, VT, HasAVX))
6701    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6702                                getShuffleVPERMILPImmediate(SVOp), DAG);
6703
6704  // Handle VPERM2F128/VPERM2I128 permutations
6705  if (isVPERM2X128Mask(M, VT, HasAVX))
6706    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6707                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6708
6709  // Handle VSHUFPS/DY permutations
6710  if (isVSHUFPYMask(M, VT, HasAVX))
6711    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6712                                getShuffleVSHUFPYImmediate(SVOp), DAG);
6713
6714  //===--------------------------------------------------------------------===//
6715  // Since no target specific shuffle was selected for this generic one,
6716  // lower it into other known shuffles. FIXME: this isn't true yet, but
6717  // this is the plan.
6718  //
6719
6720  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6721  if (VT == MVT::v8i16) {
6722    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6723    if (NewOp.getNode())
6724      return NewOp;
6725  }
6726
6727  if (VT == MVT::v16i8) {
6728    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6729    if (NewOp.getNode())
6730      return NewOp;
6731  }
6732
6733  // Handle all 128-bit wide vectors with 4 elements, and match them with
6734  // several different shuffle types.
6735  if (NumElems == 4 && VT.getSizeInBits() == 128)
6736    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6737
6738  // Handle general 256-bit shuffles
6739  if (VT.is256BitVector())
6740    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6741
6742  return SDValue();
6743}
6744
6745SDValue
6746X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6747                                                SelectionDAG &DAG) const {
6748  EVT VT = Op.getValueType();
6749  DebugLoc dl = Op.getDebugLoc();
6750
6751  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6752    return SDValue();
6753
6754  if (VT.getSizeInBits() == 8) {
6755    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6756                                    Op.getOperand(0), Op.getOperand(1));
6757    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6758                                    DAG.getValueType(VT));
6759    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6760  } else if (VT.getSizeInBits() == 16) {
6761    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6762    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6763    if (Idx == 0)
6764      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6765                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6766                                     DAG.getNode(ISD::BITCAST, dl,
6767                                                 MVT::v4i32,
6768                                                 Op.getOperand(0)),
6769                                     Op.getOperand(1)));
6770    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6771                                    Op.getOperand(0), Op.getOperand(1));
6772    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6773                                    DAG.getValueType(VT));
6774    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6775  } else if (VT == MVT::f32) {
6776    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6777    // the result back to FR32 register. It's only worth matching if the
6778    // result has a single use which is a store or a bitcast to i32.  And in
6779    // the case of a store, it's not worth it if the index is a constant 0,
6780    // because a MOVSSmr can be used instead, which is smaller and faster.
6781    if (!Op.hasOneUse())
6782      return SDValue();
6783    SDNode *User = *Op.getNode()->use_begin();
6784    if ((User->getOpcode() != ISD::STORE ||
6785         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6786          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6787        (User->getOpcode() != ISD::BITCAST ||
6788         User->getValueType(0) != MVT::i32))
6789      return SDValue();
6790    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6791                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6792                                              Op.getOperand(0)),
6793                                              Op.getOperand(1));
6794    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6795  } else if (VT == MVT::i32 || VT == MVT::i64) {
6796    // ExtractPS/pextrq works with constant index.
6797    if (isa<ConstantSDNode>(Op.getOperand(1)))
6798      return Op;
6799  }
6800  return SDValue();
6801}
6802
6803
6804SDValue
6805X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6806                                           SelectionDAG &DAG) const {
6807  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6808    return SDValue();
6809
6810  SDValue Vec = Op.getOperand(0);
6811  EVT VecVT = Vec.getValueType();
6812
6813  // If this is a 256-bit vector result, first extract the 128-bit vector and
6814  // then extract the element from the 128-bit vector.
6815  if (VecVT.getSizeInBits() == 256) {
6816    DebugLoc dl = Op.getNode()->getDebugLoc();
6817    unsigned NumElems = VecVT.getVectorNumElements();
6818    SDValue Idx = Op.getOperand(1);
6819    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6820
6821    // Get the 128-bit vector.
6822    bool Upper = IdxVal >= NumElems/2;
6823    Vec = Extract128BitVector(Vec,
6824                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6825
6826    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6827                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6828  }
6829
6830  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6831
6832  if (Subtarget->hasSSE41()) {
6833    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6834    if (Res.getNode())
6835      return Res;
6836  }
6837
6838  EVT VT = Op.getValueType();
6839  DebugLoc dl = Op.getDebugLoc();
6840  // TODO: handle v16i8.
6841  if (VT.getSizeInBits() == 16) {
6842    SDValue Vec = Op.getOperand(0);
6843    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6844    if (Idx == 0)
6845      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6846                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6847                                     DAG.getNode(ISD::BITCAST, dl,
6848                                                 MVT::v4i32, Vec),
6849                                     Op.getOperand(1)));
6850    // Transform it so it match pextrw which produces a 32-bit result.
6851    EVT EltVT = MVT::i32;
6852    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6853                                    Op.getOperand(0), Op.getOperand(1));
6854    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6855                                    DAG.getValueType(VT));
6856    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6857  } else if (VT.getSizeInBits() == 32) {
6858    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6859    if (Idx == 0)
6860      return Op;
6861
6862    // SHUFPS the element to the lowest double word, then movss.
6863    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6864    EVT VVT = Op.getOperand(0).getValueType();
6865    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6866                                       DAG.getUNDEF(VVT), Mask);
6867    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6868                       DAG.getIntPtrConstant(0));
6869  } else if (VT.getSizeInBits() == 64) {
6870    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6871    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6872    //        to match extract_elt for f64.
6873    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6874    if (Idx == 0)
6875      return Op;
6876
6877    // UNPCKHPD the element to the lowest double word, then movsd.
6878    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6879    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6880    int Mask[2] = { 1, -1 };
6881    EVT VVT = Op.getOperand(0).getValueType();
6882    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6883                                       DAG.getUNDEF(VVT), Mask);
6884    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6885                       DAG.getIntPtrConstant(0));
6886  }
6887
6888  return SDValue();
6889}
6890
6891SDValue
6892X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6893                                               SelectionDAG &DAG) const {
6894  EVT VT = Op.getValueType();
6895  EVT EltVT = VT.getVectorElementType();
6896  DebugLoc dl = Op.getDebugLoc();
6897
6898  SDValue N0 = Op.getOperand(0);
6899  SDValue N1 = Op.getOperand(1);
6900  SDValue N2 = Op.getOperand(2);
6901
6902  if (VT.getSizeInBits() == 256)
6903    return SDValue();
6904
6905  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6906      isa<ConstantSDNode>(N2)) {
6907    unsigned Opc;
6908    if (VT == MVT::v8i16)
6909      Opc = X86ISD::PINSRW;
6910    else if (VT == MVT::v16i8)
6911      Opc = X86ISD::PINSRB;
6912    else
6913      Opc = X86ISD::PINSRB;
6914
6915    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6916    // argument.
6917    if (N1.getValueType() != MVT::i32)
6918      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6919    if (N2.getValueType() != MVT::i32)
6920      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6921    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6922  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6923    // Bits [7:6] of the constant are the source select.  This will always be
6924    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6925    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6926    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6927    // Bits [5:4] of the constant are the destination select.  This is the
6928    //  value of the incoming immediate.
6929    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6930    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6931    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6932    // Create this as a scalar to vector..
6933    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6934    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6935  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6936             isa<ConstantSDNode>(N2)) {
6937    // PINSR* works with constant index.
6938    return Op;
6939  }
6940  return SDValue();
6941}
6942
6943SDValue
6944X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6945  EVT VT = Op.getValueType();
6946  EVT EltVT = VT.getVectorElementType();
6947
6948  DebugLoc dl = Op.getDebugLoc();
6949  SDValue N0 = Op.getOperand(0);
6950  SDValue N1 = Op.getOperand(1);
6951  SDValue N2 = Op.getOperand(2);
6952
6953  // If this is a 256-bit vector result, first extract the 128-bit vector,
6954  // insert the element into the extracted half and then place it back.
6955  if (VT.getSizeInBits() == 256) {
6956    if (!isa<ConstantSDNode>(N2))
6957      return SDValue();
6958
6959    // Get the desired 128-bit vector half.
6960    unsigned NumElems = VT.getVectorNumElements();
6961    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6962    bool Upper = IdxVal >= NumElems/2;
6963    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6964    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6965
6966    // Insert the element into the desired half.
6967    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6968                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6969
6970    // Insert the changed part back to the 256-bit vector
6971    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6972  }
6973
6974  if (Subtarget->hasSSE41())
6975    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6976
6977  if (EltVT == MVT::i8)
6978    return SDValue();
6979
6980  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6981    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6982    // as its second argument.
6983    if (N1.getValueType() != MVT::i32)
6984      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6985    if (N2.getValueType() != MVT::i32)
6986      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6987    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6988  }
6989  return SDValue();
6990}
6991
6992SDValue
6993X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6994  LLVMContext *Context = DAG.getContext();
6995  DebugLoc dl = Op.getDebugLoc();
6996  EVT OpVT = Op.getValueType();
6997
6998  // If this is a 256-bit vector result, first insert into a 128-bit
6999  // vector and then insert into the 256-bit vector.
7000  if (OpVT.getSizeInBits() > 128) {
7001    // Insert into a 128-bit vector.
7002    EVT VT128 = EVT::getVectorVT(*Context,
7003                                 OpVT.getVectorElementType(),
7004                                 OpVT.getVectorNumElements() / 2);
7005
7006    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7007
7008    // Insert the 128-bit vector.
7009    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7010                              DAG.getConstant(0, MVT::i32),
7011                              DAG, dl);
7012  }
7013
7014  if (Op.getValueType() == MVT::v1i64 &&
7015      Op.getOperand(0).getValueType() == MVT::i64)
7016    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7017
7018  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7019  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7020         "Expected an SSE type!");
7021  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7022                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7023}
7024
7025// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7026// a simple subregister reference or explicit instructions to grab
7027// upper bits of a vector.
7028SDValue
7029X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7030  if (Subtarget->hasAVX()) {
7031    DebugLoc dl = Op.getNode()->getDebugLoc();
7032    SDValue Vec = Op.getNode()->getOperand(0);
7033    SDValue Idx = Op.getNode()->getOperand(1);
7034
7035    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7036        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7037        return Extract128BitVector(Vec, Idx, DAG, dl);
7038    }
7039  }
7040  return SDValue();
7041}
7042
7043// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7044// simple superregister reference or explicit instructions to insert
7045// the upper bits of a vector.
7046SDValue
7047X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7048  if (Subtarget->hasAVX()) {
7049    DebugLoc dl = Op.getNode()->getDebugLoc();
7050    SDValue Vec = Op.getNode()->getOperand(0);
7051    SDValue SubVec = Op.getNode()->getOperand(1);
7052    SDValue Idx = Op.getNode()->getOperand(2);
7053
7054    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7055        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7056      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7057    }
7058  }
7059  return SDValue();
7060}
7061
7062// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7063// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7064// one of the above mentioned nodes. It has to be wrapped because otherwise
7065// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7066// be used to form addressing mode. These wrapped nodes will be selected
7067// into MOV32ri.
7068SDValue
7069X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7070  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7071
7072  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7073  // global base reg.
7074  unsigned char OpFlag = 0;
7075  unsigned WrapperKind = X86ISD::Wrapper;
7076  CodeModel::Model M = getTargetMachine().getCodeModel();
7077
7078  if (Subtarget->isPICStyleRIPRel() &&
7079      (M == CodeModel::Small || M == CodeModel::Kernel))
7080    WrapperKind = X86ISD::WrapperRIP;
7081  else if (Subtarget->isPICStyleGOT())
7082    OpFlag = X86II::MO_GOTOFF;
7083  else if (Subtarget->isPICStyleStubPIC())
7084    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7085
7086  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7087                                             CP->getAlignment(),
7088                                             CP->getOffset(), OpFlag);
7089  DebugLoc DL = CP->getDebugLoc();
7090  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7091  // With PIC, the address is actually $g + Offset.
7092  if (OpFlag) {
7093    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7094                         DAG.getNode(X86ISD::GlobalBaseReg,
7095                                     DebugLoc(), getPointerTy()),
7096                         Result);
7097  }
7098
7099  return Result;
7100}
7101
7102SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7103  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7104
7105  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7106  // global base reg.
7107  unsigned char OpFlag = 0;
7108  unsigned WrapperKind = X86ISD::Wrapper;
7109  CodeModel::Model M = getTargetMachine().getCodeModel();
7110
7111  if (Subtarget->isPICStyleRIPRel() &&
7112      (M == CodeModel::Small || M == CodeModel::Kernel))
7113    WrapperKind = X86ISD::WrapperRIP;
7114  else if (Subtarget->isPICStyleGOT())
7115    OpFlag = X86II::MO_GOTOFF;
7116  else if (Subtarget->isPICStyleStubPIC())
7117    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7118
7119  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7120                                          OpFlag);
7121  DebugLoc DL = JT->getDebugLoc();
7122  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7123
7124  // With PIC, the address is actually $g + Offset.
7125  if (OpFlag)
7126    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7127                         DAG.getNode(X86ISD::GlobalBaseReg,
7128                                     DebugLoc(), getPointerTy()),
7129                         Result);
7130
7131  return Result;
7132}
7133
7134SDValue
7135X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7136  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7137
7138  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7139  // global base reg.
7140  unsigned char OpFlag = 0;
7141  unsigned WrapperKind = X86ISD::Wrapper;
7142  CodeModel::Model M = getTargetMachine().getCodeModel();
7143
7144  if (Subtarget->isPICStyleRIPRel() &&
7145      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7146    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7147      OpFlag = X86II::MO_GOTPCREL;
7148    WrapperKind = X86ISD::WrapperRIP;
7149  } else if (Subtarget->isPICStyleGOT()) {
7150    OpFlag = X86II::MO_GOT;
7151  } else if (Subtarget->isPICStyleStubPIC()) {
7152    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7153  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7154    OpFlag = X86II::MO_DARWIN_NONLAZY;
7155  }
7156
7157  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7158
7159  DebugLoc DL = Op.getDebugLoc();
7160  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7161
7162
7163  // With PIC, the address is actually $g + Offset.
7164  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7165      !Subtarget->is64Bit()) {
7166    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7167                         DAG.getNode(X86ISD::GlobalBaseReg,
7168                                     DebugLoc(), getPointerTy()),
7169                         Result);
7170  }
7171
7172  // For symbols that require a load from a stub to get the address, emit the
7173  // load.
7174  if (isGlobalStubReference(OpFlag))
7175    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7176                         MachinePointerInfo::getGOT(), false, false, false, 0);
7177
7178  return Result;
7179}
7180
7181SDValue
7182X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7183  // Create the TargetBlockAddressAddress node.
7184  unsigned char OpFlags =
7185    Subtarget->ClassifyBlockAddressReference();
7186  CodeModel::Model M = getTargetMachine().getCodeModel();
7187  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7188  DebugLoc dl = Op.getDebugLoc();
7189  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7190                                       /*isTarget=*/true, OpFlags);
7191
7192  if (Subtarget->isPICStyleRIPRel() &&
7193      (M == CodeModel::Small || M == CodeModel::Kernel))
7194    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7195  else
7196    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7197
7198  // With PIC, the address is actually $g + Offset.
7199  if (isGlobalRelativeToPICBase(OpFlags)) {
7200    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7201                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7202                         Result);
7203  }
7204
7205  return Result;
7206}
7207
7208SDValue
7209X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7210                                      int64_t Offset,
7211                                      SelectionDAG &DAG) const {
7212  // Create the TargetGlobalAddress node, folding in the constant
7213  // offset if it is legal.
7214  unsigned char OpFlags =
7215    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7216  CodeModel::Model M = getTargetMachine().getCodeModel();
7217  SDValue Result;
7218  if (OpFlags == X86II::MO_NO_FLAG &&
7219      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7220    // A direct static reference to a global.
7221    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7222    Offset = 0;
7223  } else {
7224    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7225  }
7226
7227  if (Subtarget->isPICStyleRIPRel() &&
7228      (M == CodeModel::Small || M == CodeModel::Kernel))
7229    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7230  else
7231    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7232
7233  // With PIC, the address is actually $g + Offset.
7234  if (isGlobalRelativeToPICBase(OpFlags)) {
7235    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7236                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7237                         Result);
7238  }
7239
7240  // For globals that require a load from a stub to get the address, emit the
7241  // load.
7242  if (isGlobalStubReference(OpFlags))
7243    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7244                         MachinePointerInfo::getGOT(), false, false, false, 0);
7245
7246  // If there was a non-zero offset that we didn't fold, create an explicit
7247  // addition for it.
7248  if (Offset != 0)
7249    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7250                         DAG.getConstant(Offset, getPointerTy()));
7251
7252  return Result;
7253}
7254
7255SDValue
7256X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7257  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7258  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7259  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7260}
7261
7262static SDValue
7263GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7264           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7265           unsigned char OperandFlags) {
7266  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7267  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7268  DebugLoc dl = GA->getDebugLoc();
7269  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7270                                           GA->getValueType(0),
7271                                           GA->getOffset(),
7272                                           OperandFlags);
7273  if (InFlag) {
7274    SDValue Ops[] = { Chain,  TGA, *InFlag };
7275    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7276  } else {
7277    SDValue Ops[]  = { Chain, TGA };
7278    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7279  }
7280
7281  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7282  MFI->setAdjustsStack(true);
7283
7284  SDValue Flag = Chain.getValue(1);
7285  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7286}
7287
7288// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7289static SDValue
7290LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7291                                const EVT PtrVT) {
7292  SDValue InFlag;
7293  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7294  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7295                                     DAG.getNode(X86ISD::GlobalBaseReg,
7296                                                 DebugLoc(), PtrVT), InFlag);
7297  InFlag = Chain.getValue(1);
7298
7299  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7300}
7301
7302// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7303static SDValue
7304LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7305                                const EVT PtrVT) {
7306  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7307                    X86::RAX, X86II::MO_TLSGD);
7308}
7309
7310// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7311// "local exec" model.
7312static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7313                                   const EVT PtrVT, TLSModel::Model model,
7314                                   bool is64Bit) {
7315  DebugLoc dl = GA->getDebugLoc();
7316
7317  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7318  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7319                                                         is64Bit ? 257 : 256));
7320
7321  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7322                                      DAG.getIntPtrConstant(0),
7323                                      MachinePointerInfo(Ptr),
7324                                      false, false, false, 0);
7325
7326  unsigned char OperandFlags = 0;
7327  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7328  // initialexec.
7329  unsigned WrapperKind = X86ISD::Wrapper;
7330  if (model == TLSModel::LocalExec) {
7331    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7332  } else if (is64Bit) {
7333    assert(model == TLSModel::InitialExec);
7334    OperandFlags = X86II::MO_GOTTPOFF;
7335    WrapperKind = X86ISD::WrapperRIP;
7336  } else {
7337    assert(model == TLSModel::InitialExec);
7338    OperandFlags = X86II::MO_INDNTPOFF;
7339  }
7340
7341  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7342  // exec)
7343  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7344                                           GA->getValueType(0),
7345                                           GA->getOffset(), OperandFlags);
7346  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7347
7348  if (model == TLSModel::InitialExec)
7349    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7350                         MachinePointerInfo::getGOT(), false, false, false, 0);
7351
7352  // The address of the thread local variable is the add of the thread
7353  // pointer with the offset of the variable.
7354  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7355}
7356
7357SDValue
7358X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7359
7360  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7361  const GlobalValue *GV = GA->getGlobal();
7362
7363  if (Subtarget->isTargetELF()) {
7364    // TODO: implement the "local dynamic" model
7365    // TODO: implement the "initial exec"model for pic executables
7366
7367    // If GV is an alias then use the aliasee for determining
7368    // thread-localness.
7369    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7370      GV = GA->resolveAliasedGlobal(false);
7371
7372    TLSModel::Model model
7373      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7374
7375    switch (model) {
7376      case TLSModel::GeneralDynamic:
7377      case TLSModel::LocalDynamic: // not implemented
7378        if (Subtarget->is64Bit())
7379          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7380        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7381
7382      case TLSModel::InitialExec:
7383      case TLSModel::LocalExec:
7384        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7385                                   Subtarget->is64Bit());
7386    }
7387  } else if (Subtarget->isTargetDarwin()) {
7388    // Darwin only has one model of TLS.  Lower to that.
7389    unsigned char OpFlag = 0;
7390    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7391                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7392
7393    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7394    // global base reg.
7395    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7396                  !Subtarget->is64Bit();
7397    if (PIC32)
7398      OpFlag = X86II::MO_TLVP_PIC_BASE;
7399    else
7400      OpFlag = X86II::MO_TLVP;
7401    DebugLoc DL = Op.getDebugLoc();
7402    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7403                                                GA->getValueType(0),
7404                                                GA->getOffset(), OpFlag);
7405    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7406
7407    // With PIC32, the address is actually $g + Offset.
7408    if (PIC32)
7409      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7410                           DAG.getNode(X86ISD::GlobalBaseReg,
7411                                       DebugLoc(), getPointerTy()),
7412                           Offset);
7413
7414    // Lowering the machine isd will make sure everything is in the right
7415    // location.
7416    SDValue Chain = DAG.getEntryNode();
7417    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7418    SDValue Args[] = { Chain, Offset };
7419    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7420
7421    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7422    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7423    MFI->setAdjustsStack(true);
7424
7425    // And our return value (tls address) is in the standard call return value
7426    // location.
7427    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7428    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7429                              Chain.getValue(1));
7430  }
7431
7432  assert(false &&
7433         "TLS not implemented for this target.");
7434
7435  llvm_unreachable("Unreachable");
7436  return SDValue();
7437}
7438
7439
7440/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7441/// and take a 2 x i32 value to shift plus a shift amount.
7442SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7443  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7444  EVT VT = Op.getValueType();
7445  unsigned VTBits = VT.getSizeInBits();
7446  DebugLoc dl = Op.getDebugLoc();
7447  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7448  SDValue ShOpLo = Op.getOperand(0);
7449  SDValue ShOpHi = Op.getOperand(1);
7450  SDValue ShAmt  = Op.getOperand(2);
7451  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7452                                     DAG.getConstant(VTBits - 1, MVT::i8))
7453                       : DAG.getConstant(0, VT);
7454
7455  SDValue Tmp2, Tmp3;
7456  if (Op.getOpcode() == ISD::SHL_PARTS) {
7457    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7458    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7459  } else {
7460    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7461    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7462  }
7463
7464  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7465                                DAG.getConstant(VTBits, MVT::i8));
7466  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7467                             AndNode, DAG.getConstant(0, MVT::i8));
7468
7469  SDValue Hi, Lo;
7470  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7471  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7472  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7473
7474  if (Op.getOpcode() == ISD::SHL_PARTS) {
7475    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7476    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7477  } else {
7478    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7479    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7480  }
7481
7482  SDValue Ops[2] = { Lo, Hi };
7483  return DAG.getMergeValues(Ops, 2, dl);
7484}
7485
7486SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7487                                           SelectionDAG &DAG) const {
7488  EVT SrcVT = Op.getOperand(0).getValueType();
7489
7490  if (SrcVT.isVector())
7491    return SDValue();
7492
7493  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7494         "Unknown SINT_TO_FP to lower!");
7495
7496  // These are really Legal; return the operand so the caller accepts it as
7497  // Legal.
7498  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7499    return Op;
7500  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7501      Subtarget->is64Bit()) {
7502    return Op;
7503  }
7504
7505  DebugLoc dl = Op.getDebugLoc();
7506  unsigned Size = SrcVT.getSizeInBits()/8;
7507  MachineFunction &MF = DAG.getMachineFunction();
7508  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7509  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7510  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7511                               StackSlot,
7512                               MachinePointerInfo::getFixedStack(SSFI),
7513                               false, false, 0);
7514  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7515}
7516
7517SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7518                                     SDValue StackSlot,
7519                                     SelectionDAG &DAG) const {
7520  // Build the FILD
7521  DebugLoc DL = Op.getDebugLoc();
7522  SDVTList Tys;
7523  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7524  if (useSSE)
7525    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7526  else
7527    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7528
7529  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7530
7531  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7532  MachineMemOperand *MMO;
7533  if (FI) {
7534    int SSFI = FI->getIndex();
7535    MMO =
7536      DAG.getMachineFunction()
7537      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7538                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7539  } else {
7540    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7541    StackSlot = StackSlot.getOperand(1);
7542  }
7543  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7544  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7545                                           X86ISD::FILD, DL,
7546                                           Tys, Ops, array_lengthof(Ops),
7547                                           SrcVT, MMO);
7548
7549  if (useSSE) {
7550    Chain = Result.getValue(1);
7551    SDValue InFlag = Result.getValue(2);
7552
7553    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7554    // shouldn't be necessary except that RFP cannot be live across
7555    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7556    MachineFunction &MF = DAG.getMachineFunction();
7557    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7558    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7559    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7560    Tys = DAG.getVTList(MVT::Other);
7561    SDValue Ops[] = {
7562      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7563    };
7564    MachineMemOperand *MMO =
7565      DAG.getMachineFunction()
7566      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7567                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7568
7569    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7570                                    Ops, array_lengthof(Ops),
7571                                    Op.getValueType(), MMO);
7572    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7573                         MachinePointerInfo::getFixedStack(SSFI),
7574                         false, false, false, 0);
7575  }
7576
7577  return Result;
7578}
7579
7580// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7581SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7582                                               SelectionDAG &DAG) const {
7583  // This algorithm is not obvious. Here it is what we're trying to output:
7584  /*
7585     movq       %rax,  %xmm0
7586     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7587     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7588     #ifdef __SSE3__
7589       haddpd   %xmm0, %xmm0
7590     #else
7591       pshufd   $0x4e, %xmm0, %xmm1
7592       addpd    %xmm1, %xmm0
7593     #endif
7594  */
7595
7596  DebugLoc dl = Op.getDebugLoc();
7597  LLVMContext *Context = DAG.getContext();
7598
7599  // Build some magic constants.
7600  SmallVector<Constant*,4> CV0;
7601  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7602  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7603  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7604  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7605  Constant *C0 = ConstantVector::get(CV0);
7606  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7607
7608  SmallVector<Constant*,2> CV1;
7609  CV1.push_back(
7610    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7611  CV1.push_back(
7612    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7613  Constant *C1 = ConstantVector::get(CV1);
7614  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7615
7616  // Load the 64-bit value into an XMM register.
7617  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7618                            Op.getOperand(0));
7619  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7620                              MachinePointerInfo::getConstantPool(),
7621                              false, false, false, 16);
7622  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7623                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7624                              CLod0);
7625
7626  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7627                              MachinePointerInfo::getConstantPool(),
7628                              false, false, false, 16);
7629  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7630  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7631  SDValue Result;
7632
7633  if (Subtarget->hasSSE3()) {
7634    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7635    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7636  } else {
7637    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7638    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7639                                           S2F, 0x4E, DAG);
7640    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7641                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7642                         Sub);
7643  }
7644
7645  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7646                     DAG.getIntPtrConstant(0));
7647}
7648
7649// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7650SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7651                                               SelectionDAG &DAG) const {
7652  DebugLoc dl = Op.getDebugLoc();
7653  // FP constant to bias correct the final result.
7654  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7655                                   MVT::f64);
7656
7657  // Load the 32-bit value into an XMM register.
7658  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7659                             Op.getOperand(0));
7660
7661  // Zero out the upper parts of the register.
7662  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasSSE2(),
7663                                     DAG);
7664
7665  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7666                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7667                     DAG.getIntPtrConstant(0));
7668
7669  // Or the load with the bias.
7670  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7671                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7672                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7673                                                   MVT::v2f64, Load)),
7674                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7675                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7676                                                   MVT::v2f64, Bias)));
7677  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7678                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7679                   DAG.getIntPtrConstant(0));
7680
7681  // Subtract the bias.
7682  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7683
7684  // Handle final rounding.
7685  EVT DestVT = Op.getValueType();
7686
7687  if (DestVT.bitsLT(MVT::f64)) {
7688    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7689                       DAG.getIntPtrConstant(0));
7690  } else if (DestVT.bitsGT(MVT::f64)) {
7691    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7692  }
7693
7694  // Handle final rounding.
7695  return Sub;
7696}
7697
7698SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7699                                           SelectionDAG &DAG) const {
7700  SDValue N0 = Op.getOperand(0);
7701  DebugLoc dl = Op.getDebugLoc();
7702
7703  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7704  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7705  // the optimization here.
7706  if (DAG.SignBitIsZero(N0))
7707    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7708
7709  EVT SrcVT = N0.getValueType();
7710  EVT DstVT = Op.getValueType();
7711  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7712    return LowerUINT_TO_FP_i64(Op, DAG);
7713  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7714    return LowerUINT_TO_FP_i32(Op, DAG);
7715  else if (Subtarget->is64Bit() &&
7716           SrcVT == MVT::i64 && DstVT == MVT::f32)
7717    return SDValue();
7718
7719  // Make a 64-bit buffer, and use it to build an FILD.
7720  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7721  if (SrcVT == MVT::i32) {
7722    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7723    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7724                                     getPointerTy(), StackSlot, WordOff);
7725    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7726                                  StackSlot, MachinePointerInfo(),
7727                                  false, false, 0);
7728    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7729                                  OffsetSlot, MachinePointerInfo(),
7730                                  false, false, 0);
7731    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7732    return Fild;
7733  }
7734
7735  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7736  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7737                               StackSlot, MachinePointerInfo(),
7738                               false, false, 0);
7739  // For i64 source, we need to add the appropriate power of 2 if the input
7740  // was negative.  This is the same as the optimization in
7741  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7742  // we must be careful to do the computation in x87 extended precision, not
7743  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7744  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7745  MachineMemOperand *MMO =
7746    DAG.getMachineFunction()
7747    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7748                          MachineMemOperand::MOLoad, 8, 8);
7749
7750  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7751  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7752  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7753                                         MVT::i64, MMO);
7754
7755  APInt FF(32, 0x5F800000ULL);
7756
7757  // Check whether the sign bit is set.
7758  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7759                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7760                                 ISD::SETLT);
7761
7762  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7763  SDValue FudgePtr = DAG.getConstantPool(
7764                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7765                                         getPointerTy());
7766
7767  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7768  SDValue Zero = DAG.getIntPtrConstant(0);
7769  SDValue Four = DAG.getIntPtrConstant(4);
7770  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7771                               Zero, Four);
7772  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7773
7774  // Load the value out, extending it from f32 to f80.
7775  // FIXME: Avoid the extend by constructing the right constant pool?
7776  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7777                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7778                                 MVT::f32, false, false, 4);
7779  // Extend everything to 80 bits to force it to be done on x87.
7780  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7781  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7782}
7783
7784std::pair<SDValue,SDValue> X86TargetLowering::
7785FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7786  DebugLoc DL = Op.getDebugLoc();
7787
7788  EVT DstTy = Op.getValueType();
7789
7790  if (!IsSigned) {
7791    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7792    DstTy = MVT::i64;
7793  }
7794
7795  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7796         DstTy.getSimpleVT() >= MVT::i16 &&
7797         "Unknown FP_TO_SINT to lower!");
7798
7799  // These are really Legal.
7800  if (DstTy == MVT::i32 &&
7801      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7802    return std::make_pair(SDValue(), SDValue());
7803  if (Subtarget->is64Bit() &&
7804      DstTy == MVT::i64 &&
7805      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7806    return std::make_pair(SDValue(), SDValue());
7807
7808  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7809  // stack slot.
7810  MachineFunction &MF = DAG.getMachineFunction();
7811  unsigned MemSize = DstTy.getSizeInBits()/8;
7812  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7813  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7814
7815
7816
7817  unsigned Opc;
7818  switch (DstTy.getSimpleVT().SimpleTy) {
7819  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7820  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7821  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7822  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7823  }
7824
7825  SDValue Chain = DAG.getEntryNode();
7826  SDValue Value = Op.getOperand(0);
7827  EVT TheVT = Op.getOperand(0).getValueType();
7828  if (isScalarFPTypeInSSEReg(TheVT)) {
7829    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7830    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7831                         MachinePointerInfo::getFixedStack(SSFI),
7832                         false, false, 0);
7833    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7834    SDValue Ops[] = {
7835      Chain, StackSlot, DAG.getValueType(TheVT)
7836    };
7837
7838    MachineMemOperand *MMO =
7839      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7840                              MachineMemOperand::MOLoad, MemSize, MemSize);
7841    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7842                                    DstTy, MMO);
7843    Chain = Value.getValue(1);
7844    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7845    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7846  }
7847
7848  MachineMemOperand *MMO =
7849    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7850                            MachineMemOperand::MOStore, MemSize, MemSize);
7851
7852  // Build the FP_TO_INT*_IN_MEM
7853  SDValue Ops[] = { Chain, Value, StackSlot };
7854  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7855                                         Ops, 3, DstTy, MMO);
7856
7857  return std::make_pair(FIST, StackSlot);
7858}
7859
7860SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7861                                           SelectionDAG &DAG) const {
7862  if (Op.getValueType().isVector())
7863    return SDValue();
7864
7865  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7866  SDValue FIST = Vals.first, StackSlot = Vals.second;
7867  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7868  if (FIST.getNode() == 0) return Op;
7869
7870  // Load the result.
7871  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7872                     FIST, StackSlot, MachinePointerInfo(),
7873                     false, false, false, 0);
7874}
7875
7876SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7877                                           SelectionDAG &DAG) const {
7878  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7879  SDValue FIST = Vals.first, StackSlot = Vals.second;
7880  assert(FIST.getNode() && "Unexpected failure");
7881
7882  // Load the result.
7883  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7884                     FIST, StackSlot, MachinePointerInfo(),
7885                     false, false, false, 0);
7886}
7887
7888SDValue X86TargetLowering::LowerFABS(SDValue Op,
7889                                     SelectionDAG &DAG) const {
7890  LLVMContext *Context = DAG.getContext();
7891  DebugLoc dl = Op.getDebugLoc();
7892  EVT VT = Op.getValueType();
7893  EVT EltVT = VT;
7894  if (VT.isVector())
7895    EltVT = VT.getVectorElementType();
7896  SmallVector<Constant*,4> CV;
7897  if (EltVT == MVT::f64) {
7898    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7899    CV.assign(2, C);
7900  } else {
7901    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7902    CV.assign(4, C);
7903  }
7904  Constant *C = ConstantVector::get(CV);
7905  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7906  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7907                             MachinePointerInfo::getConstantPool(),
7908                             false, false, false, 16);
7909  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7910}
7911
7912SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7913  LLVMContext *Context = DAG.getContext();
7914  DebugLoc dl = Op.getDebugLoc();
7915  EVT VT = Op.getValueType();
7916  EVT EltVT = VT;
7917  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7918  if (VT.isVector()) {
7919    EltVT = VT.getVectorElementType();
7920    NumElts = VT.getVectorNumElements();
7921  }
7922  SmallVector<Constant*,8> CV;
7923  if (EltVT == MVT::f64) {
7924    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7925    CV.assign(NumElts, C);
7926  } else {
7927    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7928    CV.assign(NumElts, C);
7929  }
7930  Constant *C = ConstantVector::get(CV);
7931  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7932  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7933                             MachinePointerInfo::getConstantPool(),
7934                             false, false, false, 16);
7935  if (VT.isVector()) {
7936    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7937    return DAG.getNode(ISD::BITCAST, dl, VT,
7938                       DAG.getNode(ISD::XOR, dl, XORVT,
7939                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7940                                Op.getOperand(0)),
7941                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7942  } else {
7943    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7944  }
7945}
7946
7947SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7948  LLVMContext *Context = DAG.getContext();
7949  SDValue Op0 = Op.getOperand(0);
7950  SDValue Op1 = Op.getOperand(1);
7951  DebugLoc dl = Op.getDebugLoc();
7952  EVT VT = Op.getValueType();
7953  EVT SrcVT = Op1.getValueType();
7954
7955  // If second operand is smaller, extend it first.
7956  if (SrcVT.bitsLT(VT)) {
7957    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7958    SrcVT = VT;
7959  }
7960  // And if it is bigger, shrink it first.
7961  if (SrcVT.bitsGT(VT)) {
7962    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7963    SrcVT = VT;
7964  }
7965
7966  // At this point the operands and the result should have the same
7967  // type, and that won't be f80 since that is not custom lowered.
7968
7969  // First get the sign bit of second operand.
7970  SmallVector<Constant*,4> CV;
7971  if (SrcVT == MVT::f64) {
7972    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7973    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7974  } else {
7975    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7976    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7977    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7978    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7979  }
7980  Constant *C = ConstantVector::get(CV);
7981  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7982  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7983                              MachinePointerInfo::getConstantPool(),
7984                              false, false, false, 16);
7985  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7986
7987  // Shift sign bit right or left if the two operands have different types.
7988  if (SrcVT.bitsGT(VT)) {
7989    // Op0 is MVT::f32, Op1 is MVT::f64.
7990    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7991    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7992                          DAG.getConstant(32, MVT::i32));
7993    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7994    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7995                          DAG.getIntPtrConstant(0));
7996  }
7997
7998  // Clear first operand sign bit.
7999  CV.clear();
8000  if (VT == MVT::f64) {
8001    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8002    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8003  } else {
8004    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8005    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8006    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8007    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8008  }
8009  C = ConstantVector::get(CV);
8010  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8011  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8012                              MachinePointerInfo::getConstantPool(),
8013                              false, false, false, 16);
8014  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8015
8016  // Or the value with the sign bit.
8017  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8018}
8019
8020SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8021  SDValue N0 = Op.getOperand(0);
8022  DebugLoc dl = Op.getDebugLoc();
8023  EVT VT = Op.getValueType();
8024
8025  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8026  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8027                                  DAG.getConstant(1, VT));
8028  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8029}
8030
8031/// Emit nodes that will be selected as "test Op0,Op0", or something
8032/// equivalent.
8033SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8034                                    SelectionDAG &DAG) const {
8035  DebugLoc dl = Op.getDebugLoc();
8036
8037  // CF and OF aren't always set the way we want. Determine which
8038  // of these we need.
8039  bool NeedCF = false;
8040  bool NeedOF = false;
8041  switch (X86CC) {
8042  default: break;
8043  case X86::COND_A: case X86::COND_AE:
8044  case X86::COND_B: case X86::COND_BE:
8045    NeedCF = true;
8046    break;
8047  case X86::COND_G: case X86::COND_GE:
8048  case X86::COND_L: case X86::COND_LE:
8049  case X86::COND_O: case X86::COND_NO:
8050    NeedOF = true;
8051    break;
8052  }
8053
8054  // See if we can use the EFLAGS value from the operand instead of
8055  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8056  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8057  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8058    // Emit a CMP with 0, which is the TEST pattern.
8059    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8060                       DAG.getConstant(0, Op.getValueType()));
8061
8062  unsigned Opcode = 0;
8063  unsigned NumOperands = 0;
8064  switch (Op.getNode()->getOpcode()) {
8065  case ISD::ADD:
8066    // Due to an isel shortcoming, be conservative if this add is likely to be
8067    // selected as part of a load-modify-store instruction. When the root node
8068    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8069    // uses of other nodes in the match, such as the ADD in this case. This
8070    // leads to the ADD being left around and reselected, with the result being
8071    // two adds in the output.  Alas, even if none our users are stores, that
8072    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8073    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8074    // climbing the DAG back to the root, and it doesn't seem to be worth the
8075    // effort.
8076    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8077         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8078      if (UI->getOpcode() != ISD::CopyToReg &&
8079          UI->getOpcode() != ISD::SETCC &&
8080          UI->getOpcode() != ISD::STORE)
8081        goto default_case;
8082
8083    if (ConstantSDNode *C =
8084        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8085      // An add of one will be selected as an INC.
8086      if (C->getAPIntValue() == 1) {
8087        Opcode = X86ISD::INC;
8088        NumOperands = 1;
8089        break;
8090      }
8091
8092      // An add of negative one (subtract of one) will be selected as a DEC.
8093      if (C->getAPIntValue().isAllOnesValue()) {
8094        Opcode = X86ISD::DEC;
8095        NumOperands = 1;
8096        break;
8097      }
8098    }
8099
8100    // Otherwise use a regular EFLAGS-setting add.
8101    Opcode = X86ISD::ADD;
8102    NumOperands = 2;
8103    break;
8104  case ISD::AND: {
8105    // If the primary and result isn't used, don't bother using X86ISD::AND,
8106    // because a TEST instruction will be better.
8107    bool NonFlagUse = false;
8108    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8109           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8110      SDNode *User = *UI;
8111      unsigned UOpNo = UI.getOperandNo();
8112      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8113        // Look pass truncate.
8114        UOpNo = User->use_begin().getOperandNo();
8115        User = *User->use_begin();
8116      }
8117
8118      if (User->getOpcode() != ISD::BRCOND &&
8119          User->getOpcode() != ISD::SETCC &&
8120          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8121        NonFlagUse = true;
8122        break;
8123      }
8124    }
8125
8126    if (!NonFlagUse)
8127      break;
8128  }
8129    // FALL THROUGH
8130  case ISD::SUB:
8131  case ISD::OR:
8132  case ISD::XOR:
8133    // Due to the ISEL shortcoming noted above, be conservative if this op is
8134    // likely to be selected as part of a load-modify-store instruction.
8135    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8136           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8137      if (UI->getOpcode() == ISD::STORE)
8138        goto default_case;
8139
8140    // Otherwise use a regular EFLAGS-setting instruction.
8141    switch (Op.getNode()->getOpcode()) {
8142    default: llvm_unreachable("unexpected operator!");
8143    case ISD::SUB: Opcode = X86ISD::SUB; break;
8144    case ISD::OR:  Opcode = X86ISD::OR;  break;
8145    case ISD::XOR: Opcode = X86ISD::XOR; break;
8146    case ISD::AND: Opcode = X86ISD::AND; break;
8147    }
8148
8149    NumOperands = 2;
8150    break;
8151  case X86ISD::ADD:
8152  case X86ISD::SUB:
8153  case X86ISD::INC:
8154  case X86ISD::DEC:
8155  case X86ISD::OR:
8156  case X86ISD::XOR:
8157  case X86ISD::AND:
8158    return SDValue(Op.getNode(), 1);
8159  default:
8160  default_case:
8161    break;
8162  }
8163
8164  if (Opcode == 0)
8165    // Emit a CMP with 0, which is the TEST pattern.
8166    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8167                       DAG.getConstant(0, Op.getValueType()));
8168
8169  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8170  SmallVector<SDValue, 4> Ops;
8171  for (unsigned i = 0; i != NumOperands; ++i)
8172    Ops.push_back(Op.getOperand(i));
8173
8174  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8175  DAG.ReplaceAllUsesWith(Op, New);
8176  return SDValue(New.getNode(), 1);
8177}
8178
8179/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8180/// equivalent.
8181SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8182                                   SelectionDAG &DAG) const {
8183  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8184    if (C->getAPIntValue() == 0)
8185      return EmitTest(Op0, X86CC, DAG);
8186
8187  DebugLoc dl = Op0.getDebugLoc();
8188  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8189}
8190
8191/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8192/// if it's possible.
8193SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8194                                     DebugLoc dl, SelectionDAG &DAG) const {
8195  SDValue Op0 = And.getOperand(0);
8196  SDValue Op1 = And.getOperand(1);
8197  if (Op0.getOpcode() == ISD::TRUNCATE)
8198    Op0 = Op0.getOperand(0);
8199  if (Op1.getOpcode() == ISD::TRUNCATE)
8200    Op1 = Op1.getOperand(0);
8201
8202  SDValue LHS, RHS;
8203  if (Op1.getOpcode() == ISD::SHL)
8204    std::swap(Op0, Op1);
8205  if (Op0.getOpcode() == ISD::SHL) {
8206    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8207      if (And00C->getZExtValue() == 1) {
8208        // If we looked past a truncate, check that it's only truncating away
8209        // known zeros.
8210        unsigned BitWidth = Op0.getValueSizeInBits();
8211        unsigned AndBitWidth = And.getValueSizeInBits();
8212        if (BitWidth > AndBitWidth) {
8213          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8214          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8215          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8216            return SDValue();
8217        }
8218        LHS = Op1;
8219        RHS = Op0.getOperand(1);
8220      }
8221  } else if (Op1.getOpcode() == ISD::Constant) {
8222    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8223    uint64_t AndRHSVal = AndRHS->getZExtValue();
8224    SDValue AndLHS = Op0;
8225
8226    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8227      LHS = AndLHS.getOperand(0);
8228      RHS = AndLHS.getOperand(1);
8229    }
8230
8231    // Use BT if the immediate can't be encoded in a TEST instruction.
8232    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8233      LHS = AndLHS;
8234      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8235    }
8236  }
8237
8238  if (LHS.getNode()) {
8239    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8240    // instruction.  Since the shift amount is in-range-or-undefined, we know
8241    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8242    // the encoding for the i16 version is larger than the i32 version.
8243    // Also promote i16 to i32 for performance / code size reason.
8244    if (LHS.getValueType() == MVT::i8 ||
8245        LHS.getValueType() == MVT::i16)
8246      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8247
8248    // If the operand types disagree, extend the shift amount to match.  Since
8249    // BT ignores high bits (like shifts) we can use anyextend.
8250    if (LHS.getValueType() != RHS.getValueType())
8251      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8252
8253    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8254    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8255    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8256                       DAG.getConstant(Cond, MVT::i8), BT);
8257  }
8258
8259  return SDValue();
8260}
8261
8262SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8263
8264  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8265
8266  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8267  SDValue Op0 = Op.getOperand(0);
8268  SDValue Op1 = Op.getOperand(1);
8269  DebugLoc dl = Op.getDebugLoc();
8270  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8271
8272  // Optimize to BT if possible.
8273  // Lower (X & (1 << N)) == 0 to BT(X, N).
8274  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8275  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8276  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8277      Op1.getOpcode() == ISD::Constant &&
8278      cast<ConstantSDNode>(Op1)->isNullValue() &&
8279      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8280    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8281    if (NewSetCC.getNode())
8282      return NewSetCC;
8283  }
8284
8285  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8286  // these.
8287  if (Op1.getOpcode() == ISD::Constant &&
8288      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8289       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8290      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8291
8292    // If the input is a setcc, then reuse the input setcc or use a new one with
8293    // the inverted condition.
8294    if (Op0.getOpcode() == X86ISD::SETCC) {
8295      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8296      bool Invert = (CC == ISD::SETNE) ^
8297        cast<ConstantSDNode>(Op1)->isNullValue();
8298      if (!Invert) return Op0;
8299
8300      CCode = X86::GetOppositeBranchCondition(CCode);
8301      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8302                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8303    }
8304  }
8305
8306  bool isFP = Op1.getValueType().isFloatingPoint();
8307  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8308  if (X86CC == X86::COND_INVALID)
8309    return SDValue();
8310
8311  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8312  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8313                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8314}
8315
8316// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8317// ones, and then concatenate the result back.
8318static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8319  EVT VT = Op.getValueType();
8320
8321  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8322         "Unsupported value type for operation");
8323
8324  int NumElems = VT.getVectorNumElements();
8325  DebugLoc dl = Op.getDebugLoc();
8326  SDValue CC = Op.getOperand(2);
8327  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8328  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8329
8330  // Extract the LHS vectors
8331  SDValue LHS = Op.getOperand(0);
8332  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8333  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8334
8335  // Extract the RHS vectors
8336  SDValue RHS = Op.getOperand(1);
8337  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8338  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8339
8340  // Issue the operation on the smaller types and concatenate the result back
8341  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8342  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8343  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8344                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8345                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8346}
8347
8348
8349SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8350  SDValue Cond;
8351  SDValue Op0 = Op.getOperand(0);
8352  SDValue Op1 = Op.getOperand(1);
8353  SDValue CC = Op.getOperand(2);
8354  EVT VT = Op.getValueType();
8355  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8356  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8357  DebugLoc dl = Op.getDebugLoc();
8358
8359  if (isFP) {
8360    unsigned SSECC = 8;
8361    EVT EltVT = Op0.getValueType().getVectorElementType();
8362    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8363
8364    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8365    bool Swap = false;
8366
8367    // SSE Condition code mapping:
8368    //  0 - EQ
8369    //  1 - LT
8370    //  2 - LE
8371    //  3 - UNORD
8372    //  4 - NEQ
8373    //  5 - NLT
8374    //  6 - NLE
8375    //  7 - ORD
8376    switch (SetCCOpcode) {
8377    default: break;
8378    case ISD::SETOEQ:
8379    case ISD::SETEQ:  SSECC = 0; break;
8380    case ISD::SETOGT:
8381    case ISD::SETGT: Swap = true; // Fallthrough
8382    case ISD::SETLT:
8383    case ISD::SETOLT: SSECC = 1; break;
8384    case ISD::SETOGE:
8385    case ISD::SETGE: Swap = true; // Fallthrough
8386    case ISD::SETLE:
8387    case ISD::SETOLE: SSECC = 2; break;
8388    case ISD::SETUO:  SSECC = 3; break;
8389    case ISD::SETUNE:
8390    case ISD::SETNE:  SSECC = 4; break;
8391    case ISD::SETULE: Swap = true;
8392    case ISD::SETUGE: SSECC = 5; break;
8393    case ISD::SETULT: Swap = true;
8394    case ISD::SETUGT: SSECC = 6; break;
8395    case ISD::SETO:   SSECC = 7; break;
8396    }
8397    if (Swap)
8398      std::swap(Op0, Op1);
8399
8400    // In the two special cases we can't handle, emit two comparisons.
8401    if (SSECC == 8) {
8402      if (SetCCOpcode == ISD::SETUEQ) {
8403        SDValue UNORD, EQ;
8404        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8405        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8406        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8407      } else if (SetCCOpcode == ISD::SETONE) {
8408        SDValue ORD, NEQ;
8409        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8410        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8411        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8412      }
8413      llvm_unreachable("Illegal FP comparison");
8414    }
8415    // Handle all other FP comparisons here.
8416    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8417  }
8418
8419  // Break 256-bit integer vector compare into smaller ones.
8420  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8421    return Lower256IntVSETCC(Op, DAG);
8422
8423  // We are handling one of the integer comparisons here.  Since SSE only has
8424  // GT and EQ comparisons for integer, swapping operands and multiple
8425  // operations may be required for some comparisons.
8426  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8427  bool Swap = false, Invert = false, FlipSigns = false;
8428
8429  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8430  default: break;
8431  case MVT::i8:   EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8432  case MVT::i16:  EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8433  case MVT::i32:  EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8434  case MVT::i64:  EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8435  }
8436
8437  switch (SetCCOpcode) {
8438  default: break;
8439  case ISD::SETNE:  Invert = true;
8440  case ISD::SETEQ:  Opc = EQOpc; break;
8441  case ISD::SETLT:  Swap = true;
8442  case ISD::SETGT:  Opc = GTOpc; break;
8443  case ISD::SETGE:  Swap = true;
8444  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8445  case ISD::SETULT: Swap = true;
8446  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8447  case ISD::SETUGE: Swap = true;
8448  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8449  }
8450  if (Swap)
8451    std::swap(Op0, Op1);
8452
8453  // Check that the operation in question is available (most are plain SSE2,
8454  // but PCMPGTQ and PCMPEQQ have different requirements).
8455  if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42())
8456    return SDValue();
8457  if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41())
8458    return SDValue();
8459
8460  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8461  // bits of the inputs before performing those operations.
8462  if (FlipSigns) {
8463    EVT EltVT = VT.getVectorElementType();
8464    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8465                                      EltVT);
8466    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8467    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8468                                    SignBits.size());
8469    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8470    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8471  }
8472
8473  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8474
8475  // If the logical-not of the result is required, perform that now.
8476  if (Invert)
8477    Result = DAG.getNOT(dl, Result, VT);
8478
8479  return Result;
8480}
8481
8482// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8483static bool isX86LogicalCmp(SDValue Op) {
8484  unsigned Opc = Op.getNode()->getOpcode();
8485  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8486    return true;
8487  if (Op.getResNo() == 1 &&
8488      (Opc == X86ISD::ADD ||
8489       Opc == X86ISD::SUB ||
8490       Opc == X86ISD::ADC ||
8491       Opc == X86ISD::SBB ||
8492       Opc == X86ISD::SMUL ||
8493       Opc == X86ISD::UMUL ||
8494       Opc == X86ISD::INC ||
8495       Opc == X86ISD::DEC ||
8496       Opc == X86ISD::OR ||
8497       Opc == X86ISD::XOR ||
8498       Opc == X86ISD::AND))
8499    return true;
8500
8501  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8502    return true;
8503
8504  return false;
8505}
8506
8507static bool isZero(SDValue V) {
8508  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8509  return C && C->isNullValue();
8510}
8511
8512static bool isAllOnes(SDValue V) {
8513  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8514  return C && C->isAllOnesValue();
8515}
8516
8517SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8518  bool addTest = true;
8519  SDValue Cond  = Op.getOperand(0);
8520  SDValue Op1 = Op.getOperand(1);
8521  SDValue Op2 = Op.getOperand(2);
8522  DebugLoc DL = Op.getDebugLoc();
8523  SDValue CC;
8524
8525  if (Cond.getOpcode() == ISD::SETCC) {
8526    SDValue NewCond = LowerSETCC(Cond, DAG);
8527    if (NewCond.getNode())
8528      Cond = NewCond;
8529  }
8530
8531  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8532  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8533  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8534  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8535  if (Cond.getOpcode() == X86ISD::SETCC &&
8536      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8537      isZero(Cond.getOperand(1).getOperand(1))) {
8538    SDValue Cmp = Cond.getOperand(1);
8539
8540    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8541
8542    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8543        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8544      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8545
8546      SDValue CmpOp0 = Cmp.getOperand(0);
8547      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8548                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8549
8550      SDValue Res =   // Res = 0 or -1.
8551        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8552                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8553
8554      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8555        Res = DAG.getNOT(DL, Res, Res.getValueType());
8556
8557      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8558      if (N2C == 0 || !N2C->isNullValue())
8559        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8560      return Res;
8561    }
8562  }
8563
8564  // Look past (and (setcc_carry (cmp ...)), 1).
8565  if (Cond.getOpcode() == ISD::AND &&
8566      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8567    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8568    if (C && C->getAPIntValue() == 1)
8569      Cond = Cond.getOperand(0);
8570  }
8571
8572  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8573  // setting operand in place of the X86ISD::SETCC.
8574  unsigned CondOpcode = Cond.getOpcode();
8575  if (CondOpcode == X86ISD::SETCC ||
8576      CondOpcode == X86ISD::SETCC_CARRY) {
8577    CC = Cond.getOperand(0);
8578
8579    SDValue Cmp = Cond.getOperand(1);
8580    unsigned Opc = Cmp.getOpcode();
8581    EVT VT = Op.getValueType();
8582
8583    bool IllegalFPCMov = false;
8584    if (VT.isFloatingPoint() && !VT.isVector() &&
8585        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8586      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8587
8588    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8589        Opc == X86ISD::BT) { // FIXME
8590      Cond = Cmp;
8591      addTest = false;
8592    }
8593  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8594             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8595             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8596              Cond.getOperand(0).getValueType() != MVT::i8)) {
8597    SDValue LHS = Cond.getOperand(0);
8598    SDValue RHS = Cond.getOperand(1);
8599    unsigned X86Opcode;
8600    unsigned X86Cond;
8601    SDVTList VTs;
8602    switch (CondOpcode) {
8603    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8604    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8605    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8606    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8607    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8608    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8609    default: llvm_unreachable("unexpected overflowing operator");
8610    }
8611    if (CondOpcode == ISD::UMULO)
8612      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8613                          MVT::i32);
8614    else
8615      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8616
8617    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8618
8619    if (CondOpcode == ISD::UMULO)
8620      Cond = X86Op.getValue(2);
8621    else
8622      Cond = X86Op.getValue(1);
8623
8624    CC = DAG.getConstant(X86Cond, MVT::i8);
8625    addTest = false;
8626  }
8627
8628  if (addTest) {
8629    // Look pass the truncate.
8630    if (Cond.getOpcode() == ISD::TRUNCATE)
8631      Cond = Cond.getOperand(0);
8632
8633    // We know the result of AND is compared against zero. Try to match
8634    // it to BT.
8635    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8636      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8637      if (NewSetCC.getNode()) {
8638        CC = NewSetCC.getOperand(0);
8639        Cond = NewSetCC.getOperand(1);
8640        addTest = false;
8641      }
8642    }
8643  }
8644
8645  if (addTest) {
8646    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8647    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8648  }
8649
8650  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8651  // a <  b ?  0 : -1 -> RES = setcc_carry
8652  // a >= b ? -1 :  0 -> RES = setcc_carry
8653  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8654  if (Cond.getOpcode() == X86ISD::CMP) {
8655    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8656
8657    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8658        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8659      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8660                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8661      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8662        return DAG.getNOT(DL, Res, Res.getValueType());
8663      return Res;
8664    }
8665  }
8666
8667  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8668  // condition is true.
8669  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8670  SDValue Ops[] = { Op2, Op1, CC, Cond };
8671  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8672}
8673
8674// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8675// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8676// from the AND / OR.
8677static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8678  Opc = Op.getOpcode();
8679  if (Opc != ISD::OR && Opc != ISD::AND)
8680    return false;
8681  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8682          Op.getOperand(0).hasOneUse() &&
8683          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8684          Op.getOperand(1).hasOneUse());
8685}
8686
8687// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8688// 1 and that the SETCC node has a single use.
8689static bool isXor1OfSetCC(SDValue Op) {
8690  if (Op.getOpcode() != ISD::XOR)
8691    return false;
8692  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8693  if (N1C && N1C->getAPIntValue() == 1) {
8694    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8695      Op.getOperand(0).hasOneUse();
8696  }
8697  return false;
8698}
8699
8700SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8701  bool addTest = true;
8702  SDValue Chain = Op.getOperand(0);
8703  SDValue Cond  = Op.getOperand(1);
8704  SDValue Dest  = Op.getOperand(2);
8705  DebugLoc dl = Op.getDebugLoc();
8706  SDValue CC;
8707  bool Inverted = false;
8708
8709  if (Cond.getOpcode() == ISD::SETCC) {
8710    // Check for setcc([su]{add,sub,mul}o == 0).
8711    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8712        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8713        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8714        Cond.getOperand(0).getResNo() == 1 &&
8715        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8716         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8717         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8718         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8719         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8720         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8721      Inverted = true;
8722      Cond = Cond.getOperand(0);
8723    } else {
8724      SDValue NewCond = LowerSETCC(Cond, DAG);
8725      if (NewCond.getNode())
8726        Cond = NewCond;
8727    }
8728  }
8729#if 0
8730  // FIXME: LowerXALUO doesn't handle these!!
8731  else if (Cond.getOpcode() == X86ISD::ADD  ||
8732           Cond.getOpcode() == X86ISD::SUB  ||
8733           Cond.getOpcode() == X86ISD::SMUL ||
8734           Cond.getOpcode() == X86ISD::UMUL)
8735    Cond = LowerXALUO(Cond, DAG);
8736#endif
8737
8738  // Look pass (and (setcc_carry (cmp ...)), 1).
8739  if (Cond.getOpcode() == ISD::AND &&
8740      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8741    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8742    if (C && C->getAPIntValue() == 1)
8743      Cond = Cond.getOperand(0);
8744  }
8745
8746  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8747  // setting operand in place of the X86ISD::SETCC.
8748  unsigned CondOpcode = Cond.getOpcode();
8749  if (CondOpcode == X86ISD::SETCC ||
8750      CondOpcode == X86ISD::SETCC_CARRY) {
8751    CC = Cond.getOperand(0);
8752
8753    SDValue Cmp = Cond.getOperand(1);
8754    unsigned Opc = Cmp.getOpcode();
8755    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8756    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8757      Cond = Cmp;
8758      addTest = false;
8759    } else {
8760      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8761      default: break;
8762      case X86::COND_O:
8763      case X86::COND_B:
8764        // These can only come from an arithmetic instruction with overflow,
8765        // e.g. SADDO, UADDO.
8766        Cond = Cond.getNode()->getOperand(1);
8767        addTest = false;
8768        break;
8769      }
8770    }
8771  }
8772  CondOpcode = Cond.getOpcode();
8773  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8774      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8775      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8776       Cond.getOperand(0).getValueType() != MVT::i8)) {
8777    SDValue LHS = Cond.getOperand(0);
8778    SDValue RHS = Cond.getOperand(1);
8779    unsigned X86Opcode;
8780    unsigned X86Cond;
8781    SDVTList VTs;
8782    switch (CondOpcode) {
8783    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8784    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8785    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8786    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8787    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8788    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8789    default: llvm_unreachable("unexpected overflowing operator");
8790    }
8791    if (Inverted)
8792      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8793    if (CondOpcode == ISD::UMULO)
8794      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8795                          MVT::i32);
8796    else
8797      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8798
8799    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8800
8801    if (CondOpcode == ISD::UMULO)
8802      Cond = X86Op.getValue(2);
8803    else
8804      Cond = X86Op.getValue(1);
8805
8806    CC = DAG.getConstant(X86Cond, MVT::i8);
8807    addTest = false;
8808  } else {
8809    unsigned CondOpc;
8810    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8811      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8812      if (CondOpc == ISD::OR) {
8813        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8814        // two branches instead of an explicit OR instruction with a
8815        // separate test.
8816        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8817            isX86LogicalCmp(Cmp)) {
8818          CC = Cond.getOperand(0).getOperand(0);
8819          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8820                              Chain, Dest, CC, Cmp);
8821          CC = Cond.getOperand(1).getOperand(0);
8822          Cond = Cmp;
8823          addTest = false;
8824        }
8825      } else { // ISD::AND
8826        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8827        // two branches instead of an explicit AND instruction with a
8828        // separate test. However, we only do this if this block doesn't
8829        // have a fall-through edge, because this requires an explicit
8830        // jmp when the condition is false.
8831        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8832            isX86LogicalCmp(Cmp) &&
8833            Op.getNode()->hasOneUse()) {
8834          X86::CondCode CCode =
8835            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8836          CCode = X86::GetOppositeBranchCondition(CCode);
8837          CC = DAG.getConstant(CCode, MVT::i8);
8838          SDNode *User = *Op.getNode()->use_begin();
8839          // Look for an unconditional branch following this conditional branch.
8840          // We need this because we need to reverse the successors in order
8841          // to implement FCMP_OEQ.
8842          if (User->getOpcode() == ISD::BR) {
8843            SDValue FalseBB = User->getOperand(1);
8844            SDNode *NewBR =
8845              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8846            assert(NewBR == User);
8847            (void)NewBR;
8848            Dest = FalseBB;
8849
8850            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8851                                Chain, Dest, CC, Cmp);
8852            X86::CondCode CCode =
8853              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8854            CCode = X86::GetOppositeBranchCondition(CCode);
8855            CC = DAG.getConstant(CCode, MVT::i8);
8856            Cond = Cmp;
8857            addTest = false;
8858          }
8859        }
8860      }
8861    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8862      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8863      // It should be transformed during dag combiner except when the condition
8864      // is set by a arithmetics with overflow node.
8865      X86::CondCode CCode =
8866        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8867      CCode = X86::GetOppositeBranchCondition(CCode);
8868      CC = DAG.getConstant(CCode, MVT::i8);
8869      Cond = Cond.getOperand(0).getOperand(1);
8870      addTest = false;
8871    } else if (Cond.getOpcode() == ISD::SETCC &&
8872               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8873      // For FCMP_OEQ, we can emit
8874      // two branches instead of an explicit AND instruction with a
8875      // separate test. However, we only do this if this block doesn't
8876      // have a fall-through edge, because this requires an explicit
8877      // jmp when the condition is false.
8878      if (Op.getNode()->hasOneUse()) {
8879        SDNode *User = *Op.getNode()->use_begin();
8880        // Look for an unconditional branch following this conditional branch.
8881        // We need this because we need to reverse the successors in order
8882        // to implement FCMP_OEQ.
8883        if (User->getOpcode() == ISD::BR) {
8884          SDValue FalseBB = User->getOperand(1);
8885          SDNode *NewBR =
8886            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8887          assert(NewBR == User);
8888          (void)NewBR;
8889          Dest = FalseBB;
8890
8891          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8892                                    Cond.getOperand(0), Cond.getOperand(1));
8893          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8894          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8895                              Chain, Dest, CC, Cmp);
8896          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8897          Cond = Cmp;
8898          addTest = false;
8899        }
8900      }
8901    } else if (Cond.getOpcode() == ISD::SETCC &&
8902               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8903      // For FCMP_UNE, we can emit
8904      // two branches instead of an explicit AND instruction with a
8905      // separate test. However, we only do this if this block doesn't
8906      // have a fall-through edge, because this requires an explicit
8907      // jmp when the condition is false.
8908      if (Op.getNode()->hasOneUse()) {
8909        SDNode *User = *Op.getNode()->use_begin();
8910        // Look for an unconditional branch following this conditional branch.
8911        // We need this because we need to reverse the successors in order
8912        // to implement FCMP_UNE.
8913        if (User->getOpcode() == ISD::BR) {
8914          SDValue FalseBB = User->getOperand(1);
8915          SDNode *NewBR =
8916            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8917          assert(NewBR == User);
8918          (void)NewBR;
8919
8920          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8921                                    Cond.getOperand(0), Cond.getOperand(1));
8922          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8923          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8924                              Chain, Dest, CC, Cmp);
8925          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8926          Cond = Cmp;
8927          addTest = false;
8928          Dest = FalseBB;
8929        }
8930      }
8931    }
8932  }
8933
8934  if (addTest) {
8935    // Look pass the truncate.
8936    if (Cond.getOpcode() == ISD::TRUNCATE)
8937      Cond = Cond.getOperand(0);
8938
8939    // We know the result of AND is compared against zero. Try to match
8940    // it to BT.
8941    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8942      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8943      if (NewSetCC.getNode()) {
8944        CC = NewSetCC.getOperand(0);
8945        Cond = NewSetCC.getOperand(1);
8946        addTest = false;
8947      }
8948    }
8949  }
8950
8951  if (addTest) {
8952    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8953    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8954  }
8955  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8956                     Chain, Dest, CC, Cond);
8957}
8958
8959
8960// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8961// Calls to _alloca is needed to probe the stack when allocating more than 4k
8962// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8963// that the guard pages used by the OS virtual memory manager are allocated in
8964// correct sequence.
8965SDValue
8966X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8967                                           SelectionDAG &DAG) const {
8968  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8969          getTargetMachine().Options.EnableSegmentedStacks) &&
8970         "This should be used only on Windows targets or when segmented stacks "
8971         "are being used");
8972  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8973  DebugLoc dl = Op.getDebugLoc();
8974
8975  // Get the inputs.
8976  SDValue Chain = Op.getOperand(0);
8977  SDValue Size  = Op.getOperand(1);
8978  // FIXME: Ensure alignment here
8979
8980  bool Is64Bit = Subtarget->is64Bit();
8981  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8982
8983  if (getTargetMachine().Options.EnableSegmentedStacks) {
8984    MachineFunction &MF = DAG.getMachineFunction();
8985    MachineRegisterInfo &MRI = MF.getRegInfo();
8986
8987    if (Is64Bit) {
8988      // The 64 bit implementation of segmented stacks needs to clobber both r10
8989      // r11. This makes it impossible to use it along with nested parameters.
8990      const Function *F = MF.getFunction();
8991
8992      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8993           I != E; I++)
8994        if (I->hasNestAttr())
8995          report_fatal_error("Cannot use segmented stacks with functions that "
8996                             "have nested arguments.");
8997    }
8998
8999    const TargetRegisterClass *AddrRegClass =
9000      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9001    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9002    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9003    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9004                                DAG.getRegister(Vreg, SPTy));
9005    SDValue Ops1[2] = { Value, Chain };
9006    return DAG.getMergeValues(Ops1, 2, dl);
9007  } else {
9008    SDValue Flag;
9009    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9010
9011    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9012    Flag = Chain.getValue(1);
9013    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9014
9015    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9016    Flag = Chain.getValue(1);
9017
9018    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9019
9020    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9021    return DAG.getMergeValues(Ops1, 2, dl);
9022  }
9023}
9024
9025SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9026  MachineFunction &MF = DAG.getMachineFunction();
9027  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9028
9029  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9030  DebugLoc DL = Op.getDebugLoc();
9031
9032  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9033    // vastart just stores the address of the VarArgsFrameIndex slot into the
9034    // memory location argument.
9035    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9036                                   getPointerTy());
9037    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9038                        MachinePointerInfo(SV), false, false, 0);
9039  }
9040
9041  // __va_list_tag:
9042  //   gp_offset         (0 - 6 * 8)
9043  //   fp_offset         (48 - 48 + 8 * 16)
9044  //   overflow_arg_area (point to parameters coming in memory).
9045  //   reg_save_area
9046  SmallVector<SDValue, 8> MemOps;
9047  SDValue FIN = Op.getOperand(1);
9048  // Store gp_offset
9049  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9050                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9051                                               MVT::i32),
9052                               FIN, MachinePointerInfo(SV), false, false, 0);
9053  MemOps.push_back(Store);
9054
9055  // Store fp_offset
9056  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9057                    FIN, DAG.getIntPtrConstant(4));
9058  Store = DAG.getStore(Op.getOperand(0), DL,
9059                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9060                                       MVT::i32),
9061                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9062  MemOps.push_back(Store);
9063
9064  // Store ptr to overflow_arg_area
9065  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9066                    FIN, DAG.getIntPtrConstant(4));
9067  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9068                                    getPointerTy());
9069  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9070                       MachinePointerInfo(SV, 8),
9071                       false, false, 0);
9072  MemOps.push_back(Store);
9073
9074  // Store ptr to reg_save_area.
9075  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9076                    FIN, DAG.getIntPtrConstant(8));
9077  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9078                                    getPointerTy());
9079  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9080                       MachinePointerInfo(SV, 16), false, false, 0);
9081  MemOps.push_back(Store);
9082  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9083                     &MemOps[0], MemOps.size());
9084}
9085
9086SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9087  assert(Subtarget->is64Bit() &&
9088         "LowerVAARG only handles 64-bit va_arg!");
9089  assert((Subtarget->isTargetLinux() ||
9090          Subtarget->isTargetDarwin()) &&
9091          "Unhandled target in LowerVAARG");
9092  assert(Op.getNode()->getNumOperands() == 4);
9093  SDValue Chain = Op.getOperand(0);
9094  SDValue SrcPtr = Op.getOperand(1);
9095  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9096  unsigned Align = Op.getConstantOperandVal(3);
9097  DebugLoc dl = Op.getDebugLoc();
9098
9099  EVT ArgVT = Op.getNode()->getValueType(0);
9100  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9101  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9102  uint8_t ArgMode;
9103
9104  // Decide which area this value should be read from.
9105  // TODO: Implement the AMD64 ABI in its entirety. This simple
9106  // selection mechanism works only for the basic types.
9107  if (ArgVT == MVT::f80) {
9108    llvm_unreachable("va_arg for f80 not yet implemented");
9109  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9110    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9111  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9112    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9113  } else {
9114    llvm_unreachable("Unhandled argument type in LowerVAARG");
9115  }
9116
9117  if (ArgMode == 2) {
9118    // Sanity Check: Make sure using fp_offset makes sense.
9119    assert(!getTargetMachine().Options.UseSoftFloat &&
9120           !(DAG.getMachineFunction()
9121                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9122           Subtarget->hasSSE1());
9123  }
9124
9125  // Insert VAARG_64 node into the DAG
9126  // VAARG_64 returns two values: Variable Argument Address, Chain
9127  SmallVector<SDValue, 11> InstOps;
9128  InstOps.push_back(Chain);
9129  InstOps.push_back(SrcPtr);
9130  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9131  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9132  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9133  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9134  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9135                                          VTs, &InstOps[0], InstOps.size(),
9136                                          MVT::i64,
9137                                          MachinePointerInfo(SV),
9138                                          /*Align=*/0,
9139                                          /*Volatile=*/false,
9140                                          /*ReadMem=*/true,
9141                                          /*WriteMem=*/true);
9142  Chain = VAARG.getValue(1);
9143
9144  // Load the next argument and return it
9145  return DAG.getLoad(ArgVT, dl,
9146                     Chain,
9147                     VAARG,
9148                     MachinePointerInfo(),
9149                     false, false, false, 0);
9150}
9151
9152SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9153  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9154  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9155  SDValue Chain = Op.getOperand(0);
9156  SDValue DstPtr = Op.getOperand(1);
9157  SDValue SrcPtr = Op.getOperand(2);
9158  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9159  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9160  DebugLoc DL = Op.getDebugLoc();
9161
9162  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9163                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9164                       false,
9165                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9166}
9167
9168SDValue
9169X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9170  DebugLoc dl = Op.getDebugLoc();
9171  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9172  switch (IntNo) {
9173  default: return SDValue();    // Don't custom lower most intrinsics.
9174  // Comparison intrinsics.
9175  case Intrinsic::x86_sse_comieq_ss:
9176  case Intrinsic::x86_sse_comilt_ss:
9177  case Intrinsic::x86_sse_comile_ss:
9178  case Intrinsic::x86_sse_comigt_ss:
9179  case Intrinsic::x86_sse_comige_ss:
9180  case Intrinsic::x86_sse_comineq_ss:
9181  case Intrinsic::x86_sse_ucomieq_ss:
9182  case Intrinsic::x86_sse_ucomilt_ss:
9183  case Intrinsic::x86_sse_ucomile_ss:
9184  case Intrinsic::x86_sse_ucomigt_ss:
9185  case Intrinsic::x86_sse_ucomige_ss:
9186  case Intrinsic::x86_sse_ucomineq_ss:
9187  case Intrinsic::x86_sse2_comieq_sd:
9188  case Intrinsic::x86_sse2_comilt_sd:
9189  case Intrinsic::x86_sse2_comile_sd:
9190  case Intrinsic::x86_sse2_comigt_sd:
9191  case Intrinsic::x86_sse2_comige_sd:
9192  case Intrinsic::x86_sse2_comineq_sd:
9193  case Intrinsic::x86_sse2_ucomieq_sd:
9194  case Intrinsic::x86_sse2_ucomilt_sd:
9195  case Intrinsic::x86_sse2_ucomile_sd:
9196  case Intrinsic::x86_sse2_ucomigt_sd:
9197  case Intrinsic::x86_sse2_ucomige_sd:
9198  case Intrinsic::x86_sse2_ucomineq_sd: {
9199    unsigned Opc = 0;
9200    ISD::CondCode CC = ISD::SETCC_INVALID;
9201    switch (IntNo) {
9202    default: break;
9203    case Intrinsic::x86_sse_comieq_ss:
9204    case Intrinsic::x86_sse2_comieq_sd:
9205      Opc = X86ISD::COMI;
9206      CC = ISD::SETEQ;
9207      break;
9208    case Intrinsic::x86_sse_comilt_ss:
9209    case Intrinsic::x86_sse2_comilt_sd:
9210      Opc = X86ISD::COMI;
9211      CC = ISD::SETLT;
9212      break;
9213    case Intrinsic::x86_sse_comile_ss:
9214    case Intrinsic::x86_sse2_comile_sd:
9215      Opc = X86ISD::COMI;
9216      CC = ISD::SETLE;
9217      break;
9218    case Intrinsic::x86_sse_comigt_ss:
9219    case Intrinsic::x86_sse2_comigt_sd:
9220      Opc = X86ISD::COMI;
9221      CC = ISD::SETGT;
9222      break;
9223    case Intrinsic::x86_sse_comige_ss:
9224    case Intrinsic::x86_sse2_comige_sd:
9225      Opc = X86ISD::COMI;
9226      CC = ISD::SETGE;
9227      break;
9228    case Intrinsic::x86_sse_comineq_ss:
9229    case Intrinsic::x86_sse2_comineq_sd:
9230      Opc = X86ISD::COMI;
9231      CC = ISD::SETNE;
9232      break;
9233    case Intrinsic::x86_sse_ucomieq_ss:
9234    case Intrinsic::x86_sse2_ucomieq_sd:
9235      Opc = X86ISD::UCOMI;
9236      CC = ISD::SETEQ;
9237      break;
9238    case Intrinsic::x86_sse_ucomilt_ss:
9239    case Intrinsic::x86_sse2_ucomilt_sd:
9240      Opc = X86ISD::UCOMI;
9241      CC = ISD::SETLT;
9242      break;
9243    case Intrinsic::x86_sse_ucomile_ss:
9244    case Intrinsic::x86_sse2_ucomile_sd:
9245      Opc = X86ISD::UCOMI;
9246      CC = ISD::SETLE;
9247      break;
9248    case Intrinsic::x86_sse_ucomigt_ss:
9249    case Intrinsic::x86_sse2_ucomigt_sd:
9250      Opc = X86ISD::UCOMI;
9251      CC = ISD::SETGT;
9252      break;
9253    case Intrinsic::x86_sse_ucomige_ss:
9254    case Intrinsic::x86_sse2_ucomige_sd:
9255      Opc = X86ISD::UCOMI;
9256      CC = ISD::SETGE;
9257      break;
9258    case Intrinsic::x86_sse_ucomineq_ss:
9259    case Intrinsic::x86_sse2_ucomineq_sd:
9260      Opc = X86ISD::UCOMI;
9261      CC = ISD::SETNE;
9262      break;
9263    }
9264
9265    SDValue LHS = Op.getOperand(1);
9266    SDValue RHS = Op.getOperand(2);
9267    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9268    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9269    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9270    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9271                                DAG.getConstant(X86CC, MVT::i8), Cond);
9272    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9273  }
9274  // Arithmetic intrinsics.
9275  case Intrinsic::x86_sse3_hadd_ps:
9276  case Intrinsic::x86_sse3_hadd_pd:
9277  case Intrinsic::x86_avx_hadd_ps_256:
9278  case Intrinsic::x86_avx_hadd_pd_256:
9279    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9280                       Op.getOperand(1), Op.getOperand(2));
9281  case Intrinsic::x86_sse3_hsub_ps:
9282  case Intrinsic::x86_sse3_hsub_pd:
9283  case Intrinsic::x86_avx_hsub_ps_256:
9284  case Intrinsic::x86_avx_hsub_pd_256:
9285    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9286                       Op.getOperand(1), Op.getOperand(2));
9287  case Intrinsic::x86_avx2_psllv_d:
9288  case Intrinsic::x86_avx2_psllv_q:
9289  case Intrinsic::x86_avx2_psllv_d_256:
9290  case Intrinsic::x86_avx2_psllv_q_256:
9291    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9292                      Op.getOperand(1), Op.getOperand(2));
9293  case Intrinsic::x86_avx2_psrlv_d:
9294  case Intrinsic::x86_avx2_psrlv_q:
9295  case Intrinsic::x86_avx2_psrlv_d_256:
9296  case Intrinsic::x86_avx2_psrlv_q_256:
9297    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9298                      Op.getOperand(1), Op.getOperand(2));
9299  case Intrinsic::x86_avx2_psrav_d:
9300  case Intrinsic::x86_avx2_psrav_d_256:
9301    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9302                      Op.getOperand(1), Op.getOperand(2));
9303
9304  // ptest and testp intrinsics. The intrinsic these come from are designed to
9305  // return an integer value, not just an instruction so lower it to the ptest
9306  // or testp pattern and a setcc for the result.
9307  case Intrinsic::x86_sse41_ptestz:
9308  case Intrinsic::x86_sse41_ptestc:
9309  case Intrinsic::x86_sse41_ptestnzc:
9310  case Intrinsic::x86_avx_ptestz_256:
9311  case Intrinsic::x86_avx_ptestc_256:
9312  case Intrinsic::x86_avx_ptestnzc_256:
9313  case Intrinsic::x86_avx_vtestz_ps:
9314  case Intrinsic::x86_avx_vtestc_ps:
9315  case Intrinsic::x86_avx_vtestnzc_ps:
9316  case Intrinsic::x86_avx_vtestz_pd:
9317  case Intrinsic::x86_avx_vtestc_pd:
9318  case Intrinsic::x86_avx_vtestnzc_pd:
9319  case Intrinsic::x86_avx_vtestz_ps_256:
9320  case Intrinsic::x86_avx_vtestc_ps_256:
9321  case Intrinsic::x86_avx_vtestnzc_ps_256:
9322  case Intrinsic::x86_avx_vtestz_pd_256:
9323  case Intrinsic::x86_avx_vtestc_pd_256:
9324  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9325    bool IsTestPacked = false;
9326    unsigned X86CC = 0;
9327    switch (IntNo) {
9328    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9329    case Intrinsic::x86_avx_vtestz_ps:
9330    case Intrinsic::x86_avx_vtestz_pd:
9331    case Intrinsic::x86_avx_vtestz_ps_256:
9332    case Intrinsic::x86_avx_vtestz_pd_256:
9333      IsTestPacked = true; // Fallthrough
9334    case Intrinsic::x86_sse41_ptestz:
9335    case Intrinsic::x86_avx_ptestz_256:
9336      // ZF = 1
9337      X86CC = X86::COND_E;
9338      break;
9339    case Intrinsic::x86_avx_vtestc_ps:
9340    case Intrinsic::x86_avx_vtestc_pd:
9341    case Intrinsic::x86_avx_vtestc_ps_256:
9342    case Intrinsic::x86_avx_vtestc_pd_256:
9343      IsTestPacked = true; // Fallthrough
9344    case Intrinsic::x86_sse41_ptestc:
9345    case Intrinsic::x86_avx_ptestc_256:
9346      // CF = 1
9347      X86CC = X86::COND_B;
9348      break;
9349    case Intrinsic::x86_avx_vtestnzc_ps:
9350    case Intrinsic::x86_avx_vtestnzc_pd:
9351    case Intrinsic::x86_avx_vtestnzc_ps_256:
9352    case Intrinsic::x86_avx_vtestnzc_pd_256:
9353      IsTestPacked = true; // Fallthrough
9354    case Intrinsic::x86_sse41_ptestnzc:
9355    case Intrinsic::x86_avx_ptestnzc_256:
9356      // ZF and CF = 0
9357      X86CC = X86::COND_A;
9358      break;
9359    }
9360
9361    SDValue LHS = Op.getOperand(1);
9362    SDValue RHS = Op.getOperand(2);
9363    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9364    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9365    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9366    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9367    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9368  }
9369
9370  // Fix vector shift instructions where the last operand is a non-immediate
9371  // i32 value.
9372  case Intrinsic::x86_avx2_pslli_w:
9373  case Intrinsic::x86_avx2_pslli_d:
9374  case Intrinsic::x86_avx2_pslli_q:
9375  case Intrinsic::x86_avx2_psrli_w:
9376  case Intrinsic::x86_avx2_psrli_d:
9377  case Intrinsic::x86_avx2_psrli_q:
9378  case Intrinsic::x86_avx2_psrai_w:
9379  case Intrinsic::x86_avx2_psrai_d:
9380  case Intrinsic::x86_sse2_pslli_w:
9381  case Intrinsic::x86_sse2_pslli_d:
9382  case Intrinsic::x86_sse2_pslli_q:
9383  case Intrinsic::x86_sse2_psrli_w:
9384  case Intrinsic::x86_sse2_psrli_d:
9385  case Intrinsic::x86_sse2_psrli_q:
9386  case Intrinsic::x86_sse2_psrai_w:
9387  case Intrinsic::x86_sse2_psrai_d:
9388  case Intrinsic::x86_mmx_pslli_w:
9389  case Intrinsic::x86_mmx_pslli_d:
9390  case Intrinsic::x86_mmx_pslli_q:
9391  case Intrinsic::x86_mmx_psrli_w:
9392  case Intrinsic::x86_mmx_psrli_d:
9393  case Intrinsic::x86_mmx_psrli_q:
9394  case Intrinsic::x86_mmx_psrai_w:
9395  case Intrinsic::x86_mmx_psrai_d: {
9396    SDValue ShAmt = Op.getOperand(2);
9397    if (isa<ConstantSDNode>(ShAmt))
9398      return SDValue();
9399
9400    unsigned NewIntNo = 0;
9401    EVT ShAmtVT = MVT::v4i32;
9402    switch (IntNo) {
9403    case Intrinsic::x86_sse2_pslli_w:
9404      NewIntNo = Intrinsic::x86_sse2_psll_w;
9405      break;
9406    case Intrinsic::x86_sse2_pslli_d:
9407      NewIntNo = Intrinsic::x86_sse2_psll_d;
9408      break;
9409    case Intrinsic::x86_sse2_pslli_q:
9410      NewIntNo = Intrinsic::x86_sse2_psll_q;
9411      break;
9412    case Intrinsic::x86_sse2_psrli_w:
9413      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9414      break;
9415    case Intrinsic::x86_sse2_psrli_d:
9416      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9417      break;
9418    case Intrinsic::x86_sse2_psrli_q:
9419      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9420      break;
9421    case Intrinsic::x86_sse2_psrai_w:
9422      NewIntNo = Intrinsic::x86_sse2_psra_w;
9423      break;
9424    case Intrinsic::x86_sse2_psrai_d:
9425      NewIntNo = Intrinsic::x86_sse2_psra_d;
9426      break;
9427    case Intrinsic::x86_avx2_pslli_w:
9428      NewIntNo = Intrinsic::x86_avx2_psll_w;
9429      break;
9430    case Intrinsic::x86_avx2_pslli_d:
9431      NewIntNo = Intrinsic::x86_avx2_psll_d;
9432      break;
9433    case Intrinsic::x86_avx2_pslli_q:
9434      NewIntNo = Intrinsic::x86_avx2_psll_q;
9435      break;
9436    case Intrinsic::x86_avx2_psrli_w:
9437      NewIntNo = Intrinsic::x86_avx2_psrl_w;
9438      break;
9439    case Intrinsic::x86_avx2_psrli_d:
9440      NewIntNo = Intrinsic::x86_avx2_psrl_d;
9441      break;
9442    case Intrinsic::x86_avx2_psrli_q:
9443      NewIntNo = Intrinsic::x86_avx2_psrl_q;
9444      break;
9445    case Intrinsic::x86_avx2_psrai_w:
9446      NewIntNo = Intrinsic::x86_avx2_psra_w;
9447      break;
9448    case Intrinsic::x86_avx2_psrai_d:
9449      NewIntNo = Intrinsic::x86_avx2_psra_d;
9450      break;
9451    default: {
9452      ShAmtVT = MVT::v2i32;
9453      switch (IntNo) {
9454      case Intrinsic::x86_mmx_pslli_w:
9455        NewIntNo = Intrinsic::x86_mmx_psll_w;
9456        break;
9457      case Intrinsic::x86_mmx_pslli_d:
9458        NewIntNo = Intrinsic::x86_mmx_psll_d;
9459        break;
9460      case Intrinsic::x86_mmx_pslli_q:
9461        NewIntNo = Intrinsic::x86_mmx_psll_q;
9462        break;
9463      case Intrinsic::x86_mmx_psrli_w:
9464        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9465        break;
9466      case Intrinsic::x86_mmx_psrli_d:
9467        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9468        break;
9469      case Intrinsic::x86_mmx_psrli_q:
9470        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9471        break;
9472      case Intrinsic::x86_mmx_psrai_w:
9473        NewIntNo = Intrinsic::x86_mmx_psra_w;
9474        break;
9475      case Intrinsic::x86_mmx_psrai_d:
9476        NewIntNo = Intrinsic::x86_mmx_psra_d;
9477        break;
9478      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9479      }
9480      break;
9481    }
9482    }
9483
9484    // The vector shift intrinsics with scalars uses 32b shift amounts but
9485    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9486    // to be zero.
9487    SDValue ShOps[4];
9488    ShOps[0] = ShAmt;
9489    ShOps[1] = DAG.getConstant(0, MVT::i32);
9490    if (ShAmtVT == MVT::v4i32) {
9491      ShOps[2] = DAG.getUNDEF(MVT::i32);
9492      ShOps[3] = DAG.getUNDEF(MVT::i32);
9493      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9494    } else {
9495      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9496// FIXME this must be lowered to get rid of the invalid type.
9497    }
9498
9499    EVT VT = Op.getValueType();
9500    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9501    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9502                       DAG.getConstant(NewIntNo, MVT::i32),
9503                       Op.getOperand(1), ShAmt);
9504  }
9505  }
9506}
9507
9508SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9509                                           SelectionDAG &DAG) const {
9510  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9511  MFI->setReturnAddressIsTaken(true);
9512
9513  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9514  DebugLoc dl = Op.getDebugLoc();
9515
9516  if (Depth > 0) {
9517    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9518    SDValue Offset =
9519      DAG.getConstant(TD->getPointerSize(),
9520                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9521    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9522                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9523                                   FrameAddr, Offset),
9524                       MachinePointerInfo(), false, false, false, 0);
9525  }
9526
9527  // Just load the return address.
9528  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9529  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9530                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9531}
9532
9533SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9534  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9535  MFI->setFrameAddressIsTaken(true);
9536
9537  EVT VT = Op.getValueType();
9538  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9539  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9540  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9541  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9542  while (Depth--)
9543    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9544                            MachinePointerInfo(),
9545                            false, false, false, 0);
9546  return FrameAddr;
9547}
9548
9549SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9550                                                     SelectionDAG &DAG) const {
9551  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9552}
9553
9554SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9555  MachineFunction &MF = DAG.getMachineFunction();
9556  SDValue Chain     = Op.getOperand(0);
9557  SDValue Offset    = Op.getOperand(1);
9558  SDValue Handler   = Op.getOperand(2);
9559  DebugLoc dl       = Op.getDebugLoc();
9560
9561  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9562                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9563                                     getPointerTy());
9564  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9565
9566  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9567                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9568  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9569  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9570                       false, false, 0);
9571  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9572  MF.getRegInfo().addLiveOut(StoreAddrReg);
9573
9574  return DAG.getNode(X86ISD::EH_RETURN, dl,
9575                     MVT::Other,
9576                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9577}
9578
9579SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9580                                                  SelectionDAG &DAG) const {
9581  return Op.getOperand(0);
9582}
9583
9584SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9585                                                SelectionDAG &DAG) const {
9586  SDValue Root = Op.getOperand(0);
9587  SDValue Trmp = Op.getOperand(1); // trampoline
9588  SDValue FPtr = Op.getOperand(2); // nested function
9589  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9590  DebugLoc dl  = Op.getDebugLoc();
9591
9592  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9593
9594  if (Subtarget->is64Bit()) {
9595    SDValue OutChains[6];
9596
9597    // Large code-model.
9598    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9599    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9600
9601    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9602    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9603
9604    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9605
9606    // Load the pointer to the nested function into R11.
9607    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9608    SDValue Addr = Trmp;
9609    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9610                                Addr, MachinePointerInfo(TrmpAddr),
9611                                false, false, 0);
9612
9613    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9614                       DAG.getConstant(2, MVT::i64));
9615    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9616                                MachinePointerInfo(TrmpAddr, 2),
9617                                false, false, 2);
9618
9619    // Load the 'nest' parameter value into R10.
9620    // R10 is specified in X86CallingConv.td
9621    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9622    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9623                       DAG.getConstant(10, MVT::i64));
9624    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9625                                Addr, MachinePointerInfo(TrmpAddr, 10),
9626                                false, false, 0);
9627
9628    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9629                       DAG.getConstant(12, MVT::i64));
9630    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9631                                MachinePointerInfo(TrmpAddr, 12),
9632                                false, false, 2);
9633
9634    // Jump to the nested function.
9635    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9636    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9637                       DAG.getConstant(20, MVT::i64));
9638    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9639                                Addr, MachinePointerInfo(TrmpAddr, 20),
9640                                false, false, 0);
9641
9642    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9643    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9644                       DAG.getConstant(22, MVT::i64));
9645    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9646                                MachinePointerInfo(TrmpAddr, 22),
9647                                false, false, 0);
9648
9649    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9650  } else {
9651    const Function *Func =
9652      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9653    CallingConv::ID CC = Func->getCallingConv();
9654    unsigned NestReg;
9655
9656    switch (CC) {
9657    default:
9658      llvm_unreachable("Unsupported calling convention");
9659    case CallingConv::C:
9660    case CallingConv::X86_StdCall: {
9661      // Pass 'nest' parameter in ECX.
9662      // Must be kept in sync with X86CallingConv.td
9663      NestReg = X86::ECX;
9664
9665      // Check that ECX wasn't needed by an 'inreg' parameter.
9666      FunctionType *FTy = Func->getFunctionType();
9667      const AttrListPtr &Attrs = Func->getAttributes();
9668
9669      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9670        unsigned InRegCount = 0;
9671        unsigned Idx = 1;
9672
9673        for (FunctionType::param_iterator I = FTy->param_begin(),
9674             E = FTy->param_end(); I != E; ++I, ++Idx)
9675          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9676            // FIXME: should only count parameters that are lowered to integers.
9677            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9678
9679        if (InRegCount > 2) {
9680          report_fatal_error("Nest register in use - reduce number of inreg"
9681                             " parameters!");
9682        }
9683      }
9684      break;
9685    }
9686    case CallingConv::X86_FastCall:
9687    case CallingConv::X86_ThisCall:
9688    case CallingConv::Fast:
9689      // Pass 'nest' parameter in EAX.
9690      // Must be kept in sync with X86CallingConv.td
9691      NestReg = X86::EAX;
9692      break;
9693    }
9694
9695    SDValue OutChains[4];
9696    SDValue Addr, Disp;
9697
9698    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9699                       DAG.getConstant(10, MVT::i32));
9700    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9701
9702    // This is storing the opcode for MOV32ri.
9703    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9704    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9705    OutChains[0] = DAG.getStore(Root, dl,
9706                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9707                                Trmp, MachinePointerInfo(TrmpAddr),
9708                                false, false, 0);
9709
9710    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9711                       DAG.getConstant(1, MVT::i32));
9712    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9713                                MachinePointerInfo(TrmpAddr, 1),
9714                                false, false, 1);
9715
9716    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9717    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9718                       DAG.getConstant(5, MVT::i32));
9719    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9720                                MachinePointerInfo(TrmpAddr, 5),
9721                                false, false, 1);
9722
9723    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9724                       DAG.getConstant(6, MVT::i32));
9725    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9726                                MachinePointerInfo(TrmpAddr, 6),
9727                                false, false, 1);
9728
9729    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9730  }
9731}
9732
9733SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9734                                            SelectionDAG &DAG) const {
9735  /*
9736   The rounding mode is in bits 11:10 of FPSR, and has the following
9737   settings:
9738     00 Round to nearest
9739     01 Round to -inf
9740     10 Round to +inf
9741     11 Round to 0
9742
9743  FLT_ROUNDS, on the other hand, expects the following:
9744    -1 Undefined
9745     0 Round to 0
9746     1 Round to nearest
9747     2 Round to +inf
9748     3 Round to -inf
9749
9750  To perform the conversion, we do:
9751    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9752  */
9753
9754  MachineFunction &MF = DAG.getMachineFunction();
9755  const TargetMachine &TM = MF.getTarget();
9756  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9757  unsigned StackAlignment = TFI.getStackAlignment();
9758  EVT VT = Op.getValueType();
9759  DebugLoc DL = Op.getDebugLoc();
9760
9761  // Save FP Control Word to stack slot
9762  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9763  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9764
9765
9766  MachineMemOperand *MMO =
9767   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9768                           MachineMemOperand::MOStore, 2, 2);
9769
9770  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9771  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9772                                          DAG.getVTList(MVT::Other),
9773                                          Ops, 2, MVT::i16, MMO);
9774
9775  // Load FP Control Word from stack slot
9776  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9777                            MachinePointerInfo(), false, false, false, 0);
9778
9779  // Transform as necessary
9780  SDValue CWD1 =
9781    DAG.getNode(ISD::SRL, DL, MVT::i16,
9782                DAG.getNode(ISD::AND, DL, MVT::i16,
9783                            CWD, DAG.getConstant(0x800, MVT::i16)),
9784                DAG.getConstant(11, MVT::i8));
9785  SDValue CWD2 =
9786    DAG.getNode(ISD::SRL, DL, MVT::i16,
9787                DAG.getNode(ISD::AND, DL, MVT::i16,
9788                            CWD, DAG.getConstant(0x400, MVT::i16)),
9789                DAG.getConstant(9, MVT::i8));
9790
9791  SDValue RetVal =
9792    DAG.getNode(ISD::AND, DL, MVT::i16,
9793                DAG.getNode(ISD::ADD, DL, MVT::i16,
9794                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9795                            DAG.getConstant(1, MVT::i16)),
9796                DAG.getConstant(3, MVT::i16));
9797
9798
9799  return DAG.getNode((VT.getSizeInBits() < 16 ?
9800                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9801}
9802
9803SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9804  EVT VT = Op.getValueType();
9805  EVT OpVT = VT;
9806  unsigned NumBits = VT.getSizeInBits();
9807  DebugLoc dl = Op.getDebugLoc();
9808
9809  Op = Op.getOperand(0);
9810  if (VT == MVT::i8) {
9811    // Zero extend to i32 since there is not an i8 bsr.
9812    OpVT = MVT::i32;
9813    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9814  }
9815
9816  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9817  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9818  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9819
9820  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9821  SDValue Ops[] = {
9822    Op,
9823    DAG.getConstant(NumBits+NumBits-1, OpVT),
9824    DAG.getConstant(X86::COND_E, MVT::i8),
9825    Op.getValue(1)
9826  };
9827  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9828
9829  // Finally xor with NumBits-1.
9830  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9831
9832  if (VT == MVT::i8)
9833    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9834  return Op;
9835}
9836
9837SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
9838                                                SelectionDAG &DAG) const {
9839  EVT VT = Op.getValueType();
9840  EVT OpVT = VT;
9841  unsigned NumBits = VT.getSizeInBits();
9842  DebugLoc dl = Op.getDebugLoc();
9843
9844  Op = Op.getOperand(0);
9845  if (VT == MVT::i8) {
9846    // Zero extend to i32 since there is not an i8 bsr.
9847    OpVT = MVT::i32;
9848    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9849  }
9850
9851  // Issue a bsr (scan bits in reverse).
9852  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9853  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9854
9855  // And xor with NumBits-1.
9856  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9857
9858  if (VT == MVT::i8)
9859    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9860  return Op;
9861}
9862
9863SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9864  EVT VT = Op.getValueType();
9865  unsigned NumBits = VT.getSizeInBits();
9866  DebugLoc dl = Op.getDebugLoc();
9867  Op = Op.getOperand(0);
9868
9869  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9870  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9871  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9872
9873  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9874  SDValue Ops[] = {
9875    Op,
9876    DAG.getConstant(NumBits, VT),
9877    DAG.getConstant(X86::COND_E, MVT::i8),
9878    Op.getValue(1)
9879  };
9880  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
9881}
9882
9883// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9884// ones, and then concatenate the result back.
9885static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9886  EVT VT = Op.getValueType();
9887
9888  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9889         "Unsupported value type for operation");
9890
9891  int NumElems = VT.getVectorNumElements();
9892  DebugLoc dl = Op.getDebugLoc();
9893  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9894  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9895
9896  // Extract the LHS vectors
9897  SDValue LHS = Op.getOperand(0);
9898  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9899  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9900
9901  // Extract the RHS vectors
9902  SDValue RHS = Op.getOperand(1);
9903  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9904  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9905
9906  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9907  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9908
9909  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9910                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9911                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9912}
9913
9914SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9915  assert(Op.getValueType().getSizeInBits() == 256 &&
9916         Op.getValueType().isInteger() &&
9917         "Only handle AVX 256-bit vector integer operation");
9918  return Lower256IntArith(Op, DAG);
9919}
9920
9921SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9922  assert(Op.getValueType().getSizeInBits() == 256 &&
9923         Op.getValueType().isInteger() &&
9924         "Only handle AVX 256-bit vector integer operation");
9925  return Lower256IntArith(Op, DAG);
9926}
9927
9928SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9929  EVT VT = Op.getValueType();
9930
9931  // Decompose 256-bit ops into smaller 128-bit ops.
9932  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
9933    return Lower256IntArith(Op, DAG);
9934
9935  DebugLoc dl = Op.getDebugLoc();
9936
9937  SDValue A = Op.getOperand(0);
9938  SDValue B = Op.getOperand(1);
9939
9940  if (VT == MVT::v4i64) {
9941    assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
9942
9943    //  ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
9944    //  ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
9945    //  ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
9946    //  ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
9947    //  ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
9948    //
9949    //  AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
9950    //  AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
9951    //  return AloBlo + AloBhi + AhiBlo;
9952
9953    SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9954                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9955                         A, DAG.getConstant(32, MVT::i32));
9956    SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9957                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9958                         B, DAG.getConstant(32, MVT::i32));
9959    SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9960                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9961                         A, B);
9962    SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9963                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9964                         A, Bhi);
9965    SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9966                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9967                         Ahi, B);
9968    AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9969                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9970                         AloBhi, DAG.getConstant(32, MVT::i32));
9971    AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9972                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9973                         AhiBlo, DAG.getConstant(32, MVT::i32));
9974    SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9975    Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9976    return Res;
9977  }
9978
9979  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9980
9981  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9982  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9983  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9984  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9985  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9986  //
9987  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9988  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9989  //  return AloBlo + AloBhi + AhiBlo;
9990
9991  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9992                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9993                       A, DAG.getConstant(32, MVT::i32));
9994  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9995                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9996                       B, DAG.getConstant(32, MVT::i32));
9997  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9998                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9999                       A, B);
10000  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10001                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10002                       A, Bhi);
10003  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10004                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10005                       Ahi, B);
10006  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10007                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10008                       AloBhi, DAG.getConstant(32, MVT::i32));
10009  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10010                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10011                       AhiBlo, DAG.getConstant(32, MVT::i32));
10012  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10013  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10014  return Res;
10015}
10016
10017SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10018
10019  EVT VT = Op.getValueType();
10020  DebugLoc dl = Op.getDebugLoc();
10021  SDValue R = Op.getOperand(0);
10022  SDValue Amt = Op.getOperand(1);
10023  LLVMContext *Context = DAG.getContext();
10024
10025  if (!Subtarget->hasSSE2())
10026    return SDValue();
10027
10028  // Optimize shl/srl/sra with constant shift amount.
10029  if (isSplatVector(Amt.getNode())) {
10030    SDValue SclrAmt = Amt->getOperand(0);
10031    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10032      uint64_t ShiftAmt = C->getZExtValue();
10033
10034      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SHL) {
10035        // Make a large shift.
10036        SDValue SHL =
10037          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10038                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10039                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10040        // Zero out the rightmost bits.
10041        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10042                                                       MVT::i8));
10043        return DAG.getNode(ISD::AND, dl, VT, SHL,
10044                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10045      }
10046
10047      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
10048       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10049                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10050                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10051
10052      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
10053       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10054                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10055                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10056
10057      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
10058       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10059                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10060                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10061
10062      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRL) {
10063        // Make a large shift.
10064        SDValue SRL =
10065          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10066                      DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10067                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10068        // Zero out the leftmost bits.
10069        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10070                                                       MVT::i8));
10071        return DAG.getNode(ISD::AND, dl, VT, SRL,
10072                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10073      }
10074
10075      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
10076       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10077                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10078                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10079
10080      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
10081       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10082                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10083                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10084
10085      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
10086       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10087                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10088                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10089
10090      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
10091       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10092                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10093                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10094
10095      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
10096       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10097                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10098                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10099
10100      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRA) {
10101        if (ShiftAmt == 7) {
10102          // R s>> 7  ===  R s< 0
10103          SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
10104          return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10105        }
10106
10107        // R s>> a === ((R u>> a) ^ m) - m
10108        SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10109        SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10110                                                       MVT::i8));
10111        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10112        Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10113        Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10114        return Res;
10115      }
10116
10117      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10118        if (Op.getOpcode() == ISD::SHL) {
10119          // Make a large shift.
10120          SDValue SHL =
10121            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10122                        DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
10123                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10124          // Zero out the rightmost bits.
10125          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10126                                                         MVT::i8));
10127          return DAG.getNode(ISD::AND, dl, VT, SHL,
10128                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10129        }
10130        if (Op.getOpcode() == ISD::SRL) {
10131          // Make a large shift.
10132          SDValue SRL =
10133            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10134                        DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
10135                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10136          // Zero out the leftmost bits.
10137          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10138                                                         MVT::i8));
10139          return DAG.getNode(ISD::AND, dl, VT, SRL,
10140                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10141        }
10142        if (Op.getOpcode() == ISD::SRA) {
10143          if (ShiftAmt == 7) {
10144            // R s>> 7  ===  R s< 0
10145            SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
10146            return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10147          }
10148
10149          // R s>> a === ((R u>> a) ^ m) - m
10150          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10151          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10152                                                         MVT::i8));
10153          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10154          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10155          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10156          return Res;
10157        }
10158      }
10159    }
10160  }
10161
10162  // Lower SHL with variable shift amount.
10163  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10164    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10165                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10166                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
10167
10168    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10169
10170    std::vector<Constant*> CV(4, CI);
10171    Constant *C = ConstantVector::get(CV);
10172    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10173    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10174                                 MachinePointerInfo::getConstantPool(),
10175                                 false, false, false, 16);
10176
10177    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10178    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10179    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10180    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10181  }
10182  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10183    assert((Subtarget->hasSSE2() || Subtarget->hasAVX()) &&
10184            "Need SSE2 for pslli/pcmpeq.");
10185
10186    // a = a << 5;
10187    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10188                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10189                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
10190
10191    // Turn 'a' into a mask suitable for VSELECT
10192    SDValue VSelM = DAG.getConstant(0x80, VT);
10193    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10194    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10195                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10196                        OpVSel, VSelM);
10197
10198    SDValue CM1 = DAG.getConstant(0x0f, VT);
10199    SDValue CM2 = DAG.getConstant(0x3f, VT);
10200
10201    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10202    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10203    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10204                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10205                    DAG.getConstant(4, MVT::i32));
10206    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10207
10208    // a += a
10209    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10210    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10211    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10212                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10213                        OpVSel, VSelM);
10214
10215    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10216    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10217    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10218                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10219                    DAG.getConstant(2, MVT::i32));
10220    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10221
10222    // a += a
10223    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10224    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10225    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10226                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10227                        OpVSel, VSelM);
10228
10229    // return VSELECT(r, r+r, a);
10230    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10231                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10232    return R;
10233  }
10234
10235  // Decompose 256-bit shifts into smaller 128-bit shifts.
10236  if (VT.getSizeInBits() == 256) {
10237    int NumElems = VT.getVectorNumElements();
10238    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10239    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10240
10241    // Extract the two vectors
10242    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10243    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10244                                     DAG, dl);
10245
10246    // Recreate the shift amount vectors
10247    SDValue Amt1, Amt2;
10248    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10249      // Constant shift amount
10250      SmallVector<SDValue, 4> Amt1Csts;
10251      SmallVector<SDValue, 4> Amt2Csts;
10252      for (int i = 0; i < NumElems/2; ++i)
10253        Amt1Csts.push_back(Amt->getOperand(i));
10254      for (int i = NumElems/2; i < NumElems; ++i)
10255        Amt2Csts.push_back(Amt->getOperand(i));
10256
10257      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10258                                 &Amt1Csts[0], NumElems/2);
10259      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10260                                 &Amt2Csts[0], NumElems/2);
10261    } else {
10262      // Variable shift amount
10263      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10264      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10265                                 DAG, dl);
10266    }
10267
10268    // Issue new vector shifts for the smaller types
10269    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10270    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10271
10272    // Concatenate the result back
10273    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10274  }
10275
10276  return SDValue();
10277}
10278
10279SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10280  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10281  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10282  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10283  // has only one use.
10284  SDNode *N = Op.getNode();
10285  SDValue LHS = N->getOperand(0);
10286  SDValue RHS = N->getOperand(1);
10287  unsigned BaseOp = 0;
10288  unsigned Cond = 0;
10289  DebugLoc DL = Op.getDebugLoc();
10290  switch (Op.getOpcode()) {
10291  default: llvm_unreachable("Unknown ovf instruction!");
10292  case ISD::SADDO:
10293    // A subtract of one will be selected as a INC. Note that INC doesn't
10294    // set CF, so we can't do this for UADDO.
10295    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10296      if (C->isOne()) {
10297        BaseOp = X86ISD::INC;
10298        Cond = X86::COND_O;
10299        break;
10300      }
10301    BaseOp = X86ISD::ADD;
10302    Cond = X86::COND_O;
10303    break;
10304  case ISD::UADDO:
10305    BaseOp = X86ISD::ADD;
10306    Cond = X86::COND_B;
10307    break;
10308  case ISD::SSUBO:
10309    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10310    // set CF, so we can't do this for USUBO.
10311    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10312      if (C->isOne()) {
10313        BaseOp = X86ISD::DEC;
10314        Cond = X86::COND_O;
10315        break;
10316      }
10317    BaseOp = X86ISD::SUB;
10318    Cond = X86::COND_O;
10319    break;
10320  case ISD::USUBO:
10321    BaseOp = X86ISD::SUB;
10322    Cond = X86::COND_B;
10323    break;
10324  case ISD::SMULO:
10325    BaseOp = X86ISD::SMUL;
10326    Cond = X86::COND_O;
10327    break;
10328  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10329    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10330                                 MVT::i32);
10331    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10332
10333    SDValue SetCC =
10334      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10335                  DAG.getConstant(X86::COND_O, MVT::i32),
10336                  SDValue(Sum.getNode(), 2));
10337
10338    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10339  }
10340  }
10341
10342  // Also sets EFLAGS.
10343  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10344  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10345
10346  SDValue SetCC =
10347    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10348                DAG.getConstant(Cond, MVT::i32),
10349                SDValue(Sum.getNode(), 1));
10350
10351  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10352}
10353
10354SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10355                                                  SelectionDAG &DAG) const {
10356  DebugLoc dl = Op.getDebugLoc();
10357  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10358  EVT VT = Op.getValueType();
10359
10360  if (Subtarget->hasSSE2() && VT.isVector()) {
10361    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10362                        ExtraVT.getScalarType().getSizeInBits();
10363    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10364
10365    unsigned SHLIntrinsicsID = 0;
10366    unsigned SRAIntrinsicsID = 0;
10367    switch (VT.getSimpleVT().SimpleTy) {
10368      default:
10369        return SDValue();
10370      case MVT::v4i32:
10371        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10372        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10373        break;
10374      case MVT::v8i16:
10375        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10376        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10377        break;
10378      case MVT::v8i32:
10379      case MVT::v16i16:
10380        if (!Subtarget->hasAVX())
10381          return SDValue();
10382        if (!Subtarget->hasAVX2()) {
10383          // needs to be split
10384          int NumElems = VT.getVectorNumElements();
10385          SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10386          SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10387
10388          // Extract the LHS vectors
10389          SDValue LHS = Op.getOperand(0);
10390          SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10391          SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10392
10393          MVT EltVT = VT.getVectorElementType().getSimpleVT();
10394          EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10395
10396          EVT ExtraEltVT = ExtraVT.getVectorElementType();
10397          int ExtraNumElems = ExtraVT.getVectorNumElements();
10398          ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10399                                     ExtraNumElems/2);
10400          SDValue Extra = DAG.getValueType(ExtraVT);
10401
10402          LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10403          LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10404
10405          return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10406        }
10407        if (VT == MVT::v8i32) {
10408          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_d;
10409          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_d;
10410        } else {
10411          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_w;
10412          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_w;
10413        }
10414    }
10415
10416    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10417                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10418                         Op.getOperand(0), ShAmt);
10419
10420    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10421                       DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10422                       Tmp1, ShAmt);
10423  }
10424
10425  return SDValue();
10426}
10427
10428
10429SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10430  DebugLoc dl = Op.getDebugLoc();
10431
10432  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10433  // There isn't any reason to disable it if the target processor supports it.
10434  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10435    SDValue Chain = Op.getOperand(0);
10436    SDValue Zero = DAG.getConstant(0, MVT::i32);
10437    SDValue Ops[] = {
10438      DAG.getRegister(X86::ESP, MVT::i32), // Base
10439      DAG.getTargetConstant(1, MVT::i8),   // Scale
10440      DAG.getRegister(0, MVT::i32),        // Index
10441      DAG.getTargetConstant(0, MVT::i32),  // Disp
10442      DAG.getRegister(0, MVT::i32),        // Segment.
10443      Zero,
10444      Chain
10445    };
10446    SDNode *Res =
10447      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10448                          array_lengthof(Ops));
10449    return SDValue(Res, 0);
10450  }
10451
10452  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10453  if (!isDev)
10454    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10455
10456  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10457  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10458  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10459  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10460
10461  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10462  if (!Op1 && !Op2 && !Op3 && Op4)
10463    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10464
10465  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10466  if (Op1 && !Op2 && !Op3 && !Op4)
10467    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10468
10469  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10470  //           (MFENCE)>;
10471  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10472}
10473
10474SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10475                                             SelectionDAG &DAG) const {
10476  DebugLoc dl = Op.getDebugLoc();
10477  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10478    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10479  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10480    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10481
10482  // The only fence that needs an instruction is a sequentially-consistent
10483  // cross-thread fence.
10484  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10485    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10486    // no-sse2). There isn't any reason to disable it if the target processor
10487    // supports it.
10488    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10489      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10490
10491    SDValue Chain = Op.getOperand(0);
10492    SDValue Zero = DAG.getConstant(0, MVT::i32);
10493    SDValue Ops[] = {
10494      DAG.getRegister(X86::ESP, MVT::i32), // Base
10495      DAG.getTargetConstant(1, MVT::i8),   // Scale
10496      DAG.getRegister(0, MVT::i32),        // Index
10497      DAG.getTargetConstant(0, MVT::i32),  // Disp
10498      DAG.getRegister(0, MVT::i32),        // Segment.
10499      Zero,
10500      Chain
10501    };
10502    SDNode *Res =
10503      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10504                         array_lengthof(Ops));
10505    return SDValue(Res, 0);
10506  }
10507
10508  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10509  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10510}
10511
10512
10513SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10514  EVT T = Op.getValueType();
10515  DebugLoc DL = Op.getDebugLoc();
10516  unsigned Reg = 0;
10517  unsigned size = 0;
10518  switch(T.getSimpleVT().SimpleTy) {
10519  default:
10520    assert(false && "Invalid value type!");
10521  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10522  case MVT::i16: Reg = X86::AX;  size = 2; break;
10523  case MVT::i32: Reg = X86::EAX; size = 4; break;
10524  case MVT::i64:
10525    assert(Subtarget->is64Bit() && "Node not type legal!");
10526    Reg = X86::RAX; size = 8;
10527    break;
10528  }
10529  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10530                                    Op.getOperand(2), SDValue());
10531  SDValue Ops[] = { cpIn.getValue(0),
10532                    Op.getOperand(1),
10533                    Op.getOperand(3),
10534                    DAG.getTargetConstant(size, MVT::i8),
10535                    cpIn.getValue(1) };
10536  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10537  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10538  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10539                                           Ops, 5, T, MMO);
10540  SDValue cpOut =
10541    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10542  return cpOut;
10543}
10544
10545SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10546                                                 SelectionDAG &DAG) const {
10547  assert(Subtarget->is64Bit() && "Result not type legalized?");
10548  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10549  SDValue TheChain = Op.getOperand(0);
10550  DebugLoc dl = Op.getDebugLoc();
10551  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10552  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10553  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10554                                   rax.getValue(2));
10555  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10556                            DAG.getConstant(32, MVT::i8));
10557  SDValue Ops[] = {
10558    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10559    rdx.getValue(1)
10560  };
10561  return DAG.getMergeValues(Ops, 2, dl);
10562}
10563
10564SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10565                                            SelectionDAG &DAG) const {
10566  EVT SrcVT = Op.getOperand(0).getValueType();
10567  EVT DstVT = Op.getValueType();
10568  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10569         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10570  assert((DstVT == MVT::i64 ||
10571          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10572         "Unexpected custom BITCAST");
10573  // i64 <=> MMX conversions are Legal.
10574  if (SrcVT==MVT::i64 && DstVT.isVector())
10575    return Op;
10576  if (DstVT==MVT::i64 && SrcVT.isVector())
10577    return Op;
10578  // MMX <=> MMX conversions are Legal.
10579  if (SrcVT.isVector() && DstVT.isVector())
10580    return Op;
10581  // All other conversions need to be expanded.
10582  return SDValue();
10583}
10584
10585SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10586  SDNode *Node = Op.getNode();
10587  DebugLoc dl = Node->getDebugLoc();
10588  EVT T = Node->getValueType(0);
10589  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10590                              DAG.getConstant(0, T), Node->getOperand(2));
10591  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10592                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10593                       Node->getOperand(0),
10594                       Node->getOperand(1), negOp,
10595                       cast<AtomicSDNode>(Node)->getSrcValue(),
10596                       cast<AtomicSDNode>(Node)->getAlignment(),
10597                       cast<AtomicSDNode>(Node)->getOrdering(),
10598                       cast<AtomicSDNode>(Node)->getSynchScope());
10599}
10600
10601static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10602  SDNode *Node = Op.getNode();
10603  DebugLoc dl = Node->getDebugLoc();
10604  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10605
10606  // Convert seq_cst store -> xchg
10607  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10608  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10609  //        (The only way to get a 16-byte store is cmpxchg16b)
10610  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10611  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10612      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10613    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10614                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10615                                 Node->getOperand(0),
10616                                 Node->getOperand(1), Node->getOperand(2),
10617                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10618                                 cast<AtomicSDNode>(Node)->getOrdering(),
10619                                 cast<AtomicSDNode>(Node)->getSynchScope());
10620    return Swap.getValue(1);
10621  }
10622  // Other atomic stores have a simple pattern.
10623  return Op;
10624}
10625
10626static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10627  EVT VT = Op.getNode()->getValueType(0);
10628
10629  // Let legalize expand this if it isn't a legal type yet.
10630  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10631    return SDValue();
10632
10633  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10634
10635  unsigned Opc;
10636  bool ExtraOp = false;
10637  switch (Op.getOpcode()) {
10638  default: assert(0 && "Invalid code");
10639  case ISD::ADDC: Opc = X86ISD::ADD; break;
10640  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10641  case ISD::SUBC: Opc = X86ISD::SUB; break;
10642  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10643  }
10644
10645  if (!ExtraOp)
10646    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10647                       Op.getOperand(1));
10648  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10649                     Op.getOperand(1), Op.getOperand(2));
10650}
10651
10652/// LowerOperation - Provide custom lowering hooks for some operations.
10653///
10654SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10655  switch (Op.getOpcode()) {
10656  default: llvm_unreachable("Should not custom lower this!");
10657  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10658  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10659  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10660  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10661  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10662  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10663  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10664  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10665  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10666  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10667  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10668  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10669  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10670  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10671  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10672  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10673  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10674  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10675  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10676  case ISD::SHL_PARTS:
10677  case ISD::SRA_PARTS:
10678  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10679  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10680  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10681  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10682  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10683  case ISD::FABS:               return LowerFABS(Op, DAG);
10684  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10685  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10686  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10687  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10688  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10689  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10690  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10691  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10692  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10693  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10694  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10695  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10696  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10697  case ISD::FRAME_TO_ARGS_OFFSET:
10698                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10699  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10700  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10701  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10702  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10703  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10704  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10705  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10706  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10707  case ISD::MUL:                return LowerMUL(Op, DAG);
10708  case ISD::SRA:
10709  case ISD::SRL:
10710  case ISD::SHL:                return LowerShift(Op, DAG);
10711  case ISD::SADDO:
10712  case ISD::UADDO:
10713  case ISD::SSUBO:
10714  case ISD::USUBO:
10715  case ISD::SMULO:
10716  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10717  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10718  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10719  case ISD::ADDC:
10720  case ISD::ADDE:
10721  case ISD::SUBC:
10722  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10723  case ISD::ADD:                return LowerADD(Op, DAG);
10724  case ISD::SUB:                return LowerSUB(Op, DAG);
10725  }
10726}
10727
10728static void ReplaceATOMIC_LOAD(SDNode *Node,
10729                                  SmallVectorImpl<SDValue> &Results,
10730                                  SelectionDAG &DAG) {
10731  DebugLoc dl = Node->getDebugLoc();
10732  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10733
10734  // Convert wide load -> cmpxchg8b/cmpxchg16b
10735  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10736  //        (The only way to get a 16-byte load is cmpxchg16b)
10737  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10738  SDValue Zero = DAG.getConstant(0, VT);
10739  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10740                               Node->getOperand(0),
10741                               Node->getOperand(1), Zero, Zero,
10742                               cast<AtomicSDNode>(Node)->getMemOperand(),
10743                               cast<AtomicSDNode>(Node)->getOrdering(),
10744                               cast<AtomicSDNode>(Node)->getSynchScope());
10745  Results.push_back(Swap.getValue(0));
10746  Results.push_back(Swap.getValue(1));
10747}
10748
10749void X86TargetLowering::
10750ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10751                        SelectionDAG &DAG, unsigned NewOp) const {
10752  DebugLoc dl = Node->getDebugLoc();
10753  assert (Node->getValueType(0) == MVT::i64 &&
10754          "Only know how to expand i64 atomics");
10755
10756  SDValue Chain = Node->getOperand(0);
10757  SDValue In1 = Node->getOperand(1);
10758  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10759                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10760  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10761                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10762  SDValue Ops[] = { Chain, In1, In2L, In2H };
10763  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10764  SDValue Result =
10765    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10766                            cast<MemSDNode>(Node)->getMemOperand());
10767  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10768  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10769  Results.push_back(Result.getValue(2));
10770}
10771
10772/// ReplaceNodeResults - Replace a node with an illegal result type
10773/// with a new node built out of custom code.
10774void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10775                                           SmallVectorImpl<SDValue>&Results,
10776                                           SelectionDAG &DAG) const {
10777  DebugLoc dl = N->getDebugLoc();
10778  switch (N->getOpcode()) {
10779  default:
10780    assert(false && "Do not know how to custom type legalize this operation!");
10781    return;
10782  case ISD::SIGN_EXTEND_INREG:
10783  case ISD::ADDC:
10784  case ISD::ADDE:
10785  case ISD::SUBC:
10786  case ISD::SUBE:
10787    // We don't want to expand or promote these.
10788    return;
10789  case ISD::FP_TO_SINT: {
10790    std::pair<SDValue,SDValue> Vals =
10791        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10792    SDValue FIST = Vals.first, StackSlot = Vals.second;
10793    if (FIST.getNode() != 0) {
10794      EVT VT = N->getValueType(0);
10795      // Return a load from the stack slot.
10796      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10797                                    MachinePointerInfo(),
10798                                    false, false, false, 0));
10799    }
10800    return;
10801  }
10802  case ISD::READCYCLECOUNTER: {
10803    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10804    SDValue TheChain = N->getOperand(0);
10805    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10806    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10807                                     rd.getValue(1));
10808    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10809                                     eax.getValue(2));
10810    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10811    SDValue Ops[] = { eax, edx };
10812    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10813    Results.push_back(edx.getValue(1));
10814    return;
10815  }
10816  case ISD::ATOMIC_CMP_SWAP: {
10817    EVT T = N->getValueType(0);
10818    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10819    bool Regs64bit = T == MVT::i128;
10820    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10821    SDValue cpInL, cpInH;
10822    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10823                        DAG.getConstant(0, HalfT));
10824    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10825                        DAG.getConstant(1, HalfT));
10826    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10827                             Regs64bit ? X86::RAX : X86::EAX,
10828                             cpInL, SDValue());
10829    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10830                             Regs64bit ? X86::RDX : X86::EDX,
10831                             cpInH, cpInL.getValue(1));
10832    SDValue swapInL, swapInH;
10833    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10834                          DAG.getConstant(0, HalfT));
10835    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10836                          DAG.getConstant(1, HalfT));
10837    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10838                               Regs64bit ? X86::RBX : X86::EBX,
10839                               swapInL, cpInH.getValue(1));
10840    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10841                               Regs64bit ? X86::RCX : X86::ECX,
10842                               swapInH, swapInL.getValue(1));
10843    SDValue Ops[] = { swapInH.getValue(0),
10844                      N->getOperand(1),
10845                      swapInH.getValue(1) };
10846    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10847    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10848    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10849                                  X86ISD::LCMPXCHG8_DAG;
10850    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10851                                             Ops, 3, T, MMO);
10852    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10853                                        Regs64bit ? X86::RAX : X86::EAX,
10854                                        HalfT, Result.getValue(1));
10855    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10856                                        Regs64bit ? X86::RDX : X86::EDX,
10857                                        HalfT, cpOutL.getValue(2));
10858    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10859    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10860    Results.push_back(cpOutH.getValue(1));
10861    return;
10862  }
10863  case ISD::ATOMIC_LOAD_ADD:
10864    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10865    return;
10866  case ISD::ATOMIC_LOAD_AND:
10867    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10868    return;
10869  case ISD::ATOMIC_LOAD_NAND:
10870    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10871    return;
10872  case ISD::ATOMIC_LOAD_OR:
10873    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10874    return;
10875  case ISD::ATOMIC_LOAD_SUB:
10876    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10877    return;
10878  case ISD::ATOMIC_LOAD_XOR:
10879    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10880    return;
10881  case ISD::ATOMIC_SWAP:
10882    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10883    return;
10884  case ISD::ATOMIC_LOAD:
10885    ReplaceATOMIC_LOAD(N, Results, DAG);
10886  }
10887}
10888
10889const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10890  switch (Opcode) {
10891  default: return NULL;
10892  case X86ISD::BSF:                return "X86ISD::BSF";
10893  case X86ISD::BSR:                return "X86ISD::BSR";
10894  case X86ISD::SHLD:               return "X86ISD::SHLD";
10895  case X86ISD::SHRD:               return "X86ISD::SHRD";
10896  case X86ISD::FAND:               return "X86ISD::FAND";
10897  case X86ISD::FOR:                return "X86ISD::FOR";
10898  case X86ISD::FXOR:               return "X86ISD::FXOR";
10899  case X86ISD::FSRL:               return "X86ISD::FSRL";
10900  case X86ISD::FILD:               return "X86ISD::FILD";
10901  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10902  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10903  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10904  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10905  case X86ISD::FLD:                return "X86ISD::FLD";
10906  case X86ISD::FST:                return "X86ISD::FST";
10907  case X86ISD::CALL:               return "X86ISD::CALL";
10908  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10909  case X86ISD::BT:                 return "X86ISD::BT";
10910  case X86ISD::CMP:                return "X86ISD::CMP";
10911  case X86ISD::COMI:               return "X86ISD::COMI";
10912  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10913  case X86ISD::SETCC:              return "X86ISD::SETCC";
10914  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10915  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10916  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10917  case X86ISD::CMOV:               return "X86ISD::CMOV";
10918  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10919  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10920  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10921  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10922  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10923  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10924  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10925  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10926  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10927  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10928  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10929  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10930  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10931  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10932  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
10933  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
10934  case X86ISD::HADD:               return "X86ISD::HADD";
10935  case X86ISD::HSUB:               return "X86ISD::HSUB";
10936  case X86ISD::FHADD:              return "X86ISD::FHADD";
10937  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10938  case X86ISD::FMAX:               return "X86ISD::FMAX";
10939  case X86ISD::FMIN:               return "X86ISD::FMIN";
10940  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10941  case X86ISD::FRCP:               return "X86ISD::FRCP";
10942  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10943  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10944  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10945  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10946  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10947  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10948  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10949  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10950  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10951  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10952  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10953  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10954  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10955  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10956  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10957  case X86ISD::VSHL:               return "X86ISD::VSHL";
10958  case X86ISD::VSRL:               return "X86ISD::VSRL";
10959  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10960  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10961  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10962  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10963  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10964  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10965  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10966  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10967  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10968  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10969  case X86ISD::ADD:                return "X86ISD::ADD";
10970  case X86ISD::SUB:                return "X86ISD::SUB";
10971  case X86ISD::ADC:                return "X86ISD::ADC";
10972  case X86ISD::SBB:                return "X86ISD::SBB";
10973  case X86ISD::SMUL:               return "X86ISD::SMUL";
10974  case X86ISD::UMUL:               return "X86ISD::UMUL";
10975  case X86ISD::INC:                return "X86ISD::INC";
10976  case X86ISD::DEC:                return "X86ISD::DEC";
10977  case X86ISD::OR:                 return "X86ISD::OR";
10978  case X86ISD::XOR:                return "X86ISD::XOR";
10979  case X86ISD::AND:                return "X86ISD::AND";
10980  case X86ISD::ANDN:               return "X86ISD::ANDN";
10981  case X86ISD::BLSI:               return "X86ISD::BLSI";
10982  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
10983  case X86ISD::BLSR:               return "X86ISD::BLSR";
10984  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10985  case X86ISD::PTEST:              return "X86ISD::PTEST";
10986  case X86ISD::TESTP:              return "X86ISD::TESTP";
10987  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10988  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10989  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10990  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10991  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10992  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10993  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
10994  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10995  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10996  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10997  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10998  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10999  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11000  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11001  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11002  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
11003  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
11004  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11005  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11006  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11007  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11008  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11009  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11010  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11011  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11012  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11013  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11014  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11015  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11016  }
11017}
11018
11019// isLegalAddressingMode - Return true if the addressing mode represented
11020// by AM is legal for this target, for a load/store of the specified type.
11021bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11022                                              Type *Ty) const {
11023  // X86 supports extremely general addressing modes.
11024  CodeModel::Model M = getTargetMachine().getCodeModel();
11025  Reloc::Model R = getTargetMachine().getRelocationModel();
11026
11027  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11028  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11029    return false;
11030
11031  if (AM.BaseGV) {
11032    unsigned GVFlags =
11033      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11034
11035    // If a reference to this global requires an extra load, we can't fold it.
11036    if (isGlobalStubReference(GVFlags))
11037      return false;
11038
11039    // If BaseGV requires a register for the PIC base, we cannot also have a
11040    // BaseReg specified.
11041    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11042      return false;
11043
11044    // If lower 4G is not available, then we must use rip-relative addressing.
11045    if ((M != CodeModel::Small || R != Reloc::Static) &&
11046        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11047      return false;
11048  }
11049
11050  switch (AM.Scale) {
11051  case 0:
11052  case 1:
11053  case 2:
11054  case 4:
11055  case 8:
11056    // These scales always work.
11057    break;
11058  case 3:
11059  case 5:
11060  case 9:
11061    // These scales are formed with basereg+scalereg.  Only accept if there is
11062    // no basereg yet.
11063    if (AM.HasBaseReg)
11064      return false;
11065    break;
11066  default:  // Other stuff never works.
11067    return false;
11068  }
11069
11070  return true;
11071}
11072
11073
11074bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11075  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11076    return false;
11077  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11078  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11079  if (NumBits1 <= NumBits2)
11080    return false;
11081  return true;
11082}
11083
11084bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11085  if (!VT1.isInteger() || !VT2.isInteger())
11086    return false;
11087  unsigned NumBits1 = VT1.getSizeInBits();
11088  unsigned NumBits2 = VT2.getSizeInBits();
11089  if (NumBits1 <= NumBits2)
11090    return false;
11091  return true;
11092}
11093
11094bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11095  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11096  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11097}
11098
11099bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11100  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11101  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11102}
11103
11104bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11105  // i16 instructions are longer (0x66 prefix) and potentially slower.
11106  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11107}
11108
11109/// isShuffleMaskLegal - Targets can use this to indicate that they only
11110/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11111/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11112/// are assumed to be legal.
11113bool
11114X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11115                                      EVT VT) const {
11116  // Very little shuffling can be done for 64-bit vectors right now.
11117  if (VT.getSizeInBits() == 64)
11118    return false;
11119
11120  // FIXME: pshufb, blends, shifts.
11121  return (VT.getVectorNumElements() == 2 ||
11122          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11123          isMOVLMask(M, VT) ||
11124          isSHUFPMask(M, VT) ||
11125          isPSHUFDMask(M, VT) ||
11126          isPSHUFHWMask(M, VT) ||
11127          isPSHUFLWMask(M, VT) ||
11128          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
11129          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11130          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11131          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11132          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11133}
11134
11135bool
11136X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11137                                          EVT VT) const {
11138  unsigned NumElts = VT.getVectorNumElements();
11139  // FIXME: This collection of masks seems suspect.
11140  if (NumElts == 2)
11141    return true;
11142  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11143    return (isMOVLMask(Mask, VT)  ||
11144            isCommutedMOVLMask(Mask, VT, true) ||
11145            isSHUFPMask(Mask, VT) ||
11146            isSHUFPMask(Mask, VT, /* Commuted */ true));
11147  }
11148  return false;
11149}
11150
11151//===----------------------------------------------------------------------===//
11152//                           X86 Scheduler Hooks
11153//===----------------------------------------------------------------------===//
11154
11155// private utility function
11156MachineBasicBlock *
11157X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11158                                                       MachineBasicBlock *MBB,
11159                                                       unsigned regOpc,
11160                                                       unsigned immOpc,
11161                                                       unsigned LoadOpc,
11162                                                       unsigned CXchgOpc,
11163                                                       unsigned notOpc,
11164                                                       unsigned EAXreg,
11165                                                       TargetRegisterClass *RC,
11166                                                       bool invSrc) const {
11167  // For the atomic bitwise operator, we generate
11168  //   thisMBB:
11169  //   newMBB:
11170  //     ld  t1 = [bitinstr.addr]
11171  //     op  t2 = t1, [bitinstr.val]
11172  //     mov EAX = t1
11173  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11174  //     bz  newMBB
11175  //     fallthrough -->nextMBB
11176  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11177  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11178  MachineFunction::iterator MBBIter = MBB;
11179  ++MBBIter;
11180
11181  /// First build the CFG
11182  MachineFunction *F = MBB->getParent();
11183  MachineBasicBlock *thisMBB = MBB;
11184  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11185  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11186  F->insert(MBBIter, newMBB);
11187  F->insert(MBBIter, nextMBB);
11188
11189  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11190  nextMBB->splice(nextMBB->begin(), thisMBB,
11191                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11192                  thisMBB->end());
11193  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11194
11195  // Update thisMBB to fall through to newMBB
11196  thisMBB->addSuccessor(newMBB);
11197
11198  // newMBB jumps to itself and fall through to nextMBB
11199  newMBB->addSuccessor(nextMBB);
11200  newMBB->addSuccessor(newMBB);
11201
11202  // Insert instructions into newMBB based on incoming instruction
11203  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11204         "unexpected number of operands");
11205  DebugLoc dl = bInstr->getDebugLoc();
11206  MachineOperand& destOper = bInstr->getOperand(0);
11207  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11208  int numArgs = bInstr->getNumOperands() - 1;
11209  for (int i=0; i < numArgs; ++i)
11210    argOpers[i] = &bInstr->getOperand(i+1);
11211
11212  // x86 address has 4 operands: base, index, scale, and displacement
11213  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11214  int valArgIndx = lastAddrIndx + 1;
11215
11216  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11217  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11218  for (int i=0; i <= lastAddrIndx; ++i)
11219    (*MIB).addOperand(*argOpers[i]);
11220
11221  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11222  if (invSrc) {
11223    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11224  }
11225  else
11226    tt = t1;
11227
11228  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11229  assert((argOpers[valArgIndx]->isReg() ||
11230          argOpers[valArgIndx]->isImm()) &&
11231         "invalid operand");
11232  if (argOpers[valArgIndx]->isReg())
11233    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11234  else
11235    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11236  MIB.addReg(tt);
11237  (*MIB).addOperand(*argOpers[valArgIndx]);
11238
11239  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11240  MIB.addReg(t1);
11241
11242  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11243  for (int i=0; i <= lastAddrIndx; ++i)
11244    (*MIB).addOperand(*argOpers[i]);
11245  MIB.addReg(t2);
11246  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11247  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11248                    bInstr->memoperands_end());
11249
11250  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11251  MIB.addReg(EAXreg);
11252
11253  // insert branch
11254  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11255
11256  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11257  return nextMBB;
11258}
11259
11260// private utility function:  64 bit atomics on 32 bit host.
11261MachineBasicBlock *
11262X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11263                                                       MachineBasicBlock *MBB,
11264                                                       unsigned regOpcL,
11265                                                       unsigned regOpcH,
11266                                                       unsigned immOpcL,
11267                                                       unsigned immOpcH,
11268                                                       bool invSrc) const {
11269  // For the atomic bitwise operator, we generate
11270  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11271  //     ld t1,t2 = [bitinstr.addr]
11272  //   newMBB:
11273  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11274  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11275  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11276  //     mov ECX, EBX <- t5, t6
11277  //     mov EAX, EDX <- t1, t2
11278  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11279  //     mov t3, t4 <- EAX, EDX
11280  //     bz  newMBB
11281  //     result in out1, out2
11282  //     fallthrough -->nextMBB
11283
11284  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11285  const unsigned LoadOpc = X86::MOV32rm;
11286  const unsigned NotOpc = X86::NOT32r;
11287  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11288  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11289  MachineFunction::iterator MBBIter = MBB;
11290  ++MBBIter;
11291
11292  /// First build the CFG
11293  MachineFunction *F = MBB->getParent();
11294  MachineBasicBlock *thisMBB = MBB;
11295  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11296  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11297  F->insert(MBBIter, newMBB);
11298  F->insert(MBBIter, nextMBB);
11299
11300  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11301  nextMBB->splice(nextMBB->begin(), thisMBB,
11302                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11303                  thisMBB->end());
11304  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11305
11306  // Update thisMBB to fall through to newMBB
11307  thisMBB->addSuccessor(newMBB);
11308
11309  // newMBB jumps to itself and fall through to nextMBB
11310  newMBB->addSuccessor(nextMBB);
11311  newMBB->addSuccessor(newMBB);
11312
11313  DebugLoc dl = bInstr->getDebugLoc();
11314  // Insert instructions into newMBB based on incoming instruction
11315  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11316  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11317         "unexpected number of operands");
11318  MachineOperand& dest1Oper = bInstr->getOperand(0);
11319  MachineOperand& dest2Oper = bInstr->getOperand(1);
11320  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11321  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11322    argOpers[i] = &bInstr->getOperand(i+2);
11323
11324    // We use some of the operands multiple times, so conservatively just
11325    // clear any kill flags that might be present.
11326    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11327      argOpers[i]->setIsKill(false);
11328  }
11329
11330  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11331  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11332
11333  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11334  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11335  for (int i=0; i <= lastAddrIndx; ++i)
11336    (*MIB).addOperand(*argOpers[i]);
11337  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11338  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11339  // add 4 to displacement.
11340  for (int i=0; i <= lastAddrIndx-2; ++i)
11341    (*MIB).addOperand(*argOpers[i]);
11342  MachineOperand newOp3 = *(argOpers[3]);
11343  if (newOp3.isImm())
11344    newOp3.setImm(newOp3.getImm()+4);
11345  else
11346    newOp3.setOffset(newOp3.getOffset()+4);
11347  (*MIB).addOperand(newOp3);
11348  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11349
11350  // t3/4 are defined later, at the bottom of the loop
11351  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11352  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11353  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11354    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11355  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11356    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11357
11358  // The subsequent operations should be using the destination registers of
11359  //the PHI instructions.
11360  if (invSrc) {
11361    t1 = F->getRegInfo().createVirtualRegister(RC);
11362    t2 = F->getRegInfo().createVirtualRegister(RC);
11363    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11364    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11365  } else {
11366    t1 = dest1Oper.getReg();
11367    t2 = dest2Oper.getReg();
11368  }
11369
11370  int valArgIndx = lastAddrIndx + 1;
11371  assert((argOpers[valArgIndx]->isReg() ||
11372          argOpers[valArgIndx]->isImm()) &&
11373         "invalid operand");
11374  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11375  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11376  if (argOpers[valArgIndx]->isReg())
11377    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11378  else
11379    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11380  if (regOpcL != X86::MOV32rr)
11381    MIB.addReg(t1);
11382  (*MIB).addOperand(*argOpers[valArgIndx]);
11383  assert(argOpers[valArgIndx + 1]->isReg() ==
11384         argOpers[valArgIndx]->isReg());
11385  assert(argOpers[valArgIndx + 1]->isImm() ==
11386         argOpers[valArgIndx]->isImm());
11387  if (argOpers[valArgIndx + 1]->isReg())
11388    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11389  else
11390    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11391  if (regOpcH != X86::MOV32rr)
11392    MIB.addReg(t2);
11393  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11394
11395  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11396  MIB.addReg(t1);
11397  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11398  MIB.addReg(t2);
11399
11400  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11401  MIB.addReg(t5);
11402  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11403  MIB.addReg(t6);
11404
11405  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11406  for (int i=0; i <= lastAddrIndx; ++i)
11407    (*MIB).addOperand(*argOpers[i]);
11408
11409  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11410  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11411                    bInstr->memoperands_end());
11412
11413  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11414  MIB.addReg(X86::EAX);
11415  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11416  MIB.addReg(X86::EDX);
11417
11418  // insert branch
11419  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11420
11421  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11422  return nextMBB;
11423}
11424
11425// private utility function
11426MachineBasicBlock *
11427X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11428                                                      MachineBasicBlock *MBB,
11429                                                      unsigned cmovOpc) const {
11430  // For the atomic min/max operator, we generate
11431  //   thisMBB:
11432  //   newMBB:
11433  //     ld t1 = [min/max.addr]
11434  //     mov t2 = [min/max.val]
11435  //     cmp  t1, t2
11436  //     cmov[cond] t2 = t1
11437  //     mov EAX = t1
11438  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11439  //     bz   newMBB
11440  //     fallthrough -->nextMBB
11441  //
11442  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11443  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11444  MachineFunction::iterator MBBIter = MBB;
11445  ++MBBIter;
11446
11447  /// First build the CFG
11448  MachineFunction *F = MBB->getParent();
11449  MachineBasicBlock *thisMBB = MBB;
11450  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11451  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11452  F->insert(MBBIter, newMBB);
11453  F->insert(MBBIter, nextMBB);
11454
11455  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11456  nextMBB->splice(nextMBB->begin(), thisMBB,
11457                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11458                  thisMBB->end());
11459  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11460
11461  // Update thisMBB to fall through to newMBB
11462  thisMBB->addSuccessor(newMBB);
11463
11464  // newMBB jumps to newMBB and fall through to nextMBB
11465  newMBB->addSuccessor(nextMBB);
11466  newMBB->addSuccessor(newMBB);
11467
11468  DebugLoc dl = mInstr->getDebugLoc();
11469  // Insert instructions into newMBB based on incoming instruction
11470  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11471         "unexpected number of operands");
11472  MachineOperand& destOper = mInstr->getOperand(0);
11473  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11474  int numArgs = mInstr->getNumOperands() - 1;
11475  for (int i=0; i < numArgs; ++i)
11476    argOpers[i] = &mInstr->getOperand(i+1);
11477
11478  // x86 address has 4 operands: base, index, scale, and displacement
11479  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11480  int valArgIndx = lastAddrIndx + 1;
11481
11482  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11483  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11484  for (int i=0; i <= lastAddrIndx; ++i)
11485    (*MIB).addOperand(*argOpers[i]);
11486
11487  // We only support register and immediate values
11488  assert((argOpers[valArgIndx]->isReg() ||
11489          argOpers[valArgIndx]->isImm()) &&
11490         "invalid operand");
11491
11492  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11493  if (argOpers[valArgIndx]->isReg())
11494    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11495  else
11496    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11497  (*MIB).addOperand(*argOpers[valArgIndx]);
11498
11499  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11500  MIB.addReg(t1);
11501
11502  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11503  MIB.addReg(t1);
11504  MIB.addReg(t2);
11505
11506  // Generate movc
11507  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11508  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11509  MIB.addReg(t2);
11510  MIB.addReg(t1);
11511
11512  // Cmp and exchange if none has modified the memory location
11513  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11514  for (int i=0; i <= lastAddrIndx; ++i)
11515    (*MIB).addOperand(*argOpers[i]);
11516  MIB.addReg(t3);
11517  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11518  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11519                    mInstr->memoperands_end());
11520
11521  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11522  MIB.addReg(X86::EAX);
11523
11524  // insert branch
11525  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11526
11527  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11528  return nextMBB;
11529}
11530
11531// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11532// or XMM0_V32I8 in AVX all of this code can be replaced with that
11533// in the .td file.
11534MachineBasicBlock *
11535X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11536                            unsigned numArgs, bool memArg) const {
11537  assert(Subtarget->hasSSE42() &&
11538         "Target must have SSE4.2 or AVX features enabled");
11539
11540  DebugLoc dl = MI->getDebugLoc();
11541  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11542  unsigned Opc;
11543  if (!Subtarget->hasAVX()) {
11544    if (memArg)
11545      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11546    else
11547      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11548  } else {
11549    if (memArg)
11550      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11551    else
11552      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11553  }
11554
11555  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11556  for (unsigned i = 0; i < numArgs; ++i) {
11557    MachineOperand &Op = MI->getOperand(i+1);
11558    if (!(Op.isReg() && Op.isImplicit()))
11559      MIB.addOperand(Op);
11560  }
11561  BuildMI(*BB, MI, dl,
11562    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11563             MI->getOperand(0).getReg())
11564    .addReg(X86::XMM0);
11565
11566  MI->eraseFromParent();
11567  return BB;
11568}
11569
11570MachineBasicBlock *
11571X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11572  DebugLoc dl = MI->getDebugLoc();
11573  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11574
11575  // Address into RAX/EAX, other two args into ECX, EDX.
11576  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11577  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11578  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11579  for (int i = 0; i < X86::AddrNumOperands; ++i)
11580    MIB.addOperand(MI->getOperand(i));
11581
11582  unsigned ValOps = X86::AddrNumOperands;
11583  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11584    .addReg(MI->getOperand(ValOps).getReg());
11585  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11586    .addReg(MI->getOperand(ValOps+1).getReg());
11587
11588  // The instruction doesn't actually take any operands though.
11589  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11590
11591  MI->eraseFromParent(); // The pseudo is gone now.
11592  return BB;
11593}
11594
11595MachineBasicBlock *
11596X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11597  DebugLoc dl = MI->getDebugLoc();
11598  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11599
11600  // First arg in ECX, the second in EAX.
11601  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11602    .addReg(MI->getOperand(0).getReg());
11603  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11604    .addReg(MI->getOperand(1).getReg());
11605
11606  // The instruction doesn't actually take any operands though.
11607  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11608
11609  MI->eraseFromParent(); // The pseudo is gone now.
11610  return BB;
11611}
11612
11613MachineBasicBlock *
11614X86TargetLowering::EmitVAARG64WithCustomInserter(
11615                   MachineInstr *MI,
11616                   MachineBasicBlock *MBB) const {
11617  // Emit va_arg instruction on X86-64.
11618
11619  // Operands to this pseudo-instruction:
11620  // 0  ) Output        : destination address (reg)
11621  // 1-5) Input         : va_list address (addr, i64mem)
11622  // 6  ) ArgSize       : Size (in bytes) of vararg type
11623  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11624  // 8  ) Align         : Alignment of type
11625  // 9  ) EFLAGS (implicit-def)
11626
11627  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11628  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11629
11630  unsigned DestReg = MI->getOperand(0).getReg();
11631  MachineOperand &Base = MI->getOperand(1);
11632  MachineOperand &Scale = MI->getOperand(2);
11633  MachineOperand &Index = MI->getOperand(3);
11634  MachineOperand &Disp = MI->getOperand(4);
11635  MachineOperand &Segment = MI->getOperand(5);
11636  unsigned ArgSize = MI->getOperand(6).getImm();
11637  unsigned ArgMode = MI->getOperand(7).getImm();
11638  unsigned Align = MI->getOperand(8).getImm();
11639
11640  // Memory Reference
11641  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11642  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11643  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11644
11645  // Machine Information
11646  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11647  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11648  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11649  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11650  DebugLoc DL = MI->getDebugLoc();
11651
11652  // struct va_list {
11653  //   i32   gp_offset
11654  //   i32   fp_offset
11655  //   i64   overflow_area (address)
11656  //   i64   reg_save_area (address)
11657  // }
11658  // sizeof(va_list) = 24
11659  // alignment(va_list) = 8
11660
11661  unsigned TotalNumIntRegs = 6;
11662  unsigned TotalNumXMMRegs = 8;
11663  bool UseGPOffset = (ArgMode == 1);
11664  bool UseFPOffset = (ArgMode == 2);
11665  unsigned MaxOffset = TotalNumIntRegs * 8 +
11666                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11667
11668  /* Align ArgSize to a multiple of 8 */
11669  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11670  bool NeedsAlign = (Align > 8);
11671
11672  MachineBasicBlock *thisMBB = MBB;
11673  MachineBasicBlock *overflowMBB;
11674  MachineBasicBlock *offsetMBB;
11675  MachineBasicBlock *endMBB;
11676
11677  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11678  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11679  unsigned OffsetReg = 0;
11680
11681  if (!UseGPOffset && !UseFPOffset) {
11682    // If we only pull from the overflow region, we don't create a branch.
11683    // We don't need to alter control flow.
11684    OffsetDestReg = 0; // unused
11685    OverflowDestReg = DestReg;
11686
11687    offsetMBB = NULL;
11688    overflowMBB = thisMBB;
11689    endMBB = thisMBB;
11690  } else {
11691    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11692    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11693    // If not, pull from overflow_area. (branch to overflowMBB)
11694    //
11695    //       thisMBB
11696    //         |     .
11697    //         |        .
11698    //     offsetMBB   overflowMBB
11699    //         |        .
11700    //         |     .
11701    //        endMBB
11702
11703    // Registers for the PHI in endMBB
11704    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11705    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11706
11707    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11708    MachineFunction *MF = MBB->getParent();
11709    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11710    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11711    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11712
11713    MachineFunction::iterator MBBIter = MBB;
11714    ++MBBIter;
11715
11716    // Insert the new basic blocks
11717    MF->insert(MBBIter, offsetMBB);
11718    MF->insert(MBBIter, overflowMBB);
11719    MF->insert(MBBIter, endMBB);
11720
11721    // Transfer the remainder of MBB and its successor edges to endMBB.
11722    endMBB->splice(endMBB->begin(), thisMBB,
11723                    llvm::next(MachineBasicBlock::iterator(MI)),
11724                    thisMBB->end());
11725    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11726
11727    // Make offsetMBB and overflowMBB successors of thisMBB
11728    thisMBB->addSuccessor(offsetMBB);
11729    thisMBB->addSuccessor(overflowMBB);
11730
11731    // endMBB is a successor of both offsetMBB and overflowMBB
11732    offsetMBB->addSuccessor(endMBB);
11733    overflowMBB->addSuccessor(endMBB);
11734
11735    // Load the offset value into a register
11736    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11737    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11738      .addOperand(Base)
11739      .addOperand(Scale)
11740      .addOperand(Index)
11741      .addDisp(Disp, UseFPOffset ? 4 : 0)
11742      .addOperand(Segment)
11743      .setMemRefs(MMOBegin, MMOEnd);
11744
11745    // Check if there is enough room left to pull this argument.
11746    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11747      .addReg(OffsetReg)
11748      .addImm(MaxOffset + 8 - ArgSizeA8);
11749
11750    // Branch to "overflowMBB" if offset >= max
11751    // Fall through to "offsetMBB" otherwise
11752    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11753      .addMBB(overflowMBB);
11754  }
11755
11756  // In offsetMBB, emit code to use the reg_save_area.
11757  if (offsetMBB) {
11758    assert(OffsetReg != 0);
11759
11760    // Read the reg_save_area address.
11761    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11762    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11763      .addOperand(Base)
11764      .addOperand(Scale)
11765      .addOperand(Index)
11766      .addDisp(Disp, 16)
11767      .addOperand(Segment)
11768      .setMemRefs(MMOBegin, MMOEnd);
11769
11770    // Zero-extend the offset
11771    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11772      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11773        .addImm(0)
11774        .addReg(OffsetReg)
11775        .addImm(X86::sub_32bit);
11776
11777    // Add the offset to the reg_save_area to get the final address.
11778    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11779      .addReg(OffsetReg64)
11780      .addReg(RegSaveReg);
11781
11782    // Compute the offset for the next argument
11783    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11784    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11785      .addReg(OffsetReg)
11786      .addImm(UseFPOffset ? 16 : 8);
11787
11788    // Store it back into the va_list.
11789    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11790      .addOperand(Base)
11791      .addOperand(Scale)
11792      .addOperand(Index)
11793      .addDisp(Disp, UseFPOffset ? 4 : 0)
11794      .addOperand(Segment)
11795      .addReg(NextOffsetReg)
11796      .setMemRefs(MMOBegin, MMOEnd);
11797
11798    // Jump to endMBB
11799    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11800      .addMBB(endMBB);
11801  }
11802
11803  //
11804  // Emit code to use overflow area
11805  //
11806
11807  // Load the overflow_area address into a register.
11808  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11809  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11810    .addOperand(Base)
11811    .addOperand(Scale)
11812    .addOperand(Index)
11813    .addDisp(Disp, 8)
11814    .addOperand(Segment)
11815    .setMemRefs(MMOBegin, MMOEnd);
11816
11817  // If we need to align it, do so. Otherwise, just copy the address
11818  // to OverflowDestReg.
11819  if (NeedsAlign) {
11820    // Align the overflow address
11821    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11822    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11823
11824    // aligned_addr = (addr + (align-1)) & ~(align-1)
11825    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11826      .addReg(OverflowAddrReg)
11827      .addImm(Align-1);
11828
11829    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11830      .addReg(TmpReg)
11831      .addImm(~(uint64_t)(Align-1));
11832  } else {
11833    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11834      .addReg(OverflowAddrReg);
11835  }
11836
11837  // Compute the next overflow address after this argument.
11838  // (the overflow address should be kept 8-byte aligned)
11839  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11840  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11841    .addReg(OverflowDestReg)
11842    .addImm(ArgSizeA8);
11843
11844  // Store the new overflow address.
11845  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11846    .addOperand(Base)
11847    .addOperand(Scale)
11848    .addOperand(Index)
11849    .addDisp(Disp, 8)
11850    .addOperand(Segment)
11851    .addReg(NextAddrReg)
11852    .setMemRefs(MMOBegin, MMOEnd);
11853
11854  // If we branched, emit the PHI to the front of endMBB.
11855  if (offsetMBB) {
11856    BuildMI(*endMBB, endMBB->begin(), DL,
11857            TII->get(X86::PHI), DestReg)
11858      .addReg(OffsetDestReg).addMBB(offsetMBB)
11859      .addReg(OverflowDestReg).addMBB(overflowMBB);
11860  }
11861
11862  // Erase the pseudo instruction
11863  MI->eraseFromParent();
11864
11865  return endMBB;
11866}
11867
11868MachineBasicBlock *
11869X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11870                                                 MachineInstr *MI,
11871                                                 MachineBasicBlock *MBB) const {
11872  // Emit code to save XMM registers to the stack. The ABI says that the
11873  // number of registers to save is given in %al, so it's theoretically
11874  // possible to do an indirect jump trick to avoid saving all of them,
11875  // however this code takes a simpler approach and just executes all
11876  // of the stores if %al is non-zero. It's less code, and it's probably
11877  // easier on the hardware branch predictor, and stores aren't all that
11878  // expensive anyway.
11879
11880  // Create the new basic blocks. One block contains all the XMM stores,
11881  // and one block is the final destination regardless of whether any
11882  // stores were performed.
11883  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11884  MachineFunction *F = MBB->getParent();
11885  MachineFunction::iterator MBBIter = MBB;
11886  ++MBBIter;
11887  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11888  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11889  F->insert(MBBIter, XMMSaveMBB);
11890  F->insert(MBBIter, EndMBB);
11891
11892  // Transfer the remainder of MBB and its successor edges to EndMBB.
11893  EndMBB->splice(EndMBB->begin(), MBB,
11894                 llvm::next(MachineBasicBlock::iterator(MI)),
11895                 MBB->end());
11896  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11897
11898  // The original block will now fall through to the XMM save block.
11899  MBB->addSuccessor(XMMSaveMBB);
11900  // The XMMSaveMBB will fall through to the end block.
11901  XMMSaveMBB->addSuccessor(EndMBB);
11902
11903  // Now add the instructions.
11904  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11905  DebugLoc DL = MI->getDebugLoc();
11906
11907  unsigned CountReg = MI->getOperand(0).getReg();
11908  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11909  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11910
11911  if (!Subtarget->isTargetWin64()) {
11912    // If %al is 0, branch around the XMM save block.
11913    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11914    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11915    MBB->addSuccessor(EndMBB);
11916  }
11917
11918  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11919  // In the XMM save block, save all the XMM argument registers.
11920  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11921    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11922    MachineMemOperand *MMO =
11923      F->getMachineMemOperand(
11924          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11925        MachineMemOperand::MOStore,
11926        /*Size=*/16, /*Align=*/16);
11927    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11928      .addFrameIndex(RegSaveFrameIndex)
11929      .addImm(/*Scale=*/1)
11930      .addReg(/*IndexReg=*/0)
11931      .addImm(/*Disp=*/Offset)
11932      .addReg(/*Segment=*/0)
11933      .addReg(MI->getOperand(i).getReg())
11934      .addMemOperand(MMO);
11935  }
11936
11937  MI->eraseFromParent();   // The pseudo instruction is gone now.
11938
11939  return EndMBB;
11940}
11941
11942MachineBasicBlock *
11943X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11944                                     MachineBasicBlock *BB) const {
11945  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11946  DebugLoc DL = MI->getDebugLoc();
11947
11948  // To "insert" a SELECT_CC instruction, we actually have to insert the
11949  // diamond control-flow pattern.  The incoming instruction knows the
11950  // destination vreg to set, the condition code register to branch on, the
11951  // true/false values to select between, and a branch opcode to use.
11952  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11953  MachineFunction::iterator It = BB;
11954  ++It;
11955
11956  //  thisMBB:
11957  //  ...
11958  //   TrueVal = ...
11959  //   cmpTY ccX, r1, r2
11960  //   bCC copy1MBB
11961  //   fallthrough --> copy0MBB
11962  MachineBasicBlock *thisMBB = BB;
11963  MachineFunction *F = BB->getParent();
11964  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11965  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11966  F->insert(It, copy0MBB);
11967  F->insert(It, sinkMBB);
11968
11969  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11970  // live into the sink and copy blocks.
11971  if (!MI->killsRegister(X86::EFLAGS)) {
11972    copy0MBB->addLiveIn(X86::EFLAGS);
11973    sinkMBB->addLiveIn(X86::EFLAGS);
11974  }
11975
11976  // Transfer the remainder of BB and its successor edges to sinkMBB.
11977  sinkMBB->splice(sinkMBB->begin(), BB,
11978                  llvm::next(MachineBasicBlock::iterator(MI)),
11979                  BB->end());
11980  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11981
11982  // Add the true and fallthrough blocks as its successors.
11983  BB->addSuccessor(copy0MBB);
11984  BB->addSuccessor(sinkMBB);
11985
11986  // Create the conditional branch instruction.
11987  unsigned Opc =
11988    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11989  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11990
11991  //  copy0MBB:
11992  //   %FalseValue = ...
11993  //   # fallthrough to sinkMBB
11994  copy0MBB->addSuccessor(sinkMBB);
11995
11996  //  sinkMBB:
11997  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11998  //  ...
11999  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12000          TII->get(X86::PHI), MI->getOperand(0).getReg())
12001    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12002    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12003
12004  MI->eraseFromParent();   // The pseudo instruction is gone now.
12005  return sinkMBB;
12006}
12007
12008MachineBasicBlock *
12009X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12010                                        bool Is64Bit) const {
12011  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12012  DebugLoc DL = MI->getDebugLoc();
12013  MachineFunction *MF = BB->getParent();
12014  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12015
12016  assert(getTargetMachine().Options.EnableSegmentedStacks);
12017
12018  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12019  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12020
12021  // BB:
12022  //  ... [Till the alloca]
12023  // If stacklet is not large enough, jump to mallocMBB
12024  //
12025  // bumpMBB:
12026  //  Allocate by subtracting from RSP
12027  //  Jump to continueMBB
12028  //
12029  // mallocMBB:
12030  //  Allocate by call to runtime
12031  //
12032  // continueMBB:
12033  //  ...
12034  //  [rest of original BB]
12035  //
12036
12037  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12038  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12039  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12040
12041  MachineRegisterInfo &MRI = MF->getRegInfo();
12042  const TargetRegisterClass *AddrRegClass =
12043    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12044
12045  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12046    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12047    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12048    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12049    sizeVReg = MI->getOperand(1).getReg(),
12050    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12051
12052  MachineFunction::iterator MBBIter = BB;
12053  ++MBBIter;
12054
12055  MF->insert(MBBIter, bumpMBB);
12056  MF->insert(MBBIter, mallocMBB);
12057  MF->insert(MBBIter, continueMBB);
12058
12059  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12060                      (MachineBasicBlock::iterator(MI)), BB->end());
12061  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12062
12063  // Add code to the main basic block to check if the stack limit has been hit,
12064  // and if so, jump to mallocMBB otherwise to bumpMBB.
12065  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12066  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12067    .addReg(tmpSPVReg).addReg(sizeVReg);
12068  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12069    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12070    .addReg(SPLimitVReg);
12071  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12072
12073  // bumpMBB simply decreases the stack pointer, since we know the current
12074  // stacklet has enough space.
12075  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12076    .addReg(SPLimitVReg);
12077  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12078    .addReg(SPLimitVReg);
12079  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12080
12081  // Calls into a routine in libgcc to allocate more space from the heap.
12082  if (Is64Bit) {
12083    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12084      .addReg(sizeVReg);
12085    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12086    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12087  } else {
12088    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12089      .addImm(12);
12090    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12091    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12092      .addExternalSymbol("__morestack_allocate_stack_space");
12093  }
12094
12095  if (!Is64Bit)
12096    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12097      .addImm(16);
12098
12099  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12100    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12101  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12102
12103  // Set up the CFG correctly.
12104  BB->addSuccessor(bumpMBB);
12105  BB->addSuccessor(mallocMBB);
12106  mallocMBB->addSuccessor(continueMBB);
12107  bumpMBB->addSuccessor(continueMBB);
12108
12109  // Take care of the PHI nodes.
12110  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12111          MI->getOperand(0).getReg())
12112    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12113    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12114
12115  // Delete the original pseudo instruction.
12116  MI->eraseFromParent();
12117
12118  // And we're done.
12119  return continueMBB;
12120}
12121
12122MachineBasicBlock *
12123X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12124                                          MachineBasicBlock *BB) const {
12125  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12126  DebugLoc DL = MI->getDebugLoc();
12127
12128  assert(!Subtarget->isTargetEnvMacho());
12129
12130  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12131  // non-trivial part is impdef of ESP.
12132
12133  if (Subtarget->isTargetWin64()) {
12134    if (Subtarget->isTargetCygMing()) {
12135      // ___chkstk(Mingw64):
12136      // Clobbers R10, R11, RAX and EFLAGS.
12137      // Updates RSP.
12138      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12139        .addExternalSymbol("___chkstk")
12140        .addReg(X86::RAX, RegState::Implicit)
12141        .addReg(X86::RSP, RegState::Implicit)
12142        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12143        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12144        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12145    } else {
12146      // __chkstk(MSVCRT): does not update stack pointer.
12147      // Clobbers R10, R11 and EFLAGS.
12148      // FIXME: RAX(allocated size) might be reused and not killed.
12149      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12150        .addExternalSymbol("__chkstk")
12151        .addReg(X86::RAX, RegState::Implicit)
12152        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12153      // RAX has the offset to subtracted from RSP.
12154      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12155        .addReg(X86::RSP)
12156        .addReg(X86::RAX);
12157    }
12158  } else {
12159    const char *StackProbeSymbol =
12160      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12161
12162    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12163      .addExternalSymbol(StackProbeSymbol)
12164      .addReg(X86::EAX, RegState::Implicit)
12165      .addReg(X86::ESP, RegState::Implicit)
12166      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12167      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12168      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12169  }
12170
12171  MI->eraseFromParent();   // The pseudo instruction is gone now.
12172  return BB;
12173}
12174
12175MachineBasicBlock *
12176X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12177                                      MachineBasicBlock *BB) const {
12178  // This is pretty easy.  We're taking the value that we received from
12179  // our load from the relocation, sticking it in either RDI (x86-64)
12180  // or EAX and doing an indirect call.  The return value will then
12181  // be in the normal return register.
12182  const X86InstrInfo *TII
12183    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12184  DebugLoc DL = MI->getDebugLoc();
12185  MachineFunction *F = BB->getParent();
12186
12187  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12188  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12189
12190  if (Subtarget->is64Bit()) {
12191    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12192                                      TII->get(X86::MOV64rm), X86::RDI)
12193    .addReg(X86::RIP)
12194    .addImm(0).addReg(0)
12195    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12196                      MI->getOperand(3).getTargetFlags())
12197    .addReg(0);
12198    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12199    addDirectMem(MIB, X86::RDI);
12200  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12201    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12202                                      TII->get(X86::MOV32rm), X86::EAX)
12203    .addReg(0)
12204    .addImm(0).addReg(0)
12205    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12206                      MI->getOperand(3).getTargetFlags())
12207    .addReg(0);
12208    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12209    addDirectMem(MIB, X86::EAX);
12210  } else {
12211    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12212                                      TII->get(X86::MOV32rm), X86::EAX)
12213    .addReg(TII->getGlobalBaseReg(F))
12214    .addImm(0).addReg(0)
12215    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12216                      MI->getOperand(3).getTargetFlags())
12217    .addReg(0);
12218    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12219    addDirectMem(MIB, X86::EAX);
12220  }
12221
12222  MI->eraseFromParent(); // The pseudo instruction is gone now.
12223  return BB;
12224}
12225
12226MachineBasicBlock *
12227X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12228                                               MachineBasicBlock *BB) const {
12229  switch (MI->getOpcode()) {
12230  default: assert(0 && "Unexpected instr type to insert");
12231  case X86::TAILJMPd64:
12232  case X86::TAILJMPr64:
12233  case X86::TAILJMPm64:
12234    assert(0 && "TAILJMP64 would not be touched here.");
12235  case X86::TCRETURNdi64:
12236  case X86::TCRETURNri64:
12237  case X86::TCRETURNmi64:
12238    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12239    // On AMD64, additional defs should be added before register allocation.
12240    if (!Subtarget->isTargetWin64()) {
12241      MI->addRegisterDefined(X86::RSI);
12242      MI->addRegisterDefined(X86::RDI);
12243      MI->addRegisterDefined(X86::XMM6);
12244      MI->addRegisterDefined(X86::XMM7);
12245      MI->addRegisterDefined(X86::XMM8);
12246      MI->addRegisterDefined(X86::XMM9);
12247      MI->addRegisterDefined(X86::XMM10);
12248      MI->addRegisterDefined(X86::XMM11);
12249      MI->addRegisterDefined(X86::XMM12);
12250      MI->addRegisterDefined(X86::XMM13);
12251      MI->addRegisterDefined(X86::XMM14);
12252      MI->addRegisterDefined(X86::XMM15);
12253    }
12254    return BB;
12255  case X86::WIN_ALLOCA:
12256    return EmitLoweredWinAlloca(MI, BB);
12257  case X86::SEG_ALLOCA_32:
12258    return EmitLoweredSegAlloca(MI, BB, false);
12259  case X86::SEG_ALLOCA_64:
12260    return EmitLoweredSegAlloca(MI, BB, true);
12261  case X86::TLSCall_32:
12262  case X86::TLSCall_64:
12263    return EmitLoweredTLSCall(MI, BB);
12264  case X86::CMOV_GR8:
12265  case X86::CMOV_FR32:
12266  case X86::CMOV_FR64:
12267  case X86::CMOV_V4F32:
12268  case X86::CMOV_V2F64:
12269  case X86::CMOV_V2I64:
12270  case X86::CMOV_V8F32:
12271  case X86::CMOV_V4F64:
12272  case X86::CMOV_V4I64:
12273  case X86::CMOV_GR16:
12274  case X86::CMOV_GR32:
12275  case X86::CMOV_RFP32:
12276  case X86::CMOV_RFP64:
12277  case X86::CMOV_RFP80:
12278    return EmitLoweredSelect(MI, BB);
12279
12280  case X86::FP32_TO_INT16_IN_MEM:
12281  case X86::FP32_TO_INT32_IN_MEM:
12282  case X86::FP32_TO_INT64_IN_MEM:
12283  case X86::FP64_TO_INT16_IN_MEM:
12284  case X86::FP64_TO_INT32_IN_MEM:
12285  case X86::FP64_TO_INT64_IN_MEM:
12286  case X86::FP80_TO_INT16_IN_MEM:
12287  case X86::FP80_TO_INT32_IN_MEM:
12288  case X86::FP80_TO_INT64_IN_MEM: {
12289    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12290    DebugLoc DL = MI->getDebugLoc();
12291
12292    // Change the floating point control register to use "round towards zero"
12293    // mode when truncating to an integer value.
12294    MachineFunction *F = BB->getParent();
12295    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12296    addFrameReference(BuildMI(*BB, MI, DL,
12297                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12298
12299    // Load the old value of the high byte of the control word...
12300    unsigned OldCW =
12301      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12302    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12303                      CWFrameIdx);
12304
12305    // Set the high part to be round to zero...
12306    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12307      .addImm(0xC7F);
12308
12309    // Reload the modified control word now...
12310    addFrameReference(BuildMI(*BB, MI, DL,
12311                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12312
12313    // Restore the memory image of control word to original value
12314    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12315      .addReg(OldCW);
12316
12317    // Get the X86 opcode to use.
12318    unsigned Opc;
12319    switch (MI->getOpcode()) {
12320    default: llvm_unreachable("illegal opcode!");
12321    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12322    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12323    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12324    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12325    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12326    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12327    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12328    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12329    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12330    }
12331
12332    X86AddressMode AM;
12333    MachineOperand &Op = MI->getOperand(0);
12334    if (Op.isReg()) {
12335      AM.BaseType = X86AddressMode::RegBase;
12336      AM.Base.Reg = Op.getReg();
12337    } else {
12338      AM.BaseType = X86AddressMode::FrameIndexBase;
12339      AM.Base.FrameIndex = Op.getIndex();
12340    }
12341    Op = MI->getOperand(1);
12342    if (Op.isImm())
12343      AM.Scale = Op.getImm();
12344    Op = MI->getOperand(2);
12345    if (Op.isImm())
12346      AM.IndexReg = Op.getImm();
12347    Op = MI->getOperand(3);
12348    if (Op.isGlobal()) {
12349      AM.GV = Op.getGlobal();
12350    } else {
12351      AM.Disp = Op.getImm();
12352    }
12353    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12354                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12355
12356    // Reload the original control word now.
12357    addFrameReference(BuildMI(*BB, MI, DL,
12358                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12359
12360    MI->eraseFromParent();   // The pseudo instruction is gone now.
12361    return BB;
12362  }
12363    // String/text processing lowering.
12364  case X86::PCMPISTRM128REG:
12365  case X86::VPCMPISTRM128REG:
12366    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12367  case X86::PCMPISTRM128MEM:
12368  case X86::VPCMPISTRM128MEM:
12369    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12370  case X86::PCMPESTRM128REG:
12371  case X86::VPCMPESTRM128REG:
12372    return EmitPCMP(MI, BB, 5, false /* in mem */);
12373  case X86::PCMPESTRM128MEM:
12374  case X86::VPCMPESTRM128MEM:
12375    return EmitPCMP(MI, BB, 5, true /* in mem */);
12376
12377    // Thread synchronization.
12378  case X86::MONITOR:
12379    return EmitMonitor(MI, BB);
12380  case X86::MWAIT:
12381    return EmitMwait(MI, BB);
12382
12383    // Atomic Lowering.
12384  case X86::ATOMAND32:
12385    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12386                                               X86::AND32ri, X86::MOV32rm,
12387                                               X86::LCMPXCHG32,
12388                                               X86::NOT32r, X86::EAX,
12389                                               X86::GR32RegisterClass);
12390  case X86::ATOMOR32:
12391    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12392                                               X86::OR32ri, X86::MOV32rm,
12393                                               X86::LCMPXCHG32,
12394                                               X86::NOT32r, X86::EAX,
12395                                               X86::GR32RegisterClass);
12396  case X86::ATOMXOR32:
12397    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12398                                               X86::XOR32ri, X86::MOV32rm,
12399                                               X86::LCMPXCHG32,
12400                                               X86::NOT32r, X86::EAX,
12401                                               X86::GR32RegisterClass);
12402  case X86::ATOMNAND32:
12403    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12404                                               X86::AND32ri, X86::MOV32rm,
12405                                               X86::LCMPXCHG32,
12406                                               X86::NOT32r, X86::EAX,
12407                                               X86::GR32RegisterClass, true);
12408  case X86::ATOMMIN32:
12409    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12410  case X86::ATOMMAX32:
12411    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12412  case X86::ATOMUMIN32:
12413    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12414  case X86::ATOMUMAX32:
12415    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12416
12417  case X86::ATOMAND16:
12418    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12419                                               X86::AND16ri, X86::MOV16rm,
12420                                               X86::LCMPXCHG16,
12421                                               X86::NOT16r, X86::AX,
12422                                               X86::GR16RegisterClass);
12423  case X86::ATOMOR16:
12424    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12425                                               X86::OR16ri, X86::MOV16rm,
12426                                               X86::LCMPXCHG16,
12427                                               X86::NOT16r, X86::AX,
12428                                               X86::GR16RegisterClass);
12429  case X86::ATOMXOR16:
12430    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12431                                               X86::XOR16ri, X86::MOV16rm,
12432                                               X86::LCMPXCHG16,
12433                                               X86::NOT16r, X86::AX,
12434                                               X86::GR16RegisterClass);
12435  case X86::ATOMNAND16:
12436    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12437                                               X86::AND16ri, X86::MOV16rm,
12438                                               X86::LCMPXCHG16,
12439                                               X86::NOT16r, X86::AX,
12440                                               X86::GR16RegisterClass, true);
12441  case X86::ATOMMIN16:
12442    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12443  case X86::ATOMMAX16:
12444    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12445  case X86::ATOMUMIN16:
12446    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12447  case X86::ATOMUMAX16:
12448    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12449
12450  case X86::ATOMAND8:
12451    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12452                                               X86::AND8ri, X86::MOV8rm,
12453                                               X86::LCMPXCHG8,
12454                                               X86::NOT8r, X86::AL,
12455                                               X86::GR8RegisterClass);
12456  case X86::ATOMOR8:
12457    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12458                                               X86::OR8ri, X86::MOV8rm,
12459                                               X86::LCMPXCHG8,
12460                                               X86::NOT8r, X86::AL,
12461                                               X86::GR8RegisterClass);
12462  case X86::ATOMXOR8:
12463    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12464                                               X86::XOR8ri, X86::MOV8rm,
12465                                               X86::LCMPXCHG8,
12466                                               X86::NOT8r, X86::AL,
12467                                               X86::GR8RegisterClass);
12468  case X86::ATOMNAND8:
12469    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12470                                               X86::AND8ri, X86::MOV8rm,
12471                                               X86::LCMPXCHG8,
12472                                               X86::NOT8r, X86::AL,
12473                                               X86::GR8RegisterClass, true);
12474  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12475  // This group is for 64-bit host.
12476  case X86::ATOMAND64:
12477    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12478                                               X86::AND64ri32, X86::MOV64rm,
12479                                               X86::LCMPXCHG64,
12480                                               X86::NOT64r, X86::RAX,
12481                                               X86::GR64RegisterClass);
12482  case X86::ATOMOR64:
12483    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12484                                               X86::OR64ri32, X86::MOV64rm,
12485                                               X86::LCMPXCHG64,
12486                                               X86::NOT64r, X86::RAX,
12487                                               X86::GR64RegisterClass);
12488  case X86::ATOMXOR64:
12489    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12490                                               X86::XOR64ri32, X86::MOV64rm,
12491                                               X86::LCMPXCHG64,
12492                                               X86::NOT64r, X86::RAX,
12493                                               X86::GR64RegisterClass);
12494  case X86::ATOMNAND64:
12495    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12496                                               X86::AND64ri32, X86::MOV64rm,
12497                                               X86::LCMPXCHG64,
12498                                               X86::NOT64r, X86::RAX,
12499                                               X86::GR64RegisterClass, true);
12500  case X86::ATOMMIN64:
12501    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12502  case X86::ATOMMAX64:
12503    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12504  case X86::ATOMUMIN64:
12505    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12506  case X86::ATOMUMAX64:
12507    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12508
12509  // This group does 64-bit operations on a 32-bit host.
12510  case X86::ATOMAND6432:
12511    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12512                                               X86::AND32rr, X86::AND32rr,
12513                                               X86::AND32ri, X86::AND32ri,
12514                                               false);
12515  case X86::ATOMOR6432:
12516    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12517                                               X86::OR32rr, X86::OR32rr,
12518                                               X86::OR32ri, X86::OR32ri,
12519                                               false);
12520  case X86::ATOMXOR6432:
12521    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12522                                               X86::XOR32rr, X86::XOR32rr,
12523                                               X86::XOR32ri, X86::XOR32ri,
12524                                               false);
12525  case X86::ATOMNAND6432:
12526    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12527                                               X86::AND32rr, X86::AND32rr,
12528                                               X86::AND32ri, X86::AND32ri,
12529                                               true);
12530  case X86::ATOMADD6432:
12531    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12532                                               X86::ADD32rr, X86::ADC32rr,
12533                                               X86::ADD32ri, X86::ADC32ri,
12534                                               false);
12535  case X86::ATOMSUB6432:
12536    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12537                                               X86::SUB32rr, X86::SBB32rr,
12538                                               X86::SUB32ri, X86::SBB32ri,
12539                                               false);
12540  case X86::ATOMSWAP6432:
12541    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12542                                               X86::MOV32rr, X86::MOV32rr,
12543                                               X86::MOV32ri, X86::MOV32ri,
12544                                               false);
12545  case X86::VASTART_SAVE_XMM_REGS:
12546    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12547
12548  case X86::VAARG_64:
12549    return EmitVAARG64WithCustomInserter(MI, BB);
12550  }
12551}
12552
12553//===----------------------------------------------------------------------===//
12554//                           X86 Optimization Hooks
12555//===----------------------------------------------------------------------===//
12556
12557void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12558                                                       const APInt &Mask,
12559                                                       APInt &KnownZero,
12560                                                       APInt &KnownOne,
12561                                                       const SelectionDAG &DAG,
12562                                                       unsigned Depth) const {
12563  unsigned Opc = Op.getOpcode();
12564  assert((Opc >= ISD::BUILTIN_OP_END ||
12565          Opc == ISD::INTRINSIC_WO_CHAIN ||
12566          Opc == ISD::INTRINSIC_W_CHAIN ||
12567          Opc == ISD::INTRINSIC_VOID) &&
12568         "Should use MaskedValueIsZero if you don't know whether Op"
12569         " is a target node!");
12570
12571  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12572  switch (Opc) {
12573  default: break;
12574  case X86ISD::ADD:
12575  case X86ISD::SUB:
12576  case X86ISD::ADC:
12577  case X86ISD::SBB:
12578  case X86ISD::SMUL:
12579  case X86ISD::UMUL:
12580  case X86ISD::INC:
12581  case X86ISD::DEC:
12582  case X86ISD::OR:
12583  case X86ISD::XOR:
12584  case X86ISD::AND:
12585    // These nodes' second result is a boolean.
12586    if (Op.getResNo() == 0)
12587      break;
12588    // Fallthrough
12589  case X86ISD::SETCC:
12590    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12591                                       Mask.getBitWidth() - 1);
12592    break;
12593  case ISD::INTRINSIC_WO_CHAIN: {
12594    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12595    unsigned NumLoBits = 0;
12596    switch (IntId) {
12597    default: break;
12598    case Intrinsic::x86_sse_movmsk_ps:
12599    case Intrinsic::x86_avx_movmsk_ps_256:
12600    case Intrinsic::x86_sse2_movmsk_pd:
12601    case Intrinsic::x86_avx_movmsk_pd_256:
12602    case Intrinsic::x86_mmx_pmovmskb:
12603    case Intrinsic::x86_sse2_pmovmskb_128:
12604    case Intrinsic::x86_avx2_pmovmskb: {
12605      // High bits of movmskp{s|d}, pmovmskb are known zero.
12606      switch (IntId) {
12607        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12608        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12609        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12610        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12611        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12612        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12613        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12614      }
12615      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12616                                        Mask.getBitWidth() - NumLoBits);
12617      break;
12618    }
12619    }
12620    break;
12621  }
12622  }
12623}
12624
12625unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12626                                                         unsigned Depth) const {
12627  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12628  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12629    return Op.getValueType().getScalarType().getSizeInBits();
12630
12631  // Fallback case.
12632  return 1;
12633}
12634
12635/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12636/// node is a GlobalAddress + offset.
12637bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12638                                       const GlobalValue* &GA,
12639                                       int64_t &Offset) const {
12640  if (N->getOpcode() == X86ISD::Wrapper) {
12641    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12642      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12643      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12644      return true;
12645    }
12646  }
12647  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12648}
12649
12650/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12651/// same as extracting the high 128-bit part of 256-bit vector and then
12652/// inserting the result into the low part of a new 256-bit vector
12653static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12654  EVT VT = SVOp->getValueType(0);
12655  int NumElems = VT.getVectorNumElements();
12656
12657  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12658  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12659    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12660        SVOp->getMaskElt(j) >= 0)
12661      return false;
12662
12663  return true;
12664}
12665
12666/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12667/// same as extracting the low 128-bit part of 256-bit vector and then
12668/// inserting the result into the high part of a new 256-bit vector
12669static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12670  EVT VT = SVOp->getValueType(0);
12671  int NumElems = VT.getVectorNumElements();
12672
12673  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12674  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12675    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12676        SVOp->getMaskElt(j) >= 0)
12677      return false;
12678
12679  return true;
12680}
12681
12682/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12683static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12684                                        TargetLowering::DAGCombinerInfo &DCI) {
12685  DebugLoc dl = N->getDebugLoc();
12686  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12687  SDValue V1 = SVOp->getOperand(0);
12688  SDValue V2 = SVOp->getOperand(1);
12689  EVT VT = SVOp->getValueType(0);
12690  int NumElems = VT.getVectorNumElements();
12691
12692  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12693      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12694    //
12695    //                   0,0,0,...
12696    //                      |
12697    //    V      UNDEF    BUILD_VECTOR    UNDEF
12698    //     \      /           \           /
12699    //  CONCAT_VECTOR         CONCAT_VECTOR
12700    //         \                  /
12701    //          \                /
12702    //          RESULT: V + zero extended
12703    //
12704    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12705        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12706        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12707      return SDValue();
12708
12709    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12710      return SDValue();
12711
12712    // To match the shuffle mask, the first half of the mask should
12713    // be exactly the first vector, and all the rest a splat with the
12714    // first element of the second one.
12715    for (int i = 0; i < NumElems/2; ++i)
12716      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12717          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12718        return SDValue();
12719
12720    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12721    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12722      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12723      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12724      SDValue ResNode =
12725        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12726                                Ld->getMemoryVT(),
12727                                Ld->getPointerInfo(),
12728                                Ld->getAlignment(),
12729                                false/*isVolatile*/, true/*ReadMem*/,
12730                                false/*WriteMem*/);
12731      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12732    }
12733
12734    // Emit a zeroed vector and insert the desired subvector on its
12735    // first half.
12736    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
12737    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12738                         DAG.getConstant(0, MVT::i32), DAG, dl);
12739    return DCI.CombineTo(N, InsV);
12740  }
12741
12742  //===--------------------------------------------------------------------===//
12743  // Combine some shuffles into subvector extracts and inserts:
12744  //
12745
12746  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12747  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12748    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12749                                    DAG, dl);
12750    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12751                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12752    return DCI.CombineTo(N, InsV);
12753  }
12754
12755  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12756  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12757    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12758    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12759                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12760    return DCI.CombineTo(N, InsV);
12761  }
12762
12763  return SDValue();
12764}
12765
12766/// PerformShuffleCombine - Performs several different shuffle combines.
12767static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12768                                     TargetLowering::DAGCombinerInfo &DCI,
12769                                     const X86Subtarget *Subtarget) {
12770  DebugLoc dl = N->getDebugLoc();
12771  EVT VT = N->getValueType(0);
12772
12773  // Don't create instructions with illegal types after legalize types has run.
12774  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12775  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12776    return SDValue();
12777
12778  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12779  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12780      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12781    return PerformShuffleCombine256(N, DAG, DCI);
12782
12783  // Only handle 128 wide vector from here on.
12784  if (VT.getSizeInBits() != 128)
12785    return SDValue();
12786
12787  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12788  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12789  // consecutive, non-overlapping, and in the right order.
12790  SmallVector<SDValue, 16> Elts;
12791  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12792    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12793
12794  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12795}
12796
12797/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12798/// generation and convert it from being a bunch of shuffles and extracts
12799/// to a simple store and scalar loads to extract the elements.
12800static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12801                                                const TargetLowering &TLI) {
12802  SDValue InputVector = N->getOperand(0);
12803
12804  // Only operate on vectors of 4 elements, where the alternative shuffling
12805  // gets to be more expensive.
12806  if (InputVector.getValueType() != MVT::v4i32)
12807    return SDValue();
12808
12809  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12810  // single use which is a sign-extend or zero-extend, and all elements are
12811  // used.
12812  SmallVector<SDNode *, 4> Uses;
12813  unsigned ExtractedElements = 0;
12814  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12815       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12816    if (UI.getUse().getResNo() != InputVector.getResNo())
12817      return SDValue();
12818
12819    SDNode *Extract = *UI;
12820    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12821      return SDValue();
12822
12823    if (Extract->getValueType(0) != MVT::i32)
12824      return SDValue();
12825    if (!Extract->hasOneUse())
12826      return SDValue();
12827    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12828        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12829      return SDValue();
12830    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12831      return SDValue();
12832
12833    // Record which element was extracted.
12834    ExtractedElements |=
12835      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12836
12837    Uses.push_back(Extract);
12838  }
12839
12840  // If not all the elements were used, this may not be worthwhile.
12841  if (ExtractedElements != 15)
12842    return SDValue();
12843
12844  // Ok, we've now decided to do the transformation.
12845  DebugLoc dl = InputVector.getDebugLoc();
12846
12847  // Store the value to a temporary stack slot.
12848  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12849  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12850                            MachinePointerInfo(), false, false, 0);
12851
12852  // Replace each use (extract) with a load of the appropriate element.
12853  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12854       UE = Uses.end(); UI != UE; ++UI) {
12855    SDNode *Extract = *UI;
12856
12857    // cOMpute the element's address.
12858    SDValue Idx = Extract->getOperand(1);
12859    unsigned EltSize =
12860        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12861    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12862    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12863
12864    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12865                                     StackPtr, OffsetVal);
12866
12867    // Load the scalar.
12868    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12869                                     ScalarAddr, MachinePointerInfo(),
12870                                     false, false, false, 0);
12871
12872    // Replace the exact with the load.
12873    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12874  }
12875
12876  // The replacement was made in place; don't return anything.
12877  return SDValue();
12878}
12879
12880/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12881/// nodes.
12882static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12883                                    const X86Subtarget *Subtarget) {
12884  DebugLoc DL = N->getDebugLoc();
12885  SDValue Cond = N->getOperand(0);
12886  // Get the LHS/RHS of the select.
12887  SDValue LHS = N->getOperand(1);
12888  SDValue RHS = N->getOperand(2);
12889  EVT VT = LHS.getValueType();
12890
12891  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12892  // instructions match the semantics of the common C idiom x<y?x:y but not
12893  // x<=y?x:y, because of how they handle negative zero (which can be
12894  // ignored in unsafe-math mode).
12895  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12896      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12897      (Subtarget->hasSSE2() ||
12898       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12899    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12900
12901    unsigned Opcode = 0;
12902    // Check for x CC y ? x : y.
12903    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12904        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12905      switch (CC) {
12906      default: break;
12907      case ISD::SETULT:
12908        // Converting this to a min would handle NaNs incorrectly, and swapping
12909        // the operands would cause it to handle comparisons between positive
12910        // and negative zero incorrectly.
12911        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12912          if (!DAG.getTarget().Options.UnsafeFPMath &&
12913              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12914            break;
12915          std::swap(LHS, RHS);
12916        }
12917        Opcode = X86ISD::FMIN;
12918        break;
12919      case ISD::SETOLE:
12920        // Converting this to a min would handle comparisons between positive
12921        // and negative zero incorrectly.
12922        if (!DAG.getTarget().Options.UnsafeFPMath &&
12923            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12924          break;
12925        Opcode = X86ISD::FMIN;
12926        break;
12927      case ISD::SETULE:
12928        // Converting this to a min would handle both negative zeros and NaNs
12929        // incorrectly, but we can swap the operands to fix both.
12930        std::swap(LHS, RHS);
12931      case ISD::SETOLT:
12932      case ISD::SETLT:
12933      case ISD::SETLE:
12934        Opcode = X86ISD::FMIN;
12935        break;
12936
12937      case ISD::SETOGE:
12938        // Converting this to a max would handle comparisons between positive
12939        // and negative zero incorrectly.
12940        if (!DAG.getTarget().Options.UnsafeFPMath &&
12941            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12942          break;
12943        Opcode = X86ISD::FMAX;
12944        break;
12945      case ISD::SETUGT:
12946        // Converting this to a max would handle NaNs incorrectly, and swapping
12947        // the operands would cause it to handle comparisons between positive
12948        // and negative zero incorrectly.
12949        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12950          if (!DAG.getTarget().Options.UnsafeFPMath &&
12951              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12952            break;
12953          std::swap(LHS, RHS);
12954        }
12955        Opcode = X86ISD::FMAX;
12956        break;
12957      case ISD::SETUGE:
12958        // Converting this to a max would handle both negative zeros and NaNs
12959        // incorrectly, but we can swap the operands to fix both.
12960        std::swap(LHS, RHS);
12961      case ISD::SETOGT:
12962      case ISD::SETGT:
12963      case ISD::SETGE:
12964        Opcode = X86ISD::FMAX;
12965        break;
12966      }
12967    // Check for x CC y ? y : x -- a min/max with reversed arms.
12968    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12969               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12970      switch (CC) {
12971      default: break;
12972      case ISD::SETOGE:
12973        // Converting this to a min would handle comparisons between positive
12974        // and negative zero incorrectly, and swapping the operands would
12975        // cause it to handle NaNs incorrectly.
12976        if (!DAG.getTarget().Options.UnsafeFPMath &&
12977            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12978          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12979            break;
12980          std::swap(LHS, RHS);
12981        }
12982        Opcode = X86ISD::FMIN;
12983        break;
12984      case ISD::SETUGT:
12985        // Converting this to a min would handle NaNs incorrectly.
12986        if (!DAG.getTarget().Options.UnsafeFPMath &&
12987            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12988          break;
12989        Opcode = X86ISD::FMIN;
12990        break;
12991      case ISD::SETUGE:
12992        // Converting this to a min would handle both negative zeros and NaNs
12993        // incorrectly, but we can swap the operands to fix both.
12994        std::swap(LHS, RHS);
12995      case ISD::SETOGT:
12996      case ISD::SETGT:
12997      case ISD::SETGE:
12998        Opcode = X86ISD::FMIN;
12999        break;
13000
13001      case ISD::SETULT:
13002        // Converting this to a max would handle NaNs incorrectly.
13003        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13004          break;
13005        Opcode = X86ISD::FMAX;
13006        break;
13007      case ISD::SETOLE:
13008        // Converting this to a max would handle comparisons between positive
13009        // and negative zero incorrectly, and swapping the operands would
13010        // cause it to handle NaNs incorrectly.
13011        if (!DAG.getTarget().Options.UnsafeFPMath &&
13012            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13013          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13014            break;
13015          std::swap(LHS, RHS);
13016        }
13017        Opcode = X86ISD::FMAX;
13018        break;
13019      case ISD::SETULE:
13020        // Converting this to a max would handle both negative zeros and NaNs
13021        // incorrectly, but we can swap the operands to fix both.
13022        std::swap(LHS, RHS);
13023      case ISD::SETOLT:
13024      case ISD::SETLT:
13025      case ISD::SETLE:
13026        Opcode = X86ISD::FMAX;
13027        break;
13028      }
13029    }
13030
13031    if (Opcode)
13032      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13033  }
13034
13035  // If this is a select between two integer constants, try to do some
13036  // optimizations.
13037  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13038    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13039      // Don't do this for crazy integer types.
13040      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13041        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13042        // so that TrueC (the true value) is larger than FalseC.
13043        bool NeedsCondInvert = false;
13044
13045        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13046            // Efficiently invertible.
13047            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13048             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13049              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13050          NeedsCondInvert = true;
13051          std::swap(TrueC, FalseC);
13052        }
13053
13054        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13055        if (FalseC->getAPIntValue() == 0 &&
13056            TrueC->getAPIntValue().isPowerOf2()) {
13057          if (NeedsCondInvert) // Invert the condition if needed.
13058            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13059                               DAG.getConstant(1, Cond.getValueType()));
13060
13061          // Zero extend the condition if needed.
13062          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13063
13064          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13065          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13066                             DAG.getConstant(ShAmt, MVT::i8));
13067        }
13068
13069        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13070        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13071          if (NeedsCondInvert) // Invert the condition if needed.
13072            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13073                               DAG.getConstant(1, Cond.getValueType()));
13074
13075          // Zero extend the condition if needed.
13076          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13077                             FalseC->getValueType(0), Cond);
13078          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13079                             SDValue(FalseC, 0));
13080        }
13081
13082        // Optimize cases that will turn into an LEA instruction.  This requires
13083        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13084        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13085          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13086          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13087
13088          bool isFastMultiplier = false;
13089          if (Diff < 10) {
13090            switch ((unsigned char)Diff) {
13091              default: break;
13092              case 1:  // result = add base, cond
13093              case 2:  // result = lea base(    , cond*2)
13094              case 3:  // result = lea base(cond, cond*2)
13095              case 4:  // result = lea base(    , cond*4)
13096              case 5:  // result = lea base(cond, cond*4)
13097              case 8:  // result = lea base(    , cond*8)
13098              case 9:  // result = lea base(cond, cond*8)
13099                isFastMultiplier = true;
13100                break;
13101            }
13102          }
13103
13104          if (isFastMultiplier) {
13105            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13106            if (NeedsCondInvert) // Invert the condition if needed.
13107              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13108                                 DAG.getConstant(1, Cond.getValueType()));
13109
13110            // Zero extend the condition if needed.
13111            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13112                               Cond);
13113            // Scale the condition by the difference.
13114            if (Diff != 1)
13115              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13116                                 DAG.getConstant(Diff, Cond.getValueType()));
13117
13118            // Add the base if non-zero.
13119            if (FalseC->getAPIntValue() != 0)
13120              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13121                                 SDValue(FalseC, 0));
13122            return Cond;
13123          }
13124        }
13125      }
13126  }
13127
13128  // Canonicalize max and min:
13129  // (x > y) ? x : y -> (x >= y) ? x : y
13130  // (x < y) ? x : y -> (x <= y) ? x : y
13131  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13132  // the need for an extra compare
13133  // against zero. e.g.
13134  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13135  // subl   %esi, %edi
13136  // testl  %edi, %edi
13137  // movl   $0, %eax
13138  // cmovgl %edi, %eax
13139  // =>
13140  // xorl   %eax, %eax
13141  // subl   %esi, $edi
13142  // cmovsl %eax, %edi
13143  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13144      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13145      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13146    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13147    switch (CC) {
13148    default: break;
13149    case ISD::SETLT:
13150    case ISD::SETGT: {
13151      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13152      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13153                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13154      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13155    }
13156    }
13157  }
13158
13159  return SDValue();
13160}
13161
13162/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13163static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13164                                  TargetLowering::DAGCombinerInfo &DCI) {
13165  DebugLoc DL = N->getDebugLoc();
13166
13167  // If the flag operand isn't dead, don't touch this CMOV.
13168  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13169    return SDValue();
13170
13171  SDValue FalseOp = N->getOperand(0);
13172  SDValue TrueOp = N->getOperand(1);
13173  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13174  SDValue Cond = N->getOperand(3);
13175  if (CC == X86::COND_E || CC == X86::COND_NE) {
13176    switch (Cond.getOpcode()) {
13177    default: break;
13178    case X86ISD::BSR:
13179    case X86ISD::BSF:
13180      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13181      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13182        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13183    }
13184  }
13185
13186  // If this is a select between two integer constants, try to do some
13187  // optimizations.  Note that the operands are ordered the opposite of SELECT
13188  // operands.
13189  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13190    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13191      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13192      // larger than FalseC (the false value).
13193      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13194        CC = X86::GetOppositeBranchCondition(CC);
13195        std::swap(TrueC, FalseC);
13196      }
13197
13198      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13199      // This is efficient for any integer data type (including i8/i16) and
13200      // shift amount.
13201      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13202        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13203                           DAG.getConstant(CC, MVT::i8), Cond);
13204
13205        // Zero extend the condition if needed.
13206        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13207
13208        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13209        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13210                           DAG.getConstant(ShAmt, MVT::i8));
13211        if (N->getNumValues() == 2)  // Dead flag value?
13212          return DCI.CombineTo(N, Cond, SDValue());
13213        return Cond;
13214      }
13215
13216      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13217      // for any integer data type, including i8/i16.
13218      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13219        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13220                           DAG.getConstant(CC, MVT::i8), Cond);
13221
13222        // Zero extend the condition if needed.
13223        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13224                           FalseC->getValueType(0), Cond);
13225        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13226                           SDValue(FalseC, 0));
13227
13228        if (N->getNumValues() == 2)  // Dead flag value?
13229          return DCI.CombineTo(N, Cond, SDValue());
13230        return Cond;
13231      }
13232
13233      // Optimize cases that will turn into an LEA instruction.  This requires
13234      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13235      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13236        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13237        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13238
13239        bool isFastMultiplier = false;
13240        if (Diff < 10) {
13241          switch ((unsigned char)Diff) {
13242          default: break;
13243          case 1:  // result = add base, cond
13244          case 2:  // result = lea base(    , cond*2)
13245          case 3:  // result = lea base(cond, cond*2)
13246          case 4:  // result = lea base(    , cond*4)
13247          case 5:  // result = lea base(cond, cond*4)
13248          case 8:  // result = lea base(    , cond*8)
13249          case 9:  // result = lea base(cond, cond*8)
13250            isFastMultiplier = true;
13251            break;
13252          }
13253        }
13254
13255        if (isFastMultiplier) {
13256          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13257          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13258                             DAG.getConstant(CC, MVT::i8), Cond);
13259          // Zero extend the condition if needed.
13260          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13261                             Cond);
13262          // Scale the condition by the difference.
13263          if (Diff != 1)
13264            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13265                               DAG.getConstant(Diff, Cond.getValueType()));
13266
13267          // Add the base if non-zero.
13268          if (FalseC->getAPIntValue() != 0)
13269            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13270                               SDValue(FalseC, 0));
13271          if (N->getNumValues() == 2)  // Dead flag value?
13272            return DCI.CombineTo(N, Cond, SDValue());
13273          return Cond;
13274        }
13275      }
13276    }
13277  }
13278  return SDValue();
13279}
13280
13281
13282/// PerformMulCombine - Optimize a single multiply with constant into two
13283/// in order to implement it with two cheaper instructions, e.g.
13284/// LEA + SHL, LEA + LEA.
13285static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13286                                 TargetLowering::DAGCombinerInfo &DCI) {
13287  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13288    return SDValue();
13289
13290  EVT VT = N->getValueType(0);
13291  if (VT != MVT::i64)
13292    return SDValue();
13293
13294  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13295  if (!C)
13296    return SDValue();
13297  uint64_t MulAmt = C->getZExtValue();
13298  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13299    return SDValue();
13300
13301  uint64_t MulAmt1 = 0;
13302  uint64_t MulAmt2 = 0;
13303  if ((MulAmt % 9) == 0) {
13304    MulAmt1 = 9;
13305    MulAmt2 = MulAmt / 9;
13306  } else if ((MulAmt % 5) == 0) {
13307    MulAmt1 = 5;
13308    MulAmt2 = MulAmt / 5;
13309  } else if ((MulAmt % 3) == 0) {
13310    MulAmt1 = 3;
13311    MulAmt2 = MulAmt / 3;
13312  }
13313  if (MulAmt2 &&
13314      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13315    DebugLoc DL = N->getDebugLoc();
13316
13317    if (isPowerOf2_64(MulAmt2) &&
13318        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13319      // If second multiplifer is pow2, issue it first. We want the multiply by
13320      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13321      // is an add.
13322      std::swap(MulAmt1, MulAmt2);
13323
13324    SDValue NewMul;
13325    if (isPowerOf2_64(MulAmt1))
13326      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13327                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13328    else
13329      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13330                           DAG.getConstant(MulAmt1, VT));
13331
13332    if (isPowerOf2_64(MulAmt2))
13333      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13334                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13335    else
13336      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13337                           DAG.getConstant(MulAmt2, VT));
13338
13339    // Do not add new nodes to DAG combiner worklist.
13340    DCI.CombineTo(N, NewMul, false);
13341  }
13342  return SDValue();
13343}
13344
13345static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13346  SDValue N0 = N->getOperand(0);
13347  SDValue N1 = N->getOperand(1);
13348  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13349  EVT VT = N0.getValueType();
13350
13351  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13352  // since the result of setcc_c is all zero's or all ones.
13353  if (VT.isInteger() && !VT.isVector() &&
13354      N1C && N0.getOpcode() == ISD::AND &&
13355      N0.getOperand(1).getOpcode() == ISD::Constant) {
13356    SDValue N00 = N0.getOperand(0);
13357    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13358        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13359          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13360         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13361      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13362      APInt ShAmt = N1C->getAPIntValue();
13363      Mask = Mask.shl(ShAmt);
13364      if (Mask != 0)
13365        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13366                           N00, DAG.getConstant(Mask, VT));
13367    }
13368  }
13369
13370
13371  // Hardware support for vector shifts is sparse which makes us scalarize the
13372  // vector operations in many cases. Also, on sandybridge ADD is faster than
13373  // shl.
13374  // (shl V, 1) -> add V,V
13375  if (isSplatVector(N1.getNode())) {
13376    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13377    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13378    // We shift all of the values by one. In many cases we do not have
13379    // hardware support for this operation. This is better expressed as an ADD
13380    // of two values.
13381    if (N1C && (1 == N1C->getZExtValue())) {
13382      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13383    }
13384  }
13385
13386  return SDValue();
13387}
13388
13389/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13390///                       when possible.
13391static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13392                                   const X86Subtarget *Subtarget) {
13393  EVT VT = N->getValueType(0);
13394  if (N->getOpcode() == ISD::SHL) {
13395    SDValue V = PerformSHLCombine(N, DAG);
13396    if (V.getNode()) return V;
13397  }
13398
13399  // On X86 with SSE2 support, we can transform this to a vector shift if
13400  // all elements are shifted by the same amount.  We can't do this in legalize
13401  // because the a constant vector is typically transformed to a constant pool
13402  // so we have no knowledge of the shift amount.
13403  if (!Subtarget->hasSSE2())
13404    return SDValue();
13405
13406  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13407      (!Subtarget->hasAVX2() ||
13408       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13409    return SDValue();
13410
13411  SDValue ShAmtOp = N->getOperand(1);
13412  EVT EltVT = VT.getVectorElementType();
13413  DebugLoc DL = N->getDebugLoc();
13414  SDValue BaseShAmt = SDValue();
13415  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13416    unsigned NumElts = VT.getVectorNumElements();
13417    unsigned i = 0;
13418    for (; i != NumElts; ++i) {
13419      SDValue Arg = ShAmtOp.getOperand(i);
13420      if (Arg.getOpcode() == ISD::UNDEF) continue;
13421      BaseShAmt = Arg;
13422      break;
13423    }
13424    for (; i != NumElts; ++i) {
13425      SDValue Arg = ShAmtOp.getOperand(i);
13426      if (Arg.getOpcode() == ISD::UNDEF) continue;
13427      if (Arg != BaseShAmt) {
13428        return SDValue();
13429      }
13430    }
13431  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13432             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13433    SDValue InVec = ShAmtOp.getOperand(0);
13434    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13435      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13436      unsigned i = 0;
13437      for (; i != NumElts; ++i) {
13438        SDValue Arg = InVec.getOperand(i);
13439        if (Arg.getOpcode() == ISD::UNDEF) continue;
13440        BaseShAmt = Arg;
13441        break;
13442      }
13443    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13444       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13445         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13446         if (C->getZExtValue() == SplatIdx)
13447           BaseShAmt = InVec.getOperand(1);
13448       }
13449    }
13450    if (BaseShAmt.getNode() == 0)
13451      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13452                              DAG.getIntPtrConstant(0));
13453  } else
13454    return SDValue();
13455
13456  // The shift amount is an i32.
13457  if (EltVT.bitsGT(MVT::i32))
13458    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13459  else if (EltVT.bitsLT(MVT::i32))
13460    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13461
13462  // The shift amount is identical so we can do a vector shift.
13463  SDValue  ValOp = N->getOperand(0);
13464  switch (N->getOpcode()) {
13465  default:
13466    llvm_unreachable("Unknown shift opcode!");
13467    break;
13468  case ISD::SHL:
13469    if (VT == MVT::v2i64)
13470      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13471                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13472                         ValOp, BaseShAmt);
13473    if (VT == MVT::v4i32)
13474      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13475                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13476                         ValOp, BaseShAmt);
13477    if (VT == MVT::v8i16)
13478      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13479                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13480                         ValOp, BaseShAmt);
13481    if (VT == MVT::v4i64)
13482      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13483                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
13484                         ValOp, BaseShAmt);
13485    if (VT == MVT::v8i32)
13486      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13487                         DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
13488                         ValOp, BaseShAmt);
13489    if (VT == MVT::v16i16)
13490      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13491                         DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
13492                         ValOp, BaseShAmt);
13493    break;
13494  case ISD::SRA:
13495    if (VT == MVT::v4i32)
13496      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13497                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13498                         ValOp, BaseShAmt);
13499    if (VT == MVT::v8i16)
13500      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13501                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13502                         ValOp, BaseShAmt);
13503    if (VT == MVT::v8i32)
13504      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13505                         DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
13506                         ValOp, BaseShAmt);
13507    if (VT == MVT::v16i16)
13508      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13509                         DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
13510                         ValOp, BaseShAmt);
13511    break;
13512  case ISD::SRL:
13513    if (VT == MVT::v2i64)
13514      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13515                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13516                         ValOp, BaseShAmt);
13517    if (VT == MVT::v4i32)
13518      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13519                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13520                         ValOp, BaseShAmt);
13521    if (VT ==  MVT::v8i16)
13522      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13523                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13524                         ValOp, BaseShAmt);
13525    if (VT == MVT::v4i64)
13526      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13527                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
13528                         ValOp, BaseShAmt);
13529    if (VT == MVT::v8i32)
13530      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13531                         DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
13532                         ValOp, BaseShAmt);
13533    if (VT ==  MVT::v16i16)
13534      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13535                         DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
13536                         ValOp, BaseShAmt);
13537    break;
13538  }
13539  return SDValue();
13540}
13541
13542
13543// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13544// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13545// and friends.  Likewise for OR -> CMPNEQSS.
13546static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13547                            TargetLowering::DAGCombinerInfo &DCI,
13548                            const X86Subtarget *Subtarget) {
13549  unsigned opcode;
13550
13551  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13552  // we're requiring SSE2 for both.
13553  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13554    SDValue N0 = N->getOperand(0);
13555    SDValue N1 = N->getOperand(1);
13556    SDValue CMP0 = N0->getOperand(1);
13557    SDValue CMP1 = N1->getOperand(1);
13558    DebugLoc DL = N->getDebugLoc();
13559
13560    // The SETCCs should both refer to the same CMP.
13561    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13562      return SDValue();
13563
13564    SDValue CMP00 = CMP0->getOperand(0);
13565    SDValue CMP01 = CMP0->getOperand(1);
13566    EVT     VT    = CMP00.getValueType();
13567
13568    if (VT == MVT::f32 || VT == MVT::f64) {
13569      bool ExpectingFlags = false;
13570      // Check for any users that want flags:
13571      for (SDNode::use_iterator UI = N->use_begin(),
13572             UE = N->use_end();
13573           !ExpectingFlags && UI != UE; ++UI)
13574        switch (UI->getOpcode()) {
13575        default:
13576        case ISD::BR_CC:
13577        case ISD::BRCOND:
13578        case ISD::SELECT:
13579          ExpectingFlags = true;
13580          break;
13581        case ISD::CopyToReg:
13582        case ISD::SIGN_EXTEND:
13583        case ISD::ZERO_EXTEND:
13584        case ISD::ANY_EXTEND:
13585          break;
13586        }
13587
13588      if (!ExpectingFlags) {
13589        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13590        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13591
13592        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13593          X86::CondCode tmp = cc0;
13594          cc0 = cc1;
13595          cc1 = tmp;
13596        }
13597
13598        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13599            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13600          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13601          X86ISD::NodeType NTOperator = is64BitFP ?
13602            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13603          // FIXME: need symbolic constants for these magic numbers.
13604          // See X86ATTInstPrinter.cpp:printSSECC().
13605          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13606          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13607                                              DAG.getConstant(x86cc, MVT::i8));
13608          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13609                                              OnesOrZeroesF);
13610          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13611                                      DAG.getConstant(1, MVT::i32));
13612          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13613          return OneBitOfTruth;
13614        }
13615      }
13616    }
13617  }
13618  return SDValue();
13619}
13620
13621/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13622/// so it can be folded inside ANDNP.
13623static bool CanFoldXORWithAllOnes(const SDNode *N) {
13624  EVT VT = N->getValueType(0);
13625
13626  // Match direct AllOnes for 128 and 256-bit vectors
13627  if (ISD::isBuildVectorAllOnes(N))
13628    return true;
13629
13630  // Look through a bit convert.
13631  if (N->getOpcode() == ISD::BITCAST)
13632    N = N->getOperand(0).getNode();
13633
13634  // Sometimes the operand may come from a insert_subvector building a 256-bit
13635  // allones vector
13636  if (VT.getSizeInBits() == 256 &&
13637      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13638    SDValue V1 = N->getOperand(0);
13639    SDValue V2 = N->getOperand(1);
13640
13641    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13642        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13643        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13644        ISD::isBuildVectorAllOnes(V2.getNode()))
13645      return true;
13646  }
13647
13648  return false;
13649}
13650
13651static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13652                                 TargetLowering::DAGCombinerInfo &DCI,
13653                                 const X86Subtarget *Subtarget) {
13654  if (DCI.isBeforeLegalizeOps())
13655    return SDValue();
13656
13657  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13658  if (R.getNode())
13659    return R;
13660
13661  EVT VT = N->getValueType(0);
13662
13663  // Create ANDN, BLSI, and BLSR instructions
13664  // BLSI is X & (-X)
13665  // BLSR is X & (X-1)
13666  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13667    SDValue N0 = N->getOperand(0);
13668    SDValue N1 = N->getOperand(1);
13669    DebugLoc DL = N->getDebugLoc();
13670
13671    // Check LHS for not
13672    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13673      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13674    // Check RHS for not
13675    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13676      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13677
13678    // Check LHS for neg
13679    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13680        isZero(N0.getOperand(0)))
13681      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13682
13683    // Check RHS for neg
13684    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13685        isZero(N1.getOperand(0)))
13686      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13687
13688    // Check LHS for X-1
13689    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13690        isAllOnes(N0.getOperand(1)))
13691      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13692
13693    // Check RHS for X-1
13694    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13695        isAllOnes(N1.getOperand(1)))
13696      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13697
13698    return SDValue();
13699  }
13700
13701  // Want to form ANDNP nodes:
13702  // 1) In the hopes of then easily combining them with OR and AND nodes
13703  //    to form PBLEND/PSIGN.
13704  // 2) To match ANDN packed intrinsics
13705  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13706    return SDValue();
13707
13708  SDValue N0 = N->getOperand(0);
13709  SDValue N1 = N->getOperand(1);
13710  DebugLoc DL = N->getDebugLoc();
13711
13712  // Check LHS for vnot
13713  if (N0.getOpcode() == ISD::XOR &&
13714      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13715      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13716    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13717
13718  // Check RHS for vnot
13719  if (N1.getOpcode() == ISD::XOR &&
13720      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13721      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13722    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13723
13724  return SDValue();
13725}
13726
13727static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13728                                TargetLowering::DAGCombinerInfo &DCI,
13729                                const X86Subtarget *Subtarget) {
13730  if (DCI.isBeforeLegalizeOps())
13731    return SDValue();
13732
13733  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13734  if (R.getNode())
13735    return R;
13736
13737  EVT VT = N->getValueType(0);
13738
13739  SDValue N0 = N->getOperand(0);
13740  SDValue N1 = N->getOperand(1);
13741
13742  // look for psign/blend
13743  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13744    if (!Subtarget->hasSSSE3() ||
13745        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13746      return SDValue();
13747
13748    // Canonicalize pandn to RHS
13749    if (N0.getOpcode() == X86ISD::ANDNP)
13750      std::swap(N0, N1);
13751    // or (and (m, y), (pandn m, x))
13752    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13753      SDValue Mask = N1.getOperand(0);
13754      SDValue X    = N1.getOperand(1);
13755      SDValue Y;
13756      if (N0.getOperand(0) == Mask)
13757        Y = N0.getOperand(1);
13758      if (N0.getOperand(1) == Mask)
13759        Y = N0.getOperand(0);
13760
13761      // Check to see if the mask appeared in both the AND and ANDNP and
13762      if (!Y.getNode())
13763        return SDValue();
13764
13765      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13766      if (Mask.getOpcode() != ISD::BITCAST ||
13767          X.getOpcode() != ISD::BITCAST ||
13768          Y.getOpcode() != ISD::BITCAST)
13769        return SDValue();
13770
13771      // Look through mask bitcast.
13772      Mask = Mask.getOperand(0);
13773      EVT MaskVT = Mask.getValueType();
13774
13775      // Validate that the Mask operand is a vector sra node.  The sra node
13776      // will be an intrinsic.
13777      if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13778        return SDValue();
13779
13780      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13781      // there is no psrai.b
13782      switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13783      case Intrinsic::x86_sse2_psrai_w:
13784      case Intrinsic::x86_sse2_psrai_d:
13785      case Intrinsic::x86_avx2_psrai_w:
13786      case Intrinsic::x86_avx2_psrai_d:
13787        break;
13788      default: return SDValue();
13789      }
13790
13791      // Check that the SRA is all signbits.
13792      SDValue SraC = Mask.getOperand(2);
13793      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13794      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13795      if ((SraAmt + 1) != EltBits)
13796        return SDValue();
13797
13798      DebugLoc DL = N->getDebugLoc();
13799
13800      // Now we know we at least have a plendvb with the mask val.  See if
13801      // we can form a psignb/w/d.
13802      // psign = x.type == y.type == mask.type && y = sub(0, x);
13803      X = X.getOperand(0);
13804      Y = Y.getOperand(0);
13805      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13806          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13807          X.getValueType() == MaskVT && X.getValueType() == Y.getValueType() &&
13808          (EltBits == 8 || EltBits == 16 || EltBits == 32)) {
13809        SDValue Sign = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X,
13810                                   Mask.getOperand(1));
13811        return DAG.getNode(ISD::BITCAST, DL, VT, Sign);
13812      }
13813      // PBLENDVB only available on SSE 4.1
13814      if (!Subtarget->hasSSE41())
13815        return SDValue();
13816
13817      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13818
13819      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13820      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13821      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13822      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13823      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13824    }
13825  }
13826
13827  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13828    return SDValue();
13829
13830  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13831  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13832    std::swap(N0, N1);
13833  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13834    return SDValue();
13835  if (!N0.hasOneUse() || !N1.hasOneUse())
13836    return SDValue();
13837
13838  SDValue ShAmt0 = N0.getOperand(1);
13839  if (ShAmt0.getValueType() != MVT::i8)
13840    return SDValue();
13841  SDValue ShAmt1 = N1.getOperand(1);
13842  if (ShAmt1.getValueType() != MVT::i8)
13843    return SDValue();
13844  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13845    ShAmt0 = ShAmt0.getOperand(0);
13846  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13847    ShAmt1 = ShAmt1.getOperand(0);
13848
13849  DebugLoc DL = N->getDebugLoc();
13850  unsigned Opc = X86ISD::SHLD;
13851  SDValue Op0 = N0.getOperand(0);
13852  SDValue Op1 = N1.getOperand(0);
13853  if (ShAmt0.getOpcode() == ISD::SUB) {
13854    Opc = X86ISD::SHRD;
13855    std::swap(Op0, Op1);
13856    std::swap(ShAmt0, ShAmt1);
13857  }
13858
13859  unsigned Bits = VT.getSizeInBits();
13860  if (ShAmt1.getOpcode() == ISD::SUB) {
13861    SDValue Sum = ShAmt1.getOperand(0);
13862    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13863      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13864      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13865        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13866      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13867        return DAG.getNode(Opc, DL, VT,
13868                           Op0, Op1,
13869                           DAG.getNode(ISD::TRUNCATE, DL,
13870                                       MVT::i8, ShAmt0));
13871    }
13872  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13873    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13874    if (ShAmt0C &&
13875        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13876      return DAG.getNode(Opc, DL, VT,
13877                         N0.getOperand(0), N1.getOperand(0),
13878                         DAG.getNode(ISD::TRUNCATE, DL,
13879                                       MVT::i8, ShAmt0));
13880  }
13881
13882  return SDValue();
13883}
13884
13885// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
13886static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13887                                 TargetLowering::DAGCombinerInfo &DCI,
13888                                 const X86Subtarget *Subtarget) {
13889  if (DCI.isBeforeLegalizeOps())
13890    return SDValue();
13891
13892  EVT VT = N->getValueType(0);
13893
13894  if (VT != MVT::i32 && VT != MVT::i64)
13895    return SDValue();
13896
13897  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
13898
13899  // Create BLSMSK instructions by finding X ^ (X-1)
13900  SDValue N0 = N->getOperand(0);
13901  SDValue N1 = N->getOperand(1);
13902  DebugLoc DL = N->getDebugLoc();
13903
13904  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13905      isAllOnes(N0.getOperand(1)))
13906    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13907
13908  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13909      isAllOnes(N1.getOperand(1)))
13910    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13911
13912  return SDValue();
13913}
13914
13915/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13916static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13917                                   const X86Subtarget *Subtarget) {
13918  LoadSDNode *Ld = cast<LoadSDNode>(N);
13919  EVT RegVT = Ld->getValueType(0);
13920  EVT MemVT = Ld->getMemoryVT();
13921  DebugLoc dl = Ld->getDebugLoc();
13922  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13923
13924  ISD::LoadExtType Ext = Ld->getExtensionType();
13925
13926  // If this is a vector EXT Load then attempt to optimize it using a
13927  // shuffle. We need SSE4 for the shuffles.
13928  // TODO: It is possible to support ZExt by zeroing the undef values
13929  // during the shuffle phase or after the shuffle.
13930  if (RegVT.isVector() && RegVT.isInteger() &&
13931      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13932    assert(MemVT != RegVT && "Cannot extend to the same type");
13933    assert(MemVT.isVector() && "Must load a vector from memory");
13934
13935    unsigned NumElems = RegVT.getVectorNumElements();
13936    unsigned RegSz = RegVT.getSizeInBits();
13937    unsigned MemSz = MemVT.getSizeInBits();
13938    assert(RegSz > MemSz && "Register size must be greater than the mem size");
13939    // All sizes must be a power of two
13940    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13941
13942    // Attempt to load the original value using a single load op.
13943    // Find a scalar type which is equal to the loaded word size.
13944    MVT SclrLoadTy = MVT::i8;
13945    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13946         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13947      MVT Tp = (MVT::SimpleValueType)tp;
13948      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
13949        SclrLoadTy = Tp;
13950        break;
13951      }
13952    }
13953
13954    // Proceed if a load word is found.
13955    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13956
13957    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13958      RegSz/SclrLoadTy.getSizeInBits());
13959
13960    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13961                                  RegSz/MemVT.getScalarType().getSizeInBits());
13962    // Can't shuffle using an illegal type.
13963    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13964
13965    // Perform a single load.
13966    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13967                                  Ld->getBasePtr(),
13968                                  Ld->getPointerInfo(), Ld->isVolatile(),
13969                                  Ld->isNonTemporal(), Ld->isInvariant(),
13970                                  Ld->getAlignment());
13971
13972    // Insert the word loaded into a vector.
13973    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13974      LoadUnitVecVT, ScalarLoad);
13975
13976    // Bitcast the loaded value to a vector of the original element type, in
13977    // the size of the target vector type.
13978    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
13979                                    ScalarInVector);
13980    unsigned SizeRatio = RegSz/MemSz;
13981
13982    // Redistribute the loaded elements into the different locations.
13983    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13984    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13985
13986    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13987                                DAG.getUNDEF(SlicedVec.getValueType()),
13988                                ShuffleVec.data());
13989
13990    // Bitcast to the requested type.
13991    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13992    // Replace the original load with the new sequence
13993    // and return the new chain.
13994    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
13995    return SDValue(ScalarLoad.getNode(), 1);
13996  }
13997
13998  return SDValue();
13999}
14000
14001/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14002static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14003                                   const X86Subtarget *Subtarget) {
14004  StoreSDNode *St = cast<StoreSDNode>(N);
14005  EVT VT = St->getValue().getValueType();
14006  EVT StVT = St->getMemoryVT();
14007  DebugLoc dl = St->getDebugLoc();
14008  SDValue StoredVal = St->getOperand(1);
14009  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14010
14011  // If we are saving a concatenation of two XMM registers, perform two stores.
14012  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14013  // 128-bit ones. If in the future the cost becomes only one memory access the
14014  // first version would be better.
14015  if (VT.getSizeInBits() == 256 &&
14016    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14017    StoredVal.getNumOperands() == 2) {
14018
14019    SDValue Value0 = StoredVal.getOperand(0);
14020    SDValue Value1 = StoredVal.getOperand(1);
14021
14022    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14023    SDValue Ptr0 = St->getBasePtr();
14024    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14025
14026    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14027                                St->getPointerInfo(), St->isVolatile(),
14028                                St->isNonTemporal(), St->getAlignment());
14029    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14030                                St->getPointerInfo(), St->isVolatile(),
14031                                St->isNonTemporal(), St->getAlignment());
14032    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14033  }
14034
14035  // Optimize trunc store (of multiple scalars) to shuffle and store.
14036  // First, pack all of the elements in one place. Next, store to memory
14037  // in fewer chunks.
14038  if (St->isTruncatingStore() && VT.isVector()) {
14039    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14040    unsigned NumElems = VT.getVectorNumElements();
14041    assert(StVT != VT && "Cannot truncate to the same type");
14042    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14043    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14044
14045    // From, To sizes and ElemCount must be pow of two
14046    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14047    // We are going to use the original vector elt for storing.
14048    // Accumulated smaller vector elements must be a multiple of the store size.
14049    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14050
14051    unsigned SizeRatio  = FromSz / ToSz;
14052
14053    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14054
14055    // Create a type on which we perform the shuffle
14056    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14057            StVT.getScalarType(), NumElems*SizeRatio);
14058
14059    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14060
14061    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14062    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14063    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14064
14065    // Can't shuffle using an illegal type
14066    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14067
14068    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14069                                DAG.getUNDEF(WideVec.getValueType()),
14070                                ShuffleVec.data());
14071    // At this point all of the data is stored at the bottom of the
14072    // register. We now need to save it to mem.
14073
14074    // Find the largest store unit
14075    MVT StoreType = MVT::i8;
14076    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14077         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14078      MVT Tp = (MVT::SimpleValueType)tp;
14079      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14080        StoreType = Tp;
14081    }
14082
14083    // Bitcast the original vector into a vector of store-size units
14084    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14085            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14086    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14087    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14088    SmallVector<SDValue, 8> Chains;
14089    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14090                                        TLI.getPointerTy());
14091    SDValue Ptr = St->getBasePtr();
14092
14093    // Perform one or more big stores into memory.
14094    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14095      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14096                                   StoreType, ShuffWide,
14097                                   DAG.getIntPtrConstant(i));
14098      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14099                                St->getPointerInfo(), St->isVolatile(),
14100                                St->isNonTemporal(), St->getAlignment());
14101      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14102      Chains.push_back(Ch);
14103    }
14104
14105    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14106                               Chains.size());
14107  }
14108
14109
14110  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14111  // the FP state in cases where an emms may be missing.
14112  // A preferable solution to the general problem is to figure out the right
14113  // places to insert EMMS.  This qualifies as a quick hack.
14114
14115  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14116  if (VT.getSizeInBits() != 64)
14117    return SDValue();
14118
14119  const Function *F = DAG.getMachineFunction().getFunction();
14120  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14121  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14122                     && Subtarget->hasSSE2();
14123  if ((VT.isVector() ||
14124       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14125      isa<LoadSDNode>(St->getValue()) &&
14126      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14127      St->getChain().hasOneUse() && !St->isVolatile()) {
14128    SDNode* LdVal = St->getValue().getNode();
14129    LoadSDNode *Ld = 0;
14130    int TokenFactorIndex = -1;
14131    SmallVector<SDValue, 8> Ops;
14132    SDNode* ChainVal = St->getChain().getNode();
14133    // Must be a store of a load.  We currently handle two cases:  the load
14134    // is a direct child, and it's under an intervening TokenFactor.  It is
14135    // possible to dig deeper under nested TokenFactors.
14136    if (ChainVal == LdVal)
14137      Ld = cast<LoadSDNode>(St->getChain());
14138    else if (St->getValue().hasOneUse() &&
14139             ChainVal->getOpcode() == ISD::TokenFactor) {
14140      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14141        if (ChainVal->getOperand(i).getNode() == LdVal) {
14142          TokenFactorIndex = i;
14143          Ld = cast<LoadSDNode>(St->getValue());
14144        } else
14145          Ops.push_back(ChainVal->getOperand(i));
14146      }
14147    }
14148
14149    if (!Ld || !ISD::isNormalLoad(Ld))
14150      return SDValue();
14151
14152    // If this is not the MMX case, i.e. we are just turning i64 load/store
14153    // into f64 load/store, avoid the transformation if there are multiple
14154    // uses of the loaded value.
14155    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14156      return SDValue();
14157
14158    DebugLoc LdDL = Ld->getDebugLoc();
14159    DebugLoc StDL = N->getDebugLoc();
14160    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14161    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14162    // pair instead.
14163    if (Subtarget->is64Bit() || F64IsLegal) {
14164      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14165      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14166                                  Ld->getPointerInfo(), Ld->isVolatile(),
14167                                  Ld->isNonTemporal(), Ld->isInvariant(),
14168                                  Ld->getAlignment());
14169      SDValue NewChain = NewLd.getValue(1);
14170      if (TokenFactorIndex != -1) {
14171        Ops.push_back(NewChain);
14172        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14173                               Ops.size());
14174      }
14175      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14176                          St->getPointerInfo(),
14177                          St->isVolatile(), St->isNonTemporal(),
14178                          St->getAlignment());
14179    }
14180
14181    // Otherwise, lower to two pairs of 32-bit loads / stores.
14182    SDValue LoAddr = Ld->getBasePtr();
14183    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14184                                 DAG.getConstant(4, MVT::i32));
14185
14186    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14187                               Ld->getPointerInfo(),
14188                               Ld->isVolatile(), Ld->isNonTemporal(),
14189                               Ld->isInvariant(), Ld->getAlignment());
14190    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14191                               Ld->getPointerInfo().getWithOffset(4),
14192                               Ld->isVolatile(), Ld->isNonTemporal(),
14193                               Ld->isInvariant(),
14194                               MinAlign(Ld->getAlignment(), 4));
14195
14196    SDValue NewChain = LoLd.getValue(1);
14197    if (TokenFactorIndex != -1) {
14198      Ops.push_back(LoLd);
14199      Ops.push_back(HiLd);
14200      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14201                             Ops.size());
14202    }
14203
14204    LoAddr = St->getBasePtr();
14205    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14206                         DAG.getConstant(4, MVT::i32));
14207
14208    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14209                                St->getPointerInfo(),
14210                                St->isVolatile(), St->isNonTemporal(),
14211                                St->getAlignment());
14212    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14213                                St->getPointerInfo().getWithOffset(4),
14214                                St->isVolatile(),
14215                                St->isNonTemporal(),
14216                                MinAlign(St->getAlignment(), 4));
14217    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14218  }
14219  return SDValue();
14220}
14221
14222/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14223/// and return the operands for the horizontal operation in LHS and RHS.  A
14224/// horizontal operation performs the binary operation on successive elements
14225/// of its first operand, then on successive elements of its second operand,
14226/// returning the resulting values in a vector.  For example, if
14227///   A = < float a0, float a1, float a2, float a3 >
14228/// and
14229///   B = < float b0, float b1, float b2, float b3 >
14230/// then the result of doing a horizontal operation on A and B is
14231///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14232/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14233/// A horizontal-op B, for some already available A and B, and if so then LHS is
14234/// set to A, RHS to B, and the routine returns 'true'.
14235/// Note that the binary operation should have the property that if one of the
14236/// operands is UNDEF then the result is UNDEF.
14237static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14238  // Look for the following pattern: if
14239  //   A = < float a0, float a1, float a2, float a3 >
14240  //   B = < float b0, float b1, float b2, float b3 >
14241  // and
14242  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14243  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14244  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14245  // which is A horizontal-op B.
14246
14247  // At least one of the operands should be a vector shuffle.
14248  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14249      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14250    return false;
14251
14252  EVT VT = LHS.getValueType();
14253
14254  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14255         "Unsupported vector type for horizontal add/sub");
14256
14257  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14258  // operate independently on 128-bit lanes.
14259  unsigned NumElts = VT.getVectorNumElements();
14260  unsigned NumLanes = VT.getSizeInBits()/128;
14261  unsigned NumLaneElts = NumElts / NumLanes;
14262  assert((NumLaneElts % 2 == 0) &&
14263         "Vector type should have an even number of elements in each lane");
14264  unsigned HalfLaneElts = NumLaneElts/2;
14265
14266  // View LHS in the form
14267  //   LHS = VECTOR_SHUFFLE A, B, LMask
14268  // If LHS is not a shuffle then pretend it is the shuffle
14269  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14270  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14271  // type VT.
14272  SDValue A, B;
14273  SmallVector<int, 16> LMask(NumElts);
14274  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14275    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14276      A = LHS.getOperand(0);
14277    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14278      B = LHS.getOperand(1);
14279    cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
14280  } else {
14281    if (LHS.getOpcode() != ISD::UNDEF)
14282      A = LHS;
14283    for (unsigned i = 0; i != NumElts; ++i)
14284      LMask[i] = i;
14285  }
14286
14287  // Likewise, view RHS in the form
14288  //   RHS = VECTOR_SHUFFLE C, D, RMask
14289  SDValue C, D;
14290  SmallVector<int, 16> RMask(NumElts);
14291  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14292    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14293      C = RHS.getOperand(0);
14294    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14295      D = RHS.getOperand(1);
14296    cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
14297  } else {
14298    if (RHS.getOpcode() != ISD::UNDEF)
14299      C = RHS;
14300    for (unsigned i = 0; i != NumElts; ++i)
14301      RMask[i] = i;
14302  }
14303
14304  // Check that the shuffles are both shuffling the same vectors.
14305  if (!(A == C && B == D) && !(A == D && B == C))
14306    return false;
14307
14308  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14309  if (!A.getNode() && !B.getNode())
14310    return false;
14311
14312  // If A and B occur in reverse order in RHS, then "swap" them (which means
14313  // rewriting the mask).
14314  if (A != C)
14315    CommuteVectorShuffleMask(RMask, NumElts);
14316
14317  // At this point LHS and RHS are equivalent to
14318  //   LHS = VECTOR_SHUFFLE A, B, LMask
14319  //   RHS = VECTOR_SHUFFLE A, B, RMask
14320  // Check that the masks correspond to performing a horizontal operation.
14321  for (unsigned i = 0; i != NumElts; ++i) {
14322    int LIdx = LMask[i], RIdx = RMask[i];
14323
14324    // Ignore any UNDEF components.
14325    if (LIdx < 0 || RIdx < 0 ||
14326        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14327        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14328      continue;
14329
14330    // Check that successive elements are being operated on.  If not, this is
14331    // not a horizontal operation.
14332    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14333    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14334    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14335    if (!(LIdx == Index && RIdx == Index + 1) &&
14336        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14337      return false;
14338  }
14339
14340  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14341  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14342  return true;
14343}
14344
14345/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14346static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14347                                  const X86Subtarget *Subtarget) {
14348  EVT VT = N->getValueType(0);
14349  SDValue LHS = N->getOperand(0);
14350  SDValue RHS = N->getOperand(1);
14351
14352  // Try to synthesize horizontal adds from adds of shuffles.
14353  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14354       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14355      isHorizontalBinOp(LHS, RHS, true))
14356    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14357  return SDValue();
14358}
14359
14360/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14361static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14362                                  const X86Subtarget *Subtarget) {
14363  EVT VT = N->getValueType(0);
14364  SDValue LHS = N->getOperand(0);
14365  SDValue RHS = N->getOperand(1);
14366
14367  // Try to synthesize horizontal subs from subs of shuffles.
14368  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14369       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14370      isHorizontalBinOp(LHS, RHS, false))
14371    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14372  return SDValue();
14373}
14374
14375/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14376/// X86ISD::FXOR nodes.
14377static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14378  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14379  // F[X]OR(0.0, x) -> x
14380  // F[X]OR(x, 0.0) -> x
14381  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14382    if (C->getValueAPF().isPosZero())
14383      return N->getOperand(1);
14384  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14385    if (C->getValueAPF().isPosZero())
14386      return N->getOperand(0);
14387  return SDValue();
14388}
14389
14390/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14391static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14392  // FAND(0.0, x) -> 0.0
14393  // FAND(x, 0.0) -> 0.0
14394  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14395    if (C->getValueAPF().isPosZero())
14396      return N->getOperand(0);
14397  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14398    if (C->getValueAPF().isPosZero())
14399      return N->getOperand(1);
14400  return SDValue();
14401}
14402
14403static SDValue PerformBTCombine(SDNode *N,
14404                                SelectionDAG &DAG,
14405                                TargetLowering::DAGCombinerInfo &DCI) {
14406  // BT ignores high bits in the bit index operand.
14407  SDValue Op1 = N->getOperand(1);
14408  if (Op1.hasOneUse()) {
14409    unsigned BitWidth = Op1.getValueSizeInBits();
14410    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14411    APInt KnownZero, KnownOne;
14412    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14413                                          !DCI.isBeforeLegalizeOps());
14414    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14415    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14416        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14417      DCI.CommitTargetLoweringOpt(TLO);
14418  }
14419  return SDValue();
14420}
14421
14422static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14423  SDValue Op = N->getOperand(0);
14424  if (Op.getOpcode() == ISD::BITCAST)
14425    Op = Op.getOperand(0);
14426  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14427  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14428      VT.getVectorElementType().getSizeInBits() ==
14429      OpVT.getVectorElementType().getSizeInBits()) {
14430    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14431  }
14432  return SDValue();
14433}
14434
14435static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14436  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14437  //           (and (i32 x86isd::setcc_carry), 1)
14438  // This eliminates the zext. This transformation is necessary because
14439  // ISD::SETCC is always legalized to i8.
14440  DebugLoc dl = N->getDebugLoc();
14441  SDValue N0 = N->getOperand(0);
14442  EVT VT = N->getValueType(0);
14443  if (N0.getOpcode() == ISD::AND &&
14444      N0.hasOneUse() &&
14445      N0.getOperand(0).hasOneUse()) {
14446    SDValue N00 = N0.getOperand(0);
14447    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14448      return SDValue();
14449    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14450    if (!C || C->getZExtValue() != 1)
14451      return SDValue();
14452    return DAG.getNode(ISD::AND, dl, VT,
14453                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14454                                   N00.getOperand(0), N00.getOperand(1)),
14455                       DAG.getConstant(1, VT));
14456  }
14457
14458  return SDValue();
14459}
14460
14461// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14462static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14463  unsigned X86CC = N->getConstantOperandVal(0);
14464  SDValue EFLAG = N->getOperand(1);
14465  DebugLoc DL = N->getDebugLoc();
14466
14467  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14468  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14469  // cases.
14470  if (X86CC == X86::COND_B)
14471    return DAG.getNode(ISD::AND, DL, MVT::i8,
14472                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14473                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14474                       DAG.getConstant(1, MVT::i8));
14475
14476  return SDValue();
14477}
14478
14479static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14480                                        const X86TargetLowering *XTLI) {
14481  SDValue Op0 = N->getOperand(0);
14482  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14483  // a 32-bit target where SSE doesn't support i64->FP operations.
14484  if (Op0.getOpcode() == ISD::LOAD) {
14485    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14486    EVT VT = Ld->getValueType(0);
14487    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14488        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14489        !XTLI->getSubtarget()->is64Bit() &&
14490        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14491      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14492                                          Ld->getChain(), Op0, DAG);
14493      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14494      return FILDChain;
14495    }
14496  }
14497  return SDValue();
14498}
14499
14500// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14501static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14502                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14503  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14504  // the result is either zero or one (depending on the input carry bit).
14505  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14506  if (X86::isZeroNode(N->getOperand(0)) &&
14507      X86::isZeroNode(N->getOperand(1)) &&
14508      // We don't have a good way to replace an EFLAGS use, so only do this when
14509      // dead right now.
14510      SDValue(N, 1).use_empty()) {
14511    DebugLoc DL = N->getDebugLoc();
14512    EVT VT = N->getValueType(0);
14513    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14514    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14515                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14516                                           DAG.getConstant(X86::COND_B,MVT::i8),
14517                                           N->getOperand(2)),
14518                               DAG.getConstant(1, VT));
14519    return DCI.CombineTo(N, Res1, CarryOut);
14520  }
14521
14522  return SDValue();
14523}
14524
14525// fold (add Y, (sete  X, 0)) -> adc  0, Y
14526//      (add Y, (setne X, 0)) -> sbb -1, Y
14527//      (sub (sete  X, 0), Y) -> sbb  0, Y
14528//      (sub (setne X, 0), Y) -> adc -1, Y
14529static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14530  DebugLoc DL = N->getDebugLoc();
14531
14532  // Look through ZExts.
14533  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14534  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14535    return SDValue();
14536
14537  SDValue SetCC = Ext.getOperand(0);
14538  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14539    return SDValue();
14540
14541  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14542  if (CC != X86::COND_E && CC != X86::COND_NE)
14543    return SDValue();
14544
14545  SDValue Cmp = SetCC.getOperand(1);
14546  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14547      !X86::isZeroNode(Cmp.getOperand(1)) ||
14548      !Cmp.getOperand(0).getValueType().isInteger())
14549    return SDValue();
14550
14551  SDValue CmpOp0 = Cmp.getOperand(0);
14552  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14553                               DAG.getConstant(1, CmpOp0.getValueType()));
14554
14555  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14556  if (CC == X86::COND_NE)
14557    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14558                       DL, OtherVal.getValueType(), OtherVal,
14559                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14560  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14561                     DL, OtherVal.getValueType(), OtherVal,
14562                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14563}
14564
14565/// PerformADDCombine - Do target-specific dag combines on integer adds.
14566static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14567                                 const X86Subtarget *Subtarget) {
14568  EVT VT = N->getValueType(0);
14569  SDValue Op0 = N->getOperand(0);
14570  SDValue Op1 = N->getOperand(1);
14571
14572  // Try to synthesize horizontal adds from adds of shuffles.
14573  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14574       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || MVT::v8i32))) &&
14575      isHorizontalBinOp(Op0, Op1, true))
14576    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14577
14578  return OptimizeConditionalInDecrement(N, DAG);
14579}
14580
14581static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14582                                 const X86Subtarget *Subtarget) {
14583  SDValue Op0 = N->getOperand(0);
14584  SDValue Op1 = N->getOperand(1);
14585
14586  // X86 can't encode an immediate LHS of a sub. See if we can push the
14587  // negation into a preceding instruction.
14588  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14589    // If the RHS of the sub is a XOR with one use and a constant, invert the
14590    // immediate. Then add one to the LHS of the sub so we can turn
14591    // X-Y -> X+~Y+1, saving one register.
14592    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14593        isa<ConstantSDNode>(Op1.getOperand(1))) {
14594      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14595      EVT VT = Op0.getValueType();
14596      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14597                                   Op1.getOperand(0),
14598                                   DAG.getConstant(~XorC, VT));
14599      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14600                         DAG.getConstant(C->getAPIntValue()+1, VT));
14601    }
14602  }
14603
14604  // Try to synthesize horizontal adds from adds of shuffles.
14605  EVT VT = N->getValueType(0);
14606  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14607       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14608      isHorizontalBinOp(Op0, Op1, true))
14609    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14610
14611  return OptimizeConditionalInDecrement(N, DAG);
14612}
14613
14614SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14615                                             DAGCombinerInfo &DCI) const {
14616  SelectionDAG &DAG = DCI.DAG;
14617  switch (N->getOpcode()) {
14618  default: break;
14619  case ISD::EXTRACT_VECTOR_ELT:
14620    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14621  case ISD::VSELECT:
14622  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
14623  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14624  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14625  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14626  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14627  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14628  case ISD::SHL:
14629  case ISD::SRA:
14630  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14631  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14632  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14633  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14634  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14635  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14636  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14637  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14638  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14639  case X86ISD::FXOR:
14640  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14641  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14642  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14643  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14644  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14645  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14646  case X86ISD::SHUFP:       // Handle all target specific shuffles
14647  case X86ISD::PALIGN:
14648  case X86ISD::UNPCKH:
14649  case X86ISD::UNPCKL:
14650  case X86ISD::MOVHLPS:
14651  case X86ISD::MOVLHPS:
14652  case X86ISD::PSHUFD:
14653  case X86ISD::PSHUFHW:
14654  case X86ISD::PSHUFLW:
14655  case X86ISD::MOVSS:
14656  case X86ISD::MOVSD:
14657  case X86ISD::VPERMILP:
14658  case X86ISD::VPERM2X128:
14659  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14660  }
14661
14662  return SDValue();
14663}
14664
14665/// isTypeDesirableForOp - Return true if the target has native support for
14666/// the specified value type and it is 'desirable' to use the type for the
14667/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14668/// instruction encodings are longer and some i16 instructions are slow.
14669bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14670  if (!isTypeLegal(VT))
14671    return false;
14672  if (VT != MVT::i16)
14673    return true;
14674
14675  switch (Opc) {
14676  default:
14677    return true;
14678  case ISD::LOAD:
14679  case ISD::SIGN_EXTEND:
14680  case ISD::ZERO_EXTEND:
14681  case ISD::ANY_EXTEND:
14682  case ISD::SHL:
14683  case ISD::SRL:
14684  case ISD::SUB:
14685  case ISD::ADD:
14686  case ISD::MUL:
14687  case ISD::AND:
14688  case ISD::OR:
14689  case ISD::XOR:
14690    return false;
14691  }
14692}
14693
14694/// IsDesirableToPromoteOp - This method query the target whether it is
14695/// beneficial for dag combiner to promote the specified node. If true, it
14696/// should return the desired promotion type by reference.
14697bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14698  EVT VT = Op.getValueType();
14699  if (VT != MVT::i16)
14700    return false;
14701
14702  bool Promote = false;
14703  bool Commute = false;
14704  switch (Op.getOpcode()) {
14705  default: break;
14706  case ISD::LOAD: {
14707    LoadSDNode *LD = cast<LoadSDNode>(Op);
14708    // If the non-extending load has a single use and it's not live out, then it
14709    // might be folded.
14710    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14711                                                     Op.hasOneUse()*/) {
14712      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14713             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14714        // The only case where we'd want to promote LOAD (rather then it being
14715        // promoted as an operand is when it's only use is liveout.
14716        if (UI->getOpcode() != ISD::CopyToReg)
14717          return false;
14718      }
14719    }
14720    Promote = true;
14721    break;
14722  }
14723  case ISD::SIGN_EXTEND:
14724  case ISD::ZERO_EXTEND:
14725  case ISD::ANY_EXTEND:
14726    Promote = true;
14727    break;
14728  case ISD::SHL:
14729  case ISD::SRL: {
14730    SDValue N0 = Op.getOperand(0);
14731    // Look out for (store (shl (load), x)).
14732    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14733      return false;
14734    Promote = true;
14735    break;
14736  }
14737  case ISD::ADD:
14738  case ISD::MUL:
14739  case ISD::AND:
14740  case ISD::OR:
14741  case ISD::XOR:
14742    Commute = true;
14743    // fallthrough
14744  case ISD::SUB: {
14745    SDValue N0 = Op.getOperand(0);
14746    SDValue N1 = Op.getOperand(1);
14747    if (!Commute && MayFoldLoad(N1))
14748      return false;
14749    // Avoid disabling potential load folding opportunities.
14750    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14751      return false;
14752    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14753      return false;
14754    Promote = true;
14755  }
14756  }
14757
14758  PVT = MVT::i32;
14759  return Promote;
14760}
14761
14762//===----------------------------------------------------------------------===//
14763//                           X86 Inline Assembly Support
14764//===----------------------------------------------------------------------===//
14765
14766namespace {
14767  // Helper to match a string separated by whitespace.
14768  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
14769    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
14770
14771    for (unsigned i = 0, e = args.size(); i != e; ++i) {
14772      StringRef piece(*args[i]);
14773      if (!s.startswith(piece)) // Check if the piece matches.
14774        return false;
14775
14776      s = s.substr(piece.size());
14777      StringRef::size_type pos = s.find_first_not_of(" \t");
14778      if (pos == 0) // We matched a prefix.
14779        return false;
14780
14781      s = s.substr(pos);
14782    }
14783
14784    return s.empty();
14785  }
14786  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
14787}
14788
14789bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14790  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14791
14792  std::string AsmStr = IA->getAsmString();
14793
14794  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14795  if (!Ty || Ty->getBitWidth() % 16 != 0)
14796    return false;
14797
14798  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14799  SmallVector<StringRef, 4> AsmPieces;
14800  SplitString(AsmStr, AsmPieces, ";\n");
14801
14802  switch (AsmPieces.size()) {
14803  default: return false;
14804  case 1:
14805    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14806    // we will turn this bswap into something that will be lowered to logical
14807    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
14808    // lower so don't worry about this.
14809    // bswap $0
14810    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
14811        matchAsm(AsmPieces[0], "bswapl", "$0") ||
14812        matchAsm(AsmPieces[0], "bswapq", "$0") ||
14813        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
14814        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
14815        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
14816      // No need to check constraints, nothing other than the equivalent of
14817      // "=r,0" would be valid here.
14818      return IntrinsicLowering::LowerToByteSwap(CI);
14819    }
14820
14821    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14822    if (CI->getType()->isIntegerTy(16) &&
14823        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14824        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
14825         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
14826      AsmPieces.clear();
14827      const std::string &ConstraintsStr = IA->getConstraintString();
14828      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14829      std::sort(AsmPieces.begin(), AsmPieces.end());
14830      if (AsmPieces.size() == 4 &&
14831          AsmPieces[0] == "~{cc}" &&
14832          AsmPieces[1] == "~{dirflag}" &&
14833          AsmPieces[2] == "~{flags}" &&
14834          AsmPieces[3] == "~{fpsr}")
14835      return IntrinsicLowering::LowerToByteSwap(CI);
14836    }
14837    break;
14838  case 3:
14839    if (CI->getType()->isIntegerTy(32) &&
14840        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14841        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
14842        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
14843        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
14844      AsmPieces.clear();
14845      const std::string &ConstraintsStr = IA->getConstraintString();
14846      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14847      std::sort(AsmPieces.begin(), AsmPieces.end());
14848      if (AsmPieces.size() == 4 &&
14849          AsmPieces[0] == "~{cc}" &&
14850          AsmPieces[1] == "~{dirflag}" &&
14851          AsmPieces[2] == "~{flags}" &&
14852          AsmPieces[3] == "~{fpsr}")
14853        return IntrinsicLowering::LowerToByteSwap(CI);
14854    }
14855
14856    if (CI->getType()->isIntegerTy(64)) {
14857      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14858      if (Constraints.size() >= 2 &&
14859          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14860          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14861        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14862        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
14863            matchAsm(AsmPieces[1], "bswap", "%edx") &&
14864            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
14865          return IntrinsicLowering::LowerToByteSwap(CI);
14866      }
14867    }
14868    break;
14869  }
14870  return false;
14871}
14872
14873
14874
14875/// getConstraintType - Given a constraint letter, return the type of
14876/// constraint it is for this target.
14877X86TargetLowering::ConstraintType
14878X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14879  if (Constraint.size() == 1) {
14880    switch (Constraint[0]) {
14881    case 'R':
14882    case 'q':
14883    case 'Q':
14884    case 'f':
14885    case 't':
14886    case 'u':
14887    case 'y':
14888    case 'x':
14889    case 'Y':
14890    case 'l':
14891      return C_RegisterClass;
14892    case 'a':
14893    case 'b':
14894    case 'c':
14895    case 'd':
14896    case 'S':
14897    case 'D':
14898    case 'A':
14899      return C_Register;
14900    case 'I':
14901    case 'J':
14902    case 'K':
14903    case 'L':
14904    case 'M':
14905    case 'N':
14906    case 'G':
14907    case 'C':
14908    case 'e':
14909    case 'Z':
14910      return C_Other;
14911    default:
14912      break;
14913    }
14914  }
14915  return TargetLowering::getConstraintType(Constraint);
14916}
14917
14918/// Examine constraint type and operand type and determine a weight value.
14919/// This object must already have been set up with the operand type
14920/// and the current alternative constraint selected.
14921TargetLowering::ConstraintWeight
14922  X86TargetLowering::getSingleConstraintMatchWeight(
14923    AsmOperandInfo &info, const char *constraint) const {
14924  ConstraintWeight weight = CW_Invalid;
14925  Value *CallOperandVal = info.CallOperandVal;
14926    // If we don't have a value, we can't do a match,
14927    // but allow it at the lowest weight.
14928  if (CallOperandVal == NULL)
14929    return CW_Default;
14930  Type *type = CallOperandVal->getType();
14931  // Look at the constraint type.
14932  switch (*constraint) {
14933  default:
14934    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14935  case 'R':
14936  case 'q':
14937  case 'Q':
14938  case 'a':
14939  case 'b':
14940  case 'c':
14941  case 'd':
14942  case 'S':
14943  case 'D':
14944  case 'A':
14945    if (CallOperandVal->getType()->isIntegerTy())
14946      weight = CW_SpecificReg;
14947    break;
14948  case 'f':
14949  case 't':
14950  case 'u':
14951      if (type->isFloatingPointTy())
14952        weight = CW_SpecificReg;
14953      break;
14954  case 'y':
14955      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14956        weight = CW_SpecificReg;
14957      break;
14958  case 'x':
14959  case 'Y':
14960    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
14961        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
14962      weight = CW_Register;
14963    break;
14964  case 'I':
14965    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14966      if (C->getZExtValue() <= 31)
14967        weight = CW_Constant;
14968    }
14969    break;
14970  case 'J':
14971    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14972      if (C->getZExtValue() <= 63)
14973        weight = CW_Constant;
14974    }
14975    break;
14976  case 'K':
14977    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14978      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14979        weight = CW_Constant;
14980    }
14981    break;
14982  case 'L':
14983    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14984      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14985        weight = CW_Constant;
14986    }
14987    break;
14988  case 'M':
14989    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14990      if (C->getZExtValue() <= 3)
14991        weight = CW_Constant;
14992    }
14993    break;
14994  case 'N':
14995    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14996      if (C->getZExtValue() <= 0xff)
14997        weight = CW_Constant;
14998    }
14999    break;
15000  case 'G':
15001  case 'C':
15002    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15003      weight = CW_Constant;
15004    }
15005    break;
15006  case 'e':
15007    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15008      if ((C->getSExtValue() >= -0x80000000LL) &&
15009          (C->getSExtValue() <= 0x7fffffffLL))
15010        weight = CW_Constant;
15011    }
15012    break;
15013  case 'Z':
15014    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15015      if (C->getZExtValue() <= 0xffffffff)
15016        weight = CW_Constant;
15017    }
15018    break;
15019  }
15020  return weight;
15021}
15022
15023/// LowerXConstraint - try to replace an X constraint, which matches anything,
15024/// with another that has more specific requirements based on the type of the
15025/// corresponding operand.
15026const char *X86TargetLowering::
15027LowerXConstraint(EVT ConstraintVT) const {
15028  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15029  // 'f' like normal targets.
15030  if (ConstraintVT.isFloatingPoint()) {
15031    if (Subtarget->hasSSE2())
15032      return "Y";
15033    if (Subtarget->hasSSE1())
15034      return "x";
15035  }
15036
15037  return TargetLowering::LowerXConstraint(ConstraintVT);
15038}
15039
15040/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15041/// vector.  If it is invalid, don't add anything to Ops.
15042void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15043                                                     std::string &Constraint,
15044                                                     std::vector<SDValue>&Ops,
15045                                                     SelectionDAG &DAG) const {
15046  SDValue Result(0, 0);
15047
15048  // Only support length 1 constraints for now.
15049  if (Constraint.length() > 1) return;
15050
15051  char ConstraintLetter = Constraint[0];
15052  switch (ConstraintLetter) {
15053  default: break;
15054  case 'I':
15055    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15056      if (C->getZExtValue() <= 31) {
15057        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15058        break;
15059      }
15060    }
15061    return;
15062  case 'J':
15063    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15064      if (C->getZExtValue() <= 63) {
15065        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15066        break;
15067      }
15068    }
15069    return;
15070  case 'K':
15071    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15072      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15073        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15074        break;
15075      }
15076    }
15077    return;
15078  case 'N':
15079    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15080      if (C->getZExtValue() <= 255) {
15081        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15082        break;
15083      }
15084    }
15085    return;
15086  case 'e': {
15087    // 32-bit signed value
15088    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15089      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15090                                           C->getSExtValue())) {
15091        // Widen to 64 bits here to get it sign extended.
15092        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15093        break;
15094      }
15095    // FIXME gcc accepts some relocatable values here too, but only in certain
15096    // memory models; it's complicated.
15097    }
15098    return;
15099  }
15100  case 'Z': {
15101    // 32-bit unsigned value
15102    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15103      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15104                                           C->getZExtValue())) {
15105        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15106        break;
15107      }
15108    }
15109    // FIXME gcc accepts some relocatable values here too, but only in certain
15110    // memory models; it's complicated.
15111    return;
15112  }
15113  case 'i': {
15114    // Literal immediates are always ok.
15115    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15116      // Widen to 64 bits here to get it sign extended.
15117      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15118      break;
15119    }
15120
15121    // In any sort of PIC mode addresses need to be computed at runtime by
15122    // adding in a register or some sort of table lookup.  These can't
15123    // be used as immediates.
15124    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15125      return;
15126
15127    // If we are in non-pic codegen mode, we allow the address of a global (with
15128    // an optional displacement) to be used with 'i'.
15129    GlobalAddressSDNode *GA = 0;
15130    int64_t Offset = 0;
15131
15132    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15133    while (1) {
15134      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15135        Offset += GA->getOffset();
15136        break;
15137      } else if (Op.getOpcode() == ISD::ADD) {
15138        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15139          Offset += C->getZExtValue();
15140          Op = Op.getOperand(0);
15141          continue;
15142        }
15143      } else if (Op.getOpcode() == ISD::SUB) {
15144        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15145          Offset += -C->getZExtValue();
15146          Op = Op.getOperand(0);
15147          continue;
15148        }
15149      }
15150
15151      // Otherwise, this isn't something we can handle, reject it.
15152      return;
15153    }
15154
15155    const GlobalValue *GV = GA->getGlobal();
15156    // If we require an extra load to get this address, as in PIC mode, we
15157    // can't accept it.
15158    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15159                                                        getTargetMachine())))
15160      return;
15161
15162    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15163                                        GA->getValueType(0), Offset);
15164    break;
15165  }
15166  }
15167
15168  if (Result.getNode()) {
15169    Ops.push_back(Result);
15170    return;
15171  }
15172  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15173}
15174
15175std::pair<unsigned, const TargetRegisterClass*>
15176X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15177                                                EVT VT) const {
15178  // First, see if this is a constraint that directly corresponds to an LLVM
15179  // register class.
15180  if (Constraint.size() == 1) {
15181    // GCC Constraint Letters
15182    switch (Constraint[0]) {
15183    default: break;
15184      // TODO: Slight differences here in allocation order and leaving
15185      // RIP in the class. Do they matter any more here than they do
15186      // in the normal allocation?
15187    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15188      if (Subtarget->is64Bit()) {
15189	if (VT == MVT::i32 || VT == MVT::f32)
15190	  return std::make_pair(0U, X86::GR32RegisterClass);
15191	else if (VT == MVT::i16)
15192	  return std::make_pair(0U, X86::GR16RegisterClass);
15193	else if (VT == MVT::i8 || VT == MVT::i1)
15194	  return std::make_pair(0U, X86::GR8RegisterClass);
15195	else if (VT == MVT::i64 || VT == MVT::f64)
15196	  return std::make_pair(0U, X86::GR64RegisterClass);
15197	break;
15198      }
15199      // 32-bit fallthrough
15200    case 'Q':   // Q_REGS
15201      if (VT == MVT::i32 || VT == MVT::f32)
15202	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15203      else if (VT == MVT::i16)
15204	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15205      else if (VT == MVT::i8 || VT == MVT::i1)
15206	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15207      else if (VT == MVT::i64)
15208	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15209      break;
15210    case 'r':   // GENERAL_REGS
15211    case 'l':   // INDEX_REGS
15212      if (VT == MVT::i8 || VT == MVT::i1)
15213        return std::make_pair(0U, X86::GR8RegisterClass);
15214      if (VT == MVT::i16)
15215        return std::make_pair(0U, X86::GR16RegisterClass);
15216      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15217        return std::make_pair(0U, X86::GR32RegisterClass);
15218      return std::make_pair(0U, X86::GR64RegisterClass);
15219    case 'R':   // LEGACY_REGS
15220      if (VT == MVT::i8 || VT == MVT::i1)
15221        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15222      if (VT == MVT::i16)
15223        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15224      if (VT == MVT::i32 || !Subtarget->is64Bit())
15225        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15226      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15227    case 'f':  // FP Stack registers.
15228      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15229      // value to the correct fpstack register class.
15230      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15231        return std::make_pair(0U, X86::RFP32RegisterClass);
15232      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15233        return std::make_pair(0U, X86::RFP64RegisterClass);
15234      return std::make_pair(0U, X86::RFP80RegisterClass);
15235    case 'y':   // MMX_REGS if MMX allowed.
15236      if (!Subtarget->hasMMX()) break;
15237      return std::make_pair(0U, X86::VR64RegisterClass);
15238    case 'Y':   // SSE_REGS if SSE2 allowed
15239      if (!Subtarget->hasSSE2()) break;
15240      // FALL THROUGH.
15241    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15242      if (!Subtarget->hasSSE1()) break;
15243
15244      switch (VT.getSimpleVT().SimpleTy) {
15245      default: break;
15246      // Scalar SSE types.
15247      case MVT::f32:
15248      case MVT::i32:
15249        return std::make_pair(0U, X86::FR32RegisterClass);
15250      case MVT::f64:
15251      case MVT::i64:
15252        return std::make_pair(0U, X86::FR64RegisterClass);
15253      // Vector types.
15254      case MVT::v16i8:
15255      case MVT::v8i16:
15256      case MVT::v4i32:
15257      case MVT::v2i64:
15258      case MVT::v4f32:
15259      case MVT::v2f64:
15260        return std::make_pair(0U, X86::VR128RegisterClass);
15261      // AVX types.
15262      case MVT::v32i8:
15263      case MVT::v16i16:
15264      case MVT::v8i32:
15265      case MVT::v4i64:
15266      case MVT::v8f32:
15267      case MVT::v4f64:
15268        return std::make_pair(0U, X86::VR256RegisterClass);
15269
15270      }
15271      break;
15272    }
15273  }
15274
15275  // Use the default implementation in TargetLowering to convert the register
15276  // constraint into a member of a register class.
15277  std::pair<unsigned, const TargetRegisterClass*> Res;
15278  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15279
15280  // Not found as a standard register?
15281  if (Res.second == 0) {
15282    // Map st(0) -> st(7) -> ST0
15283    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15284        tolower(Constraint[1]) == 's' &&
15285        tolower(Constraint[2]) == 't' &&
15286        Constraint[3] == '(' &&
15287        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15288        Constraint[5] == ')' &&
15289        Constraint[6] == '}') {
15290
15291      Res.first = X86::ST0+Constraint[4]-'0';
15292      Res.second = X86::RFP80RegisterClass;
15293      return Res;
15294    }
15295
15296    // GCC allows "st(0)" to be called just plain "st".
15297    if (StringRef("{st}").equals_lower(Constraint)) {
15298      Res.first = X86::ST0;
15299      Res.second = X86::RFP80RegisterClass;
15300      return Res;
15301    }
15302
15303    // flags -> EFLAGS
15304    if (StringRef("{flags}").equals_lower(Constraint)) {
15305      Res.first = X86::EFLAGS;
15306      Res.second = X86::CCRRegisterClass;
15307      return Res;
15308    }
15309
15310    // 'A' means EAX + EDX.
15311    if (Constraint == "A") {
15312      Res.first = X86::EAX;
15313      Res.second = X86::GR32_ADRegisterClass;
15314      return Res;
15315    }
15316    return Res;
15317  }
15318
15319  // Otherwise, check to see if this is a register class of the wrong value
15320  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15321  // turn into {ax},{dx}.
15322  if (Res.second->hasType(VT))
15323    return Res;   // Correct type already, nothing to do.
15324
15325  // All of the single-register GCC register classes map their values onto
15326  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15327  // really want an 8-bit or 32-bit register, map to the appropriate register
15328  // class and return the appropriate register.
15329  if (Res.second == X86::GR16RegisterClass) {
15330    if (VT == MVT::i8) {
15331      unsigned DestReg = 0;
15332      switch (Res.first) {
15333      default: break;
15334      case X86::AX: DestReg = X86::AL; break;
15335      case X86::DX: DestReg = X86::DL; break;
15336      case X86::CX: DestReg = X86::CL; break;
15337      case X86::BX: DestReg = X86::BL; break;
15338      }
15339      if (DestReg) {
15340        Res.first = DestReg;
15341        Res.second = X86::GR8RegisterClass;
15342      }
15343    } else if (VT == MVT::i32) {
15344      unsigned DestReg = 0;
15345      switch (Res.first) {
15346      default: break;
15347      case X86::AX: DestReg = X86::EAX; break;
15348      case X86::DX: DestReg = X86::EDX; break;
15349      case X86::CX: DestReg = X86::ECX; break;
15350      case X86::BX: DestReg = X86::EBX; break;
15351      case X86::SI: DestReg = X86::ESI; break;
15352      case X86::DI: DestReg = X86::EDI; break;
15353      case X86::BP: DestReg = X86::EBP; break;
15354      case X86::SP: DestReg = X86::ESP; break;
15355      }
15356      if (DestReg) {
15357        Res.first = DestReg;
15358        Res.second = X86::GR32RegisterClass;
15359      }
15360    } else if (VT == MVT::i64) {
15361      unsigned DestReg = 0;
15362      switch (Res.first) {
15363      default: break;
15364      case X86::AX: DestReg = X86::RAX; break;
15365      case X86::DX: DestReg = X86::RDX; break;
15366      case X86::CX: DestReg = X86::RCX; break;
15367      case X86::BX: DestReg = X86::RBX; break;
15368      case X86::SI: DestReg = X86::RSI; break;
15369      case X86::DI: DestReg = X86::RDI; break;
15370      case X86::BP: DestReg = X86::RBP; break;
15371      case X86::SP: DestReg = X86::RSP; break;
15372      }
15373      if (DestReg) {
15374        Res.first = DestReg;
15375        Res.second = X86::GR64RegisterClass;
15376      }
15377    }
15378  } else if (Res.second == X86::FR32RegisterClass ||
15379             Res.second == X86::FR64RegisterClass ||
15380             Res.second == X86::VR128RegisterClass) {
15381    // Handle references to XMM physical registers that got mapped into the
15382    // wrong class.  This can happen with constraints like {xmm0} where the
15383    // target independent register mapper will just pick the first match it can
15384    // find, ignoring the required type.
15385    if (VT == MVT::f32)
15386      Res.second = X86::FR32RegisterClass;
15387    else if (VT == MVT::f64)
15388      Res.second = X86::FR64RegisterClass;
15389    else if (X86::VR128RegisterClass->hasType(VT))
15390      Res.second = X86::VR128RegisterClass;
15391  }
15392
15393  return Res;
15394}
15395