X86ISelLowering.cpp revision d40aa24ebf2e67ae0802d15e1ff20373c1e9dc2f
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasXMMInt() || Subtarget->hasAVX();
172  X86ScalarSSEf32 = Subtarget->hasXMM() || Subtarget->hasAVX();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183
184  // For 64-bit since we have so many registers use the ILP scheduler, for
185  // 32-bit code use the register pressure specific scheduling.
186  if (Subtarget->is64Bit())
187    setSchedulingPreference(Sched::ILP);
188  else
189    setSchedulingPreference(Sched::RegPressure);
190  setStackPointerRegisterToSaveRestore(X86StackPtr);
191
192  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
193    // Setup Windows compiler runtime calls.
194    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
195    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
196    setLibcallName(RTLIB::SREM_I64, "_allrem");
197    setLibcallName(RTLIB::UREM_I64, "_aullrem");
198    setLibcallName(RTLIB::MUL_I64, "_allmul");
199    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
200    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
201    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
202    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
203    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
207    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
225  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
226  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
257  } else if (!UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!UseSoftFloat) {
315    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
316      // Expand FP_TO_UINT into a select.
317      // FIXME: We would like to use a Custom expander here eventually to do
318      // the optimal thing for SSE vs. the default expansion in the legalizer.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
320    else
321      // With SSE3 we can use fisttpll to convert to a signed i64; without
322      // SSE, we're stuck with a fistpll.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
324  }
325
326  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
327  if (!X86ScalarSSEf64) {
328    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
329    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
330    if (Subtarget->is64Bit()) {
331      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
332      // Without SSE, i64->f64 goes through memory.
333      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
334    }
335  }
336
337  // Scalar integer divide and remainder are lowered to use operations that
338  // produce two results, to match the available instructions. This exposes
339  // the two-result form to trivial CSE, which is able to combine x/y and x%y
340  // into a single instruction.
341  //
342  // Scalar integer multiply-high is also lowered to use two-result
343  // operations, to match the available instructions. However, plain multiply
344  // (low) operations are left as Legal, as there are single-result
345  // instructions for this in x86. Using the two-result multiply instructions
346  // when both high and low results are needed must be arranged by dagcombine.
347  for (unsigned i = 0, e = 4; i != e; ++i) {
348    MVT VT = IntVTs[i];
349    setOperationAction(ISD::MULHS, VT, Expand);
350    setOperationAction(ISD::MULHU, VT, Expand);
351    setOperationAction(ISD::SDIV, VT, Expand);
352    setOperationAction(ISD::UDIV, VT, Expand);
353    setOperationAction(ISD::SREM, VT, Expand);
354    setOperationAction(ISD::UREM, VT, Expand);
355
356    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
357    setOperationAction(ISD::ADDC, VT, Custom);
358    setOperationAction(ISD::ADDE, VT, Custom);
359    setOperationAction(ISD::SUBC, VT, Custom);
360    setOperationAction(ISD::SUBE, VT, Custom);
361  }
362
363  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
364  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
365  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
366  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
367  if (Subtarget->is64Bit())
368    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
369  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
372  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
373  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
376  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
377
378  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
379  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
380  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
381  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
382  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
383  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
384  if (Subtarget->is64Bit()) {
385    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
386    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
387  }
388
389  if (Subtarget->hasPOPCNT()) {
390    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
391  } else {
392    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
393    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
394    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
397  }
398
399  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
400  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
401
402  // These should be promoted to a larger select which is supported.
403  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
404  // X86 wants to expand cmov itself.
405  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
406  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
407  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
408  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
409  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
410  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
411  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
412  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
413  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
414  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
415  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
416  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
417  if (Subtarget->is64Bit()) {
418    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
419    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
420  }
421  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
422
423  // Darwin ABI issue.
424  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
425  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
426  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
427  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
428  if (Subtarget->is64Bit())
429    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
430  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
431  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
432  if (Subtarget->is64Bit()) {
433    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
434    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
435    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
436    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
437    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
438  }
439  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
440  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
441  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
442  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
443  if (Subtarget->is64Bit()) {
444    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
445    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
446    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
447  }
448
449  if (Subtarget->hasXMM())
450    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
451
452  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
453  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
454
455  // On X86 and X86-64, atomic operations are lowered to locked instructions.
456  // Locked instructions, in turn, have implicit fence semantics (all memory
457  // operations are flushed before issuing the locked instruction, and they
458  // are not buffered), so we can fold away the common pattern of
459  // fence-atomic-fence.
460  setShouldFoldAtomicFences(true);
461
462  // Expand certain atomics
463  for (unsigned i = 0, e = 4; i != e; ++i) {
464    MVT VT = IntVTs[i];
465    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
466    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
467  }
468
469  if (!Subtarget->is64Bit()) {
470    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
471    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
472    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
473    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
474    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
475    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
476    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
477  }
478
479  // FIXME - use subtarget debug flags
480  if (!Subtarget->isTargetDarwin() &&
481      !Subtarget->isTargetELF() &&
482      !Subtarget->isTargetCygMing()) {
483    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
484  }
485
486  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
487  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
488  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
489  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
490  if (Subtarget->is64Bit()) {
491    setExceptionPointerRegister(X86::RAX);
492    setExceptionSelectorRegister(X86::RDX);
493  } else {
494    setExceptionPointerRegister(X86::EAX);
495    setExceptionSelectorRegister(X86::EDX);
496  }
497  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
498  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
499
500  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
501
502  setOperationAction(ISD::TRAP, MVT::Other, Legal);
503
504  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
505  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
506  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
507  if (Subtarget->is64Bit()) {
508    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
509    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
510  } else {
511    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
512    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
513  }
514
515  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
516  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
517  setOperationAction(ISD::DYNAMIC_STACKALLOC,
518                     (Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
519                     (Subtarget->isTargetCOFF()
520                      && !Subtarget->isTargetEnvMacho()
521                      ? Custom : Expand));
522
523  if (!UseSoftFloat && X86ScalarSSEf64) {
524    // f32 and f64 use SSE.
525    // Set up the FP register classes.
526    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
527    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
528
529    // Use ANDPD to simulate FABS.
530    setOperationAction(ISD::FABS , MVT::f64, Custom);
531    setOperationAction(ISD::FABS , MVT::f32, Custom);
532
533    // Use XORP to simulate FNEG.
534    setOperationAction(ISD::FNEG , MVT::f64, Custom);
535    setOperationAction(ISD::FNEG , MVT::f32, Custom);
536
537    // Use ANDPD and ORPD to simulate FCOPYSIGN.
538    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
539    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
540
541    // Lower this to FGETSIGNx86 plus an AND.
542    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
543    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
544
545    // We don't support sin/cos/fmod
546    setOperationAction(ISD::FSIN , MVT::f64, Expand);
547    setOperationAction(ISD::FCOS , MVT::f64, Expand);
548    setOperationAction(ISD::FSIN , MVT::f32, Expand);
549    setOperationAction(ISD::FCOS , MVT::f32, Expand);
550
551    // Expand FP immediates into loads from the stack, except for the special
552    // cases we handle.
553    addLegalFPImmediate(APFloat(+0.0)); // xorpd
554    addLegalFPImmediate(APFloat(+0.0f)); // xorps
555  } else if (!UseSoftFloat && X86ScalarSSEf32) {
556    // Use SSE for f32, x87 for f64.
557    // Set up the FP register classes.
558    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
559    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
560
561    // Use ANDPS to simulate FABS.
562    setOperationAction(ISD::FABS , MVT::f32, Custom);
563
564    // Use XORP to simulate FNEG.
565    setOperationAction(ISD::FNEG , MVT::f32, Custom);
566
567    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
568
569    // Use ANDPS and ORPS to simulate FCOPYSIGN.
570    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
571    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
572
573    // We don't support sin/cos/fmod
574    setOperationAction(ISD::FSIN , MVT::f32, Expand);
575    setOperationAction(ISD::FCOS , MVT::f32, Expand);
576
577    // Special cases we handle for FP constants.
578    addLegalFPImmediate(APFloat(+0.0f)); // xorps
579    addLegalFPImmediate(APFloat(+0.0)); // FLD0
580    addLegalFPImmediate(APFloat(+1.0)); // FLD1
581    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
582    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
583
584    if (!UnsafeFPMath) {
585      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
586      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
587    }
588  } else if (!UseSoftFloat) {
589    // f32 and f64 in x87.
590    // Set up the FP register classes.
591    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
592    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
593
594    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
595    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
596    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
597    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
598
599    if (!UnsafeFPMath) {
600      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
601      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
602    }
603    addLegalFPImmediate(APFloat(+0.0)); // FLD0
604    addLegalFPImmediate(APFloat(+1.0)); // FLD1
605    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
606    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
607    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
608    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
609    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
610    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
611  }
612
613  // We don't support FMA.
614  setOperationAction(ISD::FMA, MVT::f64, Expand);
615  setOperationAction(ISD::FMA, MVT::f32, Expand);
616
617  // Long double always uses X87.
618  if (!UseSoftFloat) {
619    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
620    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
622    {
623      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
624      addLegalFPImmediate(TmpFlt);  // FLD0
625      TmpFlt.changeSign();
626      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
627
628      bool ignored;
629      APFloat TmpFlt2(+1.0);
630      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
631                      &ignored);
632      addLegalFPImmediate(TmpFlt2);  // FLD1
633      TmpFlt2.changeSign();
634      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
635    }
636
637    if (!UnsafeFPMath) {
638      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
639      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
640    }
641
642    setOperationAction(ISD::FMA, MVT::f80, Expand);
643  }
644
645  // Always use a library call for pow.
646  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
647  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
648  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
649
650  setOperationAction(ISD::FLOG, MVT::f80, Expand);
651  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
652  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
653  setOperationAction(ISD::FEXP, MVT::f80, Expand);
654  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
655
656  // First set operation action for all vector types to either promote
657  // (for widening) or expand (for scalarization). Then we will selectively
658  // turn on ones that can be effectively codegen'd.
659  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
660       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
661    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
662    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
663    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
664    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
665    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
666    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
667    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
668    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
669    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
670    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
671    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
672    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
673    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
674    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
675    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
676    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
677    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
678    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
679    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
680    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
681    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
711    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
715    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
716         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
717      setTruncStoreAction((MVT::SimpleValueType)VT,
718                          (MVT::SimpleValueType)InnerVT, Expand);
719    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
720    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
721    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
722  }
723
724  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
725  // with -msoft-float, disable use of MMX as well.
726  if (!UseSoftFloat && Subtarget->hasMMX()) {
727    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
728    // No operations on x86mmx supported, everything uses intrinsics.
729  }
730
731  // MMX-sized vectors (other than x86mmx) are expected to be expanded
732  // into smaller operations.
733  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
734  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
735  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
736  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
737  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
738  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
739  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
740  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
741  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
742  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
743  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
744  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
745  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
746  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
747  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
748  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
749  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
750  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
751  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
752  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
753  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
754  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
755  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
756  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
757  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
758  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
759  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
760  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
761  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
762
763  if (!UseSoftFloat && Subtarget->hasXMM()) {
764    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
765
766    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
767    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
768    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
769    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
770    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
771    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
772    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
773    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
774    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
775    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
776    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
777    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
778  }
779
780  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
781    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
782
783    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
784    // registers cannot be used even for integer operations.
785    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
786    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
787    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
788    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
789
790    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
791    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
792    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
793    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
794    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
795    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
796    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
797    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
798    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
799    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
800    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
801    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
802    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
803    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
804    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
805    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
806
807    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
808    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
809    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
810    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
811
812    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
813    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
814    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
815    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
816    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
817
818    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
819    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
820    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
821    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
822    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
823
824    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
825    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
826      EVT VT = (MVT::SimpleValueType)i;
827      // Do not attempt to custom lower non-power-of-2 vectors
828      if (!isPowerOf2_32(VT.getVectorNumElements()))
829        continue;
830      // Do not attempt to custom lower non-128-bit vectors
831      if (!VT.is128BitVector())
832        continue;
833      setOperationAction(ISD::BUILD_VECTOR,
834                         VT.getSimpleVT().SimpleTy, Custom);
835      setOperationAction(ISD::VECTOR_SHUFFLE,
836                         VT.getSimpleVT().SimpleTy, Custom);
837      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
838                         VT.getSimpleVT().SimpleTy, Custom);
839    }
840
841    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
842    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
843    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
844    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
845    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
846    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
847
848    if (Subtarget->is64Bit()) {
849      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
850      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
851    }
852
853    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
854    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
855      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
856      EVT VT = SVT;
857
858      // Do not attempt to promote non-128-bit vectors
859      if (!VT.is128BitVector())
860        continue;
861
862      setOperationAction(ISD::AND,    SVT, Promote);
863      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
864      setOperationAction(ISD::OR,     SVT, Promote);
865      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
866      setOperationAction(ISD::XOR,    SVT, Promote);
867      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
868      setOperationAction(ISD::LOAD,   SVT, Promote);
869      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
870      setOperationAction(ISD::SELECT, SVT, Promote);
871      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
872    }
873
874    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
875
876    // Custom lower v2i64 and v2f64 selects.
877    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
879    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
880    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
881
882    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
883    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
884  }
885
886  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
887    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
888    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
889    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
890    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
891    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
892    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
893    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
894    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
895    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
896    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
897
898    // FIXME: Do we need to handle scalar-to-vector here?
899    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
900
901    // Can turn SHL into an integer multiply.
902    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
903    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
904
905    // i8 and i16 vectors are custom , because the source register and source
906    // source memory operand types are not the same width.  f32 vectors are
907    // custom since the immediate controlling the insert encodes additional
908    // information.
909    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
910    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
911    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
913
914    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
915    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
916    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
917    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
918
919    if (Subtarget->is64Bit()) {
920      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
921      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
922    }
923  }
924
925  if (Subtarget->hasSSE2() || Subtarget->hasAVX()) {
926    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
927    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
928    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
929    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
930
931    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
932    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
933    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
934
935    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
936    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
937  }
938
939  if (Subtarget->hasSSE42() || Subtarget->hasAVX())
940    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
941
942  if (!UseSoftFloat && Subtarget->hasAVX()) {
943    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
944    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
945    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
946    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
947    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
948    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
949
950    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
951    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
952    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
953
954    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
955    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
956    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
957    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
958    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
959    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
960
961    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
962    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
963    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
964    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
965    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
966    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
967
968    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
969    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
970    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
971
972    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
973    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
974    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
975    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
976    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
977    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
978
979    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
980    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
981    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
982    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
983
984    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
985    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
986    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
987    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
988
989    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
990    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
991
992    setOperationAction(ISD::VSETCC,            MVT::v8i32, Custom);
993    setOperationAction(ISD::VSETCC,            MVT::v4i64, Custom);
994
995    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
996    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
997    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
998
999    // Custom lower several nodes for 256-bit types.
1000    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1001                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1002      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1003      EVT VT = SVT;
1004
1005      // Extract subvector is special because the value type
1006      // (result) is 128-bit but the source is 256-bit wide.
1007      if (VT.is128BitVector())
1008        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1009
1010      // Do not attempt to custom lower other non-256-bit vectors
1011      if (!VT.is256BitVector())
1012        continue;
1013
1014      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1015      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1016      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1017      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1018      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1019      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1020    }
1021
1022    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1023    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1024      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1025      EVT VT = SVT;
1026
1027      // Do not attempt to promote non-256-bit vectors
1028      if (!VT.is256BitVector())
1029        continue;
1030
1031      setOperationAction(ISD::AND,    SVT, Promote);
1032      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1033      setOperationAction(ISD::OR,     SVT, Promote);
1034      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1035      setOperationAction(ISD::XOR,    SVT, Promote);
1036      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1037      setOperationAction(ISD::LOAD,   SVT, Promote);
1038      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1039      setOperationAction(ISD::SELECT, SVT, Promote);
1040      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1041    }
1042  }
1043
1044  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1045  // of this type with custom code.
1046  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1047         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1048    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1049  }
1050
1051  // We want to custom lower some of our intrinsics.
1052  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1053
1054
1055  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1056  // handle type legalization for these operations here.
1057  //
1058  // FIXME: We really should do custom legalization for addition and
1059  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1060  // than generic legalization for 64-bit multiplication-with-overflow, though.
1061  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1062    // Add/Sub/Mul with overflow operations are custom lowered.
1063    MVT VT = IntVTs[i];
1064    setOperationAction(ISD::SADDO, VT, Custom);
1065    setOperationAction(ISD::UADDO, VT, Custom);
1066    setOperationAction(ISD::SSUBO, VT, Custom);
1067    setOperationAction(ISD::USUBO, VT, Custom);
1068    setOperationAction(ISD::SMULO, VT, Custom);
1069    setOperationAction(ISD::UMULO, VT, Custom);
1070  }
1071
1072  // There are no 8-bit 3-address imul/mul instructions
1073  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1074  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1075
1076  if (!Subtarget->is64Bit()) {
1077    // These libcalls are not available in 32-bit.
1078    setLibcallName(RTLIB::SHL_I128, 0);
1079    setLibcallName(RTLIB::SRL_I128, 0);
1080    setLibcallName(RTLIB::SRA_I128, 0);
1081  }
1082
1083  // We have target-specific dag combine patterns for the following nodes:
1084  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1085  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1086  setTargetDAGCombine(ISD::BUILD_VECTOR);
1087  setTargetDAGCombine(ISD::SELECT);
1088  setTargetDAGCombine(ISD::SHL);
1089  setTargetDAGCombine(ISD::SRA);
1090  setTargetDAGCombine(ISD::SRL);
1091  setTargetDAGCombine(ISD::OR);
1092  setTargetDAGCombine(ISD::AND);
1093  setTargetDAGCombine(ISD::ADD);
1094  setTargetDAGCombine(ISD::SUB);
1095  setTargetDAGCombine(ISD::STORE);
1096  setTargetDAGCombine(ISD::ZERO_EXTEND);
1097  setTargetDAGCombine(ISD::SINT_TO_FP);
1098  if (Subtarget->is64Bit())
1099    setTargetDAGCombine(ISD::MUL);
1100
1101  computeRegisterProperties();
1102
1103  // On Darwin, -Os means optimize for size without hurting performance,
1104  // do not reduce the limit.
1105  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1106  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1107  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1108  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1109  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1110  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1111  setPrefLoopAlignment(16);
1112  benefitFromCodePlacementOpt = true;
1113
1114  setPrefFunctionAlignment(4);
1115}
1116
1117
1118MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1119  return MVT::i8;
1120}
1121
1122
1123/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1124/// the desired ByVal argument alignment.
1125static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1126  if (MaxAlign == 16)
1127    return;
1128  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1129    if (VTy->getBitWidth() == 128)
1130      MaxAlign = 16;
1131  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1132    unsigned EltAlign = 0;
1133    getMaxByValAlign(ATy->getElementType(), EltAlign);
1134    if (EltAlign > MaxAlign)
1135      MaxAlign = EltAlign;
1136  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1137    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1138      unsigned EltAlign = 0;
1139      getMaxByValAlign(STy->getElementType(i), EltAlign);
1140      if (EltAlign > MaxAlign)
1141        MaxAlign = EltAlign;
1142      if (MaxAlign == 16)
1143        break;
1144    }
1145  }
1146  return;
1147}
1148
1149/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1150/// function arguments in the caller parameter area. For X86, aggregates
1151/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1152/// are at 4-byte boundaries.
1153unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1154  if (Subtarget->is64Bit()) {
1155    // Max of 8 and alignment of type.
1156    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1157    if (TyAlign > 8)
1158      return TyAlign;
1159    return 8;
1160  }
1161
1162  unsigned Align = 4;
1163  if (Subtarget->hasXMM())
1164    getMaxByValAlign(Ty, Align);
1165  return Align;
1166}
1167
1168/// getOptimalMemOpType - Returns the target specific optimal type for load
1169/// and store operations as a result of memset, memcpy, and memmove
1170/// lowering. If DstAlign is zero that means it's safe to destination
1171/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1172/// means there isn't a need to check it against alignment requirement,
1173/// probably because the source does not need to be loaded. If
1174/// 'NonScalarIntSafe' is true, that means it's safe to return a
1175/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1176/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1177/// constant so it does not need to be loaded.
1178/// It returns EVT::Other if the type should be determined using generic
1179/// target-independent logic.
1180EVT
1181X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1182                                       unsigned DstAlign, unsigned SrcAlign,
1183                                       bool NonScalarIntSafe,
1184                                       bool MemcpyStrSrc,
1185                                       MachineFunction &MF) const {
1186  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1187  // linux.  This is because the stack realignment code can't handle certain
1188  // cases like PR2962.  This should be removed when PR2962 is fixed.
1189  const Function *F = MF.getFunction();
1190  if (NonScalarIntSafe &&
1191      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1192    if (Size >= 16 &&
1193        (Subtarget->isUnalignedMemAccessFast() ||
1194         ((DstAlign == 0 || DstAlign >= 16) &&
1195          (SrcAlign == 0 || SrcAlign >= 16))) &&
1196        Subtarget->getStackAlignment() >= 16) {
1197      if (Subtarget->hasSSE2())
1198        return MVT::v4i32;
1199      if (Subtarget->hasSSE1())
1200        return MVT::v4f32;
1201    } else if (!MemcpyStrSrc && Size >= 8 &&
1202               !Subtarget->is64Bit() &&
1203               Subtarget->getStackAlignment() >= 8 &&
1204               Subtarget->hasXMMInt()) {
1205      // Do not use f64 to lower memcpy if source is string constant. It's
1206      // better to use i32 to avoid the loads.
1207      return MVT::f64;
1208    }
1209  }
1210  if (Subtarget->is64Bit() && Size >= 8)
1211    return MVT::i64;
1212  return MVT::i32;
1213}
1214
1215/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1216/// current function.  The returned value is a member of the
1217/// MachineJumpTableInfo::JTEntryKind enum.
1218unsigned X86TargetLowering::getJumpTableEncoding() const {
1219  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1220  // symbol.
1221  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1222      Subtarget->isPICStyleGOT())
1223    return MachineJumpTableInfo::EK_Custom32;
1224
1225  // Otherwise, use the normal jump table encoding heuristics.
1226  return TargetLowering::getJumpTableEncoding();
1227}
1228
1229const MCExpr *
1230X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1231                                             const MachineBasicBlock *MBB,
1232                                             unsigned uid,MCContext &Ctx) const{
1233  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1234         Subtarget->isPICStyleGOT());
1235  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1236  // entries.
1237  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1238                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1239}
1240
1241/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1242/// jumptable.
1243SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1244                                                    SelectionDAG &DAG) const {
1245  if (!Subtarget->is64Bit())
1246    // This doesn't have DebugLoc associated with it, but is not really the
1247    // same as a Register.
1248    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1249  return Table;
1250}
1251
1252/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1253/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1254/// MCExpr.
1255const MCExpr *X86TargetLowering::
1256getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1257                             MCContext &Ctx) const {
1258  // X86-64 uses RIP relative addressing based on the jump table label.
1259  if (Subtarget->isPICStyleRIPRel())
1260    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1261
1262  // Otherwise, the reference is relative to the PIC base.
1263  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1264}
1265
1266// FIXME: Why this routine is here? Move to RegInfo!
1267std::pair<const TargetRegisterClass*, uint8_t>
1268X86TargetLowering::findRepresentativeClass(EVT VT) const{
1269  const TargetRegisterClass *RRC = 0;
1270  uint8_t Cost = 1;
1271  switch (VT.getSimpleVT().SimpleTy) {
1272  default:
1273    return TargetLowering::findRepresentativeClass(VT);
1274  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1275    RRC = (Subtarget->is64Bit()
1276           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1277    break;
1278  case MVT::x86mmx:
1279    RRC = X86::VR64RegisterClass;
1280    break;
1281  case MVT::f32: case MVT::f64:
1282  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1283  case MVT::v4f32: case MVT::v2f64:
1284  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1285  case MVT::v4f64:
1286    RRC = X86::VR128RegisterClass;
1287    break;
1288  }
1289  return std::make_pair(RRC, Cost);
1290}
1291
1292bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1293                                               unsigned &Offset) const {
1294  if (!Subtarget->isTargetLinux())
1295    return false;
1296
1297  if (Subtarget->is64Bit()) {
1298    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1299    Offset = 0x28;
1300    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1301      AddressSpace = 256;
1302    else
1303      AddressSpace = 257;
1304  } else {
1305    // %gs:0x14 on i386
1306    Offset = 0x14;
1307    AddressSpace = 256;
1308  }
1309  return true;
1310}
1311
1312
1313//===----------------------------------------------------------------------===//
1314//               Return Value Calling Convention Implementation
1315//===----------------------------------------------------------------------===//
1316
1317#include "X86GenCallingConv.inc"
1318
1319bool
1320X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1321				  MachineFunction &MF, bool isVarArg,
1322                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1323                        LLVMContext &Context) const {
1324  SmallVector<CCValAssign, 16> RVLocs;
1325  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1326                 RVLocs, Context);
1327  return CCInfo.CheckReturn(Outs, RetCC_X86);
1328}
1329
1330SDValue
1331X86TargetLowering::LowerReturn(SDValue Chain,
1332                               CallingConv::ID CallConv, bool isVarArg,
1333                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1334                               const SmallVectorImpl<SDValue> &OutVals,
1335                               DebugLoc dl, SelectionDAG &DAG) const {
1336  MachineFunction &MF = DAG.getMachineFunction();
1337  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1338
1339  SmallVector<CCValAssign, 16> RVLocs;
1340  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1341                 RVLocs, *DAG.getContext());
1342  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1343
1344  // Add the regs to the liveout set for the function.
1345  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1346  for (unsigned i = 0; i != RVLocs.size(); ++i)
1347    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1348      MRI.addLiveOut(RVLocs[i].getLocReg());
1349
1350  SDValue Flag;
1351
1352  SmallVector<SDValue, 6> RetOps;
1353  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1354  // Operand #1 = Bytes To Pop
1355  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1356                   MVT::i16));
1357
1358  // Copy the result values into the output registers.
1359  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1360    CCValAssign &VA = RVLocs[i];
1361    assert(VA.isRegLoc() && "Can only return in registers!");
1362    SDValue ValToCopy = OutVals[i];
1363    EVT ValVT = ValToCopy.getValueType();
1364
1365    // If this is x86-64, and we disabled SSE, we can't return FP values,
1366    // or SSE or MMX vectors.
1367    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1368         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1369          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1370      report_fatal_error("SSE register return with SSE disabled");
1371    }
1372    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1373    // llvm-gcc has never done it right and no one has noticed, so this
1374    // should be OK for now.
1375    if (ValVT == MVT::f64 &&
1376        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1377      report_fatal_error("SSE2 register return with SSE2 disabled");
1378
1379    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1380    // the RET instruction and handled by the FP Stackifier.
1381    if (VA.getLocReg() == X86::ST0 ||
1382        VA.getLocReg() == X86::ST1) {
1383      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1384      // change the value to the FP stack register class.
1385      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1386        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1387      RetOps.push_back(ValToCopy);
1388      // Don't emit a copytoreg.
1389      continue;
1390    }
1391
1392    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1393    // which is returned in RAX / RDX.
1394    if (Subtarget->is64Bit()) {
1395      if (ValVT == MVT::x86mmx) {
1396        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1397          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1398          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1399                                  ValToCopy);
1400          // If we don't have SSE2 available, convert to v4f32 so the generated
1401          // register is legal.
1402          if (!Subtarget->hasSSE2())
1403            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1404        }
1405      }
1406    }
1407
1408    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1409    Flag = Chain.getValue(1);
1410  }
1411
1412  // The x86-64 ABI for returning structs by value requires that we copy
1413  // the sret argument into %rax for the return. We saved the argument into
1414  // a virtual register in the entry block, so now we copy the value out
1415  // and into %rax.
1416  if (Subtarget->is64Bit() &&
1417      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1418    MachineFunction &MF = DAG.getMachineFunction();
1419    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1420    unsigned Reg = FuncInfo->getSRetReturnReg();
1421    assert(Reg &&
1422           "SRetReturnReg should have been set in LowerFormalArguments().");
1423    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1424
1425    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1426    Flag = Chain.getValue(1);
1427
1428    // RAX now acts like a return value.
1429    MRI.addLiveOut(X86::RAX);
1430  }
1431
1432  RetOps[0] = Chain;  // Update chain.
1433
1434  // Add the flag if we have it.
1435  if (Flag.getNode())
1436    RetOps.push_back(Flag);
1437
1438  return DAG.getNode(X86ISD::RET_FLAG, dl,
1439                     MVT::Other, &RetOps[0], RetOps.size());
1440}
1441
1442bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1443  if (N->getNumValues() != 1)
1444    return false;
1445  if (!N->hasNUsesOfValue(1, 0))
1446    return false;
1447
1448  SDNode *Copy = *N->use_begin();
1449  if (Copy->getOpcode() != ISD::CopyToReg &&
1450      Copy->getOpcode() != ISD::FP_EXTEND)
1451    return false;
1452
1453  bool HasRet = false;
1454  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1455       UI != UE; ++UI) {
1456    if (UI->getOpcode() != X86ISD::RET_FLAG)
1457      return false;
1458    HasRet = true;
1459  }
1460
1461  return HasRet;
1462}
1463
1464EVT
1465X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1466                                            ISD::NodeType ExtendKind) const {
1467  MVT ReturnMVT;
1468  // TODO: Is this also valid on 32-bit?
1469  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1470    ReturnMVT = MVT::i8;
1471  else
1472    ReturnMVT = MVT::i32;
1473
1474  EVT MinVT = getRegisterType(Context, ReturnMVT);
1475  return VT.bitsLT(MinVT) ? MinVT : VT;
1476}
1477
1478/// LowerCallResult - Lower the result values of a call into the
1479/// appropriate copies out of appropriate physical registers.
1480///
1481SDValue
1482X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1483                                   CallingConv::ID CallConv, bool isVarArg,
1484                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1485                                   DebugLoc dl, SelectionDAG &DAG,
1486                                   SmallVectorImpl<SDValue> &InVals) const {
1487
1488  // Assign locations to each value returned by this call.
1489  SmallVector<CCValAssign, 16> RVLocs;
1490  bool Is64Bit = Subtarget->is64Bit();
1491  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1492		 getTargetMachine(), RVLocs, *DAG.getContext());
1493  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1494
1495  // Copy all of the result registers out of their specified physreg.
1496  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1497    CCValAssign &VA = RVLocs[i];
1498    EVT CopyVT = VA.getValVT();
1499
1500    // If this is x86-64, and we disabled SSE, we can't return FP values
1501    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1502        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1503      report_fatal_error("SSE register return with SSE disabled");
1504    }
1505
1506    SDValue Val;
1507
1508    // If this is a call to a function that returns an fp value on the floating
1509    // point stack, we must guarantee the the value is popped from the stack, so
1510    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1511    // if the return value is not used. We use the FpPOP_RETVAL instruction
1512    // instead.
1513    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1514      // If we prefer to use the value in xmm registers, copy it out as f80 and
1515      // use a truncate to move it from fp stack reg to xmm reg.
1516      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1517      SDValue Ops[] = { Chain, InFlag };
1518      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1519                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1520      Val = Chain.getValue(0);
1521
1522      // Round the f80 to the right size, which also moves it to the appropriate
1523      // xmm register.
1524      if (CopyVT != VA.getValVT())
1525        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1526                          // This truncation won't change the value.
1527                          DAG.getIntPtrConstant(1));
1528    } else {
1529      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1530                                 CopyVT, InFlag).getValue(1);
1531      Val = Chain.getValue(0);
1532    }
1533    InFlag = Chain.getValue(2);
1534    InVals.push_back(Val);
1535  }
1536
1537  return Chain;
1538}
1539
1540
1541//===----------------------------------------------------------------------===//
1542//                C & StdCall & Fast Calling Convention implementation
1543//===----------------------------------------------------------------------===//
1544//  StdCall calling convention seems to be standard for many Windows' API
1545//  routines and around. It differs from C calling convention just a little:
1546//  callee should clean up the stack, not caller. Symbols should be also
1547//  decorated in some fancy way :) It doesn't support any vector arguments.
1548//  For info on fast calling convention see Fast Calling Convention (tail call)
1549//  implementation LowerX86_32FastCCCallTo.
1550
1551/// CallIsStructReturn - Determines whether a call uses struct return
1552/// semantics.
1553static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1554  if (Outs.empty())
1555    return false;
1556
1557  return Outs[0].Flags.isSRet();
1558}
1559
1560/// ArgsAreStructReturn - Determines whether a function uses struct
1561/// return semantics.
1562static bool
1563ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1564  if (Ins.empty())
1565    return false;
1566
1567  return Ins[0].Flags.isSRet();
1568}
1569
1570/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1571/// by "Src" to address "Dst" with size and alignment information specified by
1572/// the specific parameter attribute. The copy will be passed as a byval
1573/// function parameter.
1574static SDValue
1575CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1576                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1577                          DebugLoc dl) {
1578  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1579
1580  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1581                       /*isVolatile*/false, /*AlwaysInline=*/true,
1582                       MachinePointerInfo(), MachinePointerInfo());
1583}
1584
1585/// IsTailCallConvention - Return true if the calling convention is one that
1586/// supports tail call optimization.
1587static bool IsTailCallConvention(CallingConv::ID CC) {
1588  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1589}
1590
1591bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1592  if (!CI->isTailCall())
1593    return false;
1594
1595  CallSite CS(CI);
1596  CallingConv::ID CalleeCC = CS.getCallingConv();
1597  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1598    return false;
1599
1600  return true;
1601}
1602
1603/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1604/// a tailcall target by changing its ABI.
1605static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1606  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1607}
1608
1609SDValue
1610X86TargetLowering::LowerMemArgument(SDValue Chain,
1611                                    CallingConv::ID CallConv,
1612                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1613                                    DebugLoc dl, SelectionDAG &DAG,
1614                                    const CCValAssign &VA,
1615                                    MachineFrameInfo *MFI,
1616                                    unsigned i) const {
1617  // Create the nodes corresponding to a load from this parameter slot.
1618  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1619  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1620  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1621  EVT ValVT;
1622
1623  // If value is passed by pointer we have address passed instead of the value
1624  // itself.
1625  if (VA.getLocInfo() == CCValAssign::Indirect)
1626    ValVT = VA.getLocVT();
1627  else
1628    ValVT = VA.getValVT();
1629
1630  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1631  // changed with more analysis.
1632  // In case of tail call optimization mark all arguments mutable. Since they
1633  // could be overwritten by lowering of arguments in case of a tail call.
1634  if (Flags.isByVal()) {
1635    unsigned Bytes = Flags.getByValSize();
1636    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1637    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1638    return DAG.getFrameIndex(FI, getPointerTy());
1639  } else {
1640    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1641                                    VA.getLocMemOffset(), isImmutable);
1642    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1643    return DAG.getLoad(ValVT, dl, Chain, FIN,
1644                       MachinePointerInfo::getFixedStack(FI),
1645                       false, false, 0);
1646  }
1647}
1648
1649SDValue
1650X86TargetLowering::LowerFormalArguments(SDValue Chain,
1651                                        CallingConv::ID CallConv,
1652                                        bool isVarArg,
1653                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1654                                        DebugLoc dl,
1655                                        SelectionDAG &DAG,
1656                                        SmallVectorImpl<SDValue> &InVals)
1657                                          const {
1658  MachineFunction &MF = DAG.getMachineFunction();
1659  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1660
1661  const Function* Fn = MF.getFunction();
1662  if (Fn->hasExternalLinkage() &&
1663      Subtarget->isTargetCygMing() &&
1664      Fn->getName() == "main")
1665    FuncInfo->setForceFramePointer(true);
1666
1667  MachineFrameInfo *MFI = MF.getFrameInfo();
1668  bool Is64Bit = Subtarget->is64Bit();
1669  bool IsWin64 = Subtarget->isTargetWin64();
1670
1671  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1672         "Var args not supported with calling convention fastcc or ghc");
1673
1674  // Assign locations to all of the incoming arguments.
1675  SmallVector<CCValAssign, 16> ArgLocs;
1676  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1677                 ArgLocs, *DAG.getContext());
1678
1679  // Allocate shadow area for Win64
1680  if (IsWin64) {
1681    CCInfo.AllocateStack(32, 8);
1682  }
1683
1684  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1685
1686  unsigned LastVal = ~0U;
1687  SDValue ArgValue;
1688  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1689    CCValAssign &VA = ArgLocs[i];
1690    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1691    // places.
1692    assert(VA.getValNo() != LastVal &&
1693           "Don't support value assigned to multiple locs yet");
1694    LastVal = VA.getValNo();
1695
1696    if (VA.isRegLoc()) {
1697      EVT RegVT = VA.getLocVT();
1698      TargetRegisterClass *RC = NULL;
1699      if (RegVT == MVT::i32)
1700        RC = X86::GR32RegisterClass;
1701      else if (Is64Bit && RegVT == MVT::i64)
1702        RC = X86::GR64RegisterClass;
1703      else if (RegVT == MVT::f32)
1704        RC = X86::FR32RegisterClass;
1705      else if (RegVT == MVT::f64)
1706        RC = X86::FR64RegisterClass;
1707      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1708        RC = X86::VR256RegisterClass;
1709      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1710        RC = X86::VR128RegisterClass;
1711      else if (RegVT == MVT::x86mmx)
1712        RC = X86::VR64RegisterClass;
1713      else
1714        llvm_unreachable("Unknown argument type!");
1715
1716      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1717      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1718
1719      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1720      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1721      // right size.
1722      if (VA.getLocInfo() == CCValAssign::SExt)
1723        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1724                               DAG.getValueType(VA.getValVT()));
1725      else if (VA.getLocInfo() == CCValAssign::ZExt)
1726        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1727                               DAG.getValueType(VA.getValVT()));
1728      else if (VA.getLocInfo() == CCValAssign::BCvt)
1729        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1730
1731      if (VA.isExtInLoc()) {
1732        // Handle MMX values passed in XMM regs.
1733        if (RegVT.isVector()) {
1734          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1735                                 ArgValue);
1736        } else
1737          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1738      }
1739    } else {
1740      assert(VA.isMemLoc());
1741      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1742    }
1743
1744    // If value is passed via pointer - do a load.
1745    if (VA.getLocInfo() == CCValAssign::Indirect)
1746      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1747                             MachinePointerInfo(), false, false, 0);
1748
1749    InVals.push_back(ArgValue);
1750  }
1751
1752  // The x86-64 ABI for returning structs by value requires that we copy
1753  // the sret argument into %rax for the return. Save the argument into
1754  // a virtual register so that we can access it from the return points.
1755  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1756    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1757    unsigned Reg = FuncInfo->getSRetReturnReg();
1758    if (!Reg) {
1759      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1760      FuncInfo->setSRetReturnReg(Reg);
1761    }
1762    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1763    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1764  }
1765
1766  unsigned StackSize = CCInfo.getNextStackOffset();
1767  // Align stack specially for tail calls.
1768  if (FuncIsMadeTailCallSafe(CallConv))
1769    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1770
1771  // If the function takes variable number of arguments, make a frame index for
1772  // the start of the first vararg value... for expansion of llvm.va_start.
1773  if (isVarArg) {
1774    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1775                    CallConv != CallingConv::X86_ThisCall)) {
1776      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1777    }
1778    if (Is64Bit) {
1779      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1780
1781      // FIXME: We should really autogenerate these arrays
1782      static const unsigned GPR64ArgRegsWin64[] = {
1783        X86::RCX, X86::RDX, X86::R8,  X86::R9
1784      };
1785      static const unsigned GPR64ArgRegs64Bit[] = {
1786        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1787      };
1788      static const unsigned XMMArgRegs64Bit[] = {
1789        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1790        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1791      };
1792      const unsigned *GPR64ArgRegs;
1793      unsigned NumXMMRegs = 0;
1794
1795      if (IsWin64) {
1796        // The XMM registers which might contain var arg parameters are shadowed
1797        // in their paired GPR.  So we only need to save the GPR to their home
1798        // slots.
1799        TotalNumIntRegs = 4;
1800        GPR64ArgRegs = GPR64ArgRegsWin64;
1801      } else {
1802        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1803        GPR64ArgRegs = GPR64ArgRegs64Bit;
1804
1805        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1806      }
1807      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1808                                                       TotalNumIntRegs);
1809
1810      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1811      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1812             "SSE register cannot be used when SSE is disabled!");
1813      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1814             "SSE register cannot be used when SSE is disabled!");
1815      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1816        // Kernel mode asks for SSE to be disabled, so don't push them
1817        // on the stack.
1818        TotalNumXMMRegs = 0;
1819
1820      if (IsWin64) {
1821        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1822        // Get to the caller-allocated home save location.  Add 8 to account
1823        // for the return address.
1824        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1825        FuncInfo->setRegSaveFrameIndex(
1826          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1827        // Fixup to set vararg frame on shadow area (4 x i64).
1828        if (NumIntRegs < 4)
1829          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1830      } else {
1831        // For X86-64, if there are vararg parameters that are passed via
1832        // registers, then we must store them to their spots on the stack so they
1833        // may be loaded by deferencing the result of va_next.
1834        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1835        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1836        FuncInfo->setRegSaveFrameIndex(
1837          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1838                               false));
1839      }
1840
1841      // Store the integer parameter registers.
1842      SmallVector<SDValue, 8> MemOps;
1843      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1844                                        getPointerTy());
1845      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1846      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1847        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1848                                  DAG.getIntPtrConstant(Offset));
1849        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1850                                     X86::GR64RegisterClass);
1851        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1852        SDValue Store =
1853          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1854                       MachinePointerInfo::getFixedStack(
1855                         FuncInfo->getRegSaveFrameIndex(), Offset),
1856                       false, false, 0);
1857        MemOps.push_back(Store);
1858        Offset += 8;
1859      }
1860
1861      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1862        // Now store the XMM (fp + vector) parameter registers.
1863        SmallVector<SDValue, 11> SaveXMMOps;
1864        SaveXMMOps.push_back(Chain);
1865
1866        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1867        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1868        SaveXMMOps.push_back(ALVal);
1869
1870        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1871                               FuncInfo->getRegSaveFrameIndex()));
1872        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1873                               FuncInfo->getVarArgsFPOffset()));
1874
1875        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1876          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1877                                       X86::VR128RegisterClass);
1878          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1879          SaveXMMOps.push_back(Val);
1880        }
1881        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1882                                     MVT::Other,
1883                                     &SaveXMMOps[0], SaveXMMOps.size()));
1884      }
1885
1886      if (!MemOps.empty())
1887        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1888                            &MemOps[0], MemOps.size());
1889    }
1890  }
1891
1892  // Some CCs need callee pop.
1893  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1894    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1895  } else {
1896    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1897    // If this is an sret function, the return should pop the hidden pointer.
1898    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1899      FuncInfo->setBytesToPopOnReturn(4);
1900  }
1901
1902  if (!Is64Bit) {
1903    // RegSaveFrameIndex is X86-64 only.
1904    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1905    if (CallConv == CallingConv::X86_FastCall ||
1906        CallConv == CallingConv::X86_ThisCall)
1907      // fastcc functions can't have varargs.
1908      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1909  }
1910
1911  return Chain;
1912}
1913
1914SDValue
1915X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1916                                    SDValue StackPtr, SDValue Arg,
1917                                    DebugLoc dl, SelectionDAG &DAG,
1918                                    const CCValAssign &VA,
1919                                    ISD::ArgFlagsTy Flags) const {
1920  unsigned LocMemOffset = VA.getLocMemOffset();
1921  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1922  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1923  if (Flags.isByVal())
1924    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1925
1926  return DAG.getStore(Chain, dl, Arg, PtrOff,
1927                      MachinePointerInfo::getStack(LocMemOffset),
1928                      false, false, 0);
1929}
1930
1931/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1932/// optimization is performed and it is required.
1933SDValue
1934X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1935                                           SDValue &OutRetAddr, SDValue Chain,
1936                                           bool IsTailCall, bool Is64Bit,
1937                                           int FPDiff, DebugLoc dl) const {
1938  // Adjust the Return address stack slot.
1939  EVT VT = getPointerTy();
1940  OutRetAddr = getReturnAddressFrameIndex(DAG);
1941
1942  // Load the "old" Return address.
1943  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1944                           false, false, 0);
1945  return SDValue(OutRetAddr.getNode(), 1);
1946}
1947
1948/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1949/// optimization is performed and it is required (FPDiff!=0).
1950static SDValue
1951EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1952                         SDValue Chain, SDValue RetAddrFrIdx,
1953                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1954  // Store the return address to the appropriate stack slot.
1955  if (!FPDiff) return Chain;
1956  // Calculate the new stack slot for the return address.
1957  int SlotSize = Is64Bit ? 8 : 4;
1958  int NewReturnAddrFI =
1959    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1960  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1961  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1962  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1963                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1964                       false, false, 0);
1965  return Chain;
1966}
1967
1968SDValue
1969X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1970                             CallingConv::ID CallConv, bool isVarArg,
1971                             bool &isTailCall,
1972                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1973                             const SmallVectorImpl<SDValue> &OutVals,
1974                             const SmallVectorImpl<ISD::InputArg> &Ins,
1975                             DebugLoc dl, SelectionDAG &DAG,
1976                             SmallVectorImpl<SDValue> &InVals) const {
1977  MachineFunction &MF = DAG.getMachineFunction();
1978  bool Is64Bit        = Subtarget->is64Bit();
1979  bool IsWin64        = Subtarget->isTargetWin64();
1980  bool IsStructRet    = CallIsStructReturn(Outs);
1981  bool IsSibcall      = false;
1982
1983  if (isTailCall) {
1984    // Check if it's really possible to do a tail call.
1985    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1986                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1987                                                   Outs, OutVals, Ins, DAG);
1988
1989    // Sibcalls are automatically detected tailcalls which do not require
1990    // ABI changes.
1991    if (!GuaranteedTailCallOpt && isTailCall)
1992      IsSibcall = true;
1993
1994    if (isTailCall)
1995      ++NumTailCalls;
1996  }
1997
1998  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1999         "Var args not supported with calling convention fastcc or ghc");
2000
2001  // Analyze operands of the call, assigning locations to each operand.
2002  SmallVector<CCValAssign, 16> ArgLocs;
2003  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2004                 ArgLocs, *DAG.getContext());
2005
2006  // Allocate shadow area for Win64
2007  if (IsWin64) {
2008    CCInfo.AllocateStack(32, 8);
2009  }
2010
2011  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2012
2013  // Get a count of how many bytes are to be pushed on the stack.
2014  unsigned NumBytes = CCInfo.getNextStackOffset();
2015  if (IsSibcall)
2016    // This is a sibcall. The memory operands are available in caller's
2017    // own caller's stack.
2018    NumBytes = 0;
2019  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2020    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2021
2022  int FPDiff = 0;
2023  if (isTailCall && !IsSibcall) {
2024    // Lower arguments at fp - stackoffset + fpdiff.
2025    unsigned NumBytesCallerPushed =
2026      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2027    FPDiff = NumBytesCallerPushed - NumBytes;
2028
2029    // Set the delta of movement of the returnaddr stackslot.
2030    // But only set if delta is greater than previous delta.
2031    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2032      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2033  }
2034
2035  if (!IsSibcall)
2036    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2037
2038  SDValue RetAddrFrIdx;
2039  // Load return address for tail calls.
2040  if (isTailCall && FPDiff)
2041    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2042                                    Is64Bit, FPDiff, dl);
2043
2044  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2045  SmallVector<SDValue, 8> MemOpChains;
2046  SDValue StackPtr;
2047
2048  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2049  // of tail call optimization arguments are handle later.
2050  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2051    CCValAssign &VA = ArgLocs[i];
2052    EVT RegVT = VA.getLocVT();
2053    SDValue Arg = OutVals[i];
2054    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2055    bool isByVal = Flags.isByVal();
2056
2057    // Promote the value if needed.
2058    switch (VA.getLocInfo()) {
2059    default: llvm_unreachable("Unknown loc info!");
2060    case CCValAssign::Full: break;
2061    case CCValAssign::SExt:
2062      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2063      break;
2064    case CCValAssign::ZExt:
2065      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2066      break;
2067    case CCValAssign::AExt:
2068      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2069        // Special case: passing MMX values in XMM registers.
2070        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2071        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2072        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2073      } else
2074        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2075      break;
2076    case CCValAssign::BCvt:
2077      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2078      break;
2079    case CCValAssign::Indirect: {
2080      // Store the argument.
2081      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2082      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2083      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2084                           MachinePointerInfo::getFixedStack(FI),
2085                           false, false, 0);
2086      Arg = SpillSlot;
2087      break;
2088    }
2089    }
2090
2091    if (VA.isRegLoc()) {
2092      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2093      if (isVarArg && IsWin64) {
2094        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2095        // shadow reg if callee is a varargs function.
2096        unsigned ShadowReg = 0;
2097        switch (VA.getLocReg()) {
2098        case X86::XMM0: ShadowReg = X86::RCX; break;
2099        case X86::XMM1: ShadowReg = X86::RDX; break;
2100        case X86::XMM2: ShadowReg = X86::R8; break;
2101        case X86::XMM3: ShadowReg = X86::R9; break;
2102        }
2103        if (ShadowReg)
2104          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2105      }
2106    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2107      assert(VA.isMemLoc());
2108      if (StackPtr.getNode() == 0)
2109        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2110      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2111                                             dl, DAG, VA, Flags));
2112    }
2113  }
2114
2115  if (!MemOpChains.empty())
2116    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2117                        &MemOpChains[0], MemOpChains.size());
2118
2119  // Build a sequence of copy-to-reg nodes chained together with token chain
2120  // and flag operands which copy the outgoing args into registers.
2121  SDValue InFlag;
2122  // Tail call byval lowering might overwrite argument registers so in case of
2123  // tail call optimization the copies to registers are lowered later.
2124  if (!isTailCall)
2125    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2126      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2127                               RegsToPass[i].second, InFlag);
2128      InFlag = Chain.getValue(1);
2129    }
2130
2131  if (Subtarget->isPICStyleGOT()) {
2132    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2133    // GOT pointer.
2134    if (!isTailCall) {
2135      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2136                               DAG.getNode(X86ISD::GlobalBaseReg,
2137                                           DebugLoc(), getPointerTy()),
2138                               InFlag);
2139      InFlag = Chain.getValue(1);
2140    } else {
2141      // If we are tail calling and generating PIC/GOT style code load the
2142      // address of the callee into ECX. The value in ecx is used as target of
2143      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2144      // for tail calls on PIC/GOT architectures. Normally we would just put the
2145      // address of GOT into ebx and then call target@PLT. But for tail calls
2146      // ebx would be restored (since ebx is callee saved) before jumping to the
2147      // target@PLT.
2148
2149      // Note: The actual moving to ECX is done further down.
2150      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2151      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2152          !G->getGlobal()->hasProtectedVisibility())
2153        Callee = LowerGlobalAddress(Callee, DAG);
2154      else if (isa<ExternalSymbolSDNode>(Callee))
2155        Callee = LowerExternalSymbol(Callee, DAG);
2156    }
2157  }
2158
2159  if (Is64Bit && isVarArg && !IsWin64) {
2160    // From AMD64 ABI document:
2161    // For calls that may call functions that use varargs or stdargs
2162    // (prototype-less calls or calls to functions containing ellipsis (...) in
2163    // the declaration) %al is used as hidden argument to specify the number
2164    // of SSE registers used. The contents of %al do not need to match exactly
2165    // the number of registers, but must be an ubound on the number of SSE
2166    // registers used and is in the range 0 - 8 inclusive.
2167
2168    // Count the number of XMM registers allocated.
2169    static const unsigned XMMArgRegs[] = {
2170      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2171      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2172    };
2173    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2174    assert((Subtarget->hasXMM() || !NumXMMRegs)
2175           && "SSE registers cannot be used when SSE is disabled");
2176
2177    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2178                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2179    InFlag = Chain.getValue(1);
2180  }
2181
2182
2183  // For tail calls lower the arguments to the 'real' stack slot.
2184  if (isTailCall) {
2185    // Force all the incoming stack arguments to be loaded from the stack
2186    // before any new outgoing arguments are stored to the stack, because the
2187    // outgoing stack slots may alias the incoming argument stack slots, and
2188    // the alias isn't otherwise explicit. This is slightly more conservative
2189    // than necessary, because it means that each store effectively depends
2190    // on every argument instead of just those arguments it would clobber.
2191    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2192
2193    SmallVector<SDValue, 8> MemOpChains2;
2194    SDValue FIN;
2195    int FI = 0;
2196    // Do not flag preceding copytoreg stuff together with the following stuff.
2197    InFlag = SDValue();
2198    if (GuaranteedTailCallOpt) {
2199      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2200        CCValAssign &VA = ArgLocs[i];
2201        if (VA.isRegLoc())
2202          continue;
2203        assert(VA.isMemLoc());
2204        SDValue Arg = OutVals[i];
2205        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2206        // Create frame index.
2207        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2208        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2209        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2210        FIN = DAG.getFrameIndex(FI, getPointerTy());
2211
2212        if (Flags.isByVal()) {
2213          // Copy relative to framepointer.
2214          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2215          if (StackPtr.getNode() == 0)
2216            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2217                                          getPointerTy());
2218          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2219
2220          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2221                                                           ArgChain,
2222                                                           Flags, DAG, dl));
2223        } else {
2224          // Store relative to framepointer.
2225          MemOpChains2.push_back(
2226            DAG.getStore(ArgChain, dl, Arg, FIN,
2227                         MachinePointerInfo::getFixedStack(FI),
2228                         false, false, 0));
2229        }
2230      }
2231    }
2232
2233    if (!MemOpChains2.empty())
2234      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2235                          &MemOpChains2[0], MemOpChains2.size());
2236
2237    // Copy arguments to their registers.
2238    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2239      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2240                               RegsToPass[i].second, InFlag);
2241      InFlag = Chain.getValue(1);
2242    }
2243    InFlag =SDValue();
2244
2245    // Store the return address to the appropriate stack slot.
2246    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2247                                     FPDiff, dl);
2248  }
2249
2250  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2251    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2252    // In the 64-bit large code model, we have to make all calls
2253    // through a register, since the call instruction's 32-bit
2254    // pc-relative offset may not be large enough to hold the whole
2255    // address.
2256  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2257    // If the callee is a GlobalAddress node (quite common, every direct call
2258    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2259    // it.
2260
2261    // We should use extra load for direct calls to dllimported functions in
2262    // non-JIT mode.
2263    const GlobalValue *GV = G->getGlobal();
2264    if (!GV->hasDLLImportLinkage()) {
2265      unsigned char OpFlags = 0;
2266      bool ExtraLoad = false;
2267      unsigned WrapperKind = ISD::DELETED_NODE;
2268
2269      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2270      // external symbols most go through the PLT in PIC mode.  If the symbol
2271      // has hidden or protected visibility, or if it is static or local, then
2272      // we don't need to use the PLT - we can directly call it.
2273      if (Subtarget->isTargetELF() &&
2274          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2275          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2276        OpFlags = X86II::MO_PLT;
2277      } else if (Subtarget->isPICStyleStubAny() &&
2278                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2279                 (!Subtarget->getTargetTriple().isMacOSX() ||
2280                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2281        // PC-relative references to external symbols should go through $stub,
2282        // unless we're building with the leopard linker or later, which
2283        // automatically synthesizes these stubs.
2284        OpFlags = X86II::MO_DARWIN_STUB;
2285      } else if (Subtarget->isPICStyleRIPRel() &&
2286                 isa<Function>(GV) &&
2287                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2288        // If the function is marked as non-lazy, generate an indirect call
2289        // which loads from the GOT directly. This avoids runtime overhead
2290        // at the cost of eager binding (and one extra byte of encoding).
2291        OpFlags = X86II::MO_GOTPCREL;
2292        WrapperKind = X86ISD::WrapperRIP;
2293        ExtraLoad = true;
2294      }
2295
2296      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2297                                          G->getOffset(), OpFlags);
2298
2299      // Add a wrapper if needed.
2300      if (WrapperKind != ISD::DELETED_NODE)
2301        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2302      // Add extra indirection if needed.
2303      if (ExtraLoad)
2304        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2305                             MachinePointerInfo::getGOT(),
2306                             false, false, 0);
2307    }
2308  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2309    unsigned char OpFlags = 0;
2310
2311    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2312    // external symbols should go through the PLT.
2313    if (Subtarget->isTargetELF() &&
2314        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2315      OpFlags = X86II::MO_PLT;
2316    } else if (Subtarget->isPICStyleStubAny() &&
2317               (!Subtarget->getTargetTriple().isMacOSX() ||
2318                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2319      // PC-relative references to external symbols should go through $stub,
2320      // unless we're building with the leopard linker or later, which
2321      // automatically synthesizes these stubs.
2322      OpFlags = X86II::MO_DARWIN_STUB;
2323    }
2324
2325    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2326                                         OpFlags);
2327  }
2328
2329  // Returns a chain & a flag for retval copy to use.
2330  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2331  SmallVector<SDValue, 8> Ops;
2332
2333  if (!IsSibcall && isTailCall) {
2334    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2335                           DAG.getIntPtrConstant(0, true), InFlag);
2336    InFlag = Chain.getValue(1);
2337  }
2338
2339  Ops.push_back(Chain);
2340  Ops.push_back(Callee);
2341
2342  if (isTailCall)
2343    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2344
2345  // Add argument registers to the end of the list so that they are known live
2346  // into the call.
2347  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2348    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2349                                  RegsToPass[i].second.getValueType()));
2350
2351  // Add an implicit use GOT pointer in EBX.
2352  if (!isTailCall && Subtarget->isPICStyleGOT())
2353    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2354
2355  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2356  if (Is64Bit && isVarArg && !IsWin64)
2357    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2358
2359  if (InFlag.getNode())
2360    Ops.push_back(InFlag);
2361
2362  if (isTailCall) {
2363    // We used to do:
2364    //// If this is the first return lowered for this function, add the regs
2365    //// to the liveout set for the function.
2366    // This isn't right, although it's probably harmless on x86; liveouts
2367    // should be computed from returns not tail calls.  Consider a void
2368    // function making a tail call to a function returning int.
2369    return DAG.getNode(X86ISD::TC_RETURN, dl,
2370                       NodeTys, &Ops[0], Ops.size());
2371  }
2372
2373  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2374  InFlag = Chain.getValue(1);
2375
2376  // Create the CALLSEQ_END node.
2377  unsigned NumBytesForCalleeToPush;
2378  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2379    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2380  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2381    // If this is a call to a struct-return function, the callee
2382    // pops the hidden struct pointer, so we have to push it back.
2383    // This is common for Darwin/X86, Linux & Mingw32 targets.
2384    NumBytesForCalleeToPush = 4;
2385  else
2386    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2387
2388  // Returns a flag for retval copy to use.
2389  if (!IsSibcall) {
2390    Chain = DAG.getCALLSEQ_END(Chain,
2391                               DAG.getIntPtrConstant(NumBytes, true),
2392                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2393                                                     true),
2394                               InFlag);
2395    InFlag = Chain.getValue(1);
2396  }
2397
2398  // Handle result values, copying them out of physregs into vregs that we
2399  // return.
2400  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2401                         Ins, dl, DAG, InVals);
2402}
2403
2404
2405//===----------------------------------------------------------------------===//
2406//                Fast Calling Convention (tail call) implementation
2407//===----------------------------------------------------------------------===//
2408
2409//  Like std call, callee cleans arguments, convention except that ECX is
2410//  reserved for storing the tail called function address. Only 2 registers are
2411//  free for argument passing (inreg). Tail call optimization is performed
2412//  provided:
2413//                * tailcallopt is enabled
2414//                * caller/callee are fastcc
2415//  On X86_64 architecture with GOT-style position independent code only local
2416//  (within module) calls are supported at the moment.
2417//  To keep the stack aligned according to platform abi the function
2418//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2419//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2420//  If a tail called function callee has more arguments than the caller the
2421//  caller needs to make sure that there is room to move the RETADDR to. This is
2422//  achieved by reserving an area the size of the argument delta right after the
2423//  original REtADDR, but before the saved framepointer or the spilled registers
2424//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2425//  stack layout:
2426//    arg1
2427//    arg2
2428//    RETADDR
2429//    [ new RETADDR
2430//      move area ]
2431//    (possible EBP)
2432//    ESI
2433//    EDI
2434//    local1 ..
2435
2436/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2437/// for a 16 byte align requirement.
2438unsigned
2439X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2440                                               SelectionDAG& DAG) const {
2441  MachineFunction &MF = DAG.getMachineFunction();
2442  const TargetMachine &TM = MF.getTarget();
2443  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2444  unsigned StackAlignment = TFI.getStackAlignment();
2445  uint64_t AlignMask = StackAlignment - 1;
2446  int64_t Offset = StackSize;
2447  uint64_t SlotSize = TD->getPointerSize();
2448  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2449    // Number smaller than 12 so just add the difference.
2450    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2451  } else {
2452    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2453    Offset = ((~AlignMask) & Offset) + StackAlignment +
2454      (StackAlignment-SlotSize);
2455  }
2456  return Offset;
2457}
2458
2459/// MatchingStackOffset - Return true if the given stack call argument is
2460/// already available in the same position (relatively) of the caller's
2461/// incoming argument stack.
2462static
2463bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2464                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2465                         const X86InstrInfo *TII) {
2466  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2467  int FI = INT_MAX;
2468  if (Arg.getOpcode() == ISD::CopyFromReg) {
2469    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2470    if (!TargetRegisterInfo::isVirtualRegister(VR))
2471      return false;
2472    MachineInstr *Def = MRI->getVRegDef(VR);
2473    if (!Def)
2474      return false;
2475    if (!Flags.isByVal()) {
2476      if (!TII->isLoadFromStackSlot(Def, FI))
2477        return false;
2478    } else {
2479      unsigned Opcode = Def->getOpcode();
2480      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2481          Def->getOperand(1).isFI()) {
2482        FI = Def->getOperand(1).getIndex();
2483        Bytes = Flags.getByValSize();
2484      } else
2485        return false;
2486    }
2487  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2488    if (Flags.isByVal())
2489      // ByVal argument is passed in as a pointer but it's now being
2490      // dereferenced. e.g.
2491      // define @foo(%struct.X* %A) {
2492      //   tail call @bar(%struct.X* byval %A)
2493      // }
2494      return false;
2495    SDValue Ptr = Ld->getBasePtr();
2496    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2497    if (!FINode)
2498      return false;
2499    FI = FINode->getIndex();
2500  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2501    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2502    FI = FINode->getIndex();
2503    Bytes = Flags.getByValSize();
2504  } else
2505    return false;
2506
2507  assert(FI != INT_MAX);
2508  if (!MFI->isFixedObjectIndex(FI))
2509    return false;
2510  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2511}
2512
2513/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2514/// for tail call optimization. Targets which want to do tail call
2515/// optimization should implement this function.
2516bool
2517X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2518                                                     CallingConv::ID CalleeCC,
2519                                                     bool isVarArg,
2520                                                     bool isCalleeStructRet,
2521                                                     bool isCallerStructRet,
2522                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2523                                    const SmallVectorImpl<SDValue> &OutVals,
2524                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2525                                                     SelectionDAG& DAG) const {
2526  if (!IsTailCallConvention(CalleeCC) &&
2527      CalleeCC != CallingConv::C)
2528    return false;
2529
2530  // If -tailcallopt is specified, make fastcc functions tail-callable.
2531  const MachineFunction &MF = DAG.getMachineFunction();
2532  const Function *CallerF = DAG.getMachineFunction().getFunction();
2533  CallingConv::ID CallerCC = CallerF->getCallingConv();
2534  bool CCMatch = CallerCC == CalleeCC;
2535
2536  if (GuaranteedTailCallOpt) {
2537    if (IsTailCallConvention(CalleeCC) && CCMatch)
2538      return true;
2539    return false;
2540  }
2541
2542  // Look for obvious safe cases to perform tail call optimization that do not
2543  // require ABI changes. This is what gcc calls sibcall.
2544
2545  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2546  // emit a special epilogue.
2547  if (RegInfo->needsStackRealignment(MF))
2548    return false;
2549
2550  // Also avoid sibcall optimization if either caller or callee uses struct
2551  // return semantics.
2552  if (isCalleeStructRet || isCallerStructRet)
2553    return false;
2554
2555  // An stdcall caller is expected to clean up its arguments; the callee
2556  // isn't going to do that.
2557  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2558    return false;
2559
2560  // Do not sibcall optimize vararg calls unless all arguments are passed via
2561  // registers.
2562  if (isVarArg && !Outs.empty()) {
2563
2564    // Optimizing for varargs on Win64 is unlikely to be safe without
2565    // additional testing.
2566    if (Subtarget->isTargetWin64())
2567      return false;
2568
2569    SmallVector<CCValAssign, 16> ArgLocs;
2570    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2571		   getTargetMachine(), ArgLocs, *DAG.getContext());
2572
2573    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2574    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2575      if (!ArgLocs[i].isRegLoc())
2576        return false;
2577  }
2578
2579  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2580  // Therefore if it's not used by the call it is not safe to optimize this into
2581  // a sibcall.
2582  bool Unused = false;
2583  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2584    if (!Ins[i].Used) {
2585      Unused = true;
2586      break;
2587    }
2588  }
2589  if (Unused) {
2590    SmallVector<CCValAssign, 16> RVLocs;
2591    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2592		   getTargetMachine(), RVLocs, *DAG.getContext());
2593    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2594    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2595      CCValAssign &VA = RVLocs[i];
2596      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2597        return false;
2598    }
2599  }
2600
2601  // If the calling conventions do not match, then we'd better make sure the
2602  // results are returned in the same way as what the caller expects.
2603  if (!CCMatch) {
2604    SmallVector<CCValAssign, 16> RVLocs1;
2605    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2606		    getTargetMachine(), RVLocs1, *DAG.getContext());
2607    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2608
2609    SmallVector<CCValAssign, 16> RVLocs2;
2610    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2611		    getTargetMachine(), RVLocs2, *DAG.getContext());
2612    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2613
2614    if (RVLocs1.size() != RVLocs2.size())
2615      return false;
2616    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2617      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2618        return false;
2619      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2620        return false;
2621      if (RVLocs1[i].isRegLoc()) {
2622        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2623          return false;
2624      } else {
2625        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2626          return false;
2627      }
2628    }
2629  }
2630
2631  // If the callee takes no arguments then go on to check the results of the
2632  // call.
2633  if (!Outs.empty()) {
2634    // Check if stack adjustment is needed. For now, do not do this if any
2635    // argument is passed on the stack.
2636    SmallVector<CCValAssign, 16> ArgLocs;
2637    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2638		   getTargetMachine(), ArgLocs, *DAG.getContext());
2639
2640    // Allocate shadow area for Win64
2641    if (Subtarget->isTargetWin64()) {
2642      CCInfo.AllocateStack(32, 8);
2643    }
2644
2645    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2646    if (CCInfo.getNextStackOffset()) {
2647      MachineFunction &MF = DAG.getMachineFunction();
2648      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2649        return false;
2650
2651      // Check if the arguments are already laid out in the right way as
2652      // the caller's fixed stack objects.
2653      MachineFrameInfo *MFI = MF.getFrameInfo();
2654      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2655      const X86InstrInfo *TII =
2656        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2657      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2658        CCValAssign &VA = ArgLocs[i];
2659        SDValue Arg = OutVals[i];
2660        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2661        if (VA.getLocInfo() == CCValAssign::Indirect)
2662          return false;
2663        if (!VA.isRegLoc()) {
2664          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2665                                   MFI, MRI, TII))
2666            return false;
2667        }
2668      }
2669    }
2670
2671    // If the tailcall address may be in a register, then make sure it's
2672    // possible to register allocate for it. In 32-bit, the call address can
2673    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2674    // callee-saved registers are restored. These happen to be the same
2675    // registers used to pass 'inreg' arguments so watch out for those.
2676    if (!Subtarget->is64Bit() &&
2677        !isa<GlobalAddressSDNode>(Callee) &&
2678        !isa<ExternalSymbolSDNode>(Callee)) {
2679      unsigned NumInRegs = 0;
2680      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2681        CCValAssign &VA = ArgLocs[i];
2682        if (!VA.isRegLoc())
2683          continue;
2684        unsigned Reg = VA.getLocReg();
2685        switch (Reg) {
2686        default: break;
2687        case X86::EAX: case X86::EDX: case X86::ECX:
2688          if (++NumInRegs == 3)
2689            return false;
2690          break;
2691        }
2692      }
2693    }
2694  }
2695
2696  return true;
2697}
2698
2699FastISel *
2700X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2701  return X86::createFastISel(funcInfo);
2702}
2703
2704
2705//===----------------------------------------------------------------------===//
2706//                           Other Lowering Hooks
2707//===----------------------------------------------------------------------===//
2708
2709static bool MayFoldLoad(SDValue Op) {
2710  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2711}
2712
2713static bool MayFoldIntoStore(SDValue Op) {
2714  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2715}
2716
2717static bool isTargetShuffle(unsigned Opcode) {
2718  switch(Opcode) {
2719  default: return false;
2720  case X86ISD::PSHUFD:
2721  case X86ISD::PSHUFHW:
2722  case X86ISD::PSHUFLW:
2723  case X86ISD::SHUFPD:
2724  case X86ISD::PALIGN:
2725  case X86ISD::SHUFPS:
2726  case X86ISD::MOVLHPS:
2727  case X86ISD::MOVLHPD:
2728  case X86ISD::MOVHLPS:
2729  case X86ISD::MOVLPS:
2730  case X86ISD::MOVLPD:
2731  case X86ISD::MOVSHDUP:
2732  case X86ISD::MOVSLDUP:
2733  case X86ISD::MOVDDUP:
2734  case X86ISD::MOVSS:
2735  case X86ISD::MOVSD:
2736  case X86ISD::UNPCKLPS:
2737  case X86ISD::UNPCKLPD:
2738  case X86ISD::VUNPCKLPSY:
2739  case X86ISD::VUNPCKLPDY:
2740  case X86ISD::PUNPCKLWD:
2741  case X86ISD::PUNPCKLBW:
2742  case X86ISD::PUNPCKLDQ:
2743  case X86ISD::PUNPCKLQDQ:
2744  case X86ISD::UNPCKHPS:
2745  case X86ISD::UNPCKHPD:
2746  case X86ISD::VUNPCKHPSY:
2747  case X86ISD::VUNPCKHPDY:
2748  case X86ISD::PUNPCKHWD:
2749  case X86ISD::PUNPCKHBW:
2750  case X86ISD::PUNPCKHDQ:
2751  case X86ISD::PUNPCKHQDQ:
2752  case X86ISD::VPERMILPS:
2753  case X86ISD::VPERMILPSY:
2754  case X86ISD::VPERMILPD:
2755  case X86ISD::VPERMILPDY:
2756    return true;
2757  }
2758  return false;
2759}
2760
2761static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2762                                               SDValue V1, SelectionDAG &DAG) {
2763  switch(Opc) {
2764  default: llvm_unreachable("Unknown x86 shuffle node");
2765  case X86ISD::MOVSHDUP:
2766  case X86ISD::MOVSLDUP:
2767  case X86ISD::MOVDDUP:
2768    return DAG.getNode(Opc, dl, VT, V1);
2769  }
2770
2771  return SDValue();
2772}
2773
2774static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2775                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2776  switch(Opc) {
2777  default: llvm_unreachable("Unknown x86 shuffle node");
2778  case X86ISD::PSHUFD:
2779  case X86ISD::PSHUFHW:
2780  case X86ISD::PSHUFLW:
2781  case X86ISD::VPERMILPS:
2782  case X86ISD::VPERMILPSY:
2783  case X86ISD::VPERMILPD:
2784  case X86ISD::VPERMILPDY:
2785    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2786  }
2787
2788  return SDValue();
2789}
2790
2791static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2792               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2793  switch(Opc) {
2794  default: llvm_unreachable("Unknown x86 shuffle node");
2795  case X86ISD::PALIGN:
2796  case X86ISD::SHUFPD:
2797  case X86ISD::SHUFPS:
2798    return DAG.getNode(Opc, dl, VT, V1, V2,
2799                       DAG.getConstant(TargetMask, MVT::i8));
2800  }
2801  return SDValue();
2802}
2803
2804static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2805                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2806  switch(Opc) {
2807  default: llvm_unreachable("Unknown x86 shuffle node");
2808  case X86ISD::MOVLHPS:
2809  case X86ISD::MOVLHPD:
2810  case X86ISD::MOVHLPS:
2811  case X86ISD::MOVLPS:
2812  case X86ISD::MOVLPD:
2813  case X86ISD::MOVSS:
2814  case X86ISD::MOVSD:
2815  case X86ISD::UNPCKLPS:
2816  case X86ISD::UNPCKLPD:
2817  case X86ISD::VUNPCKLPSY:
2818  case X86ISD::VUNPCKLPDY:
2819  case X86ISD::PUNPCKLWD:
2820  case X86ISD::PUNPCKLBW:
2821  case X86ISD::PUNPCKLDQ:
2822  case X86ISD::PUNPCKLQDQ:
2823  case X86ISD::UNPCKHPS:
2824  case X86ISD::UNPCKHPD:
2825  case X86ISD::VUNPCKHPSY:
2826  case X86ISD::VUNPCKHPDY:
2827  case X86ISD::PUNPCKHWD:
2828  case X86ISD::PUNPCKHBW:
2829  case X86ISD::PUNPCKHDQ:
2830  case X86ISD::PUNPCKHQDQ:
2831    return DAG.getNode(Opc, dl, VT, V1, V2);
2832  }
2833  return SDValue();
2834}
2835
2836SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2837  MachineFunction &MF = DAG.getMachineFunction();
2838  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2839  int ReturnAddrIndex = FuncInfo->getRAIndex();
2840
2841  if (ReturnAddrIndex == 0) {
2842    // Set up a frame object for the return address.
2843    uint64_t SlotSize = TD->getPointerSize();
2844    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2845                                                           false);
2846    FuncInfo->setRAIndex(ReturnAddrIndex);
2847  }
2848
2849  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2850}
2851
2852
2853bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2854                                       bool hasSymbolicDisplacement) {
2855  // Offset should fit into 32 bit immediate field.
2856  if (!isInt<32>(Offset))
2857    return false;
2858
2859  // If we don't have a symbolic displacement - we don't have any extra
2860  // restrictions.
2861  if (!hasSymbolicDisplacement)
2862    return true;
2863
2864  // FIXME: Some tweaks might be needed for medium code model.
2865  if (M != CodeModel::Small && M != CodeModel::Kernel)
2866    return false;
2867
2868  // For small code model we assume that latest object is 16MB before end of 31
2869  // bits boundary. We may also accept pretty large negative constants knowing
2870  // that all objects are in the positive half of address space.
2871  if (M == CodeModel::Small && Offset < 16*1024*1024)
2872    return true;
2873
2874  // For kernel code model we know that all object resist in the negative half
2875  // of 32bits address space. We may not accept negative offsets, since they may
2876  // be just off and we may accept pretty large positive ones.
2877  if (M == CodeModel::Kernel && Offset > 0)
2878    return true;
2879
2880  return false;
2881}
2882
2883/// isCalleePop - Determines whether the callee is required to pop its
2884/// own arguments. Callee pop is necessary to support tail calls.
2885bool X86::isCalleePop(CallingConv::ID CallingConv,
2886                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2887  if (IsVarArg)
2888    return false;
2889
2890  switch (CallingConv) {
2891  default:
2892    return false;
2893  case CallingConv::X86_StdCall:
2894    return !is64Bit;
2895  case CallingConv::X86_FastCall:
2896    return !is64Bit;
2897  case CallingConv::X86_ThisCall:
2898    return !is64Bit;
2899  case CallingConv::Fast:
2900    return TailCallOpt;
2901  case CallingConv::GHC:
2902    return TailCallOpt;
2903  }
2904}
2905
2906/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2907/// specific condition code, returning the condition code and the LHS/RHS of the
2908/// comparison to make.
2909static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2910                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2911  if (!isFP) {
2912    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2913      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2914        // X > -1   -> X == 0, jump !sign.
2915        RHS = DAG.getConstant(0, RHS.getValueType());
2916        return X86::COND_NS;
2917      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2918        // X < 0   -> X == 0, jump on sign.
2919        return X86::COND_S;
2920      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2921        // X < 1   -> X <= 0
2922        RHS = DAG.getConstant(0, RHS.getValueType());
2923        return X86::COND_LE;
2924      }
2925    }
2926
2927    switch (SetCCOpcode) {
2928    default: llvm_unreachable("Invalid integer condition!");
2929    case ISD::SETEQ:  return X86::COND_E;
2930    case ISD::SETGT:  return X86::COND_G;
2931    case ISD::SETGE:  return X86::COND_GE;
2932    case ISD::SETLT:  return X86::COND_L;
2933    case ISD::SETLE:  return X86::COND_LE;
2934    case ISD::SETNE:  return X86::COND_NE;
2935    case ISD::SETULT: return X86::COND_B;
2936    case ISD::SETUGT: return X86::COND_A;
2937    case ISD::SETULE: return X86::COND_BE;
2938    case ISD::SETUGE: return X86::COND_AE;
2939    }
2940  }
2941
2942  // First determine if it is required or is profitable to flip the operands.
2943
2944  // If LHS is a foldable load, but RHS is not, flip the condition.
2945  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2946      !ISD::isNON_EXTLoad(RHS.getNode())) {
2947    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2948    std::swap(LHS, RHS);
2949  }
2950
2951  switch (SetCCOpcode) {
2952  default: break;
2953  case ISD::SETOLT:
2954  case ISD::SETOLE:
2955  case ISD::SETUGT:
2956  case ISD::SETUGE:
2957    std::swap(LHS, RHS);
2958    break;
2959  }
2960
2961  // On a floating point condition, the flags are set as follows:
2962  // ZF  PF  CF   op
2963  //  0 | 0 | 0 | X > Y
2964  //  0 | 0 | 1 | X < Y
2965  //  1 | 0 | 0 | X == Y
2966  //  1 | 1 | 1 | unordered
2967  switch (SetCCOpcode) {
2968  default: llvm_unreachable("Condcode should be pre-legalized away");
2969  case ISD::SETUEQ:
2970  case ISD::SETEQ:   return X86::COND_E;
2971  case ISD::SETOLT:              // flipped
2972  case ISD::SETOGT:
2973  case ISD::SETGT:   return X86::COND_A;
2974  case ISD::SETOLE:              // flipped
2975  case ISD::SETOGE:
2976  case ISD::SETGE:   return X86::COND_AE;
2977  case ISD::SETUGT:              // flipped
2978  case ISD::SETULT:
2979  case ISD::SETLT:   return X86::COND_B;
2980  case ISD::SETUGE:              // flipped
2981  case ISD::SETULE:
2982  case ISD::SETLE:   return X86::COND_BE;
2983  case ISD::SETONE:
2984  case ISD::SETNE:   return X86::COND_NE;
2985  case ISD::SETUO:   return X86::COND_P;
2986  case ISD::SETO:    return X86::COND_NP;
2987  case ISD::SETOEQ:
2988  case ISD::SETUNE:  return X86::COND_INVALID;
2989  }
2990}
2991
2992/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2993/// code. Current x86 isa includes the following FP cmov instructions:
2994/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2995static bool hasFPCMov(unsigned X86CC) {
2996  switch (X86CC) {
2997  default:
2998    return false;
2999  case X86::COND_B:
3000  case X86::COND_BE:
3001  case X86::COND_E:
3002  case X86::COND_P:
3003  case X86::COND_A:
3004  case X86::COND_AE:
3005  case X86::COND_NE:
3006  case X86::COND_NP:
3007    return true;
3008  }
3009}
3010
3011/// isFPImmLegal - Returns true if the target can instruction select the
3012/// specified FP immediate natively. If false, the legalizer will
3013/// materialize the FP immediate as a load from a constant pool.
3014bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3015  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3016    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3017      return true;
3018  }
3019  return false;
3020}
3021
3022/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3023/// the specified range (L, H].
3024static bool isUndefOrInRange(int Val, int Low, int Hi) {
3025  return (Val < 0) || (Val >= Low && Val < Hi);
3026}
3027
3028/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3029/// specified value.
3030static bool isUndefOrEqual(int Val, int CmpVal) {
3031  if (Val < 0 || Val == CmpVal)
3032    return true;
3033  return false;
3034}
3035
3036/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3037/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3038/// the second operand.
3039static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3040  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3041    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3042  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3043    return (Mask[0] < 2 && Mask[1] < 2);
3044  return false;
3045}
3046
3047bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3048  SmallVector<int, 8> M;
3049  N->getMask(M);
3050  return ::isPSHUFDMask(M, N->getValueType(0));
3051}
3052
3053/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3054/// is suitable for input to PSHUFHW.
3055static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3056  if (VT != MVT::v8i16)
3057    return false;
3058
3059  // Lower quadword copied in order or undef.
3060  for (int i = 0; i != 4; ++i)
3061    if (Mask[i] >= 0 && Mask[i] != i)
3062      return false;
3063
3064  // Upper quadword shuffled.
3065  for (int i = 4; i != 8; ++i)
3066    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3067      return false;
3068
3069  return true;
3070}
3071
3072bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3073  SmallVector<int, 8> M;
3074  N->getMask(M);
3075  return ::isPSHUFHWMask(M, N->getValueType(0));
3076}
3077
3078/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3079/// is suitable for input to PSHUFLW.
3080static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3081  if (VT != MVT::v8i16)
3082    return false;
3083
3084  // Upper quadword copied in order.
3085  for (int i = 4; i != 8; ++i)
3086    if (Mask[i] >= 0 && Mask[i] != i)
3087      return false;
3088
3089  // Lower quadword shuffled.
3090  for (int i = 0; i != 4; ++i)
3091    if (Mask[i] >= 4)
3092      return false;
3093
3094  return true;
3095}
3096
3097bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3098  SmallVector<int, 8> M;
3099  N->getMask(M);
3100  return ::isPSHUFLWMask(M, N->getValueType(0));
3101}
3102
3103/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3104/// is suitable for input to PALIGNR.
3105static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3106                          bool hasSSSE3) {
3107  int i, e = VT.getVectorNumElements();
3108  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3109    return false;
3110
3111  // Do not handle v2i64 / v2f64 shuffles with palignr.
3112  if (e < 4 || !hasSSSE3)
3113    return false;
3114
3115  for (i = 0; i != e; ++i)
3116    if (Mask[i] >= 0)
3117      break;
3118
3119  // All undef, not a palignr.
3120  if (i == e)
3121    return false;
3122
3123  // Make sure we're shifting in the right direction.
3124  if (Mask[i] <= i)
3125    return false;
3126
3127  int s = Mask[i] - i;
3128
3129  // Check the rest of the elements to see if they are consecutive.
3130  for (++i; i != e; ++i) {
3131    int m = Mask[i];
3132    if (m >= 0 && m != s+i)
3133      return false;
3134  }
3135  return true;
3136}
3137
3138/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3139/// specifies a shuffle of elements that is suitable for input to SHUFP*.
3140static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3141  int NumElems = VT.getVectorNumElements();
3142  if (NumElems != 2 && NumElems != 4)
3143    return false;
3144
3145  int Half = NumElems / 2;
3146  for (int i = 0; i < Half; ++i)
3147    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3148      return false;
3149  for (int i = Half; i < NumElems; ++i)
3150    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3151      return false;
3152
3153  return true;
3154}
3155
3156bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3157  SmallVector<int, 8> M;
3158  N->getMask(M);
3159  return ::isSHUFPMask(M, N->getValueType(0));
3160}
3161
3162/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3163/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3164/// half elements to come from vector 1 (which would equal the dest.) and
3165/// the upper half to come from vector 2.
3166static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3167  int NumElems = VT.getVectorNumElements();
3168
3169  if (NumElems != 2 && NumElems != 4)
3170    return false;
3171
3172  int Half = NumElems / 2;
3173  for (int i = 0; i < Half; ++i)
3174    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3175      return false;
3176  for (int i = Half; i < NumElems; ++i)
3177    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3178      return false;
3179  return true;
3180}
3181
3182static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3183  SmallVector<int, 8> M;
3184  N->getMask(M);
3185  return isCommutedSHUFPMask(M, N->getValueType(0));
3186}
3187
3188/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3189/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3190bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3191  EVT VT = N->getValueType(0);
3192  unsigned NumElems = VT.getVectorNumElements();
3193
3194  if (VT.getSizeInBits() != 128)
3195    return false;
3196
3197  if (NumElems != 4)
3198    return false;
3199
3200  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3201  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3202         isUndefOrEqual(N->getMaskElt(1), 7) &&
3203         isUndefOrEqual(N->getMaskElt(2), 2) &&
3204         isUndefOrEqual(N->getMaskElt(3), 3);
3205}
3206
3207/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3208/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3209/// <2, 3, 2, 3>
3210bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3211  EVT VT = N->getValueType(0);
3212  unsigned NumElems = VT.getVectorNumElements();
3213
3214  if (VT.getSizeInBits() != 128)
3215    return false;
3216
3217  if (NumElems != 4)
3218    return false;
3219
3220  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3221         isUndefOrEqual(N->getMaskElt(1), 3) &&
3222         isUndefOrEqual(N->getMaskElt(2), 2) &&
3223         isUndefOrEqual(N->getMaskElt(3), 3);
3224}
3225
3226/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3227/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3228bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3229  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3230
3231  if (NumElems != 2 && NumElems != 4)
3232    return false;
3233
3234  for (unsigned i = 0; i < NumElems/2; ++i)
3235    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3236      return false;
3237
3238  for (unsigned i = NumElems/2; i < NumElems; ++i)
3239    if (!isUndefOrEqual(N->getMaskElt(i), i))
3240      return false;
3241
3242  return true;
3243}
3244
3245/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3246/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3247bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3248  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3249
3250  if ((NumElems != 2 && NumElems != 4)
3251      || N->getValueType(0).getSizeInBits() > 128)
3252    return false;
3253
3254  for (unsigned i = 0; i < NumElems/2; ++i)
3255    if (!isUndefOrEqual(N->getMaskElt(i), i))
3256      return false;
3257
3258  for (unsigned i = 0; i < NumElems/2; ++i)
3259    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3260      return false;
3261
3262  return true;
3263}
3264
3265/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3266/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3267static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3268                         bool V2IsSplat = false) {
3269  int NumElts = VT.getVectorNumElements();
3270
3271  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3272         "Unsupported vector type for unpckh");
3273
3274  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3275    return false;
3276
3277  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3278  // independently on 128-bit lanes.
3279  unsigned NumLanes = VT.getSizeInBits()/128;
3280  unsigned NumLaneElts = NumElts/NumLanes;
3281
3282  unsigned Start = 0;
3283  unsigned End = NumLaneElts;
3284  for (unsigned s = 0; s < NumLanes; ++s) {
3285    for (unsigned i = Start, j = s * NumLaneElts;
3286         i != End;
3287         i += 2, ++j) {
3288      int BitI  = Mask[i];
3289      int BitI1 = Mask[i+1];
3290      if (!isUndefOrEqual(BitI, j))
3291        return false;
3292      if (V2IsSplat) {
3293        if (!isUndefOrEqual(BitI1, NumElts))
3294          return false;
3295      } else {
3296        if (!isUndefOrEqual(BitI1, j + NumElts))
3297          return false;
3298      }
3299    }
3300    // Process the next 128 bits.
3301    Start += NumLaneElts;
3302    End += NumLaneElts;
3303  }
3304
3305  return true;
3306}
3307
3308bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3309  SmallVector<int, 8> M;
3310  N->getMask(M);
3311  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3312}
3313
3314/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3315/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3316static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3317                         bool V2IsSplat = false) {
3318  int NumElts = VT.getVectorNumElements();
3319
3320  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3321         "Unsupported vector type for unpckh");
3322
3323  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3324    return false;
3325
3326  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3327  // independently on 128-bit lanes.
3328  unsigned NumLanes = VT.getSizeInBits()/128;
3329  unsigned NumLaneElts = NumElts/NumLanes;
3330
3331  unsigned Start = 0;
3332  unsigned End = NumLaneElts;
3333  for (unsigned l = 0; l != NumLanes; ++l) {
3334    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3335                             i != End; i += 2, ++j) {
3336      int BitI  = Mask[i];
3337      int BitI1 = Mask[i+1];
3338      if (!isUndefOrEqual(BitI, j))
3339        return false;
3340      if (V2IsSplat) {
3341        if (isUndefOrEqual(BitI1, NumElts))
3342          return false;
3343      } else {
3344        if (!isUndefOrEqual(BitI1, j+NumElts))
3345          return false;
3346      }
3347    }
3348    // Process the next 128 bits.
3349    Start += NumLaneElts;
3350    End += NumLaneElts;
3351  }
3352  return true;
3353}
3354
3355bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3356  SmallVector<int, 8> M;
3357  N->getMask(M);
3358  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3359}
3360
3361/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3362/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3363/// <0, 0, 1, 1>
3364static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3365  int NumElems = VT.getVectorNumElements();
3366  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3367    return false;
3368
3369  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3370  // independently on 128-bit lanes.
3371  unsigned NumLanes = VT.getSizeInBits() / 128;
3372  unsigned NumLaneElts = NumElems / NumLanes;
3373
3374  for (unsigned s = 0; s < NumLanes; ++s) {
3375    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3376         i != NumLaneElts * (s + 1);
3377         i += 2, ++j) {
3378      int BitI  = Mask[i];
3379      int BitI1 = Mask[i+1];
3380
3381      if (!isUndefOrEqual(BitI, j))
3382        return false;
3383      if (!isUndefOrEqual(BitI1, j))
3384        return false;
3385    }
3386  }
3387
3388  return true;
3389}
3390
3391bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3392  SmallVector<int, 8> M;
3393  N->getMask(M);
3394  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3395}
3396
3397/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3398/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3399/// <2, 2, 3, 3>
3400static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3401  int NumElems = VT.getVectorNumElements();
3402  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3403    return false;
3404
3405  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3406    int BitI  = Mask[i];
3407    int BitI1 = Mask[i+1];
3408    if (!isUndefOrEqual(BitI, j))
3409      return false;
3410    if (!isUndefOrEqual(BitI1, j))
3411      return false;
3412  }
3413  return true;
3414}
3415
3416bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3417  SmallVector<int, 8> M;
3418  N->getMask(M);
3419  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3420}
3421
3422/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3423/// specifies a shuffle of elements that is suitable for input to MOVSS,
3424/// MOVSD, and MOVD, i.e. setting the lowest element.
3425static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3426  if (VT.getVectorElementType().getSizeInBits() < 32)
3427    return false;
3428
3429  int NumElts = VT.getVectorNumElements();
3430
3431  if (!isUndefOrEqual(Mask[0], NumElts))
3432    return false;
3433
3434  for (int i = 1; i < NumElts; ++i)
3435    if (!isUndefOrEqual(Mask[i], i))
3436      return false;
3437
3438  return true;
3439}
3440
3441bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3442  SmallVector<int, 8> M;
3443  N->getMask(M);
3444  return ::isMOVLMask(M, N->getValueType(0));
3445}
3446
3447/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3448/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3449/// Note that VPERMIL mask matching is different depending whether theunderlying
3450/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3451/// to the same elements of the low, but to the higher half of the source.
3452/// In VPERMILPD the two lanes could be shuffled independently of each other
3453/// with the same restriction that lanes can't be crossed.
3454static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3455                            const X86Subtarget *Subtarget) {
3456  int NumElts = VT.getVectorNumElements();
3457  int NumLanes = VT.getSizeInBits()/128;
3458
3459  if (!Subtarget->hasAVX())
3460    return false;
3461
3462  // Match any permutation of 128-bit vector with 64-bit types
3463  if (NumLanes == 1 && NumElts != 2)
3464    return false;
3465
3466  // Only match 256-bit with 32 types
3467  if (VT.getSizeInBits() == 256 && NumElts != 4)
3468    return false;
3469
3470  // The mask on the high lane is independent of the low. Both can match
3471  // any element in inside its own lane, but can't cross.
3472  int LaneSize = NumElts/NumLanes;
3473  for (int l = 0; l < NumLanes; ++l)
3474    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3475      int LaneStart = l*LaneSize;
3476      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3477        return false;
3478    }
3479
3480  return true;
3481}
3482
3483/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3484/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3485/// Note that VPERMIL mask matching is different depending whether theunderlying
3486/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3487/// to the same elements of the low, but to the higher half of the source.
3488/// In VPERMILPD the two lanes could be shuffled independently of each other
3489/// with the same restriction that lanes can't be crossed.
3490static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3491                            const X86Subtarget *Subtarget) {
3492  unsigned NumElts = VT.getVectorNumElements();
3493  unsigned NumLanes = VT.getSizeInBits()/128;
3494
3495  if (!Subtarget->hasAVX())
3496    return false;
3497
3498  // Match any permutation of 128-bit vector with 32-bit types
3499  if (NumLanes == 1 && NumElts != 4)
3500    return false;
3501
3502  // Only match 256-bit with 32 types
3503  if (VT.getSizeInBits() == 256 && NumElts != 8)
3504    return false;
3505
3506  // The mask on the high lane should be the same as the low. Actually,
3507  // they can differ if any of the corresponding index in a lane is undef
3508  // and the other stays in range.
3509  int LaneSize = NumElts/NumLanes;
3510  for (int i = 0; i < LaneSize; ++i) {
3511    int HighElt = i+LaneSize;
3512    if (Mask[i] < 0 && (isUndefOrInRange(Mask[HighElt], LaneSize, NumElts)))
3513      continue;
3514    if (Mask[HighElt] < 0 && (isUndefOrInRange(Mask[i], 0, LaneSize)))
3515      continue;
3516    if (Mask[HighElt]-Mask[i] != LaneSize)
3517      return false;
3518  }
3519
3520  return true;
3521}
3522
3523/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3524/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3525static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3526  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3527  EVT VT = SVOp->getValueType(0);
3528
3529  int NumElts = VT.getVectorNumElements();
3530  int NumLanes = VT.getSizeInBits()/128;
3531  int LaneSize = NumElts/NumLanes;
3532
3533  // Although the mask is equal for both lanes do it twice to get the cases
3534  // where a mask will match because the same mask element is undef on the
3535  // first half but valid on the second. This would get pathological cases
3536  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3537  unsigned Mask = 0;
3538  for (int l = 0; l < NumLanes; ++l) {
3539    for (int i = 0; i < LaneSize; ++i) {
3540      int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3541      if (MaskElt < 0)
3542        continue;
3543      if (MaskElt >= LaneSize)
3544        MaskElt -= LaneSize;
3545      Mask |= MaskElt << (i*2);
3546    }
3547  }
3548
3549  return Mask;
3550}
3551
3552/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3553/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3554static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3555  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3556  EVT VT = SVOp->getValueType(0);
3557
3558  int NumElts = VT.getVectorNumElements();
3559  int NumLanes = VT.getSizeInBits()/128;
3560
3561  unsigned Mask = 0;
3562  int LaneSize = NumElts/NumLanes;
3563  for (int l = 0; l < NumLanes; ++l)
3564    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3565      int MaskElt = SVOp->getMaskElt(i);
3566      if (MaskElt < 0)
3567        continue;
3568      Mask |= (MaskElt-l*LaneSize) << i;
3569    }
3570
3571  return Mask;
3572}
3573
3574/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3575/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3576/// element of vector 2 and the other elements to come from vector 1 in order.
3577static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3578                               bool V2IsSplat = false, bool V2IsUndef = false) {
3579  int NumOps = VT.getVectorNumElements();
3580  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3581    return false;
3582
3583  if (!isUndefOrEqual(Mask[0], 0))
3584    return false;
3585
3586  for (int i = 1; i < NumOps; ++i)
3587    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3588          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3589          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3590      return false;
3591
3592  return true;
3593}
3594
3595static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3596                           bool V2IsUndef = false) {
3597  SmallVector<int, 8> M;
3598  N->getMask(M);
3599  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3600}
3601
3602/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3603/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3604/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3605bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3606                         const X86Subtarget *Subtarget) {
3607  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3608    return false;
3609
3610  // The second vector must be undef
3611  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3612    return false;
3613
3614  EVT VT = N->getValueType(0);
3615  unsigned NumElems = VT.getVectorNumElements();
3616
3617  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3618      (VT.getSizeInBits() == 256 && NumElems != 8))
3619    return false;
3620
3621  // "i+1" is the value the indexed mask element must have
3622  for (unsigned i = 0; i < NumElems; i += 2)
3623    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3624        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3625      return false;
3626
3627  return true;
3628}
3629
3630/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3631/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3632/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3633bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3634                         const X86Subtarget *Subtarget) {
3635  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3636    return false;
3637
3638  // The second vector must be undef
3639  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3640    return false;
3641
3642  EVT VT = N->getValueType(0);
3643  unsigned NumElems = VT.getVectorNumElements();
3644
3645  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3646      (VT.getSizeInBits() == 256 && NumElems != 8))
3647    return false;
3648
3649  // "i" is the value the indexed mask element must have
3650  for (unsigned i = 0; i < NumElems; i += 2)
3651    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3652        !isUndefOrEqual(N->getMaskElt(i+1), i))
3653      return false;
3654
3655  return true;
3656}
3657
3658/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3659/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3660bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3661  int e = N->getValueType(0).getVectorNumElements() / 2;
3662
3663  for (int i = 0; i < e; ++i)
3664    if (!isUndefOrEqual(N->getMaskElt(i), i))
3665      return false;
3666  for (int i = 0; i < e; ++i)
3667    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3668      return false;
3669  return true;
3670}
3671
3672/// isVEXTRACTF128Index - Return true if the specified
3673/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3674/// suitable for input to VEXTRACTF128.
3675bool X86::isVEXTRACTF128Index(SDNode *N) {
3676  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3677    return false;
3678
3679  // The index should be aligned on a 128-bit boundary.
3680  uint64_t Index =
3681    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3682
3683  unsigned VL = N->getValueType(0).getVectorNumElements();
3684  unsigned VBits = N->getValueType(0).getSizeInBits();
3685  unsigned ElSize = VBits / VL;
3686  bool Result = (Index * ElSize) % 128 == 0;
3687
3688  return Result;
3689}
3690
3691/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3692/// operand specifies a subvector insert that is suitable for input to
3693/// VINSERTF128.
3694bool X86::isVINSERTF128Index(SDNode *N) {
3695  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3696    return false;
3697
3698  // The index should be aligned on a 128-bit boundary.
3699  uint64_t Index =
3700    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3701
3702  unsigned VL = N->getValueType(0).getVectorNumElements();
3703  unsigned VBits = N->getValueType(0).getSizeInBits();
3704  unsigned ElSize = VBits / VL;
3705  bool Result = (Index * ElSize) % 128 == 0;
3706
3707  return Result;
3708}
3709
3710/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3711/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3712unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3713  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3714  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3715
3716  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3717  unsigned Mask = 0;
3718  for (int i = 0; i < NumOperands; ++i) {
3719    int Val = SVOp->getMaskElt(NumOperands-i-1);
3720    if (Val < 0) Val = 0;
3721    if (Val >= NumOperands) Val -= NumOperands;
3722    Mask |= Val;
3723    if (i != NumOperands - 1)
3724      Mask <<= Shift;
3725  }
3726  return Mask;
3727}
3728
3729/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3730/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3731unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3732  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3733  unsigned Mask = 0;
3734  // 8 nodes, but we only care about the last 4.
3735  for (unsigned i = 7; i >= 4; --i) {
3736    int Val = SVOp->getMaskElt(i);
3737    if (Val >= 0)
3738      Mask |= (Val - 4);
3739    if (i != 4)
3740      Mask <<= 2;
3741  }
3742  return Mask;
3743}
3744
3745/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3746/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3747unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3748  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3749  unsigned Mask = 0;
3750  // 8 nodes, but we only care about the first 4.
3751  for (int i = 3; i >= 0; --i) {
3752    int Val = SVOp->getMaskElt(i);
3753    if (Val >= 0)
3754      Mask |= Val;
3755    if (i != 0)
3756      Mask <<= 2;
3757  }
3758  return Mask;
3759}
3760
3761/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3762/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3763unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3764  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3765  EVT VVT = N->getValueType(0);
3766  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3767  int Val = 0;
3768
3769  unsigned i, e;
3770  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3771    Val = SVOp->getMaskElt(i);
3772    if (Val >= 0)
3773      break;
3774  }
3775  assert(Val - i > 0 && "PALIGNR imm should be positive");
3776  return (Val - i) * EltSize;
3777}
3778
3779/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3780/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3781/// instructions.
3782unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3783  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3784    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3785
3786  uint64_t Index =
3787    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3788
3789  EVT VecVT = N->getOperand(0).getValueType();
3790  EVT ElVT = VecVT.getVectorElementType();
3791
3792  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3793  return Index / NumElemsPerChunk;
3794}
3795
3796/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3797/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3798/// instructions.
3799unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3800  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3801    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3802
3803  uint64_t Index =
3804    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3805
3806  EVT VecVT = N->getValueType(0);
3807  EVT ElVT = VecVT.getVectorElementType();
3808
3809  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3810  return Index / NumElemsPerChunk;
3811}
3812
3813/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3814/// constant +0.0.
3815bool X86::isZeroNode(SDValue Elt) {
3816  return ((isa<ConstantSDNode>(Elt) &&
3817           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3818          (isa<ConstantFPSDNode>(Elt) &&
3819           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3820}
3821
3822/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3823/// their permute mask.
3824static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3825                                    SelectionDAG &DAG) {
3826  EVT VT = SVOp->getValueType(0);
3827  unsigned NumElems = VT.getVectorNumElements();
3828  SmallVector<int, 8> MaskVec;
3829
3830  for (unsigned i = 0; i != NumElems; ++i) {
3831    int idx = SVOp->getMaskElt(i);
3832    if (idx < 0)
3833      MaskVec.push_back(idx);
3834    else if (idx < (int)NumElems)
3835      MaskVec.push_back(idx + NumElems);
3836    else
3837      MaskVec.push_back(idx - NumElems);
3838  }
3839  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3840                              SVOp->getOperand(0), &MaskVec[0]);
3841}
3842
3843/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3844/// the two vector operands have swapped position.
3845static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3846  unsigned NumElems = VT.getVectorNumElements();
3847  for (unsigned i = 0; i != NumElems; ++i) {
3848    int idx = Mask[i];
3849    if (idx < 0)
3850      continue;
3851    else if (idx < (int)NumElems)
3852      Mask[i] = idx + NumElems;
3853    else
3854      Mask[i] = idx - NumElems;
3855  }
3856}
3857
3858/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3859/// match movhlps. The lower half elements should come from upper half of
3860/// V1 (and in order), and the upper half elements should come from the upper
3861/// half of V2 (and in order).
3862static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3863  if (Op->getValueType(0).getVectorNumElements() != 4)
3864    return false;
3865  for (unsigned i = 0, e = 2; i != e; ++i)
3866    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3867      return false;
3868  for (unsigned i = 2; i != 4; ++i)
3869    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3870      return false;
3871  return true;
3872}
3873
3874/// isScalarLoadToVector - Returns true if the node is a scalar load that
3875/// is promoted to a vector. It also returns the LoadSDNode by reference if
3876/// required.
3877static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3878  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3879    return false;
3880  N = N->getOperand(0).getNode();
3881  if (!ISD::isNON_EXTLoad(N))
3882    return false;
3883  if (LD)
3884    *LD = cast<LoadSDNode>(N);
3885  return true;
3886}
3887
3888/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3889/// match movlp{s|d}. The lower half elements should come from lower half of
3890/// V1 (and in order), and the upper half elements should come from the upper
3891/// half of V2 (and in order). And since V1 will become the source of the
3892/// MOVLP, it must be either a vector load or a scalar load to vector.
3893static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3894                               ShuffleVectorSDNode *Op) {
3895  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3896    return false;
3897  // Is V2 is a vector load, don't do this transformation. We will try to use
3898  // load folding shufps op.
3899  if (ISD::isNON_EXTLoad(V2))
3900    return false;
3901
3902  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3903
3904  if (NumElems != 2 && NumElems != 4)
3905    return false;
3906  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3907    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3908      return false;
3909  for (unsigned i = NumElems/2; i != NumElems; ++i)
3910    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3911      return false;
3912  return true;
3913}
3914
3915/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3916/// all the same.
3917static bool isSplatVector(SDNode *N) {
3918  if (N->getOpcode() != ISD::BUILD_VECTOR)
3919    return false;
3920
3921  SDValue SplatValue = N->getOperand(0);
3922  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3923    if (N->getOperand(i) != SplatValue)
3924      return false;
3925  return true;
3926}
3927
3928/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3929/// to an zero vector.
3930/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3931static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3932  SDValue V1 = N->getOperand(0);
3933  SDValue V2 = N->getOperand(1);
3934  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3935  for (unsigned i = 0; i != NumElems; ++i) {
3936    int Idx = N->getMaskElt(i);
3937    if (Idx >= (int)NumElems) {
3938      unsigned Opc = V2.getOpcode();
3939      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3940        continue;
3941      if (Opc != ISD::BUILD_VECTOR ||
3942          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3943        return false;
3944    } else if (Idx >= 0) {
3945      unsigned Opc = V1.getOpcode();
3946      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3947        continue;
3948      if (Opc != ISD::BUILD_VECTOR ||
3949          !X86::isZeroNode(V1.getOperand(Idx)))
3950        return false;
3951    }
3952  }
3953  return true;
3954}
3955
3956/// getZeroVector - Returns a vector of specified type with all zero elements.
3957///
3958static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3959                             DebugLoc dl) {
3960  assert(VT.isVector() && "Expected a vector type");
3961
3962  // Always build SSE zero vectors as <4 x i32> bitcasted
3963  // to their dest type. This ensures they get CSE'd.
3964  SDValue Vec;
3965  if (VT.getSizeInBits() == 128) {  // SSE
3966    if (HasSSE2) {  // SSE2
3967      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3968      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3969    } else { // SSE1
3970      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3971      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3972    }
3973  } else if (VT.getSizeInBits() == 256) { // AVX
3974    // 256-bit logic and arithmetic instructions in AVX are
3975    // all floating-point, no support for integer ops. Default
3976    // to emitting fp zeroed vectors then.
3977    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3978    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3979    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3980  }
3981  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3982}
3983
3984/// getOnesVector - Returns a vector of specified type with all bits set.
3985/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
3986/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
3987/// original type, ensuring they get CSE'd.
3988static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3989  assert(VT.isVector() && "Expected a vector type");
3990  assert((VT.is128BitVector() || VT.is256BitVector())
3991         && "Expected a 128-bit or 256-bit vector type");
3992
3993  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3994  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
3995                            Cst, Cst, Cst, Cst);
3996
3997  if (VT.is256BitVector()) {
3998    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
3999                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4000    Vec = Insert128BitVector(InsV, Vec,
4001                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4002  }
4003
4004  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4005}
4006
4007/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4008/// that point to V2 points to its first element.
4009static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4010  EVT VT = SVOp->getValueType(0);
4011  unsigned NumElems = VT.getVectorNumElements();
4012
4013  bool Changed = false;
4014  SmallVector<int, 8> MaskVec;
4015  SVOp->getMask(MaskVec);
4016
4017  for (unsigned i = 0; i != NumElems; ++i) {
4018    if (MaskVec[i] > (int)NumElems) {
4019      MaskVec[i] = NumElems;
4020      Changed = true;
4021    }
4022  }
4023  if (Changed)
4024    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4025                                SVOp->getOperand(1), &MaskVec[0]);
4026  return SDValue(SVOp, 0);
4027}
4028
4029/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4030/// operation of specified width.
4031static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4032                       SDValue V2) {
4033  unsigned NumElems = VT.getVectorNumElements();
4034  SmallVector<int, 8> Mask;
4035  Mask.push_back(NumElems);
4036  for (unsigned i = 1; i != NumElems; ++i)
4037    Mask.push_back(i);
4038  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4039}
4040
4041/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4042static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4043                          SDValue V2) {
4044  unsigned NumElems = VT.getVectorNumElements();
4045  SmallVector<int, 8> Mask;
4046  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4047    Mask.push_back(i);
4048    Mask.push_back(i + NumElems);
4049  }
4050  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4051}
4052
4053/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4054static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4055                          SDValue V2) {
4056  unsigned NumElems = VT.getVectorNumElements();
4057  unsigned Half = NumElems/2;
4058  SmallVector<int, 8> Mask;
4059  for (unsigned i = 0; i != Half; ++i) {
4060    Mask.push_back(i + Half);
4061    Mask.push_back(i + NumElems + Half);
4062  }
4063  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4064}
4065
4066// PromoteSplatv8v16 - All i16 and i8 vector types can't be used directly by
4067// a generic shuffle instruction because the target has no such instructions.
4068// Generate shuffles which repeat i16 and i8 several times until they can be
4069// represented by v4f32 and then be manipulated by target suported shuffles.
4070static SDValue PromoteSplatv8v16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4071  EVT VT = V.getValueType();
4072  int NumElems = VT.getVectorNumElements();
4073  DebugLoc dl = V.getDebugLoc();
4074
4075  while (NumElems > 4) {
4076    if (EltNo < NumElems/2) {
4077      V = getUnpackl(DAG, dl, VT, V, V);
4078    } else {
4079      V = getUnpackh(DAG, dl, VT, V, V);
4080      EltNo -= NumElems/2;
4081    }
4082    NumElems >>= 1;
4083  }
4084  return V;
4085}
4086
4087/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4088static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4089  EVT VT = V.getValueType();
4090  DebugLoc dl = V.getDebugLoc();
4091  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4092         && "Vector size not supported");
4093
4094  bool Is128 = VT.getSizeInBits() == 128;
4095  EVT NVT = Is128 ? MVT::v4f32 : MVT::v8f32;
4096  V = DAG.getNode(ISD::BITCAST, dl, NVT, V);
4097
4098  if (Is128) {
4099    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4100    V = DAG.getVectorShuffle(NVT, dl, V, DAG.getUNDEF(NVT), &SplatMask[0]);
4101  } else {
4102    // The second half of indicies refer to the higher part, which is a
4103    // duplication of the lower one. This makes this shuffle a perfect match
4104    // for the VPERM instruction.
4105    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4106                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4107    V = DAG.getVectorShuffle(NVT, dl, V, DAG.getUNDEF(NVT), &SplatMask[0]);
4108  }
4109
4110  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4111}
4112
4113/// PromoteVectorToScalarSplat - Since there's no native support for
4114/// scalar_to_vector for 256-bit AVX, a 128-bit scalar_to_vector +
4115/// INSERT_SUBVECTOR is generated. Recognize this idiom and do the
4116/// shuffle before the insertion, this yields less instructions in the end.
4117static SDValue PromoteVectorToScalarSplat(ShuffleVectorSDNode *SV,
4118                                          SelectionDAG &DAG) {
4119  EVT SrcVT = SV->getValueType(0);
4120  SDValue V1 = SV->getOperand(0);
4121  DebugLoc dl = SV->getDebugLoc();
4122  int NumElems = SrcVT.getVectorNumElements();
4123
4124  assert(SrcVT.is256BitVector() && "unknown howto handle vector type");
4125
4126  SmallVector<int, 4> Mask;
4127  for (int i = 0; i < NumElems/2; ++i)
4128    Mask.push_back(SV->getMaskElt(i));
4129
4130  EVT SVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
4131                             NumElems/2);
4132  SDValue SV1 = DAG.getVectorShuffle(SVT, dl, V1.getOperand(1),
4133                                     DAG.getUNDEF(SVT), &Mask[0]);
4134  SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), SV1,
4135                                    DAG.getConstant(0, MVT::i32), DAG, dl);
4136
4137  return Insert128BitVector(InsV, SV1,
4138                       DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4139}
4140
4141/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32 and
4142/// v8i32, v16i16 or v32i8 to v8f32.
4143static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4144  EVT SrcVT = SV->getValueType(0);
4145  SDValue V1 = SV->getOperand(0);
4146  DebugLoc dl = SV->getDebugLoc();
4147
4148  int EltNo = SV->getSplatIndex();
4149  int NumElems = SrcVT.getVectorNumElements();
4150  unsigned Size = SrcVT.getSizeInBits();
4151
4152  // Extract the 128-bit part containing the splat element and update
4153  // the splat element index when it refers to the higher register.
4154  if (Size == 256) {
4155    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4156    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4157    if (Idx > 0)
4158      EltNo -= NumElems/2;
4159  }
4160
4161  // Make this 128-bit vector duplicate i8 and i16 elements
4162  if (NumElems > 4)
4163    V1 = PromoteSplatv8v16(V1, DAG, EltNo);
4164
4165  // Recreate the 256-bit vector and place the same 128-bit vector
4166  // into the low and high part. This is necessary because we want
4167  // to use VPERM to shuffle the v8f32 vector, and VPERM only shuffles
4168  // inside each separate v4f32 lane.
4169  if (Size == 256) {
4170    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4171                         DAG.getConstant(0, MVT::i32), DAG, dl);
4172    V1 = Insert128BitVector(InsV, V1,
4173               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4174  }
4175
4176  return getLegalSplat(DAG, V1, EltNo);
4177}
4178
4179/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4180/// vector of zero or undef vector.  This produces a shuffle where the low
4181/// element of V2 is swizzled into the zero/undef vector, landing at element
4182/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4183static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4184                                             bool isZero, bool HasSSE2,
4185                                             SelectionDAG &DAG) {
4186  EVT VT = V2.getValueType();
4187  SDValue V1 = isZero
4188    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4189  unsigned NumElems = VT.getVectorNumElements();
4190  SmallVector<int, 16> MaskVec;
4191  for (unsigned i = 0; i != NumElems; ++i)
4192    // If this is the insertion idx, put the low elt of V2 here.
4193    MaskVec.push_back(i == Idx ? NumElems : i);
4194  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4195}
4196
4197/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4198/// element of the result of the vector shuffle.
4199static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4200                                   unsigned Depth) {
4201  if (Depth == 6)
4202    return SDValue();  // Limit search depth.
4203
4204  SDValue V = SDValue(N, 0);
4205  EVT VT = V.getValueType();
4206  unsigned Opcode = V.getOpcode();
4207
4208  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4209  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4210    Index = SV->getMaskElt(Index);
4211
4212    if (Index < 0)
4213      return DAG.getUNDEF(VT.getVectorElementType());
4214
4215    int NumElems = VT.getVectorNumElements();
4216    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4217    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4218  }
4219
4220  // Recurse into target specific vector shuffles to find scalars.
4221  if (isTargetShuffle(Opcode)) {
4222    int NumElems = VT.getVectorNumElements();
4223    SmallVector<unsigned, 16> ShuffleMask;
4224    SDValue ImmN;
4225
4226    switch(Opcode) {
4227    case X86ISD::SHUFPS:
4228    case X86ISD::SHUFPD:
4229      ImmN = N->getOperand(N->getNumOperands()-1);
4230      DecodeSHUFPSMask(NumElems,
4231                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4232                       ShuffleMask);
4233      break;
4234    case X86ISD::PUNPCKHBW:
4235    case X86ISD::PUNPCKHWD:
4236    case X86ISD::PUNPCKHDQ:
4237    case X86ISD::PUNPCKHQDQ:
4238      DecodePUNPCKHMask(NumElems, ShuffleMask);
4239      break;
4240    case X86ISD::UNPCKHPS:
4241    case X86ISD::UNPCKHPD:
4242    case X86ISD::VUNPCKHPSY:
4243    case X86ISD::VUNPCKHPDY:
4244      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4245      break;
4246    case X86ISD::PUNPCKLBW:
4247    case X86ISD::PUNPCKLWD:
4248    case X86ISD::PUNPCKLDQ:
4249    case X86ISD::PUNPCKLQDQ:
4250      DecodePUNPCKLMask(VT, ShuffleMask);
4251      break;
4252    case X86ISD::UNPCKLPS:
4253    case X86ISD::UNPCKLPD:
4254    case X86ISD::VUNPCKLPSY:
4255    case X86ISD::VUNPCKLPDY:
4256      DecodeUNPCKLPMask(VT, ShuffleMask);
4257      break;
4258    case X86ISD::MOVHLPS:
4259      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4260      break;
4261    case X86ISD::MOVLHPS:
4262      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4263      break;
4264    case X86ISD::PSHUFD:
4265      ImmN = N->getOperand(N->getNumOperands()-1);
4266      DecodePSHUFMask(NumElems,
4267                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4268                      ShuffleMask);
4269      break;
4270    case X86ISD::PSHUFHW:
4271      ImmN = N->getOperand(N->getNumOperands()-1);
4272      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4273                        ShuffleMask);
4274      break;
4275    case X86ISD::PSHUFLW:
4276      ImmN = N->getOperand(N->getNumOperands()-1);
4277      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4278                        ShuffleMask);
4279      break;
4280    case X86ISD::MOVSS:
4281    case X86ISD::MOVSD: {
4282      // The index 0 always comes from the first element of the second source,
4283      // this is why MOVSS and MOVSD are used in the first place. The other
4284      // elements come from the other positions of the first source vector.
4285      unsigned OpNum = (Index == 0) ? 1 : 0;
4286      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4287                                 Depth+1);
4288    }
4289    case X86ISD::VPERMILPS:
4290      ImmN = N->getOperand(N->getNumOperands()-1);
4291      DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4292                        ShuffleMask);
4293      break;
4294    case X86ISD::VPERMILPSY:
4295      ImmN = N->getOperand(N->getNumOperands()-1);
4296      DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4297                        ShuffleMask);
4298      break;
4299    case X86ISD::VPERMILPD:
4300      ImmN = N->getOperand(N->getNumOperands()-1);
4301      DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4302                        ShuffleMask);
4303      break;
4304    case X86ISD::VPERMILPDY:
4305      ImmN = N->getOperand(N->getNumOperands()-1);
4306      DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4307                        ShuffleMask);
4308      break;
4309    default:
4310      assert("not implemented for target shuffle node");
4311      return SDValue();
4312    }
4313
4314    Index = ShuffleMask[Index];
4315    if (Index < 0)
4316      return DAG.getUNDEF(VT.getVectorElementType());
4317
4318    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4319    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4320                               Depth+1);
4321  }
4322
4323  // Actual nodes that may contain scalar elements
4324  if (Opcode == ISD::BITCAST) {
4325    V = V.getOperand(0);
4326    EVT SrcVT = V.getValueType();
4327    unsigned NumElems = VT.getVectorNumElements();
4328
4329    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4330      return SDValue();
4331  }
4332
4333  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4334    return (Index == 0) ? V.getOperand(0)
4335                          : DAG.getUNDEF(VT.getVectorElementType());
4336
4337  if (V.getOpcode() == ISD::BUILD_VECTOR)
4338    return V.getOperand(Index);
4339
4340  return SDValue();
4341}
4342
4343/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4344/// shuffle operation which come from a consecutively from a zero. The
4345/// search can start in two different directions, from left or right.
4346static
4347unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4348                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4349  int i = 0;
4350
4351  while (i < NumElems) {
4352    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4353    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4354    if (!(Elt.getNode() &&
4355         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4356      break;
4357    ++i;
4358  }
4359
4360  return i;
4361}
4362
4363/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4364/// MaskE correspond consecutively to elements from one of the vector operands,
4365/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4366static
4367bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4368                              int OpIdx, int NumElems, unsigned &OpNum) {
4369  bool SeenV1 = false;
4370  bool SeenV2 = false;
4371
4372  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4373    int Idx = SVOp->getMaskElt(i);
4374    // Ignore undef indicies
4375    if (Idx < 0)
4376      continue;
4377
4378    if (Idx < NumElems)
4379      SeenV1 = true;
4380    else
4381      SeenV2 = true;
4382
4383    // Only accept consecutive elements from the same vector
4384    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4385      return false;
4386  }
4387
4388  OpNum = SeenV1 ? 0 : 1;
4389  return true;
4390}
4391
4392/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4393/// logical left shift of a vector.
4394static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4395                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4396  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4397  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4398              false /* check zeros from right */, DAG);
4399  unsigned OpSrc;
4400
4401  if (!NumZeros)
4402    return false;
4403
4404  // Considering the elements in the mask that are not consecutive zeros,
4405  // check if they consecutively come from only one of the source vectors.
4406  //
4407  //               V1 = {X, A, B, C}     0
4408  //                         \  \  \    /
4409  //   vector_shuffle V1, V2 <1, 2, 3, X>
4410  //
4411  if (!isShuffleMaskConsecutive(SVOp,
4412            0,                   // Mask Start Index
4413            NumElems-NumZeros-1, // Mask End Index
4414            NumZeros,            // Where to start looking in the src vector
4415            NumElems,            // Number of elements in vector
4416            OpSrc))              // Which source operand ?
4417    return false;
4418
4419  isLeft = false;
4420  ShAmt = NumZeros;
4421  ShVal = SVOp->getOperand(OpSrc);
4422  return true;
4423}
4424
4425/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4426/// logical left shift of a vector.
4427static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4428                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4429  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4430  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4431              true /* check zeros from left */, DAG);
4432  unsigned OpSrc;
4433
4434  if (!NumZeros)
4435    return false;
4436
4437  // Considering the elements in the mask that are not consecutive zeros,
4438  // check if they consecutively come from only one of the source vectors.
4439  //
4440  //                           0    { A, B, X, X } = V2
4441  //                          / \    /  /
4442  //   vector_shuffle V1, V2 <X, X, 4, 5>
4443  //
4444  if (!isShuffleMaskConsecutive(SVOp,
4445            NumZeros,     // Mask Start Index
4446            NumElems-1,   // Mask End Index
4447            0,            // Where to start looking in the src vector
4448            NumElems,     // Number of elements in vector
4449            OpSrc))       // Which source operand ?
4450    return false;
4451
4452  isLeft = true;
4453  ShAmt = NumZeros;
4454  ShVal = SVOp->getOperand(OpSrc);
4455  return true;
4456}
4457
4458/// isVectorShift - Returns true if the shuffle can be implemented as a
4459/// logical left or right shift of a vector.
4460static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4461                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4462  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4463      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4464    return true;
4465
4466  return false;
4467}
4468
4469/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4470///
4471static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4472                                       unsigned NumNonZero, unsigned NumZero,
4473                                       SelectionDAG &DAG,
4474                                       const TargetLowering &TLI) {
4475  if (NumNonZero > 8)
4476    return SDValue();
4477
4478  DebugLoc dl = Op.getDebugLoc();
4479  SDValue V(0, 0);
4480  bool First = true;
4481  for (unsigned i = 0; i < 16; ++i) {
4482    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4483    if (ThisIsNonZero && First) {
4484      if (NumZero)
4485        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4486      else
4487        V = DAG.getUNDEF(MVT::v8i16);
4488      First = false;
4489    }
4490
4491    if ((i & 1) != 0) {
4492      SDValue ThisElt(0, 0), LastElt(0, 0);
4493      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4494      if (LastIsNonZero) {
4495        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4496                              MVT::i16, Op.getOperand(i-1));
4497      }
4498      if (ThisIsNonZero) {
4499        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4500        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4501                              ThisElt, DAG.getConstant(8, MVT::i8));
4502        if (LastIsNonZero)
4503          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4504      } else
4505        ThisElt = LastElt;
4506
4507      if (ThisElt.getNode())
4508        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4509                        DAG.getIntPtrConstant(i/2));
4510    }
4511  }
4512
4513  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4514}
4515
4516/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4517///
4518static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4519                                     unsigned NumNonZero, unsigned NumZero,
4520                                     SelectionDAG &DAG,
4521                                     const TargetLowering &TLI) {
4522  if (NumNonZero > 4)
4523    return SDValue();
4524
4525  DebugLoc dl = Op.getDebugLoc();
4526  SDValue V(0, 0);
4527  bool First = true;
4528  for (unsigned i = 0; i < 8; ++i) {
4529    bool isNonZero = (NonZeros & (1 << i)) != 0;
4530    if (isNonZero) {
4531      if (First) {
4532        if (NumZero)
4533          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4534        else
4535          V = DAG.getUNDEF(MVT::v8i16);
4536        First = false;
4537      }
4538      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4539                      MVT::v8i16, V, Op.getOperand(i),
4540                      DAG.getIntPtrConstant(i));
4541    }
4542  }
4543
4544  return V;
4545}
4546
4547/// getVShift - Return a vector logical shift node.
4548///
4549static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4550                         unsigned NumBits, SelectionDAG &DAG,
4551                         const TargetLowering &TLI, DebugLoc dl) {
4552  EVT ShVT = MVT::v2i64;
4553  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4554  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4555  return DAG.getNode(ISD::BITCAST, dl, VT,
4556                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4557                             DAG.getConstant(NumBits,
4558                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4559}
4560
4561SDValue
4562X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4563                                          SelectionDAG &DAG) const {
4564
4565  // Check if the scalar load can be widened into a vector load. And if
4566  // the address is "base + cst" see if the cst can be "absorbed" into
4567  // the shuffle mask.
4568  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4569    SDValue Ptr = LD->getBasePtr();
4570    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4571      return SDValue();
4572    EVT PVT = LD->getValueType(0);
4573    if (PVT != MVT::i32 && PVT != MVT::f32)
4574      return SDValue();
4575
4576    int FI = -1;
4577    int64_t Offset = 0;
4578    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4579      FI = FINode->getIndex();
4580      Offset = 0;
4581    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4582               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4583      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4584      Offset = Ptr.getConstantOperandVal(1);
4585      Ptr = Ptr.getOperand(0);
4586    } else {
4587      return SDValue();
4588    }
4589
4590    // FIXME: 256-bit vector instructions don't require a strict alignment,
4591    // improve this code to support it better.
4592    unsigned RequiredAlign = VT.getSizeInBits()/8;
4593    SDValue Chain = LD->getChain();
4594    // Make sure the stack object alignment is at least 16 or 32.
4595    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4596    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4597      if (MFI->isFixedObjectIndex(FI)) {
4598        // Can't change the alignment. FIXME: It's possible to compute
4599        // the exact stack offset and reference FI + adjust offset instead.
4600        // If someone *really* cares about this. That's the way to implement it.
4601        return SDValue();
4602      } else {
4603        MFI->setObjectAlignment(FI, RequiredAlign);
4604      }
4605    }
4606
4607    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4608    // Ptr + (Offset & ~15).
4609    if (Offset < 0)
4610      return SDValue();
4611    if ((Offset % RequiredAlign) & 3)
4612      return SDValue();
4613    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4614    if (StartOffset)
4615      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4616                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4617
4618    int EltNo = (Offset - StartOffset) >> 2;
4619    int NumElems = VT.getVectorNumElements();
4620
4621    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4622    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4623    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4624                             LD->getPointerInfo().getWithOffset(StartOffset),
4625                             false, false, 0);
4626
4627    // Canonicalize it to a v4i32 or v8i32 shuffle.
4628    SmallVector<int, 8> Mask;
4629    for (int i = 0; i < NumElems; ++i)
4630      Mask.push_back(EltNo);
4631
4632    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4633    return DAG.getNode(ISD::BITCAST, dl, NVT,
4634                       DAG.getVectorShuffle(CanonVT, dl, V1,
4635                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4636  }
4637
4638  return SDValue();
4639}
4640
4641/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4642/// vector of type 'VT', see if the elements can be replaced by a single large
4643/// load which has the same value as a build_vector whose operands are 'elts'.
4644///
4645/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4646///
4647/// FIXME: we'd also like to handle the case where the last elements are zero
4648/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4649/// There's even a handy isZeroNode for that purpose.
4650static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4651                                        DebugLoc &DL, SelectionDAG &DAG) {
4652  EVT EltVT = VT.getVectorElementType();
4653  unsigned NumElems = Elts.size();
4654
4655  LoadSDNode *LDBase = NULL;
4656  unsigned LastLoadedElt = -1U;
4657
4658  // For each element in the initializer, see if we've found a load or an undef.
4659  // If we don't find an initial load element, or later load elements are
4660  // non-consecutive, bail out.
4661  for (unsigned i = 0; i < NumElems; ++i) {
4662    SDValue Elt = Elts[i];
4663
4664    if (!Elt.getNode() ||
4665        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4666      return SDValue();
4667    if (!LDBase) {
4668      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4669        return SDValue();
4670      LDBase = cast<LoadSDNode>(Elt.getNode());
4671      LastLoadedElt = i;
4672      continue;
4673    }
4674    if (Elt.getOpcode() == ISD::UNDEF)
4675      continue;
4676
4677    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4678    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4679      return SDValue();
4680    LastLoadedElt = i;
4681  }
4682
4683  // If we have found an entire vector of loads and undefs, then return a large
4684  // load of the entire vector width starting at the base pointer.  If we found
4685  // consecutive loads for the low half, generate a vzext_load node.
4686  if (LastLoadedElt == NumElems - 1) {
4687    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4688      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4689                         LDBase->getPointerInfo(),
4690                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4691    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4692                       LDBase->getPointerInfo(),
4693                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4694                       LDBase->getAlignment());
4695  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4696             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4697    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4698    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4699    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4700                                              Ops, 2, MVT::i32,
4701                                              LDBase->getMemOperand());
4702    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4703  }
4704  return SDValue();
4705}
4706
4707SDValue
4708X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4709  DebugLoc dl = Op.getDebugLoc();
4710
4711  EVT VT = Op.getValueType();
4712  EVT ExtVT = VT.getVectorElementType();
4713  unsigned NumElems = Op.getNumOperands();
4714
4715  // Vectors containing all zeros can be matched by pxor and xorps later
4716  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
4717    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
4718    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
4719    if (Op.getValueType() == MVT::v4i32 ||
4720        Op.getValueType() == MVT::v8i32)
4721      return Op;
4722
4723    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4724  }
4725
4726  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
4727  // vectors or broken into v4i32 operations on 256-bit vectors.
4728  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
4729    if (Op.getValueType() == MVT::v4i32)
4730      return Op;
4731
4732    return getOnesVector(Op.getValueType(), DAG, dl);
4733  }
4734
4735  unsigned EVTBits = ExtVT.getSizeInBits();
4736
4737  unsigned NumZero  = 0;
4738  unsigned NumNonZero = 0;
4739  unsigned NonZeros = 0;
4740  bool IsAllConstants = true;
4741  SmallSet<SDValue, 8> Values;
4742  for (unsigned i = 0; i < NumElems; ++i) {
4743    SDValue Elt = Op.getOperand(i);
4744    if (Elt.getOpcode() == ISD::UNDEF)
4745      continue;
4746    Values.insert(Elt);
4747    if (Elt.getOpcode() != ISD::Constant &&
4748        Elt.getOpcode() != ISD::ConstantFP)
4749      IsAllConstants = false;
4750    if (X86::isZeroNode(Elt))
4751      NumZero++;
4752    else {
4753      NonZeros |= (1 << i);
4754      NumNonZero++;
4755    }
4756  }
4757
4758  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4759  if (NumNonZero == 0)
4760    return DAG.getUNDEF(VT);
4761
4762  // Special case for single non-zero, non-undef, element.
4763  if (NumNonZero == 1) {
4764    unsigned Idx = CountTrailingZeros_32(NonZeros);
4765    SDValue Item = Op.getOperand(Idx);
4766
4767    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4768    // the value are obviously zero, truncate the value to i32 and do the
4769    // insertion that way.  Only do this if the value is non-constant or if the
4770    // value is a constant being inserted into element 0.  It is cheaper to do
4771    // a constant pool load than it is to do a movd + shuffle.
4772    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4773        (!IsAllConstants || Idx == 0)) {
4774      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4775        // Handle SSE only.
4776        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4777        EVT VecVT = MVT::v4i32;
4778        unsigned VecElts = 4;
4779
4780        // Truncate the value (which may itself be a constant) to i32, and
4781        // convert it to a vector with movd (S2V+shuffle to zero extend).
4782        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4783        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4784        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4785                                           Subtarget->hasSSE2(), DAG);
4786
4787        // Now we have our 32-bit value zero extended in the low element of
4788        // a vector.  If Idx != 0, swizzle it into place.
4789        if (Idx != 0) {
4790          SmallVector<int, 4> Mask;
4791          Mask.push_back(Idx);
4792          for (unsigned i = 1; i != VecElts; ++i)
4793            Mask.push_back(i);
4794          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4795                                      DAG.getUNDEF(Item.getValueType()),
4796                                      &Mask[0]);
4797        }
4798        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4799      }
4800    }
4801
4802    // If we have a constant or non-constant insertion into the low element of
4803    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4804    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4805    // depending on what the source datatype is.
4806    if (Idx == 0) {
4807      if (NumZero == 0) {
4808        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4809      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4810          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4811        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4812        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4813        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4814                                           DAG);
4815      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4816        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4817        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4818        EVT MiddleVT = MVT::v4i32;
4819        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4820        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4821                                           Subtarget->hasSSE2(), DAG);
4822        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4823      }
4824    }
4825
4826    // Is it a vector logical left shift?
4827    if (NumElems == 2 && Idx == 1 &&
4828        X86::isZeroNode(Op.getOperand(0)) &&
4829        !X86::isZeroNode(Op.getOperand(1))) {
4830      unsigned NumBits = VT.getSizeInBits();
4831      return getVShift(true, VT,
4832                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4833                                   VT, Op.getOperand(1)),
4834                       NumBits/2, DAG, *this, dl);
4835    }
4836
4837    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4838      return SDValue();
4839
4840    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4841    // is a non-constant being inserted into an element other than the low one,
4842    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4843    // movd/movss) to move this into the low element, then shuffle it into
4844    // place.
4845    if (EVTBits == 32) {
4846      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4847
4848      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4849      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4850                                         Subtarget->hasSSE2(), DAG);
4851      SmallVector<int, 8> MaskVec;
4852      for (unsigned i = 0; i < NumElems; i++)
4853        MaskVec.push_back(i == Idx ? 0 : 1);
4854      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4855    }
4856  }
4857
4858  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4859  if (Values.size() == 1) {
4860    if (EVTBits == 32) {
4861      // Instead of a shuffle like this:
4862      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4863      // Check if it's possible to issue this instead.
4864      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4865      unsigned Idx = CountTrailingZeros_32(NonZeros);
4866      SDValue Item = Op.getOperand(Idx);
4867      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4868        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4869    }
4870    return SDValue();
4871  }
4872
4873  // A vector full of immediates; various special cases are already
4874  // handled, so this is best done with a single constant-pool load.
4875  if (IsAllConstants)
4876    return SDValue();
4877
4878  // For AVX-length vectors, build the individual 128-bit pieces and use
4879  // shuffles to put them in place.
4880  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
4881    SmallVector<SDValue, 32> V;
4882    for (unsigned i = 0; i < NumElems; ++i)
4883      V.push_back(Op.getOperand(i));
4884
4885    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
4886
4887    // Build both the lower and upper subvector.
4888    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
4889    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
4890                                NumElems/2);
4891
4892    // Recreate the wider vector with the lower and upper part.
4893    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
4894                                DAG.getConstant(0, MVT::i32), DAG, dl);
4895    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
4896                              DAG, dl);
4897  }
4898
4899  // Let legalizer expand 2-wide build_vectors.
4900  if (EVTBits == 64) {
4901    if (NumNonZero == 1) {
4902      // One half is zero or undef.
4903      unsigned Idx = CountTrailingZeros_32(NonZeros);
4904      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4905                                 Op.getOperand(Idx));
4906      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4907                                         Subtarget->hasSSE2(), DAG);
4908    }
4909    return SDValue();
4910  }
4911
4912  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4913  if (EVTBits == 8 && NumElems == 16) {
4914    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4915                                        *this);
4916    if (V.getNode()) return V;
4917  }
4918
4919  if (EVTBits == 16 && NumElems == 8) {
4920    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4921                                      *this);
4922    if (V.getNode()) return V;
4923  }
4924
4925  // If element VT is == 32 bits, turn it into a number of shuffles.
4926  SmallVector<SDValue, 8> V;
4927  V.resize(NumElems);
4928  if (NumElems == 4 && NumZero > 0) {
4929    for (unsigned i = 0; i < 4; ++i) {
4930      bool isZero = !(NonZeros & (1 << i));
4931      if (isZero)
4932        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4933      else
4934        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4935    }
4936
4937    for (unsigned i = 0; i < 2; ++i) {
4938      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4939        default: break;
4940        case 0:
4941          V[i] = V[i*2];  // Must be a zero vector.
4942          break;
4943        case 1:
4944          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4945          break;
4946        case 2:
4947          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4948          break;
4949        case 3:
4950          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4951          break;
4952      }
4953    }
4954
4955    SmallVector<int, 8> MaskVec;
4956    bool Reverse = (NonZeros & 0x3) == 2;
4957    for (unsigned i = 0; i < 2; ++i)
4958      MaskVec.push_back(Reverse ? 1-i : i);
4959    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4960    for (unsigned i = 0; i < 2; ++i)
4961      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4962    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4963  }
4964
4965  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4966    // Check for a build vector of consecutive loads.
4967    for (unsigned i = 0; i < NumElems; ++i)
4968      V[i] = Op.getOperand(i);
4969
4970    // Check for elements which are consecutive loads.
4971    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4972    if (LD.getNode())
4973      return LD;
4974
4975    // For SSE 4.1, use insertps to put the high elements into the low element.
4976    if (getSubtarget()->hasSSE41()) {
4977      SDValue Result;
4978      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4979        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4980      else
4981        Result = DAG.getUNDEF(VT);
4982
4983      for (unsigned i = 1; i < NumElems; ++i) {
4984        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4985        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4986                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4987      }
4988      return Result;
4989    }
4990
4991    // Otherwise, expand into a number of unpckl*, start by extending each of
4992    // our (non-undef) elements to the full vector width with the element in the
4993    // bottom slot of the vector (which generates no code for SSE).
4994    for (unsigned i = 0; i < NumElems; ++i) {
4995      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4996        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4997      else
4998        V[i] = DAG.getUNDEF(VT);
4999    }
5000
5001    // Next, we iteratively mix elements, e.g. for v4f32:
5002    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5003    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5004    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5005    unsigned EltStride = NumElems >> 1;
5006    while (EltStride != 0) {
5007      for (unsigned i = 0; i < EltStride; ++i) {
5008        // If V[i+EltStride] is undef and this is the first round of mixing,
5009        // then it is safe to just drop this shuffle: V[i] is already in the
5010        // right place, the one element (since it's the first round) being
5011        // inserted as undef can be dropped.  This isn't safe for successive
5012        // rounds because they will permute elements within both vectors.
5013        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5014            EltStride == NumElems/2)
5015          continue;
5016
5017        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5018      }
5019      EltStride >>= 1;
5020    }
5021    return V[0];
5022  }
5023  return SDValue();
5024}
5025
5026// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5027// them in a MMX register.  This is better than doing a stack convert.
5028static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5029  DebugLoc dl = Op.getDebugLoc();
5030  EVT ResVT = Op.getValueType();
5031
5032  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5033         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5034  int Mask[2];
5035  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5036  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5037  InVec = Op.getOperand(1);
5038  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5039    unsigned NumElts = ResVT.getVectorNumElements();
5040    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5041    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5042                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5043  } else {
5044    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5045    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5046    Mask[0] = 0; Mask[1] = 2;
5047    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5048  }
5049  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5050}
5051
5052// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5053// to create 256-bit vectors from two other 128-bit ones.
5054static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5055  DebugLoc dl = Op.getDebugLoc();
5056  EVT ResVT = Op.getValueType();
5057
5058  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5059
5060  SDValue V1 = Op.getOperand(0);
5061  SDValue V2 = Op.getOperand(1);
5062  unsigned NumElems = ResVT.getVectorNumElements();
5063
5064  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5065                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5066  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5067                            DAG, dl);
5068}
5069
5070SDValue
5071X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5072  EVT ResVT = Op.getValueType();
5073
5074  assert(Op.getNumOperands() == 2);
5075  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5076         "Unsupported CONCAT_VECTORS for value type");
5077
5078  // We support concatenate two MMX registers and place them in a MMX register.
5079  // This is better than doing a stack convert.
5080  if (ResVT.is128BitVector())
5081    return LowerMMXCONCAT_VECTORS(Op, DAG);
5082
5083  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5084  // from two other 128-bit ones.
5085  return LowerAVXCONCAT_VECTORS(Op, DAG);
5086}
5087
5088// v8i16 shuffles - Prefer shuffles in the following order:
5089// 1. [all]   pshuflw, pshufhw, optional move
5090// 2. [ssse3] 1 x pshufb
5091// 3. [ssse3] 2 x pshufb + 1 x por
5092// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5093SDValue
5094X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5095                                            SelectionDAG &DAG) const {
5096  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5097  SDValue V1 = SVOp->getOperand(0);
5098  SDValue V2 = SVOp->getOperand(1);
5099  DebugLoc dl = SVOp->getDebugLoc();
5100  SmallVector<int, 8> MaskVals;
5101
5102  // Determine if more than 1 of the words in each of the low and high quadwords
5103  // of the result come from the same quadword of one of the two inputs.  Undef
5104  // mask values count as coming from any quadword, for better codegen.
5105  SmallVector<unsigned, 4> LoQuad(4);
5106  SmallVector<unsigned, 4> HiQuad(4);
5107  BitVector InputQuads(4);
5108  for (unsigned i = 0; i < 8; ++i) {
5109    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
5110    int EltIdx = SVOp->getMaskElt(i);
5111    MaskVals.push_back(EltIdx);
5112    if (EltIdx < 0) {
5113      ++Quad[0];
5114      ++Quad[1];
5115      ++Quad[2];
5116      ++Quad[3];
5117      continue;
5118    }
5119    ++Quad[EltIdx / 4];
5120    InputQuads.set(EltIdx / 4);
5121  }
5122
5123  int BestLoQuad = -1;
5124  unsigned MaxQuad = 1;
5125  for (unsigned i = 0; i < 4; ++i) {
5126    if (LoQuad[i] > MaxQuad) {
5127      BestLoQuad = i;
5128      MaxQuad = LoQuad[i];
5129    }
5130  }
5131
5132  int BestHiQuad = -1;
5133  MaxQuad = 1;
5134  for (unsigned i = 0; i < 4; ++i) {
5135    if (HiQuad[i] > MaxQuad) {
5136      BestHiQuad = i;
5137      MaxQuad = HiQuad[i];
5138    }
5139  }
5140
5141  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5142  // of the two input vectors, shuffle them into one input vector so only a
5143  // single pshufb instruction is necessary. If There are more than 2 input
5144  // quads, disable the next transformation since it does not help SSSE3.
5145  bool V1Used = InputQuads[0] || InputQuads[1];
5146  bool V2Used = InputQuads[2] || InputQuads[3];
5147  if (Subtarget->hasSSSE3()) {
5148    if (InputQuads.count() == 2 && V1Used && V2Used) {
5149      BestLoQuad = InputQuads.find_first();
5150      BestHiQuad = InputQuads.find_next(BestLoQuad);
5151    }
5152    if (InputQuads.count() > 2) {
5153      BestLoQuad = -1;
5154      BestHiQuad = -1;
5155    }
5156  }
5157
5158  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5159  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5160  // words from all 4 input quadwords.
5161  SDValue NewV;
5162  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5163    SmallVector<int, 8> MaskV;
5164    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5165    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5166    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5167                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5168                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5169    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5170
5171    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5172    // source words for the shuffle, to aid later transformations.
5173    bool AllWordsInNewV = true;
5174    bool InOrder[2] = { true, true };
5175    for (unsigned i = 0; i != 8; ++i) {
5176      int idx = MaskVals[i];
5177      if (idx != (int)i)
5178        InOrder[i/4] = false;
5179      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5180        continue;
5181      AllWordsInNewV = false;
5182      break;
5183    }
5184
5185    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5186    if (AllWordsInNewV) {
5187      for (int i = 0; i != 8; ++i) {
5188        int idx = MaskVals[i];
5189        if (idx < 0)
5190          continue;
5191        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5192        if ((idx != i) && idx < 4)
5193          pshufhw = false;
5194        if ((idx != i) && idx > 3)
5195          pshuflw = false;
5196      }
5197      V1 = NewV;
5198      V2Used = false;
5199      BestLoQuad = 0;
5200      BestHiQuad = 1;
5201    }
5202
5203    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5204    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5205    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5206      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5207      unsigned TargetMask = 0;
5208      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5209                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5210      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5211                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5212      V1 = NewV.getOperand(0);
5213      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5214    }
5215  }
5216
5217  // If we have SSSE3, and all words of the result are from 1 input vector,
5218  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5219  // is present, fall back to case 4.
5220  if (Subtarget->hasSSSE3()) {
5221    SmallVector<SDValue,16> pshufbMask;
5222
5223    // If we have elements from both input vectors, set the high bit of the
5224    // shuffle mask element to zero out elements that come from V2 in the V1
5225    // mask, and elements that come from V1 in the V2 mask, so that the two
5226    // results can be OR'd together.
5227    bool TwoInputs = V1Used && V2Used;
5228    for (unsigned i = 0; i != 8; ++i) {
5229      int EltIdx = MaskVals[i] * 2;
5230      if (TwoInputs && (EltIdx >= 16)) {
5231        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5232        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5233        continue;
5234      }
5235      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5236      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5237    }
5238    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5239    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5240                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5241                                 MVT::v16i8, &pshufbMask[0], 16));
5242    if (!TwoInputs)
5243      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5244
5245    // Calculate the shuffle mask for the second input, shuffle it, and
5246    // OR it with the first shuffled input.
5247    pshufbMask.clear();
5248    for (unsigned i = 0; i != 8; ++i) {
5249      int EltIdx = MaskVals[i] * 2;
5250      if (EltIdx < 16) {
5251        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5252        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5253        continue;
5254      }
5255      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5256      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5257    }
5258    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5259    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5260                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5261                                 MVT::v16i8, &pshufbMask[0], 16));
5262    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5263    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5264  }
5265
5266  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5267  // and update MaskVals with new element order.
5268  BitVector InOrder(8);
5269  if (BestLoQuad >= 0) {
5270    SmallVector<int, 8> MaskV;
5271    for (int i = 0; i != 4; ++i) {
5272      int idx = MaskVals[i];
5273      if (idx < 0) {
5274        MaskV.push_back(-1);
5275        InOrder.set(i);
5276      } else if ((idx / 4) == BestLoQuad) {
5277        MaskV.push_back(idx & 3);
5278        InOrder.set(i);
5279      } else {
5280        MaskV.push_back(-1);
5281      }
5282    }
5283    for (unsigned i = 4; i != 8; ++i)
5284      MaskV.push_back(i);
5285    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5286                                &MaskV[0]);
5287
5288    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5289      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5290                               NewV.getOperand(0),
5291                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5292                               DAG);
5293  }
5294
5295  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5296  // and update MaskVals with the new element order.
5297  if (BestHiQuad >= 0) {
5298    SmallVector<int, 8> MaskV;
5299    for (unsigned i = 0; i != 4; ++i)
5300      MaskV.push_back(i);
5301    for (unsigned i = 4; i != 8; ++i) {
5302      int idx = MaskVals[i];
5303      if (idx < 0) {
5304        MaskV.push_back(-1);
5305        InOrder.set(i);
5306      } else if ((idx / 4) == BestHiQuad) {
5307        MaskV.push_back((idx & 3) + 4);
5308        InOrder.set(i);
5309      } else {
5310        MaskV.push_back(-1);
5311      }
5312    }
5313    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5314                                &MaskV[0]);
5315
5316    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5317      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5318                              NewV.getOperand(0),
5319                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5320                              DAG);
5321  }
5322
5323  // In case BestHi & BestLo were both -1, which means each quadword has a word
5324  // from each of the four input quadwords, calculate the InOrder bitvector now
5325  // before falling through to the insert/extract cleanup.
5326  if (BestLoQuad == -1 && BestHiQuad == -1) {
5327    NewV = V1;
5328    for (int i = 0; i != 8; ++i)
5329      if (MaskVals[i] < 0 || MaskVals[i] == i)
5330        InOrder.set(i);
5331  }
5332
5333  // The other elements are put in the right place using pextrw and pinsrw.
5334  for (unsigned i = 0; i != 8; ++i) {
5335    if (InOrder[i])
5336      continue;
5337    int EltIdx = MaskVals[i];
5338    if (EltIdx < 0)
5339      continue;
5340    SDValue ExtOp = (EltIdx < 8)
5341    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5342                  DAG.getIntPtrConstant(EltIdx))
5343    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5344                  DAG.getIntPtrConstant(EltIdx - 8));
5345    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5346                       DAG.getIntPtrConstant(i));
5347  }
5348  return NewV;
5349}
5350
5351// v16i8 shuffles - Prefer shuffles in the following order:
5352// 1. [ssse3] 1 x pshufb
5353// 2. [ssse3] 2 x pshufb + 1 x por
5354// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5355static
5356SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5357                                 SelectionDAG &DAG,
5358                                 const X86TargetLowering &TLI) {
5359  SDValue V1 = SVOp->getOperand(0);
5360  SDValue V2 = SVOp->getOperand(1);
5361  DebugLoc dl = SVOp->getDebugLoc();
5362  SmallVector<int, 16> MaskVals;
5363  SVOp->getMask(MaskVals);
5364
5365  // If we have SSSE3, case 1 is generated when all result bytes come from
5366  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5367  // present, fall back to case 3.
5368  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5369  bool V1Only = true;
5370  bool V2Only = true;
5371  for (unsigned i = 0; i < 16; ++i) {
5372    int EltIdx = MaskVals[i];
5373    if (EltIdx < 0)
5374      continue;
5375    if (EltIdx < 16)
5376      V2Only = false;
5377    else
5378      V1Only = false;
5379  }
5380
5381  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5382  if (TLI.getSubtarget()->hasSSSE3()) {
5383    SmallVector<SDValue,16> pshufbMask;
5384
5385    // If all result elements are from one input vector, then only translate
5386    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5387    //
5388    // Otherwise, we have elements from both input vectors, and must zero out
5389    // elements that come from V2 in the first mask, and V1 in the second mask
5390    // so that we can OR them together.
5391    bool TwoInputs = !(V1Only || V2Only);
5392    for (unsigned i = 0; i != 16; ++i) {
5393      int EltIdx = MaskVals[i];
5394      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5395        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5396        continue;
5397      }
5398      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5399    }
5400    // If all the elements are from V2, assign it to V1 and return after
5401    // building the first pshufb.
5402    if (V2Only)
5403      V1 = V2;
5404    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5405                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5406                                 MVT::v16i8, &pshufbMask[0], 16));
5407    if (!TwoInputs)
5408      return V1;
5409
5410    // Calculate the shuffle mask for the second input, shuffle it, and
5411    // OR it with the first shuffled input.
5412    pshufbMask.clear();
5413    for (unsigned i = 0; i != 16; ++i) {
5414      int EltIdx = MaskVals[i];
5415      if (EltIdx < 16) {
5416        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5417        continue;
5418      }
5419      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5420    }
5421    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5422                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5423                                 MVT::v16i8, &pshufbMask[0], 16));
5424    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5425  }
5426
5427  // No SSSE3 - Calculate in place words and then fix all out of place words
5428  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5429  // the 16 different words that comprise the two doublequadword input vectors.
5430  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5431  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5432  SDValue NewV = V2Only ? V2 : V1;
5433  for (int i = 0; i != 8; ++i) {
5434    int Elt0 = MaskVals[i*2];
5435    int Elt1 = MaskVals[i*2+1];
5436
5437    // This word of the result is all undef, skip it.
5438    if (Elt0 < 0 && Elt1 < 0)
5439      continue;
5440
5441    // This word of the result is already in the correct place, skip it.
5442    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5443      continue;
5444    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5445      continue;
5446
5447    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5448    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5449    SDValue InsElt;
5450
5451    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5452    // using a single extract together, load it and store it.
5453    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5454      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5455                           DAG.getIntPtrConstant(Elt1 / 2));
5456      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5457                        DAG.getIntPtrConstant(i));
5458      continue;
5459    }
5460
5461    // If Elt1 is defined, extract it from the appropriate source.  If the
5462    // source byte is not also odd, shift the extracted word left 8 bits
5463    // otherwise clear the bottom 8 bits if we need to do an or.
5464    if (Elt1 >= 0) {
5465      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5466                           DAG.getIntPtrConstant(Elt1 / 2));
5467      if ((Elt1 & 1) == 0)
5468        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5469                             DAG.getConstant(8,
5470                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5471      else if (Elt0 >= 0)
5472        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5473                             DAG.getConstant(0xFF00, MVT::i16));
5474    }
5475    // If Elt0 is defined, extract it from the appropriate source.  If the
5476    // source byte is not also even, shift the extracted word right 8 bits. If
5477    // Elt1 was also defined, OR the extracted values together before
5478    // inserting them in the result.
5479    if (Elt0 >= 0) {
5480      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5481                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5482      if ((Elt0 & 1) != 0)
5483        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5484                              DAG.getConstant(8,
5485                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5486      else if (Elt1 >= 0)
5487        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5488                             DAG.getConstant(0x00FF, MVT::i16));
5489      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5490                         : InsElt0;
5491    }
5492    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5493                       DAG.getIntPtrConstant(i));
5494  }
5495  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5496}
5497
5498/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5499/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5500/// done when every pair / quad of shuffle mask elements point to elements in
5501/// the right sequence. e.g.
5502/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5503static
5504SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5505                                 SelectionDAG &DAG, DebugLoc dl) {
5506  EVT VT = SVOp->getValueType(0);
5507  SDValue V1 = SVOp->getOperand(0);
5508  SDValue V2 = SVOp->getOperand(1);
5509  unsigned NumElems = VT.getVectorNumElements();
5510  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5511  EVT NewVT;
5512  switch (VT.getSimpleVT().SimpleTy) {
5513  default: assert(false && "Unexpected!");
5514  case MVT::v4f32: NewVT = MVT::v2f64; break;
5515  case MVT::v4i32: NewVT = MVT::v2i64; break;
5516  case MVT::v8i16: NewVT = MVT::v4i32; break;
5517  case MVT::v16i8: NewVT = MVT::v4i32; break;
5518  }
5519
5520  int Scale = NumElems / NewWidth;
5521  SmallVector<int, 8> MaskVec;
5522  for (unsigned i = 0; i < NumElems; i += Scale) {
5523    int StartIdx = -1;
5524    for (int j = 0; j < Scale; ++j) {
5525      int EltIdx = SVOp->getMaskElt(i+j);
5526      if (EltIdx < 0)
5527        continue;
5528      if (StartIdx == -1)
5529        StartIdx = EltIdx - (EltIdx % Scale);
5530      if (EltIdx != StartIdx + j)
5531        return SDValue();
5532    }
5533    if (StartIdx == -1)
5534      MaskVec.push_back(-1);
5535    else
5536      MaskVec.push_back(StartIdx / Scale);
5537  }
5538
5539  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5540  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5541  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5542}
5543
5544/// getVZextMovL - Return a zero-extending vector move low node.
5545///
5546static SDValue getVZextMovL(EVT VT, EVT OpVT,
5547                            SDValue SrcOp, SelectionDAG &DAG,
5548                            const X86Subtarget *Subtarget, DebugLoc dl) {
5549  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5550    LoadSDNode *LD = NULL;
5551    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5552      LD = dyn_cast<LoadSDNode>(SrcOp);
5553    if (!LD) {
5554      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5555      // instead.
5556      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5557      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5558          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5559          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5560          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5561        // PR2108
5562        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5563        return DAG.getNode(ISD::BITCAST, dl, VT,
5564                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5565                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5566                                                   OpVT,
5567                                                   SrcOp.getOperand(0)
5568                                                          .getOperand(0))));
5569      }
5570    }
5571  }
5572
5573  return DAG.getNode(ISD::BITCAST, dl, VT,
5574                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5575                                 DAG.getNode(ISD::BITCAST, dl,
5576                                             OpVT, SrcOp)));
5577}
5578
5579/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5580/// which could not be matched by any known target speficic shuffle
5581static SDValue
5582LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5583  return SDValue();
5584}
5585
5586/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5587/// 4 elements, and match them with several different shuffle types.
5588static SDValue
5589LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5590  SDValue V1 = SVOp->getOperand(0);
5591  SDValue V2 = SVOp->getOperand(1);
5592  DebugLoc dl = SVOp->getDebugLoc();
5593  EVT VT = SVOp->getValueType(0);
5594
5595  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5596
5597  SmallVector<std::pair<int, int>, 8> Locs;
5598  Locs.resize(4);
5599  SmallVector<int, 8> Mask1(4U, -1);
5600  SmallVector<int, 8> PermMask;
5601  SVOp->getMask(PermMask);
5602
5603  unsigned NumHi = 0;
5604  unsigned NumLo = 0;
5605  for (unsigned i = 0; i != 4; ++i) {
5606    int Idx = PermMask[i];
5607    if (Idx < 0) {
5608      Locs[i] = std::make_pair(-1, -1);
5609    } else {
5610      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5611      if (Idx < 4) {
5612        Locs[i] = std::make_pair(0, NumLo);
5613        Mask1[NumLo] = Idx;
5614        NumLo++;
5615      } else {
5616        Locs[i] = std::make_pair(1, NumHi);
5617        if (2+NumHi < 4)
5618          Mask1[2+NumHi] = Idx;
5619        NumHi++;
5620      }
5621    }
5622  }
5623
5624  if (NumLo <= 2 && NumHi <= 2) {
5625    // If no more than two elements come from either vector. This can be
5626    // implemented with two shuffles. First shuffle gather the elements.
5627    // The second shuffle, which takes the first shuffle as both of its
5628    // vector operands, put the elements into the right order.
5629    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5630
5631    SmallVector<int, 8> Mask2(4U, -1);
5632
5633    for (unsigned i = 0; i != 4; ++i) {
5634      if (Locs[i].first == -1)
5635        continue;
5636      else {
5637        unsigned Idx = (i < 2) ? 0 : 4;
5638        Idx += Locs[i].first * 2 + Locs[i].second;
5639        Mask2[i] = Idx;
5640      }
5641    }
5642
5643    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5644  } else if (NumLo == 3 || NumHi == 3) {
5645    // Otherwise, we must have three elements from one vector, call it X, and
5646    // one element from the other, call it Y.  First, use a shufps to build an
5647    // intermediate vector with the one element from Y and the element from X
5648    // that will be in the same half in the final destination (the indexes don't
5649    // matter). Then, use a shufps to build the final vector, taking the half
5650    // containing the element from Y from the intermediate, and the other half
5651    // from X.
5652    if (NumHi == 3) {
5653      // Normalize it so the 3 elements come from V1.
5654      CommuteVectorShuffleMask(PermMask, VT);
5655      std::swap(V1, V2);
5656    }
5657
5658    // Find the element from V2.
5659    unsigned HiIndex;
5660    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5661      int Val = PermMask[HiIndex];
5662      if (Val < 0)
5663        continue;
5664      if (Val >= 4)
5665        break;
5666    }
5667
5668    Mask1[0] = PermMask[HiIndex];
5669    Mask1[1] = -1;
5670    Mask1[2] = PermMask[HiIndex^1];
5671    Mask1[3] = -1;
5672    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5673
5674    if (HiIndex >= 2) {
5675      Mask1[0] = PermMask[0];
5676      Mask1[1] = PermMask[1];
5677      Mask1[2] = HiIndex & 1 ? 6 : 4;
5678      Mask1[3] = HiIndex & 1 ? 4 : 6;
5679      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5680    } else {
5681      Mask1[0] = HiIndex & 1 ? 2 : 0;
5682      Mask1[1] = HiIndex & 1 ? 0 : 2;
5683      Mask1[2] = PermMask[2];
5684      Mask1[3] = PermMask[3];
5685      if (Mask1[2] >= 0)
5686        Mask1[2] += 4;
5687      if (Mask1[3] >= 0)
5688        Mask1[3] += 4;
5689      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5690    }
5691  }
5692
5693  // Break it into (shuffle shuffle_hi, shuffle_lo).
5694  Locs.clear();
5695  Locs.resize(4);
5696  SmallVector<int,8> LoMask(4U, -1);
5697  SmallVector<int,8> HiMask(4U, -1);
5698
5699  SmallVector<int,8> *MaskPtr = &LoMask;
5700  unsigned MaskIdx = 0;
5701  unsigned LoIdx = 0;
5702  unsigned HiIdx = 2;
5703  for (unsigned i = 0; i != 4; ++i) {
5704    if (i == 2) {
5705      MaskPtr = &HiMask;
5706      MaskIdx = 1;
5707      LoIdx = 0;
5708      HiIdx = 2;
5709    }
5710    int Idx = PermMask[i];
5711    if (Idx < 0) {
5712      Locs[i] = std::make_pair(-1, -1);
5713    } else if (Idx < 4) {
5714      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5715      (*MaskPtr)[LoIdx] = Idx;
5716      LoIdx++;
5717    } else {
5718      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5719      (*MaskPtr)[HiIdx] = Idx;
5720      HiIdx++;
5721    }
5722  }
5723
5724  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5725  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5726  SmallVector<int, 8> MaskOps;
5727  for (unsigned i = 0; i != 4; ++i) {
5728    if (Locs[i].first == -1) {
5729      MaskOps.push_back(-1);
5730    } else {
5731      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5732      MaskOps.push_back(Idx);
5733    }
5734  }
5735  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5736}
5737
5738static bool MayFoldVectorLoad(SDValue V) {
5739  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5740    V = V.getOperand(0);
5741  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5742    V = V.getOperand(0);
5743  if (MayFoldLoad(V))
5744    return true;
5745  return false;
5746}
5747
5748// FIXME: the version above should always be used. Since there's
5749// a bug where several vector shuffles can't be folded because the
5750// DAG is not updated during lowering and a node claims to have two
5751// uses while it only has one, use this version, and let isel match
5752// another instruction if the load really happens to have more than
5753// one use. Remove this version after this bug get fixed.
5754// rdar://8434668, PR8156
5755static bool RelaxedMayFoldVectorLoad(SDValue V) {
5756  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5757    V = V.getOperand(0);
5758  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5759    V = V.getOperand(0);
5760  if (ISD::isNormalLoad(V.getNode()))
5761    return true;
5762  return false;
5763}
5764
5765/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5766/// a vector extract, and if both can be later optimized into a single load.
5767/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5768/// here because otherwise a target specific shuffle node is going to be
5769/// emitted for this shuffle, and the optimization not done.
5770/// FIXME: This is probably not the best approach, but fix the problem
5771/// until the right path is decided.
5772static
5773bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5774                                         const TargetLowering &TLI) {
5775  EVT VT = V.getValueType();
5776  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5777
5778  // Be sure that the vector shuffle is present in a pattern like this:
5779  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5780  if (!V.hasOneUse())
5781    return false;
5782
5783  SDNode *N = *V.getNode()->use_begin();
5784  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5785    return false;
5786
5787  SDValue EltNo = N->getOperand(1);
5788  if (!isa<ConstantSDNode>(EltNo))
5789    return false;
5790
5791  // If the bit convert changed the number of elements, it is unsafe
5792  // to examine the mask.
5793  bool HasShuffleIntoBitcast = false;
5794  if (V.getOpcode() == ISD::BITCAST) {
5795    EVT SrcVT = V.getOperand(0).getValueType();
5796    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5797      return false;
5798    V = V.getOperand(0);
5799    HasShuffleIntoBitcast = true;
5800  }
5801
5802  // Select the input vector, guarding against out of range extract vector.
5803  unsigned NumElems = VT.getVectorNumElements();
5804  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5805  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5806  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5807
5808  // Skip one more bit_convert if necessary
5809  if (V.getOpcode() == ISD::BITCAST)
5810    V = V.getOperand(0);
5811
5812  if (ISD::isNormalLoad(V.getNode())) {
5813    // Is the original load suitable?
5814    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5815
5816    // FIXME: avoid the multi-use bug that is preventing lots of
5817    // of foldings to be detected, this is still wrong of course, but
5818    // give the temporary desired behavior, and if it happens that
5819    // the load has real more uses, during isel it will not fold, and
5820    // will generate poor code.
5821    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5822      return false;
5823
5824    if (!HasShuffleIntoBitcast)
5825      return true;
5826
5827    // If there's a bitcast before the shuffle, check if the load type and
5828    // alignment is valid.
5829    unsigned Align = LN0->getAlignment();
5830    unsigned NewAlign =
5831      TLI.getTargetData()->getABITypeAlignment(
5832                                    VT.getTypeForEVT(*DAG.getContext()));
5833
5834    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5835      return false;
5836  }
5837
5838  return true;
5839}
5840
5841static
5842SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5843  EVT VT = Op.getValueType();
5844
5845  // Canonizalize to v2f64.
5846  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5847  return DAG.getNode(ISD::BITCAST, dl, VT,
5848                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5849                                          V1, DAG));
5850}
5851
5852static
5853SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5854                        bool HasSSE2) {
5855  SDValue V1 = Op.getOperand(0);
5856  SDValue V2 = Op.getOperand(1);
5857  EVT VT = Op.getValueType();
5858
5859  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5860
5861  if (HasSSE2 && VT == MVT::v2f64)
5862    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5863
5864  // v4f32 or v4i32
5865  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5866}
5867
5868static
5869SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5870  SDValue V1 = Op.getOperand(0);
5871  SDValue V2 = Op.getOperand(1);
5872  EVT VT = Op.getValueType();
5873
5874  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5875         "unsupported shuffle type");
5876
5877  if (V2.getOpcode() == ISD::UNDEF)
5878    V2 = V1;
5879
5880  // v4i32 or v4f32
5881  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5882}
5883
5884static
5885SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5886  SDValue V1 = Op.getOperand(0);
5887  SDValue V2 = Op.getOperand(1);
5888  EVT VT = Op.getValueType();
5889  unsigned NumElems = VT.getVectorNumElements();
5890
5891  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5892  // operand of these instructions is only memory, so check if there's a
5893  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5894  // same masks.
5895  bool CanFoldLoad = false;
5896
5897  // Trivial case, when V2 comes from a load.
5898  if (MayFoldVectorLoad(V2))
5899    CanFoldLoad = true;
5900
5901  // When V1 is a load, it can be folded later into a store in isel, example:
5902  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5903  //    turns into:
5904  //  (MOVLPSmr addr:$src1, VR128:$src2)
5905  // So, recognize this potential and also use MOVLPS or MOVLPD
5906  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5907    CanFoldLoad = true;
5908
5909  // Both of them can't be memory operations though.
5910  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
5911    CanFoldLoad = false;
5912
5913  if (CanFoldLoad) {
5914    if (HasSSE2 && NumElems == 2)
5915      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5916
5917    if (NumElems == 4)
5918      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5919  }
5920
5921  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5922  // movl and movlp will both match v2i64, but v2i64 is never matched by
5923  // movl earlier because we make it strict to avoid messing with the movlp load
5924  // folding logic (see the code above getMOVLP call). Match it here then,
5925  // this is horrible, but will stay like this until we move all shuffle
5926  // matching to x86 specific nodes. Note that for the 1st condition all
5927  // types are matched with movsd.
5928  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5929    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5930  else if (HasSSE2)
5931    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5932
5933
5934  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5935
5936  // Invert the operand order and use SHUFPS to match it.
5937  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5938                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5939}
5940
5941static inline unsigned getUNPCKLOpcode(EVT VT) {
5942  switch(VT.getSimpleVT().SimpleTy) {
5943  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5944  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5945  case MVT::v4f32: return X86ISD::UNPCKLPS;
5946  case MVT::v2f64: return X86ISD::UNPCKLPD;
5947  case MVT::v8i32: // Use fp unit for int unpack.
5948  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
5949  case MVT::v4i64: // Use fp unit for int unpack.
5950  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
5951  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5952  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5953  default:
5954    llvm_unreachable("Unknown type for unpckl");
5955  }
5956  return 0;
5957}
5958
5959static inline unsigned getUNPCKHOpcode(EVT VT) {
5960  switch(VT.getSimpleVT().SimpleTy) {
5961  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5962  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5963  case MVT::v4f32: return X86ISD::UNPCKHPS;
5964  case MVT::v2f64: return X86ISD::UNPCKHPD;
5965  case MVT::v8i32: // Use fp unit for int unpack.
5966  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
5967  case MVT::v4i64: // Use fp unit for int unpack.
5968  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
5969  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5970  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5971  default:
5972    llvm_unreachable("Unknown type for unpckh");
5973  }
5974  return 0;
5975}
5976
5977static inline unsigned getVPERMILOpcode(EVT VT) {
5978  switch(VT.getSimpleVT().SimpleTy) {
5979  case MVT::v4i32:
5980  case MVT::v4f32: return X86ISD::VPERMILPS;
5981  case MVT::v2i64:
5982  case MVT::v2f64: return X86ISD::VPERMILPD;
5983  case MVT::v8i32:
5984  case MVT::v8f32: return X86ISD::VPERMILPSY;
5985  case MVT::v4i64:
5986  case MVT::v4f64: return X86ISD::VPERMILPDY;
5987  default:
5988    llvm_unreachable("Unknown type for vpermil");
5989  }
5990  return 0;
5991}
5992
5993static
5994SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5995                               const TargetLowering &TLI,
5996                               const X86Subtarget *Subtarget) {
5997  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5998  EVT VT = Op.getValueType();
5999  DebugLoc dl = Op.getDebugLoc();
6000  SDValue V1 = Op.getOperand(0);
6001  SDValue V2 = Op.getOperand(1);
6002
6003  if (isZeroShuffle(SVOp))
6004    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
6005
6006  // Handle splat operations
6007  if (SVOp->isSplat()) {
6008    unsigned NumElem = VT.getVectorNumElements();
6009    // Special case, this is the only place now where it's allowed to return
6010    // a vector_shuffle operation without using a target specific node, because
6011    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6012    // this be moved to DAGCombine instead?
6013    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6014      return Op;
6015
6016    // Since there's no native support for scalar_to_vector for 256-bit AVX, a
6017    // 128-bit scalar_to_vector + INSERT_SUBVECTOR is generated. Recognize this
6018    // idiom and do the shuffle before the insertion, this yields less
6019    // instructions in the end.
6020    if (VT.is256BitVector() &&
6021        V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
6022        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
6023        V1.getOperand(1).getOpcode() == ISD::SCALAR_TO_VECTOR)
6024      return PromoteVectorToScalarSplat(SVOp, DAG);
6025
6026    // Handle splats by matching through known shuffle masks
6027    if ((VT.is128BitVector() && NumElem <= 4) ||
6028        (VT.is256BitVector() && NumElem <= 8))
6029      return SDValue();
6030
6031    // All i16 and i8 vector types can't be used directly by a generic shuffle
6032    // instruction because the target has no such instruction. Generate shuffles
6033    // which repeat i16 and i8 several times until they fit in i32, and then can
6034    // be manipulated by target suported shuffles. After the insertion of the
6035    // necessary shuffles, the result is bitcasted back to v4f32 or v8f32.
6036    return PromoteSplat(SVOp, DAG);
6037  }
6038
6039  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6040  // do it!
6041  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6042    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6043    if (NewOp.getNode())
6044      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6045  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6046    // FIXME: Figure out a cleaner way to do this.
6047    // Try to make use of movq to zero out the top part.
6048    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6049      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6050      if (NewOp.getNode()) {
6051        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6052          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6053                              DAG, Subtarget, dl);
6054      }
6055    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6056      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6057      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6058        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6059                            DAG, Subtarget, dl);
6060    }
6061  }
6062  return SDValue();
6063}
6064
6065SDValue
6066X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6067  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6068  SDValue V1 = Op.getOperand(0);
6069  SDValue V2 = Op.getOperand(1);
6070  EVT VT = Op.getValueType();
6071  DebugLoc dl = Op.getDebugLoc();
6072  unsigned NumElems = VT.getVectorNumElements();
6073  bool isMMX = VT.getSizeInBits() == 64;
6074  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6075  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6076  bool V1IsSplat = false;
6077  bool V2IsSplat = false;
6078  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
6079  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
6080  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
6081  MachineFunction &MF = DAG.getMachineFunction();
6082  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6083
6084  // Shuffle operations on MMX not supported.
6085  if (isMMX)
6086    return Op;
6087
6088  // Vector shuffle lowering takes 3 steps:
6089  //
6090  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6091  //    narrowing and commutation of operands should be handled.
6092  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6093  //    shuffle nodes.
6094  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6095  //    so the shuffle can be broken into other shuffles and the legalizer can
6096  //    try the lowering again.
6097  //
6098  // The general ideia is that no vector_shuffle operation should be left to
6099  // be matched during isel, all of them must be converted to a target specific
6100  // node here.
6101
6102  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6103  // narrowing and commutation of operands should be handled. The actual code
6104  // doesn't include all of those, work in progress...
6105  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6106  if (NewOp.getNode())
6107    return NewOp;
6108
6109  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6110  // unpckh_undef). Only use pshufd if speed is more important than size.
6111  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6112    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6113  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6114    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6115
6116  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
6117      RelaxedMayFoldVectorLoad(V1))
6118    return getMOVDDup(Op, dl, V1, DAG);
6119
6120  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6121    return getMOVHighToLow(Op, dl, DAG);
6122
6123  // Use to match splats
6124  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6125      (VT == MVT::v2f64 || VT == MVT::v2i64))
6126    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6127
6128  if (X86::isPSHUFDMask(SVOp)) {
6129    // The actual implementation will match the mask in the if above and then
6130    // during isel it can match several different instructions, not only pshufd
6131    // as its name says, sad but true, emulate the behavior for now...
6132    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6133        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6134
6135    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6136
6137    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6138      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6139
6140    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6141      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
6142                                  TargetMask, DAG);
6143
6144    if (VT == MVT::v4f32)
6145      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
6146                                  TargetMask, DAG);
6147  }
6148
6149  // Check if this can be converted into a logical shift.
6150  bool isLeft = false;
6151  unsigned ShAmt = 0;
6152  SDValue ShVal;
6153  bool isShift = getSubtarget()->hasSSE2() &&
6154    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6155  if (isShift && ShVal.hasOneUse()) {
6156    // If the shifted value has multiple uses, it may be cheaper to use
6157    // v_set0 + movlhps or movhlps, etc.
6158    EVT EltVT = VT.getVectorElementType();
6159    ShAmt *= EltVT.getSizeInBits();
6160    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6161  }
6162
6163  if (X86::isMOVLMask(SVOp)) {
6164    if (V1IsUndef)
6165      return V2;
6166    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6167      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6168    if (!X86::isMOVLPMask(SVOp)) {
6169      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6170        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6171
6172      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6173        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6174    }
6175  }
6176
6177  // FIXME: fold these into legal mask.
6178  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6179    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6180
6181  if (X86::isMOVHLPSMask(SVOp))
6182    return getMOVHighToLow(Op, dl, DAG);
6183
6184  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6185    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6186
6187  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6188    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6189
6190  if (X86::isMOVLPMask(SVOp))
6191    return getMOVLP(Op, dl, DAG, HasSSE2);
6192
6193  if (ShouldXformToMOVHLPS(SVOp) ||
6194      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6195    return CommuteVectorShuffle(SVOp, DAG);
6196
6197  if (isShift) {
6198    // No better options. Use a vshl / vsrl.
6199    EVT EltVT = VT.getVectorElementType();
6200    ShAmt *= EltVT.getSizeInBits();
6201    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6202  }
6203
6204  bool Commuted = false;
6205  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6206  // 1,1,1,1 -> v8i16 though.
6207  V1IsSplat = isSplatVector(V1.getNode());
6208  V2IsSplat = isSplatVector(V2.getNode());
6209
6210  // Canonicalize the splat or undef, if present, to be on the RHS.
6211  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6212    Op = CommuteVectorShuffle(SVOp, DAG);
6213    SVOp = cast<ShuffleVectorSDNode>(Op);
6214    V1 = SVOp->getOperand(0);
6215    V2 = SVOp->getOperand(1);
6216    std::swap(V1IsSplat, V2IsSplat);
6217    std::swap(V1IsUndef, V2IsUndef);
6218    Commuted = true;
6219  }
6220
6221  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6222    // Shuffling low element of v1 into undef, just return v1.
6223    if (V2IsUndef)
6224      return V1;
6225    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6226    // the instruction selector will not match, so get a canonical MOVL with
6227    // swapped operands to undo the commute.
6228    return getMOVL(DAG, dl, VT, V2, V1);
6229  }
6230
6231  if (X86::isUNPCKLMask(SVOp))
6232    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6233
6234  if (X86::isUNPCKHMask(SVOp))
6235    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6236
6237  if (V2IsSplat) {
6238    // Normalize mask so all entries that point to V2 points to its first
6239    // element then try to match unpck{h|l} again. If match, return a
6240    // new vector_shuffle with the corrected mask.
6241    SDValue NewMask = NormalizeMask(SVOp, DAG);
6242    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6243    if (NSVOp != SVOp) {
6244      if (X86::isUNPCKLMask(NSVOp, true)) {
6245        return NewMask;
6246      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6247        return NewMask;
6248      }
6249    }
6250  }
6251
6252  if (Commuted) {
6253    // Commute is back and try unpck* again.
6254    // FIXME: this seems wrong.
6255    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6256    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6257
6258    if (X86::isUNPCKLMask(NewSVOp))
6259      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6260
6261    if (X86::isUNPCKHMask(NewSVOp))
6262      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6263  }
6264
6265  // Normalize the node to match x86 shuffle ops if needed
6266  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6267    return CommuteVectorShuffle(SVOp, DAG);
6268
6269  // The checks below are all present in isShuffleMaskLegal, but they are
6270  // inlined here right now to enable us to directly emit target specific
6271  // nodes, and remove one by one until they don't return Op anymore.
6272  SmallVector<int, 16> M;
6273  SVOp->getMask(M);
6274
6275  if (isPALIGNRMask(M, VT, HasSSSE3))
6276    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6277                                X86::getShufflePALIGNRImmediate(SVOp),
6278                                DAG);
6279
6280  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6281      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6282    if (VT == MVT::v2f64)
6283      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6284    if (VT == MVT::v2i64)
6285      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6286  }
6287
6288  if (isPSHUFHWMask(M, VT))
6289    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6290                                X86::getShufflePSHUFHWImmediate(SVOp),
6291                                DAG);
6292
6293  if (isPSHUFLWMask(M, VT))
6294    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6295                                X86::getShufflePSHUFLWImmediate(SVOp),
6296                                DAG);
6297
6298  if (isSHUFPMask(M, VT)) {
6299    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6300    if (VT == MVT::v4f32 || VT == MVT::v4i32)
6301      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
6302                                  TargetMask, DAG);
6303    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6304      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
6305                                  TargetMask, DAG);
6306  }
6307
6308  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6309    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6310  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6311    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6312
6313  //===--------------------------------------------------------------------===//
6314  // Generate target specific nodes for 128 or 256-bit shuffles only
6315  // supported in the AVX instruction set.
6316  //
6317
6318  // Handle VPERMILPS* permutations
6319  if (isVPERMILPSMask(M, VT, Subtarget))
6320    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6321                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6322
6323  // Handle VPERMILPD* permutations
6324  if (isVPERMILPDMask(M, VT, Subtarget))
6325    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6326                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6327
6328  //===--------------------------------------------------------------------===//
6329  // Since no target specific shuffle was selected for this generic one,
6330  // lower it into other known shuffles. FIXME: this isn't true yet, but
6331  // this is the plan.
6332  //
6333
6334  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6335  if (VT == MVT::v8i16) {
6336    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6337    if (NewOp.getNode())
6338      return NewOp;
6339  }
6340
6341  if (VT == MVT::v16i8) {
6342    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6343    if (NewOp.getNode())
6344      return NewOp;
6345  }
6346
6347  // Handle all 128-bit wide vectors with 4 elements, and match them with
6348  // several different shuffle types.
6349  if (NumElems == 4 && VT.getSizeInBits() == 128)
6350    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6351
6352  // Handle general 256-bit shuffles
6353  if (VT.is256BitVector())
6354    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6355
6356  return SDValue();
6357}
6358
6359SDValue
6360X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6361                                                SelectionDAG &DAG) const {
6362  EVT VT = Op.getValueType();
6363  DebugLoc dl = Op.getDebugLoc();
6364
6365  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6366    return SDValue();
6367
6368  if (VT.getSizeInBits() == 8) {
6369    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6370                                    Op.getOperand(0), Op.getOperand(1));
6371    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6372                                    DAG.getValueType(VT));
6373    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6374  } else if (VT.getSizeInBits() == 16) {
6375    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6376    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6377    if (Idx == 0)
6378      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6379                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6380                                     DAG.getNode(ISD::BITCAST, dl,
6381                                                 MVT::v4i32,
6382                                                 Op.getOperand(0)),
6383                                     Op.getOperand(1)));
6384    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6385                                    Op.getOperand(0), Op.getOperand(1));
6386    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6387                                    DAG.getValueType(VT));
6388    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6389  } else if (VT == MVT::f32) {
6390    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6391    // the result back to FR32 register. It's only worth matching if the
6392    // result has a single use which is a store or a bitcast to i32.  And in
6393    // the case of a store, it's not worth it if the index is a constant 0,
6394    // because a MOVSSmr can be used instead, which is smaller and faster.
6395    if (!Op.hasOneUse())
6396      return SDValue();
6397    SDNode *User = *Op.getNode()->use_begin();
6398    if ((User->getOpcode() != ISD::STORE ||
6399         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6400          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6401        (User->getOpcode() != ISD::BITCAST ||
6402         User->getValueType(0) != MVT::i32))
6403      return SDValue();
6404    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6405                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6406                                              Op.getOperand(0)),
6407                                              Op.getOperand(1));
6408    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6409  } else if (VT == MVT::i32) {
6410    // ExtractPS works with constant index.
6411    if (isa<ConstantSDNode>(Op.getOperand(1)))
6412      return Op;
6413  }
6414  return SDValue();
6415}
6416
6417
6418SDValue
6419X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6420                                           SelectionDAG &DAG) const {
6421  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6422    return SDValue();
6423
6424  SDValue Vec = Op.getOperand(0);
6425  EVT VecVT = Vec.getValueType();
6426
6427  // If this is a 256-bit vector result, first extract the 128-bit vector and
6428  // then extract the element from the 128-bit vector.
6429  if (VecVT.getSizeInBits() == 256) {
6430    DebugLoc dl = Op.getNode()->getDebugLoc();
6431    unsigned NumElems = VecVT.getVectorNumElements();
6432    SDValue Idx = Op.getOperand(1);
6433    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6434
6435    // Get the 128-bit vector.
6436    bool Upper = IdxVal >= NumElems/2;
6437    Vec = Extract128BitVector(Vec,
6438                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6439
6440    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6441                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6442  }
6443
6444  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6445
6446  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
6447    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6448    if (Res.getNode())
6449      return Res;
6450  }
6451
6452  EVT VT = Op.getValueType();
6453  DebugLoc dl = Op.getDebugLoc();
6454  // TODO: handle v16i8.
6455  if (VT.getSizeInBits() == 16) {
6456    SDValue Vec = Op.getOperand(0);
6457    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6458    if (Idx == 0)
6459      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6460                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6461                                     DAG.getNode(ISD::BITCAST, dl,
6462                                                 MVT::v4i32, Vec),
6463                                     Op.getOperand(1)));
6464    // Transform it so it match pextrw which produces a 32-bit result.
6465    EVT EltVT = MVT::i32;
6466    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6467                                    Op.getOperand(0), Op.getOperand(1));
6468    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6469                                    DAG.getValueType(VT));
6470    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6471  } else if (VT.getSizeInBits() == 32) {
6472    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6473    if (Idx == 0)
6474      return Op;
6475
6476    // SHUFPS the element to the lowest double word, then movss.
6477    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6478    EVT VVT = Op.getOperand(0).getValueType();
6479    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6480                                       DAG.getUNDEF(VVT), Mask);
6481    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6482                       DAG.getIntPtrConstant(0));
6483  } else if (VT.getSizeInBits() == 64) {
6484    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6485    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6486    //        to match extract_elt for f64.
6487    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6488    if (Idx == 0)
6489      return Op;
6490
6491    // UNPCKHPD the element to the lowest double word, then movsd.
6492    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6493    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6494    int Mask[2] = { 1, -1 };
6495    EVT VVT = Op.getOperand(0).getValueType();
6496    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6497                                       DAG.getUNDEF(VVT), Mask);
6498    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6499                       DAG.getIntPtrConstant(0));
6500  }
6501
6502  return SDValue();
6503}
6504
6505SDValue
6506X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6507                                               SelectionDAG &DAG) const {
6508  EVT VT = Op.getValueType();
6509  EVT EltVT = VT.getVectorElementType();
6510  DebugLoc dl = Op.getDebugLoc();
6511
6512  SDValue N0 = Op.getOperand(0);
6513  SDValue N1 = Op.getOperand(1);
6514  SDValue N2 = Op.getOperand(2);
6515
6516  if (VT.getSizeInBits() == 256)
6517    return SDValue();
6518
6519  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6520      isa<ConstantSDNode>(N2)) {
6521    unsigned Opc;
6522    if (VT == MVT::v8i16)
6523      Opc = X86ISD::PINSRW;
6524    else if (VT == MVT::v16i8)
6525      Opc = X86ISD::PINSRB;
6526    else
6527      Opc = X86ISD::PINSRB;
6528
6529    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6530    // argument.
6531    if (N1.getValueType() != MVT::i32)
6532      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6533    if (N2.getValueType() != MVT::i32)
6534      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6535    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6536  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6537    // Bits [7:6] of the constant are the source select.  This will always be
6538    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6539    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6540    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6541    // Bits [5:4] of the constant are the destination select.  This is the
6542    //  value of the incoming immediate.
6543    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6544    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6545    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6546    // Create this as a scalar to vector..
6547    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6548    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6549  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6550    // PINSR* works with constant index.
6551    return Op;
6552  }
6553  return SDValue();
6554}
6555
6556SDValue
6557X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6558  EVT VT = Op.getValueType();
6559  EVT EltVT = VT.getVectorElementType();
6560
6561  DebugLoc dl = Op.getDebugLoc();
6562  SDValue N0 = Op.getOperand(0);
6563  SDValue N1 = Op.getOperand(1);
6564  SDValue N2 = Op.getOperand(2);
6565
6566  // If this is a 256-bit vector result, first extract the 128-bit vector,
6567  // insert the element into the extracted half and then place it back.
6568  if (VT.getSizeInBits() == 256) {
6569    if (!isa<ConstantSDNode>(N2))
6570      return SDValue();
6571
6572    // Get the desired 128-bit vector half.
6573    unsigned NumElems = VT.getVectorNumElements();
6574    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6575    bool Upper = IdxVal >= NumElems/2;
6576    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6577    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6578
6579    // Insert the element into the desired half.
6580    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6581                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6582
6583    // Insert the changed part back to the 256-bit vector
6584    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6585  }
6586
6587  if (Subtarget->hasSSE41() || Subtarget->hasAVX())
6588    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6589
6590  if (EltVT == MVT::i8)
6591    return SDValue();
6592
6593  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6594    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6595    // as its second argument.
6596    if (N1.getValueType() != MVT::i32)
6597      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6598    if (N2.getValueType() != MVT::i32)
6599      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6600    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6601  }
6602  return SDValue();
6603}
6604
6605SDValue
6606X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6607  LLVMContext *Context = DAG.getContext();
6608  DebugLoc dl = Op.getDebugLoc();
6609  EVT OpVT = Op.getValueType();
6610
6611  // If this is a 256-bit vector result, first insert into a 128-bit
6612  // vector and then insert into the 256-bit vector.
6613  if (OpVT.getSizeInBits() > 128) {
6614    // Insert into a 128-bit vector.
6615    EVT VT128 = EVT::getVectorVT(*Context,
6616                                 OpVT.getVectorElementType(),
6617                                 OpVT.getVectorNumElements() / 2);
6618
6619    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6620
6621    // Insert the 128-bit vector.
6622    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6623                              DAG.getConstant(0, MVT::i32),
6624                              DAG, dl);
6625  }
6626
6627  if (Op.getValueType() == MVT::v1i64 &&
6628      Op.getOperand(0).getValueType() == MVT::i64)
6629    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6630
6631  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6632  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6633         "Expected an SSE type!");
6634  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6635                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6636}
6637
6638// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6639// a simple subregister reference or explicit instructions to grab
6640// upper bits of a vector.
6641SDValue
6642X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6643  if (Subtarget->hasAVX()) {
6644    DebugLoc dl = Op.getNode()->getDebugLoc();
6645    SDValue Vec = Op.getNode()->getOperand(0);
6646    SDValue Idx = Op.getNode()->getOperand(1);
6647
6648    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6649        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6650        return Extract128BitVector(Vec, Idx, DAG, dl);
6651    }
6652  }
6653  return SDValue();
6654}
6655
6656// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6657// simple superregister reference or explicit instructions to insert
6658// the upper bits of a vector.
6659SDValue
6660X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6661  if (Subtarget->hasAVX()) {
6662    DebugLoc dl = Op.getNode()->getDebugLoc();
6663    SDValue Vec = Op.getNode()->getOperand(0);
6664    SDValue SubVec = Op.getNode()->getOperand(1);
6665    SDValue Idx = Op.getNode()->getOperand(2);
6666
6667    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6668        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6669      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6670    }
6671  }
6672  return SDValue();
6673}
6674
6675// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6676// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6677// one of the above mentioned nodes. It has to be wrapped because otherwise
6678// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6679// be used to form addressing mode. These wrapped nodes will be selected
6680// into MOV32ri.
6681SDValue
6682X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6683  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6684
6685  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6686  // global base reg.
6687  unsigned char OpFlag = 0;
6688  unsigned WrapperKind = X86ISD::Wrapper;
6689  CodeModel::Model M = getTargetMachine().getCodeModel();
6690
6691  if (Subtarget->isPICStyleRIPRel() &&
6692      (M == CodeModel::Small || M == CodeModel::Kernel))
6693    WrapperKind = X86ISD::WrapperRIP;
6694  else if (Subtarget->isPICStyleGOT())
6695    OpFlag = X86II::MO_GOTOFF;
6696  else if (Subtarget->isPICStyleStubPIC())
6697    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6698
6699  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6700                                             CP->getAlignment(),
6701                                             CP->getOffset(), OpFlag);
6702  DebugLoc DL = CP->getDebugLoc();
6703  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6704  // With PIC, the address is actually $g + Offset.
6705  if (OpFlag) {
6706    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6707                         DAG.getNode(X86ISD::GlobalBaseReg,
6708                                     DebugLoc(), getPointerTy()),
6709                         Result);
6710  }
6711
6712  return Result;
6713}
6714
6715SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6716  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6717
6718  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6719  // global base reg.
6720  unsigned char OpFlag = 0;
6721  unsigned WrapperKind = X86ISD::Wrapper;
6722  CodeModel::Model M = getTargetMachine().getCodeModel();
6723
6724  if (Subtarget->isPICStyleRIPRel() &&
6725      (M == CodeModel::Small || M == CodeModel::Kernel))
6726    WrapperKind = X86ISD::WrapperRIP;
6727  else if (Subtarget->isPICStyleGOT())
6728    OpFlag = X86II::MO_GOTOFF;
6729  else if (Subtarget->isPICStyleStubPIC())
6730    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6731
6732  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6733                                          OpFlag);
6734  DebugLoc DL = JT->getDebugLoc();
6735  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6736
6737  // With PIC, the address is actually $g + Offset.
6738  if (OpFlag)
6739    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6740                         DAG.getNode(X86ISD::GlobalBaseReg,
6741                                     DebugLoc(), getPointerTy()),
6742                         Result);
6743
6744  return Result;
6745}
6746
6747SDValue
6748X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6749  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6750
6751  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6752  // global base reg.
6753  unsigned char OpFlag = 0;
6754  unsigned WrapperKind = X86ISD::Wrapper;
6755  CodeModel::Model M = getTargetMachine().getCodeModel();
6756
6757  if (Subtarget->isPICStyleRIPRel() &&
6758      (M == CodeModel::Small || M == CodeModel::Kernel))
6759    WrapperKind = X86ISD::WrapperRIP;
6760  else if (Subtarget->isPICStyleGOT())
6761    OpFlag = X86II::MO_GOTOFF;
6762  else if (Subtarget->isPICStyleStubPIC())
6763    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6764
6765  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6766
6767  DebugLoc DL = Op.getDebugLoc();
6768  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6769
6770
6771  // With PIC, the address is actually $g + Offset.
6772  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6773      !Subtarget->is64Bit()) {
6774    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6775                         DAG.getNode(X86ISD::GlobalBaseReg,
6776                                     DebugLoc(), getPointerTy()),
6777                         Result);
6778  }
6779
6780  return Result;
6781}
6782
6783SDValue
6784X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6785  // Create the TargetBlockAddressAddress node.
6786  unsigned char OpFlags =
6787    Subtarget->ClassifyBlockAddressReference();
6788  CodeModel::Model M = getTargetMachine().getCodeModel();
6789  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6790  DebugLoc dl = Op.getDebugLoc();
6791  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6792                                       /*isTarget=*/true, OpFlags);
6793
6794  if (Subtarget->isPICStyleRIPRel() &&
6795      (M == CodeModel::Small || M == CodeModel::Kernel))
6796    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6797  else
6798    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6799
6800  // With PIC, the address is actually $g + Offset.
6801  if (isGlobalRelativeToPICBase(OpFlags)) {
6802    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6803                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6804                         Result);
6805  }
6806
6807  return Result;
6808}
6809
6810SDValue
6811X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6812                                      int64_t Offset,
6813                                      SelectionDAG &DAG) const {
6814  // Create the TargetGlobalAddress node, folding in the constant
6815  // offset if it is legal.
6816  unsigned char OpFlags =
6817    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6818  CodeModel::Model M = getTargetMachine().getCodeModel();
6819  SDValue Result;
6820  if (OpFlags == X86II::MO_NO_FLAG &&
6821      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6822    // A direct static reference to a global.
6823    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6824    Offset = 0;
6825  } else {
6826    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6827  }
6828
6829  if (Subtarget->isPICStyleRIPRel() &&
6830      (M == CodeModel::Small || M == CodeModel::Kernel))
6831    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6832  else
6833    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6834
6835  // With PIC, the address is actually $g + Offset.
6836  if (isGlobalRelativeToPICBase(OpFlags)) {
6837    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6838                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6839                         Result);
6840  }
6841
6842  // For globals that require a load from a stub to get the address, emit the
6843  // load.
6844  if (isGlobalStubReference(OpFlags))
6845    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6846                         MachinePointerInfo::getGOT(), false, false, 0);
6847
6848  // If there was a non-zero offset that we didn't fold, create an explicit
6849  // addition for it.
6850  if (Offset != 0)
6851    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6852                         DAG.getConstant(Offset, getPointerTy()));
6853
6854  return Result;
6855}
6856
6857SDValue
6858X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6859  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6860  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6861  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6862}
6863
6864static SDValue
6865GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6866           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6867           unsigned char OperandFlags) {
6868  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6869  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6870  DebugLoc dl = GA->getDebugLoc();
6871  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6872                                           GA->getValueType(0),
6873                                           GA->getOffset(),
6874                                           OperandFlags);
6875  if (InFlag) {
6876    SDValue Ops[] = { Chain,  TGA, *InFlag };
6877    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6878  } else {
6879    SDValue Ops[]  = { Chain, TGA };
6880    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6881  }
6882
6883  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6884  MFI->setAdjustsStack(true);
6885
6886  SDValue Flag = Chain.getValue(1);
6887  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6888}
6889
6890// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6891static SDValue
6892LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6893                                const EVT PtrVT) {
6894  SDValue InFlag;
6895  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6896  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6897                                     DAG.getNode(X86ISD::GlobalBaseReg,
6898                                                 DebugLoc(), PtrVT), InFlag);
6899  InFlag = Chain.getValue(1);
6900
6901  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6902}
6903
6904// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6905static SDValue
6906LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6907                                const EVT PtrVT) {
6908  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6909                    X86::RAX, X86II::MO_TLSGD);
6910}
6911
6912// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6913// "local exec" model.
6914static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6915                                   const EVT PtrVT, TLSModel::Model model,
6916                                   bool is64Bit) {
6917  DebugLoc dl = GA->getDebugLoc();
6918
6919  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6920  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6921                                                         is64Bit ? 257 : 256));
6922
6923  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6924                                      DAG.getIntPtrConstant(0),
6925                                      MachinePointerInfo(Ptr), false, false, 0);
6926
6927  unsigned char OperandFlags = 0;
6928  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6929  // initialexec.
6930  unsigned WrapperKind = X86ISD::Wrapper;
6931  if (model == TLSModel::LocalExec) {
6932    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6933  } else if (is64Bit) {
6934    assert(model == TLSModel::InitialExec);
6935    OperandFlags = X86II::MO_GOTTPOFF;
6936    WrapperKind = X86ISD::WrapperRIP;
6937  } else {
6938    assert(model == TLSModel::InitialExec);
6939    OperandFlags = X86II::MO_INDNTPOFF;
6940  }
6941
6942  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6943  // exec)
6944  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6945                                           GA->getValueType(0),
6946                                           GA->getOffset(), OperandFlags);
6947  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6948
6949  if (model == TLSModel::InitialExec)
6950    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6951                         MachinePointerInfo::getGOT(), false, false, 0);
6952
6953  // The address of the thread local variable is the add of the thread
6954  // pointer with the offset of the variable.
6955  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6956}
6957
6958SDValue
6959X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6960
6961  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6962  const GlobalValue *GV = GA->getGlobal();
6963
6964  if (Subtarget->isTargetELF()) {
6965    // TODO: implement the "local dynamic" model
6966    // TODO: implement the "initial exec"model for pic executables
6967
6968    // If GV is an alias then use the aliasee for determining
6969    // thread-localness.
6970    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6971      GV = GA->resolveAliasedGlobal(false);
6972
6973    TLSModel::Model model
6974      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6975
6976    switch (model) {
6977      case TLSModel::GeneralDynamic:
6978      case TLSModel::LocalDynamic: // not implemented
6979        if (Subtarget->is64Bit())
6980          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6981        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6982
6983      case TLSModel::InitialExec:
6984      case TLSModel::LocalExec:
6985        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6986                                   Subtarget->is64Bit());
6987    }
6988  } else if (Subtarget->isTargetDarwin()) {
6989    // Darwin only has one model of TLS.  Lower to that.
6990    unsigned char OpFlag = 0;
6991    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6992                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6993
6994    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6995    // global base reg.
6996    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6997                  !Subtarget->is64Bit();
6998    if (PIC32)
6999      OpFlag = X86II::MO_TLVP_PIC_BASE;
7000    else
7001      OpFlag = X86II::MO_TLVP;
7002    DebugLoc DL = Op.getDebugLoc();
7003    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7004                                                GA->getValueType(0),
7005                                                GA->getOffset(), OpFlag);
7006    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7007
7008    // With PIC32, the address is actually $g + Offset.
7009    if (PIC32)
7010      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7011                           DAG.getNode(X86ISD::GlobalBaseReg,
7012                                       DebugLoc(), getPointerTy()),
7013                           Offset);
7014
7015    // Lowering the machine isd will make sure everything is in the right
7016    // location.
7017    SDValue Chain = DAG.getEntryNode();
7018    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7019    SDValue Args[] = { Chain, Offset };
7020    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7021
7022    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7023    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7024    MFI->setAdjustsStack(true);
7025
7026    // And our return value (tls address) is in the standard call return value
7027    // location.
7028    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7029    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
7030  }
7031
7032  assert(false &&
7033         "TLS not implemented for this target.");
7034
7035  llvm_unreachable("Unreachable");
7036  return SDValue();
7037}
7038
7039
7040/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7041/// take a 2 x i32 value to shift plus a shift amount.
7042SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7043  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7044  EVT VT = Op.getValueType();
7045  unsigned VTBits = VT.getSizeInBits();
7046  DebugLoc dl = Op.getDebugLoc();
7047  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7048  SDValue ShOpLo = Op.getOperand(0);
7049  SDValue ShOpHi = Op.getOperand(1);
7050  SDValue ShAmt  = Op.getOperand(2);
7051  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7052                                     DAG.getConstant(VTBits - 1, MVT::i8))
7053                       : DAG.getConstant(0, VT);
7054
7055  SDValue Tmp2, Tmp3;
7056  if (Op.getOpcode() == ISD::SHL_PARTS) {
7057    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7058    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7059  } else {
7060    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7061    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7062  }
7063
7064  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7065                                DAG.getConstant(VTBits, MVT::i8));
7066  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7067                             AndNode, DAG.getConstant(0, MVT::i8));
7068
7069  SDValue Hi, Lo;
7070  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7071  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7072  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7073
7074  if (Op.getOpcode() == ISD::SHL_PARTS) {
7075    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7076    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7077  } else {
7078    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7079    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7080  }
7081
7082  SDValue Ops[2] = { Lo, Hi };
7083  return DAG.getMergeValues(Ops, 2, dl);
7084}
7085
7086SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7087                                           SelectionDAG &DAG) const {
7088  EVT SrcVT = Op.getOperand(0).getValueType();
7089
7090  if (SrcVT.isVector())
7091    return SDValue();
7092
7093  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7094         "Unknown SINT_TO_FP to lower!");
7095
7096  // These are really Legal; return the operand so the caller accepts it as
7097  // Legal.
7098  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7099    return Op;
7100  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7101      Subtarget->is64Bit()) {
7102    return Op;
7103  }
7104
7105  DebugLoc dl = Op.getDebugLoc();
7106  unsigned Size = SrcVT.getSizeInBits()/8;
7107  MachineFunction &MF = DAG.getMachineFunction();
7108  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7109  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7110  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7111                               StackSlot,
7112                               MachinePointerInfo::getFixedStack(SSFI),
7113                               false, false, 0);
7114  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7115}
7116
7117SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7118                                     SDValue StackSlot,
7119                                     SelectionDAG &DAG) const {
7120  // Build the FILD
7121  DebugLoc DL = Op.getDebugLoc();
7122  SDVTList Tys;
7123  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7124  if (useSSE)
7125    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7126  else
7127    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7128
7129  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7130
7131  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7132  MachineMemOperand *MMO;
7133  if (FI) {
7134    int SSFI = FI->getIndex();
7135    MMO =
7136      DAG.getMachineFunction()
7137      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7138                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7139  } else {
7140    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7141    StackSlot = StackSlot.getOperand(1);
7142  }
7143  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7144  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7145                                           X86ISD::FILD, DL,
7146                                           Tys, Ops, array_lengthof(Ops),
7147                                           SrcVT, MMO);
7148
7149  if (useSSE) {
7150    Chain = Result.getValue(1);
7151    SDValue InFlag = Result.getValue(2);
7152
7153    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7154    // shouldn't be necessary except that RFP cannot be live across
7155    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7156    MachineFunction &MF = DAG.getMachineFunction();
7157    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7158    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7159    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7160    Tys = DAG.getVTList(MVT::Other);
7161    SDValue Ops[] = {
7162      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7163    };
7164    MachineMemOperand *MMO =
7165      DAG.getMachineFunction()
7166      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7167                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7168
7169    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7170                                    Ops, array_lengthof(Ops),
7171                                    Op.getValueType(), MMO);
7172    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7173                         MachinePointerInfo::getFixedStack(SSFI),
7174                         false, false, 0);
7175  }
7176
7177  return Result;
7178}
7179
7180// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7181SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7182                                               SelectionDAG &DAG) const {
7183  // This algorithm is not obvious. Here it is in C code, more or less:
7184  /*
7185    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7186      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7187      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7188
7189      // Copy ints to xmm registers.
7190      __m128i xh = _mm_cvtsi32_si128( hi );
7191      __m128i xl = _mm_cvtsi32_si128( lo );
7192
7193      // Combine into low half of a single xmm register.
7194      __m128i x = _mm_unpacklo_epi32( xh, xl );
7195      __m128d d;
7196      double sd;
7197
7198      // Merge in appropriate exponents to give the integer bits the right
7199      // magnitude.
7200      x = _mm_unpacklo_epi32( x, exp );
7201
7202      // Subtract away the biases to deal with the IEEE-754 double precision
7203      // implicit 1.
7204      d = _mm_sub_pd( (__m128d) x, bias );
7205
7206      // All conversions up to here are exact. The correctly rounded result is
7207      // calculated using the current rounding mode using the following
7208      // horizontal add.
7209      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7210      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7211                                // store doesn't really need to be here (except
7212                                // maybe to zero the other double)
7213      return sd;
7214    }
7215  */
7216
7217  DebugLoc dl = Op.getDebugLoc();
7218  LLVMContext *Context = DAG.getContext();
7219
7220  // Build some magic constants.
7221  std::vector<Constant*> CV0;
7222  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7223  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7224  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7225  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7226  Constant *C0 = ConstantVector::get(CV0);
7227  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7228
7229  std::vector<Constant*> CV1;
7230  CV1.push_back(
7231    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7232  CV1.push_back(
7233    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7234  Constant *C1 = ConstantVector::get(CV1);
7235  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7236
7237  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7238                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7239                                        Op.getOperand(0),
7240                                        DAG.getIntPtrConstant(1)));
7241  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7242                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7243                                        Op.getOperand(0),
7244                                        DAG.getIntPtrConstant(0)));
7245  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7246  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7247                              MachinePointerInfo::getConstantPool(),
7248                              false, false, 16);
7249  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7250  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7251  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7252                              MachinePointerInfo::getConstantPool(),
7253                              false, false, 16);
7254  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7255
7256  // Add the halves; easiest way is to swap them into another reg first.
7257  int ShufMask[2] = { 1, -1 };
7258  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7259                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7260  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7261  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7262                     DAG.getIntPtrConstant(0));
7263}
7264
7265// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7266SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7267                                               SelectionDAG &DAG) const {
7268  DebugLoc dl = Op.getDebugLoc();
7269  // FP constant to bias correct the final result.
7270  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7271                                   MVT::f64);
7272
7273  // Load the 32-bit value into an XMM register.
7274  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7275                             Op.getOperand(0));
7276
7277  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7278                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7279                     DAG.getIntPtrConstant(0));
7280
7281  // Or the load with the bias.
7282  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7283                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7284                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7285                                                   MVT::v2f64, Load)),
7286                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7287                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7288                                                   MVT::v2f64, Bias)));
7289  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7290                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7291                   DAG.getIntPtrConstant(0));
7292
7293  // Subtract the bias.
7294  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7295
7296  // Handle final rounding.
7297  EVT DestVT = Op.getValueType();
7298
7299  if (DestVT.bitsLT(MVT::f64)) {
7300    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7301                       DAG.getIntPtrConstant(0));
7302  } else if (DestVT.bitsGT(MVT::f64)) {
7303    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7304  }
7305
7306  // Handle final rounding.
7307  return Sub;
7308}
7309
7310SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7311                                           SelectionDAG &DAG) const {
7312  SDValue N0 = Op.getOperand(0);
7313  DebugLoc dl = Op.getDebugLoc();
7314
7315  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7316  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7317  // the optimization here.
7318  if (DAG.SignBitIsZero(N0))
7319    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7320
7321  EVT SrcVT = N0.getValueType();
7322  EVT DstVT = Op.getValueType();
7323  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7324    return LowerUINT_TO_FP_i64(Op, DAG);
7325  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7326    return LowerUINT_TO_FP_i32(Op, DAG);
7327
7328  // Make a 64-bit buffer, and use it to build an FILD.
7329  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7330  if (SrcVT == MVT::i32) {
7331    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7332    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7333                                     getPointerTy(), StackSlot, WordOff);
7334    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7335                                  StackSlot, MachinePointerInfo(),
7336                                  false, false, 0);
7337    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7338                                  OffsetSlot, MachinePointerInfo(),
7339                                  false, false, 0);
7340    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7341    return Fild;
7342  }
7343
7344  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7345  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7346                                StackSlot, MachinePointerInfo(),
7347                               false, false, 0);
7348  // For i64 source, we need to add the appropriate power of 2 if the input
7349  // was negative.  This is the same as the optimization in
7350  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7351  // we must be careful to do the computation in x87 extended precision, not
7352  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7353  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7354  MachineMemOperand *MMO =
7355    DAG.getMachineFunction()
7356    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7357                          MachineMemOperand::MOLoad, 8, 8);
7358
7359  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7360  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7361  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7362                                         MVT::i64, MMO);
7363
7364  APInt FF(32, 0x5F800000ULL);
7365
7366  // Check whether the sign bit is set.
7367  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7368                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7369                                 ISD::SETLT);
7370
7371  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7372  SDValue FudgePtr = DAG.getConstantPool(
7373                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7374                                         getPointerTy());
7375
7376  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7377  SDValue Zero = DAG.getIntPtrConstant(0);
7378  SDValue Four = DAG.getIntPtrConstant(4);
7379  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7380                               Zero, Four);
7381  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7382
7383  // Load the value out, extending it from f32 to f80.
7384  // FIXME: Avoid the extend by constructing the right constant pool?
7385  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7386                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7387                                 MVT::f32, false, false, 4);
7388  // Extend everything to 80 bits to force it to be done on x87.
7389  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7390  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7391}
7392
7393std::pair<SDValue,SDValue> X86TargetLowering::
7394FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7395  DebugLoc DL = Op.getDebugLoc();
7396
7397  EVT DstTy = Op.getValueType();
7398
7399  if (!IsSigned) {
7400    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7401    DstTy = MVT::i64;
7402  }
7403
7404  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7405         DstTy.getSimpleVT() >= MVT::i16 &&
7406         "Unknown FP_TO_SINT to lower!");
7407
7408  // These are really Legal.
7409  if (DstTy == MVT::i32 &&
7410      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7411    return std::make_pair(SDValue(), SDValue());
7412  if (Subtarget->is64Bit() &&
7413      DstTy == MVT::i64 &&
7414      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7415    return std::make_pair(SDValue(), SDValue());
7416
7417  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7418  // stack slot.
7419  MachineFunction &MF = DAG.getMachineFunction();
7420  unsigned MemSize = DstTy.getSizeInBits()/8;
7421  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7422  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7423
7424
7425
7426  unsigned Opc;
7427  switch (DstTy.getSimpleVT().SimpleTy) {
7428  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7429  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7430  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7431  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7432  }
7433
7434  SDValue Chain = DAG.getEntryNode();
7435  SDValue Value = Op.getOperand(0);
7436  EVT TheVT = Op.getOperand(0).getValueType();
7437  if (isScalarFPTypeInSSEReg(TheVT)) {
7438    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7439    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7440                         MachinePointerInfo::getFixedStack(SSFI),
7441                         false, false, 0);
7442    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7443    SDValue Ops[] = {
7444      Chain, StackSlot, DAG.getValueType(TheVT)
7445    };
7446
7447    MachineMemOperand *MMO =
7448      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7449                              MachineMemOperand::MOLoad, MemSize, MemSize);
7450    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7451                                    DstTy, MMO);
7452    Chain = Value.getValue(1);
7453    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7454    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7455  }
7456
7457  MachineMemOperand *MMO =
7458    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7459                            MachineMemOperand::MOStore, MemSize, MemSize);
7460
7461  // Build the FP_TO_INT*_IN_MEM
7462  SDValue Ops[] = { Chain, Value, StackSlot };
7463  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7464                                         Ops, 3, DstTy, MMO);
7465
7466  return std::make_pair(FIST, StackSlot);
7467}
7468
7469SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7470                                           SelectionDAG &DAG) const {
7471  if (Op.getValueType().isVector())
7472    return SDValue();
7473
7474  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7475  SDValue FIST = Vals.first, StackSlot = Vals.second;
7476  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7477  if (FIST.getNode() == 0) return Op;
7478
7479  // Load the result.
7480  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7481                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7482}
7483
7484SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7485                                           SelectionDAG &DAG) const {
7486  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7487  SDValue FIST = Vals.first, StackSlot = Vals.second;
7488  assert(FIST.getNode() && "Unexpected failure");
7489
7490  // Load the result.
7491  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7492                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7493}
7494
7495SDValue X86TargetLowering::LowerFABS(SDValue Op,
7496                                     SelectionDAG &DAG) const {
7497  LLVMContext *Context = DAG.getContext();
7498  DebugLoc dl = Op.getDebugLoc();
7499  EVT VT = Op.getValueType();
7500  EVT EltVT = VT;
7501  if (VT.isVector())
7502    EltVT = VT.getVectorElementType();
7503  std::vector<Constant*> CV;
7504  if (EltVT == MVT::f64) {
7505    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7506    CV.push_back(C);
7507    CV.push_back(C);
7508  } else {
7509    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7510    CV.push_back(C);
7511    CV.push_back(C);
7512    CV.push_back(C);
7513    CV.push_back(C);
7514  }
7515  Constant *C = ConstantVector::get(CV);
7516  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7517  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7518                             MachinePointerInfo::getConstantPool(),
7519                             false, false, 16);
7520  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7521}
7522
7523SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7524  LLVMContext *Context = DAG.getContext();
7525  DebugLoc dl = Op.getDebugLoc();
7526  EVT VT = Op.getValueType();
7527  EVT EltVT = VT;
7528  if (VT.isVector())
7529    EltVT = VT.getVectorElementType();
7530  std::vector<Constant*> CV;
7531  if (EltVT == MVT::f64) {
7532    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7533    CV.push_back(C);
7534    CV.push_back(C);
7535  } else {
7536    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7537    CV.push_back(C);
7538    CV.push_back(C);
7539    CV.push_back(C);
7540    CV.push_back(C);
7541  }
7542  Constant *C = ConstantVector::get(CV);
7543  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7544  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7545                             MachinePointerInfo::getConstantPool(),
7546                             false, false, 16);
7547  if (VT.isVector()) {
7548    return DAG.getNode(ISD::BITCAST, dl, VT,
7549                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7550                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7551                                Op.getOperand(0)),
7552                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7553  } else {
7554    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7555  }
7556}
7557
7558SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7559  LLVMContext *Context = DAG.getContext();
7560  SDValue Op0 = Op.getOperand(0);
7561  SDValue Op1 = Op.getOperand(1);
7562  DebugLoc dl = Op.getDebugLoc();
7563  EVT VT = Op.getValueType();
7564  EVT SrcVT = Op1.getValueType();
7565
7566  // If second operand is smaller, extend it first.
7567  if (SrcVT.bitsLT(VT)) {
7568    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7569    SrcVT = VT;
7570  }
7571  // And if it is bigger, shrink it first.
7572  if (SrcVT.bitsGT(VT)) {
7573    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7574    SrcVT = VT;
7575  }
7576
7577  // At this point the operands and the result should have the same
7578  // type, and that won't be f80 since that is not custom lowered.
7579
7580  // First get the sign bit of second operand.
7581  std::vector<Constant*> CV;
7582  if (SrcVT == MVT::f64) {
7583    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7584    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7585  } else {
7586    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7587    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7588    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7589    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7590  }
7591  Constant *C = ConstantVector::get(CV);
7592  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7593  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7594                              MachinePointerInfo::getConstantPool(),
7595                              false, false, 16);
7596  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7597
7598  // Shift sign bit right or left if the two operands have different types.
7599  if (SrcVT.bitsGT(VT)) {
7600    // Op0 is MVT::f32, Op1 is MVT::f64.
7601    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7602    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7603                          DAG.getConstant(32, MVT::i32));
7604    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7605    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7606                          DAG.getIntPtrConstant(0));
7607  }
7608
7609  // Clear first operand sign bit.
7610  CV.clear();
7611  if (VT == MVT::f64) {
7612    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7613    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7614  } else {
7615    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7616    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7617    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7618    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7619  }
7620  C = ConstantVector::get(CV);
7621  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7622  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7623                              MachinePointerInfo::getConstantPool(),
7624                              false, false, 16);
7625  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7626
7627  // Or the value with the sign bit.
7628  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7629}
7630
7631SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7632  SDValue N0 = Op.getOperand(0);
7633  DebugLoc dl = Op.getDebugLoc();
7634  EVT VT = Op.getValueType();
7635
7636  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7637  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7638                                  DAG.getConstant(1, VT));
7639  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7640}
7641
7642/// Emit nodes that will be selected as "test Op0,Op0", or something
7643/// equivalent.
7644SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7645                                    SelectionDAG &DAG) const {
7646  DebugLoc dl = Op.getDebugLoc();
7647
7648  // CF and OF aren't always set the way we want. Determine which
7649  // of these we need.
7650  bool NeedCF = false;
7651  bool NeedOF = false;
7652  switch (X86CC) {
7653  default: break;
7654  case X86::COND_A: case X86::COND_AE:
7655  case X86::COND_B: case X86::COND_BE:
7656    NeedCF = true;
7657    break;
7658  case X86::COND_G: case X86::COND_GE:
7659  case X86::COND_L: case X86::COND_LE:
7660  case X86::COND_O: case X86::COND_NO:
7661    NeedOF = true;
7662    break;
7663  }
7664
7665  // See if we can use the EFLAGS value from the operand instead of
7666  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7667  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7668  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7669    // Emit a CMP with 0, which is the TEST pattern.
7670    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7671                       DAG.getConstant(0, Op.getValueType()));
7672
7673  unsigned Opcode = 0;
7674  unsigned NumOperands = 0;
7675  switch (Op.getNode()->getOpcode()) {
7676  case ISD::ADD:
7677    // Due to an isel shortcoming, be conservative if this add is likely to be
7678    // selected as part of a load-modify-store instruction. When the root node
7679    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7680    // uses of other nodes in the match, such as the ADD in this case. This
7681    // leads to the ADD being left around and reselected, with the result being
7682    // two adds in the output.  Alas, even if none our users are stores, that
7683    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7684    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7685    // climbing the DAG back to the root, and it doesn't seem to be worth the
7686    // effort.
7687    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7688           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7689      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
7690        goto default_case;
7691
7692    if (ConstantSDNode *C =
7693        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7694      // An add of one will be selected as an INC.
7695      if (C->getAPIntValue() == 1) {
7696        Opcode = X86ISD::INC;
7697        NumOperands = 1;
7698        break;
7699      }
7700
7701      // An add of negative one (subtract of one) will be selected as a DEC.
7702      if (C->getAPIntValue().isAllOnesValue()) {
7703        Opcode = X86ISD::DEC;
7704        NumOperands = 1;
7705        break;
7706      }
7707    }
7708
7709    // Otherwise use a regular EFLAGS-setting add.
7710    Opcode = X86ISD::ADD;
7711    NumOperands = 2;
7712    break;
7713  case ISD::AND: {
7714    // If the primary and result isn't used, don't bother using X86ISD::AND,
7715    // because a TEST instruction will be better.
7716    bool NonFlagUse = false;
7717    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7718           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7719      SDNode *User = *UI;
7720      unsigned UOpNo = UI.getOperandNo();
7721      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7722        // Look pass truncate.
7723        UOpNo = User->use_begin().getOperandNo();
7724        User = *User->use_begin();
7725      }
7726
7727      if (User->getOpcode() != ISD::BRCOND &&
7728          User->getOpcode() != ISD::SETCC &&
7729          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
7730        NonFlagUse = true;
7731        break;
7732      }
7733    }
7734
7735    if (!NonFlagUse)
7736      break;
7737  }
7738    // FALL THROUGH
7739  case ISD::SUB:
7740  case ISD::OR:
7741  case ISD::XOR:
7742    // Due to the ISEL shortcoming noted above, be conservative if this op is
7743    // likely to be selected as part of a load-modify-store instruction.
7744    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7745           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7746      if (UI->getOpcode() == ISD::STORE)
7747        goto default_case;
7748
7749    // Otherwise use a regular EFLAGS-setting instruction.
7750    switch (Op.getNode()->getOpcode()) {
7751    default: llvm_unreachable("unexpected operator!");
7752    case ISD::SUB: Opcode = X86ISD::SUB; break;
7753    case ISD::OR:  Opcode = X86ISD::OR;  break;
7754    case ISD::XOR: Opcode = X86ISD::XOR; break;
7755    case ISD::AND: Opcode = X86ISD::AND; break;
7756    }
7757
7758    NumOperands = 2;
7759    break;
7760  case X86ISD::ADD:
7761  case X86ISD::SUB:
7762  case X86ISD::INC:
7763  case X86ISD::DEC:
7764  case X86ISD::OR:
7765  case X86ISD::XOR:
7766  case X86ISD::AND:
7767    return SDValue(Op.getNode(), 1);
7768  default:
7769  default_case:
7770    break;
7771  }
7772
7773  if (Opcode == 0)
7774    // Emit a CMP with 0, which is the TEST pattern.
7775    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7776                       DAG.getConstant(0, Op.getValueType()));
7777
7778  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7779  SmallVector<SDValue, 4> Ops;
7780  for (unsigned i = 0; i != NumOperands; ++i)
7781    Ops.push_back(Op.getOperand(i));
7782
7783  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7784  DAG.ReplaceAllUsesWith(Op, New);
7785  return SDValue(New.getNode(), 1);
7786}
7787
7788/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7789/// equivalent.
7790SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7791                                   SelectionDAG &DAG) const {
7792  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7793    if (C->getAPIntValue() == 0)
7794      return EmitTest(Op0, X86CC, DAG);
7795
7796  DebugLoc dl = Op0.getDebugLoc();
7797  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7798}
7799
7800/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7801/// if it's possible.
7802SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7803                                     DebugLoc dl, SelectionDAG &DAG) const {
7804  SDValue Op0 = And.getOperand(0);
7805  SDValue Op1 = And.getOperand(1);
7806  if (Op0.getOpcode() == ISD::TRUNCATE)
7807    Op0 = Op0.getOperand(0);
7808  if (Op1.getOpcode() == ISD::TRUNCATE)
7809    Op1 = Op1.getOperand(0);
7810
7811  SDValue LHS, RHS;
7812  if (Op1.getOpcode() == ISD::SHL)
7813    std::swap(Op0, Op1);
7814  if (Op0.getOpcode() == ISD::SHL) {
7815    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7816      if (And00C->getZExtValue() == 1) {
7817        // If we looked past a truncate, check that it's only truncating away
7818        // known zeros.
7819        unsigned BitWidth = Op0.getValueSizeInBits();
7820        unsigned AndBitWidth = And.getValueSizeInBits();
7821        if (BitWidth > AndBitWidth) {
7822          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7823          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7824          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7825            return SDValue();
7826        }
7827        LHS = Op1;
7828        RHS = Op0.getOperand(1);
7829      }
7830  } else if (Op1.getOpcode() == ISD::Constant) {
7831    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7832    SDValue AndLHS = Op0;
7833    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7834      LHS = AndLHS.getOperand(0);
7835      RHS = AndLHS.getOperand(1);
7836    }
7837  }
7838
7839  if (LHS.getNode()) {
7840    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7841    // instruction.  Since the shift amount is in-range-or-undefined, we know
7842    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7843    // the encoding for the i16 version is larger than the i32 version.
7844    // Also promote i16 to i32 for performance / code size reason.
7845    if (LHS.getValueType() == MVT::i8 ||
7846        LHS.getValueType() == MVT::i16)
7847      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7848
7849    // If the operand types disagree, extend the shift amount to match.  Since
7850    // BT ignores high bits (like shifts) we can use anyextend.
7851    if (LHS.getValueType() != RHS.getValueType())
7852      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7853
7854    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7855    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7856    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7857                       DAG.getConstant(Cond, MVT::i8), BT);
7858  }
7859
7860  return SDValue();
7861}
7862
7863SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7864  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7865  SDValue Op0 = Op.getOperand(0);
7866  SDValue Op1 = Op.getOperand(1);
7867  DebugLoc dl = Op.getDebugLoc();
7868  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7869
7870  // Optimize to BT if possible.
7871  // Lower (X & (1 << N)) == 0 to BT(X, N).
7872  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7873  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7874  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7875      Op1.getOpcode() == ISD::Constant &&
7876      cast<ConstantSDNode>(Op1)->isNullValue() &&
7877      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7878    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7879    if (NewSetCC.getNode())
7880      return NewSetCC;
7881  }
7882
7883  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7884  // these.
7885  if (Op1.getOpcode() == ISD::Constant &&
7886      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7887       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7888      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7889
7890    // If the input is a setcc, then reuse the input setcc or use a new one with
7891    // the inverted condition.
7892    if (Op0.getOpcode() == X86ISD::SETCC) {
7893      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7894      bool Invert = (CC == ISD::SETNE) ^
7895        cast<ConstantSDNode>(Op1)->isNullValue();
7896      if (!Invert) return Op0;
7897
7898      CCode = X86::GetOppositeBranchCondition(CCode);
7899      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7900                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7901    }
7902  }
7903
7904  bool isFP = Op1.getValueType().isFloatingPoint();
7905  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7906  if (X86CC == X86::COND_INVALID)
7907    return SDValue();
7908
7909  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7910  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7911                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7912}
7913
7914SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7915  SDValue Cond;
7916  SDValue Op0 = Op.getOperand(0);
7917  SDValue Op1 = Op.getOperand(1);
7918  SDValue CC = Op.getOperand(2);
7919  EVT VT = Op.getValueType();
7920  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7921  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7922  DebugLoc dl = Op.getDebugLoc();
7923
7924  if (isFP) {
7925    unsigned SSECC = 8;
7926    EVT EltVT = Op0.getValueType().getVectorElementType();
7927    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
7928
7929    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7930    bool Swap = false;
7931
7932    switch (SetCCOpcode) {
7933    default: break;
7934    case ISD::SETOEQ:
7935    case ISD::SETEQ:  SSECC = 0; break;
7936    case ISD::SETOGT:
7937    case ISD::SETGT: Swap = true; // Fallthrough
7938    case ISD::SETLT:
7939    case ISD::SETOLT: SSECC = 1; break;
7940    case ISD::SETOGE:
7941    case ISD::SETGE: Swap = true; // Fallthrough
7942    case ISD::SETLE:
7943    case ISD::SETOLE: SSECC = 2; break;
7944    case ISD::SETUO:  SSECC = 3; break;
7945    case ISD::SETUNE:
7946    case ISD::SETNE:  SSECC = 4; break;
7947    case ISD::SETULE: Swap = true;
7948    case ISD::SETUGE: SSECC = 5; break;
7949    case ISD::SETULT: Swap = true;
7950    case ISD::SETUGT: SSECC = 6; break;
7951    case ISD::SETO:   SSECC = 7; break;
7952    }
7953    if (Swap)
7954      std::swap(Op0, Op1);
7955
7956    // In the two special cases we can't handle, emit two comparisons.
7957    if (SSECC == 8) {
7958      if (SetCCOpcode == ISD::SETUEQ) {
7959        SDValue UNORD, EQ;
7960        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7961        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7962        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7963      }
7964      else if (SetCCOpcode == ISD::SETONE) {
7965        SDValue ORD, NEQ;
7966        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7967        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7968        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7969      }
7970      llvm_unreachable("Illegal FP comparison");
7971    }
7972    // Handle all other FP comparisons here.
7973    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7974  }
7975
7976  if (!isFP && VT.getSizeInBits() == 256)
7977    return SDValue();
7978
7979  // We are handling one of the integer comparisons here.  Since SSE only has
7980  // GT and EQ comparisons for integer, swapping operands and multiple
7981  // operations may be required for some comparisons.
7982  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7983  bool Swap = false, Invert = false, FlipSigns = false;
7984
7985  switch (VT.getSimpleVT().SimpleTy) {
7986  default: break;
7987  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7988  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7989  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7990  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7991  }
7992
7993  switch (SetCCOpcode) {
7994  default: break;
7995  case ISD::SETNE:  Invert = true;
7996  case ISD::SETEQ:  Opc = EQOpc; break;
7997  case ISD::SETLT:  Swap = true;
7998  case ISD::SETGT:  Opc = GTOpc; break;
7999  case ISD::SETGE:  Swap = true;
8000  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8001  case ISD::SETULT: Swap = true;
8002  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8003  case ISD::SETUGE: Swap = true;
8004  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8005  }
8006  if (Swap)
8007    std::swap(Op0, Op1);
8008
8009  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8010  // bits of the inputs before performing those operations.
8011  if (FlipSigns) {
8012    EVT EltVT = VT.getVectorElementType();
8013    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8014                                      EltVT);
8015    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8016    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8017                                    SignBits.size());
8018    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8019    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8020  }
8021
8022  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8023
8024  // If the logical-not of the result is required, perform that now.
8025  if (Invert)
8026    Result = DAG.getNOT(dl, Result, VT);
8027
8028  return Result;
8029}
8030
8031// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8032static bool isX86LogicalCmp(SDValue Op) {
8033  unsigned Opc = Op.getNode()->getOpcode();
8034  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8035    return true;
8036  if (Op.getResNo() == 1 &&
8037      (Opc == X86ISD::ADD ||
8038       Opc == X86ISD::SUB ||
8039       Opc == X86ISD::ADC ||
8040       Opc == X86ISD::SBB ||
8041       Opc == X86ISD::SMUL ||
8042       Opc == X86ISD::UMUL ||
8043       Opc == X86ISD::INC ||
8044       Opc == X86ISD::DEC ||
8045       Opc == X86ISD::OR ||
8046       Opc == X86ISD::XOR ||
8047       Opc == X86ISD::AND))
8048    return true;
8049
8050  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8051    return true;
8052
8053  return false;
8054}
8055
8056static bool isZero(SDValue V) {
8057  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8058  return C && C->isNullValue();
8059}
8060
8061static bool isAllOnes(SDValue V) {
8062  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8063  return C && C->isAllOnesValue();
8064}
8065
8066SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8067  bool addTest = true;
8068  SDValue Cond  = Op.getOperand(0);
8069  SDValue Op1 = Op.getOperand(1);
8070  SDValue Op2 = Op.getOperand(2);
8071  DebugLoc DL = Op.getDebugLoc();
8072  SDValue CC;
8073
8074  if (Cond.getOpcode() == ISD::SETCC) {
8075    SDValue NewCond = LowerSETCC(Cond, DAG);
8076    if (NewCond.getNode())
8077      Cond = NewCond;
8078  }
8079
8080  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8081  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8082  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8083  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8084  if (Cond.getOpcode() == X86ISD::SETCC &&
8085      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8086      isZero(Cond.getOperand(1).getOperand(1))) {
8087    SDValue Cmp = Cond.getOperand(1);
8088
8089    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8090
8091    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8092        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8093      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8094
8095      SDValue CmpOp0 = Cmp.getOperand(0);
8096      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8097                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8098
8099      SDValue Res =   // Res = 0 or -1.
8100        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8101                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8102
8103      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8104        Res = DAG.getNOT(DL, Res, Res.getValueType());
8105
8106      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8107      if (N2C == 0 || !N2C->isNullValue())
8108        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8109      return Res;
8110    }
8111  }
8112
8113  // Look past (and (setcc_carry (cmp ...)), 1).
8114  if (Cond.getOpcode() == ISD::AND &&
8115      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8116    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8117    if (C && C->getAPIntValue() == 1)
8118      Cond = Cond.getOperand(0);
8119  }
8120
8121  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8122  // setting operand in place of the X86ISD::SETCC.
8123  if (Cond.getOpcode() == X86ISD::SETCC ||
8124      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8125    CC = Cond.getOperand(0);
8126
8127    SDValue Cmp = Cond.getOperand(1);
8128    unsigned Opc = Cmp.getOpcode();
8129    EVT VT = Op.getValueType();
8130
8131    bool IllegalFPCMov = false;
8132    if (VT.isFloatingPoint() && !VT.isVector() &&
8133        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8134      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8135
8136    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8137        Opc == X86ISD::BT) { // FIXME
8138      Cond = Cmp;
8139      addTest = false;
8140    }
8141  }
8142
8143  if (addTest) {
8144    // Look pass the truncate.
8145    if (Cond.getOpcode() == ISD::TRUNCATE)
8146      Cond = Cond.getOperand(0);
8147
8148    // We know the result of AND is compared against zero. Try to match
8149    // it to BT.
8150    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8151      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8152      if (NewSetCC.getNode()) {
8153        CC = NewSetCC.getOperand(0);
8154        Cond = NewSetCC.getOperand(1);
8155        addTest = false;
8156      }
8157    }
8158  }
8159
8160  if (addTest) {
8161    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8162    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8163  }
8164
8165  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8166  // a <  b ?  0 : -1 -> RES = setcc_carry
8167  // a >= b ? -1 :  0 -> RES = setcc_carry
8168  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8169  if (Cond.getOpcode() == X86ISD::CMP) {
8170    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8171
8172    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8173        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8174      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8175                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8176      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8177        return DAG.getNOT(DL, Res, Res.getValueType());
8178      return Res;
8179    }
8180  }
8181
8182  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8183  // condition is true.
8184  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8185  SDValue Ops[] = { Op2, Op1, CC, Cond };
8186  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8187}
8188
8189// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8190// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8191// from the AND / OR.
8192static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8193  Opc = Op.getOpcode();
8194  if (Opc != ISD::OR && Opc != ISD::AND)
8195    return false;
8196  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8197          Op.getOperand(0).hasOneUse() &&
8198          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8199          Op.getOperand(1).hasOneUse());
8200}
8201
8202// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8203// 1 and that the SETCC node has a single use.
8204static bool isXor1OfSetCC(SDValue Op) {
8205  if (Op.getOpcode() != ISD::XOR)
8206    return false;
8207  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8208  if (N1C && N1C->getAPIntValue() == 1) {
8209    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8210      Op.getOperand(0).hasOneUse();
8211  }
8212  return false;
8213}
8214
8215SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8216  bool addTest = true;
8217  SDValue Chain = Op.getOperand(0);
8218  SDValue Cond  = Op.getOperand(1);
8219  SDValue Dest  = Op.getOperand(2);
8220  DebugLoc dl = Op.getDebugLoc();
8221  SDValue CC;
8222
8223  if (Cond.getOpcode() == ISD::SETCC) {
8224    SDValue NewCond = LowerSETCC(Cond, DAG);
8225    if (NewCond.getNode())
8226      Cond = NewCond;
8227  }
8228#if 0
8229  // FIXME: LowerXALUO doesn't handle these!!
8230  else if (Cond.getOpcode() == X86ISD::ADD  ||
8231           Cond.getOpcode() == X86ISD::SUB  ||
8232           Cond.getOpcode() == X86ISD::SMUL ||
8233           Cond.getOpcode() == X86ISD::UMUL)
8234    Cond = LowerXALUO(Cond, DAG);
8235#endif
8236
8237  // Look pass (and (setcc_carry (cmp ...)), 1).
8238  if (Cond.getOpcode() == ISD::AND &&
8239      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8240    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8241    if (C && C->getAPIntValue() == 1)
8242      Cond = Cond.getOperand(0);
8243  }
8244
8245  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8246  // setting operand in place of the X86ISD::SETCC.
8247  if (Cond.getOpcode() == X86ISD::SETCC ||
8248      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8249    CC = Cond.getOperand(0);
8250
8251    SDValue Cmp = Cond.getOperand(1);
8252    unsigned Opc = Cmp.getOpcode();
8253    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8254    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8255      Cond = Cmp;
8256      addTest = false;
8257    } else {
8258      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8259      default: break;
8260      case X86::COND_O:
8261      case X86::COND_B:
8262        // These can only come from an arithmetic instruction with overflow,
8263        // e.g. SADDO, UADDO.
8264        Cond = Cond.getNode()->getOperand(1);
8265        addTest = false;
8266        break;
8267      }
8268    }
8269  } else {
8270    unsigned CondOpc;
8271    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8272      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8273      if (CondOpc == ISD::OR) {
8274        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8275        // two branches instead of an explicit OR instruction with a
8276        // separate test.
8277        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8278            isX86LogicalCmp(Cmp)) {
8279          CC = Cond.getOperand(0).getOperand(0);
8280          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8281                              Chain, Dest, CC, Cmp);
8282          CC = Cond.getOperand(1).getOperand(0);
8283          Cond = Cmp;
8284          addTest = false;
8285        }
8286      } else { // ISD::AND
8287        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8288        // two branches instead of an explicit AND instruction with a
8289        // separate test. However, we only do this if this block doesn't
8290        // have a fall-through edge, because this requires an explicit
8291        // jmp when the condition is false.
8292        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8293            isX86LogicalCmp(Cmp) &&
8294            Op.getNode()->hasOneUse()) {
8295          X86::CondCode CCode =
8296            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8297          CCode = X86::GetOppositeBranchCondition(CCode);
8298          CC = DAG.getConstant(CCode, MVT::i8);
8299          SDNode *User = *Op.getNode()->use_begin();
8300          // Look for an unconditional branch following this conditional branch.
8301          // We need this because we need to reverse the successors in order
8302          // to implement FCMP_OEQ.
8303          if (User->getOpcode() == ISD::BR) {
8304            SDValue FalseBB = User->getOperand(1);
8305            SDNode *NewBR =
8306              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8307            assert(NewBR == User);
8308            (void)NewBR;
8309            Dest = FalseBB;
8310
8311            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8312                                Chain, Dest, CC, Cmp);
8313            X86::CondCode CCode =
8314              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8315            CCode = X86::GetOppositeBranchCondition(CCode);
8316            CC = DAG.getConstant(CCode, MVT::i8);
8317            Cond = Cmp;
8318            addTest = false;
8319          }
8320        }
8321      }
8322    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8323      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8324      // It should be transformed during dag combiner except when the condition
8325      // is set by a arithmetics with overflow node.
8326      X86::CondCode CCode =
8327        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8328      CCode = X86::GetOppositeBranchCondition(CCode);
8329      CC = DAG.getConstant(CCode, MVT::i8);
8330      Cond = Cond.getOperand(0).getOperand(1);
8331      addTest = false;
8332    }
8333  }
8334
8335  if (addTest) {
8336    // Look pass the truncate.
8337    if (Cond.getOpcode() == ISD::TRUNCATE)
8338      Cond = Cond.getOperand(0);
8339
8340    // We know the result of AND is compared against zero. Try to match
8341    // it to BT.
8342    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8343      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8344      if (NewSetCC.getNode()) {
8345        CC = NewSetCC.getOperand(0);
8346        Cond = NewSetCC.getOperand(1);
8347        addTest = false;
8348      }
8349    }
8350  }
8351
8352  if (addTest) {
8353    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8354    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8355  }
8356  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8357                     Chain, Dest, CC, Cond);
8358}
8359
8360
8361// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8362// Calls to _alloca is needed to probe the stack when allocating more than 4k
8363// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8364// that the guard pages used by the OS virtual memory manager are allocated in
8365// correct sequence.
8366SDValue
8367X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8368                                           SelectionDAG &DAG) const {
8369  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
8370         "This should be used only on Windows targets");
8371  assert(!Subtarget->isTargetEnvMacho());
8372  DebugLoc dl = Op.getDebugLoc();
8373
8374  // Get the inputs.
8375  SDValue Chain = Op.getOperand(0);
8376  SDValue Size  = Op.getOperand(1);
8377  // FIXME: Ensure alignment here
8378
8379  SDValue Flag;
8380
8381  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
8382  unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8383
8384  Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8385  Flag = Chain.getValue(1);
8386
8387  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8388
8389  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8390  Flag = Chain.getValue(1);
8391
8392  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8393
8394  SDValue Ops1[2] = { Chain.getValue(0), Chain };
8395  return DAG.getMergeValues(Ops1, 2, dl);
8396}
8397
8398SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8399  MachineFunction &MF = DAG.getMachineFunction();
8400  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8401
8402  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8403  DebugLoc DL = Op.getDebugLoc();
8404
8405  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8406    // vastart just stores the address of the VarArgsFrameIndex slot into the
8407    // memory location argument.
8408    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8409                                   getPointerTy());
8410    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8411                        MachinePointerInfo(SV), false, false, 0);
8412  }
8413
8414  // __va_list_tag:
8415  //   gp_offset         (0 - 6 * 8)
8416  //   fp_offset         (48 - 48 + 8 * 16)
8417  //   overflow_arg_area (point to parameters coming in memory).
8418  //   reg_save_area
8419  SmallVector<SDValue, 8> MemOps;
8420  SDValue FIN = Op.getOperand(1);
8421  // Store gp_offset
8422  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8423                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8424                                               MVT::i32),
8425                               FIN, MachinePointerInfo(SV), false, false, 0);
8426  MemOps.push_back(Store);
8427
8428  // Store fp_offset
8429  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8430                    FIN, DAG.getIntPtrConstant(4));
8431  Store = DAG.getStore(Op.getOperand(0), DL,
8432                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8433                                       MVT::i32),
8434                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8435  MemOps.push_back(Store);
8436
8437  // Store ptr to overflow_arg_area
8438  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8439                    FIN, DAG.getIntPtrConstant(4));
8440  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8441                                    getPointerTy());
8442  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8443                       MachinePointerInfo(SV, 8),
8444                       false, false, 0);
8445  MemOps.push_back(Store);
8446
8447  // Store ptr to reg_save_area.
8448  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8449                    FIN, DAG.getIntPtrConstant(8));
8450  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8451                                    getPointerTy());
8452  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8453                       MachinePointerInfo(SV, 16), false, false, 0);
8454  MemOps.push_back(Store);
8455  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8456                     &MemOps[0], MemOps.size());
8457}
8458
8459SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8460  assert(Subtarget->is64Bit() &&
8461         "LowerVAARG only handles 64-bit va_arg!");
8462  assert((Subtarget->isTargetLinux() ||
8463          Subtarget->isTargetDarwin()) &&
8464          "Unhandled target in LowerVAARG");
8465  assert(Op.getNode()->getNumOperands() == 4);
8466  SDValue Chain = Op.getOperand(0);
8467  SDValue SrcPtr = Op.getOperand(1);
8468  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8469  unsigned Align = Op.getConstantOperandVal(3);
8470  DebugLoc dl = Op.getDebugLoc();
8471
8472  EVT ArgVT = Op.getNode()->getValueType(0);
8473  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8474  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8475  uint8_t ArgMode;
8476
8477  // Decide which area this value should be read from.
8478  // TODO: Implement the AMD64 ABI in its entirety. This simple
8479  // selection mechanism works only for the basic types.
8480  if (ArgVT == MVT::f80) {
8481    llvm_unreachable("va_arg for f80 not yet implemented");
8482  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8483    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8484  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8485    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8486  } else {
8487    llvm_unreachable("Unhandled argument type in LowerVAARG");
8488  }
8489
8490  if (ArgMode == 2) {
8491    // Sanity Check: Make sure using fp_offset makes sense.
8492    assert(!UseSoftFloat &&
8493           !(DAG.getMachineFunction()
8494                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8495           Subtarget->hasXMM());
8496  }
8497
8498  // Insert VAARG_64 node into the DAG
8499  // VAARG_64 returns two values: Variable Argument Address, Chain
8500  SmallVector<SDValue, 11> InstOps;
8501  InstOps.push_back(Chain);
8502  InstOps.push_back(SrcPtr);
8503  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8504  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8505  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8506  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8507  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8508                                          VTs, &InstOps[0], InstOps.size(),
8509                                          MVT::i64,
8510                                          MachinePointerInfo(SV),
8511                                          /*Align=*/0,
8512                                          /*Volatile=*/false,
8513                                          /*ReadMem=*/true,
8514                                          /*WriteMem=*/true);
8515  Chain = VAARG.getValue(1);
8516
8517  // Load the next argument and return it
8518  return DAG.getLoad(ArgVT, dl,
8519                     Chain,
8520                     VAARG,
8521                     MachinePointerInfo(),
8522                     false, false, 0);
8523}
8524
8525SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8526  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8527  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8528  SDValue Chain = Op.getOperand(0);
8529  SDValue DstPtr = Op.getOperand(1);
8530  SDValue SrcPtr = Op.getOperand(2);
8531  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8532  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8533  DebugLoc DL = Op.getDebugLoc();
8534
8535  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8536                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8537                       false,
8538                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8539}
8540
8541SDValue
8542X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8543  DebugLoc dl = Op.getDebugLoc();
8544  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8545  switch (IntNo) {
8546  default: return SDValue();    // Don't custom lower most intrinsics.
8547  // Comparison intrinsics.
8548  case Intrinsic::x86_sse_comieq_ss:
8549  case Intrinsic::x86_sse_comilt_ss:
8550  case Intrinsic::x86_sse_comile_ss:
8551  case Intrinsic::x86_sse_comigt_ss:
8552  case Intrinsic::x86_sse_comige_ss:
8553  case Intrinsic::x86_sse_comineq_ss:
8554  case Intrinsic::x86_sse_ucomieq_ss:
8555  case Intrinsic::x86_sse_ucomilt_ss:
8556  case Intrinsic::x86_sse_ucomile_ss:
8557  case Intrinsic::x86_sse_ucomigt_ss:
8558  case Intrinsic::x86_sse_ucomige_ss:
8559  case Intrinsic::x86_sse_ucomineq_ss:
8560  case Intrinsic::x86_sse2_comieq_sd:
8561  case Intrinsic::x86_sse2_comilt_sd:
8562  case Intrinsic::x86_sse2_comile_sd:
8563  case Intrinsic::x86_sse2_comigt_sd:
8564  case Intrinsic::x86_sse2_comige_sd:
8565  case Intrinsic::x86_sse2_comineq_sd:
8566  case Intrinsic::x86_sse2_ucomieq_sd:
8567  case Intrinsic::x86_sse2_ucomilt_sd:
8568  case Intrinsic::x86_sse2_ucomile_sd:
8569  case Intrinsic::x86_sse2_ucomigt_sd:
8570  case Intrinsic::x86_sse2_ucomige_sd:
8571  case Intrinsic::x86_sse2_ucomineq_sd: {
8572    unsigned Opc = 0;
8573    ISD::CondCode CC = ISD::SETCC_INVALID;
8574    switch (IntNo) {
8575    default: break;
8576    case Intrinsic::x86_sse_comieq_ss:
8577    case Intrinsic::x86_sse2_comieq_sd:
8578      Opc = X86ISD::COMI;
8579      CC = ISD::SETEQ;
8580      break;
8581    case Intrinsic::x86_sse_comilt_ss:
8582    case Intrinsic::x86_sse2_comilt_sd:
8583      Opc = X86ISD::COMI;
8584      CC = ISD::SETLT;
8585      break;
8586    case Intrinsic::x86_sse_comile_ss:
8587    case Intrinsic::x86_sse2_comile_sd:
8588      Opc = X86ISD::COMI;
8589      CC = ISD::SETLE;
8590      break;
8591    case Intrinsic::x86_sse_comigt_ss:
8592    case Intrinsic::x86_sse2_comigt_sd:
8593      Opc = X86ISD::COMI;
8594      CC = ISD::SETGT;
8595      break;
8596    case Intrinsic::x86_sse_comige_ss:
8597    case Intrinsic::x86_sse2_comige_sd:
8598      Opc = X86ISD::COMI;
8599      CC = ISD::SETGE;
8600      break;
8601    case Intrinsic::x86_sse_comineq_ss:
8602    case Intrinsic::x86_sse2_comineq_sd:
8603      Opc = X86ISD::COMI;
8604      CC = ISD::SETNE;
8605      break;
8606    case Intrinsic::x86_sse_ucomieq_ss:
8607    case Intrinsic::x86_sse2_ucomieq_sd:
8608      Opc = X86ISD::UCOMI;
8609      CC = ISD::SETEQ;
8610      break;
8611    case Intrinsic::x86_sse_ucomilt_ss:
8612    case Intrinsic::x86_sse2_ucomilt_sd:
8613      Opc = X86ISD::UCOMI;
8614      CC = ISD::SETLT;
8615      break;
8616    case Intrinsic::x86_sse_ucomile_ss:
8617    case Intrinsic::x86_sse2_ucomile_sd:
8618      Opc = X86ISD::UCOMI;
8619      CC = ISD::SETLE;
8620      break;
8621    case Intrinsic::x86_sse_ucomigt_ss:
8622    case Intrinsic::x86_sse2_ucomigt_sd:
8623      Opc = X86ISD::UCOMI;
8624      CC = ISD::SETGT;
8625      break;
8626    case Intrinsic::x86_sse_ucomige_ss:
8627    case Intrinsic::x86_sse2_ucomige_sd:
8628      Opc = X86ISD::UCOMI;
8629      CC = ISD::SETGE;
8630      break;
8631    case Intrinsic::x86_sse_ucomineq_ss:
8632    case Intrinsic::x86_sse2_ucomineq_sd:
8633      Opc = X86ISD::UCOMI;
8634      CC = ISD::SETNE;
8635      break;
8636    }
8637
8638    SDValue LHS = Op.getOperand(1);
8639    SDValue RHS = Op.getOperand(2);
8640    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
8641    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
8642    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
8643    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8644                                DAG.getConstant(X86CC, MVT::i8), Cond);
8645    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8646  }
8647  // ptest and testp intrinsics. The intrinsic these come from are designed to
8648  // return an integer value, not just an instruction so lower it to the ptest
8649  // or testp pattern and a setcc for the result.
8650  case Intrinsic::x86_sse41_ptestz:
8651  case Intrinsic::x86_sse41_ptestc:
8652  case Intrinsic::x86_sse41_ptestnzc:
8653  case Intrinsic::x86_avx_ptestz_256:
8654  case Intrinsic::x86_avx_ptestc_256:
8655  case Intrinsic::x86_avx_ptestnzc_256:
8656  case Intrinsic::x86_avx_vtestz_ps:
8657  case Intrinsic::x86_avx_vtestc_ps:
8658  case Intrinsic::x86_avx_vtestnzc_ps:
8659  case Intrinsic::x86_avx_vtestz_pd:
8660  case Intrinsic::x86_avx_vtestc_pd:
8661  case Intrinsic::x86_avx_vtestnzc_pd:
8662  case Intrinsic::x86_avx_vtestz_ps_256:
8663  case Intrinsic::x86_avx_vtestc_ps_256:
8664  case Intrinsic::x86_avx_vtestnzc_ps_256:
8665  case Intrinsic::x86_avx_vtestz_pd_256:
8666  case Intrinsic::x86_avx_vtestc_pd_256:
8667  case Intrinsic::x86_avx_vtestnzc_pd_256: {
8668    bool IsTestPacked = false;
8669    unsigned X86CC = 0;
8670    switch (IntNo) {
8671    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
8672    case Intrinsic::x86_avx_vtestz_ps:
8673    case Intrinsic::x86_avx_vtestz_pd:
8674    case Intrinsic::x86_avx_vtestz_ps_256:
8675    case Intrinsic::x86_avx_vtestz_pd_256:
8676      IsTestPacked = true; // Fallthrough
8677    case Intrinsic::x86_sse41_ptestz:
8678    case Intrinsic::x86_avx_ptestz_256:
8679      // ZF = 1
8680      X86CC = X86::COND_E;
8681      break;
8682    case Intrinsic::x86_avx_vtestc_ps:
8683    case Intrinsic::x86_avx_vtestc_pd:
8684    case Intrinsic::x86_avx_vtestc_ps_256:
8685    case Intrinsic::x86_avx_vtestc_pd_256:
8686      IsTestPacked = true; // Fallthrough
8687    case Intrinsic::x86_sse41_ptestc:
8688    case Intrinsic::x86_avx_ptestc_256:
8689      // CF = 1
8690      X86CC = X86::COND_B;
8691      break;
8692    case Intrinsic::x86_avx_vtestnzc_ps:
8693    case Intrinsic::x86_avx_vtestnzc_pd:
8694    case Intrinsic::x86_avx_vtestnzc_ps_256:
8695    case Intrinsic::x86_avx_vtestnzc_pd_256:
8696      IsTestPacked = true; // Fallthrough
8697    case Intrinsic::x86_sse41_ptestnzc:
8698    case Intrinsic::x86_avx_ptestnzc_256:
8699      // ZF and CF = 0
8700      X86CC = X86::COND_A;
8701      break;
8702    }
8703
8704    SDValue LHS = Op.getOperand(1);
8705    SDValue RHS = Op.getOperand(2);
8706    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
8707    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
8708    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
8709    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
8710    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8711  }
8712
8713  // Fix vector shift instructions where the last operand is a non-immediate
8714  // i32 value.
8715  case Intrinsic::x86_sse2_pslli_w:
8716  case Intrinsic::x86_sse2_pslli_d:
8717  case Intrinsic::x86_sse2_pslli_q:
8718  case Intrinsic::x86_sse2_psrli_w:
8719  case Intrinsic::x86_sse2_psrli_d:
8720  case Intrinsic::x86_sse2_psrli_q:
8721  case Intrinsic::x86_sse2_psrai_w:
8722  case Intrinsic::x86_sse2_psrai_d:
8723  case Intrinsic::x86_mmx_pslli_w:
8724  case Intrinsic::x86_mmx_pslli_d:
8725  case Intrinsic::x86_mmx_pslli_q:
8726  case Intrinsic::x86_mmx_psrli_w:
8727  case Intrinsic::x86_mmx_psrli_d:
8728  case Intrinsic::x86_mmx_psrli_q:
8729  case Intrinsic::x86_mmx_psrai_w:
8730  case Intrinsic::x86_mmx_psrai_d: {
8731    SDValue ShAmt = Op.getOperand(2);
8732    if (isa<ConstantSDNode>(ShAmt))
8733      return SDValue();
8734
8735    unsigned NewIntNo = 0;
8736    EVT ShAmtVT = MVT::v4i32;
8737    switch (IntNo) {
8738    case Intrinsic::x86_sse2_pslli_w:
8739      NewIntNo = Intrinsic::x86_sse2_psll_w;
8740      break;
8741    case Intrinsic::x86_sse2_pslli_d:
8742      NewIntNo = Intrinsic::x86_sse2_psll_d;
8743      break;
8744    case Intrinsic::x86_sse2_pslli_q:
8745      NewIntNo = Intrinsic::x86_sse2_psll_q;
8746      break;
8747    case Intrinsic::x86_sse2_psrli_w:
8748      NewIntNo = Intrinsic::x86_sse2_psrl_w;
8749      break;
8750    case Intrinsic::x86_sse2_psrli_d:
8751      NewIntNo = Intrinsic::x86_sse2_psrl_d;
8752      break;
8753    case Intrinsic::x86_sse2_psrli_q:
8754      NewIntNo = Intrinsic::x86_sse2_psrl_q;
8755      break;
8756    case Intrinsic::x86_sse2_psrai_w:
8757      NewIntNo = Intrinsic::x86_sse2_psra_w;
8758      break;
8759    case Intrinsic::x86_sse2_psrai_d:
8760      NewIntNo = Intrinsic::x86_sse2_psra_d;
8761      break;
8762    default: {
8763      ShAmtVT = MVT::v2i32;
8764      switch (IntNo) {
8765      case Intrinsic::x86_mmx_pslli_w:
8766        NewIntNo = Intrinsic::x86_mmx_psll_w;
8767        break;
8768      case Intrinsic::x86_mmx_pslli_d:
8769        NewIntNo = Intrinsic::x86_mmx_psll_d;
8770        break;
8771      case Intrinsic::x86_mmx_pslli_q:
8772        NewIntNo = Intrinsic::x86_mmx_psll_q;
8773        break;
8774      case Intrinsic::x86_mmx_psrli_w:
8775        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8776        break;
8777      case Intrinsic::x86_mmx_psrli_d:
8778        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8779        break;
8780      case Intrinsic::x86_mmx_psrli_q:
8781        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8782        break;
8783      case Intrinsic::x86_mmx_psrai_w:
8784        NewIntNo = Intrinsic::x86_mmx_psra_w;
8785        break;
8786      case Intrinsic::x86_mmx_psrai_d:
8787        NewIntNo = Intrinsic::x86_mmx_psra_d;
8788        break;
8789      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8790      }
8791      break;
8792    }
8793    }
8794
8795    // The vector shift intrinsics with scalars uses 32b shift amounts but
8796    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8797    // to be zero.
8798    SDValue ShOps[4];
8799    ShOps[0] = ShAmt;
8800    ShOps[1] = DAG.getConstant(0, MVT::i32);
8801    if (ShAmtVT == MVT::v4i32) {
8802      ShOps[2] = DAG.getUNDEF(MVT::i32);
8803      ShOps[3] = DAG.getUNDEF(MVT::i32);
8804      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8805    } else {
8806      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8807// FIXME this must be lowered to get rid of the invalid type.
8808    }
8809
8810    EVT VT = Op.getValueType();
8811    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8812    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8813                       DAG.getConstant(NewIntNo, MVT::i32),
8814                       Op.getOperand(1), ShAmt);
8815  }
8816  }
8817}
8818
8819SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8820                                           SelectionDAG &DAG) const {
8821  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8822  MFI->setReturnAddressIsTaken(true);
8823
8824  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8825  DebugLoc dl = Op.getDebugLoc();
8826
8827  if (Depth > 0) {
8828    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8829    SDValue Offset =
8830      DAG.getConstant(TD->getPointerSize(),
8831                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8832    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8833                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8834                                   FrameAddr, Offset),
8835                       MachinePointerInfo(), false, false, 0);
8836  }
8837
8838  // Just load the return address.
8839  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8840  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8841                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8842}
8843
8844SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8845  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8846  MFI->setFrameAddressIsTaken(true);
8847
8848  EVT VT = Op.getValueType();
8849  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8850  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8851  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8852  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8853  while (Depth--)
8854    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8855                            MachinePointerInfo(),
8856                            false, false, 0);
8857  return FrameAddr;
8858}
8859
8860SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8861                                                     SelectionDAG &DAG) const {
8862  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8863}
8864
8865SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8866  MachineFunction &MF = DAG.getMachineFunction();
8867  SDValue Chain     = Op.getOperand(0);
8868  SDValue Offset    = Op.getOperand(1);
8869  SDValue Handler   = Op.getOperand(2);
8870  DebugLoc dl       = Op.getDebugLoc();
8871
8872  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8873                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8874                                     getPointerTy());
8875  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8876
8877  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8878                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8879  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8880  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8881                       false, false, 0);
8882  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8883  MF.getRegInfo().addLiveOut(StoreAddrReg);
8884
8885  return DAG.getNode(X86ISD::EH_RETURN, dl,
8886                     MVT::Other,
8887                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8888}
8889
8890SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8891                                             SelectionDAG &DAG) const {
8892  SDValue Root = Op.getOperand(0);
8893  SDValue Trmp = Op.getOperand(1); // trampoline
8894  SDValue FPtr = Op.getOperand(2); // nested function
8895  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8896  DebugLoc dl  = Op.getDebugLoc();
8897
8898  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8899
8900  if (Subtarget->is64Bit()) {
8901    SDValue OutChains[6];
8902
8903    // Large code-model.
8904    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8905    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8906
8907    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
8908    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
8909
8910    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8911
8912    // Load the pointer to the nested function into R11.
8913    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8914    SDValue Addr = Trmp;
8915    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8916                                Addr, MachinePointerInfo(TrmpAddr),
8917                                false, false, 0);
8918
8919    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8920                       DAG.getConstant(2, MVT::i64));
8921    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8922                                MachinePointerInfo(TrmpAddr, 2),
8923                                false, false, 2);
8924
8925    // Load the 'nest' parameter value into R10.
8926    // R10 is specified in X86CallingConv.td
8927    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8928    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8929                       DAG.getConstant(10, MVT::i64));
8930    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8931                                Addr, MachinePointerInfo(TrmpAddr, 10),
8932                                false, false, 0);
8933
8934    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8935                       DAG.getConstant(12, MVT::i64));
8936    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8937                                MachinePointerInfo(TrmpAddr, 12),
8938                                false, false, 2);
8939
8940    // Jump to the nested function.
8941    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8942    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8943                       DAG.getConstant(20, MVT::i64));
8944    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8945                                Addr, MachinePointerInfo(TrmpAddr, 20),
8946                                false, false, 0);
8947
8948    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8949    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8950                       DAG.getConstant(22, MVT::i64));
8951    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8952                                MachinePointerInfo(TrmpAddr, 22),
8953                                false, false, 0);
8954
8955    SDValue Ops[] =
8956      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8957    return DAG.getMergeValues(Ops, 2, dl);
8958  } else {
8959    const Function *Func =
8960      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8961    CallingConv::ID CC = Func->getCallingConv();
8962    unsigned NestReg;
8963
8964    switch (CC) {
8965    default:
8966      llvm_unreachable("Unsupported calling convention");
8967    case CallingConv::C:
8968    case CallingConv::X86_StdCall: {
8969      // Pass 'nest' parameter in ECX.
8970      // Must be kept in sync with X86CallingConv.td
8971      NestReg = X86::ECX;
8972
8973      // Check that ECX wasn't needed by an 'inreg' parameter.
8974      FunctionType *FTy = Func->getFunctionType();
8975      const AttrListPtr &Attrs = Func->getAttributes();
8976
8977      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8978        unsigned InRegCount = 0;
8979        unsigned Idx = 1;
8980
8981        for (FunctionType::param_iterator I = FTy->param_begin(),
8982             E = FTy->param_end(); I != E; ++I, ++Idx)
8983          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8984            // FIXME: should only count parameters that are lowered to integers.
8985            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8986
8987        if (InRegCount > 2) {
8988          report_fatal_error("Nest register in use - reduce number of inreg"
8989                             " parameters!");
8990        }
8991      }
8992      break;
8993    }
8994    case CallingConv::X86_FastCall:
8995    case CallingConv::X86_ThisCall:
8996    case CallingConv::Fast:
8997      // Pass 'nest' parameter in EAX.
8998      // Must be kept in sync with X86CallingConv.td
8999      NestReg = X86::EAX;
9000      break;
9001    }
9002
9003    SDValue OutChains[4];
9004    SDValue Addr, Disp;
9005
9006    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9007                       DAG.getConstant(10, MVT::i32));
9008    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9009
9010    // This is storing the opcode for MOV32ri.
9011    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9012    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9013    OutChains[0] = DAG.getStore(Root, dl,
9014                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9015                                Trmp, MachinePointerInfo(TrmpAddr),
9016                                false, false, 0);
9017
9018    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9019                       DAG.getConstant(1, MVT::i32));
9020    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9021                                MachinePointerInfo(TrmpAddr, 1),
9022                                false, false, 1);
9023
9024    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9025    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9026                       DAG.getConstant(5, MVT::i32));
9027    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9028                                MachinePointerInfo(TrmpAddr, 5),
9029                                false, false, 1);
9030
9031    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9032                       DAG.getConstant(6, MVT::i32));
9033    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9034                                MachinePointerInfo(TrmpAddr, 6),
9035                                false, false, 1);
9036
9037    SDValue Ops[] =
9038      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
9039    return DAG.getMergeValues(Ops, 2, dl);
9040  }
9041}
9042
9043SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9044                                            SelectionDAG &DAG) const {
9045  /*
9046   The rounding mode is in bits 11:10 of FPSR, and has the following
9047   settings:
9048     00 Round to nearest
9049     01 Round to -inf
9050     10 Round to +inf
9051     11 Round to 0
9052
9053  FLT_ROUNDS, on the other hand, expects the following:
9054    -1 Undefined
9055     0 Round to 0
9056     1 Round to nearest
9057     2 Round to +inf
9058     3 Round to -inf
9059
9060  To perform the conversion, we do:
9061    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9062  */
9063
9064  MachineFunction &MF = DAG.getMachineFunction();
9065  const TargetMachine &TM = MF.getTarget();
9066  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9067  unsigned StackAlignment = TFI.getStackAlignment();
9068  EVT VT = Op.getValueType();
9069  DebugLoc DL = Op.getDebugLoc();
9070
9071  // Save FP Control Word to stack slot
9072  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9073  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9074
9075
9076  MachineMemOperand *MMO =
9077   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9078                           MachineMemOperand::MOStore, 2, 2);
9079
9080  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9081  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9082                                          DAG.getVTList(MVT::Other),
9083                                          Ops, 2, MVT::i16, MMO);
9084
9085  // Load FP Control Word from stack slot
9086  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9087                            MachinePointerInfo(), false, false, 0);
9088
9089  // Transform as necessary
9090  SDValue CWD1 =
9091    DAG.getNode(ISD::SRL, DL, MVT::i16,
9092                DAG.getNode(ISD::AND, DL, MVT::i16,
9093                            CWD, DAG.getConstant(0x800, MVT::i16)),
9094                DAG.getConstant(11, MVT::i8));
9095  SDValue CWD2 =
9096    DAG.getNode(ISD::SRL, DL, MVT::i16,
9097                DAG.getNode(ISD::AND, DL, MVT::i16,
9098                            CWD, DAG.getConstant(0x400, MVT::i16)),
9099                DAG.getConstant(9, MVT::i8));
9100
9101  SDValue RetVal =
9102    DAG.getNode(ISD::AND, DL, MVT::i16,
9103                DAG.getNode(ISD::ADD, DL, MVT::i16,
9104                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9105                            DAG.getConstant(1, MVT::i16)),
9106                DAG.getConstant(3, MVT::i16));
9107
9108
9109  return DAG.getNode((VT.getSizeInBits() < 16 ?
9110                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9111}
9112
9113SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9114  EVT VT = Op.getValueType();
9115  EVT OpVT = VT;
9116  unsigned NumBits = VT.getSizeInBits();
9117  DebugLoc dl = Op.getDebugLoc();
9118
9119  Op = Op.getOperand(0);
9120  if (VT == MVT::i8) {
9121    // Zero extend to i32 since there is not an i8 bsr.
9122    OpVT = MVT::i32;
9123    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9124  }
9125
9126  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9127  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9128  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9129
9130  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9131  SDValue Ops[] = {
9132    Op,
9133    DAG.getConstant(NumBits+NumBits-1, OpVT),
9134    DAG.getConstant(X86::COND_E, MVT::i8),
9135    Op.getValue(1)
9136  };
9137  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9138
9139  // Finally xor with NumBits-1.
9140  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9141
9142  if (VT == MVT::i8)
9143    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9144  return Op;
9145}
9146
9147SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9148  EVT VT = Op.getValueType();
9149  EVT OpVT = VT;
9150  unsigned NumBits = VT.getSizeInBits();
9151  DebugLoc dl = Op.getDebugLoc();
9152
9153  Op = Op.getOperand(0);
9154  if (VT == MVT::i8) {
9155    OpVT = MVT::i32;
9156    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9157  }
9158
9159  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9160  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9161  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9162
9163  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9164  SDValue Ops[] = {
9165    Op,
9166    DAG.getConstant(NumBits, OpVT),
9167    DAG.getConstant(X86::COND_E, MVT::i8),
9168    Op.getValue(1)
9169  };
9170  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9171
9172  if (VT == MVT::i8)
9173    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9174  return Op;
9175}
9176
9177SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
9178  EVT VT = Op.getValueType();
9179  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9180  DebugLoc dl = Op.getDebugLoc();
9181
9182  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9183  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9184  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9185  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9186  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9187  //
9188  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9189  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9190  //  return AloBlo + AloBhi + AhiBlo;
9191
9192  SDValue A = Op.getOperand(0);
9193  SDValue B = Op.getOperand(1);
9194
9195  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9196                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9197                       A, DAG.getConstant(32, MVT::i32));
9198  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9199                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9200                       B, DAG.getConstant(32, MVT::i32));
9201  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9202                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9203                       A, B);
9204  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9205                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9206                       A, Bhi);
9207  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9208                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9209                       Ahi, B);
9210  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9211                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9212                       AloBhi, DAG.getConstant(32, MVT::i32));
9213  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9214                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9215                       AhiBlo, DAG.getConstant(32, MVT::i32));
9216  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9217  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9218  return Res;
9219}
9220
9221SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9222
9223  EVT VT = Op.getValueType();
9224  DebugLoc dl = Op.getDebugLoc();
9225  SDValue R = Op.getOperand(0);
9226  SDValue Amt = Op.getOperand(1);
9227  LLVMContext *Context = DAG.getContext();
9228
9229  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
9230    return SDValue();
9231
9232  // Decompose 256-bit shifts into smaller 128-bit shifts.
9233  if (VT.getSizeInBits() == 256) {
9234    int NumElems = VT.getVectorNumElements();
9235    MVT EltVT = VT.getVectorElementType().getSimpleVT();
9236    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9237
9238    // Extract the two vectors
9239    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
9240    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
9241                                     DAG, dl);
9242
9243    // Recreate the shift amount vectors
9244    SmallVector<SDValue, 4> Amt1Csts;
9245    SmallVector<SDValue, 4> Amt2Csts;
9246    for (int i = 0; i < NumElems/2; ++i)
9247      Amt1Csts.push_back(Amt->getOperand(i));
9248    for (int i = NumElems/2; i < NumElems; ++i)
9249      Amt2Csts.push_back(Amt->getOperand(i));
9250
9251    SDValue Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9252                               &Amt1Csts[0], NumElems/2);
9253    SDValue Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9254                               &Amt2Csts[0], NumElems/2);
9255
9256    // Issue new vector shifts for the smaller types
9257    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
9258    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
9259
9260    // Concatenate the result back
9261    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
9262  }
9263
9264  // Optimize shl/srl/sra with constant shift amount.
9265  if (isSplatVector(Amt.getNode())) {
9266    SDValue SclrAmt = Amt->getOperand(0);
9267    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9268      uint64_t ShiftAmt = C->getZExtValue();
9269
9270      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9271       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9272                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9273                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9274
9275      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9276       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9277                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9278                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9279
9280      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9281       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9282                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9283                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9284
9285      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9286       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9287                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9288                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9289
9290      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9291       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9292                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9293                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9294
9295      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9296       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9297                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9298                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9299
9300      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9301       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9302                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9303                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9304
9305      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9306       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9307                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9308                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9309    }
9310  }
9311
9312  // Lower SHL with variable shift amount.
9313  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9314    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9315                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9316                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9317
9318    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9319
9320    std::vector<Constant*> CV(4, CI);
9321    Constant *C = ConstantVector::get(CV);
9322    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9323    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9324                                 MachinePointerInfo::getConstantPool(),
9325                                 false, false, 16);
9326
9327    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9328    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9329    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9330    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9331  }
9332  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9333    // a = a << 5;
9334    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9335                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9336                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9337
9338    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9339    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
9340
9341    std::vector<Constant*> CVM1(16, CM1);
9342    std::vector<Constant*> CVM2(16, CM2);
9343    Constant *C = ConstantVector::get(CVM1);
9344    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9345    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9346                            MachinePointerInfo::getConstantPool(),
9347                            false, false, 16);
9348
9349    // r = pblendv(r, psllw(r & (char16)15, 4), a);
9350    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9351    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9352                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9353                    DAG.getConstant(4, MVT::i32));
9354    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9355    // a += a
9356    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9357
9358    C = ConstantVector::get(CVM2);
9359    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9360    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9361                    MachinePointerInfo::getConstantPool(),
9362                    false, false, 16);
9363
9364    // r = pblendv(r, psllw(r & (char16)63, 2), a);
9365    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9366    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9367                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9368                    DAG.getConstant(2, MVT::i32));
9369    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9370    // a += a
9371    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9372
9373    // return pblendv(r, r+r, a);
9374    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
9375                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
9376    return R;
9377  }
9378  return SDValue();
9379}
9380
9381SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
9382  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
9383  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
9384  // looks for this combo and may remove the "setcc" instruction if the "setcc"
9385  // has only one use.
9386  SDNode *N = Op.getNode();
9387  SDValue LHS = N->getOperand(0);
9388  SDValue RHS = N->getOperand(1);
9389  unsigned BaseOp = 0;
9390  unsigned Cond = 0;
9391  DebugLoc DL = Op.getDebugLoc();
9392  switch (Op.getOpcode()) {
9393  default: llvm_unreachable("Unknown ovf instruction!");
9394  case ISD::SADDO:
9395    // A subtract of one will be selected as a INC. Note that INC doesn't
9396    // set CF, so we can't do this for UADDO.
9397    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9398      if (C->isOne()) {
9399        BaseOp = X86ISD::INC;
9400        Cond = X86::COND_O;
9401        break;
9402      }
9403    BaseOp = X86ISD::ADD;
9404    Cond = X86::COND_O;
9405    break;
9406  case ISD::UADDO:
9407    BaseOp = X86ISD::ADD;
9408    Cond = X86::COND_B;
9409    break;
9410  case ISD::SSUBO:
9411    // A subtract of one will be selected as a DEC. Note that DEC doesn't
9412    // set CF, so we can't do this for USUBO.
9413    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9414      if (C->isOne()) {
9415        BaseOp = X86ISD::DEC;
9416        Cond = X86::COND_O;
9417        break;
9418      }
9419    BaseOp = X86ISD::SUB;
9420    Cond = X86::COND_O;
9421    break;
9422  case ISD::USUBO:
9423    BaseOp = X86ISD::SUB;
9424    Cond = X86::COND_B;
9425    break;
9426  case ISD::SMULO:
9427    BaseOp = X86ISD::SMUL;
9428    Cond = X86::COND_O;
9429    break;
9430  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
9431    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
9432                                 MVT::i32);
9433    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
9434
9435    SDValue SetCC =
9436      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9437                  DAG.getConstant(X86::COND_O, MVT::i32),
9438                  SDValue(Sum.getNode(), 2));
9439
9440    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9441  }
9442  }
9443
9444  // Also sets EFLAGS.
9445  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
9446  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
9447
9448  SDValue SetCC =
9449    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
9450                DAG.getConstant(Cond, MVT::i32),
9451                SDValue(Sum.getNode(), 1));
9452
9453  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9454}
9455
9456SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
9457  DebugLoc dl = Op.getDebugLoc();
9458  SDNode* Node = Op.getNode();
9459  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9460  EVT VT = Node->getValueType(0);
9461
9462  if (Subtarget->hasSSE2() && VT.isVector()) {
9463    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
9464                        ExtraVT.getScalarType().getSizeInBits();
9465    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
9466
9467    unsigned SHLIntrinsicsID = 0;
9468    unsigned SRAIntrinsicsID = 0;
9469    switch (VT.getSimpleVT().SimpleTy) {
9470      default:
9471        return SDValue();
9472      case MVT::v2i64: {
9473        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_q;
9474        SRAIntrinsicsID = 0;
9475        break;
9476      }
9477      case MVT::v4i32: {
9478        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
9479        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
9480        break;
9481      }
9482      case MVT::v8i16: {
9483        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
9484        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
9485        break;
9486      }
9487    }
9488
9489    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9490                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
9491                         Node->getOperand(0), ShAmt);
9492
9493    // In case of 1 bit sext, no need to shr
9494    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
9495
9496    if (SRAIntrinsicsID) {
9497      Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9498                         DAG.getConstant(SRAIntrinsicsID, MVT::i32),
9499                         Tmp1, ShAmt);
9500    }
9501    return Tmp1;
9502  }
9503
9504  return SDValue();
9505}
9506
9507
9508SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
9509  DebugLoc dl = Op.getDebugLoc();
9510
9511  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
9512  // There isn't any reason to disable it if the target processor supports it.
9513  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
9514    SDValue Chain = Op.getOperand(0);
9515    SDValue Zero = DAG.getConstant(0, MVT::i32);
9516    SDValue Ops[] = {
9517      DAG.getRegister(X86::ESP, MVT::i32), // Base
9518      DAG.getTargetConstant(1, MVT::i8),   // Scale
9519      DAG.getRegister(0, MVT::i32),        // Index
9520      DAG.getTargetConstant(0, MVT::i32),  // Disp
9521      DAG.getRegister(0, MVT::i32),        // Segment.
9522      Zero,
9523      Chain
9524    };
9525    SDNode *Res =
9526      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
9527                          array_lengthof(Ops));
9528    return SDValue(Res, 0);
9529  }
9530
9531  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
9532  if (!isDev)
9533    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
9534
9535  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9536  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
9537  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
9538  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
9539
9540  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
9541  if (!Op1 && !Op2 && !Op3 && Op4)
9542    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
9543
9544  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
9545  if (Op1 && !Op2 && !Op3 && !Op4)
9546    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
9547
9548  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
9549  //           (MFENCE)>;
9550  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
9551}
9552
9553SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
9554                                             SelectionDAG &DAG) const {
9555  DebugLoc dl = Op.getDebugLoc();
9556  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
9557    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
9558  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
9559    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
9560
9561  // The only fence that needs an instruction is a sequentially-consistent
9562  // cross-thread fence.
9563  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
9564    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
9565    // no-sse2). There isn't any reason to disable it if the target processor
9566    // supports it.
9567    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
9568      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
9569
9570    SDValue Chain = Op.getOperand(0);
9571    SDValue Zero = DAG.getConstant(0, MVT::i32);
9572    SDValue Ops[] = {
9573      DAG.getRegister(X86::ESP, MVT::i32), // Base
9574      DAG.getTargetConstant(1, MVT::i8),   // Scale
9575      DAG.getRegister(0, MVT::i32),        // Index
9576      DAG.getTargetConstant(0, MVT::i32),  // Disp
9577      DAG.getRegister(0, MVT::i32),        // Segment.
9578      Zero,
9579      Chain
9580    };
9581    SDNode *Res =
9582      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
9583                         array_lengthof(Ops));
9584    return SDValue(Res, 0);
9585  }
9586
9587  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
9588  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
9589}
9590
9591
9592SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9593  EVT T = Op.getValueType();
9594  DebugLoc DL = Op.getDebugLoc();
9595  unsigned Reg = 0;
9596  unsigned size = 0;
9597  switch(T.getSimpleVT().SimpleTy) {
9598  default:
9599    assert(false && "Invalid value type!");
9600  case MVT::i8:  Reg = X86::AL;  size = 1; break;
9601  case MVT::i16: Reg = X86::AX;  size = 2; break;
9602  case MVT::i32: Reg = X86::EAX; size = 4; break;
9603  case MVT::i64:
9604    assert(Subtarget->is64Bit() && "Node not type legal!");
9605    Reg = X86::RAX; size = 8;
9606    break;
9607  }
9608  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
9609                                    Op.getOperand(2), SDValue());
9610  SDValue Ops[] = { cpIn.getValue(0),
9611                    Op.getOperand(1),
9612                    Op.getOperand(3),
9613                    DAG.getTargetConstant(size, MVT::i8),
9614                    cpIn.getValue(1) };
9615  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9616  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
9617  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
9618                                           Ops, 5, T, MMO);
9619  SDValue cpOut =
9620    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
9621  return cpOut;
9622}
9623
9624SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
9625                                                 SelectionDAG &DAG) const {
9626  assert(Subtarget->is64Bit() && "Result not type legalized?");
9627  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9628  SDValue TheChain = Op.getOperand(0);
9629  DebugLoc dl = Op.getDebugLoc();
9630  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9631  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
9632  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
9633                                   rax.getValue(2));
9634  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
9635                            DAG.getConstant(32, MVT::i8));
9636  SDValue Ops[] = {
9637    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
9638    rdx.getValue(1)
9639  };
9640  return DAG.getMergeValues(Ops, 2, dl);
9641}
9642
9643SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
9644                                            SelectionDAG &DAG) const {
9645  EVT SrcVT = Op.getOperand(0).getValueType();
9646  EVT DstVT = Op.getValueType();
9647  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
9648         Subtarget->hasMMX() && "Unexpected custom BITCAST");
9649  assert((DstVT == MVT::i64 ||
9650          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
9651         "Unexpected custom BITCAST");
9652  // i64 <=> MMX conversions are Legal.
9653  if (SrcVT==MVT::i64 && DstVT.isVector())
9654    return Op;
9655  if (DstVT==MVT::i64 && SrcVT.isVector())
9656    return Op;
9657  // MMX <=> MMX conversions are Legal.
9658  if (SrcVT.isVector() && DstVT.isVector())
9659    return Op;
9660  // All other conversions need to be expanded.
9661  return SDValue();
9662}
9663
9664SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
9665  SDNode *Node = Op.getNode();
9666  DebugLoc dl = Node->getDebugLoc();
9667  EVT T = Node->getValueType(0);
9668  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
9669                              DAG.getConstant(0, T), Node->getOperand(2));
9670  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
9671                       cast<AtomicSDNode>(Node)->getMemoryVT(),
9672                       Node->getOperand(0),
9673                       Node->getOperand(1), negOp,
9674                       cast<AtomicSDNode>(Node)->getSrcValue(),
9675                       cast<AtomicSDNode>(Node)->getAlignment(),
9676                       cast<AtomicSDNode>(Node)->getOrdering(),
9677                       cast<AtomicSDNode>(Node)->getSynchScope());
9678}
9679
9680static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
9681  EVT VT = Op.getNode()->getValueType(0);
9682
9683  // Let legalize expand this if it isn't a legal type yet.
9684  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9685    return SDValue();
9686
9687  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9688
9689  unsigned Opc;
9690  bool ExtraOp = false;
9691  switch (Op.getOpcode()) {
9692  default: assert(0 && "Invalid code");
9693  case ISD::ADDC: Opc = X86ISD::ADD; break;
9694  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
9695  case ISD::SUBC: Opc = X86ISD::SUB; break;
9696  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
9697  }
9698
9699  if (!ExtraOp)
9700    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9701                       Op.getOperand(1));
9702  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9703                     Op.getOperand(1), Op.getOperand(2));
9704}
9705
9706/// LowerOperation - Provide custom lowering hooks for some operations.
9707///
9708SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9709  switch (Op.getOpcode()) {
9710  default: llvm_unreachable("Should not custom lower this!");
9711  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
9712  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
9713  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
9714  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
9715  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
9716  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9717  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
9718  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9719  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9720  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9721  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
9722  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
9723  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9724  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9725  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9726  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9727  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
9728  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9729  case ISD::SHL_PARTS:
9730  case ISD::SRA_PARTS:
9731  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
9732  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
9733  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
9734  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
9735  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
9736  case ISD::FABS:               return LowerFABS(Op, DAG);
9737  case ISD::FNEG:               return LowerFNEG(Op, DAG);
9738  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
9739  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
9740  case ISD::SETCC:              return LowerSETCC(Op, DAG);
9741  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
9742  case ISD::SELECT:             return LowerSELECT(Op, DAG);
9743  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
9744  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9745  case ISD::VASTART:            return LowerVASTART(Op, DAG);
9746  case ISD::VAARG:              return LowerVAARG(Op, DAG);
9747  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9748  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9749  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9750  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9751  case ISD::FRAME_TO_ARGS_OFFSET:
9752                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
9753  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9754  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
9755  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
9756  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9757  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
9758  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
9759  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
9760  case ISD::SRA:
9761  case ISD::SRL:
9762  case ISD::SHL:                return LowerShift(Op, DAG);
9763  case ISD::SADDO:
9764  case ISD::UADDO:
9765  case ISD::SSUBO:
9766  case ISD::USUBO:
9767  case ISD::SMULO:
9768  case ISD::UMULO:              return LowerXALUO(Op, DAG);
9769  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
9770  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9771  case ISD::ADDC:
9772  case ISD::ADDE:
9773  case ISD::SUBC:
9774  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
9775  }
9776}
9777
9778void X86TargetLowering::
9779ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
9780                        SelectionDAG &DAG, unsigned NewOp) const {
9781  EVT T = Node->getValueType(0);
9782  DebugLoc dl = Node->getDebugLoc();
9783  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
9784
9785  SDValue Chain = Node->getOperand(0);
9786  SDValue In1 = Node->getOperand(1);
9787  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9788                             Node->getOperand(2), DAG.getIntPtrConstant(0));
9789  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9790                             Node->getOperand(2), DAG.getIntPtrConstant(1));
9791  SDValue Ops[] = { Chain, In1, In2L, In2H };
9792  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9793  SDValue Result =
9794    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
9795                            cast<MemSDNode>(Node)->getMemOperand());
9796  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
9797  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9798  Results.push_back(Result.getValue(2));
9799}
9800
9801/// ReplaceNodeResults - Replace a node with an illegal result type
9802/// with a new node built out of custom code.
9803void X86TargetLowering::ReplaceNodeResults(SDNode *N,
9804                                           SmallVectorImpl<SDValue>&Results,
9805                                           SelectionDAG &DAG) const {
9806  DebugLoc dl = N->getDebugLoc();
9807  switch (N->getOpcode()) {
9808  default:
9809    assert(false && "Do not know how to custom type legalize this operation!");
9810    return;
9811  case ISD::SIGN_EXTEND_INREG:
9812  case ISD::ADDC:
9813  case ISD::ADDE:
9814  case ISD::SUBC:
9815  case ISD::SUBE:
9816    // We don't want to expand or promote these.
9817    return;
9818  case ISD::FP_TO_SINT: {
9819    std::pair<SDValue,SDValue> Vals =
9820        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
9821    SDValue FIST = Vals.first, StackSlot = Vals.second;
9822    if (FIST.getNode() != 0) {
9823      EVT VT = N->getValueType(0);
9824      // Return a load from the stack slot.
9825      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
9826                                    MachinePointerInfo(), false, false, 0));
9827    }
9828    return;
9829  }
9830  case ISD::READCYCLECOUNTER: {
9831    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9832    SDValue TheChain = N->getOperand(0);
9833    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9834    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
9835                                     rd.getValue(1));
9836    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
9837                                     eax.getValue(2));
9838    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
9839    SDValue Ops[] = { eax, edx };
9840    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
9841    Results.push_back(edx.getValue(1));
9842    return;
9843  }
9844  case ISD::ATOMIC_CMP_SWAP: {
9845    EVT T = N->getValueType(0);
9846    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
9847    SDValue cpInL, cpInH;
9848    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9849                        DAG.getConstant(0, MVT::i32));
9850    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9851                        DAG.getConstant(1, MVT::i32));
9852    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
9853    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
9854                             cpInL.getValue(1));
9855    SDValue swapInL, swapInH;
9856    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9857                          DAG.getConstant(0, MVT::i32));
9858    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9859                          DAG.getConstant(1, MVT::i32));
9860    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
9861                               cpInH.getValue(1));
9862    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
9863                               swapInL.getValue(1));
9864    SDValue Ops[] = { swapInH.getValue(0),
9865                      N->getOperand(1),
9866                      swapInH.getValue(1) };
9867    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9868    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
9869    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
9870                                             Ops, 3, T, MMO);
9871    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
9872                                        MVT::i32, Result.getValue(1));
9873    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
9874                                        MVT::i32, cpOutL.getValue(2));
9875    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
9876    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9877    Results.push_back(cpOutH.getValue(1));
9878    return;
9879  }
9880  case ISD::ATOMIC_LOAD_ADD:
9881    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
9882    return;
9883  case ISD::ATOMIC_LOAD_AND:
9884    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
9885    return;
9886  case ISD::ATOMIC_LOAD_NAND:
9887    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
9888    return;
9889  case ISD::ATOMIC_LOAD_OR:
9890    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
9891    return;
9892  case ISD::ATOMIC_LOAD_SUB:
9893    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
9894    return;
9895  case ISD::ATOMIC_LOAD_XOR:
9896    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
9897    return;
9898  case ISD::ATOMIC_SWAP:
9899    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
9900    return;
9901  }
9902}
9903
9904const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
9905  switch (Opcode) {
9906  default: return NULL;
9907  case X86ISD::BSF:                return "X86ISD::BSF";
9908  case X86ISD::BSR:                return "X86ISD::BSR";
9909  case X86ISD::SHLD:               return "X86ISD::SHLD";
9910  case X86ISD::SHRD:               return "X86ISD::SHRD";
9911  case X86ISD::FAND:               return "X86ISD::FAND";
9912  case X86ISD::FOR:                return "X86ISD::FOR";
9913  case X86ISD::FXOR:               return "X86ISD::FXOR";
9914  case X86ISD::FSRL:               return "X86ISD::FSRL";
9915  case X86ISD::FILD:               return "X86ISD::FILD";
9916  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
9917  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
9918  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
9919  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
9920  case X86ISD::FLD:                return "X86ISD::FLD";
9921  case X86ISD::FST:                return "X86ISD::FST";
9922  case X86ISD::CALL:               return "X86ISD::CALL";
9923  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
9924  case X86ISD::BT:                 return "X86ISD::BT";
9925  case X86ISD::CMP:                return "X86ISD::CMP";
9926  case X86ISD::COMI:               return "X86ISD::COMI";
9927  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
9928  case X86ISD::SETCC:              return "X86ISD::SETCC";
9929  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
9930  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
9931  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
9932  case X86ISD::CMOV:               return "X86ISD::CMOV";
9933  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
9934  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
9935  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
9936  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
9937  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
9938  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
9939  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
9940  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
9941  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
9942  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
9943  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
9944  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
9945  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
9946  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
9947  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
9948  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
9949  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
9950  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
9951  case X86ISD::FMAX:               return "X86ISD::FMAX";
9952  case X86ISD::FMIN:               return "X86ISD::FMIN";
9953  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9954  case X86ISD::FRCP:               return "X86ISD::FRCP";
9955  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9956  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9957  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9958  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9959  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9960  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9961  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9962  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9963  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9964  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9965  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9966  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9967  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9968  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9969  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9970  case X86ISD::VSHL:               return "X86ISD::VSHL";
9971  case X86ISD::VSRL:               return "X86ISD::VSRL";
9972  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9973  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9974  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9975  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9976  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9977  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9978  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9979  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9980  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9981  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9982  case X86ISD::ADD:                return "X86ISD::ADD";
9983  case X86ISD::SUB:                return "X86ISD::SUB";
9984  case X86ISD::ADC:                return "X86ISD::ADC";
9985  case X86ISD::SBB:                return "X86ISD::SBB";
9986  case X86ISD::SMUL:               return "X86ISD::SMUL";
9987  case X86ISD::UMUL:               return "X86ISD::UMUL";
9988  case X86ISD::INC:                return "X86ISD::INC";
9989  case X86ISD::DEC:                return "X86ISD::DEC";
9990  case X86ISD::OR:                 return "X86ISD::OR";
9991  case X86ISD::XOR:                return "X86ISD::XOR";
9992  case X86ISD::AND:                return "X86ISD::AND";
9993  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
9994  case X86ISD::PTEST:              return "X86ISD::PTEST";
9995  case X86ISD::TESTP:              return "X86ISD::TESTP";
9996  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
9997  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
9998  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
9999  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10000  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10001  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10002  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10003  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10004  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10005  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10006  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10007  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
10008  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10009  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10010  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10011  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10012  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10013  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10014  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10015  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10016  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10017  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
10018  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
10019  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
10020  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
10021  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
10022  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
10023  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
10024  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
10025  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
10026  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
10027  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
10028  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
10029  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
10030  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
10031  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
10032  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
10033  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
10034  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10035  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10036  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10037  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10038  }
10039}
10040
10041// isLegalAddressingMode - Return true if the addressing mode represented
10042// by AM is legal for this target, for a load/store of the specified type.
10043bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10044                                              Type *Ty) const {
10045  // X86 supports extremely general addressing modes.
10046  CodeModel::Model M = getTargetMachine().getCodeModel();
10047  Reloc::Model R = getTargetMachine().getRelocationModel();
10048
10049  // X86 allows a sign-extended 32-bit immediate field as a displacement.
10050  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10051    return false;
10052
10053  if (AM.BaseGV) {
10054    unsigned GVFlags =
10055      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10056
10057    // If a reference to this global requires an extra load, we can't fold it.
10058    if (isGlobalStubReference(GVFlags))
10059      return false;
10060
10061    // If BaseGV requires a register for the PIC base, we cannot also have a
10062    // BaseReg specified.
10063    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10064      return false;
10065
10066    // If lower 4G is not available, then we must use rip-relative addressing.
10067    if ((M != CodeModel::Small || R != Reloc::Static) &&
10068        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10069      return false;
10070  }
10071
10072  switch (AM.Scale) {
10073  case 0:
10074  case 1:
10075  case 2:
10076  case 4:
10077  case 8:
10078    // These scales always work.
10079    break;
10080  case 3:
10081  case 5:
10082  case 9:
10083    // These scales are formed with basereg+scalereg.  Only accept if there is
10084    // no basereg yet.
10085    if (AM.HasBaseReg)
10086      return false;
10087    break;
10088  default:  // Other stuff never works.
10089    return false;
10090  }
10091
10092  return true;
10093}
10094
10095
10096bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10097  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10098    return false;
10099  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
10100  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
10101  if (NumBits1 <= NumBits2)
10102    return false;
10103  return true;
10104}
10105
10106bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10107  if (!VT1.isInteger() || !VT2.isInteger())
10108    return false;
10109  unsigned NumBits1 = VT1.getSizeInBits();
10110  unsigned NumBits2 = VT2.getSizeInBits();
10111  if (NumBits1 <= NumBits2)
10112    return false;
10113  return true;
10114}
10115
10116bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
10117  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10118  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
10119}
10120
10121bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
10122  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10123  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
10124}
10125
10126bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
10127  // i16 instructions are longer (0x66 prefix) and potentially slower.
10128  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
10129}
10130
10131/// isShuffleMaskLegal - Targets can use this to indicate that they only
10132/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
10133/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
10134/// are assumed to be legal.
10135bool
10136X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
10137                                      EVT VT) const {
10138  // Very little shuffling can be done for 64-bit vectors right now.
10139  if (VT.getSizeInBits() == 64)
10140    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
10141
10142  // FIXME: pshufb, blends, shifts.
10143  return (VT.getVectorNumElements() == 2 ||
10144          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10145          isMOVLMask(M, VT) ||
10146          isSHUFPMask(M, VT) ||
10147          isPSHUFDMask(M, VT) ||
10148          isPSHUFHWMask(M, VT) ||
10149          isPSHUFLWMask(M, VT) ||
10150          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
10151          isUNPCKLMask(M, VT) ||
10152          isUNPCKHMask(M, VT) ||
10153          isUNPCKL_v_undef_Mask(M, VT) ||
10154          isUNPCKH_v_undef_Mask(M, VT));
10155}
10156
10157bool
10158X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10159                                          EVT VT) const {
10160  unsigned NumElts = VT.getVectorNumElements();
10161  // FIXME: This collection of masks seems suspect.
10162  if (NumElts == 2)
10163    return true;
10164  if (NumElts == 4 && VT.getSizeInBits() == 128) {
10165    return (isMOVLMask(Mask, VT)  ||
10166            isCommutedMOVLMask(Mask, VT, true) ||
10167            isSHUFPMask(Mask, VT) ||
10168            isCommutedSHUFPMask(Mask, VT));
10169  }
10170  return false;
10171}
10172
10173//===----------------------------------------------------------------------===//
10174//                           X86 Scheduler Hooks
10175//===----------------------------------------------------------------------===//
10176
10177// private utility function
10178MachineBasicBlock *
10179X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10180                                                       MachineBasicBlock *MBB,
10181                                                       unsigned regOpc,
10182                                                       unsigned immOpc,
10183                                                       unsigned LoadOpc,
10184                                                       unsigned CXchgOpc,
10185                                                       unsigned notOpc,
10186                                                       unsigned EAXreg,
10187                                                       TargetRegisterClass *RC,
10188                                                       bool invSrc) const {
10189  // For the atomic bitwise operator, we generate
10190  //   thisMBB:
10191  //   newMBB:
10192  //     ld  t1 = [bitinstr.addr]
10193  //     op  t2 = t1, [bitinstr.val]
10194  //     mov EAX = t1
10195  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10196  //     bz  newMBB
10197  //     fallthrough -->nextMBB
10198  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10199  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10200  MachineFunction::iterator MBBIter = MBB;
10201  ++MBBIter;
10202
10203  /// First build the CFG
10204  MachineFunction *F = MBB->getParent();
10205  MachineBasicBlock *thisMBB = MBB;
10206  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10207  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10208  F->insert(MBBIter, newMBB);
10209  F->insert(MBBIter, nextMBB);
10210
10211  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10212  nextMBB->splice(nextMBB->begin(), thisMBB,
10213                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10214                  thisMBB->end());
10215  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10216
10217  // Update thisMBB to fall through to newMBB
10218  thisMBB->addSuccessor(newMBB);
10219
10220  // newMBB jumps to itself and fall through to nextMBB
10221  newMBB->addSuccessor(nextMBB);
10222  newMBB->addSuccessor(newMBB);
10223
10224  // Insert instructions into newMBB based on incoming instruction
10225  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10226         "unexpected number of operands");
10227  DebugLoc dl = bInstr->getDebugLoc();
10228  MachineOperand& destOper = bInstr->getOperand(0);
10229  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10230  int numArgs = bInstr->getNumOperands() - 1;
10231  for (int i=0; i < numArgs; ++i)
10232    argOpers[i] = &bInstr->getOperand(i+1);
10233
10234  // x86 address has 4 operands: base, index, scale, and displacement
10235  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10236  int valArgIndx = lastAddrIndx + 1;
10237
10238  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10239  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10240  for (int i=0; i <= lastAddrIndx; ++i)
10241    (*MIB).addOperand(*argOpers[i]);
10242
10243  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10244  if (invSrc) {
10245    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10246  }
10247  else
10248    tt = t1;
10249
10250  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10251  assert((argOpers[valArgIndx]->isReg() ||
10252          argOpers[valArgIndx]->isImm()) &&
10253         "invalid operand");
10254  if (argOpers[valArgIndx]->isReg())
10255    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10256  else
10257    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10258  MIB.addReg(tt);
10259  (*MIB).addOperand(*argOpers[valArgIndx]);
10260
10261  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10262  MIB.addReg(t1);
10263
10264  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10265  for (int i=0; i <= lastAddrIndx; ++i)
10266    (*MIB).addOperand(*argOpers[i]);
10267  MIB.addReg(t2);
10268  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10269  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10270                    bInstr->memoperands_end());
10271
10272  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10273  MIB.addReg(EAXreg);
10274
10275  // insert branch
10276  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10277
10278  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10279  return nextMBB;
10280}
10281
10282// private utility function:  64 bit atomics on 32 bit host.
10283MachineBasicBlock *
10284X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
10285                                                       MachineBasicBlock *MBB,
10286                                                       unsigned regOpcL,
10287                                                       unsigned regOpcH,
10288                                                       unsigned immOpcL,
10289                                                       unsigned immOpcH,
10290                                                       bool invSrc) const {
10291  // For the atomic bitwise operator, we generate
10292  //   thisMBB (instructions are in pairs, except cmpxchg8b)
10293  //     ld t1,t2 = [bitinstr.addr]
10294  //   newMBB:
10295  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
10296  //     op  t5, t6 <- out1, out2, [bitinstr.val]
10297  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
10298  //     mov ECX, EBX <- t5, t6
10299  //     mov EAX, EDX <- t1, t2
10300  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
10301  //     mov t3, t4 <- EAX, EDX
10302  //     bz  newMBB
10303  //     result in out1, out2
10304  //     fallthrough -->nextMBB
10305
10306  const TargetRegisterClass *RC = X86::GR32RegisterClass;
10307  const unsigned LoadOpc = X86::MOV32rm;
10308  const unsigned NotOpc = X86::NOT32r;
10309  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10310  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10311  MachineFunction::iterator MBBIter = MBB;
10312  ++MBBIter;
10313
10314  /// First build the CFG
10315  MachineFunction *F = MBB->getParent();
10316  MachineBasicBlock *thisMBB = MBB;
10317  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10318  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10319  F->insert(MBBIter, newMBB);
10320  F->insert(MBBIter, nextMBB);
10321
10322  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10323  nextMBB->splice(nextMBB->begin(), thisMBB,
10324                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10325                  thisMBB->end());
10326  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10327
10328  // Update thisMBB to fall through to newMBB
10329  thisMBB->addSuccessor(newMBB);
10330
10331  // newMBB jumps to itself and fall through to nextMBB
10332  newMBB->addSuccessor(nextMBB);
10333  newMBB->addSuccessor(newMBB);
10334
10335  DebugLoc dl = bInstr->getDebugLoc();
10336  // Insert instructions into newMBB based on incoming instruction
10337  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
10338  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
10339         "unexpected number of operands");
10340  MachineOperand& dest1Oper = bInstr->getOperand(0);
10341  MachineOperand& dest2Oper = bInstr->getOperand(1);
10342  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10343  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
10344    argOpers[i] = &bInstr->getOperand(i+2);
10345
10346    // We use some of the operands multiple times, so conservatively just
10347    // clear any kill flags that might be present.
10348    if (argOpers[i]->isReg() && argOpers[i]->isUse())
10349      argOpers[i]->setIsKill(false);
10350  }
10351
10352  // x86 address has 5 operands: base, index, scale, displacement, and segment.
10353  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10354
10355  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10356  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
10357  for (int i=0; i <= lastAddrIndx; ++i)
10358    (*MIB).addOperand(*argOpers[i]);
10359  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10360  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
10361  // add 4 to displacement.
10362  for (int i=0; i <= lastAddrIndx-2; ++i)
10363    (*MIB).addOperand(*argOpers[i]);
10364  MachineOperand newOp3 = *(argOpers[3]);
10365  if (newOp3.isImm())
10366    newOp3.setImm(newOp3.getImm()+4);
10367  else
10368    newOp3.setOffset(newOp3.getOffset()+4);
10369  (*MIB).addOperand(newOp3);
10370  (*MIB).addOperand(*argOpers[lastAddrIndx]);
10371
10372  // t3/4 are defined later, at the bottom of the loop
10373  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
10374  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
10375  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
10376    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
10377  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
10378    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
10379
10380  // The subsequent operations should be using the destination registers of
10381  //the PHI instructions.
10382  if (invSrc) {
10383    t1 = F->getRegInfo().createVirtualRegister(RC);
10384    t2 = F->getRegInfo().createVirtualRegister(RC);
10385    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
10386    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
10387  } else {
10388    t1 = dest1Oper.getReg();
10389    t2 = dest2Oper.getReg();
10390  }
10391
10392  int valArgIndx = lastAddrIndx + 1;
10393  assert((argOpers[valArgIndx]->isReg() ||
10394          argOpers[valArgIndx]->isImm()) &&
10395         "invalid operand");
10396  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
10397  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
10398  if (argOpers[valArgIndx]->isReg())
10399    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
10400  else
10401    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
10402  if (regOpcL != X86::MOV32rr)
10403    MIB.addReg(t1);
10404  (*MIB).addOperand(*argOpers[valArgIndx]);
10405  assert(argOpers[valArgIndx + 1]->isReg() ==
10406         argOpers[valArgIndx]->isReg());
10407  assert(argOpers[valArgIndx + 1]->isImm() ==
10408         argOpers[valArgIndx]->isImm());
10409  if (argOpers[valArgIndx + 1]->isReg())
10410    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
10411  else
10412    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
10413  if (regOpcH != X86::MOV32rr)
10414    MIB.addReg(t2);
10415  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
10416
10417  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10418  MIB.addReg(t1);
10419  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
10420  MIB.addReg(t2);
10421
10422  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
10423  MIB.addReg(t5);
10424  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
10425  MIB.addReg(t6);
10426
10427  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
10428  for (int i=0; i <= lastAddrIndx; ++i)
10429    (*MIB).addOperand(*argOpers[i]);
10430
10431  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10432  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10433                    bInstr->memoperands_end());
10434
10435  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
10436  MIB.addReg(X86::EAX);
10437  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
10438  MIB.addReg(X86::EDX);
10439
10440  // insert branch
10441  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10442
10443  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10444  return nextMBB;
10445}
10446
10447// private utility function
10448MachineBasicBlock *
10449X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
10450                                                      MachineBasicBlock *MBB,
10451                                                      unsigned cmovOpc) const {
10452  // For the atomic min/max operator, we generate
10453  //   thisMBB:
10454  //   newMBB:
10455  //     ld t1 = [min/max.addr]
10456  //     mov t2 = [min/max.val]
10457  //     cmp  t1, t2
10458  //     cmov[cond] t2 = t1
10459  //     mov EAX = t1
10460  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10461  //     bz   newMBB
10462  //     fallthrough -->nextMBB
10463  //
10464  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10465  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10466  MachineFunction::iterator MBBIter = MBB;
10467  ++MBBIter;
10468
10469  /// First build the CFG
10470  MachineFunction *F = MBB->getParent();
10471  MachineBasicBlock *thisMBB = MBB;
10472  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10473  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10474  F->insert(MBBIter, newMBB);
10475  F->insert(MBBIter, nextMBB);
10476
10477  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10478  nextMBB->splice(nextMBB->begin(), thisMBB,
10479                  llvm::next(MachineBasicBlock::iterator(mInstr)),
10480                  thisMBB->end());
10481  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10482
10483  // Update thisMBB to fall through to newMBB
10484  thisMBB->addSuccessor(newMBB);
10485
10486  // newMBB jumps to newMBB and fall through to nextMBB
10487  newMBB->addSuccessor(nextMBB);
10488  newMBB->addSuccessor(newMBB);
10489
10490  DebugLoc dl = mInstr->getDebugLoc();
10491  // Insert instructions into newMBB based on incoming instruction
10492  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10493         "unexpected number of operands");
10494  MachineOperand& destOper = mInstr->getOperand(0);
10495  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10496  int numArgs = mInstr->getNumOperands() - 1;
10497  for (int i=0; i < numArgs; ++i)
10498    argOpers[i] = &mInstr->getOperand(i+1);
10499
10500  // x86 address has 4 operands: base, index, scale, and displacement
10501  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10502  int valArgIndx = lastAddrIndx + 1;
10503
10504  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10505  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
10506  for (int i=0; i <= lastAddrIndx; ++i)
10507    (*MIB).addOperand(*argOpers[i]);
10508
10509  // We only support register and immediate values
10510  assert((argOpers[valArgIndx]->isReg() ||
10511          argOpers[valArgIndx]->isImm()) &&
10512         "invalid operand");
10513
10514  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10515  if (argOpers[valArgIndx]->isReg())
10516    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
10517  else
10518    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
10519  (*MIB).addOperand(*argOpers[valArgIndx]);
10520
10521  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10522  MIB.addReg(t1);
10523
10524  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
10525  MIB.addReg(t1);
10526  MIB.addReg(t2);
10527
10528  // Generate movc
10529  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10530  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
10531  MIB.addReg(t2);
10532  MIB.addReg(t1);
10533
10534  // Cmp and exchange if none has modified the memory location
10535  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
10536  for (int i=0; i <= lastAddrIndx; ++i)
10537    (*MIB).addOperand(*argOpers[i]);
10538  MIB.addReg(t3);
10539  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10540  (*MIB).setMemRefs(mInstr->memoperands_begin(),
10541                    mInstr->memoperands_end());
10542
10543  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10544  MIB.addReg(X86::EAX);
10545
10546  // insert branch
10547  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10548
10549  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
10550  return nextMBB;
10551}
10552
10553// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
10554// or XMM0_V32I8 in AVX all of this code can be replaced with that
10555// in the .td file.
10556MachineBasicBlock *
10557X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
10558                            unsigned numArgs, bool memArg) const {
10559  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
10560         "Target must have SSE4.2 or AVX features enabled");
10561
10562  DebugLoc dl = MI->getDebugLoc();
10563  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10564  unsigned Opc;
10565  if (!Subtarget->hasAVX()) {
10566    if (memArg)
10567      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
10568    else
10569      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
10570  } else {
10571    if (memArg)
10572      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
10573    else
10574      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
10575  }
10576
10577  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
10578  for (unsigned i = 0; i < numArgs; ++i) {
10579    MachineOperand &Op = MI->getOperand(i+1);
10580    if (!(Op.isReg() && Op.isImplicit()))
10581      MIB.addOperand(Op);
10582  }
10583  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
10584    .addReg(X86::XMM0);
10585
10586  MI->eraseFromParent();
10587  return BB;
10588}
10589
10590MachineBasicBlock *
10591X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
10592  DebugLoc dl = MI->getDebugLoc();
10593  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10594
10595  // Address into RAX/EAX, other two args into ECX, EDX.
10596  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
10597  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
10598  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
10599  for (int i = 0; i < X86::AddrNumOperands; ++i)
10600    MIB.addOperand(MI->getOperand(i));
10601
10602  unsigned ValOps = X86::AddrNumOperands;
10603  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10604    .addReg(MI->getOperand(ValOps).getReg());
10605  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
10606    .addReg(MI->getOperand(ValOps+1).getReg());
10607
10608  // The instruction doesn't actually take any operands though.
10609  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
10610
10611  MI->eraseFromParent(); // The pseudo is gone now.
10612  return BB;
10613}
10614
10615MachineBasicBlock *
10616X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
10617  DebugLoc dl = MI->getDebugLoc();
10618  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10619
10620  // First arg in ECX, the second in EAX.
10621  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10622    .addReg(MI->getOperand(0).getReg());
10623  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
10624    .addReg(MI->getOperand(1).getReg());
10625
10626  // The instruction doesn't actually take any operands though.
10627  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
10628
10629  MI->eraseFromParent(); // The pseudo is gone now.
10630  return BB;
10631}
10632
10633MachineBasicBlock *
10634X86TargetLowering::EmitVAARG64WithCustomInserter(
10635                   MachineInstr *MI,
10636                   MachineBasicBlock *MBB) const {
10637  // Emit va_arg instruction on X86-64.
10638
10639  // Operands to this pseudo-instruction:
10640  // 0  ) Output        : destination address (reg)
10641  // 1-5) Input         : va_list address (addr, i64mem)
10642  // 6  ) ArgSize       : Size (in bytes) of vararg type
10643  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
10644  // 8  ) Align         : Alignment of type
10645  // 9  ) EFLAGS (implicit-def)
10646
10647  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
10648  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
10649
10650  unsigned DestReg = MI->getOperand(0).getReg();
10651  MachineOperand &Base = MI->getOperand(1);
10652  MachineOperand &Scale = MI->getOperand(2);
10653  MachineOperand &Index = MI->getOperand(3);
10654  MachineOperand &Disp = MI->getOperand(4);
10655  MachineOperand &Segment = MI->getOperand(5);
10656  unsigned ArgSize = MI->getOperand(6).getImm();
10657  unsigned ArgMode = MI->getOperand(7).getImm();
10658  unsigned Align = MI->getOperand(8).getImm();
10659
10660  // Memory Reference
10661  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
10662  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
10663  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
10664
10665  // Machine Information
10666  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10667  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10668  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
10669  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
10670  DebugLoc DL = MI->getDebugLoc();
10671
10672  // struct va_list {
10673  //   i32   gp_offset
10674  //   i32   fp_offset
10675  //   i64   overflow_area (address)
10676  //   i64   reg_save_area (address)
10677  // }
10678  // sizeof(va_list) = 24
10679  // alignment(va_list) = 8
10680
10681  unsigned TotalNumIntRegs = 6;
10682  unsigned TotalNumXMMRegs = 8;
10683  bool UseGPOffset = (ArgMode == 1);
10684  bool UseFPOffset = (ArgMode == 2);
10685  unsigned MaxOffset = TotalNumIntRegs * 8 +
10686                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
10687
10688  /* Align ArgSize to a multiple of 8 */
10689  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
10690  bool NeedsAlign = (Align > 8);
10691
10692  MachineBasicBlock *thisMBB = MBB;
10693  MachineBasicBlock *overflowMBB;
10694  MachineBasicBlock *offsetMBB;
10695  MachineBasicBlock *endMBB;
10696
10697  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
10698  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
10699  unsigned OffsetReg = 0;
10700
10701  if (!UseGPOffset && !UseFPOffset) {
10702    // If we only pull from the overflow region, we don't create a branch.
10703    // We don't need to alter control flow.
10704    OffsetDestReg = 0; // unused
10705    OverflowDestReg = DestReg;
10706
10707    offsetMBB = NULL;
10708    overflowMBB = thisMBB;
10709    endMBB = thisMBB;
10710  } else {
10711    // First emit code to check if gp_offset (or fp_offset) is below the bound.
10712    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
10713    // If not, pull from overflow_area. (branch to overflowMBB)
10714    //
10715    //       thisMBB
10716    //         |     .
10717    //         |        .
10718    //     offsetMBB   overflowMBB
10719    //         |        .
10720    //         |     .
10721    //        endMBB
10722
10723    // Registers for the PHI in endMBB
10724    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
10725    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
10726
10727    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10728    MachineFunction *MF = MBB->getParent();
10729    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10730    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10731    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10732
10733    MachineFunction::iterator MBBIter = MBB;
10734    ++MBBIter;
10735
10736    // Insert the new basic blocks
10737    MF->insert(MBBIter, offsetMBB);
10738    MF->insert(MBBIter, overflowMBB);
10739    MF->insert(MBBIter, endMBB);
10740
10741    // Transfer the remainder of MBB and its successor edges to endMBB.
10742    endMBB->splice(endMBB->begin(), thisMBB,
10743                    llvm::next(MachineBasicBlock::iterator(MI)),
10744                    thisMBB->end());
10745    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10746
10747    // Make offsetMBB and overflowMBB successors of thisMBB
10748    thisMBB->addSuccessor(offsetMBB);
10749    thisMBB->addSuccessor(overflowMBB);
10750
10751    // endMBB is a successor of both offsetMBB and overflowMBB
10752    offsetMBB->addSuccessor(endMBB);
10753    overflowMBB->addSuccessor(endMBB);
10754
10755    // Load the offset value into a register
10756    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10757    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
10758      .addOperand(Base)
10759      .addOperand(Scale)
10760      .addOperand(Index)
10761      .addDisp(Disp, UseFPOffset ? 4 : 0)
10762      .addOperand(Segment)
10763      .setMemRefs(MMOBegin, MMOEnd);
10764
10765    // Check if there is enough room left to pull this argument.
10766    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
10767      .addReg(OffsetReg)
10768      .addImm(MaxOffset + 8 - ArgSizeA8);
10769
10770    // Branch to "overflowMBB" if offset >= max
10771    // Fall through to "offsetMBB" otherwise
10772    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
10773      .addMBB(overflowMBB);
10774  }
10775
10776  // In offsetMBB, emit code to use the reg_save_area.
10777  if (offsetMBB) {
10778    assert(OffsetReg != 0);
10779
10780    // Read the reg_save_area address.
10781    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
10782    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
10783      .addOperand(Base)
10784      .addOperand(Scale)
10785      .addOperand(Index)
10786      .addDisp(Disp, 16)
10787      .addOperand(Segment)
10788      .setMemRefs(MMOBegin, MMOEnd);
10789
10790    // Zero-extend the offset
10791    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
10792      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
10793        .addImm(0)
10794        .addReg(OffsetReg)
10795        .addImm(X86::sub_32bit);
10796
10797    // Add the offset to the reg_save_area to get the final address.
10798    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
10799      .addReg(OffsetReg64)
10800      .addReg(RegSaveReg);
10801
10802    // Compute the offset for the next argument
10803    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10804    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
10805      .addReg(OffsetReg)
10806      .addImm(UseFPOffset ? 16 : 8);
10807
10808    // Store it back into the va_list.
10809    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
10810      .addOperand(Base)
10811      .addOperand(Scale)
10812      .addOperand(Index)
10813      .addDisp(Disp, UseFPOffset ? 4 : 0)
10814      .addOperand(Segment)
10815      .addReg(NextOffsetReg)
10816      .setMemRefs(MMOBegin, MMOEnd);
10817
10818    // Jump to endMBB
10819    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
10820      .addMBB(endMBB);
10821  }
10822
10823  //
10824  // Emit code to use overflow area
10825  //
10826
10827  // Load the overflow_area address into a register.
10828  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
10829  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
10830    .addOperand(Base)
10831    .addOperand(Scale)
10832    .addOperand(Index)
10833    .addDisp(Disp, 8)
10834    .addOperand(Segment)
10835    .setMemRefs(MMOBegin, MMOEnd);
10836
10837  // If we need to align it, do so. Otherwise, just copy the address
10838  // to OverflowDestReg.
10839  if (NeedsAlign) {
10840    // Align the overflow address
10841    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
10842    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
10843
10844    // aligned_addr = (addr + (align-1)) & ~(align-1)
10845    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
10846      .addReg(OverflowAddrReg)
10847      .addImm(Align-1);
10848
10849    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
10850      .addReg(TmpReg)
10851      .addImm(~(uint64_t)(Align-1));
10852  } else {
10853    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
10854      .addReg(OverflowAddrReg);
10855  }
10856
10857  // Compute the next overflow address after this argument.
10858  // (the overflow address should be kept 8-byte aligned)
10859  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
10860  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
10861    .addReg(OverflowDestReg)
10862    .addImm(ArgSizeA8);
10863
10864  // Store the new overflow address.
10865  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
10866    .addOperand(Base)
10867    .addOperand(Scale)
10868    .addOperand(Index)
10869    .addDisp(Disp, 8)
10870    .addOperand(Segment)
10871    .addReg(NextAddrReg)
10872    .setMemRefs(MMOBegin, MMOEnd);
10873
10874  // If we branched, emit the PHI to the front of endMBB.
10875  if (offsetMBB) {
10876    BuildMI(*endMBB, endMBB->begin(), DL,
10877            TII->get(X86::PHI), DestReg)
10878      .addReg(OffsetDestReg).addMBB(offsetMBB)
10879      .addReg(OverflowDestReg).addMBB(overflowMBB);
10880  }
10881
10882  // Erase the pseudo instruction
10883  MI->eraseFromParent();
10884
10885  return endMBB;
10886}
10887
10888MachineBasicBlock *
10889X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
10890                                                 MachineInstr *MI,
10891                                                 MachineBasicBlock *MBB) const {
10892  // Emit code to save XMM registers to the stack. The ABI says that the
10893  // number of registers to save is given in %al, so it's theoretically
10894  // possible to do an indirect jump trick to avoid saving all of them,
10895  // however this code takes a simpler approach and just executes all
10896  // of the stores if %al is non-zero. It's less code, and it's probably
10897  // easier on the hardware branch predictor, and stores aren't all that
10898  // expensive anyway.
10899
10900  // Create the new basic blocks. One block contains all the XMM stores,
10901  // and one block is the final destination regardless of whether any
10902  // stores were performed.
10903  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10904  MachineFunction *F = MBB->getParent();
10905  MachineFunction::iterator MBBIter = MBB;
10906  ++MBBIter;
10907  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
10908  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
10909  F->insert(MBBIter, XMMSaveMBB);
10910  F->insert(MBBIter, EndMBB);
10911
10912  // Transfer the remainder of MBB and its successor edges to EndMBB.
10913  EndMBB->splice(EndMBB->begin(), MBB,
10914                 llvm::next(MachineBasicBlock::iterator(MI)),
10915                 MBB->end());
10916  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
10917
10918  // The original block will now fall through to the XMM save block.
10919  MBB->addSuccessor(XMMSaveMBB);
10920  // The XMMSaveMBB will fall through to the end block.
10921  XMMSaveMBB->addSuccessor(EndMBB);
10922
10923  // Now add the instructions.
10924  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10925  DebugLoc DL = MI->getDebugLoc();
10926
10927  unsigned CountReg = MI->getOperand(0).getReg();
10928  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
10929  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
10930
10931  if (!Subtarget->isTargetWin64()) {
10932    // If %al is 0, branch around the XMM save block.
10933    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
10934    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
10935    MBB->addSuccessor(EndMBB);
10936  }
10937
10938  // In the XMM save block, save all the XMM argument registers.
10939  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
10940    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
10941    MachineMemOperand *MMO =
10942      F->getMachineMemOperand(
10943          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
10944        MachineMemOperand::MOStore,
10945        /*Size=*/16, /*Align=*/16);
10946    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
10947      .addFrameIndex(RegSaveFrameIndex)
10948      .addImm(/*Scale=*/1)
10949      .addReg(/*IndexReg=*/0)
10950      .addImm(/*Disp=*/Offset)
10951      .addReg(/*Segment=*/0)
10952      .addReg(MI->getOperand(i).getReg())
10953      .addMemOperand(MMO);
10954  }
10955
10956  MI->eraseFromParent();   // The pseudo instruction is gone now.
10957
10958  return EndMBB;
10959}
10960
10961MachineBasicBlock *
10962X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10963                                     MachineBasicBlock *BB) const {
10964  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10965  DebugLoc DL = MI->getDebugLoc();
10966
10967  // To "insert" a SELECT_CC instruction, we actually have to insert the
10968  // diamond control-flow pattern.  The incoming instruction knows the
10969  // destination vreg to set, the condition code register to branch on, the
10970  // true/false values to select between, and a branch opcode to use.
10971  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10972  MachineFunction::iterator It = BB;
10973  ++It;
10974
10975  //  thisMBB:
10976  //  ...
10977  //   TrueVal = ...
10978  //   cmpTY ccX, r1, r2
10979  //   bCC copy1MBB
10980  //   fallthrough --> copy0MBB
10981  MachineBasicBlock *thisMBB = BB;
10982  MachineFunction *F = BB->getParent();
10983  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10984  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10985  F->insert(It, copy0MBB);
10986  F->insert(It, sinkMBB);
10987
10988  // If the EFLAGS register isn't dead in the terminator, then claim that it's
10989  // live into the sink and copy blocks.
10990  const MachineFunction *MF = BB->getParent();
10991  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
10992  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
10993
10994  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
10995    const MachineOperand &MO = MI->getOperand(I);
10996    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
10997    unsigned Reg = MO.getReg();
10998    if (Reg != X86::EFLAGS) continue;
10999    copy0MBB->addLiveIn(Reg);
11000    sinkMBB->addLiveIn(Reg);
11001  }
11002
11003  // Transfer the remainder of BB and its successor edges to sinkMBB.
11004  sinkMBB->splice(sinkMBB->begin(), BB,
11005                  llvm::next(MachineBasicBlock::iterator(MI)),
11006                  BB->end());
11007  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11008
11009  // Add the true and fallthrough blocks as its successors.
11010  BB->addSuccessor(copy0MBB);
11011  BB->addSuccessor(sinkMBB);
11012
11013  // Create the conditional branch instruction.
11014  unsigned Opc =
11015    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11016  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11017
11018  //  copy0MBB:
11019  //   %FalseValue = ...
11020  //   # fallthrough to sinkMBB
11021  copy0MBB->addSuccessor(sinkMBB);
11022
11023  //  sinkMBB:
11024  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11025  //  ...
11026  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11027          TII->get(X86::PHI), MI->getOperand(0).getReg())
11028    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11029    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11030
11031  MI->eraseFromParent();   // The pseudo instruction is gone now.
11032  return sinkMBB;
11033}
11034
11035MachineBasicBlock *
11036X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
11037                                          MachineBasicBlock *BB) const {
11038  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11039  DebugLoc DL = MI->getDebugLoc();
11040
11041  assert(!Subtarget->isTargetEnvMacho());
11042
11043  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
11044  // non-trivial part is impdef of ESP.
11045
11046  if (Subtarget->isTargetWin64()) {
11047    if (Subtarget->isTargetCygMing()) {
11048      // ___chkstk(Mingw64):
11049      // Clobbers R10, R11, RAX and EFLAGS.
11050      // Updates RSP.
11051      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11052        .addExternalSymbol("___chkstk")
11053        .addReg(X86::RAX, RegState::Implicit)
11054        .addReg(X86::RSP, RegState::Implicit)
11055        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
11056        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
11057        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11058    } else {
11059      // __chkstk(MSVCRT): does not update stack pointer.
11060      // Clobbers R10, R11 and EFLAGS.
11061      // FIXME: RAX(allocated size) might be reused and not killed.
11062      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11063        .addExternalSymbol("__chkstk")
11064        .addReg(X86::RAX, RegState::Implicit)
11065        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11066      // RAX has the offset to subtracted from RSP.
11067      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
11068        .addReg(X86::RSP)
11069        .addReg(X86::RAX);
11070    }
11071  } else {
11072    const char *StackProbeSymbol =
11073      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
11074
11075    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
11076      .addExternalSymbol(StackProbeSymbol)
11077      .addReg(X86::EAX, RegState::Implicit)
11078      .addReg(X86::ESP, RegState::Implicit)
11079      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
11080      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
11081      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11082  }
11083
11084  MI->eraseFromParent();   // The pseudo instruction is gone now.
11085  return BB;
11086}
11087
11088MachineBasicBlock *
11089X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
11090                                      MachineBasicBlock *BB) const {
11091  // This is pretty easy.  We're taking the value that we received from
11092  // our load from the relocation, sticking it in either RDI (x86-64)
11093  // or EAX and doing an indirect call.  The return value will then
11094  // be in the normal return register.
11095  const X86InstrInfo *TII
11096    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
11097  DebugLoc DL = MI->getDebugLoc();
11098  MachineFunction *F = BB->getParent();
11099
11100  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
11101  assert(MI->getOperand(3).isGlobal() && "This should be a global");
11102
11103  if (Subtarget->is64Bit()) {
11104    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11105                                      TII->get(X86::MOV64rm), X86::RDI)
11106    .addReg(X86::RIP)
11107    .addImm(0).addReg(0)
11108    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11109                      MI->getOperand(3).getTargetFlags())
11110    .addReg(0);
11111    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
11112    addDirectMem(MIB, X86::RDI);
11113  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
11114    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11115                                      TII->get(X86::MOV32rm), X86::EAX)
11116    .addReg(0)
11117    .addImm(0).addReg(0)
11118    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11119                      MI->getOperand(3).getTargetFlags())
11120    .addReg(0);
11121    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11122    addDirectMem(MIB, X86::EAX);
11123  } else {
11124    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11125                                      TII->get(X86::MOV32rm), X86::EAX)
11126    .addReg(TII->getGlobalBaseReg(F))
11127    .addImm(0).addReg(0)
11128    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11129                      MI->getOperand(3).getTargetFlags())
11130    .addReg(0);
11131    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11132    addDirectMem(MIB, X86::EAX);
11133  }
11134
11135  MI->eraseFromParent(); // The pseudo instruction is gone now.
11136  return BB;
11137}
11138
11139MachineBasicBlock *
11140X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
11141                                               MachineBasicBlock *BB) const {
11142  switch (MI->getOpcode()) {
11143  default: assert(false && "Unexpected instr type to insert");
11144  case X86::TAILJMPd64:
11145  case X86::TAILJMPr64:
11146  case X86::TAILJMPm64:
11147    assert(!"TAILJMP64 would not be touched here.");
11148  case X86::TCRETURNdi64:
11149  case X86::TCRETURNri64:
11150  case X86::TCRETURNmi64:
11151    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11152    // On AMD64, additional defs should be added before register allocation.
11153    if (!Subtarget->isTargetWin64()) {
11154      MI->addRegisterDefined(X86::RSI);
11155      MI->addRegisterDefined(X86::RDI);
11156      MI->addRegisterDefined(X86::XMM6);
11157      MI->addRegisterDefined(X86::XMM7);
11158      MI->addRegisterDefined(X86::XMM8);
11159      MI->addRegisterDefined(X86::XMM9);
11160      MI->addRegisterDefined(X86::XMM10);
11161      MI->addRegisterDefined(X86::XMM11);
11162      MI->addRegisterDefined(X86::XMM12);
11163      MI->addRegisterDefined(X86::XMM13);
11164      MI->addRegisterDefined(X86::XMM14);
11165      MI->addRegisterDefined(X86::XMM15);
11166    }
11167    return BB;
11168  case X86::WIN_ALLOCA:
11169    return EmitLoweredWinAlloca(MI, BB);
11170  case X86::TLSCall_32:
11171  case X86::TLSCall_64:
11172    return EmitLoweredTLSCall(MI, BB);
11173  case X86::CMOV_GR8:
11174  case X86::CMOV_FR32:
11175  case X86::CMOV_FR64:
11176  case X86::CMOV_V4F32:
11177  case X86::CMOV_V2F64:
11178  case X86::CMOV_V2I64:
11179  case X86::CMOV_V8F32:
11180  case X86::CMOV_V4F64:
11181  case X86::CMOV_V4I64:
11182  case X86::CMOV_GR16:
11183  case X86::CMOV_GR32:
11184  case X86::CMOV_RFP32:
11185  case X86::CMOV_RFP64:
11186  case X86::CMOV_RFP80:
11187    return EmitLoweredSelect(MI, BB);
11188
11189  case X86::FP32_TO_INT16_IN_MEM:
11190  case X86::FP32_TO_INT32_IN_MEM:
11191  case X86::FP32_TO_INT64_IN_MEM:
11192  case X86::FP64_TO_INT16_IN_MEM:
11193  case X86::FP64_TO_INT32_IN_MEM:
11194  case X86::FP64_TO_INT64_IN_MEM:
11195  case X86::FP80_TO_INT16_IN_MEM:
11196  case X86::FP80_TO_INT32_IN_MEM:
11197  case X86::FP80_TO_INT64_IN_MEM: {
11198    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11199    DebugLoc DL = MI->getDebugLoc();
11200
11201    // Change the floating point control register to use "round towards zero"
11202    // mode when truncating to an integer value.
11203    MachineFunction *F = BB->getParent();
11204    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
11205    addFrameReference(BuildMI(*BB, MI, DL,
11206                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
11207
11208    // Load the old value of the high byte of the control word...
11209    unsigned OldCW =
11210      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
11211    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
11212                      CWFrameIdx);
11213
11214    // Set the high part to be round to zero...
11215    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
11216      .addImm(0xC7F);
11217
11218    // Reload the modified control word now...
11219    addFrameReference(BuildMI(*BB, MI, DL,
11220                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11221
11222    // Restore the memory image of control word to original value
11223    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
11224      .addReg(OldCW);
11225
11226    // Get the X86 opcode to use.
11227    unsigned Opc;
11228    switch (MI->getOpcode()) {
11229    default: llvm_unreachable("illegal opcode!");
11230    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
11231    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
11232    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
11233    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
11234    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
11235    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
11236    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
11237    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
11238    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
11239    }
11240
11241    X86AddressMode AM;
11242    MachineOperand &Op = MI->getOperand(0);
11243    if (Op.isReg()) {
11244      AM.BaseType = X86AddressMode::RegBase;
11245      AM.Base.Reg = Op.getReg();
11246    } else {
11247      AM.BaseType = X86AddressMode::FrameIndexBase;
11248      AM.Base.FrameIndex = Op.getIndex();
11249    }
11250    Op = MI->getOperand(1);
11251    if (Op.isImm())
11252      AM.Scale = Op.getImm();
11253    Op = MI->getOperand(2);
11254    if (Op.isImm())
11255      AM.IndexReg = Op.getImm();
11256    Op = MI->getOperand(3);
11257    if (Op.isGlobal()) {
11258      AM.GV = Op.getGlobal();
11259    } else {
11260      AM.Disp = Op.getImm();
11261    }
11262    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
11263                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
11264
11265    // Reload the original control word now.
11266    addFrameReference(BuildMI(*BB, MI, DL,
11267                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11268
11269    MI->eraseFromParent();   // The pseudo instruction is gone now.
11270    return BB;
11271  }
11272    // String/text processing lowering.
11273  case X86::PCMPISTRM128REG:
11274  case X86::VPCMPISTRM128REG:
11275    return EmitPCMP(MI, BB, 3, false /* in-mem */);
11276  case X86::PCMPISTRM128MEM:
11277  case X86::VPCMPISTRM128MEM:
11278    return EmitPCMP(MI, BB, 3, true /* in-mem */);
11279  case X86::PCMPESTRM128REG:
11280  case X86::VPCMPESTRM128REG:
11281    return EmitPCMP(MI, BB, 5, false /* in mem */);
11282  case X86::PCMPESTRM128MEM:
11283  case X86::VPCMPESTRM128MEM:
11284    return EmitPCMP(MI, BB, 5, true /* in mem */);
11285
11286    // Thread synchronization.
11287  case X86::MONITOR:
11288    return EmitMonitor(MI, BB);
11289  case X86::MWAIT:
11290    return EmitMwait(MI, BB);
11291
11292    // Atomic Lowering.
11293  case X86::ATOMAND32:
11294    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11295                                               X86::AND32ri, X86::MOV32rm,
11296                                               X86::LCMPXCHG32,
11297                                               X86::NOT32r, X86::EAX,
11298                                               X86::GR32RegisterClass);
11299  case X86::ATOMOR32:
11300    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
11301                                               X86::OR32ri, X86::MOV32rm,
11302                                               X86::LCMPXCHG32,
11303                                               X86::NOT32r, X86::EAX,
11304                                               X86::GR32RegisterClass);
11305  case X86::ATOMXOR32:
11306    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
11307                                               X86::XOR32ri, X86::MOV32rm,
11308                                               X86::LCMPXCHG32,
11309                                               X86::NOT32r, X86::EAX,
11310                                               X86::GR32RegisterClass);
11311  case X86::ATOMNAND32:
11312    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11313                                               X86::AND32ri, X86::MOV32rm,
11314                                               X86::LCMPXCHG32,
11315                                               X86::NOT32r, X86::EAX,
11316                                               X86::GR32RegisterClass, true);
11317  case X86::ATOMMIN32:
11318    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
11319  case X86::ATOMMAX32:
11320    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
11321  case X86::ATOMUMIN32:
11322    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
11323  case X86::ATOMUMAX32:
11324    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
11325
11326  case X86::ATOMAND16:
11327    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11328                                               X86::AND16ri, X86::MOV16rm,
11329                                               X86::LCMPXCHG16,
11330                                               X86::NOT16r, X86::AX,
11331                                               X86::GR16RegisterClass);
11332  case X86::ATOMOR16:
11333    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
11334                                               X86::OR16ri, X86::MOV16rm,
11335                                               X86::LCMPXCHG16,
11336                                               X86::NOT16r, X86::AX,
11337                                               X86::GR16RegisterClass);
11338  case X86::ATOMXOR16:
11339    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
11340                                               X86::XOR16ri, X86::MOV16rm,
11341                                               X86::LCMPXCHG16,
11342                                               X86::NOT16r, X86::AX,
11343                                               X86::GR16RegisterClass);
11344  case X86::ATOMNAND16:
11345    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11346                                               X86::AND16ri, X86::MOV16rm,
11347                                               X86::LCMPXCHG16,
11348                                               X86::NOT16r, X86::AX,
11349                                               X86::GR16RegisterClass, true);
11350  case X86::ATOMMIN16:
11351    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
11352  case X86::ATOMMAX16:
11353    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
11354  case X86::ATOMUMIN16:
11355    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
11356  case X86::ATOMUMAX16:
11357    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
11358
11359  case X86::ATOMAND8:
11360    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11361                                               X86::AND8ri, X86::MOV8rm,
11362                                               X86::LCMPXCHG8,
11363                                               X86::NOT8r, X86::AL,
11364                                               X86::GR8RegisterClass);
11365  case X86::ATOMOR8:
11366    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
11367                                               X86::OR8ri, X86::MOV8rm,
11368                                               X86::LCMPXCHG8,
11369                                               X86::NOT8r, X86::AL,
11370                                               X86::GR8RegisterClass);
11371  case X86::ATOMXOR8:
11372    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
11373                                               X86::XOR8ri, X86::MOV8rm,
11374                                               X86::LCMPXCHG8,
11375                                               X86::NOT8r, X86::AL,
11376                                               X86::GR8RegisterClass);
11377  case X86::ATOMNAND8:
11378    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11379                                               X86::AND8ri, X86::MOV8rm,
11380                                               X86::LCMPXCHG8,
11381                                               X86::NOT8r, X86::AL,
11382                                               X86::GR8RegisterClass, true);
11383  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
11384  // This group is for 64-bit host.
11385  case X86::ATOMAND64:
11386    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11387                                               X86::AND64ri32, X86::MOV64rm,
11388                                               X86::LCMPXCHG64,
11389                                               X86::NOT64r, X86::RAX,
11390                                               X86::GR64RegisterClass);
11391  case X86::ATOMOR64:
11392    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
11393                                               X86::OR64ri32, X86::MOV64rm,
11394                                               X86::LCMPXCHG64,
11395                                               X86::NOT64r, X86::RAX,
11396                                               X86::GR64RegisterClass);
11397  case X86::ATOMXOR64:
11398    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
11399                                               X86::XOR64ri32, X86::MOV64rm,
11400                                               X86::LCMPXCHG64,
11401                                               X86::NOT64r, X86::RAX,
11402                                               X86::GR64RegisterClass);
11403  case X86::ATOMNAND64:
11404    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11405                                               X86::AND64ri32, X86::MOV64rm,
11406                                               X86::LCMPXCHG64,
11407                                               X86::NOT64r, X86::RAX,
11408                                               X86::GR64RegisterClass, true);
11409  case X86::ATOMMIN64:
11410    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
11411  case X86::ATOMMAX64:
11412    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
11413  case X86::ATOMUMIN64:
11414    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
11415  case X86::ATOMUMAX64:
11416    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
11417
11418  // This group does 64-bit operations on a 32-bit host.
11419  case X86::ATOMAND6432:
11420    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11421                                               X86::AND32rr, X86::AND32rr,
11422                                               X86::AND32ri, X86::AND32ri,
11423                                               false);
11424  case X86::ATOMOR6432:
11425    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11426                                               X86::OR32rr, X86::OR32rr,
11427                                               X86::OR32ri, X86::OR32ri,
11428                                               false);
11429  case X86::ATOMXOR6432:
11430    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11431                                               X86::XOR32rr, X86::XOR32rr,
11432                                               X86::XOR32ri, X86::XOR32ri,
11433                                               false);
11434  case X86::ATOMNAND6432:
11435    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11436                                               X86::AND32rr, X86::AND32rr,
11437                                               X86::AND32ri, X86::AND32ri,
11438                                               true);
11439  case X86::ATOMADD6432:
11440    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11441                                               X86::ADD32rr, X86::ADC32rr,
11442                                               X86::ADD32ri, X86::ADC32ri,
11443                                               false);
11444  case X86::ATOMSUB6432:
11445    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11446                                               X86::SUB32rr, X86::SBB32rr,
11447                                               X86::SUB32ri, X86::SBB32ri,
11448                                               false);
11449  case X86::ATOMSWAP6432:
11450    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11451                                               X86::MOV32rr, X86::MOV32rr,
11452                                               X86::MOV32ri, X86::MOV32ri,
11453                                               false);
11454  case X86::VASTART_SAVE_XMM_REGS:
11455    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
11456
11457  case X86::VAARG_64:
11458    return EmitVAARG64WithCustomInserter(MI, BB);
11459  }
11460}
11461
11462//===----------------------------------------------------------------------===//
11463//                           X86 Optimization Hooks
11464//===----------------------------------------------------------------------===//
11465
11466void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
11467                                                       const APInt &Mask,
11468                                                       APInt &KnownZero,
11469                                                       APInt &KnownOne,
11470                                                       const SelectionDAG &DAG,
11471                                                       unsigned Depth) const {
11472  unsigned Opc = Op.getOpcode();
11473  assert((Opc >= ISD::BUILTIN_OP_END ||
11474          Opc == ISD::INTRINSIC_WO_CHAIN ||
11475          Opc == ISD::INTRINSIC_W_CHAIN ||
11476          Opc == ISD::INTRINSIC_VOID) &&
11477         "Should use MaskedValueIsZero if you don't know whether Op"
11478         " is a target node!");
11479
11480  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
11481  switch (Opc) {
11482  default: break;
11483  case X86ISD::ADD:
11484  case X86ISD::SUB:
11485  case X86ISD::ADC:
11486  case X86ISD::SBB:
11487  case X86ISD::SMUL:
11488  case X86ISD::UMUL:
11489  case X86ISD::INC:
11490  case X86ISD::DEC:
11491  case X86ISD::OR:
11492  case X86ISD::XOR:
11493  case X86ISD::AND:
11494    // These nodes' second result is a boolean.
11495    if (Op.getResNo() == 0)
11496      break;
11497    // Fallthrough
11498  case X86ISD::SETCC:
11499    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
11500                                       Mask.getBitWidth() - 1);
11501    break;
11502  }
11503}
11504
11505unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
11506                                                         unsigned Depth) const {
11507  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
11508  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
11509    return Op.getValueType().getScalarType().getSizeInBits();
11510
11511  // Fallback case.
11512  return 1;
11513}
11514
11515/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
11516/// node is a GlobalAddress + offset.
11517bool X86TargetLowering::isGAPlusOffset(SDNode *N,
11518                                       const GlobalValue* &GA,
11519                                       int64_t &Offset) const {
11520  if (N->getOpcode() == X86ISD::Wrapper) {
11521    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
11522      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
11523      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
11524      return true;
11525    }
11526  }
11527  return TargetLowering::isGAPlusOffset(N, GA, Offset);
11528}
11529
11530/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
11531static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
11532                                        TargetLowering::DAGCombinerInfo &DCI) {
11533  DebugLoc dl = N->getDebugLoc();
11534  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
11535  SDValue V1 = SVOp->getOperand(0);
11536  SDValue V2 = SVOp->getOperand(1);
11537  EVT VT = SVOp->getValueType(0);
11538
11539  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
11540      V2.getOpcode() == ISD::CONCAT_VECTORS) {
11541    //
11542    //                   0,0,0,...
11543    //                      |
11544    //    V      UNDEF    BUILD_VECTOR    UNDEF
11545    //     \      /           \           /
11546    //  CONCAT_VECTOR         CONCAT_VECTOR
11547    //         \                  /
11548    //          \                /
11549    //          RESULT: V + zero extended
11550    //
11551    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
11552        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
11553        V1.getOperand(1).getOpcode() != ISD::UNDEF)
11554      return SDValue();
11555
11556    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
11557      return SDValue();
11558
11559    // To match the shuffle mask, the first half of the mask should
11560    // be exactly the first vector, and all the rest a splat with the
11561    // first element of the second one.
11562    int NumElems = VT.getVectorNumElements();
11563    for (int i = 0; i < NumElems/2; ++i)
11564      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
11565          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
11566        return SDValue();
11567
11568    // Emit a zeroed vector and insert the desired subvector on its
11569    // first half.
11570    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
11571    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
11572                         DAG.getConstant(0, MVT::i32), DAG, dl);
11573    return DCI.CombineTo(N, InsV);
11574  }
11575
11576  return SDValue();
11577}
11578
11579/// PerformShuffleCombine - Performs several different shuffle combines.
11580static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
11581                                     TargetLowering::DAGCombinerInfo &DCI) {
11582  DebugLoc dl = N->getDebugLoc();
11583  EVT VT = N->getValueType(0);
11584
11585  // Don't create instructions with illegal types after legalize types has run.
11586  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11587  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
11588    return SDValue();
11589
11590  // Only handle pure VECTOR_SHUFFLE nodes.
11591  if (VT.getSizeInBits() == 256 && N->getOpcode() == ISD::VECTOR_SHUFFLE)
11592    return PerformShuffleCombine256(N, DAG, DCI);
11593
11594  // Only handle 128 wide vector from here on.
11595  if (VT.getSizeInBits() != 128)
11596    return SDValue();
11597
11598  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
11599  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
11600  // consecutive, non-overlapping, and in the right order.
11601  SmallVector<SDValue, 16> Elts;
11602  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
11603    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
11604
11605  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
11606}
11607
11608/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
11609/// generation and convert it from being a bunch of shuffles and extracts
11610/// to a simple store and scalar loads to extract the elements.
11611static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
11612                                                const TargetLowering &TLI) {
11613  SDValue InputVector = N->getOperand(0);
11614
11615  // Only operate on vectors of 4 elements, where the alternative shuffling
11616  // gets to be more expensive.
11617  if (InputVector.getValueType() != MVT::v4i32)
11618    return SDValue();
11619
11620  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
11621  // single use which is a sign-extend or zero-extend, and all elements are
11622  // used.
11623  SmallVector<SDNode *, 4> Uses;
11624  unsigned ExtractedElements = 0;
11625  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
11626       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
11627    if (UI.getUse().getResNo() != InputVector.getResNo())
11628      return SDValue();
11629
11630    SDNode *Extract = *UI;
11631    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11632      return SDValue();
11633
11634    if (Extract->getValueType(0) != MVT::i32)
11635      return SDValue();
11636    if (!Extract->hasOneUse())
11637      return SDValue();
11638    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
11639        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
11640      return SDValue();
11641    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
11642      return SDValue();
11643
11644    // Record which element was extracted.
11645    ExtractedElements |=
11646      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
11647
11648    Uses.push_back(Extract);
11649  }
11650
11651  // If not all the elements were used, this may not be worthwhile.
11652  if (ExtractedElements != 15)
11653    return SDValue();
11654
11655  // Ok, we've now decided to do the transformation.
11656  DebugLoc dl = InputVector.getDebugLoc();
11657
11658  // Store the value to a temporary stack slot.
11659  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
11660  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
11661                            MachinePointerInfo(), false, false, 0);
11662
11663  // Replace each use (extract) with a load of the appropriate element.
11664  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
11665       UE = Uses.end(); UI != UE; ++UI) {
11666    SDNode *Extract = *UI;
11667
11668    // cOMpute the element's address.
11669    SDValue Idx = Extract->getOperand(1);
11670    unsigned EltSize =
11671        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
11672    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
11673    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
11674
11675    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
11676                                     StackPtr, OffsetVal);
11677
11678    // Load the scalar.
11679    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
11680                                     ScalarAddr, MachinePointerInfo(),
11681                                     false, false, 0);
11682
11683    // Replace the exact with the load.
11684    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
11685  }
11686
11687  // The replacement was made in place; don't return anything.
11688  return SDValue();
11689}
11690
11691/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
11692static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
11693                                    const X86Subtarget *Subtarget) {
11694  DebugLoc DL = N->getDebugLoc();
11695  SDValue Cond = N->getOperand(0);
11696  // Get the LHS/RHS of the select.
11697  SDValue LHS = N->getOperand(1);
11698  SDValue RHS = N->getOperand(2);
11699
11700  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
11701  // instructions match the semantics of the common C idiom x<y?x:y but not
11702  // x<=y?x:y, because of how they handle negative zero (which can be
11703  // ignored in unsafe-math mode).
11704  if (Subtarget->hasSSE2() &&
11705      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
11706      Cond.getOpcode() == ISD::SETCC) {
11707    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
11708
11709    unsigned Opcode = 0;
11710    // Check for x CC y ? x : y.
11711    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
11712        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
11713      switch (CC) {
11714      default: break;
11715      case ISD::SETULT:
11716        // Converting this to a min would handle NaNs incorrectly, and swapping
11717        // the operands would cause it to handle comparisons between positive
11718        // and negative zero incorrectly.
11719        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11720          if (!UnsafeFPMath &&
11721              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11722            break;
11723          std::swap(LHS, RHS);
11724        }
11725        Opcode = X86ISD::FMIN;
11726        break;
11727      case ISD::SETOLE:
11728        // Converting this to a min would handle comparisons between positive
11729        // and negative zero incorrectly.
11730        if (!UnsafeFPMath &&
11731            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11732          break;
11733        Opcode = X86ISD::FMIN;
11734        break;
11735      case ISD::SETULE:
11736        // Converting this to a min would handle both negative zeros and NaNs
11737        // incorrectly, but we can swap the operands to fix both.
11738        std::swap(LHS, RHS);
11739      case ISD::SETOLT:
11740      case ISD::SETLT:
11741      case ISD::SETLE:
11742        Opcode = X86ISD::FMIN;
11743        break;
11744
11745      case ISD::SETOGE:
11746        // Converting this to a max would handle comparisons between positive
11747        // and negative zero incorrectly.
11748        if (!UnsafeFPMath &&
11749            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11750          break;
11751        Opcode = X86ISD::FMAX;
11752        break;
11753      case ISD::SETUGT:
11754        // Converting this to a max would handle NaNs incorrectly, and swapping
11755        // the operands would cause it to handle comparisons between positive
11756        // and negative zero incorrectly.
11757        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11758          if (!UnsafeFPMath &&
11759              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11760            break;
11761          std::swap(LHS, RHS);
11762        }
11763        Opcode = X86ISD::FMAX;
11764        break;
11765      case ISD::SETUGE:
11766        // Converting this to a max would handle both negative zeros and NaNs
11767        // incorrectly, but we can swap the operands to fix both.
11768        std::swap(LHS, RHS);
11769      case ISD::SETOGT:
11770      case ISD::SETGT:
11771      case ISD::SETGE:
11772        Opcode = X86ISD::FMAX;
11773        break;
11774      }
11775    // Check for x CC y ? y : x -- a min/max with reversed arms.
11776    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
11777               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
11778      switch (CC) {
11779      default: break;
11780      case ISD::SETOGE:
11781        // Converting this to a min would handle comparisons between positive
11782        // and negative zero incorrectly, and swapping the operands would
11783        // cause it to handle NaNs incorrectly.
11784        if (!UnsafeFPMath &&
11785            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
11786          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11787            break;
11788          std::swap(LHS, RHS);
11789        }
11790        Opcode = X86ISD::FMIN;
11791        break;
11792      case ISD::SETUGT:
11793        // Converting this to a min would handle NaNs incorrectly.
11794        if (!UnsafeFPMath &&
11795            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
11796          break;
11797        Opcode = X86ISD::FMIN;
11798        break;
11799      case ISD::SETUGE:
11800        // Converting this to a min would handle both negative zeros and NaNs
11801        // incorrectly, but we can swap the operands to fix both.
11802        std::swap(LHS, RHS);
11803      case ISD::SETOGT:
11804      case ISD::SETGT:
11805      case ISD::SETGE:
11806        Opcode = X86ISD::FMIN;
11807        break;
11808
11809      case ISD::SETULT:
11810        // Converting this to a max would handle NaNs incorrectly.
11811        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11812          break;
11813        Opcode = X86ISD::FMAX;
11814        break;
11815      case ISD::SETOLE:
11816        // Converting this to a max would handle comparisons between positive
11817        // and negative zero incorrectly, and swapping the operands would
11818        // cause it to handle NaNs incorrectly.
11819        if (!UnsafeFPMath &&
11820            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
11821          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11822            break;
11823          std::swap(LHS, RHS);
11824        }
11825        Opcode = X86ISD::FMAX;
11826        break;
11827      case ISD::SETULE:
11828        // Converting this to a max would handle both negative zeros and NaNs
11829        // incorrectly, but we can swap the operands to fix both.
11830        std::swap(LHS, RHS);
11831      case ISD::SETOLT:
11832      case ISD::SETLT:
11833      case ISD::SETLE:
11834        Opcode = X86ISD::FMAX;
11835        break;
11836      }
11837    }
11838
11839    if (Opcode)
11840      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
11841  }
11842
11843  // If this is a select between two integer constants, try to do some
11844  // optimizations.
11845  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
11846    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
11847      // Don't do this for crazy integer types.
11848      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
11849        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
11850        // so that TrueC (the true value) is larger than FalseC.
11851        bool NeedsCondInvert = false;
11852
11853        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
11854            // Efficiently invertible.
11855            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
11856             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
11857              isa<ConstantSDNode>(Cond.getOperand(1))))) {
11858          NeedsCondInvert = true;
11859          std::swap(TrueC, FalseC);
11860        }
11861
11862        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
11863        if (FalseC->getAPIntValue() == 0 &&
11864            TrueC->getAPIntValue().isPowerOf2()) {
11865          if (NeedsCondInvert) // Invert the condition if needed.
11866            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11867                               DAG.getConstant(1, Cond.getValueType()));
11868
11869          // Zero extend the condition if needed.
11870          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
11871
11872          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11873          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
11874                             DAG.getConstant(ShAmt, MVT::i8));
11875        }
11876
11877        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
11878        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11879          if (NeedsCondInvert) // Invert the condition if needed.
11880            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11881                               DAG.getConstant(1, Cond.getValueType()));
11882
11883          // Zero extend the condition if needed.
11884          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11885                             FalseC->getValueType(0), Cond);
11886          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11887                             SDValue(FalseC, 0));
11888        }
11889
11890        // Optimize cases that will turn into an LEA instruction.  This requires
11891        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11892        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11893          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11894          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11895
11896          bool isFastMultiplier = false;
11897          if (Diff < 10) {
11898            switch ((unsigned char)Diff) {
11899              default: break;
11900              case 1:  // result = add base, cond
11901              case 2:  // result = lea base(    , cond*2)
11902              case 3:  // result = lea base(cond, cond*2)
11903              case 4:  // result = lea base(    , cond*4)
11904              case 5:  // result = lea base(cond, cond*4)
11905              case 8:  // result = lea base(    , cond*8)
11906              case 9:  // result = lea base(cond, cond*8)
11907                isFastMultiplier = true;
11908                break;
11909            }
11910          }
11911
11912          if (isFastMultiplier) {
11913            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11914            if (NeedsCondInvert) // Invert the condition if needed.
11915              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11916                                 DAG.getConstant(1, Cond.getValueType()));
11917
11918            // Zero extend the condition if needed.
11919            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11920                               Cond);
11921            // Scale the condition by the difference.
11922            if (Diff != 1)
11923              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11924                                 DAG.getConstant(Diff, Cond.getValueType()));
11925
11926            // Add the base if non-zero.
11927            if (FalseC->getAPIntValue() != 0)
11928              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11929                                 SDValue(FalseC, 0));
11930            return Cond;
11931          }
11932        }
11933      }
11934  }
11935
11936  return SDValue();
11937}
11938
11939/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
11940static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
11941                                  TargetLowering::DAGCombinerInfo &DCI) {
11942  DebugLoc DL = N->getDebugLoc();
11943
11944  // If the flag operand isn't dead, don't touch this CMOV.
11945  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
11946    return SDValue();
11947
11948  SDValue FalseOp = N->getOperand(0);
11949  SDValue TrueOp = N->getOperand(1);
11950  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
11951  SDValue Cond = N->getOperand(3);
11952  if (CC == X86::COND_E || CC == X86::COND_NE) {
11953    switch (Cond.getOpcode()) {
11954    default: break;
11955    case X86ISD::BSR:
11956    case X86ISD::BSF:
11957      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
11958      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
11959        return (CC == X86::COND_E) ? FalseOp : TrueOp;
11960    }
11961  }
11962
11963  // If this is a select between two integer constants, try to do some
11964  // optimizations.  Note that the operands are ordered the opposite of SELECT
11965  // operands.
11966  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
11967    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
11968      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
11969      // larger than FalseC (the false value).
11970      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
11971        CC = X86::GetOppositeBranchCondition(CC);
11972        std::swap(TrueC, FalseC);
11973      }
11974
11975      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
11976      // This is efficient for any integer data type (including i8/i16) and
11977      // shift amount.
11978      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
11979        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11980                           DAG.getConstant(CC, MVT::i8), Cond);
11981
11982        // Zero extend the condition if needed.
11983        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
11984
11985        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11986        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
11987                           DAG.getConstant(ShAmt, MVT::i8));
11988        if (N->getNumValues() == 2)  // Dead flag value?
11989          return DCI.CombineTo(N, Cond, SDValue());
11990        return Cond;
11991      }
11992
11993      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
11994      // for any integer data type, including i8/i16.
11995      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11996        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11997                           DAG.getConstant(CC, MVT::i8), Cond);
11998
11999        // Zero extend the condition if needed.
12000        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12001                           FalseC->getValueType(0), Cond);
12002        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12003                           SDValue(FalseC, 0));
12004
12005        if (N->getNumValues() == 2)  // Dead flag value?
12006          return DCI.CombineTo(N, Cond, SDValue());
12007        return Cond;
12008      }
12009
12010      // Optimize cases that will turn into an LEA instruction.  This requires
12011      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12012      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12013        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12014        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12015
12016        bool isFastMultiplier = false;
12017        if (Diff < 10) {
12018          switch ((unsigned char)Diff) {
12019          default: break;
12020          case 1:  // result = add base, cond
12021          case 2:  // result = lea base(    , cond*2)
12022          case 3:  // result = lea base(cond, cond*2)
12023          case 4:  // result = lea base(    , cond*4)
12024          case 5:  // result = lea base(cond, cond*4)
12025          case 8:  // result = lea base(    , cond*8)
12026          case 9:  // result = lea base(cond, cond*8)
12027            isFastMultiplier = true;
12028            break;
12029          }
12030        }
12031
12032        if (isFastMultiplier) {
12033          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12034          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12035                             DAG.getConstant(CC, MVT::i8), Cond);
12036          // Zero extend the condition if needed.
12037          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12038                             Cond);
12039          // Scale the condition by the difference.
12040          if (Diff != 1)
12041            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12042                               DAG.getConstant(Diff, Cond.getValueType()));
12043
12044          // Add the base if non-zero.
12045          if (FalseC->getAPIntValue() != 0)
12046            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12047                               SDValue(FalseC, 0));
12048          if (N->getNumValues() == 2)  // Dead flag value?
12049            return DCI.CombineTo(N, Cond, SDValue());
12050          return Cond;
12051        }
12052      }
12053    }
12054  }
12055  return SDValue();
12056}
12057
12058
12059/// PerformMulCombine - Optimize a single multiply with constant into two
12060/// in order to implement it with two cheaper instructions, e.g.
12061/// LEA + SHL, LEA + LEA.
12062static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
12063                                 TargetLowering::DAGCombinerInfo &DCI) {
12064  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12065    return SDValue();
12066
12067  EVT VT = N->getValueType(0);
12068  if (VT != MVT::i64)
12069    return SDValue();
12070
12071  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12072  if (!C)
12073    return SDValue();
12074  uint64_t MulAmt = C->getZExtValue();
12075  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
12076    return SDValue();
12077
12078  uint64_t MulAmt1 = 0;
12079  uint64_t MulAmt2 = 0;
12080  if ((MulAmt % 9) == 0) {
12081    MulAmt1 = 9;
12082    MulAmt2 = MulAmt / 9;
12083  } else if ((MulAmt % 5) == 0) {
12084    MulAmt1 = 5;
12085    MulAmt2 = MulAmt / 5;
12086  } else if ((MulAmt % 3) == 0) {
12087    MulAmt1 = 3;
12088    MulAmt2 = MulAmt / 3;
12089  }
12090  if (MulAmt2 &&
12091      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
12092    DebugLoc DL = N->getDebugLoc();
12093
12094    if (isPowerOf2_64(MulAmt2) &&
12095        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
12096      // If second multiplifer is pow2, issue it first. We want the multiply by
12097      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
12098      // is an add.
12099      std::swap(MulAmt1, MulAmt2);
12100
12101    SDValue NewMul;
12102    if (isPowerOf2_64(MulAmt1))
12103      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
12104                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
12105    else
12106      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
12107                           DAG.getConstant(MulAmt1, VT));
12108
12109    if (isPowerOf2_64(MulAmt2))
12110      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
12111                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
12112    else
12113      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
12114                           DAG.getConstant(MulAmt2, VT));
12115
12116    // Do not add new nodes to DAG combiner worklist.
12117    DCI.CombineTo(N, NewMul, false);
12118  }
12119  return SDValue();
12120}
12121
12122static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
12123  SDValue N0 = N->getOperand(0);
12124  SDValue N1 = N->getOperand(1);
12125  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
12126  EVT VT = N0.getValueType();
12127
12128  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
12129  // since the result of setcc_c is all zero's or all ones.
12130  if (N1C && N0.getOpcode() == ISD::AND &&
12131      N0.getOperand(1).getOpcode() == ISD::Constant) {
12132    SDValue N00 = N0.getOperand(0);
12133    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
12134        ((N00.getOpcode() == ISD::ANY_EXTEND ||
12135          N00.getOpcode() == ISD::ZERO_EXTEND) &&
12136         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
12137      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
12138      APInt ShAmt = N1C->getAPIntValue();
12139      Mask = Mask.shl(ShAmt);
12140      if (Mask != 0)
12141        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
12142                           N00, DAG.getConstant(Mask, VT));
12143    }
12144  }
12145
12146  return SDValue();
12147}
12148
12149/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
12150///                       when possible.
12151static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
12152                                   const X86Subtarget *Subtarget) {
12153  EVT VT = N->getValueType(0);
12154  if (!VT.isVector() && VT.isInteger() &&
12155      N->getOpcode() == ISD::SHL)
12156    return PerformSHLCombine(N, DAG);
12157
12158  // On X86 with SSE2 support, we can transform this to a vector shift if
12159  // all elements are shifted by the same amount.  We can't do this in legalize
12160  // because the a constant vector is typically transformed to a constant pool
12161  // so we have no knowledge of the shift amount.
12162  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
12163    return SDValue();
12164
12165  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
12166    return SDValue();
12167
12168  SDValue ShAmtOp = N->getOperand(1);
12169  EVT EltVT = VT.getVectorElementType();
12170  DebugLoc DL = N->getDebugLoc();
12171  SDValue BaseShAmt = SDValue();
12172  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
12173    unsigned NumElts = VT.getVectorNumElements();
12174    unsigned i = 0;
12175    for (; i != NumElts; ++i) {
12176      SDValue Arg = ShAmtOp.getOperand(i);
12177      if (Arg.getOpcode() == ISD::UNDEF) continue;
12178      BaseShAmt = Arg;
12179      break;
12180    }
12181    for (; i != NumElts; ++i) {
12182      SDValue Arg = ShAmtOp.getOperand(i);
12183      if (Arg.getOpcode() == ISD::UNDEF) continue;
12184      if (Arg != BaseShAmt) {
12185        return SDValue();
12186      }
12187    }
12188  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
12189             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
12190    SDValue InVec = ShAmtOp.getOperand(0);
12191    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
12192      unsigned NumElts = InVec.getValueType().getVectorNumElements();
12193      unsigned i = 0;
12194      for (; i != NumElts; ++i) {
12195        SDValue Arg = InVec.getOperand(i);
12196        if (Arg.getOpcode() == ISD::UNDEF) continue;
12197        BaseShAmt = Arg;
12198        break;
12199      }
12200    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12201       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
12202         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
12203         if (C->getZExtValue() == SplatIdx)
12204           BaseShAmt = InVec.getOperand(1);
12205       }
12206    }
12207    if (BaseShAmt.getNode() == 0)
12208      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
12209                              DAG.getIntPtrConstant(0));
12210  } else
12211    return SDValue();
12212
12213  // The shift amount is an i32.
12214  if (EltVT.bitsGT(MVT::i32))
12215    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
12216  else if (EltVT.bitsLT(MVT::i32))
12217    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
12218
12219  // The shift amount is identical so we can do a vector shift.
12220  SDValue  ValOp = N->getOperand(0);
12221  switch (N->getOpcode()) {
12222  default:
12223    llvm_unreachable("Unknown shift opcode!");
12224    break;
12225  case ISD::SHL:
12226    if (VT == MVT::v2i64)
12227      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12228                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
12229                         ValOp, BaseShAmt);
12230    if (VT == MVT::v4i32)
12231      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12232                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
12233                         ValOp, BaseShAmt);
12234    if (VT == MVT::v8i16)
12235      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12236                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
12237                         ValOp, BaseShAmt);
12238    break;
12239  case ISD::SRA:
12240    if (VT == MVT::v4i32)
12241      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12242                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
12243                         ValOp, BaseShAmt);
12244    if (VT == MVT::v8i16)
12245      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12246                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
12247                         ValOp, BaseShAmt);
12248    break;
12249  case ISD::SRL:
12250    if (VT == MVT::v2i64)
12251      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12252                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
12253                         ValOp, BaseShAmt);
12254    if (VT == MVT::v4i32)
12255      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12256                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
12257                         ValOp, BaseShAmt);
12258    if (VT ==  MVT::v8i16)
12259      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12260                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
12261                         ValOp, BaseShAmt);
12262    break;
12263  }
12264  return SDValue();
12265}
12266
12267
12268// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
12269// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
12270// and friends.  Likewise for OR -> CMPNEQSS.
12271static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
12272                            TargetLowering::DAGCombinerInfo &DCI,
12273                            const X86Subtarget *Subtarget) {
12274  unsigned opcode;
12275
12276  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
12277  // we're requiring SSE2 for both.
12278  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
12279    SDValue N0 = N->getOperand(0);
12280    SDValue N1 = N->getOperand(1);
12281    SDValue CMP0 = N0->getOperand(1);
12282    SDValue CMP1 = N1->getOperand(1);
12283    DebugLoc DL = N->getDebugLoc();
12284
12285    // The SETCCs should both refer to the same CMP.
12286    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
12287      return SDValue();
12288
12289    SDValue CMP00 = CMP0->getOperand(0);
12290    SDValue CMP01 = CMP0->getOperand(1);
12291    EVT     VT    = CMP00.getValueType();
12292
12293    if (VT == MVT::f32 || VT == MVT::f64) {
12294      bool ExpectingFlags = false;
12295      // Check for any users that want flags:
12296      for (SDNode::use_iterator UI = N->use_begin(),
12297             UE = N->use_end();
12298           !ExpectingFlags && UI != UE; ++UI)
12299        switch (UI->getOpcode()) {
12300        default:
12301        case ISD::BR_CC:
12302        case ISD::BRCOND:
12303        case ISD::SELECT:
12304          ExpectingFlags = true;
12305          break;
12306        case ISD::CopyToReg:
12307        case ISD::SIGN_EXTEND:
12308        case ISD::ZERO_EXTEND:
12309        case ISD::ANY_EXTEND:
12310          break;
12311        }
12312
12313      if (!ExpectingFlags) {
12314        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
12315        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
12316
12317        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
12318          X86::CondCode tmp = cc0;
12319          cc0 = cc1;
12320          cc1 = tmp;
12321        }
12322
12323        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
12324            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
12325          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
12326          X86ISD::NodeType NTOperator = is64BitFP ?
12327            X86ISD::FSETCCsd : X86ISD::FSETCCss;
12328          // FIXME: need symbolic constants for these magic numbers.
12329          // See X86ATTInstPrinter.cpp:printSSECC().
12330          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
12331          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
12332                                              DAG.getConstant(x86cc, MVT::i8));
12333          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
12334                                              OnesOrZeroesF);
12335          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
12336                                      DAG.getConstant(1, MVT::i32));
12337          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
12338          return OneBitOfTruth;
12339        }
12340      }
12341    }
12342  }
12343  return SDValue();
12344}
12345
12346/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
12347/// so it can be folded inside ANDNP.
12348static bool CanFoldXORWithAllOnes(const SDNode *N) {
12349  EVT VT = N->getValueType(0);
12350
12351  // Match direct AllOnes for 128 and 256-bit vectors
12352  if (ISD::isBuildVectorAllOnes(N))
12353    return true;
12354
12355  // Look through a bit convert.
12356  if (N->getOpcode() == ISD::BITCAST)
12357    N = N->getOperand(0).getNode();
12358
12359  // Sometimes the operand may come from a insert_subvector building a 256-bit
12360  // allones vector
12361  if (VT.getSizeInBits() == 256 &&
12362      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
12363    SDValue V1 = N->getOperand(0);
12364    SDValue V2 = N->getOperand(1);
12365
12366    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
12367        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
12368        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
12369        ISD::isBuildVectorAllOnes(V2.getNode()))
12370      return true;
12371  }
12372
12373  return false;
12374}
12375
12376static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
12377                                 TargetLowering::DAGCombinerInfo &DCI,
12378                                 const X86Subtarget *Subtarget) {
12379  if (DCI.isBeforeLegalizeOps())
12380    return SDValue();
12381
12382  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
12383  if (R.getNode())
12384    return R;
12385
12386  // Want to form ANDNP nodes:
12387  // 1) In the hopes of then easily combining them with OR and AND nodes
12388  //    to form PBLEND/PSIGN.
12389  // 2) To match ANDN packed intrinsics
12390  EVT VT = N->getValueType(0);
12391  if (VT != MVT::v2i64 && VT != MVT::v4i64)
12392    return SDValue();
12393
12394  SDValue N0 = N->getOperand(0);
12395  SDValue N1 = N->getOperand(1);
12396  DebugLoc DL = N->getDebugLoc();
12397
12398  // Check LHS for vnot
12399  if (N0.getOpcode() == ISD::XOR &&
12400      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
12401      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
12402    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
12403
12404  // Check RHS for vnot
12405  if (N1.getOpcode() == ISD::XOR &&
12406      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
12407      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
12408    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
12409
12410  return SDValue();
12411}
12412
12413static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
12414                                TargetLowering::DAGCombinerInfo &DCI,
12415                                const X86Subtarget *Subtarget) {
12416  if (DCI.isBeforeLegalizeOps())
12417    return SDValue();
12418
12419  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
12420  if (R.getNode())
12421    return R;
12422
12423  EVT VT = N->getValueType(0);
12424  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
12425    return SDValue();
12426
12427  SDValue N0 = N->getOperand(0);
12428  SDValue N1 = N->getOperand(1);
12429
12430  // look for psign/blend
12431  if (Subtarget->hasSSSE3()) {
12432    if (VT == MVT::v2i64) {
12433      // Canonicalize pandn to RHS
12434      if (N0.getOpcode() == X86ISD::ANDNP)
12435        std::swap(N0, N1);
12436      // or (and (m, x), (pandn m, y))
12437      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
12438        SDValue Mask = N1.getOperand(0);
12439        SDValue X    = N1.getOperand(1);
12440        SDValue Y;
12441        if (N0.getOperand(0) == Mask)
12442          Y = N0.getOperand(1);
12443        if (N0.getOperand(1) == Mask)
12444          Y = N0.getOperand(0);
12445
12446        // Check to see if the mask appeared in both the AND and ANDNP and
12447        if (!Y.getNode())
12448          return SDValue();
12449
12450        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
12451        if (Mask.getOpcode() != ISD::BITCAST ||
12452            X.getOpcode() != ISD::BITCAST ||
12453            Y.getOpcode() != ISD::BITCAST)
12454          return SDValue();
12455
12456        // Look through mask bitcast.
12457        Mask = Mask.getOperand(0);
12458        EVT MaskVT = Mask.getValueType();
12459
12460        // Validate that the Mask operand is a vector sra node.  The sra node
12461        // will be an intrinsic.
12462        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
12463          return SDValue();
12464
12465        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
12466        // there is no psrai.b
12467        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
12468        case Intrinsic::x86_sse2_psrai_w:
12469        case Intrinsic::x86_sse2_psrai_d:
12470          break;
12471        default: return SDValue();
12472        }
12473
12474        // Check that the SRA is all signbits.
12475        SDValue SraC = Mask.getOperand(2);
12476        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
12477        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
12478        if ((SraAmt + 1) != EltBits)
12479          return SDValue();
12480
12481        DebugLoc DL = N->getDebugLoc();
12482
12483        // Now we know we at least have a plendvb with the mask val.  See if
12484        // we can form a psignb/w/d.
12485        // psign = x.type == y.type == mask.type && y = sub(0, x);
12486        X = X.getOperand(0);
12487        Y = Y.getOperand(0);
12488        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
12489            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
12490            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
12491          unsigned Opc = 0;
12492          switch (EltBits) {
12493          case 8: Opc = X86ISD::PSIGNB; break;
12494          case 16: Opc = X86ISD::PSIGNW; break;
12495          case 32: Opc = X86ISD::PSIGND; break;
12496          default: break;
12497          }
12498          if (Opc) {
12499            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
12500            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
12501          }
12502        }
12503        // PBLENDVB only available on SSE 4.1
12504        if (!Subtarget->hasSSE41())
12505          return SDValue();
12506
12507        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
12508        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
12509        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
12510        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
12511        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
12512      }
12513    }
12514  }
12515
12516  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
12517  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
12518    std::swap(N0, N1);
12519  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
12520    return SDValue();
12521  if (!N0.hasOneUse() || !N1.hasOneUse())
12522    return SDValue();
12523
12524  SDValue ShAmt0 = N0.getOperand(1);
12525  if (ShAmt0.getValueType() != MVT::i8)
12526    return SDValue();
12527  SDValue ShAmt1 = N1.getOperand(1);
12528  if (ShAmt1.getValueType() != MVT::i8)
12529    return SDValue();
12530  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
12531    ShAmt0 = ShAmt0.getOperand(0);
12532  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
12533    ShAmt1 = ShAmt1.getOperand(0);
12534
12535  DebugLoc DL = N->getDebugLoc();
12536  unsigned Opc = X86ISD::SHLD;
12537  SDValue Op0 = N0.getOperand(0);
12538  SDValue Op1 = N1.getOperand(0);
12539  if (ShAmt0.getOpcode() == ISD::SUB) {
12540    Opc = X86ISD::SHRD;
12541    std::swap(Op0, Op1);
12542    std::swap(ShAmt0, ShAmt1);
12543  }
12544
12545  unsigned Bits = VT.getSizeInBits();
12546  if (ShAmt1.getOpcode() == ISD::SUB) {
12547    SDValue Sum = ShAmt1.getOperand(0);
12548    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
12549      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
12550      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
12551        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
12552      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
12553        return DAG.getNode(Opc, DL, VT,
12554                           Op0, Op1,
12555                           DAG.getNode(ISD::TRUNCATE, DL,
12556                                       MVT::i8, ShAmt0));
12557    }
12558  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
12559    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
12560    if (ShAmt0C &&
12561        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
12562      return DAG.getNode(Opc, DL, VT,
12563                         N0.getOperand(0), N1.getOperand(0),
12564                         DAG.getNode(ISD::TRUNCATE, DL,
12565                                       MVT::i8, ShAmt0));
12566  }
12567
12568  return SDValue();
12569}
12570
12571/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
12572static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
12573                                   const X86Subtarget *Subtarget) {
12574  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
12575  // the FP state in cases where an emms may be missing.
12576  // A preferable solution to the general problem is to figure out the right
12577  // places to insert EMMS.  This qualifies as a quick hack.
12578
12579  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
12580  StoreSDNode *St = cast<StoreSDNode>(N);
12581  EVT VT = St->getValue().getValueType();
12582  if (VT.getSizeInBits() != 64)
12583    return SDValue();
12584
12585  const Function *F = DAG.getMachineFunction().getFunction();
12586  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
12587  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
12588    && Subtarget->hasSSE2();
12589  if ((VT.isVector() ||
12590       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
12591      isa<LoadSDNode>(St->getValue()) &&
12592      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
12593      St->getChain().hasOneUse() && !St->isVolatile()) {
12594    SDNode* LdVal = St->getValue().getNode();
12595    LoadSDNode *Ld = 0;
12596    int TokenFactorIndex = -1;
12597    SmallVector<SDValue, 8> Ops;
12598    SDNode* ChainVal = St->getChain().getNode();
12599    // Must be a store of a load.  We currently handle two cases:  the load
12600    // is a direct child, and it's under an intervening TokenFactor.  It is
12601    // possible to dig deeper under nested TokenFactors.
12602    if (ChainVal == LdVal)
12603      Ld = cast<LoadSDNode>(St->getChain());
12604    else if (St->getValue().hasOneUse() &&
12605             ChainVal->getOpcode() == ISD::TokenFactor) {
12606      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
12607        if (ChainVal->getOperand(i).getNode() == LdVal) {
12608          TokenFactorIndex = i;
12609          Ld = cast<LoadSDNode>(St->getValue());
12610        } else
12611          Ops.push_back(ChainVal->getOperand(i));
12612      }
12613    }
12614
12615    if (!Ld || !ISD::isNormalLoad(Ld))
12616      return SDValue();
12617
12618    // If this is not the MMX case, i.e. we are just turning i64 load/store
12619    // into f64 load/store, avoid the transformation if there are multiple
12620    // uses of the loaded value.
12621    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
12622      return SDValue();
12623
12624    DebugLoc LdDL = Ld->getDebugLoc();
12625    DebugLoc StDL = N->getDebugLoc();
12626    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
12627    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
12628    // pair instead.
12629    if (Subtarget->is64Bit() || F64IsLegal) {
12630      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
12631      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
12632                                  Ld->getPointerInfo(), Ld->isVolatile(),
12633                                  Ld->isNonTemporal(), Ld->getAlignment());
12634      SDValue NewChain = NewLd.getValue(1);
12635      if (TokenFactorIndex != -1) {
12636        Ops.push_back(NewChain);
12637        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12638                               Ops.size());
12639      }
12640      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
12641                          St->getPointerInfo(),
12642                          St->isVolatile(), St->isNonTemporal(),
12643                          St->getAlignment());
12644    }
12645
12646    // Otherwise, lower to two pairs of 32-bit loads / stores.
12647    SDValue LoAddr = Ld->getBasePtr();
12648    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
12649                                 DAG.getConstant(4, MVT::i32));
12650
12651    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
12652                               Ld->getPointerInfo(),
12653                               Ld->isVolatile(), Ld->isNonTemporal(),
12654                               Ld->getAlignment());
12655    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
12656                               Ld->getPointerInfo().getWithOffset(4),
12657                               Ld->isVolatile(), Ld->isNonTemporal(),
12658                               MinAlign(Ld->getAlignment(), 4));
12659
12660    SDValue NewChain = LoLd.getValue(1);
12661    if (TokenFactorIndex != -1) {
12662      Ops.push_back(LoLd);
12663      Ops.push_back(HiLd);
12664      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12665                             Ops.size());
12666    }
12667
12668    LoAddr = St->getBasePtr();
12669    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
12670                         DAG.getConstant(4, MVT::i32));
12671
12672    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
12673                                St->getPointerInfo(),
12674                                St->isVolatile(), St->isNonTemporal(),
12675                                St->getAlignment());
12676    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
12677                                St->getPointerInfo().getWithOffset(4),
12678                                St->isVolatile(),
12679                                St->isNonTemporal(),
12680                                MinAlign(St->getAlignment(), 4));
12681    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
12682  }
12683  return SDValue();
12684}
12685
12686/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
12687/// X86ISD::FXOR nodes.
12688static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
12689  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
12690  // F[X]OR(0.0, x) -> x
12691  // F[X]OR(x, 0.0) -> x
12692  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12693    if (C->getValueAPF().isPosZero())
12694      return N->getOperand(1);
12695  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12696    if (C->getValueAPF().isPosZero())
12697      return N->getOperand(0);
12698  return SDValue();
12699}
12700
12701/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
12702static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
12703  // FAND(0.0, x) -> 0.0
12704  // FAND(x, 0.0) -> 0.0
12705  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12706    if (C->getValueAPF().isPosZero())
12707      return N->getOperand(0);
12708  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12709    if (C->getValueAPF().isPosZero())
12710      return N->getOperand(1);
12711  return SDValue();
12712}
12713
12714static SDValue PerformBTCombine(SDNode *N,
12715                                SelectionDAG &DAG,
12716                                TargetLowering::DAGCombinerInfo &DCI) {
12717  // BT ignores high bits in the bit index operand.
12718  SDValue Op1 = N->getOperand(1);
12719  if (Op1.hasOneUse()) {
12720    unsigned BitWidth = Op1.getValueSizeInBits();
12721    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
12722    APInt KnownZero, KnownOne;
12723    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
12724                                          !DCI.isBeforeLegalizeOps());
12725    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12726    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
12727        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
12728      DCI.CommitTargetLoweringOpt(TLO);
12729  }
12730  return SDValue();
12731}
12732
12733static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
12734  SDValue Op = N->getOperand(0);
12735  if (Op.getOpcode() == ISD::BITCAST)
12736    Op = Op.getOperand(0);
12737  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
12738  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
12739      VT.getVectorElementType().getSizeInBits() ==
12740      OpVT.getVectorElementType().getSizeInBits()) {
12741    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
12742  }
12743  return SDValue();
12744}
12745
12746static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
12747  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
12748  //           (and (i32 x86isd::setcc_carry), 1)
12749  // This eliminates the zext. This transformation is necessary because
12750  // ISD::SETCC is always legalized to i8.
12751  DebugLoc dl = N->getDebugLoc();
12752  SDValue N0 = N->getOperand(0);
12753  EVT VT = N->getValueType(0);
12754  if (N0.getOpcode() == ISD::AND &&
12755      N0.hasOneUse() &&
12756      N0.getOperand(0).hasOneUse()) {
12757    SDValue N00 = N0.getOperand(0);
12758    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
12759      return SDValue();
12760    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
12761    if (!C || C->getZExtValue() != 1)
12762      return SDValue();
12763    return DAG.getNode(ISD::AND, dl, VT,
12764                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
12765                                   N00.getOperand(0), N00.getOperand(1)),
12766                       DAG.getConstant(1, VT));
12767  }
12768
12769  return SDValue();
12770}
12771
12772// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
12773static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
12774  unsigned X86CC = N->getConstantOperandVal(0);
12775  SDValue EFLAG = N->getOperand(1);
12776  DebugLoc DL = N->getDebugLoc();
12777
12778  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
12779  // a zext and produces an all-ones bit which is more useful than 0/1 in some
12780  // cases.
12781  if (X86CC == X86::COND_B)
12782    return DAG.getNode(ISD::AND, DL, MVT::i8,
12783                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
12784                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
12785                       DAG.getConstant(1, MVT::i8));
12786
12787  return SDValue();
12788}
12789
12790static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
12791                                        const X86TargetLowering *XTLI) {
12792  SDValue Op0 = N->getOperand(0);
12793  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
12794  // a 32-bit target where SSE doesn't support i64->FP operations.
12795  if (Op0.getOpcode() == ISD::LOAD) {
12796    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
12797    EVT VT = Ld->getValueType(0);
12798    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
12799        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
12800        !XTLI->getSubtarget()->is64Bit() &&
12801        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12802      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
12803                                          Ld->getChain(), Op0, DAG);
12804      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
12805      return FILDChain;
12806    }
12807  }
12808  return SDValue();
12809}
12810
12811// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
12812static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
12813                                 X86TargetLowering::DAGCombinerInfo &DCI) {
12814  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
12815  // the result is either zero or one (depending on the input carry bit).
12816  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
12817  if (X86::isZeroNode(N->getOperand(0)) &&
12818      X86::isZeroNode(N->getOperand(1)) &&
12819      // We don't have a good way to replace an EFLAGS use, so only do this when
12820      // dead right now.
12821      SDValue(N, 1).use_empty()) {
12822    DebugLoc DL = N->getDebugLoc();
12823    EVT VT = N->getValueType(0);
12824    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
12825    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
12826                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
12827                                           DAG.getConstant(X86::COND_B,MVT::i8),
12828                                           N->getOperand(2)),
12829                               DAG.getConstant(1, VT));
12830    return DCI.CombineTo(N, Res1, CarryOut);
12831  }
12832
12833  return SDValue();
12834}
12835
12836// fold (add Y, (sete  X, 0)) -> adc  0, Y
12837//      (add Y, (setne X, 0)) -> sbb -1, Y
12838//      (sub (sete  X, 0), Y) -> sbb  0, Y
12839//      (sub (setne X, 0), Y) -> adc -1, Y
12840static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
12841  DebugLoc DL = N->getDebugLoc();
12842
12843  // Look through ZExts.
12844  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
12845  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
12846    return SDValue();
12847
12848  SDValue SetCC = Ext.getOperand(0);
12849  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
12850    return SDValue();
12851
12852  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
12853  if (CC != X86::COND_E && CC != X86::COND_NE)
12854    return SDValue();
12855
12856  SDValue Cmp = SetCC.getOperand(1);
12857  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
12858      !X86::isZeroNode(Cmp.getOperand(1)) ||
12859      !Cmp.getOperand(0).getValueType().isInteger())
12860    return SDValue();
12861
12862  SDValue CmpOp0 = Cmp.getOperand(0);
12863  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
12864                               DAG.getConstant(1, CmpOp0.getValueType()));
12865
12866  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
12867  if (CC == X86::COND_NE)
12868    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
12869                       DL, OtherVal.getValueType(), OtherVal,
12870                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
12871  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
12872                     DL, OtherVal.getValueType(), OtherVal,
12873                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
12874}
12875
12876static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
12877  SDValue Op0 = N->getOperand(0);
12878  SDValue Op1 = N->getOperand(1);
12879
12880  // X86 can't encode an immediate LHS of a sub. See if we can push the
12881  // negation into a preceding instruction.
12882  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
12883    uint64_t Op0C = C->getSExtValue();
12884
12885    // If the RHS of the sub is a XOR with one use and a constant, invert the
12886    // immediate. Then add one to the LHS of the sub so we can turn
12887    // X-Y -> X+~Y+1, saving one register.
12888    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
12889        isa<ConstantSDNode>(Op1.getOperand(1))) {
12890      uint64_t XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getSExtValue();
12891      EVT VT = Op0.getValueType();
12892      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
12893                                   Op1.getOperand(0),
12894                                   DAG.getConstant(~XorC, VT));
12895      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
12896                         DAG.getConstant(Op0C+1, VT));
12897    }
12898  }
12899
12900  return OptimizeConditionalInDecrement(N, DAG);
12901}
12902
12903SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
12904                                             DAGCombinerInfo &DCI) const {
12905  SelectionDAG &DAG = DCI.DAG;
12906  switch (N->getOpcode()) {
12907  default: break;
12908  case ISD::EXTRACT_VECTOR_ELT:
12909    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
12910  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
12911  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
12912  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
12913  case ISD::SUB:            return PerformSubCombine(N, DAG);
12914  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
12915  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
12916  case ISD::SHL:
12917  case ISD::SRA:
12918  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
12919  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
12920  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
12921  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
12922  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
12923  case X86ISD::FXOR:
12924  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
12925  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
12926  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
12927  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
12928  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
12929  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
12930  case X86ISD::SHUFPS:      // Handle all target specific shuffles
12931  case X86ISD::SHUFPD:
12932  case X86ISD::PALIGN:
12933  case X86ISD::PUNPCKHBW:
12934  case X86ISD::PUNPCKHWD:
12935  case X86ISD::PUNPCKHDQ:
12936  case X86ISD::PUNPCKHQDQ:
12937  case X86ISD::UNPCKHPS:
12938  case X86ISD::UNPCKHPD:
12939  case X86ISD::VUNPCKHPSY:
12940  case X86ISD::VUNPCKHPDY:
12941  case X86ISD::PUNPCKLBW:
12942  case X86ISD::PUNPCKLWD:
12943  case X86ISD::PUNPCKLDQ:
12944  case X86ISD::PUNPCKLQDQ:
12945  case X86ISD::UNPCKLPS:
12946  case X86ISD::UNPCKLPD:
12947  case X86ISD::VUNPCKLPSY:
12948  case X86ISD::VUNPCKLPDY:
12949  case X86ISD::MOVHLPS:
12950  case X86ISD::MOVLHPS:
12951  case X86ISD::PSHUFD:
12952  case X86ISD::PSHUFHW:
12953  case X86ISD::PSHUFLW:
12954  case X86ISD::MOVSS:
12955  case X86ISD::MOVSD:
12956  case X86ISD::VPERMILPS:
12957  case X86ISD::VPERMILPSY:
12958  case X86ISD::VPERMILPD:
12959  case X86ISD::VPERMILPDY:
12960  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
12961  }
12962
12963  return SDValue();
12964}
12965
12966/// isTypeDesirableForOp - Return true if the target has native support for
12967/// the specified value type and it is 'desirable' to use the type for the
12968/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
12969/// instruction encodings are longer and some i16 instructions are slow.
12970bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
12971  if (!isTypeLegal(VT))
12972    return false;
12973  if (VT != MVT::i16)
12974    return true;
12975
12976  switch (Opc) {
12977  default:
12978    return true;
12979  case ISD::LOAD:
12980  case ISD::SIGN_EXTEND:
12981  case ISD::ZERO_EXTEND:
12982  case ISD::ANY_EXTEND:
12983  case ISD::SHL:
12984  case ISD::SRL:
12985  case ISD::SUB:
12986  case ISD::ADD:
12987  case ISD::MUL:
12988  case ISD::AND:
12989  case ISD::OR:
12990  case ISD::XOR:
12991    return false;
12992  }
12993}
12994
12995/// IsDesirableToPromoteOp - This method query the target whether it is
12996/// beneficial for dag combiner to promote the specified node. If true, it
12997/// should return the desired promotion type by reference.
12998bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
12999  EVT VT = Op.getValueType();
13000  if (VT != MVT::i16)
13001    return false;
13002
13003  bool Promote = false;
13004  bool Commute = false;
13005  switch (Op.getOpcode()) {
13006  default: break;
13007  case ISD::LOAD: {
13008    LoadSDNode *LD = cast<LoadSDNode>(Op);
13009    // If the non-extending load has a single use and it's not live out, then it
13010    // might be folded.
13011    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
13012                                                     Op.hasOneUse()*/) {
13013      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
13014             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
13015        // The only case where we'd want to promote LOAD (rather then it being
13016        // promoted as an operand is when it's only use is liveout.
13017        if (UI->getOpcode() != ISD::CopyToReg)
13018          return false;
13019      }
13020    }
13021    Promote = true;
13022    break;
13023  }
13024  case ISD::SIGN_EXTEND:
13025  case ISD::ZERO_EXTEND:
13026  case ISD::ANY_EXTEND:
13027    Promote = true;
13028    break;
13029  case ISD::SHL:
13030  case ISD::SRL: {
13031    SDValue N0 = Op.getOperand(0);
13032    // Look out for (store (shl (load), x)).
13033    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
13034      return false;
13035    Promote = true;
13036    break;
13037  }
13038  case ISD::ADD:
13039  case ISD::MUL:
13040  case ISD::AND:
13041  case ISD::OR:
13042  case ISD::XOR:
13043    Commute = true;
13044    // fallthrough
13045  case ISD::SUB: {
13046    SDValue N0 = Op.getOperand(0);
13047    SDValue N1 = Op.getOperand(1);
13048    if (!Commute && MayFoldLoad(N1))
13049      return false;
13050    // Avoid disabling potential load folding opportunities.
13051    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
13052      return false;
13053    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
13054      return false;
13055    Promote = true;
13056  }
13057  }
13058
13059  PVT = MVT::i32;
13060  return Promote;
13061}
13062
13063//===----------------------------------------------------------------------===//
13064//                           X86 Inline Assembly Support
13065//===----------------------------------------------------------------------===//
13066
13067bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
13068  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
13069
13070  std::string AsmStr = IA->getAsmString();
13071
13072  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
13073  SmallVector<StringRef, 4> AsmPieces;
13074  SplitString(AsmStr, AsmPieces, ";\n");
13075
13076  switch (AsmPieces.size()) {
13077  default: return false;
13078  case 1:
13079    AsmStr = AsmPieces[0];
13080    AsmPieces.clear();
13081    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
13082
13083    // FIXME: this should verify that we are targeting a 486 or better.  If not,
13084    // we will turn this bswap into something that will be lowered to logical ops
13085    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
13086    // so don't worry about this.
13087    // bswap $0
13088    if (AsmPieces.size() == 2 &&
13089        (AsmPieces[0] == "bswap" ||
13090         AsmPieces[0] == "bswapq" ||
13091         AsmPieces[0] == "bswapl") &&
13092        (AsmPieces[1] == "$0" ||
13093         AsmPieces[1] == "${0:q}")) {
13094      // No need to check constraints, nothing other than the equivalent of
13095      // "=r,0" would be valid here.
13096      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13097      if (!Ty || Ty->getBitWidth() % 16 != 0)
13098        return false;
13099      return IntrinsicLowering::LowerToByteSwap(CI);
13100    }
13101    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
13102    if (CI->getType()->isIntegerTy(16) &&
13103        AsmPieces.size() == 3 &&
13104        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
13105        AsmPieces[1] == "$$8," &&
13106        AsmPieces[2] == "${0:w}" &&
13107        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
13108      AsmPieces.clear();
13109      const std::string &ConstraintsStr = IA->getConstraintString();
13110      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
13111      std::sort(AsmPieces.begin(), AsmPieces.end());
13112      if (AsmPieces.size() == 4 &&
13113          AsmPieces[0] == "~{cc}" &&
13114          AsmPieces[1] == "~{dirflag}" &&
13115          AsmPieces[2] == "~{flags}" &&
13116          AsmPieces[3] == "~{fpsr}") {
13117        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13118        if (!Ty || Ty->getBitWidth() % 16 != 0)
13119          return false;
13120        return IntrinsicLowering::LowerToByteSwap(CI);
13121      }
13122    }
13123    break;
13124  case 3:
13125    if (CI->getType()->isIntegerTy(32) &&
13126        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
13127      SmallVector<StringRef, 4> Words;
13128      SplitString(AsmPieces[0], Words, " \t,");
13129      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
13130          Words[2] == "${0:w}") {
13131        Words.clear();
13132        SplitString(AsmPieces[1], Words, " \t,");
13133        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
13134            Words[2] == "$0") {
13135          Words.clear();
13136          SplitString(AsmPieces[2], Words, " \t,");
13137          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
13138              Words[2] == "${0:w}") {
13139            AsmPieces.clear();
13140            const std::string &ConstraintsStr = IA->getConstraintString();
13141            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
13142            std::sort(AsmPieces.begin(), AsmPieces.end());
13143            if (AsmPieces.size() == 4 &&
13144                AsmPieces[0] == "~{cc}" &&
13145                AsmPieces[1] == "~{dirflag}" &&
13146                AsmPieces[2] == "~{flags}" &&
13147                AsmPieces[3] == "~{fpsr}") {
13148              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13149              if (!Ty || Ty->getBitWidth() % 16 != 0)
13150                return false;
13151              return IntrinsicLowering::LowerToByteSwap(CI);
13152            }
13153          }
13154        }
13155      }
13156    }
13157
13158    if (CI->getType()->isIntegerTy(64)) {
13159      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
13160      if (Constraints.size() >= 2 &&
13161          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
13162          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
13163        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
13164        SmallVector<StringRef, 4> Words;
13165        SplitString(AsmPieces[0], Words, " \t");
13166        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
13167          Words.clear();
13168          SplitString(AsmPieces[1], Words, " \t");
13169          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
13170            Words.clear();
13171            SplitString(AsmPieces[2], Words, " \t,");
13172            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
13173                Words[2] == "%edx") {
13174              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13175              if (!Ty || Ty->getBitWidth() % 16 != 0)
13176                return false;
13177              return IntrinsicLowering::LowerToByteSwap(CI);
13178            }
13179          }
13180        }
13181      }
13182    }
13183    break;
13184  }
13185  return false;
13186}
13187
13188
13189
13190/// getConstraintType - Given a constraint letter, return the type of
13191/// constraint it is for this target.
13192X86TargetLowering::ConstraintType
13193X86TargetLowering::getConstraintType(const std::string &Constraint) const {
13194  if (Constraint.size() == 1) {
13195    switch (Constraint[0]) {
13196    case 'R':
13197    case 'q':
13198    case 'Q':
13199    case 'f':
13200    case 't':
13201    case 'u':
13202    case 'y':
13203    case 'x':
13204    case 'Y':
13205    case 'l':
13206      return C_RegisterClass;
13207    case 'a':
13208    case 'b':
13209    case 'c':
13210    case 'd':
13211    case 'S':
13212    case 'D':
13213    case 'A':
13214      return C_Register;
13215    case 'I':
13216    case 'J':
13217    case 'K':
13218    case 'L':
13219    case 'M':
13220    case 'N':
13221    case 'G':
13222    case 'C':
13223    case 'e':
13224    case 'Z':
13225      return C_Other;
13226    default:
13227      break;
13228    }
13229  }
13230  return TargetLowering::getConstraintType(Constraint);
13231}
13232
13233/// Examine constraint type and operand type and determine a weight value.
13234/// This object must already have been set up with the operand type
13235/// and the current alternative constraint selected.
13236TargetLowering::ConstraintWeight
13237  X86TargetLowering::getSingleConstraintMatchWeight(
13238    AsmOperandInfo &info, const char *constraint) const {
13239  ConstraintWeight weight = CW_Invalid;
13240  Value *CallOperandVal = info.CallOperandVal;
13241    // If we don't have a value, we can't do a match,
13242    // but allow it at the lowest weight.
13243  if (CallOperandVal == NULL)
13244    return CW_Default;
13245  Type *type = CallOperandVal->getType();
13246  // Look at the constraint type.
13247  switch (*constraint) {
13248  default:
13249    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13250  case 'R':
13251  case 'q':
13252  case 'Q':
13253  case 'a':
13254  case 'b':
13255  case 'c':
13256  case 'd':
13257  case 'S':
13258  case 'D':
13259  case 'A':
13260    if (CallOperandVal->getType()->isIntegerTy())
13261      weight = CW_SpecificReg;
13262    break;
13263  case 'f':
13264  case 't':
13265  case 'u':
13266      if (type->isFloatingPointTy())
13267        weight = CW_SpecificReg;
13268      break;
13269  case 'y':
13270      if (type->isX86_MMXTy() && Subtarget->hasMMX())
13271        weight = CW_SpecificReg;
13272      break;
13273  case 'x':
13274  case 'Y':
13275    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
13276      weight = CW_Register;
13277    break;
13278  case 'I':
13279    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
13280      if (C->getZExtValue() <= 31)
13281        weight = CW_Constant;
13282    }
13283    break;
13284  case 'J':
13285    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13286      if (C->getZExtValue() <= 63)
13287        weight = CW_Constant;
13288    }
13289    break;
13290  case 'K':
13291    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13292      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
13293        weight = CW_Constant;
13294    }
13295    break;
13296  case 'L':
13297    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13298      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
13299        weight = CW_Constant;
13300    }
13301    break;
13302  case 'M':
13303    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13304      if (C->getZExtValue() <= 3)
13305        weight = CW_Constant;
13306    }
13307    break;
13308  case 'N':
13309    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13310      if (C->getZExtValue() <= 0xff)
13311        weight = CW_Constant;
13312    }
13313    break;
13314  case 'G':
13315  case 'C':
13316    if (dyn_cast<ConstantFP>(CallOperandVal)) {
13317      weight = CW_Constant;
13318    }
13319    break;
13320  case 'e':
13321    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13322      if ((C->getSExtValue() >= -0x80000000LL) &&
13323          (C->getSExtValue() <= 0x7fffffffLL))
13324        weight = CW_Constant;
13325    }
13326    break;
13327  case 'Z':
13328    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13329      if (C->getZExtValue() <= 0xffffffff)
13330        weight = CW_Constant;
13331    }
13332    break;
13333  }
13334  return weight;
13335}
13336
13337/// LowerXConstraint - try to replace an X constraint, which matches anything,
13338/// with another that has more specific requirements based on the type of the
13339/// corresponding operand.
13340const char *X86TargetLowering::
13341LowerXConstraint(EVT ConstraintVT) const {
13342  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
13343  // 'f' like normal targets.
13344  if (ConstraintVT.isFloatingPoint()) {
13345    if (Subtarget->hasXMMInt())
13346      return "Y";
13347    if (Subtarget->hasXMM())
13348      return "x";
13349  }
13350
13351  return TargetLowering::LowerXConstraint(ConstraintVT);
13352}
13353
13354/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13355/// vector.  If it is invalid, don't add anything to Ops.
13356void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13357                                                     std::string &Constraint,
13358                                                     std::vector<SDValue>&Ops,
13359                                                     SelectionDAG &DAG) const {
13360  SDValue Result(0, 0);
13361
13362  // Only support length 1 constraints for now.
13363  if (Constraint.length() > 1) return;
13364
13365  char ConstraintLetter = Constraint[0];
13366  switch (ConstraintLetter) {
13367  default: break;
13368  case 'I':
13369    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13370      if (C->getZExtValue() <= 31) {
13371        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13372        break;
13373      }
13374    }
13375    return;
13376  case 'J':
13377    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13378      if (C->getZExtValue() <= 63) {
13379        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13380        break;
13381      }
13382    }
13383    return;
13384  case 'K':
13385    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13386      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
13387        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13388        break;
13389      }
13390    }
13391    return;
13392  case 'N':
13393    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13394      if (C->getZExtValue() <= 255) {
13395        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13396        break;
13397      }
13398    }
13399    return;
13400  case 'e': {
13401    // 32-bit signed value
13402    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13403      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
13404                                           C->getSExtValue())) {
13405        // Widen to 64 bits here to get it sign extended.
13406        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
13407        break;
13408      }
13409    // FIXME gcc accepts some relocatable values here too, but only in certain
13410    // memory models; it's complicated.
13411    }
13412    return;
13413  }
13414  case 'Z': {
13415    // 32-bit unsigned value
13416    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13417      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
13418                                           C->getZExtValue())) {
13419        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13420        break;
13421      }
13422    }
13423    // FIXME gcc accepts some relocatable values here too, but only in certain
13424    // memory models; it's complicated.
13425    return;
13426  }
13427  case 'i': {
13428    // Literal immediates are always ok.
13429    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
13430      // Widen to 64 bits here to get it sign extended.
13431      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
13432      break;
13433    }
13434
13435    // In any sort of PIC mode addresses need to be computed at runtime by
13436    // adding in a register or some sort of table lookup.  These can't
13437    // be used as immediates.
13438    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
13439      return;
13440
13441    // If we are in non-pic codegen mode, we allow the address of a global (with
13442    // an optional displacement) to be used with 'i'.
13443    GlobalAddressSDNode *GA = 0;
13444    int64_t Offset = 0;
13445
13446    // Match either (GA), (GA+C), (GA+C1+C2), etc.
13447    while (1) {
13448      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
13449        Offset += GA->getOffset();
13450        break;
13451      } else if (Op.getOpcode() == ISD::ADD) {
13452        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
13453          Offset += C->getZExtValue();
13454          Op = Op.getOperand(0);
13455          continue;
13456        }
13457      } else if (Op.getOpcode() == ISD::SUB) {
13458        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
13459          Offset += -C->getZExtValue();
13460          Op = Op.getOperand(0);
13461          continue;
13462        }
13463      }
13464
13465      // Otherwise, this isn't something we can handle, reject it.
13466      return;
13467    }
13468
13469    const GlobalValue *GV = GA->getGlobal();
13470    // If we require an extra load to get this address, as in PIC mode, we
13471    // can't accept it.
13472    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
13473                                                        getTargetMachine())))
13474      return;
13475
13476    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
13477                                        GA->getValueType(0), Offset);
13478    break;
13479  }
13480  }
13481
13482  if (Result.getNode()) {
13483    Ops.push_back(Result);
13484    return;
13485  }
13486  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13487}
13488
13489std::pair<unsigned, const TargetRegisterClass*>
13490X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
13491                                                EVT VT) const {
13492  // First, see if this is a constraint that directly corresponds to an LLVM
13493  // register class.
13494  if (Constraint.size() == 1) {
13495    // GCC Constraint Letters
13496    switch (Constraint[0]) {
13497    default: break;
13498      // TODO: Slight differences here in allocation order and leaving
13499      // RIP in the class. Do they matter any more here than they do
13500      // in the normal allocation?
13501    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
13502      if (Subtarget->is64Bit()) {
13503	if (VT == MVT::i32 || VT == MVT::f32)
13504	  return std::make_pair(0U, X86::GR32RegisterClass);
13505	else if (VT == MVT::i16)
13506	  return std::make_pair(0U, X86::GR16RegisterClass);
13507	else if (VT == MVT::i8 || VT == MVT::i1)
13508	  return std::make_pair(0U, X86::GR8RegisterClass);
13509	else if (VT == MVT::i64 || VT == MVT::f64)
13510	  return std::make_pair(0U, X86::GR64RegisterClass);
13511	break;
13512      }
13513      // 32-bit fallthrough
13514    case 'Q':   // Q_REGS
13515      if (VT == MVT::i32 || VT == MVT::f32)
13516	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
13517      else if (VT == MVT::i16)
13518	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
13519      else if (VT == MVT::i8 || VT == MVT::i1)
13520	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
13521      else if (VT == MVT::i64)
13522	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
13523      break;
13524    case 'r':   // GENERAL_REGS
13525    case 'l':   // INDEX_REGS
13526      if (VT == MVT::i8 || VT == MVT::i1)
13527        return std::make_pair(0U, X86::GR8RegisterClass);
13528      if (VT == MVT::i16)
13529        return std::make_pair(0U, X86::GR16RegisterClass);
13530      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
13531        return std::make_pair(0U, X86::GR32RegisterClass);
13532      return std::make_pair(0U, X86::GR64RegisterClass);
13533    case 'R':   // LEGACY_REGS
13534      if (VT == MVT::i8 || VT == MVT::i1)
13535        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
13536      if (VT == MVT::i16)
13537        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
13538      if (VT == MVT::i32 || !Subtarget->is64Bit())
13539        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
13540      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
13541    case 'f':  // FP Stack registers.
13542      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
13543      // value to the correct fpstack register class.
13544      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
13545        return std::make_pair(0U, X86::RFP32RegisterClass);
13546      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
13547        return std::make_pair(0U, X86::RFP64RegisterClass);
13548      return std::make_pair(0U, X86::RFP80RegisterClass);
13549    case 'y':   // MMX_REGS if MMX allowed.
13550      if (!Subtarget->hasMMX()) break;
13551      return std::make_pair(0U, X86::VR64RegisterClass);
13552    case 'Y':   // SSE_REGS if SSE2 allowed
13553      if (!Subtarget->hasXMMInt()) break;
13554      // FALL THROUGH.
13555    case 'x':   // SSE_REGS if SSE1 allowed
13556      if (!Subtarget->hasXMM()) break;
13557
13558      switch (VT.getSimpleVT().SimpleTy) {
13559      default: break;
13560      // Scalar SSE types.
13561      case MVT::f32:
13562      case MVT::i32:
13563        return std::make_pair(0U, X86::FR32RegisterClass);
13564      case MVT::f64:
13565      case MVT::i64:
13566        return std::make_pair(0U, X86::FR64RegisterClass);
13567      // Vector types.
13568      case MVT::v16i8:
13569      case MVT::v8i16:
13570      case MVT::v4i32:
13571      case MVT::v2i64:
13572      case MVT::v4f32:
13573      case MVT::v2f64:
13574        return std::make_pair(0U, X86::VR128RegisterClass);
13575      }
13576      break;
13577    }
13578  }
13579
13580  // Use the default implementation in TargetLowering to convert the register
13581  // constraint into a member of a register class.
13582  std::pair<unsigned, const TargetRegisterClass*> Res;
13583  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
13584
13585  // Not found as a standard register?
13586  if (Res.second == 0) {
13587    // Map st(0) -> st(7) -> ST0
13588    if (Constraint.size() == 7 && Constraint[0] == '{' &&
13589        tolower(Constraint[1]) == 's' &&
13590        tolower(Constraint[2]) == 't' &&
13591        Constraint[3] == '(' &&
13592        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
13593        Constraint[5] == ')' &&
13594        Constraint[6] == '}') {
13595
13596      Res.first = X86::ST0+Constraint[4]-'0';
13597      Res.second = X86::RFP80RegisterClass;
13598      return Res;
13599    }
13600
13601    // GCC allows "st(0)" to be called just plain "st".
13602    if (StringRef("{st}").equals_lower(Constraint)) {
13603      Res.first = X86::ST0;
13604      Res.second = X86::RFP80RegisterClass;
13605      return Res;
13606    }
13607
13608    // flags -> EFLAGS
13609    if (StringRef("{flags}").equals_lower(Constraint)) {
13610      Res.first = X86::EFLAGS;
13611      Res.second = X86::CCRRegisterClass;
13612      return Res;
13613    }
13614
13615    // 'A' means EAX + EDX.
13616    if (Constraint == "A") {
13617      Res.first = X86::EAX;
13618      Res.second = X86::GR32_ADRegisterClass;
13619      return Res;
13620    }
13621    return Res;
13622  }
13623
13624  // Otherwise, check to see if this is a register class of the wrong value
13625  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
13626  // turn into {ax},{dx}.
13627  if (Res.second->hasType(VT))
13628    return Res;   // Correct type already, nothing to do.
13629
13630  // All of the single-register GCC register classes map their values onto
13631  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
13632  // really want an 8-bit or 32-bit register, map to the appropriate register
13633  // class and return the appropriate register.
13634  if (Res.second == X86::GR16RegisterClass) {
13635    if (VT == MVT::i8) {
13636      unsigned DestReg = 0;
13637      switch (Res.first) {
13638      default: break;
13639      case X86::AX: DestReg = X86::AL; break;
13640      case X86::DX: DestReg = X86::DL; break;
13641      case X86::CX: DestReg = X86::CL; break;
13642      case X86::BX: DestReg = X86::BL; break;
13643      }
13644      if (DestReg) {
13645        Res.first = DestReg;
13646        Res.second = X86::GR8RegisterClass;
13647      }
13648    } else if (VT == MVT::i32) {
13649      unsigned DestReg = 0;
13650      switch (Res.first) {
13651      default: break;
13652      case X86::AX: DestReg = X86::EAX; break;
13653      case X86::DX: DestReg = X86::EDX; break;
13654      case X86::CX: DestReg = X86::ECX; break;
13655      case X86::BX: DestReg = X86::EBX; break;
13656      case X86::SI: DestReg = X86::ESI; break;
13657      case X86::DI: DestReg = X86::EDI; break;
13658      case X86::BP: DestReg = X86::EBP; break;
13659      case X86::SP: DestReg = X86::ESP; break;
13660      }
13661      if (DestReg) {
13662        Res.first = DestReg;
13663        Res.second = X86::GR32RegisterClass;
13664      }
13665    } else if (VT == MVT::i64) {
13666      unsigned DestReg = 0;
13667      switch (Res.first) {
13668      default: break;
13669      case X86::AX: DestReg = X86::RAX; break;
13670      case X86::DX: DestReg = X86::RDX; break;
13671      case X86::CX: DestReg = X86::RCX; break;
13672      case X86::BX: DestReg = X86::RBX; break;
13673      case X86::SI: DestReg = X86::RSI; break;
13674      case X86::DI: DestReg = X86::RDI; break;
13675      case X86::BP: DestReg = X86::RBP; break;
13676      case X86::SP: DestReg = X86::RSP; break;
13677      }
13678      if (DestReg) {
13679        Res.first = DestReg;
13680        Res.second = X86::GR64RegisterClass;
13681      }
13682    }
13683  } else if (Res.second == X86::FR32RegisterClass ||
13684             Res.second == X86::FR64RegisterClass ||
13685             Res.second == X86::VR128RegisterClass) {
13686    // Handle references to XMM physical registers that got mapped into the
13687    // wrong class.  This can happen with constraints like {xmm0} where the
13688    // target independent register mapper will just pick the first match it can
13689    // find, ignoring the required type.
13690    if (VT == MVT::f32)
13691      Res.second = X86::FR32RegisterClass;
13692    else if (VT == MVT::f64)
13693      Res.second = X86::FR64RegisterClass;
13694    else if (X86::VR128RegisterClass->hasType(VT))
13695      Res.second = X86::VR128RegisterClass;
13696  }
13697
13698  return Res;
13699}
13700