X86ISelLowering.cpp revision d6708eade079c30b0790789a00a8d737d84f52b7
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86TargetMachine.h"
19#include "llvm/CallingConv.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/GlobalAlias.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/ADT/BitVector.h"
29#include "llvm/ADT/VectorExtras.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/PseudoSourceValue.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Target/TargetLoweringObjectFile.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/ADT/SmallSet.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/raw_ostream.h"
45using namespace llvm;
46
47static cl::opt<bool>
48DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
49
50// Forward declarations.
51static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
52                       SDValue V2);
53
54static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
55  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
56  default: llvm_unreachable("unknown subtarget type");
57  case X86Subtarget::isDarwin:
58    return new TargetLoweringObjectFileMachO();
59  case X86Subtarget::isELF:
60    return new TargetLoweringObjectFileELF();
61  case X86Subtarget::isMingw:
62  case X86Subtarget::isCygwin:
63  case X86Subtarget::isWindows:
64    return new TargetLoweringObjectFileCOFF();
65  }
66
67}
68
69X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
70  : TargetLowering(TM, createTLOF(TM)) {
71  Subtarget = &TM.getSubtarget<X86Subtarget>();
72  X86ScalarSSEf64 = Subtarget->hasSSE2();
73  X86ScalarSSEf32 = Subtarget->hasSSE1();
74  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
75
76  RegInfo = TM.getRegisterInfo();
77  TD = getTargetData();
78
79  // Set up the TargetLowering object.
80
81  // X86 is weird, it always uses i8 for shift amounts and setcc results.
82  setShiftAmountType(MVT::i8);
83  setBooleanContents(ZeroOrOneBooleanContent);
84  setSchedulingPreference(SchedulingForRegPressure);
85  setStackPointerRegisterToSaveRestore(X86StackPtr);
86
87  if (Subtarget->isTargetDarwin()) {
88    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
89    setUseUnderscoreSetJmp(false);
90    setUseUnderscoreLongJmp(false);
91  } else if (Subtarget->isTargetMingw()) {
92    // MS runtime is weird: it exports _setjmp, but longjmp!
93    setUseUnderscoreSetJmp(true);
94    setUseUnderscoreLongJmp(false);
95  } else {
96    setUseUnderscoreSetJmp(true);
97    setUseUnderscoreLongJmp(true);
98  }
99
100  // Set up the register classes.
101  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
102  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
103  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
104  if (Subtarget->is64Bit())
105    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
106
107  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
108
109  // We don't accept any truncstore of integer registers.
110  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
111  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
112  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
113  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
114  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
115  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
116
117  // SETOEQ and SETUNE require checking two conditions.
118  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
119  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
120  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
121  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
122  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
123  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
124
125  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
126  // operation.
127  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
128  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
129  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
130
131  if (Subtarget->is64Bit()) {
132    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
133    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
134  } else if (!UseSoftFloat) {
135    if (X86ScalarSSEf64) {
136      // We have an impenetrably clever algorithm for ui64->double only.
137      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
138    }
139    // We have an algorithm for SSE2, and we turn this into a 64-bit
140    // FILD for other targets.
141    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
142  }
143
144  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
145  // this operation.
146  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
147  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
148
149  if (!UseSoftFloat) {
150    // SSE has no i16 to fp conversion, only i32
151    if (X86ScalarSSEf32) {
152      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
153      // f32 and f64 cases are Legal, f80 case is not
154      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
155    } else {
156      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
157      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
158    }
159  } else {
160    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
161    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
162  }
163
164  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
165  // are Legal, f80 is custom lowered.
166  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
167  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
168
169  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
170  // this operation.
171  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
172  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
173
174  if (X86ScalarSSEf32) {
175    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
176    // f32 and f64 cases are Legal, f80 case is not
177    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
178  } else {
179    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
180    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
181  }
182
183  // Handle FP_TO_UINT by promoting the destination to a larger signed
184  // conversion.
185  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
186  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
187  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
188
189  if (Subtarget->is64Bit()) {
190    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
191    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
192  } else if (!UseSoftFloat) {
193    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
194      // Expand FP_TO_UINT into a select.
195      // FIXME: We would like to use a Custom expander here eventually to do
196      // the optimal thing for SSE vs. the default expansion in the legalizer.
197      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
198    else
199      // With SSE3 we can use fisttpll to convert to a signed i64; without
200      // SSE, we're stuck with a fistpll.
201      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
202  }
203
204  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
205  if (!X86ScalarSSEf64) {
206    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
207    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
208  }
209
210  // Scalar integer divide and remainder are lowered to use operations that
211  // produce two results, to match the available instructions. This exposes
212  // the two-result form to trivial CSE, which is able to combine x/y and x%y
213  // into a single instruction.
214  //
215  // Scalar integer multiply-high is also lowered to use two-result
216  // operations, to match the available instructions. However, plain multiply
217  // (low) operations are left as Legal, as there are single-result
218  // instructions for this in x86. Using the two-result multiply instructions
219  // when both high and low results are needed must be arranged by dagcombine.
220  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
221  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
222  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
223  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
224  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
225  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
226  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
227  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
228  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
229  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
230  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
231  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
232  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
233  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
234  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
235  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
236  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
237  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
238  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
239  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
240  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
241  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
242  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
243  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
244
245  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
246  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
247  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
248  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
249  if (Subtarget->is64Bit())
250    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
251  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
252  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
253  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
254  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
255  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
256  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
257  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
258  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
259
260  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
261  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
262  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
263  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
264  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
265  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
266  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
267  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
268  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
269  if (Subtarget->is64Bit()) {
270    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
271    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
272    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
273  }
274
275  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
276  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
277
278  // These should be promoted to a larger select which is supported.
279  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
280  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
281  // X86 wants to expand cmov itself.
282  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
283  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
284  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
285  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
286  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
287  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
288  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
289  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
290  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
291  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
292  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
293  if (Subtarget->is64Bit()) {
294    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
295    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
296  }
297  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
298
299  // Darwin ABI issue.
300  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
301  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
302  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
303  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
304  if (Subtarget->is64Bit())
305    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
306  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
307  if (Subtarget->is64Bit()) {
308    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
309    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
310    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
311    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
312  }
313  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
314  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
315  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
316  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
317  if (Subtarget->is64Bit()) {
318    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
319    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
320    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
321  }
322
323  if (Subtarget->hasSSE1())
324    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
325
326  if (!Subtarget->hasSSE2())
327    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
328
329  // Expand certain atomics
330  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
331  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
332  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
333  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
334
335  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
336  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
337  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
338  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
339
340  if (!Subtarget->is64Bit()) {
341    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
342    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
343    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
344    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
345    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
346    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
347    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
348  }
349
350  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
351  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
352  // FIXME - use subtarget debug flags
353  if (!Subtarget->isTargetDarwin() &&
354      !Subtarget->isTargetELF() &&
355      !Subtarget->isTargetCygMing()) {
356    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
357    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
358  }
359
360  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
361  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
362  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
363  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
364  if (Subtarget->is64Bit()) {
365    setExceptionPointerRegister(X86::RAX);
366    setExceptionSelectorRegister(X86::RDX);
367  } else {
368    setExceptionPointerRegister(X86::EAX);
369    setExceptionSelectorRegister(X86::EDX);
370  }
371  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
372  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
373
374  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
375
376  setOperationAction(ISD::TRAP, MVT::Other, Legal);
377
378  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
379  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
380  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
381  if (Subtarget->is64Bit()) {
382    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
383    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
384  } else {
385    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
386    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
387  }
388
389  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
390  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
391  if (Subtarget->is64Bit())
392    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
393  if (Subtarget->isTargetCygMing())
394    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
395  else
396    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
397
398  if (!UseSoftFloat && X86ScalarSSEf64) {
399    // f32 and f64 use SSE.
400    // Set up the FP register classes.
401    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
402    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
403
404    // Use ANDPD to simulate FABS.
405    setOperationAction(ISD::FABS , MVT::f64, Custom);
406    setOperationAction(ISD::FABS , MVT::f32, Custom);
407
408    // Use XORP to simulate FNEG.
409    setOperationAction(ISD::FNEG , MVT::f64, Custom);
410    setOperationAction(ISD::FNEG , MVT::f32, Custom);
411
412    // Use ANDPD and ORPD to simulate FCOPYSIGN.
413    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
414    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
415
416    // We don't support sin/cos/fmod
417    setOperationAction(ISD::FSIN , MVT::f64, Expand);
418    setOperationAction(ISD::FCOS , MVT::f64, Expand);
419    setOperationAction(ISD::FSIN , MVT::f32, Expand);
420    setOperationAction(ISD::FCOS , MVT::f32, Expand);
421
422    // Expand FP immediates into loads from the stack, except for the special
423    // cases we handle.
424    addLegalFPImmediate(APFloat(+0.0)); // xorpd
425    addLegalFPImmediate(APFloat(+0.0f)); // xorps
426  } else if (!UseSoftFloat && X86ScalarSSEf32) {
427    // Use SSE for f32, x87 for f64.
428    // Set up the FP register classes.
429    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
430    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
431
432    // Use ANDPS to simulate FABS.
433    setOperationAction(ISD::FABS , MVT::f32, Custom);
434
435    // Use XORP to simulate FNEG.
436    setOperationAction(ISD::FNEG , MVT::f32, Custom);
437
438    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
439
440    // Use ANDPS and ORPS to simulate FCOPYSIGN.
441    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
442    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
443
444    // We don't support sin/cos/fmod
445    setOperationAction(ISD::FSIN , MVT::f32, Expand);
446    setOperationAction(ISD::FCOS , MVT::f32, Expand);
447
448    // Special cases we handle for FP constants.
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450    addLegalFPImmediate(APFloat(+0.0)); // FLD0
451    addLegalFPImmediate(APFloat(+1.0)); // FLD1
452    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
453    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
454
455    if (!UnsafeFPMath) {
456      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
457      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
458    }
459  } else if (!UseSoftFloat) {
460    // f32 and f64 in x87.
461    // Set up the FP register classes.
462    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
463    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
464
465    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
466    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
467    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
468    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
469
470    if (!UnsafeFPMath) {
471      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
472      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
473    }
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
479    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
480    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
481    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
482  }
483
484  // Long double always uses X87.
485  if (!UseSoftFloat) {
486    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
487    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
488    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
489    {
490      bool ignored;
491      APFloat TmpFlt(+0.0);
492      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
493                     &ignored);
494      addLegalFPImmediate(TmpFlt);  // FLD0
495      TmpFlt.changeSign();
496      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
497      APFloat TmpFlt2(+1.0);
498      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
499                      &ignored);
500      addLegalFPImmediate(TmpFlt2);  // FLD1
501      TmpFlt2.changeSign();
502      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
503    }
504
505    if (!UnsafeFPMath) {
506      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
507      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
508    }
509  }
510
511  // Always use a library call for pow.
512  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
513  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
514  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
515
516  setOperationAction(ISD::FLOG, MVT::f80, Expand);
517  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
518  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
519  setOperationAction(ISD::FEXP, MVT::f80, Expand);
520  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
521
522  // First set operation action for all vector types to either promote
523  // (for widening) or expand (for scalarization). Then we will selectively
524  // turn on ones that can be effectively codegen'd.
525  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
526       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
527    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
528    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
529    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
530    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
531    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
532    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
533    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
534    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
535    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
538    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
540    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
541    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
542    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
543    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
545    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
575  }
576
577  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
578  // with -msoft-float, disable use of MMX as well.
579  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
580    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
581    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
582    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
583    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
584    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
585
586    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
587    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
588    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
589    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
590
591    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
592    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
593    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
594    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
595
596    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
597    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
598
599    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
600    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
601    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
602    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
603    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
604    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
605    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
606
607    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
608    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
609    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
610    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
611    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
612    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
613    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
614
615    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
616    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
617    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
618    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
619    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
620    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
621    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
622
623    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
624    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
625    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
626    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
627    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
628    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
629    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
630    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
631    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
632
633    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
634    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
635    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
636    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
637    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
638
639    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
640    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
641    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
642    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
643
644    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
645    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
646    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
647    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
648
649    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
650
651    setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
652    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
653    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
654    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
655    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
656    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
657    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
658    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
659    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
660  }
661
662  if (!UseSoftFloat && Subtarget->hasSSE1()) {
663    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
664
665    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
666    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
667    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
668    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
669    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
670    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
671    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
672    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
674    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
675    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
676    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
677  }
678
679  if (!UseSoftFloat && Subtarget->hasSSE2()) {
680    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
681
682    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
683    // registers cannot be used even for integer operations.
684    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
685    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
686    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
687    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
688
689    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
690    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
691    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
692    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
693    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
694    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
695    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
696    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
697    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
698    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
699    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
700    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
701    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
702    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
703    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
704    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
705
706    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
707    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
708    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
709    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
710
711    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
712    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
713    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
714    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
715    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
716
717    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
718    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
719      EVT VT = (MVT::SimpleValueType)i;
720      // Do not attempt to custom lower non-power-of-2 vectors
721      if (!isPowerOf2_32(VT.getVectorNumElements()))
722        continue;
723      // Do not attempt to custom lower non-128-bit vectors
724      if (!VT.is128BitVector())
725        continue;
726      setOperationAction(ISD::BUILD_VECTOR,
727                         VT.getSimpleVT().SimpleTy, Custom);
728      setOperationAction(ISD::VECTOR_SHUFFLE,
729                         VT.getSimpleVT().SimpleTy, Custom);
730      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
731                         VT.getSimpleVT().SimpleTy, Custom);
732    }
733
734    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
735    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
736    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
737    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
738    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
739    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
740
741    if (Subtarget->is64Bit()) {
742      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
743      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
744    }
745
746    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
747    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
748      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
749      EVT VT = SVT;
750
751      // Do not attempt to promote non-128-bit vectors
752      if (!VT.is128BitVector()) {
753        continue;
754      }
755      setOperationAction(ISD::AND,    SVT, Promote);
756      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
757      setOperationAction(ISD::OR,     SVT, Promote);
758      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
759      setOperationAction(ISD::XOR,    SVT, Promote);
760      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
761      setOperationAction(ISD::LOAD,   SVT, Promote);
762      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
763      setOperationAction(ISD::SELECT, SVT, Promote);
764      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
765    }
766
767    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
768
769    // Custom lower v2i64 and v2f64 selects.
770    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
771    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
772    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
773    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
774
775    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
776    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
777    if (!DisableMMX && Subtarget->hasMMX()) {
778      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
779      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
780    }
781  }
782
783  if (Subtarget->hasSSE41()) {
784    // FIXME: Do we need to handle scalar-to-vector here?
785    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
786
787    // i8 and i16 vectors are custom , because the source register and source
788    // source memory operand types are not the same width.  f32 vectors are
789    // custom since the immediate controlling the insert encodes additional
790    // information.
791    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
792    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
793    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
794    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
795
796    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
797    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
798    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
799    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
800
801    if (Subtarget->is64Bit()) {
802      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
803      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
804    }
805  }
806
807  if (Subtarget->hasSSE42()) {
808    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
809  }
810
811  if (!UseSoftFloat && Subtarget->hasAVX()) {
812    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
813    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
814    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
815    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
816
817    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
818    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
819    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
820    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
821    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
822    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
823    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
824    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
825    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
826    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
827    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
828    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
829    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
830    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
831    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
832
833    // Operations to consider commented out -v16i16 v32i8
834    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
835    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
836    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
837    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
838    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
839    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
840    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
841    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
842    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
843    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
844    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
845    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
846    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
847    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
848
849    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
850    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
851    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
852    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
853
854    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
855    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
856    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
857    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
858    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
859
860    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
861    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
862    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
863    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
864    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
865    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
866
867#if 0
868    // Not sure we want to do this since there are no 256-bit integer
869    // operations in AVX
870
871    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
872    // This includes 256-bit vectors
873    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
874      EVT VT = (MVT::SimpleValueType)i;
875
876      // Do not attempt to custom lower non-power-of-2 vectors
877      if (!isPowerOf2_32(VT.getVectorNumElements()))
878        continue;
879
880      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
881      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
882      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
883    }
884
885    if (Subtarget->is64Bit()) {
886      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
887      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
888    }
889#endif
890
891#if 0
892    // Not sure we want to do this since there are no 256-bit integer
893    // operations in AVX
894
895    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
896    // Including 256-bit vectors
897    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
898      EVT VT = (MVT::SimpleValueType)i;
899
900      if (!VT.is256BitVector()) {
901        continue;
902      }
903      setOperationAction(ISD::AND,    VT, Promote);
904      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
905      setOperationAction(ISD::OR,     VT, Promote);
906      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
907      setOperationAction(ISD::XOR,    VT, Promote);
908      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
909      setOperationAction(ISD::LOAD,   VT, Promote);
910      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
911      setOperationAction(ISD::SELECT, VT, Promote);
912      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
913    }
914
915    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
916#endif
917  }
918
919  // We want to custom lower some of our intrinsics.
920  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
921
922  // Add/Sub/Mul with overflow operations are custom lowered.
923  setOperationAction(ISD::SADDO, MVT::i32, Custom);
924  setOperationAction(ISD::SADDO, MVT::i64, Custom);
925  setOperationAction(ISD::UADDO, MVT::i32, Custom);
926  setOperationAction(ISD::UADDO, MVT::i64, Custom);
927  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
928  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
929  setOperationAction(ISD::USUBO, MVT::i32, Custom);
930  setOperationAction(ISD::USUBO, MVT::i64, Custom);
931  setOperationAction(ISD::SMULO, MVT::i32, Custom);
932  setOperationAction(ISD::SMULO, MVT::i64, Custom);
933
934  if (!Subtarget->is64Bit()) {
935    // These libcalls are not available in 32-bit.
936    setLibcallName(RTLIB::SHL_I128, 0);
937    setLibcallName(RTLIB::SRL_I128, 0);
938    setLibcallName(RTLIB::SRA_I128, 0);
939  }
940
941  // We have target-specific dag combine patterns for the following nodes:
942  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
943  setTargetDAGCombine(ISD::BUILD_VECTOR);
944  setTargetDAGCombine(ISD::SELECT);
945  setTargetDAGCombine(ISD::SHL);
946  setTargetDAGCombine(ISD::SRA);
947  setTargetDAGCombine(ISD::SRL);
948  setTargetDAGCombine(ISD::STORE);
949  setTargetDAGCombine(ISD::MEMBARRIER);
950  if (Subtarget->is64Bit())
951    setTargetDAGCombine(ISD::MUL);
952
953  computeRegisterProperties();
954
955  // FIXME: These should be based on subtarget info. Plus, the values should
956  // be smaller when we are in optimizing for size mode.
957  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
958  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
959  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
960  allowUnalignedMemoryAccesses = true; // x86 supports it!
961  setPrefLoopAlignment(16);
962  benefitFromCodePlacementOpt = true;
963}
964
965
966MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
967  return MVT::i8;
968}
969
970
971/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
972/// the desired ByVal argument alignment.
973static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
974  if (MaxAlign == 16)
975    return;
976  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
977    if (VTy->getBitWidth() == 128)
978      MaxAlign = 16;
979  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
980    unsigned EltAlign = 0;
981    getMaxByValAlign(ATy->getElementType(), EltAlign);
982    if (EltAlign > MaxAlign)
983      MaxAlign = EltAlign;
984  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
985    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
986      unsigned EltAlign = 0;
987      getMaxByValAlign(STy->getElementType(i), EltAlign);
988      if (EltAlign > MaxAlign)
989        MaxAlign = EltAlign;
990      if (MaxAlign == 16)
991        break;
992    }
993  }
994  return;
995}
996
997/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
998/// function arguments in the caller parameter area. For X86, aggregates
999/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1000/// are at 4-byte boundaries.
1001unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1002  if (Subtarget->is64Bit()) {
1003    // Max of 8 and alignment of type.
1004    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1005    if (TyAlign > 8)
1006      return TyAlign;
1007    return 8;
1008  }
1009
1010  unsigned Align = 4;
1011  if (Subtarget->hasSSE1())
1012    getMaxByValAlign(Ty, Align);
1013  return Align;
1014}
1015
1016/// getOptimalMemOpType - Returns the target specific optimal type for load
1017/// and store operations as a result of memset, memcpy, and memmove
1018/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1019/// determining it.
1020EVT
1021X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1022                                       bool isSrcConst, bool isSrcStr,
1023                                       SelectionDAG &DAG) const {
1024  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1025  // linux.  This is because the stack realignment code can't handle certain
1026  // cases like PR2962.  This should be removed when PR2962 is fixed.
1027  const Function *F = DAG.getMachineFunction().getFunction();
1028  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1029  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1030    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1031      return MVT::v4i32;
1032    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1033      return MVT::v4f32;
1034  }
1035  if (Subtarget->is64Bit() && Size >= 8)
1036    return MVT::i64;
1037  return MVT::i32;
1038}
1039
1040/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1041/// jumptable.
1042SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1043                                                      SelectionDAG &DAG) const {
1044  if (usesGlobalOffsetTable())
1045    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1046  if (!Subtarget->is64Bit())
1047    // This doesn't have DebugLoc associated with it, but is not really the
1048    // same as a Register.
1049    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1050                       getPointerTy());
1051  return Table;
1052}
1053
1054/// getFunctionAlignment - Return the Log2 alignment of this function.
1055unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1056  return F->hasFnAttr(Attribute::OptimizeForSize) ? 1 : 4;
1057}
1058
1059//===----------------------------------------------------------------------===//
1060//               Return Value Calling Convention Implementation
1061//===----------------------------------------------------------------------===//
1062
1063#include "X86GenCallingConv.inc"
1064
1065SDValue
1066X86TargetLowering::LowerReturn(SDValue Chain,
1067                               unsigned CallConv, bool isVarArg,
1068                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1069                               DebugLoc dl, SelectionDAG &DAG) {
1070
1071  SmallVector<CCValAssign, 16> RVLocs;
1072  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1073                 RVLocs, *DAG.getContext());
1074  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1075
1076  // If this is the first return lowered for this function, add the regs to the
1077  // liveout set for the function.
1078  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1079    for (unsigned i = 0; i != RVLocs.size(); ++i)
1080      if (RVLocs[i].isRegLoc())
1081        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1082  }
1083
1084  SDValue Flag;
1085
1086  SmallVector<SDValue, 6> RetOps;
1087  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1088  // Operand #1 = Bytes To Pop
1089  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
1090
1091  // Copy the result values into the output registers.
1092  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1093    CCValAssign &VA = RVLocs[i];
1094    assert(VA.isRegLoc() && "Can only return in registers!");
1095    SDValue ValToCopy = Outs[i].Val;
1096
1097    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1098    // the RET instruction and handled by the FP Stackifier.
1099    if (VA.getLocReg() == X86::ST0 ||
1100        VA.getLocReg() == X86::ST1) {
1101      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1102      // change the value to the FP stack register class.
1103      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1104        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1105      RetOps.push_back(ValToCopy);
1106      // Don't emit a copytoreg.
1107      continue;
1108    }
1109
1110    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1111    // which is returned in RAX / RDX.
1112    if (Subtarget->is64Bit()) {
1113      EVT ValVT = ValToCopy.getValueType();
1114      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1115        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1116        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1117          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1118      }
1119    }
1120
1121    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1122    Flag = Chain.getValue(1);
1123  }
1124
1125  // The x86-64 ABI for returning structs by value requires that we copy
1126  // the sret argument into %rax for the return. We saved the argument into
1127  // a virtual register in the entry block, so now we copy the value out
1128  // and into %rax.
1129  if (Subtarget->is64Bit() &&
1130      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1131    MachineFunction &MF = DAG.getMachineFunction();
1132    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1133    unsigned Reg = FuncInfo->getSRetReturnReg();
1134    if (!Reg) {
1135      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1136      FuncInfo->setSRetReturnReg(Reg);
1137    }
1138    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1139
1140    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1141    Flag = Chain.getValue(1);
1142  }
1143
1144  RetOps[0] = Chain;  // Update chain.
1145
1146  // Add the flag if we have it.
1147  if (Flag.getNode())
1148    RetOps.push_back(Flag);
1149
1150  return DAG.getNode(X86ISD::RET_FLAG, dl,
1151                     MVT::Other, &RetOps[0], RetOps.size());
1152}
1153
1154/// LowerCallResult - Lower the result values of a call into the
1155/// appropriate copies out of appropriate physical registers.
1156///
1157SDValue
1158X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1159                                   unsigned CallConv, bool isVarArg,
1160                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1161                                   DebugLoc dl, SelectionDAG &DAG,
1162                                   SmallVectorImpl<SDValue> &InVals) {
1163
1164  // Assign locations to each value returned by this call.
1165  SmallVector<CCValAssign, 16> RVLocs;
1166  bool Is64Bit = Subtarget->is64Bit();
1167  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1168                 RVLocs, *DAG.getContext());
1169  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1170
1171  // Copy all of the result registers out of their specified physreg.
1172  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1173    CCValAssign &VA = RVLocs[i];
1174    EVT CopyVT = VA.getValVT();
1175
1176    // If this is x86-64, and we disabled SSE, we can't return FP values
1177    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1178        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1179      llvm_report_error("SSE register return with SSE disabled");
1180    }
1181
1182    // If this is a call to a function that returns an fp value on the floating
1183    // point stack, but where we prefer to use the value in xmm registers, copy
1184    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1185    if ((VA.getLocReg() == X86::ST0 ||
1186         VA.getLocReg() == X86::ST1) &&
1187        isScalarFPTypeInSSEReg(VA.getValVT())) {
1188      CopyVT = MVT::f80;
1189    }
1190
1191    SDValue Val;
1192    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1193      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1194      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1195        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1196                                   MVT::v2i64, InFlag).getValue(1);
1197        Val = Chain.getValue(0);
1198        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1199                          Val, DAG.getConstant(0, MVT::i64));
1200      } else {
1201        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1202                                   MVT::i64, InFlag).getValue(1);
1203        Val = Chain.getValue(0);
1204      }
1205      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1206    } else {
1207      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1208                                 CopyVT, InFlag).getValue(1);
1209      Val = Chain.getValue(0);
1210    }
1211    InFlag = Chain.getValue(2);
1212
1213    if (CopyVT != VA.getValVT()) {
1214      // Round the F80 the right size, which also moves to the appropriate xmm
1215      // register.
1216      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1217                        // This truncation won't change the value.
1218                        DAG.getIntPtrConstant(1));
1219    }
1220
1221    InVals.push_back(Val);
1222  }
1223
1224  return Chain;
1225}
1226
1227
1228//===----------------------------------------------------------------------===//
1229//                C & StdCall & Fast Calling Convention implementation
1230//===----------------------------------------------------------------------===//
1231//  StdCall calling convention seems to be standard for many Windows' API
1232//  routines and around. It differs from C calling convention just a little:
1233//  callee should clean up the stack, not caller. Symbols should be also
1234//  decorated in some fancy way :) It doesn't support any vector arguments.
1235//  For info on fast calling convention see Fast Calling Convention (tail call)
1236//  implementation LowerX86_32FastCCCallTo.
1237
1238/// CallIsStructReturn - Determines whether a call uses struct return
1239/// semantics.
1240static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1241  if (Outs.empty())
1242    return false;
1243
1244  return Outs[0].Flags.isSRet();
1245}
1246
1247/// ArgsAreStructReturn - Determines whether a function uses struct
1248/// return semantics.
1249static bool
1250ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1251  if (Ins.empty())
1252    return false;
1253
1254  return Ins[0].Flags.isSRet();
1255}
1256
1257/// IsCalleePop - Determines whether the callee is required to pop its
1258/// own arguments. Callee pop is necessary to support tail calls.
1259bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1260  if (IsVarArg)
1261    return false;
1262
1263  switch (CallingConv) {
1264  default:
1265    return false;
1266  case CallingConv::X86_StdCall:
1267    return !Subtarget->is64Bit();
1268  case CallingConv::X86_FastCall:
1269    return !Subtarget->is64Bit();
1270  case CallingConv::Fast:
1271    return PerformTailCallOpt;
1272  }
1273}
1274
1275/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1276/// given CallingConvention value.
1277CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1278  if (Subtarget->is64Bit()) {
1279    if (Subtarget->isTargetWin64())
1280      return CC_X86_Win64_C;
1281    else
1282      return CC_X86_64_C;
1283  }
1284
1285  if (CC == CallingConv::X86_FastCall)
1286    return CC_X86_32_FastCall;
1287  else if (CC == CallingConv::Fast)
1288    return CC_X86_32_FastCC;
1289  else
1290    return CC_X86_32_C;
1291}
1292
1293/// NameDecorationForCallConv - Selects the appropriate decoration to
1294/// apply to a MachineFunction containing a given calling convention.
1295NameDecorationStyle
1296X86TargetLowering::NameDecorationForCallConv(unsigned CallConv) {
1297  if (CallConv == CallingConv::X86_FastCall)
1298    return FastCall;
1299  else if (CallConv == CallingConv::X86_StdCall)
1300    return StdCall;
1301  return None;
1302}
1303
1304
1305/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1306/// by "Src" to address "Dst" with size and alignment information specified by
1307/// the specific parameter attribute. The copy will be passed as a byval
1308/// function parameter.
1309static SDValue
1310CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1311                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1312                          DebugLoc dl) {
1313  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1314  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1315                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1316}
1317
1318SDValue
1319X86TargetLowering::LowerMemArgument(SDValue Chain,
1320                                    unsigned CallConv,
1321                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1322                                    DebugLoc dl, SelectionDAG &DAG,
1323                                    const CCValAssign &VA,
1324                                    MachineFrameInfo *MFI,
1325                                    unsigned i) {
1326
1327  // Create the nodes corresponding to a load from this parameter slot.
1328  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1329  bool AlwaysUseMutable = (CallConv==CallingConv::Fast) && PerformTailCallOpt;
1330  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1331  EVT ValVT;
1332
1333  // If value is passed by pointer we have address passed instead of the value
1334  // itself.
1335  if (VA.getLocInfo() == CCValAssign::Indirect)
1336    ValVT = VA.getLocVT();
1337  else
1338    ValVT = VA.getValVT();
1339
1340  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1341  // changed with more analysis.
1342  // In case of tail call optimization mark all arguments mutable. Since they
1343  // could be overwritten by lowering of arguments in case of a tail call.
1344  int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1345                                  VA.getLocMemOffset(), isImmutable);
1346  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1347  if (Flags.isByVal())
1348    return FIN;
1349  return DAG.getLoad(ValVT, dl, Chain, FIN,
1350                     PseudoSourceValue::getFixedStack(FI), 0);
1351}
1352
1353SDValue
1354X86TargetLowering::LowerFormalArguments(SDValue Chain,
1355                                        unsigned CallConv,
1356                                        bool isVarArg,
1357                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1358                                        DebugLoc dl,
1359                                        SelectionDAG &DAG,
1360                                        SmallVectorImpl<SDValue> &InVals) {
1361
1362  MachineFunction &MF = DAG.getMachineFunction();
1363  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1364
1365  const Function* Fn = MF.getFunction();
1366  if (Fn->hasExternalLinkage() &&
1367      Subtarget->isTargetCygMing() &&
1368      Fn->getName() == "main")
1369    FuncInfo->setForceFramePointer(true);
1370
1371  // Decorate the function name.
1372  FuncInfo->setDecorationStyle(NameDecorationForCallConv(CallConv));
1373
1374  MachineFrameInfo *MFI = MF.getFrameInfo();
1375  bool Is64Bit = Subtarget->is64Bit();
1376  bool IsWin64 = Subtarget->isTargetWin64();
1377
1378  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1379         "Var args not supported with calling convention fastcc");
1380
1381  // Assign locations to all of the incoming arguments.
1382  SmallVector<CCValAssign, 16> ArgLocs;
1383  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1384                 ArgLocs, *DAG.getContext());
1385  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1386
1387  unsigned LastVal = ~0U;
1388  SDValue ArgValue;
1389  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1390    CCValAssign &VA = ArgLocs[i];
1391    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1392    // places.
1393    assert(VA.getValNo() != LastVal &&
1394           "Don't support value assigned to multiple locs yet");
1395    LastVal = VA.getValNo();
1396
1397    if (VA.isRegLoc()) {
1398      EVT RegVT = VA.getLocVT();
1399      TargetRegisterClass *RC = NULL;
1400      if (RegVT == MVT::i32)
1401        RC = X86::GR32RegisterClass;
1402      else if (Is64Bit && RegVT == MVT::i64)
1403        RC = X86::GR64RegisterClass;
1404      else if (RegVT == MVT::f32)
1405        RC = X86::FR32RegisterClass;
1406      else if (RegVT == MVT::f64)
1407        RC = X86::FR64RegisterClass;
1408      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1409        RC = X86::VR128RegisterClass;
1410      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1411        RC = X86::VR64RegisterClass;
1412      else
1413        llvm_unreachable("Unknown argument type!");
1414
1415      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1416      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1417
1418      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1419      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1420      // right size.
1421      if (VA.getLocInfo() == CCValAssign::SExt)
1422        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1423                               DAG.getValueType(VA.getValVT()));
1424      else if (VA.getLocInfo() == CCValAssign::ZExt)
1425        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1426                               DAG.getValueType(VA.getValVT()));
1427      else if (VA.getLocInfo() == CCValAssign::BCvt)
1428        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1429
1430      if (VA.isExtInLoc()) {
1431        // Handle MMX values passed in XMM regs.
1432        if (RegVT.isVector()) {
1433          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1434                                 ArgValue, DAG.getConstant(0, MVT::i64));
1435          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1436        } else
1437          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1438      }
1439    } else {
1440      assert(VA.isMemLoc());
1441      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1442    }
1443
1444    // If value is passed via pointer - do a load.
1445    if (VA.getLocInfo() == CCValAssign::Indirect)
1446      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0);
1447
1448    InVals.push_back(ArgValue);
1449  }
1450
1451  // The x86-64 ABI for returning structs by value requires that we copy
1452  // the sret argument into %rax for the return. Save the argument into
1453  // a virtual register so that we can access it from the return points.
1454  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1455    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1456    unsigned Reg = FuncInfo->getSRetReturnReg();
1457    if (!Reg) {
1458      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1459      FuncInfo->setSRetReturnReg(Reg);
1460    }
1461    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1462    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1463  }
1464
1465  unsigned StackSize = CCInfo.getNextStackOffset();
1466  // align stack specially for tail calls
1467  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1468    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1469
1470  // If the function takes variable number of arguments, make a frame index for
1471  // the start of the first vararg value... for expansion of llvm.va_start.
1472  if (isVarArg) {
1473    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1474      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1475    }
1476    if (Is64Bit) {
1477      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1478
1479      // FIXME: We should really autogenerate these arrays
1480      static const unsigned GPR64ArgRegsWin64[] = {
1481        X86::RCX, X86::RDX, X86::R8,  X86::R9
1482      };
1483      static const unsigned XMMArgRegsWin64[] = {
1484        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1485      };
1486      static const unsigned GPR64ArgRegs64Bit[] = {
1487        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1488      };
1489      static const unsigned XMMArgRegs64Bit[] = {
1490        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1491        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1492      };
1493      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1494
1495      if (IsWin64) {
1496        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1497        GPR64ArgRegs = GPR64ArgRegsWin64;
1498        XMMArgRegs = XMMArgRegsWin64;
1499      } else {
1500        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1501        GPR64ArgRegs = GPR64ArgRegs64Bit;
1502        XMMArgRegs = XMMArgRegs64Bit;
1503      }
1504      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1505                                                       TotalNumIntRegs);
1506      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1507                                                       TotalNumXMMRegs);
1508
1509      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1510      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1511             "SSE register cannot be used when SSE is disabled!");
1512      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1513             "SSE register cannot be used when SSE is disabled!");
1514      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1515        // Kernel mode asks for SSE to be disabled, so don't push them
1516        // on the stack.
1517        TotalNumXMMRegs = 0;
1518
1519      // For X86-64, if there are vararg parameters that are passed via
1520      // registers, then we must store them to their spots on the stack so they
1521      // may be loaded by deferencing the result of va_next.
1522      VarArgsGPOffset = NumIntRegs * 8;
1523      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1524      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1525                                                 TotalNumXMMRegs * 16, 16);
1526
1527      // Store the integer parameter registers.
1528      SmallVector<SDValue, 8> MemOps;
1529      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1530      unsigned Offset = VarArgsGPOffset;
1531      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1532        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1533                                  DAG.getIntPtrConstant(Offset));
1534        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1535                                     X86::GR64RegisterClass);
1536        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1537        SDValue Store =
1538          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1539                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1540                       Offset);
1541        MemOps.push_back(Store);
1542        Offset += 8;
1543      }
1544
1545      if (!MemOps.empty())
1546          Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1547                             &MemOps[0], MemOps.size());
1548
1549      // Now store the XMM (fp + vector) parameter registers.
1550      SmallVector<SDValue, 11> SaveXMMOps;
1551      SaveXMMOps.push_back(Chain);
1552
1553      unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1554      SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1555      SaveXMMOps.push_back(ALVal);
1556
1557      SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1558      SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1559
1560      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1561        unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1562                                     X86::VR128RegisterClass);
1563        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1564        SaveXMMOps.push_back(Val);
1565      }
1566      Chain = DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, MVT::Other,
1567                          &SaveXMMOps[0], SaveXMMOps.size());
1568    }
1569  }
1570
1571  // Some CCs need callee pop.
1572  if (IsCalleePop(isVarArg, CallConv)) {
1573    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1574    BytesCallerReserves = 0;
1575  } else {
1576    BytesToPopOnReturn  = 0; // Callee pops nothing.
1577    // If this is an sret function, the return should pop the hidden pointer.
1578    if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
1579      BytesToPopOnReturn = 4;
1580    BytesCallerReserves = StackSize;
1581  }
1582
1583  if (!Is64Bit) {
1584    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1585    if (CallConv == CallingConv::X86_FastCall)
1586      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1587  }
1588
1589  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1590
1591  return Chain;
1592}
1593
1594SDValue
1595X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1596                                    SDValue StackPtr, SDValue Arg,
1597                                    DebugLoc dl, SelectionDAG &DAG,
1598                                    const CCValAssign &VA,
1599                                    ISD::ArgFlagsTy Flags) {
1600  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1601  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1602  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1603  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1604  if (Flags.isByVal()) {
1605    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1606  }
1607  return DAG.getStore(Chain, dl, Arg, PtrOff,
1608                      PseudoSourceValue::getStack(), LocMemOffset);
1609}
1610
1611/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1612/// optimization is performed and it is required.
1613SDValue
1614X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1615                                           SDValue &OutRetAddr,
1616                                           SDValue Chain,
1617                                           bool IsTailCall,
1618                                           bool Is64Bit,
1619                                           int FPDiff,
1620                                           DebugLoc dl) {
1621  if (!IsTailCall || FPDiff==0) return Chain;
1622
1623  // Adjust the Return address stack slot.
1624  EVT VT = getPointerTy();
1625  OutRetAddr = getReturnAddressFrameIndex(DAG);
1626
1627  // Load the "old" Return address.
1628  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1629  return SDValue(OutRetAddr.getNode(), 1);
1630}
1631
1632/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1633/// optimization is performed and it is required (FPDiff!=0).
1634static SDValue
1635EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1636                         SDValue Chain, SDValue RetAddrFrIdx,
1637                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1638  // Store the return address to the appropriate stack slot.
1639  if (!FPDiff) return Chain;
1640  // Calculate the new stack slot for the return address.
1641  int SlotSize = Is64Bit ? 8 : 4;
1642  int NewReturnAddrFI =
1643    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1644  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1645  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1646  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1647                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1648  return Chain;
1649}
1650
1651SDValue
1652X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1653                             unsigned CallConv, bool isVarArg, bool isTailCall,
1654                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1655                             const SmallVectorImpl<ISD::InputArg> &Ins,
1656                             DebugLoc dl, SelectionDAG &DAG,
1657                             SmallVectorImpl<SDValue> &InVals) {
1658
1659  MachineFunction &MF = DAG.getMachineFunction();
1660  bool Is64Bit        = Subtarget->is64Bit();
1661  bool IsStructRet    = CallIsStructReturn(Outs);
1662
1663  assert((!isTailCall ||
1664          (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
1665         "IsEligibleForTailCallOptimization missed a case!");
1666  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1667         "Var args not supported with calling convention fastcc");
1668
1669  // Analyze operands of the call, assigning locations to each operand.
1670  SmallVector<CCValAssign, 16> ArgLocs;
1671  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1672                 ArgLocs, *DAG.getContext());
1673  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1674
1675  // Get a count of how many bytes are to be pushed on the stack.
1676  unsigned NumBytes = CCInfo.getNextStackOffset();
1677  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1678    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1679
1680  int FPDiff = 0;
1681  if (isTailCall) {
1682    // Lower arguments at fp - stackoffset + fpdiff.
1683    unsigned NumBytesCallerPushed =
1684      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1685    FPDiff = NumBytesCallerPushed - NumBytes;
1686
1687    // Set the delta of movement of the returnaddr stackslot.
1688    // But only set if delta is greater than previous delta.
1689    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1690      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1691  }
1692
1693  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1694
1695  SDValue RetAddrFrIdx;
1696  // Load return adress for tail calls.
1697  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit,
1698                                  FPDiff, dl);
1699
1700  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1701  SmallVector<SDValue, 8> MemOpChains;
1702  SDValue StackPtr;
1703
1704  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1705  // of tail call optimization arguments are handle later.
1706  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1707    CCValAssign &VA = ArgLocs[i];
1708    EVT RegVT = VA.getLocVT();
1709    SDValue Arg = Outs[i].Val;
1710    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1711    bool isByVal = Flags.isByVal();
1712
1713    // Promote the value if needed.
1714    switch (VA.getLocInfo()) {
1715    default: llvm_unreachable("Unknown loc info!");
1716    case CCValAssign::Full: break;
1717    case CCValAssign::SExt:
1718      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1719      break;
1720    case CCValAssign::ZExt:
1721      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1722      break;
1723    case CCValAssign::AExt:
1724      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1725        // Special case: passing MMX values in XMM registers.
1726        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1727        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1728        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1729      } else
1730        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1731      break;
1732    case CCValAssign::BCvt:
1733      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1734      break;
1735    case CCValAssign::Indirect: {
1736      // Store the argument.
1737      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1738      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1739      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1740                           PseudoSourceValue::getFixedStack(FI), 0);
1741      Arg = SpillSlot;
1742      break;
1743    }
1744    }
1745
1746    if (VA.isRegLoc()) {
1747      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1748    } else {
1749      if (!isTailCall || (isTailCall && isByVal)) {
1750        assert(VA.isMemLoc());
1751        if (StackPtr.getNode() == 0)
1752          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1753
1754        MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1755                                               dl, DAG, VA, Flags));
1756      }
1757    }
1758  }
1759
1760  if (!MemOpChains.empty())
1761    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1762                        &MemOpChains[0], MemOpChains.size());
1763
1764  // Build a sequence of copy-to-reg nodes chained together with token chain
1765  // and flag operands which copy the outgoing args into registers.
1766  SDValue InFlag;
1767  // Tail call byval lowering might overwrite argument registers so in case of
1768  // tail call optimization the copies to registers are lowered later.
1769  if (!isTailCall)
1770    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1771      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1772                               RegsToPass[i].second, InFlag);
1773      InFlag = Chain.getValue(1);
1774    }
1775
1776
1777  if (Subtarget->isPICStyleGOT()) {
1778    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1779    // GOT pointer.
1780    if (!isTailCall) {
1781      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1782                               DAG.getNode(X86ISD::GlobalBaseReg,
1783                                           DebugLoc::getUnknownLoc(),
1784                                           getPointerTy()),
1785                               InFlag);
1786      InFlag = Chain.getValue(1);
1787    } else {
1788      // If we are tail calling and generating PIC/GOT style code load the
1789      // address of the callee into ECX. The value in ecx is used as target of
1790      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1791      // for tail calls on PIC/GOT architectures. Normally we would just put the
1792      // address of GOT into ebx and then call target@PLT. But for tail calls
1793      // ebx would be restored (since ebx is callee saved) before jumping to the
1794      // target@PLT.
1795
1796      // Note: The actual moving to ECX is done further down.
1797      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1798      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1799          !G->getGlobal()->hasProtectedVisibility())
1800        Callee = LowerGlobalAddress(Callee, DAG);
1801      else if (isa<ExternalSymbolSDNode>(Callee))
1802        Callee = LowerExternalSymbol(Callee, DAG);
1803    }
1804  }
1805
1806  if (Is64Bit && isVarArg) {
1807    // From AMD64 ABI document:
1808    // For calls that may call functions that use varargs or stdargs
1809    // (prototype-less calls or calls to functions containing ellipsis (...) in
1810    // the declaration) %al is used as hidden argument to specify the number
1811    // of SSE registers used. The contents of %al do not need to match exactly
1812    // the number of registers, but must be an ubound on the number of SSE
1813    // registers used and is in the range 0 - 8 inclusive.
1814
1815    // FIXME: Verify this on Win64
1816    // Count the number of XMM registers allocated.
1817    static const unsigned XMMArgRegs[] = {
1818      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1819      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1820    };
1821    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1822    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1823           && "SSE registers cannot be used when SSE is disabled");
1824
1825    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1826                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1827    InFlag = Chain.getValue(1);
1828  }
1829
1830
1831  // For tail calls lower the arguments to the 'real' stack slot.
1832  if (isTailCall) {
1833    // Force all the incoming stack arguments to be loaded from the stack
1834    // before any new outgoing arguments are stored to the stack, because the
1835    // outgoing stack slots may alias the incoming argument stack slots, and
1836    // the alias isn't otherwise explicit. This is slightly more conservative
1837    // than necessary, because it means that each store effectively depends
1838    // on every argument instead of just those arguments it would clobber.
1839    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1840
1841    SmallVector<SDValue, 8> MemOpChains2;
1842    SDValue FIN;
1843    int FI = 0;
1844    // Do not flag preceeding copytoreg stuff together with the following stuff.
1845    InFlag = SDValue();
1846    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1847      CCValAssign &VA = ArgLocs[i];
1848      if (!VA.isRegLoc()) {
1849        assert(VA.isMemLoc());
1850        SDValue Arg = Outs[i].Val;
1851        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1852        // Create frame index.
1853        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1854        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1855        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1856        FIN = DAG.getFrameIndex(FI, getPointerTy());
1857
1858        if (Flags.isByVal()) {
1859          // Copy relative to framepointer.
1860          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1861          if (StackPtr.getNode() == 0)
1862            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1863                                          getPointerTy());
1864          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1865
1866          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
1867                                                           ArgChain,
1868                                                           Flags, DAG, dl));
1869        } else {
1870          // Store relative to framepointer.
1871          MemOpChains2.push_back(
1872            DAG.getStore(ArgChain, dl, Arg, FIN,
1873                         PseudoSourceValue::getFixedStack(FI), 0));
1874        }
1875      }
1876    }
1877
1878    if (!MemOpChains2.empty())
1879      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1880                          &MemOpChains2[0], MemOpChains2.size());
1881
1882    // Copy arguments to their registers.
1883    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1884      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1885                               RegsToPass[i].second, InFlag);
1886      InFlag = Chain.getValue(1);
1887    }
1888    InFlag =SDValue();
1889
1890    // Store the return address to the appropriate stack slot.
1891    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1892                                     FPDiff, dl);
1893  }
1894
1895  // If the callee is a GlobalAddress node (quite common, every direct call is)
1896  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1897  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1898    // We should use extra load for direct calls to dllimported functions in
1899    // non-JIT mode.
1900    GlobalValue *GV = G->getGlobal();
1901    if (!GV->hasDLLImportLinkage()) {
1902      unsigned char OpFlags = 0;
1903
1904      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1905      // external symbols most go through the PLT in PIC mode.  If the symbol
1906      // has hidden or protected visibility, or if it is static or local, then
1907      // we don't need to use the PLT - we can directly call it.
1908      if (Subtarget->isTargetELF() &&
1909          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1910          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1911        OpFlags = X86II::MO_PLT;
1912      } else if (Subtarget->isPICStyleStubAny() &&
1913               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1914               Subtarget->getDarwinVers() < 9) {
1915        // PC-relative references to external symbols should go through $stub,
1916        // unless we're building with the leopard linker or later, which
1917        // automatically synthesizes these stubs.
1918        OpFlags = X86II::MO_DARWIN_STUB;
1919      }
1920
1921      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
1922                                          G->getOffset(), OpFlags);
1923    }
1924  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1925    unsigned char OpFlags = 0;
1926
1927    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1928    // symbols should go through the PLT.
1929    if (Subtarget->isTargetELF() &&
1930        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1931      OpFlags = X86II::MO_PLT;
1932    } else if (Subtarget->isPICStyleStubAny() &&
1933             Subtarget->getDarwinVers() < 9) {
1934      // PC-relative references to external symbols should go through $stub,
1935      // unless we're building with the leopard linker or later, which
1936      // automatically synthesizes these stubs.
1937      OpFlags = X86II::MO_DARWIN_STUB;
1938    }
1939
1940    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
1941                                         OpFlags);
1942  } else if (isTailCall) {
1943    unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
1944
1945    Chain = DAG.getCopyToReg(Chain,  dl,
1946                             DAG.getRegister(Opc, getPointerTy()),
1947                             Callee,InFlag);
1948    Callee = DAG.getRegister(Opc, getPointerTy());
1949    // Add register as live out.
1950    MF.getRegInfo().addLiveOut(Opc);
1951  }
1952
1953  // Returns a chain & a flag for retval copy to use.
1954  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1955  SmallVector<SDValue, 8> Ops;
1956
1957  if (isTailCall) {
1958    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1959                           DAG.getIntPtrConstant(0, true), InFlag);
1960    InFlag = Chain.getValue(1);
1961  }
1962
1963  Ops.push_back(Chain);
1964  Ops.push_back(Callee);
1965
1966  if (isTailCall)
1967    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1968
1969  // Add argument registers to the end of the list so that they are known live
1970  // into the call.
1971  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1972    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1973                                  RegsToPass[i].second.getValueType()));
1974
1975  // Add an implicit use GOT pointer in EBX.
1976  if (!isTailCall && Subtarget->isPICStyleGOT())
1977    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1978
1979  // Add an implicit use of AL for x86 vararg functions.
1980  if (Is64Bit && isVarArg)
1981    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1982
1983  if (InFlag.getNode())
1984    Ops.push_back(InFlag);
1985
1986  if (isTailCall) {
1987    // If this is the first return lowered for this function, add the regs
1988    // to the liveout set for the function.
1989    if (MF.getRegInfo().liveout_empty()) {
1990      SmallVector<CCValAssign, 16> RVLocs;
1991      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1992                     *DAG.getContext());
1993      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1994      for (unsigned i = 0; i != RVLocs.size(); ++i)
1995        if (RVLocs[i].isRegLoc())
1996          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1997    }
1998
1999    assert(((Callee.getOpcode() == ISD::Register &&
2000               (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
2001                cast<RegisterSDNode>(Callee)->getReg() == X86::R9)) ||
2002              Callee.getOpcode() == ISD::TargetExternalSymbol ||
2003              Callee.getOpcode() == ISD::TargetGlobalAddress) &&
2004             "Expecting an global address, external symbol, or register");
2005
2006    return DAG.getNode(X86ISD::TC_RETURN, dl,
2007                       NodeTys, &Ops[0], Ops.size());
2008  }
2009
2010  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2011  InFlag = Chain.getValue(1);
2012
2013  // Create the CALLSEQ_END node.
2014  unsigned NumBytesForCalleeToPush;
2015  if (IsCalleePop(isVarArg, CallConv))
2016    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2017  else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
2018    // If this is is a call to a struct-return function, the callee
2019    // pops the hidden struct pointer, so we have to push it back.
2020    // This is common for Darwin/X86, Linux & Mingw32 targets.
2021    NumBytesForCalleeToPush = 4;
2022  else
2023    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2024
2025  // Returns a flag for retval copy to use.
2026  Chain = DAG.getCALLSEQ_END(Chain,
2027                             DAG.getIntPtrConstant(NumBytes, true),
2028                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2029                                                   true),
2030                             InFlag);
2031  InFlag = Chain.getValue(1);
2032
2033  // Handle result values, copying them out of physregs into vregs that we
2034  // return.
2035  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2036                         Ins, dl, DAG, InVals);
2037}
2038
2039
2040//===----------------------------------------------------------------------===//
2041//                Fast Calling Convention (tail call) implementation
2042//===----------------------------------------------------------------------===//
2043
2044//  Like std call, callee cleans arguments, convention except that ECX is
2045//  reserved for storing the tail called function address. Only 2 registers are
2046//  free for argument passing (inreg). Tail call optimization is performed
2047//  provided:
2048//                * tailcallopt is enabled
2049//                * caller/callee are fastcc
2050//  On X86_64 architecture with GOT-style position independent code only local
2051//  (within module) calls are supported at the moment.
2052//  To keep the stack aligned according to platform abi the function
2053//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2054//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2055//  If a tail called function callee has more arguments than the caller the
2056//  caller needs to make sure that there is room to move the RETADDR to. This is
2057//  achieved by reserving an area the size of the argument delta right after the
2058//  original REtADDR, but before the saved framepointer or the spilled registers
2059//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2060//  stack layout:
2061//    arg1
2062//    arg2
2063//    RETADDR
2064//    [ new RETADDR
2065//      move area ]
2066//    (possible EBP)
2067//    ESI
2068//    EDI
2069//    local1 ..
2070
2071/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2072/// for a 16 byte align requirement.
2073unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2074                                                        SelectionDAG& DAG) {
2075  MachineFunction &MF = DAG.getMachineFunction();
2076  const TargetMachine &TM = MF.getTarget();
2077  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2078  unsigned StackAlignment = TFI.getStackAlignment();
2079  uint64_t AlignMask = StackAlignment - 1;
2080  int64_t Offset = StackSize;
2081  uint64_t SlotSize = TD->getPointerSize();
2082  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2083    // Number smaller than 12 so just add the difference.
2084    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2085  } else {
2086    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2087    Offset = ((~AlignMask) & Offset) + StackAlignment +
2088      (StackAlignment-SlotSize);
2089  }
2090  return Offset;
2091}
2092
2093/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2094/// for tail call optimization. Targets which want to do tail call
2095/// optimization should implement this function.
2096bool
2097X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2098                                                     unsigned CalleeCC,
2099                                                     bool isVarArg,
2100                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2101                                                     SelectionDAG& DAG) const {
2102  MachineFunction &MF = DAG.getMachineFunction();
2103  unsigned CallerCC = MF.getFunction()->getCallingConv();
2104  return CalleeCC == CallingConv::Fast && CallerCC == CalleeCC;
2105}
2106
2107FastISel *
2108X86TargetLowering::createFastISel(MachineFunction &mf,
2109                                  MachineModuleInfo *mmo,
2110                                  DwarfWriter *dw,
2111                                  DenseMap<const Value *, unsigned> &vm,
2112                                  DenseMap<const BasicBlock *,
2113                                           MachineBasicBlock *> &bm,
2114                                  DenseMap<const AllocaInst *, int> &am
2115#ifndef NDEBUG
2116                                  , SmallSet<Instruction*, 8> &cil
2117#endif
2118                                  ) {
2119  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2120#ifndef NDEBUG
2121                             , cil
2122#endif
2123                             );
2124}
2125
2126
2127//===----------------------------------------------------------------------===//
2128//                           Other Lowering Hooks
2129//===----------------------------------------------------------------------===//
2130
2131
2132SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2133  MachineFunction &MF = DAG.getMachineFunction();
2134  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2135  int ReturnAddrIndex = FuncInfo->getRAIndex();
2136
2137  if (ReturnAddrIndex == 0) {
2138    // Set up a frame object for the return address.
2139    uint64_t SlotSize = TD->getPointerSize();
2140    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2141    FuncInfo->setRAIndex(ReturnAddrIndex);
2142  }
2143
2144  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2145}
2146
2147
2148bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2149                                       bool hasSymbolicDisplacement) {
2150  // Offset should fit into 32 bit immediate field.
2151  if (!isInt32(Offset))
2152    return false;
2153
2154  // If we don't have a symbolic displacement - we don't have any extra
2155  // restrictions.
2156  if (!hasSymbolicDisplacement)
2157    return true;
2158
2159  // FIXME: Some tweaks might be needed for medium code model.
2160  if (M != CodeModel::Small && M != CodeModel::Kernel)
2161    return false;
2162
2163  // For small code model we assume that latest object is 16MB before end of 31
2164  // bits boundary. We may also accept pretty large negative constants knowing
2165  // that all objects are in the positive half of address space.
2166  if (M == CodeModel::Small && Offset < 16*1024*1024)
2167    return true;
2168
2169  // For kernel code model we know that all object resist in the negative half
2170  // of 32bits address space. We may not accept negative offsets, since they may
2171  // be just off and we may accept pretty large positive ones.
2172  if (M == CodeModel::Kernel && Offset > 0)
2173    return true;
2174
2175  return false;
2176}
2177
2178/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2179/// specific condition code, returning the condition code and the LHS/RHS of the
2180/// comparison to make.
2181static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2182                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2183  if (!isFP) {
2184    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2185      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2186        // X > -1   -> X == 0, jump !sign.
2187        RHS = DAG.getConstant(0, RHS.getValueType());
2188        return X86::COND_NS;
2189      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2190        // X < 0   -> X == 0, jump on sign.
2191        return X86::COND_S;
2192      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2193        // X < 1   -> X <= 0
2194        RHS = DAG.getConstant(0, RHS.getValueType());
2195        return X86::COND_LE;
2196      }
2197    }
2198
2199    switch (SetCCOpcode) {
2200    default: llvm_unreachable("Invalid integer condition!");
2201    case ISD::SETEQ:  return X86::COND_E;
2202    case ISD::SETGT:  return X86::COND_G;
2203    case ISD::SETGE:  return X86::COND_GE;
2204    case ISD::SETLT:  return X86::COND_L;
2205    case ISD::SETLE:  return X86::COND_LE;
2206    case ISD::SETNE:  return X86::COND_NE;
2207    case ISD::SETULT: return X86::COND_B;
2208    case ISD::SETUGT: return X86::COND_A;
2209    case ISD::SETULE: return X86::COND_BE;
2210    case ISD::SETUGE: return X86::COND_AE;
2211    }
2212  }
2213
2214  // First determine if it is required or is profitable to flip the operands.
2215
2216  // If LHS is a foldable load, but RHS is not, flip the condition.
2217  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2218      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2219    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2220    std::swap(LHS, RHS);
2221  }
2222
2223  switch (SetCCOpcode) {
2224  default: break;
2225  case ISD::SETOLT:
2226  case ISD::SETOLE:
2227  case ISD::SETUGT:
2228  case ISD::SETUGE:
2229    std::swap(LHS, RHS);
2230    break;
2231  }
2232
2233  // On a floating point condition, the flags are set as follows:
2234  // ZF  PF  CF   op
2235  //  0 | 0 | 0 | X > Y
2236  //  0 | 0 | 1 | X < Y
2237  //  1 | 0 | 0 | X == Y
2238  //  1 | 1 | 1 | unordered
2239  switch (SetCCOpcode) {
2240  default: llvm_unreachable("Condcode should be pre-legalized away");
2241  case ISD::SETUEQ:
2242  case ISD::SETEQ:   return X86::COND_E;
2243  case ISD::SETOLT:              // flipped
2244  case ISD::SETOGT:
2245  case ISD::SETGT:   return X86::COND_A;
2246  case ISD::SETOLE:              // flipped
2247  case ISD::SETOGE:
2248  case ISD::SETGE:   return X86::COND_AE;
2249  case ISD::SETUGT:              // flipped
2250  case ISD::SETULT:
2251  case ISD::SETLT:   return X86::COND_B;
2252  case ISD::SETUGE:              // flipped
2253  case ISD::SETULE:
2254  case ISD::SETLE:   return X86::COND_BE;
2255  case ISD::SETONE:
2256  case ISD::SETNE:   return X86::COND_NE;
2257  case ISD::SETUO:   return X86::COND_P;
2258  case ISD::SETO:    return X86::COND_NP;
2259  }
2260}
2261
2262/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2263/// code. Current x86 isa includes the following FP cmov instructions:
2264/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2265static bool hasFPCMov(unsigned X86CC) {
2266  switch (X86CC) {
2267  default:
2268    return false;
2269  case X86::COND_B:
2270  case X86::COND_BE:
2271  case X86::COND_E:
2272  case X86::COND_P:
2273  case X86::COND_A:
2274  case X86::COND_AE:
2275  case X86::COND_NE:
2276  case X86::COND_NP:
2277    return true;
2278  }
2279}
2280
2281/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2282/// the specified range (L, H].
2283static bool isUndefOrInRange(int Val, int Low, int Hi) {
2284  return (Val < 0) || (Val >= Low && Val < Hi);
2285}
2286
2287/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2288/// specified value.
2289static bool isUndefOrEqual(int Val, int CmpVal) {
2290  if (Val < 0 || Val == CmpVal)
2291    return true;
2292  return false;
2293}
2294
2295/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2296/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2297/// the second operand.
2298static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2299  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2300    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2301  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2302    return (Mask[0] < 2 && Mask[1] < 2);
2303  return false;
2304}
2305
2306bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2307  SmallVector<int, 8> M;
2308  N->getMask(M);
2309  return ::isPSHUFDMask(M, N->getValueType(0));
2310}
2311
2312/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2313/// is suitable for input to PSHUFHW.
2314static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2315  if (VT != MVT::v8i16)
2316    return false;
2317
2318  // Lower quadword copied in order or undef.
2319  for (int i = 0; i != 4; ++i)
2320    if (Mask[i] >= 0 && Mask[i] != i)
2321      return false;
2322
2323  // Upper quadword shuffled.
2324  for (int i = 4; i != 8; ++i)
2325    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2326      return false;
2327
2328  return true;
2329}
2330
2331bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2332  SmallVector<int, 8> M;
2333  N->getMask(M);
2334  return ::isPSHUFHWMask(M, N->getValueType(0));
2335}
2336
2337/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2338/// is suitable for input to PSHUFLW.
2339static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2340  if (VT != MVT::v8i16)
2341    return false;
2342
2343  // Upper quadword copied in order.
2344  for (int i = 4; i != 8; ++i)
2345    if (Mask[i] >= 0 && Mask[i] != i)
2346      return false;
2347
2348  // Lower quadword shuffled.
2349  for (int i = 0; i != 4; ++i)
2350    if (Mask[i] >= 4)
2351      return false;
2352
2353  return true;
2354}
2355
2356bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2357  SmallVector<int, 8> M;
2358  N->getMask(M);
2359  return ::isPSHUFLWMask(M, N->getValueType(0));
2360}
2361
2362/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2363/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2364static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2365  int NumElems = VT.getVectorNumElements();
2366  if (NumElems != 2 && NumElems != 4)
2367    return false;
2368
2369  int Half = NumElems / 2;
2370  for (int i = 0; i < Half; ++i)
2371    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2372      return false;
2373  for (int i = Half; i < NumElems; ++i)
2374    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2375      return false;
2376
2377  return true;
2378}
2379
2380bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2381  SmallVector<int, 8> M;
2382  N->getMask(M);
2383  return ::isSHUFPMask(M, N->getValueType(0));
2384}
2385
2386/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2387/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2388/// half elements to come from vector 1 (which would equal the dest.) and
2389/// the upper half to come from vector 2.
2390static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2391  int NumElems = VT.getVectorNumElements();
2392
2393  if (NumElems != 2 && NumElems != 4)
2394    return false;
2395
2396  int Half = NumElems / 2;
2397  for (int i = 0; i < Half; ++i)
2398    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2399      return false;
2400  for (int i = Half; i < NumElems; ++i)
2401    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2402      return false;
2403  return true;
2404}
2405
2406static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2407  SmallVector<int, 8> M;
2408  N->getMask(M);
2409  return isCommutedSHUFPMask(M, N->getValueType(0));
2410}
2411
2412/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2413/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2414bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2415  if (N->getValueType(0).getVectorNumElements() != 4)
2416    return false;
2417
2418  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2419  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2420         isUndefOrEqual(N->getMaskElt(1), 7) &&
2421         isUndefOrEqual(N->getMaskElt(2), 2) &&
2422         isUndefOrEqual(N->getMaskElt(3), 3);
2423}
2424
2425/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2426/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2427bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2428  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2429
2430  if (NumElems != 2 && NumElems != 4)
2431    return false;
2432
2433  for (unsigned i = 0; i < NumElems/2; ++i)
2434    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2435      return false;
2436
2437  for (unsigned i = NumElems/2; i < NumElems; ++i)
2438    if (!isUndefOrEqual(N->getMaskElt(i), i))
2439      return false;
2440
2441  return true;
2442}
2443
2444/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2445/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2446/// and MOVLHPS.
2447bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
2448  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2449
2450  if (NumElems != 2 && NumElems != 4)
2451    return false;
2452
2453  for (unsigned i = 0; i < NumElems/2; ++i)
2454    if (!isUndefOrEqual(N->getMaskElt(i), i))
2455      return false;
2456
2457  for (unsigned i = 0; i < NumElems/2; ++i)
2458    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2459      return false;
2460
2461  return true;
2462}
2463
2464/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2465/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2466/// <2, 3, 2, 3>
2467bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2468  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2469
2470  if (NumElems != 4)
2471    return false;
2472
2473  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2474         isUndefOrEqual(N->getMaskElt(1), 3) &&
2475         isUndefOrEqual(N->getMaskElt(2), 2) &&
2476         isUndefOrEqual(N->getMaskElt(3), 3);
2477}
2478
2479/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2480/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2481static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2482                         bool V2IsSplat = false) {
2483  int NumElts = VT.getVectorNumElements();
2484  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2485    return false;
2486
2487  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2488    int BitI  = Mask[i];
2489    int BitI1 = Mask[i+1];
2490    if (!isUndefOrEqual(BitI, j))
2491      return false;
2492    if (V2IsSplat) {
2493      if (!isUndefOrEqual(BitI1, NumElts))
2494        return false;
2495    } else {
2496      if (!isUndefOrEqual(BitI1, j + NumElts))
2497        return false;
2498    }
2499  }
2500  return true;
2501}
2502
2503bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2504  SmallVector<int, 8> M;
2505  N->getMask(M);
2506  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2507}
2508
2509/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2510/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2511static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2512                         bool V2IsSplat = false) {
2513  int NumElts = VT.getVectorNumElements();
2514  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2515    return false;
2516
2517  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2518    int BitI  = Mask[i];
2519    int BitI1 = Mask[i+1];
2520    if (!isUndefOrEqual(BitI, j + NumElts/2))
2521      return false;
2522    if (V2IsSplat) {
2523      if (isUndefOrEqual(BitI1, NumElts))
2524        return false;
2525    } else {
2526      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2527        return false;
2528    }
2529  }
2530  return true;
2531}
2532
2533bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2534  SmallVector<int, 8> M;
2535  N->getMask(M);
2536  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2537}
2538
2539/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2540/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2541/// <0, 0, 1, 1>
2542static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2543  int NumElems = VT.getVectorNumElements();
2544  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2545    return false;
2546
2547  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2548    int BitI  = Mask[i];
2549    int BitI1 = Mask[i+1];
2550    if (!isUndefOrEqual(BitI, j))
2551      return false;
2552    if (!isUndefOrEqual(BitI1, j))
2553      return false;
2554  }
2555  return true;
2556}
2557
2558bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2559  SmallVector<int, 8> M;
2560  N->getMask(M);
2561  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2562}
2563
2564/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2565/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2566/// <2, 2, 3, 3>
2567static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2568  int NumElems = VT.getVectorNumElements();
2569  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2570    return false;
2571
2572  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2573    int BitI  = Mask[i];
2574    int BitI1 = Mask[i+1];
2575    if (!isUndefOrEqual(BitI, j))
2576      return false;
2577    if (!isUndefOrEqual(BitI1, j))
2578      return false;
2579  }
2580  return true;
2581}
2582
2583bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2584  SmallVector<int, 8> M;
2585  N->getMask(M);
2586  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2587}
2588
2589/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2590/// specifies a shuffle of elements that is suitable for input to MOVSS,
2591/// MOVSD, and MOVD, i.e. setting the lowest element.
2592static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2593  if (VT.getVectorElementType().getSizeInBits() < 32)
2594    return false;
2595
2596  int NumElts = VT.getVectorNumElements();
2597
2598  if (!isUndefOrEqual(Mask[0], NumElts))
2599    return false;
2600
2601  for (int i = 1; i < NumElts; ++i)
2602    if (!isUndefOrEqual(Mask[i], i))
2603      return false;
2604
2605  return true;
2606}
2607
2608bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2609  SmallVector<int, 8> M;
2610  N->getMask(M);
2611  return ::isMOVLMask(M, N->getValueType(0));
2612}
2613
2614/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2615/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2616/// element of vector 2 and the other elements to come from vector 1 in order.
2617static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2618                               bool V2IsSplat = false, bool V2IsUndef = false) {
2619  int NumOps = VT.getVectorNumElements();
2620  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2621    return false;
2622
2623  if (!isUndefOrEqual(Mask[0], 0))
2624    return false;
2625
2626  for (int i = 1; i < NumOps; ++i)
2627    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2628          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2629          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2630      return false;
2631
2632  return true;
2633}
2634
2635static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2636                           bool V2IsUndef = false) {
2637  SmallVector<int, 8> M;
2638  N->getMask(M);
2639  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2640}
2641
2642/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2643/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2644bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2645  if (N->getValueType(0).getVectorNumElements() != 4)
2646    return false;
2647
2648  // Expect 1, 1, 3, 3
2649  for (unsigned i = 0; i < 2; ++i) {
2650    int Elt = N->getMaskElt(i);
2651    if (Elt >= 0 && Elt != 1)
2652      return false;
2653  }
2654
2655  bool HasHi = false;
2656  for (unsigned i = 2; i < 4; ++i) {
2657    int Elt = N->getMaskElt(i);
2658    if (Elt >= 0 && Elt != 3)
2659      return false;
2660    if (Elt == 3)
2661      HasHi = true;
2662  }
2663  // Don't use movshdup if it can be done with a shufps.
2664  // FIXME: verify that matching u, u, 3, 3 is what we want.
2665  return HasHi;
2666}
2667
2668/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2669/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2670bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2671  if (N->getValueType(0).getVectorNumElements() != 4)
2672    return false;
2673
2674  // Expect 0, 0, 2, 2
2675  for (unsigned i = 0; i < 2; ++i)
2676    if (N->getMaskElt(i) > 0)
2677      return false;
2678
2679  bool HasHi = false;
2680  for (unsigned i = 2; i < 4; ++i) {
2681    int Elt = N->getMaskElt(i);
2682    if (Elt >= 0 && Elt != 2)
2683      return false;
2684    if (Elt == 2)
2685      HasHi = true;
2686  }
2687  // Don't use movsldup if it can be done with a shufps.
2688  return HasHi;
2689}
2690
2691/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2692/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2693bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2694  int e = N->getValueType(0).getVectorNumElements() / 2;
2695
2696  for (int i = 0; i < e; ++i)
2697    if (!isUndefOrEqual(N->getMaskElt(i), i))
2698      return false;
2699  for (int i = 0; i < e; ++i)
2700    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2701      return false;
2702  return true;
2703}
2704
2705/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2706/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2707/// instructions.
2708unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2709  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2710  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2711
2712  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2713  unsigned Mask = 0;
2714  for (int i = 0; i < NumOperands; ++i) {
2715    int Val = SVOp->getMaskElt(NumOperands-i-1);
2716    if (Val < 0) Val = 0;
2717    if (Val >= NumOperands) Val -= NumOperands;
2718    Mask |= Val;
2719    if (i != NumOperands - 1)
2720      Mask <<= Shift;
2721  }
2722  return Mask;
2723}
2724
2725/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2726/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2727/// instructions.
2728unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2729  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2730  unsigned Mask = 0;
2731  // 8 nodes, but we only care about the last 4.
2732  for (unsigned i = 7; i >= 4; --i) {
2733    int Val = SVOp->getMaskElt(i);
2734    if (Val >= 0)
2735      Mask |= (Val - 4);
2736    if (i != 4)
2737      Mask <<= 2;
2738  }
2739  return Mask;
2740}
2741
2742/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2743/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2744/// instructions.
2745unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2746  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2747  unsigned Mask = 0;
2748  // 8 nodes, but we only care about the first 4.
2749  for (int i = 3; i >= 0; --i) {
2750    int Val = SVOp->getMaskElt(i);
2751    if (Val >= 0)
2752      Mask |= Val;
2753    if (i != 0)
2754      Mask <<= 2;
2755  }
2756  return Mask;
2757}
2758
2759/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2760/// constant +0.0.
2761bool X86::isZeroNode(SDValue Elt) {
2762  return ((isa<ConstantSDNode>(Elt) &&
2763           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2764          (isa<ConstantFPSDNode>(Elt) &&
2765           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2766}
2767
2768/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2769/// their permute mask.
2770static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2771                                    SelectionDAG &DAG) {
2772  EVT VT = SVOp->getValueType(0);
2773  unsigned NumElems = VT.getVectorNumElements();
2774  SmallVector<int, 8> MaskVec;
2775
2776  for (unsigned i = 0; i != NumElems; ++i) {
2777    int idx = SVOp->getMaskElt(i);
2778    if (idx < 0)
2779      MaskVec.push_back(idx);
2780    else if (idx < (int)NumElems)
2781      MaskVec.push_back(idx + NumElems);
2782    else
2783      MaskVec.push_back(idx - NumElems);
2784  }
2785  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2786                              SVOp->getOperand(0), &MaskVec[0]);
2787}
2788
2789/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2790/// the two vector operands have swapped position.
2791static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
2792  unsigned NumElems = VT.getVectorNumElements();
2793  for (unsigned i = 0; i != NumElems; ++i) {
2794    int idx = Mask[i];
2795    if (idx < 0)
2796      continue;
2797    else if (idx < (int)NumElems)
2798      Mask[i] = idx + NumElems;
2799    else
2800      Mask[i] = idx - NumElems;
2801  }
2802}
2803
2804/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2805/// match movhlps. The lower half elements should come from upper half of
2806/// V1 (and in order), and the upper half elements should come from the upper
2807/// half of V2 (and in order).
2808static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2809  if (Op->getValueType(0).getVectorNumElements() != 4)
2810    return false;
2811  for (unsigned i = 0, e = 2; i != e; ++i)
2812    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2813      return false;
2814  for (unsigned i = 2; i != 4; ++i)
2815    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2816      return false;
2817  return true;
2818}
2819
2820/// isScalarLoadToVector - Returns true if the node is a scalar load that
2821/// is promoted to a vector. It also returns the LoadSDNode by reference if
2822/// required.
2823static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2824  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2825    return false;
2826  N = N->getOperand(0).getNode();
2827  if (!ISD::isNON_EXTLoad(N))
2828    return false;
2829  if (LD)
2830    *LD = cast<LoadSDNode>(N);
2831  return true;
2832}
2833
2834/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2835/// match movlp{s|d}. The lower half elements should come from lower half of
2836/// V1 (and in order), and the upper half elements should come from the upper
2837/// half of V2 (and in order). And since V1 will become the source of the
2838/// MOVLP, it must be either a vector load or a scalar load to vector.
2839static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2840                               ShuffleVectorSDNode *Op) {
2841  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2842    return false;
2843  // Is V2 is a vector load, don't do this transformation. We will try to use
2844  // load folding shufps op.
2845  if (ISD::isNON_EXTLoad(V2))
2846    return false;
2847
2848  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2849
2850  if (NumElems != 2 && NumElems != 4)
2851    return false;
2852  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2853    if (!isUndefOrEqual(Op->getMaskElt(i), i))
2854      return false;
2855  for (unsigned i = NumElems/2; i != NumElems; ++i)
2856    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2857      return false;
2858  return true;
2859}
2860
2861/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2862/// all the same.
2863static bool isSplatVector(SDNode *N) {
2864  if (N->getOpcode() != ISD::BUILD_VECTOR)
2865    return false;
2866
2867  SDValue SplatValue = N->getOperand(0);
2868  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2869    if (N->getOperand(i) != SplatValue)
2870      return false;
2871  return true;
2872}
2873
2874/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2875/// to an zero vector.
2876/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2877static bool isZeroShuffle(ShuffleVectorSDNode *N) {
2878  SDValue V1 = N->getOperand(0);
2879  SDValue V2 = N->getOperand(1);
2880  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2881  for (unsigned i = 0; i != NumElems; ++i) {
2882    int Idx = N->getMaskElt(i);
2883    if (Idx >= (int)NumElems) {
2884      unsigned Opc = V2.getOpcode();
2885      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2886        continue;
2887      if (Opc != ISD::BUILD_VECTOR ||
2888          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
2889        return false;
2890    } else if (Idx >= 0) {
2891      unsigned Opc = V1.getOpcode();
2892      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2893        continue;
2894      if (Opc != ISD::BUILD_VECTOR ||
2895          !X86::isZeroNode(V1.getOperand(Idx)))
2896        return false;
2897    }
2898  }
2899  return true;
2900}
2901
2902/// getZeroVector - Returns a vector of specified type with all zero elements.
2903///
2904static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
2905                             DebugLoc dl) {
2906  assert(VT.isVector() && "Expected a vector type");
2907
2908  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2909  // type.  This ensures they get CSE'd.
2910  SDValue Vec;
2911  if (VT.getSizeInBits() == 64) { // MMX
2912    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2913    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2914  } else if (HasSSE2) {  // SSE2
2915    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2916    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2917  } else { // SSE1
2918    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2919    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2920  }
2921  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2922}
2923
2924/// getOnesVector - Returns a vector of specified type with all bits set.
2925///
2926static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2927  assert(VT.isVector() && "Expected a vector type");
2928
2929  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2930  // type.  This ensures they get CSE'd.
2931  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2932  SDValue Vec;
2933  if (VT.getSizeInBits() == 64)  // MMX
2934    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2935  else                                              // SSE
2936    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2937  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2938}
2939
2940
2941/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2942/// that point to V2 points to its first element.
2943static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
2944  EVT VT = SVOp->getValueType(0);
2945  unsigned NumElems = VT.getVectorNumElements();
2946
2947  bool Changed = false;
2948  SmallVector<int, 8> MaskVec;
2949  SVOp->getMask(MaskVec);
2950
2951  for (unsigned i = 0; i != NumElems; ++i) {
2952    if (MaskVec[i] > (int)NumElems) {
2953      MaskVec[i] = NumElems;
2954      Changed = true;
2955    }
2956  }
2957  if (Changed)
2958    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
2959                                SVOp->getOperand(1), &MaskVec[0]);
2960  return SDValue(SVOp, 0);
2961}
2962
2963/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2964/// operation of specified width.
2965static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
2966                       SDValue V2) {
2967  unsigned NumElems = VT.getVectorNumElements();
2968  SmallVector<int, 8> Mask;
2969  Mask.push_back(NumElems);
2970  for (unsigned i = 1; i != NumElems; ++i)
2971    Mask.push_back(i);
2972  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2973}
2974
2975/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
2976static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
2977                          SDValue V2) {
2978  unsigned NumElems = VT.getVectorNumElements();
2979  SmallVector<int, 8> Mask;
2980  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2981    Mask.push_back(i);
2982    Mask.push_back(i + NumElems);
2983  }
2984  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2985}
2986
2987/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
2988static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
2989                          SDValue V2) {
2990  unsigned NumElems = VT.getVectorNumElements();
2991  unsigned Half = NumElems/2;
2992  SmallVector<int, 8> Mask;
2993  for (unsigned i = 0; i != Half; ++i) {
2994    Mask.push_back(i + Half);
2995    Mask.push_back(i + NumElems + Half);
2996  }
2997  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2998}
2999
3000/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3001static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3002                            bool HasSSE2) {
3003  if (SV->getValueType(0).getVectorNumElements() <= 4)
3004    return SDValue(SV, 0);
3005
3006  EVT PVT = MVT::v4f32;
3007  EVT VT = SV->getValueType(0);
3008  DebugLoc dl = SV->getDebugLoc();
3009  SDValue V1 = SV->getOperand(0);
3010  int NumElems = VT.getVectorNumElements();
3011  int EltNo = SV->getSplatIndex();
3012
3013  // unpack elements to the correct location
3014  while (NumElems > 4) {
3015    if (EltNo < NumElems/2) {
3016      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3017    } else {
3018      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3019      EltNo -= NumElems/2;
3020    }
3021    NumElems >>= 1;
3022  }
3023
3024  // Perform the splat.
3025  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3026  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3027  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3028  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3029}
3030
3031/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3032/// vector of zero or undef vector.  This produces a shuffle where the low
3033/// element of V2 is swizzled into the zero/undef vector, landing at element
3034/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3035static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3036                                             bool isZero, bool HasSSE2,
3037                                             SelectionDAG &DAG) {
3038  EVT VT = V2.getValueType();
3039  SDValue V1 = isZero
3040    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3041  unsigned NumElems = VT.getVectorNumElements();
3042  SmallVector<int, 16> MaskVec;
3043  for (unsigned i = 0; i != NumElems; ++i)
3044    // If this is the insertion idx, put the low elt of V2 here.
3045    MaskVec.push_back(i == Idx ? NumElems : i);
3046  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3047}
3048
3049/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3050/// a shuffle that is zero.
3051static
3052unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3053                                  bool Low, SelectionDAG &DAG) {
3054  unsigned NumZeros = 0;
3055  for (int i = 0; i < NumElems; ++i) {
3056    unsigned Index = Low ? i : NumElems-i-1;
3057    int Idx = SVOp->getMaskElt(Index);
3058    if (Idx < 0) {
3059      ++NumZeros;
3060      continue;
3061    }
3062    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3063    if (Elt.getNode() && X86::isZeroNode(Elt))
3064      ++NumZeros;
3065    else
3066      break;
3067  }
3068  return NumZeros;
3069}
3070
3071/// isVectorShift - Returns true if the shuffle can be implemented as a
3072/// logical left or right shift of a vector.
3073/// FIXME: split into pslldqi, psrldqi, palignr variants.
3074static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3075                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3076  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3077
3078  isLeft = true;
3079  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3080  if (!NumZeros) {
3081    isLeft = false;
3082    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3083    if (!NumZeros)
3084      return false;
3085  }
3086  bool SeenV1 = false;
3087  bool SeenV2 = false;
3088  for (int i = NumZeros; i < NumElems; ++i) {
3089    int Val = isLeft ? (i - NumZeros) : i;
3090    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3091    if (Idx < 0)
3092      continue;
3093    if (Idx < NumElems)
3094      SeenV1 = true;
3095    else {
3096      Idx -= NumElems;
3097      SeenV2 = true;
3098    }
3099    if (Idx != Val)
3100      return false;
3101  }
3102  if (SeenV1 && SeenV2)
3103    return false;
3104
3105  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3106  ShAmt = NumZeros;
3107  return true;
3108}
3109
3110
3111/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3112///
3113static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3114                                       unsigned NumNonZero, unsigned NumZero,
3115                                       SelectionDAG &DAG, TargetLowering &TLI) {
3116  if (NumNonZero > 8)
3117    return SDValue();
3118
3119  DebugLoc dl = Op.getDebugLoc();
3120  SDValue V(0, 0);
3121  bool First = true;
3122  for (unsigned i = 0; i < 16; ++i) {
3123    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3124    if (ThisIsNonZero && First) {
3125      if (NumZero)
3126        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3127      else
3128        V = DAG.getUNDEF(MVT::v8i16);
3129      First = false;
3130    }
3131
3132    if ((i & 1) != 0) {
3133      SDValue ThisElt(0, 0), LastElt(0, 0);
3134      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3135      if (LastIsNonZero) {
3136        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3137                              MVT::i16, Op.getOperand(i-1));
3138      }
3139      if (ThisIsNonZero) {
3140        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3141        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3142                              ThisElt, DAG.getConstant(8, MVT::i8));
3143        if (LastIsNonZero)
3144          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3145      } else
3146        ThisElt = LastElt;
3147
3148      if (ThisElt.getNode())
3149        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3150                        DAG.getIntPtrConstant(i/2));
3151    }
3152  }
3153
3154  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3155}
3156
3157/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3158///
3159static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3160                                       unsigned NumNonZero, unsigned NumZero,
3161                                       SelectionDAG &DAG, TargetLowering &TLI) {
3162  if (NumNonZero > 4)
3163    return SDValue();
3164
3165  DebugLoc dl = Op.getDebugLoc();
3166  SDValue V(0, 0);
3167  bool First = true;
3168  for (unsigned i = 0; i < 8; ++i) {
3169    bool isNonZero = (NonZeros & (1 << i)) != 0;
3170    if (isNonZero) {
3171      if (First) {
3172        if (NumZero)
3173          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3174        else
3175          V = DAG.getUNDEF(MVT::v8i16);
3176        First = false;
3177      }
3178      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3179                      MVT::v8i16, V, Op.getOperand(i),
3180                      DAG.getIntPtrConstant(i));
3181    }
3182  }
3183
3184  return V;
3185}
3186
3187/// getVShift - Return a vector logical shift node.
3188///
3189static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3190                         unsigned NumBits, SelectionDAG &DAG,
3191                         const TargetLowering &TLI, DebugLoc dl) {
3192  bool isMMX = VT.getSizeInBits() == 64;
3193  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3194  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3195  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3196  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3197                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3198                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3199}
3200
3201SDValue
3202X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3203  DebugLoc dl = Op.getDebugLoc();
3204  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3205  if (ISD::isBuildVectorAllZeros(Op.getNode())
3206      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3207    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3208    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3209    // eliminated on x86-32 hosts.
3210    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3211      return Op;
3212
3213    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3214      return getOnesVector(Op.getValueType(), DAG, dl);
3215    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3216  }
3217
3218  EVT VT = Op.getValueType();
3219  EVT ExtVT = VT.getVectorElementType();
3220  unsigned EVTBits = ExtVT.getSizeInBits();
3221
3222  unsigned NumElems = Op.getNumOperands();
3223  unsigned NumZero  = 0;
3224  unsigned NumNonZero = 0;
3225  unsigned NonZeros = 0;
3226  bool IsAllConstants = true;
3227  SmallSet<SDValue, 8> Values;
3228  for (unsigned i = 0; i < NumElems; ++i) {
3229    SDValue Elt = Op.getOperand(i);
3230    if (Elt.getOpcode() == ISD::UNDEF)
3231      continue;
3232    Values.insert(Elt);
3233    if (Elt.getOpcode() != ISD::Constant &&
3234        Elt.getOpcode() != ISD::ConstantFP)
3235      IsAllConstants = false;
3236    if (X86::isZeroNode(Elt))
3237      NumZero++;
3238    else {
3239      NonZeros |= (1 << i);
3240      NumNonZero++;
3241    }
3242  }
3243
3244  if (NumNonZero == 0) {
3245    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3246    return DAG.getUNDEF(VT);
3247  }
3248
3249  // Special case for single non-zero, non-undef, element.
3250  if (NumNonZero == 1) {
3251    unsigned Idx = CountTrailingZeros_32(NonZeros);
3252    SDValue Item = Op.getOperand(Idx);
3253
3254    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3255    // the value are obviously zero, truncate the value to i32 and do the
3256    // insertion that way.  Only do this if the value is non-constant or if the
3257    // value is a constant being inserted into element 0.  It is cheaper to do
3258    // a constant pool load than it is to do a movd + shuffle.
3259    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3260        (!IsAllConstants || Idx == 0)) {
3261      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3262        // Handle MMX and SSE both.
3263        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3264        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3265
3266        // Truncate the value (which may itself be a constant) to i32, and
3267        // convert it to a vector with movd (S2V+shuffle to zero extend).
3268        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3269        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3270        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3271                                           Subtarget->hasSSE2(), DAG);
3272
3273        // Now we have our 32-bit value zero extended in the low element of
3274        // a vector.  If Idx != 0, swizzle it into place.
3275        if (Idx != 0) {
3276          SmallVector<int, 4> Mask;
3277          Mask.push_back(Idx);
3278          for (unsigned i = 1; i != VecElts; ++i)
3279            Mask.push_back(i);
3280          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3281                                      DAG.getUNDEF(Item.getValueType()),
3282                                      &Mask[0]);
3283        }
3284        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3285      }
3286    }
3287
3288    // If we have a constant or non-constant insertion into the low element of
3289    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3290    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3291    // depending on what the source datatype is.
3292    if (Idx == 0) {
3293      if (NumZero == 0) {
3294        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3295      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3296          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3297        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3298        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3299        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3300                                           DAG);
3301      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3302        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3303        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3304        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3305        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3306                                           Subtarget->hasSSE2(), DAG);
3307        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3308      }
3309    }
3310
3311    // Is it a vector logical left shift?
3312    if (NumElems == 2 && Idx == 1 &&
3313        X86::isZeroNode(Op.getOperand(0)) &&
3314        !X86::isZeroNode(Op.getOperand(1))) {
3315      unsigned NumBits = VT.getSizeInBits();
3316      return getVShift(true, VT,
3317                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3318                                   VT, Op.getOperand(1)),
3319                       NumBits/2, DAG, *this, dl);
3320    }
3321
3322    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3323      return SDValue();
3324
3325    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3326    // is a non-constant being inserted into an element other than the low one,
3327    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3328    // movd/movss) to move this into the low element, then shuffle it into
3329    // place.
3330    if (EVTBits == 32) {
3331      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3332
3333      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3334      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3335                                         Subtarget->hasSSE2(), DAG);
3336      SmallVector<int, 8> MaskVec;
3337      for (unsigned i = 0; i < NumElems; i++)
3338        MaskVec.push_back(i == Idx ? 0 : 1);
3339      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3340    }
3341  }
3342
3343  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3344  if (Values.size() == 1)
3345    return SDValue();
3346
3347  // A vector full of immediates; various special cases are already
3348  // handled, so this is best done with a single constant-pool load.
3349  if (IsAllConstants)
3350    return SDValue();
3351
3352  // Let legalizer expand 2-wide build_vectors.
3353  if (EVTBits == 64) {
3354    if (NumNonZero == 1) {
3355      // One half is zero or undef.
3356      unsigned Idx = CountTrailingZeros_32(NonZeros);
3357      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3358                                 Op.getOperand(Idx));
3359      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3360                                         Subtarget->hasSSE2(), DAG);
3361    }
3362    return SDValue();
3363  }
3364
3365  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3366  if (EVTBits == 8 && NumElems == 16) {
3367    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3368                                        *this);
3369    if (V.getNode()) return V;
3370  }
3371
3372  if (EVTBits == 16 && NumElems == 8) {
3373    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3374                                        *this);
3375    if (V.getNode()) return V;
3376  }
3377
3378  // If element VT is == 32 bits, turn it into a number of shuffles.
3379  SmallVector<SDValue, 8> V;
3380  V.resize(NumElems);
3381  if (NumElems == 4 && NumZero > 0) {
3382    for (unsigned i = 0; i < 4; ++i) {
3383      bool isZero = !(NonZeros & (1 << i));
3384      if (isZero)
3385        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3386      else
3387        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3388    }
3389
3390    for (unsigned i = 0; i < 2; ++i) {
3391      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3392        default: break;
3393        case 0:
3394          V[i] = V[i*2];  // Must be a zero vector.
3395          break;
3396        case 1:
3397          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3398          break;
3399        case 2:
3400          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3401          break;
3402        case 3:
3403          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3404          break;
3405      }
3406    }
3407
3408    SmallVector<int, 8> MaskVec;
3409    bool Reverse = (NonZeros & 0x3) == 2;
3410    for (unsigned i = 0; i < 2; ++i)
3411      MaskVec.push_back(Reverse ? 1-i : i);
3412    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3413    for (unsigned i = 0; i < 2; ++i)
3414      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3415    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3416  }
3417
3418  if (Values.size() > 2) {
3419    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3420    // values to be inserted is equal to the number of elements, in which case
3421    // use the unpack code below in the hopes of matching the consecutive elts
3422    // load merge pattern for shuffles.
3423    // FIXME: We could probably just check that here directly.
3424    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3425        getSubtarget()->hasSSE41()) {
3426      V[0] = DAG.getUNDEF(VT);
3427      for (unsigned i = 0; i < NumElems; ++i)
3428        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3429          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3430                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3431      return V[0];
3432    }
3433    // Expand into a number of unpckl*.
3434    // e.g. for v4f32
3435    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3436    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3437    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3438    for (unsigned i = 0; i < NumElems; ++i)
3439      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3440    NumElems >>= 1;
3441    while (NumElems != 0) {
3442      for (unsigned i = 0; i < NumElems; ++i)
3443        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3444      NumElems >>= 1;
3445    }
3446    return V[0];
3447  }
3448
3449  return SDValue();
3450}
3451
3452// v8i16 shuffles - Prefer shuffles in the following order:
3453// 1. [all]   pshuflw, pshufhw, optional move
3454// 2. [ssse3] 1 x pshufb
3455// 3. [ssse3] 2 x pshufb + 1 x por
3456// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3457static
3458SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3459                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3460  SDValue V1 = SVOp->getOperand(0);
3461  SDValue V2 = SVOp->getOperand(1);
3462  DebugLoc dl = SVOp->getDebugLoc();
3463  SmallVector<int, 8> MaskVals;
3464
3465  // Determine if more than 1 of the words in each of the low and high quadwords
3466  // of the result come from the same quadword of one of the two inputs.  Undef
3467  // mask values count as coming from any quadword, for better codegen.
3468  SmallVector<unsigned, 4> LoQuad(4);
3469  SmallVector<unsigned, 4> HiQuad(4);
3470  BitVector InputQuads(4);
3471  for (unsigned i = 0; i < 8; ++i) {
3472    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3473    int EltIdx = SVOp->getMaskElt(i);
3474    MaskVals.push_back(EltIdx);
3475    if (EltIdx < 0) {
3476      ++Quad[0];
3477      ++Quad[1];
3478      ++Quad[2];
3479      ++Quad[3];
3480      continue;
3481    }
3482    ++Quad[EltIdx / 4];
3483    InputQuads.set(EltIdx / 4);
3484  }
3485
3486  int BestLoQuad = -1;
3487  unsigned MaxQuad = 1;
3488  for (unsigned i = 0; i < 4; ++i) {
3489    if (LoQuad[i] > MaxQuad) {
3490      BestLoQuad = i;
3491      MaxQuad = LoQuad[i];
3492    }
3493  }
3494
3495  int BestHiQuad = -1;
3496  MaxQuad = 1;
3497  for (unsigned i = 0; i < 4; ++i) {
3498    if (HiQuad[i] > MaxQuad) {
3499      BestHiQuad = i;
3500      MaxQuad = HiQuad[i];
3501    }
3502  }
3503
3504  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3505  // of the two input vectors, shuffle them into one input vector so only a
3506  // single pshufb instruction is necessary. If There are more than 2 input
3507  // quads, disable the next transformation since it does not help SSSE3.
3508  bool V1Used = InputQuads[0] || InputQuads[1];
3509  bool V2Used = InputQuads[2] || InputQuads[3];
3510  if (TLI.getSubtarget()->hasSSSE3()) {
3511    if (InputQuads.count() == 2 && V1Used && V2Used) {
3512      BestLoQuad = InputQuads.find_first();
3513      BestHiQuad = InputQuads.find_next(BestLoQuad);
3514    }
3515    if (InputQuads.count() > 2) {
3516      BestLoQuad = -1;
3517      BestHiQuad = -1;
3518    }
3519  }
3520
3521  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3522  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3523  // words from all 4 input quadwords.
3524  SDValue NewV;
3525  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3526    SmallVector<int, 8> MaskV;
3527    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3528    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3529    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3530                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3531                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3532    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3533
3534    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3535    // source words for the shuffle, to aid later transformations.
3536    bool AllWordsInNewV = true;
3537    bool InOrder[2] = { true, true };
3538    for (unsigned i = 0; i != 8; ++i) {
3539      int idx = MaskVals[i];
3540      if (idx != (int)i)
3541        InOrder[i/4] = false;
3542      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3543        continue;
3544      AllWordsInNewV = false;
3545      break;
3546    }
3547
3548    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3549    if (AllWordsInNewV) {
3550      for (int i = 0; i != 8; ++i) {
3551        int idx = MaskVals[i];
3552        if (idx < 0)
3553          continue;
3554        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3555        if ((idx != i) && idx < 4)
3556          pshufhw = false;
3557        if ((idx != i) && idx > 3)
3558          pshuflw = false;
3559      }
3560      V1 = NewV;
3561      V2Used = false;
3562      BestLoQuad = 0;
3563      BestHiQuad = 1;
3564    }
3565
3566    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3567    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3568    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3569      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3570                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3571    }
3572  }
3573
3574  // If we have SSSE3, and all words of the result are from 1 input vector,
3575  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3576  // is present, fall back to case 4.
3577  if (TLI.getSubtarget()->hasSSSE3()) {
3578    SmallVector<SDValue,16> pshufbMask;
3579
3580    // If we have elements from both input vectors, set the high bit of the
3581    // shuffle mask element to zero out elements that come from V2 in the V1
3582    // mask, and elements that come from V1 in the V2 mask, so that the two
3583    // results can be OR'd together.
3584    bool TwoInputs = V1Used && V2Used;
3585    for (unsigned i = 0; i != 8; ++i) {
3586      int EltIdx = MaskVals[i] * 2;
3587      if (TwoInputs && (EltIdx >= 16)) {
3588        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3589        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3590        continue;
3591      }
3592      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3593      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3594    }
3595    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3596    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3597                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3598                                 MVT::v16i8, &pshufbMask[0], 16));
3599    if (!TwoInputs)
3600      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3601
3602    // Calculate the shuffle mask for the second input, shuffle it, and
3603    // OR it with the first shuffled input.
3604    pshufbMask.clear();
3605    for (unsigned i = 0; i != 8; ++i) {
3606      int EltIdx = MaskVals[i] * 2;
3607      if (EltIdx < 16) {
3608        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3609        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3610        continue;
3611      }
3612      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3613      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3614    }
3615    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3616    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3617                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3618                                 MVT::v16i8, &pshufbMask[0], 16));
3619    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3620    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3621  }
3622
3623  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3624  // and update MaskVals with new element order.
3625  BitVector InOrder(8);
3626  if (BestLoQuad >= 0) {
3627    SmallVector<int, 8> MaskV;
3628    for (int i = 0; i != 4; ++i) {
3629      int idx = MaskVals[i];
3630      if (idx < 0) {
3631        MaskV.push_back(-1);
3632        InOrder.set(i);
3633      } else if ((idx / 4) == BestLoQuad) {
3634        MaskV.push_back(idx & 3);
3635        InOrder.set(i);
3636      } else {
3637        MaskV.push_back(-1);
3638      }
3639    }
3640    for (unsigned i = 4; i != 8; ++i)
3641      MaskV.push_back(i);
3642    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3643                                &MaskV[0]);
3644  }
3645
3646  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3647  // and update MaskVals with the new element order.
3648  if (BestHiQuad >= 0) {
3649    SmallVector<int, 8> MaskV;
3650    for (unsigned i = 0; i != 4; ++i)
3651      MaskV.push_back(i);
3652    for (unsigned i = 4; i != 8; ++i) {
3653      int idx = MaskVals[i];
3654      if (idx < 0) {
3655        MaskV.push_back(-1);
3656        InOrder.set(i);
3657      } else if ((idx / 4) == BestHiQuad) {
3658        MaskV.push_back((idx & 3) + 4);
3659        InOrder.set(i);
3660      } else {
3661        MaskV.push_back(-1);
3662      }
3663    }
3664    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3665                                &MaskV[0]);
3666  }
3667
3668  // In case BestHi & BestLo were both -1, which means each quadword has a word
3669  // from each of the four input quadwords, calculate the InOrder bitvector now
3670  // before falling through to the insert/extract cleanup.
3671  if (BestLoQuad == -1 && BestHiQuad == -1) {
3672    NewV = V1;
3673    for (int i = 0; i != 8; ++i)
3674      if (MaskVals[i] < 0 || MaskVals[i] == i)
3675        InOrder.set(i);
3676  }
3677
3678  // The other elements are put in the right place using pextrw and pinsrw.
3679  for (unsigned i = 0; i != 8; ++i) {
3680    if (InOrder[i])
3681      continue;
3682    int EltIdx = MaskVals[i];
3683    if (EltIdx < 0)
3684      continue;
3685    SDValue ExtOp = (EltIdx < 8)
3686    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3687                  DAG.getIntPtrConstant(EltIdx))
3688    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3689                  DAG.getIntPtrConstant(EltIdx - 8));
3690    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3691                       DAG.getIntPtrConstant(i));
3692  }
3693  return NewV;
3694}
3695
3696// v16i8 shuffles - Prefer shuffles in the following order:
3697// 1. [ssse3] 1 x pshufb
3698// 2. [ssse3] 2 x pshufb + 1 x por
3699// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3700static
3701SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3702                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3703  SDValue V1 = SVOp->getOperand(0);
3704  SDValue V2 = SVOp->getOperand(1);
3705  DebugLoc dl = SVOp->getDebugLoc();
3706  SmallVector<int, 16> MaskVals;
3707  SVOp->getMask(MaskVals);
3708
3709  // If we have SSSE3, case 1 is generated when all result bytes come from
3710  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3711  // present, fall back to case 3.
3712  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3713  bool V1Only = true;
3714  bool V2Only = true;
3715  for (unsigned i = 0; i < 16; ++i) {
3716    int EltIdx = MaskVals[i];
3717    if (EltIdx < 0)
3718      continue;
3719    if (EltIdx < 16)
3720      V2Only = false;
3721    else
3722      V1Only = false;
3723  }
3724
3725  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3726  if (TLI.getSubtarget()->hasSSSE3()) {
3727    SmallVector<SDValue,16> pshufbMask;
3728
3729    // If all result elements are from one input vector, then only translate
3730    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3731    //
3732    // Otherwise, we have elements from both input vectors, and must zero out
3733    // elements that come from V2 in the first mask, and V1 in the second mask
3734    // so that we can OR them together.
3735    bool TwoInputs = !(V1Only || V2Only);
3736    for (unsigned i = 0; i != 16; ++i) {
3737      int EltIdx = MaskVals[i];
3738      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3739        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3740        continue;
3741      }
3742      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3743    }
3744    // If all the elements are from V2, assign it to V1 and return after
3745    // building the first pshufb.
3746    if (V2Only)
3747      V1 = V2;
3748    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3749                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3750                                 MVT::v16i8, &pshufbMask[0], 16));
3751    if (!TwoInputs)
3752      return V1;
3753
3754    // Calculate the shuffle mask for the second input, shuffle it, and
3755    // OR it with the first shuffled input.
3756    pshufbMask.clear();
3757    for (unsigned i = 0; i != 16; ++i) {
3758      int EltIdx = MaskVals[i];
3759      if (EltIdx < 16) {
3760        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3761        continue;
3762      }
3763      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3764    }
3765    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3766                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3767                                 MVT::v16i8, &pshufbMask[0], 16));
3768    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3769  }
3770
3771  // No SSSE3 - Calculate in place words and then fix all out of place words
3772  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3773  // the 16 different words that comprise the two doublequadword input vectors.
3774  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3775  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3776  SDValue NewV = V2Only ? V2 : V1;
3777  for (int i = 0; i != 8; ++i) {
3778    int Elt0 = MaskVals[i*2];
3779    int Elt1 = MaskVals[i*2+1];
3780
3781    // This word of the result is all undef, skip it.
3782    if (Elt0 < 0 && Elt1 < 0)
3783      continue;
3784
3785    // This word of the result is already in the correct place, skip it.
3786    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3787      continue;
3788    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3789      continue;
3790
3791    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3792    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3793    SDValue InsElt;
3794
3795    // If Elt0 and Elt1 are defined, are consecutive, and can be load
3796    // using a single extract together, load it and store it.
3797    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3798      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3799                           DAG.getIntPtrConstant(Elt1 / 2));
3800      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3801                        DAG.getIntPtrConstant(i));
3802      continue;
3803    }
3804
3805    // If Elt1 is defined, extract it from the appropriate source.  If the
3806    // source byte is not also odd, shift the extracted word left 8 bits
3807    // otherwise clear the bottom 8 bits if we need to do an or.
3808    if (Elt1 >= 0) {
3809      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3810                           DAG.getIntPtrConstant(Elt1 / 2));
3811      if ((Elt1 & 1) == 0)
3812        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3813                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3814      else if (Elt0 >= 0)
3815        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3816                             DAG.getConstant(0xFF00, MVT::i16));
3817    }
3818    // If Elt0 is defined, extract it from the appropriate source.  If the
3819    // source byte is not also even, shift the extracted word right 8 bits. If
3820    // Elt1 was also defined, OR the extracted values together before
3821    // inserting them in the result.
3822    if (Elt0 >= 0) {
3823      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3824                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3825      if ((Elt0 & 1) != 0)
3826        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3827                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3828      else if (Elt1 >= 0)
3829        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3830                             DAG.getConstant(0x00FF, MVT::i16));
3831      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3832                         : InsElt0;
3833    }
3834    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3835                       DAG.getIntPtrConstant(i));
3836  }
3837  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3838}
3839
3840/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3841/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3842/// done when every pair / quad of shuffle mask elements point to elements in
3843/// the right sequence. e.g.
3844/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3845static
3846SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3847                                 SelectionDAG &DAG,
3848                                 TargetLowering &TLI, DebugLoc dl) {
3849  EVT VT = SVOp->getValueType(0);
3850  SDValue V1 = SVOp->getOperand(0);
3851  SDValue V2 = SVOp->getOperand(1);
3852  unsigned NumElems = VT.getVectorNumElements();
3853  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3854  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3855  EVT MaskEltVT = MaskVT.getVectorElementType();
3856  EVT NewVT = MaskVT;
3857  switch (VT.getSimpleVT().SimpleTy) {
3858  default: assert(false && "Unexpected!");
3859  case MVT::v4f32: NewVT = MVT::v2f64; break;
3860  case MVT::v4i32: NewVT = MVT::v2i64; break;
3861  case MVT::v8i16: NewVT = MVT::v4i32; break;
3862  case MVT::v16i8: NewVT = MVT::v4i32; break;
3863  }
3864
3865  if (NewWidth == 2) {
3866    if (VT.isInteger())
3867      NewVT = MVT::v2i64;
3868    else
3869      NewVT = MVT::v2f64;
3870  }
3871  int Scale = NumElems / NewWidth;
3872  SmallVector<int, 8> MaskVec;
3873  for (unsigned i = 0; i < NumElems; i += Scale) {
3874    int StartIdx = -1;
3875    for (int j = 0; j < Scale; ++j) {
3876      int EltIdx = SVOp->getMaskElt(i+j);
3877      if (EltIdx < 0)
3878        continue;
3879      if (StartIdx == -1)
3880        StartIdx = EltIdx - (EltIdx % Scale);
3881      if (EltIdx != StartIdx + j)
3882        return SDValue();
3883    }
3884    if (StartIdx == -1)
3885      MaskVec.push_back(-1);
3886    else
3887      MaskVec.push_back(StartIdx / Scale);
3888  }
3889
3890  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
3891  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
3892  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
3893}
3894
3895/// getVZextMovL - Return a zero-extending vector move low node.
3896///
3897static SDValue getVZextMovL(EVT VT, EVT OpVT,
3898                            SDValue SrcOp, SelectionDAG &DAG,
3899                            const X86Subtarget *Subtarget, DebugLoc dl) {
3900  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3901    LoadSDNode *LD = NULL;
3902    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3903      LD = dyn_cast<LoadSDNode>(SrcOp);
3904    if (!LD) {
3905      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3906      // instead.
3907      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3908      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
3909          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3910          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3911          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
3912        // PR2108
3913        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3914        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3915                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3916                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3917                                                   OpVT,
3918                                                   SrcOp.getOperand(0)
3919                                                          .getOperand(0))));
3920      }
3921    }
3922  }
3923
3924  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3925                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3926                                 DAG.getNode(ISD::BIT_CONVERT, dl,
3927                                             OpVT, SrcOp)));
3928}
3929
3930/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3931/// shuffles.
3932static SDValue
3933LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3934  SDValue V1 = SVOp->getOperand(0);
3935  SDValue V2 = SVOp->getOperand(1);
3936  DebugLoc dl = SVOp->getDebugLoc();
3937  EVT VT = SVOp->getValueType(0);
3938
3939  SmallVector<std::pair<int, int>, 8> Locs;
3940  Locs.resize(4);
3941  SmallVector<int, 8> Mask1(4U, -1);
3942  SmallVector<int, 8> PermMask;
3943  SVOp->getMask(PermMask);
3944
3945  unsigned NumHi = 0;
3946  unsigned NumLo = 0;
3947  for (unsigned i = 0; i != 4; ++i) {
3948    int Idx = PermMask[i];
3949    if (Idx < 0) {
3950      Locs[i] = std::make_pair(-1, -1);
3951    } else {
3952      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
3953      if (Idx < 4) {
3954        Locs[i] = std::make_pair(0, NumLo);
3955        Mask1[NumLo] = Idx;
3956        NumLo++;
3957      } else {
3958        Locs[i] = std::make_pair(1, NumHi);
3959        if (2+NumHi < 4)
3960          Mask1[2+NumHi] = Idx;
3961        NumHi++;
3962      }
3963    }
3964  }
3965
3966  if (NumLo <= 2 && NumHi <= 2) {
3967    // If no more than two elements come from either vector. This can be
3968    // implemented with two shuffles. First shuffle gather the elements.
3969    // The second shuffle, which takes the first shuffle as both of its
3970    // vector operands, put the elements into the right order.
3971    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3972
3973    SmallVector<int, 8> Mask2(4U, -1);
3974
3975    for (unsigned i = 0; i != 4; ++i) {
3976      if (Locs[i].first == -1)
3977        continue;
3978      else {
3979        unsigned Idx = (i < 2) ? 0 : 4;
3980        Idx += Locs[i].first * 2 + Locs[i].second;
3981        Mask2[i] = Idx;
3982      }
3983    }
3984
3985    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
3986  } else if (NumLo == 3 || NumHi == 3) {
3987    // Otherwise, we must have three elements from one vector, call it X, and
3988    // one element from the other, call it Y.  First, use a shufps to build an
3989    // intermediate vector with the one element from Y and the element from X
3990    // that will be in the same half in the final destination (the indexes don't
3991    // matter). Then, use a shufps to build the final vector, taking the half
3992    // containing the element from Y from the intermediate, and the other half
3993    // from X.
3994    if (NumHi == 3) {
3995      // Normalize it so the 3 elements come from V1.
3996      CommuteVectorShuffleMask(PermMask, VT);
3997      std::swap(V1, V2);
3998    }
3999
4000    // Find the element from V2.
4001    unsigned HiIndex;
4002    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4003      int Val = PermMask[HiIndex];
4004      if (Val < 0)
4005        continue;
4006      if (Val >= 4)
4007        break;
4008    }
4009
4010    Mask1[0] = PermMask[HiIndex];
4011    Mask1[1] = -1;
4012    Mask1[2] = PermMask[HiIndex^1];
4013    Mask1[3] = -1;
4014    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4015
4016    if (HiIndex >= 2) {
4017      Mask1[0] = PermMask[0];
4018      Mask1[1] = PermMask[1];
4019      Mask1[2] = HiIndex & 1 ? 6 : 4;
4020      Mask1[3] = HiIndex & 1 ? 4 : 6;
4021      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4022    } else {
4023      Mask1[0] = HiIndex & 1 ? 2 : 0;
4024      Mask1[1] = HiIndex & 1 ? 0 : 2;
4025      Mask1[2] = PermMask[2];
4026      Mask1[3] = PermMask[3];
4027      if (Mask1[2] >= 0)
4028        Mask1[2] += 4;
4029      if (Mask1[3] >= 0)
4030        Mask1[3] += 4;
4031      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4032    }
4033  }
4034
4035  // Break it into (shuffle shuffle_hi, shuffle_lo).
4036  Locs.clear();
4037  SmallVector<int,8> LoMask(4U, -1);
4038  SmallVector<int,8> HiMask(4U, -1);
4039
4040  SmallVector<int,8> *MaskPtr = &LoMask;
4041  unsigned MaskIdx = 0;
4042  unsigned LoIdx = 0;
4043  unsigned HiIdx = 2;
4044  for (unsigned i = 0; i != 4; ++i) {
4045    if (i == 2) {
4046      MaskPtr = &HiMask;
4047      MaskIdx = 1;
4048      LoIdx = 0;
4049      HiIdx = 2;
4050    }
4051    int Idx = PermMask[i];
4052    if (Idx < 0) {
4053      Locs[i] = std::make_pair(-1, -1);
4054    } else if (Idx < 4) {
4055      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4056      (*MaskPtr)[LoIdx] = Idx;
4057      LoIdx++;
4058    } else {
4059      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4060      (*MaskPtr)[HiIdx] = Idx;
4061      HiIdx++;
4062    }
4063  }
4064
4065  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4066  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4067  SmallVector<int, 8> MaskOps;
4068  for (unsigned i = 0; i != 4; ++i) {
4069    if (Locs[i].first == -1) {
4070      MaskOps.push_back(-1);
4071    } else {
4072      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4073      MaskOps.push_back(Idx);
4074    }
4075  }
4076  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4077}
4078
4079SDValue
4080X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4081  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4082  SDValue V1 = Op.getOperand(0);
4083  SDValue V2 = Op.getOperand(1);
4084  EVT VT = Op.getValueType();
4085  DebugLoc dl = Op.getDebugLoc();
4086  unsigned NumElems = VT.getVectorNumElements();
4087  bool isMMX = VT.getSizeInBits() == 64;
4088  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4089  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4090  bool V1IsSplat = false;
4091  bool V2IsSplat = false;
4092
4093  if (isZeroShuffle(SVOp))
4094    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4095
4096  // Promote splats to v4f32.
4097  if (SVOp->isSplat()) {
4098    if (isMMX || NumElems < 4)
4099      return Op;
4100    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4101  }
4102
4103  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4104  // do it!
4105  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4106    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4107    if (NewOp.getNode())
4108      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4109                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4110  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4111    // FIXME: Figure out a cleaner way to do this.
4112    // Try to make use of movq to zero out the top part.
4113    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4114      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4115      if (NewOp.getNode()) {
4116        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4117          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4118                              DAG, Subtarget, dl);
4119      }
4120    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4121      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4122      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4123        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4124                            DAG, Subtarget, dl);
4125    }
4126  }
4127
4128  if (X86::isPSHUFDMask(SVOp))
4129    return Op;
4130
4131  // Check if this can be converted into a logical shift.
4132  bool isLeft = false;
4133  unsigned ShAmt = 0;
4134  SDValue ShVal;
4135  bool isShift = getSubtarget()->hasSSE2() &&
4136  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4137  if (isShift && ShVal.hasOneUse()) {
4138    // If the shifted value has multiple uses, it may be cheaper to use
4139    // v_set0 + movlhps or movhlps, etc.
4140    EVT EVT = VT.getVectorElementType();
4141    ShAmt *= EVT.getSizeInBits();
4142    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4143  }
4144
4145  if (X86::isMOVLMask(SVOp)) {
4146    if (V1IsUndef)
4147      return V2;
4148    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4149      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4150    if (!isMMX)
4151      return Op;
4152  }
4153
4154  // FIXME: fold these into legal mask.
4155  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4156                 X86::isMOVSLDUPMask(SVOp) ||
4157                 X86::isMOVHLPSMask(SVOp) ||
4158                 X86::isMOVHPMask(SVOp) ||
4159                 X86::isMOVLPMask(SVOp)))
4160    return Op;
4161
4162  if (ShouldXformToMOVHLPS(SVOp) ||
4163      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4164    return CommuteVectorShuffle(SVOp, DAG);
4165
4166  if (isShift) {
4167    // No better options. Use a vshl / vsrl.
4168    EVT EVT = VT.getVectorElementType();
4169    ShAmt *= EVT.getSizeInBits();
4170    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4171  }
4172
4173  bool Commuted = false;
4174  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4175  // 1,1,1,1 -> v8i16 though.
4176  V1IsSplat = isSplatVector(V1.getNode());
4177  V2IsSplat = isSplatVector(V2.getNode());
4178
4179  // Canonicalize the splat or undef, if present, to be on the RHS.
4180  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4181    Op = CommuteVectorShuffle(SVOp, DAG);
4182    SVOp = cast<ShuffleVectorSDNode>(Op);
4183    V1 = SVOp->getOperand(0);
4184    V2 = SVOp->getOperand(1);
4185    std::swap(V1IsSplat, V2IsSplat);
4186    std::swap(V1IsUndef, V2IsUndef);
4187    Commuted = true;
4188  }
4189
4190  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4191    // Shuffling low element of v1 into undef, just return v1.
4192    if (V2IsUndef)
4193      return V1;
4194    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4195    // the instruction selector will not match, so get a canonical MOVL with
4196    // swapped operands to undo the commute.
4197    return getMOVL(DAG, dl, VT, V2, V1);
4198  }
4199
4200  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4201      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4202      X86::isUNPCKLMask(SVOp) ||
4203      X86::isUNPCKHMask(SVOp))
4204    return Op;
4205
4206  if (V2IsSplat) {
4207    // Normalize mask so all entries that point to V2 points to its first
4208    // element then try to match unpck{h|l} again. If match, return a
4209    // new vector_shuffle with the corrected mask.
4210    SDValue NewMask = NormalizeMask(SVOp, DAG);
4211    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4212    if (NSVOp != SVOp) {
4213      if (X86::isUNPCKLMask(NSVOp, true)) {
4214        return NewMask;
4215      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4216        return NewMask;
4217      }
4218    }
4219  }
4220
4221  if (Commuted) {
4222    // Commute is back and try unpck* again.
4223    // FIXME: this seems wrong.
4224    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4225    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4226    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4227        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4228        X86::isUNPCKLMask(NewSVOp) ||
4229        X86::isUNPCKHMask(NewSVOp))
4230      return NewOp;
4231  }
4232
4233  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4234
4235  // Normalize the node to match x86 shuffle ops if needed
4236  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4237    return CommuteVectorShuffle(SVOp, DAG);
4238
4239  // Check for legal shuffle and return?
4240  SmallVector<int, 16> PermMask;
4241  SVOp->getMask(PermMask);
4242  if (isShuffleMaskLegal(PermMask, VT))
4243    return Op;
4244
4245  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4246  if (VT == MVT::v8i16) {
4247    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4248    if (NewOp.getNode())
4249      return NewOp;
4250  }
4251
4252  if (VT == MVT::v16i8) {
4253    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4254    if (NewOp.getNode())
4255      return NewOp;
4256  }
4257
4258  // Handle all 4 wide cases with a number of shuffles except for MMX.
4259  if (NumElems == 4 && !isMMX)
4260    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4261
4262  return SDValue();
4263}
4264
4265SDValue
4266X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4267                                                SelectionDAG &DAG) {
4268  EVT VT = Op.getValueType();
4269  DebugLoc dl = Op.getDebugLoc();
4270  if (VT.getSizeInBits() == 8) {
4271    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4272                                    Op.getOperand(0), Op.getOperand(1));
4273    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4274                                    DAG.getValueType(VT));
4275    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4276  } else if (VT.getSizeInBits() == 16) {
4277    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4278    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4279    if (Idx == 0)
4280      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4281                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4282                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4283                                                 MVT::v4i32,
4284                                                 Op.getOperand(0)),
4285                                     Op.getOperand(1)));
4286    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4287                                    Op.getOperand(0), Op.getOperand(1));
4288    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4289                                    DAG.getValueType(VT));
4290    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4291  } else if (VT == MVT::f32) {
4292    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4293    // the result back to FR32 register. It's only worth matching if the
4294    // result has a single use which is a store or a bitcast to i32.  And in
4295    // the case of a store, it's not worth it if the index is a constant 0,
4296    // because a MOVSSmr can be used instead, which is smaller and faster.
4297    if (!Op.hasOneUse())
4298      return SDValue();
4299    SDNode *User = *Op.getNode()->use_begin();
4300    if ((User->getOpcode() != ISD::STORE ||
4301         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4302          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4303        (User->getOpcode() != ISD::BIT_CONVERT ||
4304         User->getValueType(0) != MVT::i32))
4305      return SDValue();
4306    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4307                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4308                                              Op.getOperand(0)),
4309                                              Op.getOperand(1));
4310    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4311  } else if (VT == MVT::i32) {
4312    // ExtractPS works with constant index.
4313    if (isa<ConstantSDNode>(Op.getOperand(1)))
4314      return Op;
4315  }
4316  return SDValue();
4317}
4318
4319
4320SDValue
4321X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4322  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4323    return SDValue();
4324
4325  if (Subtarget->hasSSE41()) {
4326    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4327    if (Res.getNode())
4328      return Res;
4329  }
4330
4331  EVT VT = Op.getValueType();
4332  DebugLoc dl = Op.getDebugLoc();
4333  // TODO: handle v16i8.
4334  if (VT.getSizeInBits() == 16) {
4335    SDValue Vec = Op.getOperand(0);
4336    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4337    if (Idx == 0)
4338      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4339                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4340                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4341                                                 MVT::v4i32, Vec),
4342                                     Op.getOperand(1)));
4343    // Transform it so it match pextrw which produces a 32-bit result.
4344    EVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy+1);
4345    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
4346                                    Op.getOperand(0), Op.getOperand(1));
4347    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
4348                                    DAG.getValueType(VT));
4349    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4350  } else if (VT.getSizeInBits() == 32) {
4351    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4352    if (Idx == 0)
4353      return Op;
4354
4355    // SHUFPS the element to the lowest double word, then movss.
4356    int Mask[4] = { Idx, -1, -1, -1 };
4357    EVT VVT = Op.getOperand(0).getValueType();
4358    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4359                                       DAG.getUNDEF(VVT), Mask);
4360    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4361                       DAG.getIntPtrConstant(0));
4362  } else if (VT.getSizeInBits() == 64) {
4363    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4364    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4365    //        to match extract_elt for f64.
4366    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4367    if (Idx == 0)
4368      return Op;
4369
4370    // UNPCKHPD the element to the lowest double word, then movsd.
4371    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4372    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4373    int Mask[2] = { 1, -1 };
4374    EVT VVT = Op.getOperand(0).getValueType();
4375    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4376                                       DAG.getUNDEF(VVT), Mask);
4377    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4378                       DAG.getIntPtrConstant(0));
4379  }
4380
4381  return SDValue();
4382}
4383
4384SDValue
4385X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4386  EVT VT = Op.getValueType();
4387  EVT EVT = VT.getVectorElementType();
4388  DebugLoc dl = Op.getDebugLoc();
4389
4390  SDValue N0 = Op.getOperand(0);
4391  SDValue N1 = Op.getOperand(1);
4392  SDValue N2 = Op.getOperand(2);
4393
4394  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4395      isa<ConstantSDNode>(N2)) {
4396    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4397                                              : X86ISD::PINSRW;
4398    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4399    // argument.
4400    if (N1.getValueType() != MVT::i32)
4401      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4402    if (N2.getValueType() != MVT::i32)
4403      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4404    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4405  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4406    // Bits [7:6] of the constant are the source select.  This will always be
4407    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4408    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4409    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4410    // Bits [5:4] of the constant are the destination select.  This is the
4411    //  value of the incoming immediate.
4412    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4413    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4414    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4415    // Create this as a scalar to vector..
4416    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4417    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4418  } else if (EVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4419    // PINSR* works with constant index.
4420    return Op;
4421  }
4422  return SDValue();
4423}
4424
4425SDValue
4426X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4427  EVT VT = Op.getValueType();
4428  EVT EVT = VT.getVectorElementType();
4429
4430  if (Subtarget->hasSSE41())
4431    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4432
4433  if (EVT == MVT::i8)
4434    return SDValue();
4435
4436  DebugLoc dl = Op.getDebugLoc();
4437  SDValue N0 = Op.getOperand(0);
4438  SDValue N1 = Op.getOperand(1);
4439  SDValue N2 = Op.getOperand(2);
4440
4441  if (EVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4442    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4443    // as its second argument.
4444    if (N1.getValueType() != MVT::i32)
4445      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4446    if (N2.getValueType() != MVT::i32)
4447      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4448    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4449  }
4450  return SDValue();
4451}
4452
4453SDValue
4454X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4455  DebugLoc dl = Op.getDebugLoc();
4456  if (Op.getValueType() == MVT::v2f32)
4457    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4458                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4459                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4460                                               Op.getOperand(0))));
4461
4462  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4463    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4464
4465  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4466  EVT VT = MVT::v2i32;
4467  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4468  default: break;
4469  case MVT::v16i8:
4470  case MVT::v8i16:
4471    VT = MVT::v4i32;
4472    break;
4473  }
4474  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4475                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4476}
4477
4478// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4479// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4480// one of the above mentioned nodes. It has to be wrapped because otherwise
4481// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4482// be used to form addressing mode. These wrapped nodes will be selected
4483// into MOV32ri.
4484SDValue
4485X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4486  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4487
4488  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4489  // global base reg.
4490  unsigned char OpFlag = 0;
4491  unsigned WrapperKind = X86ISD::Wrapper;
4492  CodeModel::Model M = getTargetMachine().getCodeModel();
4493
4494  if (Subtarget->isPICStyleRIPRel() &&
4495      (M == CodeModel::Small || M == CodeModel::Kernel))
4496    WrapperKind = X86ISD::WrapperRIP;
4497  else if (Subtarget->isPICStyleGOT())
4498    OpFlag = X86II::MO_GOTOFF;
4499  else if (Subtarget->isPICStyleStubPIC())
4500    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4501
4502  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4503                                             CP->getAlignment(),
4504                                             CP->getOffset(), OpFlag);
4505  DebugLoc DL = CP->getDebugLoc();
4506  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4507  // With PIC, the address is actually $g + Offset.
4508  if (OpFlag) {
4509    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4510                         DAG.getNode(X86ISD::GlobalBaseReg,
4511                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4512                         Result);
4513  }
4514
4515  return Result;
4516}
4517
4518SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4519  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4520
4521  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4522  // global base reg.
4523  unsigned char OpFlag = 0;
4524  unsigned WrapperKind = X86ISD::Wrapper;
4525  CodeModel::Model M = getTargetMachine().getCodeModel();
4526
4527  if (Subtarget->isPICStyleRIPRel() &&
4528      (M == CodeModel::Small || M == CodeModel::Kernel))
4529    WrapperKind = X86ISD::WrapperRIP;
4530  else if (Subtarget->isPICStyleGOT())
4531    OpFlag = X86II::MO_GOTOFF;
4532  else if (Subtarget->isPICStyleStubPIC())
4533    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4534
4535  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4536                                          OpFlag);
4537  DebugLoc DL = JT->getDebugLoc();
4538  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4539
4540  // With PIC, the address is actually $g + Offset.
4541  if (OpFlag) {
4542    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4543                         DAG.getNode(X86ISD::GlobalBaseReg,
4544                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4545                         Result);
4546  }
4547
4548  return Result;
4549}
4550
4551SDValue
4552X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4553  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4554
4555  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4556  // global base reg.
4557  unsigned char OpFlag = 0;
4558  unsigned WrapperKind = X86ISD::Wrapper;
4559  CodeModel::Model M = getTargetMachine().getCodeModel();
4560
4561  if (Subtarget->isPICStyleRIPRel() &&
4562      (M == CodeModel::Small || M == CodeModel::Kernel))
4563    WrapperKind = X86ISD::WrapperRIP;
4564  else if (Subtarget->isPICStyleGOT())
4565    OpFlag = X86II::MO_GOTOFF;
4566  else if (Subtarget->isPICStyleStubPIC())
4567    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4568
4569  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4570
4571  DebugLoc DL = Op.getDebugLoc();
4572  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4573
4574
4575  // With PIC, the address is actually $g + Offset.
4576  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4577      !Subtarget->is64Bit()) {
4578    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4579                         DAG.getNode(X86ISD::GlobalBaseReg,
4580                                     DebugLoc::getUnknownLoc(),
4581                                     getPointerTy()),
4582                         Result);
4583  }
4584
4585  return Result;
4586}
4587
4588SDValue
4589X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4590                                      int64_t Offset,
4591                                      SelectionDAG &DAG) const {
4592  // Create the TargetGlobalAddress node, folding in the constant
4593  // offset if it is legal.
4594  unsigned char OpFlags =
4595    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4596  CodeModel::Model M = getTargetMachine().getCodeModel();
4597  SDValue Result;
4598  if (OpFlags == X86II::MO_NO_FLAG &&
4599      X86::isOffsetSuitableForCodeModel(Offset, M)) {
4600    // A direct static reference to a global.
4601    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4602    Offset = 0;
4603  } else {
4604    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
4605  }
4606
4607  if (Subtarget->isPICStyleRIPRel() &&
4608      (M == CodeModel::Small || M == CodeModel::Kernel))
4609    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
4610  else
4611    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4612
4613  // With PIC, the address is actually $g + Offset.
4614  if (isGlobalRelativeToPICBase(OpFlags)) {
4615    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4616                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4617                         Result);
4618  }
4619
4620  // For globals that require a load from a stub to get the address, emit the
4621  // load.
4622  if (isGlobalStubReference(OpFlags))
4623    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4624                         PseudoSourceValue::getGOT(), 0);
4625
4626  // If there was a non-zero offset that we didn't fold, create an explicit
4627  // addition for it.
4628  if (Offset != 0)
4629    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4630                         DAG.getConstant(Offset, getPointerTy()));
4631
4632  return Result;
4633}
4634
4635SDValue
4636X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4637  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4638  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4639  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4640}
4641
4642static SDValue
4643GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4644           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
4645           unsigned char OperandFlags) {
4646  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4647  DebugLoc dl = GA->getDebugLoc();
4648  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4649                                           GA->getValueType(0),
4650                                           GA->getOffset(),
4651                                           OperandFlags);
4652  if (InFlag) {
4653    SDValue Ops[] = { Chain,  TGA, *InFlag };
4654    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4655  } else {
4656    SDValue Ops[]  = { Chain, TGA };
4657    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4658  }
4659  SDValue Flag = Chain.getValue(1);
4660  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4661}
4662
4663// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4664static SDValue
4665LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4666                                const EVT PtrVT) {
4667  SDValue InFlag;
4668  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4669  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4670                                     DAG.getNode(X86ISD::GlobalBaseReg,
4671                                                 DebugLoc::getUnknownLoc(),
4672                                                 PtrVT), InFlag);
4673  InFlag = Chain.getValue(1);
4674
4675  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
4676}
4677
4678// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4679static SDValue
4680LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4681                                const EVT PtrVT) {
4682  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
4683                    X86::RAX, X86II::MO_TLSGD);
4684}
4685
4686// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4687// "local exec" model.
4688static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4689                                   const EVT PtrVT, TLSModel::Model model,
4690                                   bool is64Bit) {
4691  DebugLoc dl = GA->getDebugLoc();
4692  // Get the Thread Pointer
4693  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4694                             DebugLoc::getUnknownLoc(), PtrVT,
4695                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
4696                                             MVT::i32));
4697
4698  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4699                                      NULL, 0);
4700
4701  unsigned char OperandFlags = 0;
4702  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
4703  // initialexec.
4704  unsigned WrapperKind = X86ISD::Wrapper;
4705  if (model == TLSModel::LocalExec) {
4706    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
4707  } else if (is64Bit) {
4708    assert(model == TLSModel::InitialExec);
4709    OperandFlags = X86II::MO_GOTTPOFF;
4710    WrapperKind = X86ISD::WrapperRIP;
4711  } else {
4712    assert(model == TLSModel::InitialExec);
4713    OperandFlags = X86II::MO_INDNTPOFF;
4714  }
4715
4716  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4717  // exec)
4718  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4719                                           GA->getOffset(), OperandFlags);
4720  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
4721
4722  if (model == TLSModel::InitialExec)
4723    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4724                         PseudoSourceValue::getGOT(), 0);
4725
4726  // The address of the thread local variable is the add of the thread
4727  // pointer with the offset of the variable.
4728  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4729}
4730
4731SDValue
4732X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4733  // TODO: implement the "local dynamic" model
4734  // TODO: implement the "initial exec"model for pic executables
4735  assert(Subtarget->isTargetELF() &&
4736         "TLS not implemented for non-ELF targets");
4737  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4738  const GlobalValue *GV = GA->getGlobal();
4739
4740  // If GV is an alias then use the aliasee for determining
4741  // thread-localness.
4742  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
4743    GV = GA->resolveAliasedGlobal(false);
4744
4745  TLSModel::Model model = getTLSModel(GV,
4746                                      getTargetMachine().getRelocationModel());
4747
4748  switch (model) {
4749  case TLSModel::GeneralDynamic:
4750  case TLSModel::LocalDynamic: // not implemented
4751    if (Subtarget->is64Bit())
4752      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4753    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4754
4755  case TLSModel::InitialExec:
4756  case TLSModel::LocalExec:
4757    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
4758                               Subtarget->is64Bit());
4759  }
4760
4761  llvm_unreachable("Unreachable");
4762  return SDValue();
4763}
4764
4765
4766/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4767/// take a 2 x i32 value to shift plus a shift amount.
4768SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4769  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4770  EVT VT = Op.getValueType();
4771  unsigned VTBits = VT.getSizeInBits();
4772  DebugLoc dl = Op.getDebugLoc();
4773  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4774  SDValue ShOpLo = Op.getOperand(0);
4775  SDValue ShOpHi = Op.getOperand(1);
4776  SDValue ShAmt  = Op.getOperand(2);
4777  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4778                                     DAG.getConstant(VTBits - 1, MVT::i8))
4779                       : DAG.getConstant(0, VT);
4780
4781  SDValue Tmp2, Tmp3;
4782  if (Op.getOpcode() == ISD::SHL_PARTS) {
4783    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4784    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4785  } else {
4786    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4787    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4788  }
4789
4790  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4791                                DAG.getConstant(VTBits, MVT::i8));
4792  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4793                             AndNode, DAG.getConstant(0, MVT::i8));
4794
4795  SDValue Hi, Lo;
4796  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4797  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4798  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4799
4800  if (Op.getOpcode() == ISD::SHL_PARTS) {
4801    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4802    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4803  } else {
4804    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4805    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4806  }
4807
4808  SDValue Ops[2] = { Lo, Hi };
4809  return DAG.getMergeValues(Ops, 2, dl);
4810}
4811
4812SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4813  EVT SrcVT = Op.getOperand(0).getValueType();
4814
4815  if (SrcVT.isVector()) {
4816    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
4817      return Op;
4818    }
4819    return SDValue();
4820  }
4821
4822  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4823         "Unknown SINT_TO_FP to lower!");
4824
4825  // These are really Legal; return the operand so the caller accepts it as
4826  // Legal.
4827  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4828    return Op;
4829  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
4830      Subtarget->is64Bit()) {
4831    return Op;
4832  }
4833
4834  DebugLoc dl = Op.getDebugLoc();
4835  unsigned Size = SrcVT.getSizeInBits()/8;
4836  MachineFunction &MF = DAG.getMachineFunction();
4837  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4838  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4839  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4840                               StackSlot,
4841                               PseudoSourceValue::getFixedStack(SSFI), 0);
4842  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4843}
4844
4845SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
4846                                     SDValue StackSlot,
4847                                     SelectionDAG &DAG) {
4848  // Build the FILD
4849  DebugLoc dl = Op.getDebugLoc();
4850  SDVTList Tys;
4851  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4852  if (useSSE)
4853    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4854  else
4855    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4856  SmallVector<SDValue, 8> Ops;
4857  Ops.push_back(Chain);
4858  Ops.push_back(StackSlot);
4859  Ops.push_back(DAG.getValueType(SrcVT));
4860  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4861                                 Tys, &Ops[0], Ops.size());
4862
4863  if (useSSE) {
4864    Chain = Result.getValue(1);
4865    SDValue InFlag = Result.getValue(2);
4866
4867    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4868    // shouldn't be necessary except that RFP cannot be live across
4869    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4870    MachineFunction &MF = DAG.getMachineFunction();
4871    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4872    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4873    Tys = DAG.getVTList(MVT::Other);
4874    SmallVector<SDValue, 8> Ops;
4875    Ops.push_back(Chain);
4876    Ops.push_back(Result);
4877    Ops.push_back(StackSlot);
4878    Ops.push_back(DAG.getValueType(Op.getValueType()));
4879    Ops.push_back(InFlag);
4880    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
4881    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
4882                         PseudoSourceValue::getFixedStack(SSFI), 0);
4883  }
4884
4885  return Result;
4886}
4887
4888// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4889SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4890  // This algorithm is not obvious. Here it is in C code, more or less:
4891  /*
4892    double uint64_to_double( uint32_t hi, uint32_t lo ) {
4893      static const __m128i exp = { 0x4330000045300000ULL, 0 };
4894      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4895
4896      // Copy ints to xmm registers.
4897      __m128i xh = _mm_cvtsi32_si128( hi );
4898      __m128i xl = _mm_cvtsi32_si128( lo );
4899
4900      // Combine into low half of a single xmm register.
4901      __m128i x = _mm_unpacklo_epi32( xh, xl );
4902      __m128d d;
4903      double sd;
4904
4905      // Merge in appropriate exponents to give the integer bits the right
4906      // magnitude.
4907      x = _mm_unpacklo_epi32( x, exp );
4908
4909      // Subtract away the biases to deal with the IEEE-754 double precision
4910      // implicit 1.
4911      d = _mm_sub_pd( (__m128d) x, bias );
4912
4913      // All conversions up to here are exact. The correctly rounded result is
4914      // calculated using the current rounding mode using the following
4915      // horizontal add.
4916      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4917      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
4918                                // store doesn't really need to be here (except
4919                                // maybe to zero the other double)
4920      return sd;
4921    }
4922  */
4923
4924  DebugLoc dl = Op.getDebugLoc();
4925  LLVMContext *Context = DAG.getContext();
4926
4927  // Build some magic constants.
4928  std::vector<Constant*> CV0;
4929  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
4930  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
4931  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
4932  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
4933  Constant *C0 = ConstantVector::get(CV0);
4934  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
4935
4936  std::vector<Constant*> CV1;
4937  CV1.push_back(
4938    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
4939  CV1.push_back(
4940    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
4941  Constant *C1 = ConstantVector::get(CV1);
4942  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
4943
4944  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4945                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4946                                        Op.getOperand(0),
4947                                        DAG.getIntPtrConstant(1)));
4948  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4949                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4950                                        Op.getOperand(0),
4951                                        DAG.getIntPtrConstant(0)));
4952  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
4953  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
4954                              PseudoSourceValue::getConstantPool(), 0,
4955                              false, 16);
4956  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
4957  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
4958  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
4959                              PseudoSourceValue::getConstantPool(), 0,
4960                              false, 16);
4961  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
4962
4963  // Add the halves; easiest way is to swap them into another reg first.
4964  int ShufMask[2] = { 1, -1 };
4965  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
4966                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
4967  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
4968  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
4969                     DAG.getIntPtrConstant(0));
4970}
4971
4972// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4973SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
4974  DebugLoc dl = Op.getDebugLoc();
4975  // FP constant to bias correct the final result.
4976  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
4977                                   MVT::f64);
4978
4979  // Load the 32-bit value into an XMM register.
4980  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4981                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4982                                         Op.getOperand(0),
4983                                         DAG.getIntPtrConstant(0)));
4984
4985  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4986                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
4987                     DAG.getIntPtrConstant(0));
4988
4989  // Or the load with the bias.
4990  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
4991                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4992                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4993                                                   MVT::v2f64, Load)),
4994                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4995                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4996                                                   MVT::v2f64, Bias)));
4997  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4998                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
4999                   DAG.getIntPtrConstant(0));
5000
5001  // Subtract the bias.
5002  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5003
5004  // Handle final rounding.
5005  EVT DestVT = Op.getValueType();
5006
5007  if (DestVT.bitsLT(MVT::f64)) {
5008    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5009                       DAG.getIntPtrConstant(0));
5010  } else if (DestVT.bitsGT(MVT::f64)) {
5011    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5012  }
5013
5014  // Handle final rounding.
5015  return Sub;
5016}
5017
5018SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5019  SDValue N0 = Op.getOperand(0);
5020  DebugLoc dl = Op.getDebugLoc();
5021
5022  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5023  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5024  // the optimization here.
5025  if (DAG.SignBitIsZero(N0))
5026    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5027
5028  EVT SrcVT = N0.getValueType();
5029  if (SrcVT == MVT::i64) {
5030    // We only handle SSE2 f64 target here; caller can expand the rest.
5031    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5032      return SDValue();
5033
5034    return LowerUINT_TO_FP_i64(Op, DAG);
5035  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5036    return LowerUINT_TO_FP_i32(Op, DAG);
5037  }
5038
5039  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5040
5041  // Make a 64-bit buffer, and use it to build an FILD.
5042  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5043  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5044  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5045                                   getPointerTy(), StackSlot, WordOff);
5046  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5047                                StackSlot, NULL, 0);
5048  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5049                                OffsetSlot, NULL, 0);
5050  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5051}
5052
5053std::pair<SDValue,SDValue> X86TargetLowering::
5054FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5055  DebugLoc dl = Op.getDebugLoc();
5056
5057  EVT DstTy = Op.getValueType();
5058
5059  if (!IsSigned) {
5060    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5061    DstTy = MVT::i64;
5062  }
5063
5064  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5065         DstTy.getSimpleVT() >= MVT::i16 &&
5066         "Unknown FP_TO_SINT to lower!");
5067
5068  // These are really Legal.
5069  if (DstTy == MVT::i32 &&
5070      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5071    return std::make_pair(SDValue(), SDValue());
5072  if (Subtarget->is64Bit() &&
5073      DstTy == MVT::i64 &&
5074      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5075    return std::make_pair(SDValue(), SDValue());
5076
5077  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5078  // stack slot.
5079  MachineFunction &MF = DAG.getMachineFunction();
5080  unsigned MemSize = DstTy.getSizeInBits()/8;
5081  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5082  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5083
5084  unsigned Opc;
5085  switch (DstTy.getSimpleVT().SimpleTy) {
5086  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5087  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5088  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5089  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5090  }
5091
5092  SDValue Chain = DAG.getEntryNode();
5093  SDValue Value = Op.getOperand(0);
5094  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5095    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5096    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5097                         PseudoSourceValue::getFixedStack(SSFI), 0);
5098    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5099    SDValue Ops[] = {
5100      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5101    };
5102    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5103    Chain = Value.getValue(1);
5104    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5105    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5106  }
5107
5108  // Build the FP_TO_INT*_IN_MEM
5109  SDValue Ops[] = { Chain, Value, StackSlot };
5110  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5111
5112  return std::make_pair(FIST, StackSlot);
5113}
5114
5115SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5116  if (Op.getValueType().isVector()) {
5117    if (Op.getValueType() == MVT::v2i32 &&
5118        Op.getOperand(0).getValueType() == MVT::v2f64) {
5119      return Op;
5120    }
5121    return SDValue();
5122  }
5123
5124  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5125  SDValue FIST = Vals.first, StackSlot = Vals.second;
5126  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5127  if (FIST.getNode() == 0) return Op;
5128
5129  // Load the result.
5130  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5131                     FIST, StackSlot, NULL, 0);
5132}
5133
5134SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5135  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5136  SDValue FIST = Vals.first, StackSlot = Vals.second;
5137  assert(FIST.getNode() && "Unexpected failure");
5138
5139  // Load the result.
5140  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5141                     FIST, StackSlot, NULL, 0);
5142}
5143
5144SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5145  LLVMContext *Context = DAG.getContext();
5146  DebugLoc dl = Op.getDebugLoc();
5147  EVT VT = Op.getValueType();
5148  EVT EltVT = VT;
5149  if (VT.isVector())
5150    EltVT = VT.getVectorElementType();
5151  std::vector<Constant*> CV;
5152  if (EltVT == MVT::f64) {
5153    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5154    CV.push_back(C);
5155    CV.push_back(C);
5156  } else {
5157    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5158    CV.push_back(C);
5159    CV.push_back(C);
5160    CV.push_back(C);
5161    CV.push_back(C);
5162  }
5163  Constant *C = ConstantVector::get(CV);
5164  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5165  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5166                               PseudoSourceValue::getConstantPool(), 0,
5167                               false, 16);
5168  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5169}
5170
5171SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5172  LLVMContext *Context = DAG.getContext();
5173  DebugLoc dl = Op.getDebugLoc();
5174  EVT VT = Op.getValueType();
5175  EVT EltVT = VT;
5176  unsigned EltNum = 1;
5177  if (VT.isVector()) {
5178    EltVT = VT.getVectorElementType();
5179    EltNum = VT.getVectorNumElements();
5180  }
5181  std::vector<Constant*> CV;
5182  if (EltVT == MVT::f64) {
5183    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5184    CV.push_back(C);
5185    CV.push_back(C);
5186  } else {
5187    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5188    CV.push_back(C);
5189    CV.push_back(C);
5190    CV.push_back(C);
5191    CV.push_back(C);
5192  }
5193  Constant *C = ConstantVector::get(CV);
5194  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5195  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5196                               PseudoSourceValue::getConstantPool(), 0,
5197                               false, 16);
5198  if (VT.isVector()) {
5199    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5200                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5201                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5202                                Op.getOperand(0)),
5203                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5204  } else {
5205    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5206  }
5207}
5208
5209SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5210  LLVMContext *Context = DAG.getContext();
5211  SDValue Op0 = Op.getOperand(0);
5212  SDValue Op1 = Op.getOperand(1);
5213  DebugLoc dl = Op.getDebugLoc();
5214  EVT VT = Op.getValueType();
5215  EVT SrcVT = Op1.getValueType();
5216
5217  // If second operand is smaller, extend it first.
5218  if (SrcVT.bitsLT(VT)) {
5219    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5220    SrcVT = VT;
5221  }
5222  // And if it is bigger, shrink it first.
5223  if (SrcVT.bitsGT(VT)) {
5224    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5225    SrcVT = VT;
5226  }
5227
5228  // At this point the operands and the result should have the same
5229  // type, and that won't be f80 since that is not custom lowered.
5230
5231  // First get the sign bit of second operand.
5232  std::vector<Constant*> CV;
5233  if (SrcVT == MVT::f64) {
5234    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5235    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5236  } else {
5237    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5238    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5239    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5240    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5241  }
5242  Constant *C = ConstantVector::get(CV);
5243  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5244  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5245                                PseudoSourceValue::getConstantPool(), 0,
5246                                false, 16);
5247  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5248
5249  // Shift sign bit right or left if the two operands have different types.
5250  if (SrcVT.bitsGT(VT)) {
5251    // Op0 is MVT::f32, Op1 is MVT::f64.
5252    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5253    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5254                          DAG.getConstant(32, MVT::i32));
5255    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5256    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5257                          DAG.getIntPtrConstant(0));
5258  }
5259
5260  // Clear first operand sign bit.
5261  CV.clear();
5262  if (VT == MVT::f64) {
5263    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5264    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5265  } else {
5266    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5267    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5268    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5269    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5270  }
5271  C = ConstantVector::get(CV);
5272  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5273  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5274                                PseudoSourceValue::getConstantPool(), 0,
5275                                false, 16);
5276  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5277
5278  // Or the value with the sign bit.
5279  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5280}
5281
5282/// Emit nodes that will be selected as "test Op0,Op0", or something
5283/// equivalent.
5284SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5285                                    SelectionDAG &DAG) {
5286  DebugLoc dl = Op.getDebugLoc();
5287
5288  // CF and OF aren't always set the way we want. Determine which
5289  // of these we need.
5290  bool NeedCF = false;
5291  bool NeedOF = false;
5292  switch (X86CC) {
5293  case X86::COND_A: case X86::COND_AE:
5294  case X86::COND_B: case X86::COND_BE:
5295    NeedCF = true;
5296    break;
5297  case X86::COND_G: case X86::COND_GE:
5298  case X86::COND_L: case X86::COND_LE:
5299  case X86::COND_O: case X86::COND_NO:
5300    NeedOF = true;
5301    break;
5302  default: break;
5303  }
5304
5305  // See if we can use the EFLAGS value from the operand instead of
5306  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5307  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5308  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5309    unsigned Opcode = 0;
5310    unsigned NumOperands = 0;
5311    switch (Op.getNode()->getOpcode()) {
5312    case ISD::ADD:
5313      // Due to an isel shortcoming, be conservative if this add is likely to
5314      // be selected as part of a load-modify-store instruction. When the root
5315      // node in a match is a store, isel doesn't know how to remap non-chain
5316      // non-flag uses of other nodes in the match, such as the ADD in this
5317      // case. This leads to the ADD being left around and reselected, with
5318      // the result being two adds in the output.
5319      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5320           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5321        if (UI->getOpcode() == ISD::STORE)
5322          goto default_case;
5323      if (ConstantSDNode *C =
5324            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5325        // An add of one will be selected as an INC.
5326        if (C->getAPIntValue() == 1) {
5327          Opcode = X86ISD::INC;
5328          NumOperands = 1;
5329          break;
5330        }
5331        // An add of negative one (subtract of one) will be selected as a DEC.
5332        if (C->getAPIntValue().isAllOnesValue()) {
5333          Opcode = X86ISD::DEC;
5334          NumOperands = 1;
5335          break;
5336        }
5337      }
5338      // Otherwise use a regular EFLAGS-setting add.
5339      Opcode = X86ISD::ADD;
5340      NumOperands = 2;
5341      break;
5342    case ISD::SUB:
5343      // Due to the ISEL shortcoming noted above, be conservative if this sub is
5344      // likely to be selected as part of a load-modify-store instruction.
5345      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5346           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5347        if (UI->getOpcode() == ISD::STORE)
5348          goto default_case;
5349      // Otherwise use a regular EFLAGS-setting sub.
5350      Opcode = X86ISD::SUB;
5351      NumOperands = 2;
5352      break;
5353    case X86ISD::ADD:
5354    case X86ISD::SUB:
5355    case X86ISD::INC:
5356    case X86ISD::DEC:
5357      return SDValue(Op.getNode(), 1);
5358    default:
5359    default_case:
5360      break;
5361    }
5362    if (Opcode != 0) {
5363      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5364      SmallVector<SDValue, 4> Ops;
5365      for (unsigned i = 0; i != NumOperands; ++i)
5366        Ops.push_back(Op.getOperand(i));
5367      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5368      DAG.ReplaceAllUsesWith(Op, New);
5369      return SDValue(New.getNode(), 1);
5370    }
5371  }
5372
5373  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5374  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5375                     DAG.getConstant(0, Op.getValueType()));
5376}
5377
5378/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5379/// equivalent.
5380SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5381                                   SelectionDAG &DAG) {
5382  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5383    if (C->getAPIntValue() == 0)
5384      return EmitTest(Op0, X86CC, DAG);
5385
5386  DebugLoc dl = Op0.getDebugLoc();
5387  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5388}
5389
5390SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5391  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5392  SDValue Op0 = Op.getOperand(0);
5393  SDValue Op1 = Op.getOperand(1);
5394  DebugLoc dl = Op.getDebugLoc();
5395  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5396
5397  // Lower (X & (1 << N)) == 0 to BT(X, N).
5398  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5399  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5400  if (Op0.getOpcode() == ISD::AND &&
5401      Op0.hasOneUse() &&
5402      Op1.getOpcode() == ISD::Constant &&
5403      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5404      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5405    SDValue LHS, RHS;
5406    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5407      if (ConstantSDNode *Op010C =
5408            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5409        if (Op010C->getZExtValue() == 1) {
5410          LHS = Op0.getOperand(0);
5411          RHS = Op0.getOperand(1).getOperand(1);
5412        }
5413    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5414      if (ConstantSDNode *Op000C =
5415            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5416        if (Op000C->getZExtValue() == 1) {
5417          LHS = Op0.getOperand(1);
5418          RHS = Op0.getOperand(0).getOperand(1);
5419        }
5420    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5421      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5422      SDValue AndLHS = Op0.getOperand(0);
5423      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5424        LHS = AndLHS.getOperand(0);
5425        RHS = AndLHS.getOperand(1);
5426      }
5427    }
5428
5429    if (LHS.getNode()) {
5430      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5431      // instruction.  Since the shift amount is in-range-or-undefined, we know
5432      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5433      // the encoding for the i16 version is larger than the i32 version.
5434      if (LHS.getValueType() == MVT::i8)
5435        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5436
5437      // If the operand types disagree, extend the shift amount to match.  Since
5438      // BT ignores high bits (like shifts) we can use anyextend.
5439      if (LHS.getValueType() != RHS.getValueType())
5440        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5441
5442      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5443      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5444      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5445                         DAG.getConstant(Cond, MVT::i8), BT);
5446    }
5447  }
5448
5449  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5450  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5451
5452  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5453  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5454                     DAG.getConstant(X86CC, MVT::i8), Cond);
5455}
5456
5457SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5458  SDValue Cond;
5459  SDValue Op0 = Op.getOperand(0);
5460  SDValue Op1 = Op.getOperand(1);
5461  SDValue CC = Op.getOperand(2);
5462  EVT VT = Op.getValueType();
5463  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5464  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5465  DebugLoc dl = Op.getDebugLoc();
5466
5467  if (isFP) {
5468    unsigned SSECC = 8;
5469    EVT VT0 = Op0.getValueType();
5470    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5471    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5472    bool Swap = false;
5473
5474    switch (SetCCOpcode) {
5475    default: break;
5476    case ISD::SETOEQ:
5477    case ISD::SETEQ:  SSECC = 0; break;
5478    case ISD::SETOGT:
5479    case ISD::SETGT: Swap = true; // Fallthrough
5480    case ISD::SETLT:
5481    case ISD::SETOLT: SSECC = 1; break;
5482    case ISD::SETOGE:
5483    case ISD::SETGE: Swap = true; // Fallthrough
5484    case ISD::SETLE:
5485    case ISD::SETOLE: SSECC = 2; break;
5486    case ISD::SETUO:  SSECC = 3; break;
5487    case ISD::SETUNE:
5488    case ISD::SETNE:  SSECC = 4; break;
5489    case ISD::SETULE: Swap = true;
5490    case ISD::SETUGE: SSECC = 5; break;
5491    case ISD::SETULT: Swap = true;
5492    case ISD::SETUGT: SSECC = 6; break;
5493    case ISD::SETO:   SSECC = 7; break;
5494    }
5495    if (Swap)
5496      std::swap(Op0, Op1);
5497
5498    // In the two special cases we can't handle, emit two comparisons.
5499    if (SSECC == 8) {
5500      if (SetCCOpcode == ISD::SETUEQ) {
5501        SDValue UNORD, EQ;
5502        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5503        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5504        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5505      }
5506      else if (SetCCOpcode == ISD::SETONE) {
5507        SDValue ORD, NEQ;
5508        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5509        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5510        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5511      }
5512      llvm_unreachable("Illegal FP comparison");
5513    }
5514    // Handle all other FP comparisons here.
5515    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5516  }
5517
5518  // We are handling one of the integer comparisons here.  Since SSE only has
5519  // GT and EQ comparisons for integer, swapping operands and multiple
5520  // operations may be required for some comparisons.
5521  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5522  bool Swap = false, Invert = false, FlipSigns = false;
5523
5524  switch (VT.getSimpleVT().SimpleTy) {
5525  default: break;
5526  case MVT::v8i8:
5527  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5528  case MVT::v4i16:
5529  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5530  case MVT::v2i32:
5531  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5532  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5533  }
5534
5535  switch (SetCCOpcode) {
5536  default: break;
5537  case ISD::SETNE:  Invert = true;
5538  case ISD::SETEQ:  Opc = EQOpc; break;
5539  case ISD::SETLT:  Swap = true;
5540  case ISD::SETGT:  Opc = GTOpc; break;
5541  case ISD::SETGE:  Swap = true;
5542  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5543  case ISD::SETULT: Swap = true;
5544  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5545  case ISD::SETUGE: Swap = true;
5546  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5547  }
5548  if (Swap)
5549    std::swap(Op0, Op1);
5550
5551  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5552  // bits of the inputs before performing those operations.
5553  if (FlipSigns) {
5554    EVT EltVT = VT.getVectorElementType();
5555    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5556                                      EltVT);
5557    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5558    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5559                                    SignBits.size());
5560    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5561    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5562  }
5563
5564  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5565
5566  // If the logical-not of the result is required, perform that now.
5567  if (Invert)
5568    Result = DAG.getNOT(dl, Result, VT);
5569
5570  return Result;
5571}
5572
5573// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5574static bool isX86LogicalCmp(SDValue Op) {
5575  unsigned Opc = Op.getNode()->getOpcode();
5576  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5577    return true;
5578  if (Op.getResNo() == 1 &&
5579      (Opc == X86ISD::ADD ||
5580       Opc == X86ISD::SUB ||
5581       Opc == X86ISD::SMUL ||
5582       Opc == X86ISD::UMUL ||
5583       Opc == X86ISD::INC ||
5584       Opc == X86ISD::DEC))
5585    return true;
5586
5587  return false;
5588}
5589
5590SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5591  bool addTest = true;
5592  SDValue Cond  = Op.getOperand(0);
5593  DebugLoc dl = Op.getDebugLoc();
5594  SDValue CC;
5595
5596  if (Cond.getOpcode() == ISD::SETCC)
5597    Cond = LowerSETCC(Cond, DAG);
5598
5599  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5600  // setting operand in place of the X86ISD::SETCC.
5601  if (Cond.getOpcode() == X86ISD::SETCC) {
5602    CC = Cond.getOperand(0);
5603
5604    SDValue Cmp = Cond.getOperand(1);
5605    unsigned Opc = Cmp.getOpcode();
5606    EVT VT = Op.getValueType();
5607
5608    bool IllegalFPCMov = false;
5609    if (VT.isFloatingPoint() && !VT.isVector() &&
5610        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5611      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5612
5613    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5614        Opc == X86ISD::BT) { // FIXME
5615      Cond = Cmp;
5616      addTest = false;
5617    }
5618  }
5619
5620  if (addTest) {
5621    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5622    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5623  }
5624
5625  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5626  SmallVector<SDValue, 4> Ops;
5627  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5628  // condition is true.
5629  Ops.push_back(Op.getOperand(2));
5630  Ops.push_back(Op.getOperand(1));
5631  Ops.push_back(CC);
5632  Ops.push_back(Cond);
5633  return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5634}
5635
5636// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5637// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5638// from the AND / OR.
5639static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5640  Opc = Op.getOpcode();
5641  if (Opc != ISD::OR && Opc != ISD::AND)
5642    return false;
5643  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5644          Op.getOperand(0).hasOneUse() &&
5645          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5646          Op.getOperand(1).hasOneUse());
5647}
5648
5649// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5650// 1 and that the SETCC node has a single use.
5651static bool isXor1OfSetCC(SDValue Op) {
5652  if (Op.getOpcode() != ISD::XOR)
5653    return false;
5654  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5655  if (N1C && N1C->getAPIntValue() == 1) {
5656    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5657      Op.getOperand(0).hasOneUse();
5658  }
5659  return false;
5660}
5661
5662SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5663  bool addTest = true;
5664  SDValue Chain = Op.getOperand(0);
5665  SDValue Cond  = Op.getOperand(1);
5666  SDValue Dest  = Op.getOperand(2);
5667  DebugLoc dl = Op.getDebugLoc();
5668  SDValue CC;
5669
5670  if (Cond.getOpcode() == ISD::SETCC)
5671    Cond = LowerSETCC(Cond, DAG);
5672#if 0
5673  // FIXME: LowerXALUO doesn't handle these!!
5674  else if (Cond.getOpcode() == X86ISD::ADD  ||
5675           Cond.getOpcode() == X86ISD::SUB  ||
5676           Cond.getOpcode() == X86ISD::SMUL ||
5677           Cond.getOpcode() == X86ISD::UMUL)
5678    Cond = LowerXALUO(Cond, DAG);
5679#endif
5680
5681  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5682  // setting operand in place of the X86ISD::SETCC.
5683  if (Cond.getOpcode() == X86ISD::SETCC) {
5684    CC = Cond.getOperand(0);
5685
5686    SDValue Cmp = Cond.getOperand(1);
5687    unsigned Opc = Cmp.getOpcode();
5688    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5689    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5690      Cond = Cmp;
5691      addTest = false;
5692    } else {
5693      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5694      default: break;
5695      case X86::COND_O:
5696      case X86::COND_B:
5697        // These can only come from an arithmetic instruction with overflow,
5698        // e.g. SADDO, UADDO.
5699        Cond = Cond.getNode()->getOperand(1);
5700        addTest = false;
5701        break;
5702      }
5703    }
5704  } else {
5705    unsigned CondOpc;
5706    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5707      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5708      if (CondOpc == ISD::OR) {
5709        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5710        // two branches instead of an explicit OR instruction with a
5711        // separate test.
5712        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5713            isX86LogicalCmp(Cmp)) {
5714          CC = Cond.getOperand(0).getOperand(0);
5715          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5716                              Chain, Dest, CC, Cmp);
5717          CC = Cond.getOperand(1).getOperand(0);
5718          Cond = Cmp;
5719          addTest = false;
5720        }
5721      } else { // ISD::AND
5722        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5723        // two branches instead of an explicit AND instruction with a
5724        // separate test. However, we only do this if this block doesn't
5725        // have a fall-through edge, because this requires an explicit
5726        // jmp when the condition is false.
5727        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5728            isX86LogicalCmp(Cmp) &&
5729            Op.getNode()->hasOneUse()) {
5730          X86::CondCode CCode =
5731            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5732          CCode = X86::GetOppositeBranchCondition(CCode);
5733          CC = DAG.getConstant(CCode, MVT::i8);
5734          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5735          // Look for an unconditional branch following this conditional branch.
5736          // We need this because we need to reverse the successors in order
5737          // to implement FCMP_OEQ.
5738          if (User.getOpcode() == ISD::BR) {
5739            SDValue FalseBB = User.getOperand(1);
5740            SDValue NewBR =
5741              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5742            assert(NewBR == User);
5743            Dest = FalseBB;
5744
5745            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5746                                Chain, Dest, CC, Cmp);
5747            X86::CondCode CCode =
5748              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5749            CCode = X86::GetOppositeBranchCondition(CCode);
5750            CC = DAG.getConstant(CCode, MVT::i8);
5751            Cond = Cmp;
5752            addTest = false;
5753          }
5754        }
5755      }
5756    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5757      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5758      // It should be transformed during dag combiner except when the condition
5759      // is set by a arithmetics with overflow node.
5760      X86::CondCode CCode =
5761        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5762      CCode = X86::GetOppositeBranchCondition(CCode);
5763      CC = DAG.getConstant(CCode, MVT::i8);
5764      Cond = Cond.getOperand(0).getOperand(1);
5765      addTest = false;
5766    }
5767  }
5768
5769  if (addTest) {
5770    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5771    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5772  }
5773  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5774                     Chain, Dest, CC, Cond);
5775}
5776
5777
5778// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5779// Calls to _alloca is needed to probe the stack when allocating more than 4k
5780// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5781// that the guard pages used by the OS virtual memory manager are allocated in
5782// correct sequence.
5783SDValue
5784X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5785                                           SelectionDAG &DAG) {
5786  assert(Subtarget->isTargetCygMing() &&
5787         "This should be used only on Cygwin/Mingw targets");
5788  DebugLoc dl = Op.getDebugLoc();
5789
5790  // Get the inputs.
5791  SDValue Chain = Op.getOperand(0);
5792  SDValue Size  = Op.getOperand(1);
5793  // FIXME: Ensure alignment here
5794
5795  SDValue Flag;
5796
5797  EVT IntPtr = getPointerTy();
5798  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5799
5800  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5801
5802  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5803  Flag = Chain.getValue(1);
5804
5805  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5806  SDValue Ops[] = { Chain,
5807                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5808                      DAG.getRegister(X86::EAX, IntPtr),
5809                      DAG.getRegister(X86StackPtr, SPTy),
5810                      Flag };
5811  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5812  Flag = Chain.getValue(1);
5813
5814  Chain = DAG.getCALLSEQ_END(Chain,
5815                             DAG.getIntPtrConstant(0, true),
5816                             DAG.getIntPtrConstant(0, true),
5817                             Flag);
5818
5819  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5820
5821  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5822  return DAG.getMergeValues(Ops1, 2, dl);
5823}
5824
5825SDValue
5826X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5827                                           SDValue Chain,
5828                                           SDValue Dst, SDValue Src,
5829                                           SDValue Size, unsigned Align,
5830                                           const Value *DstSV,
5831                                           uint64_t DstSVOff) {
5832  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5833
5834  // If not DWORD aligned or size is more than the threshold, call the library.
5835  // The libc version is likely to be faster for these cases. It can use the
5836  // address value and run time information about the CPU.
5837  if ((Align & 3) != 0 ||
5838      !ConstantSize ||
5839      ConstantSize->getZExtValue() >
5840        getSubtarget()->getMaxInlineSizeThreshold()) {
5841    SDValue InFlag(0, 0);
5842
5843    // Check to see if there is a specialized entry-point for memory zeroing.
5844    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5845
5846    if (const char *bzeroEntry =  V &&
5847        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5848      EVT IntPtr = getPointerTy();
5849      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
5850      TargetLowering::ArgListTy Args;
5851      TargetLowering::ArgListEntry Entry;
5852      Entry.Node = Dst;
5853      Entry.Ty = IntPtrTy;
5854      Args.push_back(Entry);
5855      Entry.Node = Size;
5856      Args.push_back(Entry);
5857      std::pair<SDValue,SDValue> CallResult =
5858        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
5859                    false, false, false, false,
5860                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
5861                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
5862      return CallResult.second;
5863    }
5864
5865    // Otherwise have the target-independent code call memset.
5866    return SDValue();
5867  }
5868
5869  uint64_t SizeVal = ConstantSize->getZExtValue();
5870  SDValue InFlag(0, 0);
5871  EVT AVT;
5872  SDValue Count;
5873  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5874  unsigned BytesLeft = 0;
5875  bool TwoRepStos = false;
5876  if (ValC) {
5877    unsigned ValReg;
5878    uint64_t Val = ValC->getZExtValue() & 255;
5879
5880    // If the value is a constant, then we can potentially use larger sets.
5881    switch (Align & 3) {
5882    case 2:   // WORD aligned
5883      AVT = MVT::i16;
5884      ValReg = X86::AX;
5885      Val = (Val << 8) | Val;
5886      break;
5887    case 0:  // DWORD aligned
5888      AVT = MVT::i32;
5889      ValReg = X86::EAX;
5890      Val = (Val << 8)  | Val;
5891      Val = (Val << 16) | Val;
5892      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5893        AVT = MVT::i64;
5894        ValReg = X86::RAX;
5895        Val = (Val << 32) | Val;
5896      }
5897      break;
5898    default:  // Byte aligned
5899      AVT = MVT::i8;
5900      ValReg = X86::AL;
5901      Count = DAG.getIntPtrConstant(SizeVal);
5902      break;
5903    }
5904
5905    if (AVT.bitsGT(MVT::i8)) {
5906      unsigned UBytes = AVT.getSizeInBits() / 8;
5907      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5908      BytesLeft = SizeVal % UBytes;
5909    }
5910
5911    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
5912                              InFlag);
5913    InFlag = Chain.getValue(1);
5914  } else {
5915    AVT = MVT::i8;
5916    Count  = DAG.getIntPtrConstant(SizeVal);
5917    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
5918    InFlag = Chain.getValue(1);
5919  }
5920
5921  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5922                                                              X86::ECX,
5923                            Count, InFlag);
5924  InFlag = Chain.getValue(1);
5925  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5926                                                              X86::EDI,
5927                            Dst, InFlag);
5928  InFlag = Chain.getValue(1);
5929
5930  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5931  SmallVector<SDValue, 8> Ops;
5932  Ops.push_back(Chain);
5933  Ops.push_back(DAG.getValueType(AVT));
5934  Ops.push_back(InFlag);
5935  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5936
5937  if (TwoRepStos) {
5938    InFlag = Chain.getValue(1);
5939    Count  = Size;
5940    EVT CVT = Count.getValueType();
5941    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
5942                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5943    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
5944                                                             X86::ECX,
5945                              Left, InFlag);
5946    InFlag = Chain.getValue(1);
5947    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5948    Ops.clear();
5949    Ops.push_back(Chain);
5950    Ops.push_back(DAG.getValueType(MVT::i8));
5951    Ops.push_back(InFlag);
5952    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5953  } else if (BytesLeft) {
5954    // Handle the last 1 - 7 bytes.
5955    unsigned Offset = SizeVal - BytesLeft;
5956    EVT AddrVT = Dst.getValueType();
5957    EVT SizeVT = Size.getValueType();
5958
5959    Chain = DAG.getMemset(Chain, dl,
5960                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
5961                                      DAG.getConstant(Offset, AddrVT)),
5962                          Src,
5963                          DAG.getConstant(BytesLeft, SizeVT),
5964                          Align, DstSV, DstSVOff + Offset);
5965  }
5966
5967  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5968  return Chain;
5969}
5970
5971SDValue
5972X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
5973                                      SDValue Chain, SDValue Dst, SDValue Src,
5974                                      SDValue Size, unsigned Align,
5975                                      bool AlwaysInline,
5976                                      const Value *DstSV, uint64_t DstSVOff,
5977                                      const Value *SrcSV, uint64_t SrcSVOff) {
5978  // This requires the copy size to be a constant, preferrably
5979  // within a subtarget-specific limit.
5980  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5981  if (!ConstantSize)
5982    return SDValue();
5983  uint64_t SizeVal = ConstantSize->getZExtValue();
5984  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5985    return SDValue();
5986
5987  /// If not DWORD aligned, call the library.
5988  if ((Align & 3) != 0)
5989    return SDValue();
5990
5991  // DWORD aligned
5992  EVT AVT = MVT::i32;
5993  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5994    AVT = MVT::i64;
5995
5996  unsigned UBytes = AVT.getSizeInBits() / 8;
5997  unsigned CountVal = SizeVal / UBytes;
5998  SDValue Count = DAG.getIntPtrConstant(CountVal);
5999  unsigned BytesLeft = SizeVal % UBytes;
6000
6001  SDValue InFlag(0, 0);
6002  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6003                                                              X86::ECX,
6004                            Count, InFlag);
6005  InFlag = Chain.getValue(1);
6006  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6007                                                             X86::EDI,
6008                            Dst, InFlag);
6009  InFlag = Chain.getValue(1);
6010  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6011                                                              X86::ESI,
6012                            Src, InFlag);
6013  InFlag = Chain.getValue(1);
6014
6015  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6016  SmallVector<SDValue, 8> Ops;
6017  Ops.push_back(Chain);
6018  Ops.push_back(DAG.getValueType(AVT));
6019  Ops.push_back(InFlag);
6020  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
6021
6022  SmallVector<SDValue, 4> Results;
6023  Results.push_back(RepMovs);
6024  if (BytesLeft) {
6025    // Handle the last 1 - 7 bytes.
6026    unsigned Offset = SizeVal - BytesLeft;
6027    EVT DstVT = Dst.getValueType();
6028    EVT SrcVT = Src.getValueType();
6029    EVT SizeVT = Size.getValueType();
6030    Results.push_back(DAG.getMemcpy(Chain, dl,
6031                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6032                                                DAG.getConstant(Offset, DstVT)),
6033                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6034                                                DAG.getConstant(Offset, SrcVT)),
6035                                    DAG.getConstant(BytesLeft, SizeVT),
6036                                    Align, AlwaysInline,
6037                                    DstSV, DstSVOff + Offset,
6038                                    SrcSV, SrcSVOff + Offset));
6039  }
6040
6041  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6042                     &Results[0], Results.size());
6043}
6044
6045SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6046  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6047  DebugLoc dl = Op.getDebugLoc();
6048
6049  if (!Subtarget->is64Bit()) {
6050    // vastart just stores the address of the VarArgsFrameIndex slot into the
6051    // memory location argument.
6052    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6053    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6054  }
6055
6056  // __va_list_tag:
6057  //   gp_offset         (0 - 6 * 8)
6058  //   fp_offset         (48 - 48 + 8 * 16)
6059  //   overflow_arg_area (point to parameters coming in memory).
6060  //   reg_save_area
6061  SmallVector<SDValue, 8> MemOps;
6062  SDValue FIN = Op.getOperand(1);
6063  // Store gp_offset
6064  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6065                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6066                                 FIN, SV, 0);
6067  MemOps.push_back(Store);
6068
6069  // Store fp_offset
6070  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6071                    FIN, DAG.getIntPtrConstant(4));
6072  Store = DAG.getStore(Op.getOperand(0), dl,
6073                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6074                       FIN, SV, 0);
6075  MemOps.push_back(Store);
6076
6077  // Store ptr to overflow_arg_area
6078  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6079                    FIN, DAG.getIntPtrConstant(4));
6080  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6081  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6082  MemOps.push_back(Store);
6083
6084  // Store ptr to reg_save_area.
6085  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6086                    FIN, DAG.getIntPtrConstant(8));
6087  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6088  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6089  MemOps.push_back(Store);
6090  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6091                     &MemOps[0], MemOps.size());
6092}
6093
6094SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6095  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6096  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6097  SDValue Chain = Op.getOperand(0);
6098  SDValue SrcPtr = Op.getOperand(1);
6099  SDValue SrcSV = Op.getOperand(2);
6100
6101  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6102  return SDValue();
6103}
6104
6105SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6106  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6107  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6108  SDValue Chain = Op.getOperand(0);
6109  SDValue DstPtr = Op.getOperand(1);
6110  SDValue SrcPtr = Op.getOperand(2);
6111  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6112  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6113  DebugLoc dl = Op.getDebugLoc();
6114
6115  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6116                       DAG.getIntPtrConstant(24), 8, false,
6117                       DstSV, 0, SrcSV, 0);
6118}
6119
6120SDValue
6121X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6122  DebugLoc dl = Op.getDebugLoc();
6123  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6124  switch (IntNo) {
6125  default: return SDValue();    // Don't custom lower most intrinsics.
6126  // Comparison intrinsics.
6127  case Intrinsic::x86_sse_comieq_ss:
6128  case Intrinsic::x86_sse_comilt_ss:
6129  case Intrinsic::x86_sse_comile_ss:
6130  case Intrinsic::x86_sse_comigt_ss:
6131  case Intrinsic::x86_sse_comige_ss:
6132  case Intrinsic::x86_sse_comineq_ss:
6133  case Intrinsic::x86_sse_ucomieq_ss:
6134  case Intrinsic::x86_sse_ucomilt_ss:
6135  case Intrinsic::x86_sse_ucomile_ss:
6136  case Intrinsic::x86_sse_ucomigt_ss:
6137  case Intrinsic::x86_sse_ucomige_ss:
6138  case Intrinsic::x86_sse_ucomineq_ss:
6139  case Intrinsic::x86_sse2_comieq_sd:
6140  case Intrinsic::x86_sse2_comilt_sd:
6141  case Intrinsic::x86_sse2_comile_sd:
6142  case Intrinsic::x86_sse2_comigt_sd:
6143  case Intrinsic::x86_sse2_comige_sd:
6144  case Intrinsic::x86_sse2_comineq_sd:
6145  case Intrinsic::x86_sse2_ucomieq_sd:
6146  case Intrinsic::x86_sse2_ucomilt_sd:
6147  case Intrinsic::x86_sse2_ucomile_sd:
6148  case Intrinsic::x86_sse2_ucomigt_sd:
6149  case Intrinsic::x86_sse2_ucomige_sd:
6150  case Intrinsic::x86_sse2_ucomineq_sd: {
6151    unsigned Opc = 0;
6152    ISD::CondCode CC = ISD::SETCC_INVALID;
6153    switch (IntNo) {
6154    default: break;
6155    case Intrinsic::x86_sse_comieq_ss:
6156    case Intrinsic::x86_sse2_comieq_sd:
6157      Opc = X86ISD::COMI;
6158      CC = ISD::SETEQ;
6159      break;
6160    case Intrinsic::x86_sse_comilt_ss:
6161    case Intrinsic::x86_sse2_comilt_sd:
6162      Opc = X86ISD::COMI;
6163      CC = ISD::SETLT;
6164      break;
6165    case Intrinsic::x86_sse_comile_ss:
6166    case Intrinsic::x86_sse2_comile_sd:
6167      Opc = X86ISD::COMI;
6168      CC = ISD::SETLE;
6169      break;
6170    case Intrinsic::x86_sse_comigt_ss:
6171    case Intrinsic::x86_sse2_comigt_sd:
6172      Opc = X86ISD::COMI;
6173      CC = ISD::SETGT;
6174      break;
6175    case Intrinsic::x86_sse_comige_ss:
6176    case Intrinsic::x86_sse2_comige_sd:
6177      Opc = X86ISD::COMI;
6178      CC = ISD::SETGE;
6179      break;
6180    case Intrinsic::x86_sse_comineq_ss:
6181    case Intrinsic::x86_sse2_comineq_sd:
6182      Opc = X86ISD::COMI;
6183      CC = ISD::SETNE;
6184      break;
6185    case Intrinsic::x86_sse_ucomieq_ss:
6186    case Intrinsic::x86_sse2_ucomieq_sd:
6187      Opc = X86ISD::UCOMI;
6188      CC = ISD::SETEQ;
6189      break;
6190    case Intrinsic::x86_sse_ucomilt_ss:
6191    case Intrinsic::x86_sse2_ucomilt_sd:
6192      Opc = X86ISD::UCOMI;
6193      CC = ISD::SETLT;
6194      break;
6195    case Intrinsic::x86_sse_ucomile_ss:
6196    case Intrinsic::x86_sse2_ucomile_sd:
6197      Opc = X86ISD::UCOMI;
6198      CC = ISD::SETLE;
6199      break;
6200    case Intrinsic::x86_sse_ucomigt_ss:
6201    case Intrinsic::x86_sse2_ucomigt_sd:
6202      Opc = X86ISD::UCOMI;
6203      CC = ISD::SETGT;
6204      break;
6205    case Intrinsic::x86_sse_ucomige_ss:
6206    case Intrinsic::x86_sse2_ucomige_sd:
6207      Opc = X86ISD::UCOMI;
6208      CC = ISD::SETGE;
6209      break;
6210    case Intrinsic::x86_sse_ucomineq_ss:
6211    case Intrinsic::x86_sse2_ucomineq_sd:
6212      Opc = X86ISD::UCOMI;
6213      CC = ISD::SETNE;
6214      break;
6215    }
6216
6217    SDValue LHS = Op.getOperand(1);
6218    SDValue RHS = Op.getOperand(2);
6219    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6220    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6221    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6222                                DAG.getConstant(X86CC, MVT::i8), Cond);
6223    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6224  }
6225  // ptest intrinsics. The intrinsic these come from are designed to return
6226  // an integer value, not just an instruction so lower it to the ptest
6227  // pattern and a setcc for the result.
6228  case Intrinsic::x86_sse41_ptestz:
6229  case Intrinsic::x86_sse41_ptestc:
6230  case Intrinsic::x86_sse41_ptestnzc:{
6231    unsigned X86CC = 0;
6232    switch (IntNo) {
6233    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6234    case Intrinsic::x86_sse41_ptestz:
6235      // ZF = 1
6236      X86CC = X86::COND_E;
6237      break;
6238    case Intrinsic::x86_sse41_ptestc:
6239      // CF = 1
6240      X86CC = X86::COND_B;
6241      break;
6242    case Intrinsic::x86_sse41_ptestnzc:
6243      // ZF and CF = 0
6244      X86CC = X86::COND_A;
6245      break;
6246    }
6247
6248    SDValue LHS = Op.getOperand(1);
6249    SDValue RHS = Op.getOperand(2);
6250    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6251    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6252    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6253    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6254  }
6255
6256  // Fix vector shift instructions where the last operand is a non-immediate
6257  // i32 value.
6258  case Intrinsic::x86_sse2_pslli_w:
6259  case Intrinsic::x86_sse2_pslli_d:
6260  case Intrinsic::x86_sse2_pslli_q:
6261  case Intrinsic::x86_sse2_psrli_w:
6262  case Intrinsic::x86_sse2_psrli_d:
6263  case Intrinsic::x86_sse2_psrli_q:
6264  case Intrinsic::x86_sse2_psrai_w:
6265  case Intrinsic::x86_sse2_psrai_d:
6266  case Intrinsic::x86_mmx_pslli_w:
6267  case Intrinsic::x86_mmx_pslli_d:
6268  case Intrinsic::x86_mmx_pslli_q:
6269  case Intrinsic::x86_mmx_psrli_w:
6270  case Intrinsic::x86_mmx_psrli_d:
6271  case Intrinsic::x86_mmx_psrli_q:
6272  case Intrinsic::x86_mmx_psrai_w:
6273  case Intrinsic::x86_mmx_psrai_d: {
6274    SDValue ShAmt = Op.getOperand(2);
6275    if (isa<ConstantSDNode>(ShAmt))
6276      return SDValue();
6277
6278    unsigned NewIntNo = 0;
6279    EVT ShAmtVT = MVT::v4i32;
6280    switch (IntNo) {
6281    case Intrinsic::x86_sse2_pslli_w:
6282      NewIntNo = Intrinsic::x86_sse2_psll_w;
6283      break;
6284    case Intrinsic::x86_sse2_pslli_d:
6285      NewIntNo = Intrinsic::x86_sse2_psll_d;
6286      break;
6287    case Intrinsic::x86_sse2_pslli_q:
6288      NewIntNo = Intrinsic::x86_sse2_psll_q;
6289      break;
6290    case Intrinsic::x86_sse2_psrli_w:
6291      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6292      break;
6293    case Intrinsic::x86_sse2_psrli_d:
6294      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6295      break;
6296    case Intrinsic::x86_sse2_psrli_q:
6297      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6298      break;
6299    case Intrinsic::x86_sse2_psrai_w:
6300      NewIntNo = Intrinsic::x86_sse2_psra_w;
6301      break;
6302    case Intrinsic::x86_sse2_psrai_d:
6303      NewIntNo = Intrinsic::x86_sse2_psra_d;
6304      break;
6305    default: {
6306      ShAmtVT = MVT::v2i32;
6307      switch (IntNo) {
6308      case Intrinsic::x86_mmx_pslli_w:
6309        NewIntNo = Intrinsic::x86_mmx_psll_w;
6310        break;
6311      case Intrinsic::x86_mmx_pslli_d:
6312        NewIntNo = Intrinsic::x86_mmx_psll_d;
6313        break;
6314      case Intrinsic::x86_mmx_pslli_q:
6315        NewIntNo = Intrinsic::x86_mmx_psll_q;
6316        break;
6317      case Intrinsic::x86_mmx_psrli_w:
6318        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6319        break;
6320      case Intrinsic::x86_mmx_psrli_d:
6321        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6322        break;
6323      case Intrinsic::x86_mmx_psrli_q:
6324        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6325        break;
6326      case Intrinsic::x86_mmx_psrai_w:
6327        NewIntNo = Intrinsic::x86_mmx_psra_w;
6328        break;
6329      case Intrinsic::x86_mmx_psrai_d:
6330        NewIntNo = Intrinsic::x86_mmx_psra_d;
6331        break;
6332      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6333      }
6334      break;
6335    }
6336    }
6337    EVT VT = Op.getValueType();
6338    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6339                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt));
6340    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6341                       DAG.getConstant(NewIntNo, MVT::i32),
6342                       Op.getOperand(1), ShAmt);
6343  }
6344  }
6345}
6346
6347SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6348  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6349  DebugLoc dl = Op.getDebugLoc();
6350
6351  if (Depth > 0) {
6352    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6353    SDValue Offset =
6354      DAG.getConstant(TD->getPointerSize(),
6355                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6356    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6357                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6358                                   FrameAddr, Offset),
6359                       NULL, 0);
6360  }
6361
6362  // Just load the return address.
6363  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6364  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6365                     RetAddrFI, NULL, 0);
6366}
6367
6368SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6369  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6370  MFI->setFrameAddressIsTaken(true);
6371  EVT VT = Op.getValueType();
6372  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6373  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6374  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6375  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6376  while (Depth--)
6377    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6378  return FrameAddr;
6379}
6380
6381SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6382                                                     SelectionDAG &DAG) {
6383  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6384}
6385
6386SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6387{
6388  MachineFunction &MF = DAG.getMachineFunction();
6389  SDValue Chain     = Op.getOperand(0);
6390  SDValue Offset    = Op.getOperand(1);
6391  SDValue Handler   = Op.getOperand(2);
6392  DebugLoc dl       = Op.getDebugLoc();
6393
6394  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6395                                  getPointerTy());
6396  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6397
6398  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6399                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6400  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6401  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6402  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6403  MF.getRegInfo().addLiveOut(StoreAddrReg);
6404
6405  return DAG.getNode(X86ISD::EH_RETURN, dl,
6406                     MVT::Other,
6407                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6408}
6409
6410SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6411                                             SelectionDAG &DAG) {
6412  SDValue Root = Op.getOperand(0);
6413  SDValue Trmp = Op.getOperand(1); // trampoline
6414  SDValue FPtr = Op.getOperand(2); // nested function
6415  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6416  DebugLoc dl  = Op.getDebugLoc();
6417
6418  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6419
6420  const X86InstrInfo *TII =
6421    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6422
6423  if (Subtarget->is64Bit()) {
6424    SDValue OutChains[6];
6425
6426    // Large code-model.
6427
6428    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6429    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6430
6431    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6432    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6433
6434    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6435
6436    // Load the pointer to the nested function into R11.
6437    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6438    SDValue Addr = Trmp;
6439    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6440                                Addr, TrmpAddr, 0);
6441
6442    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6443                       DAG.getConstant(2, MVT::i64));
6444    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6445
6446    // Load the 'nest' parameter value into R10.
6447    // R10 is specified in X86CallingConv.td
6448    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6449    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6450                       DAG.getConstant(10, MVT::i64));
6451    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6452                                Addr, TrmpAddr, 10);
6453
6454    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6455                       DAG.getConstant(12, MVT::i64));
6456    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6457
6458    // Jump to the nested function.
6459    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6460    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6461                       DAG.getConstant(20, MVT::i64));
6462    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6463                                Addr, TrmpAddr, 20);
6464
6465    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6466    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6467                       DAG.getConstant(22, MVT::i64));
6468    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6469                                TrmpAddr, 22);
6470
6471    SDValue Ops[] =
6472      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6473    return DAG.getMergeValues(Ops, 2, dl);
6474  } else {
6475    const Function *Func =
6476      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6477    unsigned CC = Func->getCallingConv();
6478    unsigned NestReg;
6479
6480    switch (CC) {
6481    default:
6482      llvm_unreachable("Unsupported calling convention");
6483    case CallingConv::C:
6484    case CallingConv::X86_StdCall: {
6485      // Pass 'nest' parameter in ECX.
6486      // Must be kept in sync with X86CallingConv.td
6487      NestReg = X86::ECX;
6488
6489      // Check that ECX wasn't needed by an 'inreg' parameter.
6490      const FunctionType *FTy = Func->getFunctionType();
6491      const AttrListPtr &Attrs = Func->getAttributes();
6492
6493      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6494        unsigned InRegCount = 0;
6495        unsigned Idx = 1;
6496
6497        for (FunctionType::param_iterator I = FTy->param_begin(),
6498             E = FTy->param_end(); I != E; ++I, ++Idx)
6499          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6500            // FIXME: should only count parameters that are lowered to integers.
6501            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6502
6503        if (InRegCount > 2) {
6504          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6505        }
6506      }
6507      break;
6508    }
6509    case CallingConv::X86_FastCall:
6510    case CallingConv::Fast:
6511      // Pass 'nest' parameter in EAX.
6512      // Must be kept in sync with X86CallingConv.td
6513      NestReg = X86::EAX;
6514      break;
6515    }
6516
6517    SDValue OutChains[4];
6518    SDValue Addr, Disp;
6519
6520    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6521                       DAG.getConstant(10, MVT::i32));
6522    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6523
6524    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6525    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6526    OutChains[0] = DAG.getStore(Root, dl,
6527                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6528                                Trmp, TrmpAddr, 0);
6529
6530    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6531                       DAG.getConstant(1, MVT::i32));
6532    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6533
6534    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6535    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6536                       DAG.getConstant(5, MVT::i32));
6537    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6538                                TrmpAddr, 5, false, 1);
6539
6540    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6541                       DAG.getConstant(6, MVT::i32));
6542    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6543
6544    SDValue Ops[] =
6545      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6546    return DAG.getMergeValues(Ops, 2, dl);
6547  }
6548}
6549
6550SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6551  /*
6552   The rounding mode is in bits 11:10 of FPSR, and has the following
6553   settings:
6554     00 Round to nearest
6555     01 Round to -inf
6556     10 Round to +inf
6557     11 Round to 0
6558
6559  FLT_ROUNDS, on the other hand, expects the following:
6560    -1 Undefined
6561     0 Round to 0
6562     1 Round to nearest
6563     2 Round to +inf
6564     3 Round to -inf
6565
6566  To perform the conversion, we do:
6567    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6568  */
6569
6570  MachineFunction &MF = DAG.getMachineFunction();
6571  const TargetMachine &TM = MF.getTarget();
6572  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6573  unsigned StackAlignment = TFI.getStackAlignment();
6574  EVT VT = Op.getValueType();
6575  DebugLoc dl = Op.getDebugLoc();
6576
6577  // Save FP Control Word to stack slot
6578  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6579  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6580
6581  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6582                              DAG.getEntryNode(), StackSlot);
6583
6584  // Load FP Control Word from stack slot
6585  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6586
6587  // Transform as necessary
6588  SDValue CWD1 =
6589    DAG.getNode(ISD::SRL, dl, MVT::i16,
6590                DAG.getNode(ISD::AND, dl, MVT::i16,
6591                            CWD, DAG.getConstant(0x800, MVT::i16)),
6592                DAG.getConstant(11, MVT::i8));
6593  SDValue CWD2 =
6594    DAG.getNode(ISD::SRL, dl, MVT::i16,
6595                DAG.getNode(ISD::AND, dl, MVT::i16,
6596                            CWD, DAG.getConstant(0x400, MVT::i16)),
6597                DAG.getConstant(9, MVT::i8));
6598
6599  SDValue RetVal =
6600    DAG.getNode(ISD::AND, dl, MVT::i16,
6601                DAG.getNode(ISD::ADD, dl, MVT::i16,
6602                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6603                            DAG.getConstant(1, MVT::i16)),
6604                DAG.getConstant(3, MVT::i16));
6605
6606
6607  return DAG.getNode((VT.getSizeInBits() < 16 ?
6608                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6609}
6610
6611SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6612  EVT VT = Op.getValueType();
6613  EVT OpVT = VT;
6614  unsigned NumBits = VT.getSizeInBits();
6615  DebugLoc dl = Op.getDebugLoc();
6616
6617  Op = Op.getOperand(0);
6618  if (VT == MVT::i8) {
6619    // Zero extend to i32 since there is not an i8 bsr.
6620    OpVT = MVT::i32;
6621    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6622  }
6623
6624  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6625  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6626  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6627
6628  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6629  SmallVector<SDValue, 4> Ops;
6630  Ops.push_back(Op);
6631  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6632  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6633  Ops.push_back(Op.getValue(1));
6634  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6635
6636  // Finally xor with NumBits-1.
6637  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6638
6639  if (VT == MVT::i8)
6640    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6641  return Op;
6642}
6643
6644SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6645  EVT VT = Op.getValueType();
6646  EVT OpVT = VT;
6647  unsigned NumBits = VT.getSizeInBits();
6648  DebugLoc dl = Op.getDebugLoc();
6649
6650  Op = Op.getOperand(0);
6651  if (VT == MVT::i8) {
6652    OpVT = MVT::i32;
6653    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6654  }
6655
6656  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6657  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6658  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6659
6660  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6661  SmallVector<SDValue, 4> Ops;
6662  Ops.push_back(Op);
6663  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6664  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6665  Ops.push_back(Op.getValue(1));
6666  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6667
6668  if (VT == MVT::i8)
6669    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6670  return Op;
6671}
6672
6673SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6674  EVT VT = Op.getValueType();
6675  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6676  DebugLoc dl = Op.getDebugLoc();
6677
6678  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6679  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6680  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6681  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6682  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6683  //
6684  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6685  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6686  //  return AloBlo + AloBhi + AhiBlo;
6687
6688  SDValue A = Op.getOperand(0);
6689  SDValue B = Op.getOperand(1);
6690
6691  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6692                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6693                       A, DAG.getConstant(32, MVT::i32));
6694  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6695                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6696                       B, DAG.getConstant(32, MVT::i32));
6697  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6698                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6699                       A, B);
6700  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6701                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6702                       A, Bhi);
6703  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6704                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6705                       Ahi, B);
6706  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6707                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6708                       AloBhi, DAG.getConstant(32, MVT::i32));
6709  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6710                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6711                       AhiBlo, DAG.getConstant(32, MVT::i32));
6712  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6713  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6714  return Res;
6715}
6716
6717
6718SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6719  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6720  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6721  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6722  // has only one use.
6723  SDNode *N = Op.getNode();
6724  SDValue LHS = N->getOperand(0);
6725  SDValue RHS = N->getOperand(1);
6726  unsigned BaseOp = 0;
6727  unsigned Cond = 0;
6728  DebugLoc dl = Op.getDebugLoc();
6729
6730  switch (Op.getOpcode()) {
6731  default: llvm_unreachable("Unknown ovf instruction!");
6732  case ISD::SADDO:
6733    // A subtract of one will be selected as a INC. Note that INC doesn't
6734    // set CF, so we can't do this for UADDO.
6735    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6736      if (C->getAPIntValue() == 1) {
6737        BaseOp = X86ISD::INC;
6738        Cond = X86::COND_O;
6739        break;
6740      }
6741    BaseOp = X86ISD::ADD;
6742    Cond = X86::COND_O;
6743    break;
6744  case ISD::UADDO:
6745    BaseOp = X86ISD::ADD;
6746    Cond = X86::COND_B;
6747    break;
6748  case ISD::SSUBO:
6749    // A subtract of one will be selected as a DEC. Note that DEC doesn't
6750    // set CF, so we can't do this for USUBO.
6751    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6752      if (C->getAPIntValue() == 1) {
6753        BaseOp = X86ISD::DEC;
6754        Cond = X86::COND_O;
6755        break;
6756      }
6757    BaseOp = X86ISD::SUB;
6758    Cond = X86::COND_O;
6759    break;
6760  case ISD::USUBO:
6761    BaseOp = X86ISD::SUB;
6762    Cond = X86::COND_B;
6763    break;
6764  case ISD::SMULO:
6765    BaseOp = X86ISD::SMUL;
6766    Cond = X86::COND_O;
6767    break;
6768  case ISD::UMULO:
6769    BaseOp = X86ISD::UMUL;
6770    Cond = X86::COND_B;
6771    break;
6772  }
6773
6774  // Also sets EFLAGS.
6775  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6776  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6777
6778  SDValue SetCC =
6779    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6780                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6781
6782  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6783  return Sum;
6784}
6785
6786SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6787  EVT T = Op.getValueType();
6788  DebugLoc dl = Op.getDebugLoc();
6789  unsigned Reg = 0;
6790  unsigned size = 0;
6791  switch(T.getSimpleVT().SimpleTy) {
6792  default:
6793    assert(false && "Invalid value type!");
6794  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6795  case MVT::i16: Reg = X86::AX;  size = 2; break;
6796  case MVT::i32: Reg = X86::EAX; size = 4; break;
6797  case MVT::i64:
6798    assert(Subtarget->is64Bit() && "Node not type legal!");
6799    Reg = X86::RAX; size = 8;
6800    break;
6801  }
6802  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6803                                    Op.getOperand(2), SDValue());
6804  SDValue Ops[] = { cpIn.getValue(0),
6805                    Op.getOperand(1),
6806                    Op.getOperand(3),
6807                    DAG.getTargetConstant(size, MVT::i8),
6808                    cpIn.getValue(1) };
6809  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6810  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6811  SDValue cpOut =
6812    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6813  return cpOut;
6814}
6815
6816SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6817                                                 SelectionDAG &DAG) {
6818  assert(Subtarget->is64Bit() && "Result not type legalized?");
6819  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6820  SDValue TheChain = Op.getOperand(0);
6821  DebugLoc dl = Op.getDebugLoc();
6822  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6823  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6824  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6825                                   rax.getValue(2));
6826  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6827                            DAG.getConstant(32, MVT::i8));
6828  SDValue Ops[] = {
6829    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6830    rdx.getValue(1)
6831  };
6832  return DAG.getMergeValues(Ops, 2, dl);
6833}
6834
6835SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6836  SDNode *Node = Op.getNode();
6837  DebugLoc dl = Node->getDebugLoc();
6838  EVT T = Node->getValueType(0);
6839  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6840                              DAG.getConstant(0, T), Node->getOperand(2));
6841  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6842                       cast<AtomicSDNode>(Node)->getMemoryVT(),
6843                       Node->getOperand(0),
6844                       Node->getOperand(1), negOp,
6845                       cast<AtomicSDNode>(Node)->getSrcValue(),
6846                       cast<AtomicSDNode>(Node)->getAlignment());
6847}
6848
6849/// LowerOperation - Provide custom lowering hooks for some operations.
6850///
6851SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6852  switch (Op.getOpcode()) {
6853  default: llvm_unreachable("Should not custom lower this!");
6854  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
6855  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
6856  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6857  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6858  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6859  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6860  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6861  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6862  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6863  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6864  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6865  case ISD::SHL_PARTS:
6866  case ISD::SRA_PARTS:
6867  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6868  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6869  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6870  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6871  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
6872  case ISD::FABS:               return LowerFABS(Op, DAG);
6873  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6874  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6875  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6876  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6877  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6878  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6879  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6880  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6881  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6882  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6883  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6884  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6885  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6886  case ISD::FRAME_TO_ARGS_OFFSET:
6887                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6888  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6889  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6890  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6891  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6892  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6893  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6894  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
6895  case ISD::SADDO:
6896  case ISD::UADDO:
6897  case ISD::SSUBO:
6898  case ISD::USUBO:
6899  case ISD::SMULO:
6900  case ISD::UMULO:              return LowerXALUO(Op, DAG);
6901  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
6902  }
6903}
6904
6905void X86TargetLowering::
6906ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6907                        SelectionDAG &DAG, unsigned NewOp) {
6908  EVT T = Node->getValueType(0);
6909  DebugLoc dl = Node->getDebugLoc();
6910  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6911
6912  SDValue Chain = Node->getOperand(0);
6913  SDValue In1 = Node->getOperand(1);
6914  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6915                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6916  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6917                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6918  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6919  // have a MemOperand.  Pass the info through as a normal operand.
6920  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6921  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6922  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6923  SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
6924  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6925  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6926  Results.push_back(Result.getValue(2));
6927}
6928
6929/// ReplaceNodeResults - Replace a node with an illegal result type
6930/// with a new node built out of custom code.
6931void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6932                                           SmallVectorImpl<SDValue>&Results,
6933                                           SelectionDAG &DAG) {
6934  DebugLoc dl = N->getDebugLoc();
6935  switch (N->getOpcode()) {
6936  default:
6937    assert(false && "Do not know how to custom type legalize this operation!");
6938    return;
6939  case ISD::FP_TO_SINT: {
6940    std::pair<SDValue,SDValue> Vals =
6941        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
6942    SDValue FIST = Vals.first, StackSlot = Vals.second;
6943    if (FIST.getNode() != 0) {
6944      EVT VT = N->getValueType(0);
6945      // Return a load from the stack slot.
6946      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
6947    }
6948    return;
6949  }
6950  case ISD::READCYCLECOUNTER: {
6951    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6952    SDValue TheChain = N->getOperand(0);
6953    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6954    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
6955                                     rd.getValue(1));
6956    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
6957                                     eax.getValue(2));
6958    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6959    SDValue Ops[] = { eax, edx };
6960    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
6961    Results.push_back(edx.getValue(1));
6962    return;
6963  }
6964  case ISD::ATOMIC_CMP_SWAP: {
6965    EVT T = N->getValueType(0);
6966    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6967    SDValue cpInL, cpInH;
6968    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6969                        DAG.getConstant(0, MVT::i32));
6970    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6971                        DAG.getConstant(1, MVT::i32));
6972    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
6973    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
6974                             cpInL.getValue(1));
6975    SDValue swapInL, swapInH;
6976    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6977                          DAG.getConstant(0, MVT::i32));
6978    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6979                          DAG.getConstant(1, MVT::i32));
6980    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
6981                               cpInH.getValue(1));
6982    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
6983                               swapInL.getValue(1));
6984    SDValue Ops[] = { swapInH.getValue(0),
6985                      N->getOperand(1),
6986                      swapInH.getValue(1) };
6987    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6988    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
6989    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
6990                                        MVT::i32, Result.getValue(1));
6991    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
6992                                        MVT::i32, cpOutL.getValue(2));
6993    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6994    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6995    Results.push_back(cpOutH.getValue(1));
6996    return;
6997  }
6998  case ISD::ATOMIC_LOAD_ADD:
6999    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7000    return;
7001  case ISD::ATOMIC_LOAD_AND:
7002    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7003    return;
7004  case ISD::ATOMIC_LOAD_NAND:
7005    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7006    return;
7007  case ISD::ATOMIC_LOAD_OR:
7008    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7009    return;
7010  case ISD::ATOMIC_LOAD_SUB:
7011    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7012    return;
7013  case ISD::ATOMIC_LOAD_XOR:
7014    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7015    return;
7016  case ISD::ATOMIC_SWAP:
7017    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7018    return;
7019  }
7020}
7021
7022const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7023  switch (Opcode) {
7024  default: return NULL;
7025  case X86ISD::BSF:                return "X86ISD::BSF";
7026  case X86ISD::BSR:                return "X86ISD::BSR";
7027  case X86ISD::SHLD:               return "X86ISD::SHLD";
7028  case X86ISD::SHRD:               return "X86ISD::SHRD";
7029  case X86ISD::FAND:               return "X86ISD::FAND";
7030  case X86ISD::FOR:                return "X86ISD::FOR";
7031  case X86ISD::FXOR:               return "X86ISD::FXOR";
7032  case X86ISD::FSRL:               return "X86ISD::FSRL";
7033  case X86ISD::FILD:               return "X86ISD::FILD";
7034  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7035  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7036  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7037  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7038  case X86ISD::FLD:                return "X86ISD::FLD";
7039  case X86ISD::FST:                return "X86ISD::FST";
7040  case X86ISD::CALL:               return "X86ISD::CALL";
7041  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7042  case X86ISD::BT:                 return "X86ISD::BT";
7043  case X86ISD::CMP:                return "X86ISD::CMP";
7044  case X86ISD::COMI:               return "X86ISD::COMI";
7045  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7046  case X86ISD::SETCC:              return "X86ISD::SETCC";
7047  case X86ISD::CMOV:               return "X86ISD::CMOV";
7048  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7049  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7050  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7051  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7052  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7053  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7054  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7055  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7056  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7057  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7058  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7059  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7060  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7061  case X86ISD::FMAX:               return "X86ISD::FMAX";
7062  case X86ISD::FMIN:               return "X86ISD::FMIN";
7063  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7064  case X86ISD::FRCP:               return "X86ISD::FRCP";
7065  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7066  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7067  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7068  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7069  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7070  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7071  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7072  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7073  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7074  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7075  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7076  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7077  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7078  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7079  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7080  case X86ISD::VSHL:               return "X86ISD::VSHL";
7081  case X86ISD::VSRL:               return "X86ISD::VSRL";
7082  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7083  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7084  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7085  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7086  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7087  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7088  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7089  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7090  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7091  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7092  case X86ISD::ADD:                return "X86ISD::ADD";
7093  case X86ISD::SUB:                return "X86ISD::SUB";
7094  case X86ISD::SMUL:               return "X86ISD::SMUL";
7095  case X86ISD::UMUL:               return "X86ISD::UMUL";
7096  case X86ISD::INC:                return "X86ISD::INC";
7097  case X86ISD::DEC:                return "X86ISD::DEC";
7098  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7099  case X86ISD::PTEST:              return "X86ISD::PTEST";
7100  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7101  }
7102}
7103
7104// isLegalAddressingMode - Return true if the addressing mode represented
7105// by AM is legal for this target, for a load/store of the specified type.
7106bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7107                                              const Type *Ty) const {
7108  // X86 supports extremely general addressing modes.
7109  CodeModel::Model M = getTargetMachine().getCodeModel();
7110
7111  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7112  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7113    return false;
7114
7115  if (AM.BaseGV) {
7116    unsigned GVFlags =
7117      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7118
7119    // If a reference to this global requires an extra load, we can't fold it.
7120    if (isGlobalStubReference(GVFlags))
7121      return false;
7122
7123    // If BaseGV requires a register for the PIC base, we cannot also have a
7124    // BaseReg specified.
7125    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7126      return false;
7127
7128    // If lower 4G is not available, then we must use rip-relative addressing.
7129    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7130      return false;
7131  }
7132
7133  switch (AM.Scale) {
7134  case 0:
7135  case 1:
7136  case 2:
7137  case 4:
7138  case 8:
7139    // These scales always work.
7140    break;
7141  case 3:
7142  case 5:
7143  case 9:
7144    // These scales are formed with basereg+scalereg.  Only accept if there is
7145    // no basereg yet.
7146    if (AM.HasBaseReg)
7147      return false;
7148    break;
7149  default:  // Other stuff never works.
7150    return false;
7151  }
7152
7153  return true;
7154}
7155
7156
7157bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7158  if (!Ty1->isInteger() || !Ty2->isInteger())
7159    return false;
7160  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7161  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7162  if (NumBits1 <= NumBits2)
7163    return false;
7164  return Subtarget->is64Bit() || NumBits1 < 64;
7165}
7166
7167bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7168  if (!VT1.isInteger() || !VT2.isInteger())
7169    return false;
7170  unsigned NumBits1 = VT1.getSizeInBits();
7171  unsigned NumBits2 = VT2.getSizeInBits();
7172  if (NumBits1 <= NumBits2)
7173    return false;
7174  return Subtarget->is64Bit() || NumBits1 < 64;
7175}
7176
7177bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7178  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7179  return Ty1 == Type::getInt32Ty(Ty1->getContext()) &&
7180         Ty2 == Type::getInt64Ty(Ty1->getContext()) && Subtarget->is64Bit();
7181}
7182
7183bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7184  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7185  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7186}
7187
7188bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7189  // i16 instructions are longer (0x66 prefix) and potentially slower.
7190  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7191}
7192
7193/// isShuffleMaskLegal - Targets can use this to indicate that they only
7194/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7195/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7196/// are assumed to be legal.
7197bool
7198X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7199                                      EVT VT) const {
7200  // Only do shuffles on 128-bit vector types for now.
7201  if (VT.getSizeInBits() == 64)
7202    return false;
7203
7204  // FIXME: pshufb, blends, palignr, shifts.
7205  return (VT.getVectorNumElements() == 2 ||
7206          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7207          isMOVLMask(M, VT) ||
7208          isSHUFPMask(M, VT) ||
7209          isPSHUFDMask(M, VT) ||
7210          isPSHUFHWMask(M, VT) ||
7211          isPSHUFLWMask(M, VT) ||
7212          isUNPCKLMask(M, VT) ||
7213          isUNPCKHMask(M, VT) ||
7214          isUNPCKL_v_undef_Mask(M, VT) ||
7215          isUNPCKH_v_undef_Mask(M, VT));
7216}
7217
7218bool
7219X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7220                                          EVT VT) const {
7221  unsigned NumElts = VT.getVectorNumElements();
7222  // FIXME: This collection of masks seems suspect.
7223  if (NumElts == 2)
7224    return true;
7225  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7226    return (isMOVLMask(Mask, VT)  ||
7227            isCommutedMOVLMask(Mask, VT, true) ||
7228            isSHUFPMask(Mask, VT) ||
7229            isCommutedSHUFPMask(Mask, VT));
7230  }
7231  return false;
7232}
7233
7234//===----------------------------------------------------------------------===//
7235//                           X86 Scheduler Hooks
7236//===----------------------------------------------------------------------===//
7237
7238// private utility function
7239MachineBasicBlock *
7240X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7241                                                       MachineBasicBlock *MBB,
7242                                                       unsigned regOpc,
7243                                                       unsigned immOpc,
7244                                                       unsigned LoadOpc,
7245                                                       unsigned CXchgOpc,
7246                                                       unsigned copyOpc,
7247                                                       unsigned notOpc,
7248                                                       unsigned EAXreg,
7249                                                       TargetRegisterClass *RC,
7250                                                       bool invSrc) const {
7251  // For the atomic bitwise operator, we generate
7252  //   thisMBB:
7253  //   newMBB:
7254  //     ld  t1 = [bitinstr.addr]
7255  //     op  t2 = t1, [bitinstr.val]
7256  //     mov EAX = t1
7257  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7258  //     bz  newMBB
7259  //     fallthrough -->nextMBB
7260  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7261  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7262  MachineFunction::iterator MBBIter = MBB;
7263  ++MBBIter;
7264
7265  /// First build the CFG
7266  MachineFunction *F = MBB->getParent();
7267  MachineBasicBlock *thisMBB = MBB;
7268  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7269  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7270  F->insert(MBBIter, newMBB);
7271  F->insert(MBBIter, nextMBB);
7272
7273  // Move all successors to thisMBB to nextMBB
7274  nextMBB->transferSuccessors(thisMBB);
7275
7276  // Update thisMBB to fall through to newMBB
7277  thisMBB->addSuccessor(newMBB);
7278
7279  // newMBB jumps to itself and fall through to nextMBB
7280  newMBB->addSuccessor(nextMBB);
7281  newMBB->addSuccessor(newMBB);
7282
7283  // Insert instructions into newMBB based on incoming instruction
7284  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7285         "unexpected number of operands");
7286  DebugLoc dl = bInstr->getDebugLoc();
7287  MachineOperand& destOper = bInstr->getOperand(0);
7288  MachineOperand* argOpers[2 + X86AddrNumOperands];
7289  int numArgs = bInstr->getNumOperands() - 1;
7290  for (int i=0; i < numArgs; ++i)
7291    argOpers[i] = &bInstr->getOperand(i+1);
7292
7293  // x86 address has 4 operands: base, index, scale, and displacement
7294  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7295  int valArgIndx = lastAddrIndx + 1;
7296
7297  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7298  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7299  for (int i=0; i <= lastAddrIndx; ++i)
7300    (*MIB).addOperand(*argOpers[i]);
7301
7302  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7303  if (invSrc) {
7304    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7305  }
7306  else
7307    tt = t1;
7308
7309  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7310  assert((argOpers[valArgIndx]->isReg() ||
7311          argOpers[valArgIndx]->isImm()) &&
7312         "invalid operand");
7313  if (argOpers[valArgIndx]->isReg())
7314    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7315  else
7316    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7317  MIB.addReg(tt);
7318  (*MIB).addOperand(*argOpers[valArgIndx]);
7319
7320  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7321  MIB.addReg(t1);
7322
7323  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7324  for (int i=0; i <= lastAddrIndx; ++i)
7325    (*MIB).addOperand(*argOpers[i]);
7326  MIB.addReg(t2);
7327  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7328  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7329
7330  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7331  MIB.addReg(EAXreg);
7332
7333  // insert branch
7334  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7335
7336  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7337  return nextMBB;
7338}
7339
7340// private utility function:  64 bit atomics on 32 bit host.
7341MachineBasicBlock *
7342X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7343                                                       MachineBasicBlock *MBB,
7344                                                       unsigned regOpcL,
7345                                                       unsigned regOpcH,
7346                                                       unsigned immOpcL,
7347                                                       unsigned immOpcH,
7348                                                       bool invSrc) const {
7349  // For the atomic bitwise operator, we generate
7350  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7351  //     ld t1,t2 = [bitinstr.addr]
7352  //   newMBB:
7353  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7354  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7355  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7356  //     mov ECX, EBX <- t5, t6
7357  //     mov EAX, EDX <- t1, t2
7358  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7359  //     mov t3, t4 <- EAX, EDX
7360  //     bz  newMBB
7361  //     result in out1, out2
7362  //     fallthrough -->nextMBB
7363
7364  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7365  const unsigned LoadOpc = X86::MOV32rm;
7366  const unsigned copyOpc = X86::MOV32rr;
7367  const unsigned NotOpc = X86::NOT32r;
7368  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7369  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7370  MachineFunction::iterator MBBIter = MBB;
7371  ++MBBIter;
7372
7373  /// First build the CFG
7374  MachineFunction *F = MBB->getParent();
7375  MachineBasicBlock *thisMBB = MBB;
7376  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7377  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7378  F->insert(MBBIter, newMBB);
7379  F->insert(MBBIter, nextMBB);
7380
7381  // Move all successors to thisMBB to nextMBB
7382  nextMBB->transferSuccessors(thisMBB);
7383
7384  // Update thisMBB to fall through to newMBB
7385  thisMBB->addSuccessor(newMBB);
7386
7387  // newMBB jumps to itself and fall through to nextMBB
7388  newMBB->addSuccessor(nextMBB);
7389  newMBB->addSuccessor(newMBB);
7390
7391  DebugLoc dl = bInstr->getDebugLoc();
7392  // Insert instructions into newMBB based on incoming instruction
7393  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7394  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7395         "unexpected number of operands");
7396  MachineOperand& dest1Oper = bInstr->getOperand(0);
7397  MachineOperand& dest2Oper = bInstr->getOperand(1);
7398  MachineOperand* argOpers[2 + X86AddrNumOperands];
7399  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7400    argOpers[i] = &bInstr->getOperand(i+2);
7401
7402  // x86 address has 4 operands: base, index, scale, and displacement
7403  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7404
7405  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7406  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7407  for (int i=0; i <= lastAddrIndx; ++i)
7408    (*MIB).addOperand(*argOpers[i]);
7409  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7410  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7411  // add 4 to displacement.
7412  for (int i=0; i <= lastAddrIndx-2; ++i)
7413    (*MIB).addOperand(*argOpers[i]);
7414  MachineOperand newOp3 = *(argOpers[3]);
7415  if (newOp3.isImm())
7416    newOp3.setImm(newOp3.getImm()+4);
7417  else
7418    newOp3.setOffset(newOp3.getOffset()+4);
7419  (*MIB).addOperand(newOp3);
7420  (*MIB).addOperand(*argOpers[lastAddrIndx]);
7421
7422  // t3/4 are defined later, at the bottom of the loop
7423  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7424  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7425  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7426    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7427  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7428    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7429
7430  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7431  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7432  if (invSrc) {
7433    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7434    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7435  } else {
7436    tt1 = t1;
7437    tt2 = t2;
7438  }
7439
7440  int valArgIndx = lastAddrIndx + 1;
7441  assert((argOpers[valArgIndx]->isReg() ||
7442          argOpers[valArgIndx]->isImm()) &&
7443         "invalid operand");
7444  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7445  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7446  if (argOpers[valArgIndx]->isReg())
7447    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7448  else
7449    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7450  if (regOpcL != X86::MOV32rr)
7451    MIB.addReg(tt1);
7452  (*MIB).addOperand(*argOpers[valArgIndx]);
7453  assert(argOpers[valArgIndx + 1]->isReg() ==
7454         argOpers[valArgIndx]->isReg());
7455  assert(argOpers[valArgIndx + 1]->isImm() ==
7456         argOpers[valArgIndx]->isImm());
7457  if (argOpers[valArgIndx + 1]->isReg())
7458    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7459  else
7460    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7461  if (regOpcH != X86::MOV32rr)
7462    MIB.addReg(tt2);
7463  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7464
7465  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7466  MIB.addReg(t1);
7467  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7468  MIB.addReg(t2);
7469
7470  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7471  MIB.addReg(t5);
7472  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7473  MIB.addReg(t6);
7474
7475  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7476  for (int i=0; i <= lastAddrIndx; ++i)
7477    (*MIB).addOperand(*argOpers[i]);
7478
7479  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7480  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7481
7482  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7483  MIB.addReg(X86::EAX);
7484  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7485  MIB.addReg(X86::EDX);
7486
7487  // insert branch
7488  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7489
7490  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7491  return nextMBB;
7492}
7493
7494// private utility function
7495MachineBasicBlock *
7496X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7497                                                      MachineBasicBlock *MBB,
7498                                                      unsigned cmovOpc) const {
7499  // For the atomic min/max operator, we generate
7500  //   thisMBB:
7501  //   newMBB:
7502  //     ld t1 = [min/max.addr]
7503  //     mov t2 = [min/max.val]
7504  //     cmp  t1, t2
7505  //     cmov[cond] t2 = t1
7506  //     mov EAX = t1
7507  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7508  //     bz   newMBB
7509  //     fallthrough -->nextMBB
7510  //
7511  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7512  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7513  MachineFunction::iterator MBBIter = MBB;
7514  ++MBBIter;
7515
7516  /// First build the CFG
7517  MachineFunction *F = MBB->getParent();
7518  MachineBasicBlock *thisMBB = MBB;
7519  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7520  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7521  F->insert(MBBIter, newMBB);
7522  F->insert(MBBIter, nextMBB);
7523
7524  // Move all successors of thisMBB to nextMBB
7525  nextMBB->transferSuccessors(thisMBB);
7526
7527  // Update thisMBB to fall through to newMBB
7528  thisMBB->addSuccessor(newMBB);
7529
7530  // newMBB jumps to newMBB and fall through to nextMBB
7531  newMBB->addSuccessor(nextMBB);
7532  newMBB->addSuccessor(newMBB);
7533
7534  DebugLoc dl = mInstr->getDebugLoc();
7535  // Insert instructions into newMBB based on incoming instruction
7536  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7537         "unexpected number of operands");
7538  MachineOperand& destOper = mInstr->getOperand(0);
7539  MachineOperand* argOpers[2 + X86AddrNumOperands];
7540  int numArgs = mInstr->getNumOperands() - 1;
7541  for (int i=0; i < numArgs; ++i)
7542    argOpers[i] = &mInstr->getOperand(i+1);
7543
7544  // x86 address has 4 operands: base, index, scale, and displacement
7545  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7546  int valArgIndx = lastAddrIndx + 1;
7547
7548  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7549  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7550  for (int i=0; i <= lastAddrIndx; ++i)
7551    (*MIB).addOperand(*argOpers[i]);
7552
7553  // We only support register and immediate values
7554  assert((argOpers[valArgIndx]->isReg() ||
7555          argOpers[valArgIndx]->isImm()) &&
7556         "invalid operand");
7557
7558  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7559  if (argOpers[valArgIndx]->isReg())
7560    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7561  else
7562    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7563  (*MIB).addOperand(*argOpers[valArgIndx]);
7564
7565  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7566  MIB.addReg(t1);
7567
7568  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7569  MIB.addReg(t1);
7570  MIB.addReg(t2);
7571
7572  // Generate movc
7573  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7574  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7575  MIB.addReg(t2);
7576  MIB.addReg(t1);
7577
7578  // Cmp and exchange if none has modified the memory location
7579  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7580  for (int i=0; i <= lastAddrIndx; ++i)
7581    (*MIB).addOperand(*argOpers[i]);
7582  MIB.addReg(t3);
7583  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7584  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7585
7586  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7587  MIB.addReg(X86::EAX);
7588
7589  // insert branch
7590  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7591
7592  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7593  return nextMBB;
7594}
7595
7596MachineBasicBlock *
7597X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
7598                                                 MachineInstr *MI,
7599                                                 MachineBasicBlock *MBB) const {
7600  // Emit code to save XMM registers to the stack. The ABI says that the
7601  // number of registers to save is given in %al, so it's theoretically
7602  // possible to do an indirect jump trick to avoid saving all of them,
7603  // however this code takes a simpler approach and just executes all
7604  // of the stores if %al is non-zero. It's less code, and it's probably
7605  // easier on the hardware branch predictor, and stores aren't all that
7606  // expensive anyway.
7607
7608  // Create the new basic blocks. One block contains all the XMM stores,
7609  // and one block is the final destination regardless of whether any
7610  // stores were performed.
7611  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7612  MachineFunction *F = MBB->getParent();
7613  MachineFunction::iterator MBBIter = MBB;
7614  ++MBBIter;
7615  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
7616  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
7617  F->insert(MBBIter, XMMSaveMBB);
7618  F->insert(MBBIter, EndMBB);
7619
7620  // Set up the CFG.
7621  // Move any original successors of MBB to the end block.
7622  EndMBB->transferSuccessors(MBB);
7623  // The original block will now fall through to the XMM save block.
7624  MBB->addSuccessor(XMMSaveMBB);
7625  // The XMMSaveMBB will fall through to the end block.
7626  XMMSaveMBB->addSuccessor(EndMBB);
7627
7628  // Now add the instructions.
7629  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7630  DebugLoc DL = MI->getDebugLoc();
7631
7632  unsigned CountReg = MI->getOperand(0).getReg();
7633  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
7634  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
7635
7636  if (!Subtarget->isTargetWin64()) {
7637    // If %al is 0, branch around the XMM save block.
7638    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
7639    BuildMI(MBB, DL, TII->get(X86::JE)).addMBB(EndMBB);
7640    MBB->addSuccessor(EndMBB);
7641  }
7642
7643  // In the XMM save block, save all the XMM argument registers.
7644  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
7645    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
7646    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
7647      .addFrameIndex(RegSaveFrameIndex)
7648      .addImm(/*Scale=*/1)
7649      .addReg(/*IndexReg=*/0)
7650      .addImm(/*Disp=*/Offset)
7651      .addReg(/*Segment=*/0)
7652      .addReg(MI->getOperand(i).getReg())
7653      .addMemOperand(MachineMemOperand(
7654                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
7655                       MachineMemOperand::MOStore, Offset,
7656                       /*Size=*/16, /*Align=*/16));
7657  }
7658
7659  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7660
7661  return EndMBB;
7662}
7663
7664MachineBasicBlock *
7665X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7666                                               MachineBasicBlock *BB) const {
7667  DebugLoc dl = MI->getDebugLoc();
7668  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7669  switch (MI->getOpcode()) {
7670  default: assert(false && "Unexpected instr type to insert");
7671  case X86::CMOV_V1I64:
7672  case X86::CMOV_FR32:
7673  case X86::CMOV_FR64:
7674  case X86::CMOV_V4F32:
7675  case X86::CMOV_V2F64:
7676  case X86::CMOV_V2I64: {
7677    // To "insert" a SELECT_CC instruction, we actually have to insert the
7678    // diamond control-flow pattern.  The incoming instruction knows the
7679    // destination vreg to set, the condition code register to branch on, the
7680    // true/false values to select between, and a branch opcode to use.
7681    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7682    MachineFunction::iterator It = BB;
7683    ++It;
7684
7685    //  thisMBB:
7686    //  ...
7687    //   TrueVal = ...
7688    //   cmpTY ccX, r1, r2
7689    //   bCC copy1MBB
7690    //   fallthrough --> copy0MBB
7691    MachineBasicBlock *thisMBB = BB;
7692    MachineFunction *F = BB->getParent();
7693    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7694    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7695    unsigned Opc =
7696      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7697    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
7698    F->insert(It, copy0MBB);
7699    F->insert(It, sinkMBB);
7700    // Update machine-CFG edges by transferring all successors of the current
7701    // block to the new block which will contain the Phi node for the select.
7702    sinkMBB->transferSuccessors(BB);
7703
7704    // Add the true and fallthrough blocks as its successors.
7705    BB->addSuccessor(copy0MBB);
7706    BB->addSuccessor(sinkMBB);
7707
7708    //  copy0MBB:
7709    //   %FalseValue = ...
7710    //   # fallthrough to sinkMBB
7711    BB = copy0MBB;
7712
7713    // Update machine-CFG edges
7714    BB->addSuccessor(sinkMBB);
7715
7716    //  sinkMBB:
7717    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7718    //  ...
7719    BB = sinkMBB;
7720    BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg())
7721      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7722      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7723
7724    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7725    return BB;
7726  }
7727
7728  case X86::FP32_TO_INT16_IN_MEM:
7729  case X86::FP32_TO_INT32_IN_MEM:
7730  case X86::FP32_TO_INT64_IN_MEM:
7731  case X86::FP64_TO_INT16_IN_MEM:
7732  case X86::FP64_TO_INT32_IN_MEM:
7733  case X86::FP64_TO_INT64_IN_MEM:
7734  case X86::FP80_TO_INT16_IN_MEM:
7735  case X86::FP80_TO_INT32_IN_MEM:
7736  case X86::FP80_TO_INT64_IN_MEM: {
7737    // Change the floating point control register to use "round towards zero"
7738    // mode when truncating to an integer value.
7739    MachineFunction *F = BB->getParent();
7740    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7741    addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7742
7743    // Load the old value of the high byte of the control word...
7744    unsigned OldCW =
7745      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7746    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
7747                      CWFrameIdx);
7748
7749    // Set the high part to be round to zero...
7750    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx)
7751      .addImm(0xC7F);
7752
7753    // Reload the modified control word now...
7754    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7755
7756    // Restore the memory image of control word to original value
7757    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx)
7758      .addReg(OldCW);
7759
7760    // Get the X86 opcode to use.
7761    unsigned Opc;
7762    switch (MI->getOpcode()) {
7763    default: llvm_unreachable("illegal opcode!");
7764    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7765    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7766    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7767    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7768    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7769    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7770    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7771    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7772    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7773    }
7774
7775    X86AddressMode AM;
7776    MachineOperand &Op = MI->getOperand(0);
7777    if (Op.isReg()) {
7778      AM.BaseType = X86AddressMode::RegBase;
7779      AM.Base.Reg = Op.getReg();
7780    } else {
7781      AM.BaseType = X86AddressMode::FrameIndexBase;
7782      AM.Base.FrameIndex = Op.getIndex();
7783    }
7784    Op = MI->getOperand(1);
7785    if (Op.isImm())
7786      AM.Scale = Op.getImm();
7787    Op = MI->getOperand(2);
7788    if (Op.isImm())
7789      AM.IndexReg = Op.getImm();
7790    Op = MI->getOperand(3);
7791    if (Op.isGlobal()) {
7792      AM.GV = Op.getGlobal();
7793    } else {
7794      AM.Disp = Op.getImm();
7795    }
7796    addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM)
7797                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
7798
7799    // Reload the original control word now.
7800    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7801
7802    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7803    return BB;
7804  }
7805  case X86::ATOMAND32:
7806    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7807                                               X86::AND32ri, X86::MOV32rm,
7808                                               X86::LCMPXCHG32, X86::MOV32rr,
7809                                               X86::NOT32r, X86::EAX,
7810                                               X86::GR32RegisterClass);
7811  case X86::ATOMOR32:
7812    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7813                                               X86::OR32ri, X86::MOV32rm,
7814                                               X86::LCMPXCHG32, X86::MOV32rr,
7815                                               X86::NOT32r, X86::EAX,
7816                                               X86::GR32RegisterClass);
7817  case X86::ATOMXOR32:
7818    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7819                                               X86::XOR32ri, X86::MOV32rm,
7820                                               X86::LCMPXCHG32, X86::MOV32rr,
7821                                               X86::NOT32r, X86::EAX,
7822                                               X86::GR32RegisterClass);
7823  case X86::ATOMNAND32:
7824    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7825                                               X86::AND32ri, X86::MOV32rm,
7826                                               X86::LCMPXCHG32, X86::MOV32rr,
7827                                               X86::NOT32r, X86::EAX,
7828                                               X86::GR32RegisterClass, true);
7829  case X86::ATOMMIN32:
7830    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7831  case X86::ATOMMAX32:
7832    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7833  case X86::ATOMUMIN32:
7834    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7835  case X86::ATOMUMAX32:
7836    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7837
7838  case X86::ATOMAND16:
7839    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7840                                               X86::AND16ri, X86::MOV16rm,
7841                                               X86::LCMPXCHG16, X86::MOV16rr,
7842                                               X86::NOT16r, X86::AX,
7843                                               X86::GR16RegisterClass);
7844  case X86::ATOMOR16:
7845    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7846                                               X86::OR16ri, X86::MOV16rm,
7847                                               X86::LCMPXCHG16, X86::MOV16rr,
7848                                               X86::NOT16r, X86::AX,
7849                                               X86::GR16RegisterClass);
7850  case X86::ATOMXOR16:
7851    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7852                                               X86::XOR16ri, X86::MOV16rm,
7853                                               X86::LCMPXCHG16, X86::MOV16rr,
7854                                               X86::NOT16r, X86::AX,
7855                                               X86::GR16RegisterClass);
7856  case X86::ATOMNAND16:
7857    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7858                                               X86::AND16ri, X86::MOV16rm,
7859                                               X86::LCMPXCHG16, X86::MOV16rr,
7860                                               X86::NOT16r, X86::AX,
7861                                               X86::GR16RegisterClass, true);
7862  case X86::ATOMMIN16:
7863    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7864  case X86::ATOMMAX16:
7865    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7866  case X86::ATOMUMIN16:
7867    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7868  case X86::ATOMUMAX16:
7869    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7870
7871  case X86::ATOMAND8:
7872    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7873                                               X86::AND8ri, X86::MOV8rm,
7874                                               X86::LCMPXCHG8, X86::MOV8rr,
7875                                               X86::NOT8r, X86::AL,
7876                                               X86::GR8RegisterClass);
7877  case X86::ATOMOR8:
7878    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7879                                               X86::OR8ri, X86::MOV8rm,
7880                                               X86::LCMPXCHG8, X86::MOV8rr,
7881                                               X86::NOT8r, X86::AL,
7882                                               X86::GR8RegisterClass);
7883  case X86::ATOMXOR8:
7884    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7885                                               X86::XOR8ri, X86::MOV8rm,
7886                                               X86::LCMPXCHG8, X86::MOV8rr,
7887                                               X86::NOT8r, X86::AL,
7888                                               X86::GR8RegisterClass);
7889  case X86::ATOMNAND8:
7890    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7891                                               X86::AND8ri, X86::MOV8rm,
7892                                               X86::LCMPXCHG8, X86::MOV8rr,
7893                                               X86::NOT8r, X86::AL,
7894                                               X86::GR8RegisterClass, true);
7895  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7896  // This group is for 64-bit host.
7897  case X86::ATOMAND64:
7898    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7899                                               X86::AND64ri32, X86::MOV64rm,
7900                                               X86::LCMPXCHG64, X86::MOV64rr,
7901                                               X86::NOT64r, X86::RAX,
7902                                               X86::GR64RegisterClass);
7903  case X86::ATOMOR64:
7904    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7905                                               X86::OR64ri32, X86::MOV64rm,
7906                                               X86::LCMPXCHG64, X86::MOV64rr,
7907                                               X86::NOT64r, X86::RAX,
7908                                               X86::GR64RegisterClass);
7909  case X86::ATOMXOR64:
7910    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7911                                               X86::XOR64ri32, X86::MOV64rm,
7912                                               X86::LCMPXCHG64, X86::MOV64rr,
7913                                               X86::NOT64r, X86::RAX,
7914                                               X86::GR64RegisterClass);
7915  case X86::ATOMNAND64:
7916    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7917                                               X86::AND64ri32, X86::MOV64rm,
7918                                               X86::LCMPXCHG64, X86::MOV64rr,
7919                                               X86::NOT64r, X86::RAX,
7920                                               X86::GR64RegisterClass, true);
7921  case X86::ATOMMIN64:
7922    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7923  case X86::ATOMMAX64:
7924    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7925  case X86::ATOMUMIN64:
7926    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7927  case X86::ATOMUMAX64:
7928    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7929
7930  // This group does 64-bit operations on a 32-bit host.
7931  case X86::ATOMAND6432:
7932    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7933                                               X86::AND32rr, X86::AND32rr,
7934                                               X86::AND32ri, X86::AND32ri,
7935                                               false);
7936  case X86::ATOMOR6432:
7937    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7938                                               X86::OR32rr, X86::OR32rr,
7939                                               X86::OR32ri, X86::OR32ri,
7940                                               false);
7941  case X86::ATOMXOR6432:
7942    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7943                                               X86::XOR32rr, X86::XOR32rr,
7944                                               X86::XOR32ri, X86::XOR32ri,
7945                                               false);
7946  case X86::ATOMNAND6432:
7947    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7948                                               X86::AND32rr, X86::AND32rr,
7949                                               X86::AND32ri, X86::AND32ri,
7950                                               true);
7951  case X86::ATOMADD6432:
7952    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7953                                               X86::ADD32rr, X86::ADC32rr,
7954                                               X86::ADD32ri, X86::ADC32ri,
7955                                               false);
7956  case X86::ATOMSUB6432:
7957    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7958                                               X86::SUB32rr, X86::SBB32rr,
7959                                               X86::SUB32ri, X86::SBB32ri,
7960                                               false);
7961  case X86::ATOMSWAP6432:
7962    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7963                                               X86::MOV32rr, X86::MOV32rr,
7964                                               X86::MOV32ri, X86::MOV32ri,
7965                                               false);
7966  case X86::VASTART_SAVE_XMM_REGS:
7967    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
7968  }
7969}
7970
7971//===----------------------------------------------------------------------===//
7972//                           X86 Optimization Hooks
7973//===----------------------------------------------------------------------===//
7974
7975void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7976                                                       const APInt &Mask,
7977                                                       APInt &KnownZero,
7978                                                       APInt &KnownOne,
7979                                                       const SelectionDAG &DAG,
7980                                                       unsigned Depth) const {
7981  unsigned Opc = Op.getOpcode();
7982  assert((Opc >= ISD::BUILTIN_OP_END ||
7983          Opc == ISD::INTRINSIC_WO_CHAIN ||
7984          Opc == ISD::INTRINSIC_W_CHAIN ||
7985          Opc == ISD::INTRINSIC_VOID) &&
7986         "Should use MaskedValueIsZero if you don't know whether Op"
7987         " is a target node!");
7988
7989  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
7990  switch (Opc) {
7991  default: break;
7992  case X86ISD::ADD:
7993  case X86ISD::SUB:
7994  case X86ISD::SMUL:
7995  case X86ISD::UMUL:
7996  case X86ISD::INC:
7997  case X86ISD::DEC:
7998    // These nodes' second result is a boolean.
7999    if (Op.getResNo() == 0)
8000      break;
8001    // Fallthrough
8002  case X86ISD::SETCC:
8003    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8004                                       Mask.getBitWidth() - 1);
8005    break;
8006  }
8007}
8008
8009/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8010/// node is a GlobalAddress + offset.
8011bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8012                                       GlobalValue* &GA, int64_t &Offset) const{
8013  if (N->getOpcode() == X86ISD::Wrapper) {
8014    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8015      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8016      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8017      return true;
8018    }
8019  }
8020  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8021}
8022
8023static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
8024                               const TargetLowering &TLI) {
8025  GlobalValue *GV;
8026  int64_t Offset = 0;
8027  if (TLI.isGAPlusOffset(Base, GV, Offset))
8028    return (GV->getAlignment() >= N && (Offset % N) == 0);
8029  // DAG combine handles the stack object case.
8030  return false;
8031}
8032
8033static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8034                                     EVT EVT, LoadSDNode *&LDBase,
8035                                     unsigned &LastLoadedElt,
8036                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8037                                     const TargetLowering &TLI) {
8038  LDBase = NULL;
8039  LastLoadedElt = -1U;
8040  for (unsigned i = 0; i < NumElems; ++i) {
8041    if (N->getMaskElt(i) < 0) {
8042      if (!LDBase)
8043        return false;
8044      continue;
8045    }
8046
8047    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8048    if (!Elt.getNode() ||
8049        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8050      return false;
8051    if (!LDBase) {
8052      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8053        return false;
8054      LDBase = cast<LoadSDNode>(Elt.getNode());
8055      LastLoadedElt = i;
8056      continue;
8057    }
8058    if (Elt.getOpcode() == ISD::UNDEF)
8059      continue;
8060
8061    LoadSDNode *LD = cast<LoadSDNode>(Elt);
8062    if (!TLI.isConsecutiveLoad(LD, LDBase, EVT.getSizeInBits()/8, i, MFI))
8063      return false;
8064    LastLoadedElt = i;
8065  }
8066  return true;
8067}
8068
8069/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8070/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8071/// if the load addresses are consecutive, non-overlapping, and in the right
8072/// order.  In the case of v2i64, it will see if it can rewrite the
8073/// shuffle to be an appropriate build vector so it can take advantage of
8074// performBuildVectorCombine.
8075static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8076                                     const TargetLowering &TLI) {
8077  DebugLoc dl = N->getDebugLoc();
8078  EVT VT = N->getValueType(0);
8079  EVT EVT = VT.getVectorElementType();
8080  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8081  unsigned NumElems = VT.getVectorNumElements();
8082
8083  if (VT.getSizeInBits() != 128)
8084    return SDValue();
8085
8086  // Try to combine a vector_shuffle into a 128-bit load.
8087  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8088  LoadSDNode *LD = NULL;
8089  unsigned LastLoadedElt;
8090  if (!EltsFromConsecutiveLoads(SVN, NumElems, EVT, LD, LastLoadedElt, DAG,
8091                                MFI, TLI))
8092    return SDValue();
8093
8094  if (LastLoadedElt == NumElems - 1) {
8095    if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI))
8096      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8097                         LD->getSrcValue(), LD->getSrcValueOffset(),
8098                         LD->isVolatile());
8099    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8100                       LD->getSrcValue(), LD->getSrcValueOffset(),
8101                       LD->isVolatile(), LD->getAlignment());
8102  } else if (NumElems == 4 && LastLoadedElt == 1) {
8103    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8104    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8105    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8106    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8107  }
8108  return SDValue();
8109}
8110
8111/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8112static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8113                                    const X86Subtarget *Subtarget) {
8114  DebugLoc DL = N->getDebugLoc();
8115  SDValue Cond = N->getOperand(0);
8116  // Get the LHS/RHS of the select.
8117  SDValue LHS = N->getOperand(1);
8118  SDValue RHS = N->getOperand(2);
8119
8120  // If we have SSE[12] support, try to form min/max nodes.
8121  if (Subtarget->hasSSE2() &&
8122      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8123      Cond.getOpcode() == ISD::SETCC) {
8124    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8125
8126    unsigned Opcode = 0;
8127    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8128      switch (CC) {
8129      default: break;
8130      case ISD::SETOLE: // (X <= Y) ? X : Y -> min
8131      case ISD::SETULE:
8132      case ISD::SETLE:
8133        if (!UnsafeFPMath) break;
8134        // FALL THROUGH.
8135      case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
8136      case ISD::SETLT:
8137        Opcode = X86ISD::FMIN;
8138        break;
8139
8140      case ISD::SETOGT: // (X > Y) ? X : Y -> max
8141      case ISD::SETUGT:
8142      case ISD::SETGT:
8143        if (!UnsafeFPMath) break;
8144        // FALL THROUGH.
8145      case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
8146      case ISD::SETGE:
8147        Opcode = X86ISD::FMAX;
8148        break;
8149      }
8150    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8151      switch (CC) {
8152      default: break;
8153      case ISD::SETOGT: // (X > Y) ? Y : X -> min
8154      case ISD::SETUGT:
8155      case ISD::SETGT:
8156        if (!UnsafeFPMath) break;
8157        // FALL THROUGH.
8158      case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
8159      case ISD::SETGE:
8160        Opcode = X86ISD::FMIN;
8161        break;
8162
8163      case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
8164      case ISD::SETULE:
8165      case ISD::SETLE:
8166        if (!UnsafeFPMath) break;
8167        // FALL THROUGH.
8168      case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
8169      case ISD::SETLT:
8170        Opcode = X86ISD::FMAX;
8171        break;
8172      }
8173    }
8174
8175    if (Opcode)
8176      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8177  }
8178
8179  // If this is a select between two integer constants, try to do some
8180  // optimizations.
8181  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8182    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8183      // Don't do this for crazy integer types.
8184      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8185        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8186        // so that TrueC (the true value) is larger than FalseC.
8187        bool NeedsCondInvert = false;
8188
8189        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8190            // Efficiently invertible.
8191            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
8192             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
8193              isa<ConstantSDNode>(Cond.getOperand(1))))) {
8194          NeedsCondInvert = true;
8195          std::swap(TrueC, FalseC);
8196        }
8197
8198        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
8199        if (FalseC->getAPIntValue() == 0 &&
8200            TrueC->getAPIntValue().isPowerOf2()) {
8201          if (NeedsCondInvert) // Invert the condition if needed.
8202            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8203                               DAG.getConstant(1, Cond.getValueType()));
8204
8205          // Zero extend the condition if needed.
8206          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8207
8208          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8209          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8210                             DAG.getConstant(ShAmt, MVT::i8));
8211        }
8212
8213        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8214        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8215          if (NeedsCondInvert) // Invert the condition if needed.
8216            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8217                               DAG.getConstant(1, Cond.getValueType()));
8218
8219          // Zero extend the condition if needed.
8220          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8221                             FalseC->getValueType(0), Cond);
8222          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8223                             SDValue(FalseC, 0));
8224        }
8225
8226        // Optimize cases that will turn into an LEA instruction.  This requires
8227        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8228        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8229          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8230          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8231
8232          bool isFastMultiplier = false;
8233          if (Diff < 10) {
8234            switch ((unsigned char)Diff) {
8235              default: break;
8236              case 1:  // result = add base, cond
8237              case 2:  // result = lea base(    , cond*2)
8238              case 3:  // result = lea base(cond, cond*2)
8239              case 4:  // result = lea base(    , cond*4)
8240              case 5:  // result = lea base(cond, cond*4)
8241              case 8:  // result = lea base(    , cond*8)
8242              case 9:  // result = lea base(cond, cond*8)
8243                isFastMultiplier = true;
8244                break;
8245            }
8246          }
8247
8248          if (isFastMultiplier) {
8249            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8250            if (NeedsCondInvert) // Invert the condition if needed.
8251              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8252                                 DAG.getConstant(1, Cond.getValueType()));
8253
8254            // Zero extend the condition if needed.
8255            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8256                               Cond);
8257            // Scale the condition by the difference.
8258            if (Diff != 1)
8259              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8260                                 DAG.getConstant(Diff, Cond.getValueType()));
8261
8262            // Add the base if non-zero.
8263            if (FalseC->getAPIntValue() != 0)
8264              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8265                                 SDValue(FalseC, 0));
8266            return Cond;
8267          }
8268        }
8269      }
8270  }
8271
8272  return SDValue();
8273}
8274
8275/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8276static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
8277                                  TargetLowering::DAGCombinerInfo &DCI) {
8278  DebugLoc DL = N->getDebugLoc();
8279
8280  // If the flag operand isn't dead, don't touch this CMOV.
8281  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
8282    return SDValue();
8283
8284  // If this is a select between two integer constants, try to do some
8285  // optimizations.  Note that the operands are ordered the opposite of SELECT
8286  // operands.
8287  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
8288    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
8289      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8290      // larger than FalseC (the false value).
8291      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
8292
8293      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
8294        CC = X86::GetOppositeBranchCondition(CC);
8295        std::swap(TrueC, FalseC);
8296      }
8297
8298      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
8299      // This is efficient for any integer data type (including i8/i16) and
8300      // shift amount.
8301      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
8302        SDValue Cond = N->getOperand(3);
8303        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8304                           DAG.getConstant(CC, MVT::i8), Cond);
8305
8306        // Zero extend the condition if needed.
8307        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
8308
8309        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8310        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
8311                           DAG.getConstant(ShAmt, MVT::i8));
8312        if (N->getNumValues() == 2)  // Dead flag value?
8313          return DCI.CombineTo(N, Cond, SDValue());
8314        return Cond;
8315      }
8316
8317      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
8318      // for any integer data type, including i8/i16.
8319      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8320        SDValue Cond = N->getOperand(3);
8321        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8322                           DAG.getConstant(CC, MVT::i8), Cond);
8323
8324        // Zero extend the condition if needed.
8325        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8326                           FalseC->getValueType(0), Cond);
8327        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8328                           SDValue(FalseC, 0));
8329
8330        if (N->getNumValues() == 2)  // Dead flag value?
8331          return DCI.CombineTo(N, Cond, SDValue());
8332        return Cond;
8333      }
8334
8335      // Optimize cases that will turn into an LEA instruction.  This requires
8336      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8337      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8338        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8339        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8340
8341        bool isFastMultiplier = false;
8342        if (Diff < 10) {
8343          switch ((unsigned char)Diff) {
8344          default: break;
8345          case 1:  // result = add base, cond
8346          case 2:  // result = lea base(    , cond*2)
8347          case 3:  // result = lea base(cond, cond*2)
8348          case 4:  // result = lea base(    , cond*4)
8349          case 5:  // result = lea base(cond, cond*4)
8350          case 8:  // result = lea base(    , cond*8)
8351          case 9:  // result = lea base(cond, cond*8)
8352            isFastMultiplier = true;
8353            break;
8354          }
8355        }
8356
8357        if (isFastMultiplier) {
8358          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8359          SDValue Cond = N->getOperand(3);
8360          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8361                             DAG.getConstant(CC, MVT::i8), Cond);
8362          // Zero extend the condition if needed.
8363          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8364                             Cond);
8365          // Scale the condition by the difference.
8366          if (Diff != 1)
8367            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8368                               DAG.getConstant(Diff, Cond.getValueType()));
8369
8370          // Add the base if non-zero.
8371          if (FalseC->getAPIntValue() != 0)
8372            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8373                               SDValue(FalseC, 0));
8374          if (N->getNumValues() == 2)  // Dead flag value?
8375            return DCI.CombineTo(N, Cond, SDValue());
8376          return Cond;
8377        }
8378      }
8379    }
8380  }
8381  return SDValue();
8382}
8383
8384
8385/// PerformMulCombine - Optimize a single multiply with constant into two
8386/// in order to implement it with two cheaper instructions, e.g.
8387/// LEA + SHL, LEA + LEA.
8388static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8389                                 TargetLowering::DAGCombinerInfo &DCI) {
8390  if (DAG.getMachineFunction().
8391      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8392    return SDValue();
8393
8394  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8395    return SDValue();
8396
8397  EVT VT = N->getValueType(0);
8398  if (VT != MVT::i64)
8399    return SDValue();
8400
8401  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8402  if (!C)
8403    return SDValue();
8404  uint64_t MulAmt = C->getZExtValue();
8405  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8406    return SDValue();
8407
8408  uint64_t MulAmt1 = 0;
8409  uint64_t MulAmt2 = 0;
8410  if ((MulAmt % 9) == 0) {
8411    MulAmt1 = 9;
8412    MulAmt2 = MulAmt / 9;
8413  } else if ((MulAmt % 5) == 0) {
8414    MulAmt1 = 5;
8415    MulAmt2 = MulAmt / 5;
8416  } else if ((MulAmt % 3) == 0) {
8417    MulAmt1 = 3;
8418    MulAmt2 = MulAmt / 3;
8419  }
8420  if (MulAmt2 &&
8421      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8422    DebugLoc DL = N->getDebugLoc();
8423
8424    if (isPowerOf2_64(MulAmt2) &&
8425        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8426      // If second multiplifer is pow2, issue it first. We want the multiply by
8427      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8428      // is an add.
8429      std::swap(MulAmt1, MulAmt2);
8430
8431    SDValue NewMul;
8432    if (isPowerOf2_64(MulAmt1))
8433      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8434                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8435    else
8436      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8437                           DAG.getConstant(MulAmt1, VT));
8438
8439    if (isPowerOf2_64(MulAmt2))
8440      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8441                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8442    else
8443      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8444                           DAG.getConstant(MulAmt2, VT));
8445
8446    // Do not add new nodes to DAG combiner worklist.
8447    DCI.CombineTo(N, NewMul, false);
8448  }
8449  return SDValue();
8450}
8451
8452
8453/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8454///                       when possible.
8455static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8456                                   const X86Subtarget *Subtarget) {
8457  // On X86 with SSE2 support, we can transform this to a vector shift if
8458  // all elements are shifted by the same amount.  We can't do this in legalize
8459  // because the a constant vector is typically transformed to a constant pool
8460  // so we have no knowledge of the shift amount.
8461  if (!Subtarget->hasSSE2())
8462    return SDValue();
8463
8464  EVT VT = N->getValueType(0);
8465  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8466    return SDValue();
8467
8468  SDValue ShAmtOp = N->getOperand(1);
8469  EVT EltVT = VT.getVectorElementType();
8470  DebugLoc DL = N->getDebugLoc();
8471  SDValue BaseShAmt;
8472  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8473    unsigned NumElts = VT.getVectorNumElements();
8474    unsigned i = 0;
8475    for (; i != NumElts; ++i) {
8476      SDValue Arg = ShAmtOp.getOperand(i);
8477      if (Arg.getOpcode() == ISD::UNDEF) continue;
8478      BaseShAmt = Arg;
8479      break;
8480    }
8481    for (; i != NumElts; ++i) {
8482      SDValue Arg = ShAmtOp.getOperand(i);
8483      if (Arg.getOpcode() == ISD::UNDEF) continue;
8484      if (Arg != BaseShAmt) {
8485        return SDValue();
8486      }
8487    }
8488  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8489             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8490    BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8491                            DAG.getIntPtrConstant(0));
8492  } else
8493    return SDValue();
8494
8495  if (EltVT.bitsGT(MVT::i32))
8496    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8497  else if (EltVT.bitsLT(MVT::i32))
8498    BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt);
8499
8500  // The shift amount is identical so we can do a vector shift.
8501  SDValue  ValOp = N->getOperand(0);
8502  switch (N->getOpcode()) {
8503  default:
8504    llvm_unreachable("Unknown shift opcode!");
8505    break;
8506  case ISD::SHL:
8507    if (VT == MVT::v2i64)
8508      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8509                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8510                         ValOp, BaseShAmt);
8511    if (VT == MVT::v4i32)
8512      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8513                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8514                         ValOp, BaseShAmt);
8515    if (VT == MVT::v8i16)
8516      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8517                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8518                         ValOp, BaseShAmt);
8519    break;
8520  case ISD::SRA:
8521    if (VT == MVT::v4i32)
8522      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8523                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8524                         ValOp, BaseShAmt);
8525    if (VT == MVT::v8i16)
8526      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8527                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8528                         ValOp, BaseShAmt);
8529    break;
8530  case ISD::SRL:
8531    if (VT == MVT::v2i64)
8532      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8533                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8534                         ValOp, BaseShAmt);
8535    if (VT == MVT::v4i32)
8536      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8537                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8538                         ValOp, BaseShAmt);
8539    if (VT ==  MVT::v8i16)
8540      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8541                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8542                         ValOp, BaseShAmt);
8543    break;
8544  }
8545  return SDValue();
8546}
8547
8548/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8549static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8550                                   const X86Subtarget *Subtarget) {
8551  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8552  // the FP state in cases where an emms may be missing.
8553  // A preferable solution to the general problem is to figure out the right
8554  // places to insert EMMS.  This qualifies as a quick hack.
8555
8556  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8557  StoreSDNode *St = cast<StoreSDNode>(N);
8558  EVT VT = St->getValue().getValueType();
8559  if (VT.getSizeInBits() != 64)
8560    return SDValue();
8561
8562  const Function *F = DAG.getMachineFunction().getFunction();
8563  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
8564  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
8565    && Subtarget->hasSSE2();
8566  if ((VT.isVector() ||
8567       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8568      isa<LoadSDNode>(St->getValue()) &&
8569      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8570      St->getChain().hasOneUse() && !St->isVolatile()) {
8571    SDNode* LdVal = St->getValue().getNode();
8572    LoadSDNode *Ld = 0;
8573    int TokenFactorIndex = -1;
8574    SmallVector<SDValue, 8> Ops;
8575    SDNode* ChainVal = St->getChain().getNode();
8576    // Must be a store of a load.  We currently handle two cases:  the load
8577    // is a direct child, and it's under an intervening TokenFactor.  It is
8578    // possible to dig deeper under nested TokenFactors.
8579    if (ChainVal == LdVal)
8580      Ld = cast<LoadSDNode>(St->getChain());
8581    else if (St->getValue().hasOneUse() &&
8582             ChainVal->getOpcode() == ISD::TokenFactor) {
8583      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8584        if (ChainVal->getOperand(i).getNode() == LdVal) {
8585          TokenFactorIndex = i;
8586          Ld = cast<LoadSDNode>(St->getValue());
8587        } else
8588          Ops.push_back(ChainVal->getOperand(i));
8589      }
8590    }
8591
8592    if (!Ld || !ISD::isNormalLoad(Ld))
8593      return SDValue();
8594
8595    // If this is not the MMX case, i.e. we are just turning i64 load/store
8596    // into f64 load/store, avoid the transformation if there are multiple
8597    // uses of the loaded value.
8598    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8599      return SDValue();
8600
8601    DebugLoc LdDL = Ld->getDebugLoc();
8602    DebugLoc StDL = N->getDebugLoc();
8603    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8604    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8605    // pair instead.
8606    if (Subtarget->is64Bit() || F64IsLegal) {
8607      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8608      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8609                                  Ld->getBasePtr(), Ld->getSrcValue(),
8610                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
8611                                  Ld->getAlignment());
8612      SDValue NewChain = NewLd.getValue(1);
8613      if (TokenFactorIndex != -1) {
8614        Ops.push_back(NewChain);
8615        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8616                               Ops.size());
8617      }
8618      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8619                          St->getSrcValue(), St->getSrcValueOffset(),
8620                          St->isVolatile(), St->getAlignment());
8621    }
8622
8623    // Otherwise, lower to two pairs of 32-bit loads / stores.
8624    SDValue LoAddr = Ld->getBasePtr();
8625    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8626                                 DAG.getConstant(4, MVT::i32));
8627
8628    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8629                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
8630                               Ld->isVolatile(), Ld->getAlignment());
8631    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8632                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8633                               Ld->isVolatile(),
8634                               MinAlign(Ld->getAlignment(), 4));
8635
8636    SDValue NewChain = LoLd.getValue(1);
8637    if (TokenFactorIndex != -1) {
8638      Ops.push_back(LoLd);
8639      Ops.push_back(HiLd);
8640      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8641                             Ops.size());
8642    }
8643
8644    LoAddr = St->getBasePtr();
8645    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
8646                         DAG.getConstant(4, MVT::i32));
8647
8648    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
8649                                St->getSrcValue(), St->getSrcValueOffset(),
8650                                St->isVolatile(), St->getAlignment());
8651    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
8652                                St->getSrcValue(),
8653                                St->getSrcValueOffset() + 4,
8654                                St->isVolatile(),
8655                                MinAlign(St->getAlignment(), 4));
8656    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
8657  }
8658  return SDValue();
8659}
8660
8661/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8662/// X86ISD::FXOR nodes.
8663static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8664  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8665  // F[X]OR(0.0, x) -> x
8666  // F[X]OR(x, 0.0) -> x
8667  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8668    if (C->getValueAPF().isPosZero())
8669      return N->getOperand(1);
8670  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8671    if (C->getValueAPF().isPosZero())
8672      return N->getOperand(0);
8673  return SDValue();
8674}
8675
8676/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8677static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8678  // FAND(0.0, x) -> 0.0
8679  // FAND(x, 0.0) -> 0.0
8680  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8681    if (C->getValueAPF().isPosZero())
8682      return N->getOperand(0);
8683  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8684    if (C->getValueAPF().isPosZero())
8685      return N->getOperand(1);
8686  return SDValue();
8687}
8688
8689static SDValue PerformBTCombine(SDNode *N,
8690                                SelectionDAG &DAG,
8691                                TargetLowering::DAGCombinerInfo &DCI) {
8692  // BT ignores high bits in the bit index operand.
8693  SDValue Op1 = N->getOperand(1);
8694  if (Op1.hasOneUse()) {
8695    unsigned BitWidth = Op1.getValueSizeInBits();
8696    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8697    APInt KnownZero, KnownOne;
8698    TargetLowering::TargetLoweringOpt TLO(DAG);
8699    TargetLowering &TLI = DAG.getTargetLoweringInfo();
8700    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8701        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8702      DCI.CommitTargetLoweringOpt(TLO);
8703  }
8704  return SDValue();
8705}
8706
8707static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
8708  SDValue Op = N->getOperand(0);
8709  if (Op.getOpcode() == ISD::BIT_CONVERT)
8710    Op = Op.getOperand(0);
8711  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
8712  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
8713      VT.getVectorElementType().getSizeInBits() ==
8714      OpVT.getVectorElementType().getSizeInBits()) {
8715    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
8716  }
8717  return SDValue();
8718}
8719
8720// On X86 and X86-64, atomic operations are lowered to locked instructions.
8721// Locked instructions, in turn, have implicit fence semantics (all memory
8722// operations are flushed before issuing the locked instruction, and the
8723// are not buffered), so we can fold away the common pattern of
8724// fence-atomic-fence.
8725static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
8726  SDValue atomic = N->getOperand(0);
8727  switch (atomic.getOpcode()) {
8728    case ISD::ATOMIC_CMP_SWAP:
8729    case ISD::ATOMIC_SWAP:
8730    case ISD::ATOMIC_LOAD_ADD:
8731    case ISD::ATOMIC_LOAD_SUB:
8732    case ISD::ATOMIC_LOAD_AND:
8733    case ISD::ATOMIC_LOAD_OR:
8734    case ISD::ATOMIC_LOAD_XOR:
8735    case ISD::ATOMIC_LOAD_NAND:
8736    case ISD::ATOMIC_LOAD_MIN:
8737    case ISD::ATOMIC_LOAD_MAX:
8738    case ISD::ATOMIC_LOAD_UMIN:
8739    case ISD::ATOMIC_LOAD_UMAX:
8740      break;
8741    default:
8742      return SDValue();
8743  }
8744
8745  SDValue fence = atomic.getOperand(0);
8746  if (fence.getOpcode() != ISD::MEMBARRIER)
8747    return SDValue();
8748
8749  switch (atomic.getOpcode()) {
8750    case ISD::ATOMIC_CMP_SWAP:
8751      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
8752                                    atomic.getOperand(1), atomic.getOperand(2),
8753                                    atomic.getOperand(3));
8754    case ISD::ATOMIC_SWAP:
8755    case ISD::ATOMIC_LOAD_ADD:
8756    case ISD::ATOMIC_LOAD_SUB:
8757    case ISD::ATOMIC_LOAD_AND:
8758    case ISD::ATOMIC_LOAD_OR:
8759    case ISD::ATOMIC_LOAD_XOR:
8760    case ISD::ATOMIC_LOAD_NAND:
8761    case ISD::ATOMIC_LOAD_MIN:
8762    case ISD::ATOMIC_LOAD_MAX:
8763    case ISD::ATOMIC_LOAD_UMIN:
8764    case ISD::ATOMIC_LOAD_UMAX:
8765      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
8766                                    atomic.getOperand(1), atomic.getOperand(2));
8767    default:
8768      return SDValue();
8769  }
8770}
8771
8772SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
8773                                             DAGCombinerInfo &DCI) const {
8774  SelectionDAG &DAG = DCI.DAG;
8775  switch (N->getOpcode()) {
8776  default: break;
8777  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
8778  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
8779  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
8780  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
8781  case ISD::SHL:
8782  case ISD::SRA:
8783  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
8784  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
8785  case X86ISD::FXOR:
8786  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
8787  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
8788  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
8789  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
8790  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
8791  }
8792
8793  return SDValue();
8794}
8795
8796//===----------------------------------------------------------------------===//
8797//                           X86 Inline Assembly Support
8798//===----------------------------------------------------------------------===//
8799
8800static bool LowerToBSwap(CallInst *CI) {
8801  // FIXME: this should verify that we are targetting a 486 or better.  If not,
8802  // we will turn this bswap into something that will be lowered to logical ops
8803  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
8804  // so don't worry about this.
8805
8806  // Verify this is a simple bswap.
8807  if (CI->getNumOperands() != 2 ||
8808      CI->getType() != CI->getOperand(1)->getType() ||
8809      !CI->getType()->isInteger())
8810    return false;
8811
8812  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8813  if (!Ty || Ty->getBitWidth() % 16 != 0)
8814    return false;
8815
8816  // Okay, we can do this xform, do so now.
8817  const Type *Tys[] = { Ty };
8818  Module *M = CI->getParent()->getParent()->getParent();
8819  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
8820
8821  Value *Op = CI->getOperand(1);
8822  Op = CallInst::Create(Int, Op, CI->getName(), CI);
8823
8824  CI->replaceAllUsesWith(Op);
8825  CI->eraseFromParent();
8826  return true;
8827}
8828
8829bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
8830  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8831  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
8832
8833  std::string AsmStr = IA->getAsmString();
8834
8835  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
8836  std::vector<std::string> AsmPieces;
8837  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
8838
8839  switch (AsmPieces.size()) {
8840  default: return false;
8841  case 1:
8842    AsmStr = AsmPieces[0];
8843    AsmPieces.clear();
8844    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
8845
8846    // bswap $0
8847    if (AsmPieces.size() == 2 &&
8848        (AsmPieces[0] == "bswap" ||
8849         AsmPieces[0] == "bswapq" ||
8850         AsmPieces[0] == "bswapl") &&
8851        (AsmPieces[1] == "$0" ||
8852         AsmPieces[1] == "${0:q}")) {
8853      // No need to check constraints, nothing other than the equivalent of
8854      // "=r,0" would be valid here.
8855      return LowerToBSwap(CI);
8856    }
8857    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
8858    if (CI->getType() == Type::getInt16Ty(CI->getContext()) &&
8859        AsmPieces.size() == 3 &&
8860        AsmPieces[0] == "rorw" &&
8861        AsmPieces[1] == "$$8," &&
8862        AsmPieces[2] == "${0:w}" &&
8863        IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
8864      return LowerToBSwap(CI);
8865    }
8866    break;
8867  case 3:
8868    if (CI->getType() == Type::getInt64Ty(CI->getContext()) &&
8869        Constraints.size() >= 2 &&
8870        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
8871        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
8872      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
8873      std::vector<std::string> Words;
8874      SplitString(AsmPieces[0], Words, " \t");
8875      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
8876        Words.clear();
8877        SplitString(AsmPieces[1], Words, " \t");
8878        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
8879          Words.clear();
8880          SplitString(AsmPieces[2], Words, " \t,");
8881          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
8882              Words[2] == "%edx") {
8883            return LowerToBSwap(CI);
8884          }
8885        }
8886      }
8887    }
8888    break;
8889  }
8890  return false;
8891}
8892
8893
8894
8895/// getConstraintType - Given a constraint letter, return the type of
8896/// constraint it is for this target.
8897X86TargetLowering::ConstraintType
8898X86TargetLowering::getConstraintType(const std::string &Constraint) const {
8899  if (Constraint.size() == 1) {
8900    switch (Constraint[0]) {
8901    case 'A':
8902      return C_Register;
8903    case 'f':
8904    case 'r':
8905    case 'R':
8906    case 'l':
8907    case 'q':
8908    case 'Q':
8909    case 'x':
8910    case 'y':
8911    case 'Y':
8912      return C_RegisterClass;
8913    case 'e':
8914    case 'Z':
8915      return C_Other;
8916    default:
8917      break;
8918    }
8919  }
8920  return TargetLowering::getConstraintType(Constraint);
8921}
8922
8923/// LowerXConstraint - try to replace an X constraint, which matches anything,
8924/// with another that has more specific requirements based on the type of the
8925/// corresponding operand.
8926const char *X86TargetLowering::
8927LowerXConstraint(EVT ConstraintVT) const {
8928  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8929  // 'f' like normal targets.
8930  if (ConstraintVT.isFloatingPoint()) {
8931    if (Subtarget->hasSSE2())
8932      return "Y";
8933    if (Subtarget->hasSSE1())
8934      return "x";
8935  }
8936
8937  return TargetLowering::LowerXConstraint(ConstraintVT);
8938}
8939
8940/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8941/// vector.  If it is invalid, don't add anything to Ops.
8942void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8943                                                     char Constraint,
8944                                                     bool hasMemory,
8945                                                     std::vector<SDValue>&Ops,
8946                                                     SelectionDAG &DAG) const {
8947  SDValue Result(0, 0);
8948
8949  switch (Constraint) {
8950  default: break;
8951  case 'I':
8952    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8953      if (C->getZExtValue() <= 31) {
8954        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8955        break;
8956      }
8957    }
8958    return;
8959  case 'J':
8960    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8961      if (C->getZExtValue() <= 63) {
8962        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8963        break;
8964      }
8965    }
8966    return;
8967  case 'K':
8968    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8969      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
8970        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8971        break;
8972      }
8973    }
8974    return;
8975  case 'N':
8976    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8977      if (C->getZExtValue() <= 255) {
8978        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8979        break;
8980      }
8981    }
8982    return;
8983  case 'e': {
8984    // 32-bit signed value
8985    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8986      const ConstantInt *CI = C->getConstantIntValue();
8987      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
8988                                  C->getSExtValue())) {
8989        // Widen to 64 bits here to get it sign extended.
8990        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
8991        break;
8992      }
8993    // FIXME gcc accepts some relocatable values here too, but only in certain
8994    // memory models; it's complicated.
8995    }
8996    return;
8997  }
8998  case 'Z': {
8999    // 32-bit unsigned value
9000    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9001      const ConstantInt *CI = C->getConstantIntValue();
9002      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9003                                  C->getZExtValue())) {
9004        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9005        break;
9006      }
9007    }
9008    // FIXME gcc accepts some relocatable values here too, but only in certain
9009    // memory models; it's complicated.
9010    return;
9011  }
9012  case 'i': {
9013    // Literal immediates are always ok.
9014    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
9015      // Widen to 64 bits here to get it sign extended.
9016      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
9017      break;
9018    }
9019
9020    // If we are in non-pic codegen mode, we allow the address of a global (with
9021    // an optional displacement) to be used with 'i'.
9022    GlobalAddressSDNode *GA = 0;
9023    int64_t Offset = 0;
9024
9025    // Match either (GA), (GA+C), (GA+C1+C2), etc.
9026    while (1) {
9027      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
9028        Offset += GA->getOffset();
9029        break;
9030      } else if (Op.getOpcode() == ISD::ADD) {
9031        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9032          Offset += C->getZExtValue();
9033          Op = Op.getOperand(0);
9034          continue;
9035        }
9036      } else if (Op.getOpcode() == ISD::SUB) {
9037        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9038          Offset += -C->getZExtValue();
9039          Op = Op.getOperand(0);
9040          continue;
9041        }
9042      }
9043
9044      // Otherwise, this isn't something we can handle, reject it.
9045      return;
9046    }
9047
9048    GlobalValue *GV = GA->getGlobal();
9049    // If we require an extra load to get this address, as in PIC mode, we
9050    // can't accept it.
9051    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
9052                                                        getTargetMachine())))
9053      return;
9054
9055    if (hasMemory)
9056      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
9057    else
9058      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
9059    Result = Op;
9060    break;
9061  }
9062  }
9063
9064  if (Result.getNode()) {
9065    Ops.push_back(Result);
9066    return;
9067  }
9068  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
9069                                                      Ops, DAG);
9070}
9071
9072std::vector<unsigned> X86TargetLowering::
9073getRegClassForInlineAsmConstraint(const std::string &Constraint,
9074                                  EVT VT) const {
9075  if (Constraint.size() == 1) {
9076    // FIXME: not handling fp-stack yet!
9077    switch (Constraint[0]) {      // GCC X86 Constraint Letters
9078    default: break;  // Unknown constraint letter
9079    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
9080      if (Subtarget->is64Bit()) {
9081        if (VT == MVT::i32)
9082          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
9083                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
9084                                       X86::R10D,X86::R11D,X86::R12D,
9085                                       X86::R13D,X86::R14D,X86::R15D,
9086                                       X86::EBP, X86::ESP, 0);
9087        else if (VT == MVT::i16)
9088          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
9089                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
9090                                       X86::R10W,X86::R11W,X86::R12W,
9091                                       X86::R13W,X86::R14W,X86::R15W,
9092                                       X86::BP,  X86::SP, 0);
9093        else if (VT == MVT::i8)
9094          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
9095                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
9096                                       X86::R10B,X86::R11B,X86::R12B,
9097                                       X86::R13B,X86::R14B,X86::R15B,
9098                                       X86::BPL, X86::SPL, 0);
9099
9100        else if (VT == MVT::i64)
9101          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
9102                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
9103                                       X86::R10, X86::R11, X86::R12,
9104                                       X86::R13, X86::R14, X86::R15,
9105                                       X86::RBP, X86::RSP, 0);
9106
9107        break;
9108      }
9109      // 32-bit fallthrough
9110    case 'Q':   // Q_REGS
9111      if (VT == MVT::i32)
9112        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
9113      else if (VT == MVT::i16)
9114        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
9115      else if (VT == MVT::i8)
9116        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
9117      else if (VT == MVT::i64)
9118        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
9119      break;
9120    }
9121  }
9122
9123  return std::vector<unsigned>();
9124}
9125
9126std::pair<unsigned, const TargetRegisterClass*>
9127X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9128                                                EVT VT) const {
9129  // First, see if this is a constraint that directly corresponds to an LLVM
9130  // register class.
9131  if (Constraint.size() == 1) {
9132    // GCC Constraint Letters
9133    switch (Constraint[0]) {
9134    default: break;
9135    case 'r':   // GENERAL_REGS
9136    case 'R':   // LEGACY_REGS
9137    case 'l':   // INDEX_REGS
9138      if (VT == MVT::i8)
9139        return std::make_pair(0U, X86::GR8RegisterClass);
9140      if (VT == MVT::i16)
9141        return std::make_pair(0U, X86::GR16RegisterClass);
9142      if (VT == MVT::i32 || !Subtarget->is64Bit())
9143        return std::make_pair(0U, X86::GR32RegisterClass);
9144      return std::make_pair(0U, X86::GR64RegisterClass);
9145    case 'f':  // FP Stack registers.
9146      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
9147      // value to the correct fpstack register class.
9148      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
9149        return std::make_pair(0U, X86::RFP32RegisterClass);
9150      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
9151        return std::make_pair(0U, X86::RFP64RegisterClass);
9152      return std::make_pair(0U, X86::RFP80RegisterClass);
9153    case 'y':   // MMX_REGS if MMX allowed.
9154      if (!Subtarget->hasMMX()) break;
9155      return std::make_pair(0U, X86::VR64RegisterClass);
9156    case 'Y':   // SSE_REGS if SSE2 allowed
9157      if (!Subtarget->hasSSE2()) break;
9158      // FALL THROUGH.
9159    case 'x':   // SSE_REGS if SSE1 allowed
9160      if (!Subtarget->hasSSE1()) break;
9161
9162      switch (VT.getSimpleVT().SimpleTy) {
9163      default: break;
9164      // Scalar SSE types.
9165      case MVT::f32:
9166      case MVT::i32:
9167        return std::make_pair(0U, X86::FR32RegisterClass);
9168      case MVT::f64:
9169      case MVT::i64:
9170        return std::make_pair(0U, X86::FR64RegisterClass);
9171      // Vector types.
9172      case MVT::v16i8:
9173      case MVT::v8i16:
9174      case MVT::v4i32:
9175      case MVT::v2i64:
9176      case MVT::v4f32:
9177      case MVT::v2f64:
9178        return std::make_pair(0U, X86::VR128RegisterClass);
9179      }
9180      break;
9181    }
9182  }
9183
9184  // Use the default implementation in TargetLowering to convert the register
9185  // constraint into a member of a register class.
9186  std::pair<unsigned, const TargetRegisterClass*> Res;
9187  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9188
9189  // Not found as a standard register?
9190  if (Res.second == 0) {
9191    // GCC calls "st(0)" just plain "st".
9192    if (StringsEqualNoCase("{st}", Constraint)) {
9193      Res.first = X86::ST0;
9194      Res.second = X86::RFP80RegisterClass;
9195    }
9196    // 'A' means EAX + EDX.
9197    if (Constraint == "A") {
9198      Res.first = X86::EAX;
9199      Res.second = X86::GR32_ADRegisterClass;
9200    }
9201    return Res;
9202  }
9203
9204  // Otherwise, check to see if this is a register class of the wrong value
9205  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
9206  // turn into {ax},{dx}.
9207  if (Res.second->hasType(VT))
9208    return Res;   // Correct type already, nothing to do.
9209
9210  // All of the single-register GCC register classes map their values onto
9211  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
9212  // really want an 8-bit or 32-bit register, map to the appropriate register
9213  // class and return the appropriate register.
9214  if (Res.second == X86::GR16RegisterClass) {
9215    if (VT == MVT::i8) {
9216      unsigned DestReg = 0;
9217      switch (Res.first) {
9218      default: break;
9219      case X86::AX: DestReg = X86::AL; break;
9220      case X86::DX: DestReg = X86::DL; break;
9221      case X86::CX: DestReg = X86::CL; break;
9222      case X86::BX: DestReg = X86::BL; break;
9223      }
9224      if (DestReg) {
9225        Res.first = DestReg;
9226        Res.second = X86::GR8RegisterClass;
9227      }
9228    } else if (VT == MVT::i32) {
9229      unsigned DestReg = 0;
9230      switch (Res.first) {
9231      default: break;
9232      case X86::AX: DestReg = X86::EAX; break;
9233      case X86::DX: DestReg = X86::EDX; break;
9234      case X86::CX: DestReg = X86::ECX; break;
9235      case X86::BX: DestReg = X86::EBX; break;
9236      case X86::SI: DestReg = X86::ESI; break;
9237      case X86::DI: DestReg = X86::EDI; break;
9238      case X86::BP: DestReg = X86::EBP; break;
9239      case X86::SP: DestReg = X86::ESP; break;
9240      }
9241      if (DestReg) {
9242        Res.first = DestReg;
9243        Res.second = X86::GR32RegisterClass;
9244      }
9245    } else if (VT == MVT::i64) {
9246      unsigned DestReg = 0;
9247      switch (Res.first) {
9248      default: break;
9249      case X86::AX: DestReg = X86::RAX; break;
9250      case X86::DX: DestReg = X86::RDX; break;
9251      case X86::CX: DestReg = X86::RCX; break;
9252      case X86::BX: DestReg = X86::RBX; break;
9253      case X86::SI: DestReg = X86::RSI; break;
9254      case X86::DI: DestReg = X86::RDI; break;
9255      case X86::BP: DestReg = X86::RBP; break;
9256      case X86::SP: DestReg = X86::RSP; break;
9257      }
9258      if (DestReg) {
9259        Res.first = DestReg;
9260        Res.second = X86::GR64RegisterClass;
9261      }
9262    }
9263  } else if (Res.second == X86::FR32RegisterClass ||
9264             Res.second == X86::FR64RegisterClass ||
9265             Res.second == X86::VR128RegisterClass) {
9266    // Handle references to XMM physical registers that got mapped into the
9267    // wrong class.  This can happen with constraints like {xmm0} where the
9268    // target independent register mapper will just pick the first match it can
9269    // find, ignoring the required type.
9270    if (VT == MVT::f32)
9271      Res.second = X86::FR32RegisterClass;
9272    else if (VT == MVT::f64)
9273      Res.second = X86::FR64RegisterClass;
9274    else if (X86::VR128RegisterClass->hasType(VT))
9275      Res.second = X86::VR128RegisterClass;
9276  }
9277
9278  return Res;
9279}
9280
9281//===----------------------------------------------------------------------===//
9282//                           X86 Widen vector type
9283//===----------------------------------------------------------------------===//
9284
9285/// getWidenVectorType: given a vector type, returns the type to widen
9286/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9287/// If there is no vector type that we want to widen to, returns MVT::Other
9288/// When and where to widen is target dependent based on the cost of
9289/// scalarizing vs using the wider vector type.
9290
9291EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
9292  assert(VT.isVector());
9293  if (isTypeLegal(VT))
9294    return VT;
9295
9296  // TODO: In computeRegisterProperty, we can compute the list of legal vector
9297  //       type based on element type.  This would speed up our search (though
9298  //       it may not be worth it since the size of the list is relatively
9299  //       small).
9300  EVT EltVT = VT.getVectorElementType();
9301  unsigned NElts = VT.getVectorNumElements();
9302
9303  // On X86, it make sense to widen any vector wider than 1
9304  if (NElts <= 1)
9305    return MVT::Other;
9306
9307  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
9308       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
9309    EVT SVT = (MVT::SimpleValueType)nVT;
9310
9311    if (isTypeLegal(SVT) &&
9312        SVT.getVectorElementType() == EltVT &&
9313        SVT.getVectorNumElements() > NElts)
9314      return SVT;
9315  }
9316  return MVT::Other;
9317}
9318