X86ISelLowering.cpp revision d880b97257c7f8ec4e94948874cb87c865d9f96f
1f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
3f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//                     The LLVM Compiler Infrastructure
4f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
5f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// This file is distributed under the University of Illinois Open Source
6f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// License. See LICENSE.TXT for details.
7f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
8f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===----------------------------------------------------------------------===//
9f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
10f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// This file defines the interfaces that X86 uses to lower LLVM code into a
11f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// selection DAG.
12f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
13f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===----------------------------------------------------------------------===//
14f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
15f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86.h"
16f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86InstrBuilder.h"
17f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86ISelLowering.h"
18f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86MachineFunctionInfo.h"
19f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86TargetMachine.h"
20f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CallingConv.h"
21f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Constants.h"
22f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/DerivedTypes.h"
23f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/GlobalVariable.h"
24f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Function.h"
25f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Intrinsics.h"
26f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/BitVector.h"
27f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/VectorExtras.h"
28f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/CallingConvLower.h"
30f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineFrameInfo.h"
31f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineFunction.h"
32f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineInstrBuilder.h"
33f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineModuleInfo.h"
34f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineRegisterInfo.h"
35f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/PseudoSourceValue.h"
36f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/SelectionDAG.h"
37f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/MathExtras.h"
38f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/Debug.h"
39f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Target/TargetOptions.h"
40f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/SmallSet.h"
41f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/StringExtras.h"
42f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viveretteusing namespace llvm;
43f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
44f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// Forward declarations.
45f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG);
46f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
47f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan ViveretteX86TargetLowering::X86TargetLowering(TargetMachine &TM)
48f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  : TargetLowering(TM) {
49f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  Subtarget = &TM.getSubtarget<X86Subtarget>();
50f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86ScalarSSEf64 = Subtarget->hasSSE2();
51f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86ScalarSSEf32 = Subtarget->hasSSE1();
52f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
53f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
54f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  bool Fast = false;
55f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
56f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  RegInfo = TM.getRegisterInfo();
57f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
58f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Set up the TargetLowering object.
59f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
60f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // X86 is weird, it always uses i8 for shift amounts and setcc results.
61f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setShiftAmountType(MVT::i8);
62f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setSetCCResultContents(ZeroOrOneSetCCResult);
63f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setSchedulingPreference(SchedulingForRegPressure);
64f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
65f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setStackPointerRegisterToSaveRestore(X86StackPtr);
66f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
67f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetDarwin()) {
68f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
69f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(false);
70f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(false);
71f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else if (Subtarget->isTargetMingw()) {
72f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // MS runtime is weird: it exports _setjmp, but longjmp!
73f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(true);
74f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(false);
75f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
76f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(true);
77f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(true);
78f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
79f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
80f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Set up the register classes.
81f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
82f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
83f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
84f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit())
85f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
86f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
87f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
88f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
89f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // We don't accept any truncstore of integer registers.
90f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
91f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
92f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
93f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
94f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
95f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i16, MVT::i8, Expand);
96f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
97f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
98f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // operation.
99f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
100f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
101f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
102f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
103f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit()) {
104f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
105f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
106f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
107f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    if (X86ScalarSSEf64)
108f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
109f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
110f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    else
111f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
112f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
113f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
114f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
115f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // this operation.
116f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
117f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
118f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // SSE has no i16 to fp conversion, only i32
119f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (X86ScalarSSEf32) {
120f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
121f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // f32 and f64 cases are Legal, f80 case is not
122f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
123f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
124f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
125    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
126  }
127
128  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
129  // are Legal, f80 is custom lowered.
130  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
131  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
132
133  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
134  // this operation.
135  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
136  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
137
138  if (X86ScalarSSEf32) {
139    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
140    // f32 and f64 cases are Legal, f80 case is not
141    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
142  } else {
143    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
144    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
145  }
146
147  // Handle FP_TO_UINT by promoting the destination to a larger signed
148  // conversion.
149  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
150  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
151  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
152
153  if (Subtarget->is64Bit()) {
154    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
155    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
156  } else {
157    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
158      // Expand FP_TO_UINT into a select.
159      // FIXME: We would like to use a Custom expander here eventually to do
160      // the optimal thing for SSE vs. the default expansion in the legalizer.
161      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
162    else
163      // With SSE3 we can use fisttpll to convert to a signed i64.
164      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
165  }
166
167  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
168  if (!X86ScalarSSEf64) {
169    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
170    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
171  }
172
173  // Scalar integer divide and remainder are lowered to use operations that
174  // produce two results, to match the available instructions. This exposes
175  // the two-result form to trivial CSE, which is able to combine x/y and x%y
176  // into a single instruction.
177  //
178  // Scalar integer multiply-high is also lowered to use two-result
179  // operations, to match the available instructions. However, plain multiply
180  // (low) operations are left as Legal, as there are single-result
181  // instructions for this in x86. Using the two-result multiply instructions
182  // when both high and low results are needed must be arranged by dagcombine.
183  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
184  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
185  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
186  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
187  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
188  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
189  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
190  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
191  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
192  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
193  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
194  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
195  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
196  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
197  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
198  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
199  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
200  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
201  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
202  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
203  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
204  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
205  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
206  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
207
208  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
209  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
210  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
211  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
212  if (Subtarget->is64Bit())
213    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
214  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
215  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
216  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
217  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
218  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
219  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
220  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
221  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
222
223  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
224  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
225  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
226  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
227  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
228  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
229  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
230  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
231  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
232  if (Subtarget->is64Bit()) {
233    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
234    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
235    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
236  }
237
238  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
239  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
240
241  // These should be promoted to a larger select which is supported.
242  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
243  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
244  // X86 wants to expand cmov itself.
245  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
246  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
247  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
248  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
249  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
250  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
251  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
252  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
253  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
254  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
255  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
256  if (Subtarget->is64Bit()) {
257    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
258    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
259  }
260  // X86 ret instruction may pop stack.
261  setOperationAction(ISD::RET             , MVT::Other, Custom);
262  if (!Subtarget->is64Bit())
263    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
264
265  // Darwin ABI issue.
266  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
267  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
268  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
269  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
270  if (Subtarget->is64Bit())
271    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
272  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
273  if (Subtarget->is64Bit()) {
274    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
275    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
276    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
277    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
278  }
279  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
280  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
281  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
282  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
283  if (Subtarget->is64Bit()) {
284    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
285    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
286    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
287  }
288
289  if (Subtarget->hasSSE1())
290    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
291
292  if (!Subtarget->hasSSE2())
293    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
294
295  // Expand certain atomics
296  setOperationAction(ISD::ATOMIC_LCS     , MVT::i8, Custom);
297  setOperationAction(ISD::ATOMIC_LCS     , MVT::i16, Custom);
298  setOperationAction(ISD::ATOMIC_LCS     , MVT::i32, Custom);
299  setOperationAction(ISD::ATOMIC_LCS     , MVT::i64, Custom);
300  setOperationAction(ISD::ATOMIC_LSS     , MVT::i32, Expand);
301
302  // Use the default ISD::LOCATION, ISD::DECLARE expansion.
303  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
304  // FIXME - use subtarget debug flags
305  if (!Subtarget->isTargetDarwin() &&
306      !Subtarget->isTargetELF() &&
307      !Subtarget->isTargetCygMing())
308    setOperationAction(ISD::LABEL, MVT::Other, Expand);
309
310  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
311  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
312  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
313  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
314  if (Subtarget->is64Bit()) {
315    // FIXME: Verify
316    setExceptionPointerRegister(X86::RAX);
317    setExceptionSelectorRegister(X86::RDX);
318  } else {
319    setExceptionPointerRegister(X86::EAX);
320    setExceptionSelectorRegister(X86::EDX);
321  }
322  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
323
324  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
325
326  setOperationAction(ISD::TRAP, MVT::Other, Legal);
327
328  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
329  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
330  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
331  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
332  if (Subtarget->is64Bit())
333    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
334  else
335    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
336
337  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
338  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
339  if (Subtarget->is64Bit())
340    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
341  if (Subtarget->isTargetCygMing())
342    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
343  else
344    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
345
346  if (X86ScalarSSEf64) {
347    // f32 and f64 use SSE.
348    // Set up the FP register classes.
349    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
350    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
351
352    // Use ANDPD to simulate FABS.
353    setOperationAction(ISD::FABS , MVT::f64, Custom);
354    setOperationAction(ISD::FABS , MVT::f32, Custom);
355
356    // Use XORP to simulate FNEG.
357    setOperationAction(ISD::FNEG , MVT::f64, Custom);
358    setOperationAction(ISD::FNEG , MVT::f32, Custom);
359
360    // Use ANDPD and ORPD to simulate FCOPYSIGN.
361    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
362    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
363
364    // We don't support sin/cos/fmod
365    setOperationAction(ISD::FSIN , MVT::f64, Expand);
366    setOperationAction(ISD::FCOS , MVT::f64, Expand);
367    setOperationAction(ISD::FSIN , MVT::f32, Expand);
368    setOperationAction(ISD::FCOS , MVT::f32, Expand);
369
370    // Expand FP immediates into loads from the stack, except for the special
371    // cases we handle.
372    addLegalFPImmediate(APFloat(+0.0)); // xorpd
373    addLegalFPImmediate(APFloat(+0.0f)); // xorps
374
375    // Floating truncations from f80 and extensions to f80 go through memory.
376    // If optimizing, we lie about this though and handle it in
377    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
378    if (Fast) {
379      setConvertAction(MVT::f32, MVT::f80, Expand);
380      setConvertAction(MVT::f64, MVT::f80, Expand);
381      setConvertAction(MVT::f80, MVT::f32, Expand);
382      setConvertAction(MVT::f80, MVT::f64, Expand);
383    }
384  } else if (X86ScalarSSEf32) {
385    // Use SSE for f32, x87 for f64.
386    // Set up the FP register classes.
387    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
388    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
389
390    // Use ANDPS to simulate FABS.
391    setOperationAction(ISD::FABS , MVT::f32, Custom);
392
393    // Use XORP to simulate FNEG.
394    setOperationAction(ISD::FNEG , MVT::f32, Custom);
395
396    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
397
398    // Use ANDPS and ORPS to simulate FCOPYSIGN.
399    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
400    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
401
402    // We don't support sin/cos/fmod
403    setOperationAction(ISD::FSIN , MVT::f32, Expand);
404    setOperationAction(ISD::FCOS , MVT::f32, Expand);
405
406    // Special cases we handle for FP constants.
407    addLegalFPImmediate(APFloat(+0.0f)); // xorps
408    addLegalFPImmediate(APFloat(+0.0)); // FLD0
409    addLegalFPImmediate(APFloat(+1.0)); // FLD1
410    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
411    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
412
413    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
414    // this though and handle it in InstructionSelectPreprocess so that
415    // dagcombine2 can hack on these.
416    if (Fast) {
417      setConvertAction(MVT::f32, MVT::f64, Expand);
418      setConvertAction(MVT::f32, MVT::f80, Expand);
419      setConvertAction(MVT::f80, MVT::f32, Expand);
420      setConvertAction(MVT::f64, MVT::f32, Expand);
421      // And x87->x87 truncations also.
422      setConvertAction(MVT::f80, MVT::f64, Expand);
423    }
424
425    if (!UnsafeFPMath) {
426      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
427      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
428    }
429  } else {
430    // f32 and f64 in x87.
431    // Set up the FP register classes.
432    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
433    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
434
435    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
436    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
437    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
438    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
439
440    // Floating truncations go through memory.  If optimizing, we lie about
441    // this though and handle it in InstructionSelectPreprocess so that
442    // dagcombine2 can hack on these.
443    if (Fast) {
444      setConvertAction(MVT::f80, MVT::f32, Expand);
445      setConvertAction(MVT::f64, MVT::f32, Expand);
446      setConvertAction(MVT::f80, MVT::f64, Expand);
447    }
448
449    if (!UnsafeFPMath) {
450      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
451      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
452    }
453    addLegalFPImmediate(APFloat(+0.0)); // FLD0
454    addLegalFPImmediate(APFloat(+1.0)); // FLD1
455    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
456    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
457    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
458    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
459    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
460    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
461  }
462
463  // Long double always uses X87.
464  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
465  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
466  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
467  {
468    APFloat TmpFlt(+0.0);
469    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
470    addLegalFPImmediate(TmpFlt);  // FLD0
471    TmpFlt.changeSign();
472    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
473    APFloat TmpFlt2(+1.0);
474    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
475    addLegalFPImmediate(TmpFlt2);  // FLD1
476    TmpFlt2.changeSign();
477    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
478  }
479
480  if (!UnsafeFPMath) {
481    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
482    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
483  }
484
485  // Always use a library call for pow.
486  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
487  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
488  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
489
490  // First set operation action for all vector types to expand. Then we
491  // will selectively turn on ones that can be effectively codegen'd.
492  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
493       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
494    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
495    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
496    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
497    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
498    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
499    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
500    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
501    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
502    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
503    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
504    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
505    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
506    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
507    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
508    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
509    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
510    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
511    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
512    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
513    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
514    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
515    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
516    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
517    setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
518    setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
519    setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
520    setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
521    setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
522    setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
523    setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
524    setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
525    setOperationAction(ISD::SHL, (MVT::ValueType)VT, Expand);
526    setOperationAction(ISD::SRA, (MVT::ValueType)VT, Expand);
527    setOperationAction(ISD::SRL, (MVT::ValueType)VT, Expand);
528    setOperationAction(ISD::ROTL, (MVT::ValueType)VT, Expand);
529    setOperationAction(ISD::ROTR, (MVT::ValueType)VT, Expand);
530    setOperationAction(ISD::BSWAP, (MVT::ValueType)VT, Expand);
531  }
532
533  if (Subtarget->hasMMX()) {
534    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
535    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
536    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
537    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
538
539    // FIXME: add MMX packed arithmetics
540
541    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
542    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
543    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
544    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
545
546    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
547    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
548    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
549    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
550
551    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
552    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
553
554    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
555    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
556    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
557    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
558    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
559    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
560    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
561
562    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
563    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
564    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
565    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
566    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
567    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
568    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
569
570    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
571    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
572    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
573    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
574    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
575    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
576    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
577
578    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
579    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
580    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
581    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
582    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
583    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
584    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
585
586    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
587    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
588    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
589    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
590
591    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
592    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
593    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
594    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
595
596    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
597    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
598    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
599  }
600
601  if (Subtarget->hasSSE1()) {
602    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
603
604    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
605    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
606    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
607    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
608    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
609    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
610    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
611    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
612    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
613    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
614    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
615  }
616
617  if (Subtarget->hasSSE2()) {
618    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
619    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
620    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
621    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
622    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
623
624    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
625    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
626    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
627    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
628    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
629    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
630    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
631    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
632    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
633    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
634    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
635    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
636    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
637    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
638    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
639
640    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
641    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
642    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
643    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
644    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
645
646    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
647    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
648      // Do not attempt to custom lower non-power-of-2 vectors
649      if (!isPowerOf2_32(MVT::getVectorNumElements(VT)))
650        continue;
651      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
652      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
653      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
654    }
655    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
656    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
657    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
658    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
659    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
660    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
661    if (Subtarget->is64Bit()) {
662      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
663      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
664    }
665
666    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
667    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
668      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
669      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
670      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
671      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
672      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
673      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
674      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
675      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
676      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
677      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
678    }
679
680    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
681
682    // Custom lower v2i64 and v2f64 selects.
683    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
684    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
685    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
686    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
687  }
688
689  if (Subtarget->hasSSE41()) {
690    // FIXME: Do we need to handle scalar-to-vector here?
691    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
692
693    // i8 and i16 vectors are custom , because the source register and source
694    // source memory operand types are not the same width.  f32 vectors are
695    // custom since the immediate controlling the insert encodes additional
696    // information.
697    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
698    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
699    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
700    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
701
702    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
703    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
704    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
705    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
706
707    if (Subtarget->is64Bit()) {
708      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
709      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
710    }
711  }
712
713  // We want to custom lower some of our intrinsics.
714  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
715
716  // We have target-specific dag combine patterns for the following nodes:
717  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
718  setTargetDAGCombine(ISD::BUILD_VECTOR);
719  setTargetDAGCombine(ISD::SELECT);
720  setTargetDAGCombine(ISD::STORE);
721
722  computeRegisterProperties();
723
724  // FIXME: These should be based on subtarget info. Plus, the values should
725  // be smaller when we are in optimizing for size mode.
726  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
727  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
728  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
729  allowUnalignedMemoryAccesses = true; // x86 supports it!
730  setPrefLoopAlignment(16);
731}
732
733
734MVT::ValueType
735X86TargetLowering::getSetCCResultType(const SDOperand &) const {
736  return MVT::i8;
737}
738
739
740/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
741/// the desired ByVal argument alignment.
742static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
743  if (MaxAlign == 16)
744    return;
745  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
746    if (VTy->getBitWidth() == 128)
747      MaxAlign = 16;
748  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
749    unsigned EltAlign = 0;
750    getMaxByValAlign(ATy->getElementType(), EltAlign);
751    if (EltAlign > MaxAlign)
752      MaxAlign = EltAlign;
753  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
754    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
755      unsigned EltAlign = 0;
756      getMaxByValAlign(STy->getElementType(i), EltAlign);
757      if (EltAlign > MaxAlign)
758        MaxAlign = EltAlign;
759      if (MaxAlign == 16)
760        break;
761    }
762  }
763  return;
764}
765
766/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
767/// function arguments in the caller parameter area. For X86, aggregates
768/// that contain SSE vectors are placed at 16-byte boundaries while the rest
769/// are at 4-byte boundaries.
770unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
771  if (Subtarget->is64Bit())
772    return getTargetData()->getABITypeAlignment(Ty);
773  unsigned Align = 4;
774  if (Subtarget->hasSSE1())
775    getMaxByValAlign(Ty, Align);
776  return Align;
777}
778
779/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
780/// jumptable.
781SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
782                                                      SelectionDAG &DAG) const {
783  if (usesGlobalOffsetTable())
784    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
785  if (!Subtarget->isPICStyleRIPRel())
786    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
787  return Table;
788}
789
790//===----------------------------------------------------------------------===//
791//               Return Value Calling Convention Implementation
792//===----------------------------------------------------------------------===//
793
794#include "X86GenCallingConv.inc"
795
796/// LowerRET - Lower an ISD::RET node.
797SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
798  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
799
800  SmallVector<CCValAssign, 16> RVLocs;
801  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
802  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
803  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
804  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
805
806  // If this is the first return lowered for this function, add the regs to the
807  // liveout set for the function.
808  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
809    for (unsigned i = 0; i != RVLocs.size(); ++i)
810      if (RVLocs[i].isRegLoc())
811        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
812  }
813  SDOperand Chain = Op.getOperand(0);
814
815  // Handle tail call return.
816  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
817  if (Chain.getOpcode() == X86ISD::TAILCALL) {
818    SDOperand TailCall = Chain;
819    SDOperand TargetAddress = TailCall.getOperand(1);
820    SDOperand StackAdjustment = TailCall.getOperand(2);
821    assert(((TargetAddress.getOpcode() == ISD::Register &&
822               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
823                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
824              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
825              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
826             "Expecting an global address, external symbol, or register");
827    assert(StackAdjustment.getOpcode() == ISD::Constant &&
828           "Expecting a const value");
829
830    SmallVector<SDOperand,8> Operands;
831    Operands.push_back(Chain.getOperand(0));
832    Operands.push_back(TargetAddress);
833    Operands.push_back(StackAdjustment);
834    // Copy registers used by the call. Last operand is a flag so it is not
835    // copied.
836    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
837      Operands.push_back(Chain.getOperand(i));
838    }
839    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
840                       Operands.size());
841  }
842
843  // Regular return.
844  SDOperand Flag;
845
846  SmallVector<SDOperand, 6> RetOps;
847  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
848  // Operand #1 = Bytes To Pop
849  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
850
851  // Copy the result values into the output registers.
852  for (unsigned i = 0; i != RVLocs.size(); ++i) {
853    CCValAssign &VA = RVLocs[i];
854    assert(VA.isRegLoc() && "Can only return in registers!");
855    SDOperand ValToCopy = Op.getOperand(i*2+1);
856
857    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
858    // the RET instruction and handled by the FP Stackifier.
859    if (RVLocs[i].getLocReg() == X86::ST0 ||
860        RVLocs[i].getLocReg() == X86::ST1) {
861      // If this is a copy from an xmm register to ST(0), use an FPExtend to
862      // change the value to the FP stack register class.
863      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
864        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
865      RetOps.push_back(ValToCopy);
866      // Don't emit a copytoreg.
867      continue;
868    }
869
870    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
871    Flag = Chain.getValue(1);
872  }
873
874  // The x86-64 ABI for returning structs by value requires that we copy
875  // the sret argument into %rax for the return. We saved the argument into
876  // a virtual register in the entry block, so now we copy the value out
877  // and into %rax.
878  if (Subtarget->is64Bit() &&
879      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
880    MachineFunction &MF = DAG.getMachineFunction();
881    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
882    unsigned Reg = FuncInfo->getSRetReturnReg();
883    if (!Reg) {
884      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
885      FuncInfo->setSRetReturnReg(Reg);
886    }
887    SDOperand Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());
888
889    Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
890    Flag = Chain.getValue(1);
891  }
892
893  RetOps[0] = Chain;  // Update chain.
894
895  // Add the flag if we have it.
896  if (Flag.Val)
897    RetOps.push_back(Flag);
898
899  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
900}
901
902
903/// LowerCallResult - Lower the result values of an ISD::CALL into the
904/// appropriate copies out of appropriate physical registers.  This assumes that
905/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
906/// being lowered.  The returns a SDNode with the same number of values as the
907/// ISD::CALL.
908SDNode *X86TargetLowering::
909LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
910                unsigned CallingConv, SelectionDAG &DAG) {
911
912  // Assign locations to each value returned by this call.
913  SmallVector<CCValAssign, 16> RVLocs;
914  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
915  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
916  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
917
918  SmallVector<SDOperand, 8> ResultVals;
919
920  // Copy all of the result registers out of their specified physreg.
921  for (unsigned i = 0; i != RVLocs.size(); ++i) {
922    MVT::ValueType CopyVT = RVLocs[i].getValVT();
923
924    // If this is a call to a function that returns an fp value on the floating
925    // point stack, but where we prefer to use the value in xmm registers, copy
926    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
927    if (RVLocs[i].getLocReg() == X86::ST0 &&
928        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
929      CopyVT = MVT::f80;
930    }
931
932    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
933                               CopyVT, InFlag).getValue(1);
934    SDOperand Val = Chain.getValue(0);
935    InFlag = Chain.getValue(2);
936
937    if (CopyVT != RVLocs[i].getValVT()) {
938      // Round the F80 the right size, which also moves to the appropriate xmm
939      // register.
940      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
941                        // This truncation won't change the value.
942                        DAG.getIntPtrConstant(1));
943    }
944
945    ResultVals.push_back(Val);
946  }
947
948  // Merge everything together with a MERGE_VALUES node.
949  ResultVals.push_back(Chain);
950  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
951                     &ResultVals[0], ResultVals.size()).Val;
952}
953
954
955//===----------------------------------------------------------------------===//
956//                C & StdCall & Fast Calling Convention implementation
957//===----------------------------------------------------------------------===//
958//  StdCall calling convention seems to be standard for many Windows' API
959//  routines and around. It differs from C calling convention just a little:
960//  callee should clean up the stack, not caller. Symbols should be also
961//  decorated in some fancy way :) It doesn't support any vector arguments.
962//  For info on fast calling convention see Fast Calling Convention (tail call)
963//  implementation LowerX86_32FastCCCallTo.
964
965/// AddLiveIn - This helper function adds the specified physical register to the
966/// MachineFunction as a live in value.  It also creates a corresponding virtual
967/// register for it.
968static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
969                          const TargetRegisterClass *RC) {
970  assert(RC->contains(PReg) && "Not the correct regclass!");
971  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
972  MF.getRegInfo().addLiveIn(PReg, VReg);
973  return VReg;
974}
975
976/// CallIsStructReturn - Determines whether a CALL node uses struct return
977/// semantics.
978static bool CallIsStructReturn(SDOperand Op) {
979  unsigned NumOps = (Op.getNumOperands() - 5) / 2;
980  if (!NumOps)
981    return false;
982
983  return cast<ARG_FLAGSSDNode>(Op.getOperand(6))->getArgFlags().isSRet();
984}
985
986/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
987/// return semantics.
988static bool ArgsAreStructReturn(SDOperand Op) {
989  unsigned NumArgs = Op.Val->getNumValues() - 1;
990  if (!NumArgs)
991    return false;
992
993  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
994}
995
996/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
997/// the callee to pop its own arguments. Callee pop is necessary to support tail
998/// calls.
999bool X86TargetLowering::IsCalleePop(SDOperand Op) {
1000  bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1001  if (IsVarArg)
1002    return false;
1003
1004  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1005  default:
1006    return false;
1007  case CallingConv::X86_StdCall:
1008    return !Subtarget->is64Bit();
1009  case CallingConv::X86_FastCall:
1010    return !Subtarget->is64Bit();
1011  case CallingConv::Fast:
1012    return PerformTailCallOpt;
1013  }
1014}
1015
1016/// CCAssignFnForNode - Selects the correct CCAssignFn for a CALL or
1017/// FORMAL_ARGUMENTS node.
1018CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDOperand Op) const {
1019  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1020
1021  if (Subtarget->is64Bit()) {
1022    if (Subtarget->isTargetWin64())
1023      return CC_X86_Win64_C;
1024    else {
1025      if (CC == CallingConv::Fast && PerformTailCallOpt)
1026        return CC_X86_64_TailCall;
1027      else
1028        return CC_X86_64_C;
1029    }
1030  }
1031
1032  if (CC == CallingConv::X86_FastCall)
1033    return CC_X86_32_FastCall;
1034  else if (CC == CallingConv::Fast && PerformTailCallOpt)
1035    return CC_X86_32_TailCall;
1036  else
1037    return CC_X86_32_C;
1038}
1039
1040/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1041/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1042NameDecorationStyle
1043X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDOperand Op) {
1044  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1045  if (CC == CallingConv::X86_FastCall)
1046    return FastCall;
1047  else if (CC == CallingConv::X86_StdCall)
1048    return StdCall;
1049  return None;
1050}
1051
1052
1053/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1054/// in a register before calling.
1055bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1056  return !IsTailCall && !Is64Bit &&
1057    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1058    Subtarget->isPICStyleGOT();
1059}
1060
1061/// CallRequiresFnAddressInReg - Check whether the call requires the function
1062/// address to be loaded in a register.
1063bool
1064X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1065  return !Is64Bit && IsTailCall &&
1066    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1067    Subtarget->isPICStyleGOT();
1068}
1069
1070/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1071/// by "Src" to address "Dst" with size and alignment information specified by
1072/// the specific parameter attribute. The copy will be passed as a byval
1073/// function parameter.
1074static SDOperand
1075CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1076                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
1077  SDOperand SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1078  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
1079                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1080}
1081
1082SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
1083                                              const CCValAssign &VA,
1084                                              MachineFrameInfo *MFI,
1085                                              unsigned CC,
1086                                              SDOperand Root, unsigned i) {
1087  // Create the nodes corresponding to a load from this parameter slot.
1088  ISD::ArgFlagsTy Flags =
1089    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1090  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1091  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1092
1093  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1094  // changed with more analysis.
1095  // In case of tail call optimization mark all arguments mutable. Since they
1096  // could be overwritten by lowering of arguments in case of a tail call.
1097  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1098                                  VA.getLocMemOffset(), isImmutable);
1099  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1100  if (Flags.isByVal())
1101    return FIN;
1102  return DAG.getLoad(VA.getValVT(), Root, FIN,
1103                     PseudoSourceValue::getFixedStack(), FI);
1104}
1105
1106SDOperand
1107X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
1108  MachineFunction &MF = DAG.getMachineFunction();
1109  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1110
1111  const Function* Fn = MF.getFunction();
1112  if (Fn->hasExternalLinkage() &&
1113      Subtarget->isTargetCygMing() &&
1114      Fn->getName() == "main")
1115    FuncInfo->setForceFramePointer(true);
1116
1117  // Decorate the function name.
1118  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1119
1120  MachineFrameInfo *MFI = MF.getFrameInfo();
1121  SDOperand Root = Op.getOperand(0);
1122  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1123  unsigned CC = MF.getFunction()->getCallingConv();
1124  bool Is64Bit = Subtarget->is64Bit();
1125  bool IsWin64 = Subtarget->isTargetWin64();
1126
1127  assert(!(isVarArg && CC == CallingConv::Fast) &&
1128         "Var args not supported with calling convention fastcc");
1129
1130  // Assign locations to all of the incoming arguments.
1131  SmallVector<CCValAssign, 16> ArgLocs;
1132  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1133  CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op));
1134
1135  SmallVector<SDOperand, 8> ArgValues;
1136  unsigned LastVal = ~0U;
1137  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1138    CCValAssign &VA = ArgLocs[i];
1139    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1140    // places.
1141    assert(VA.getValNo() != LastVal &&
1142           "Don't support value assigned to multiple locs yet");
1143    LastVal = VA.getValNo();
1144
1145    if (VA.isRegLoc()) {
1146      MVT::ValueType RegVT = VA.getLocVT();
1147      TargetRegisterClass *RC;
1148      if (RegVT == MVT::i32)
1149        RC = X86::GR32RegisterClass;
1150      else if (Is64Bit && RegVT == MVT::i64)
1151        RC = X86::GR64RegisterClass;
1152      else if (RegVT == MVT::f32)
1153        RC = X86::FR32RegisterClass;
1154      else if (RegVT == MVT::f64)
1155        RC = X86::FR64RegisterClass;
1156      else if (MVT::isVector(RegVT) && MVT::getSizeInBits(RegVT) == 128)
1157        RC = X86::VR128RegisterClass;
1158      else if (MVT::isVector(RegVT)) {
1159        assert(MVT::getSizeInBits(RegVT) == 64);
1160        if (!Is64Bit)
1161          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1162        else {
1163          // Darwin calling convention passes MMX values in either GPRs or
1164          // XMMs in x86-64. Other targets pass them in memory.
1165          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1166            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1167            RegVT = MVT::v2i64;
1168          } else {
1169            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1170            RegVT = MVT::i64;
1171          }
1172        }
1173      } else {
1174        assert(0 && "Unknown argument type!");
1175      }
1176
1177      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1178      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1179
1180      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1181      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1182      // right size.
1183      if (VA.getLocInfo() == CCValAssign::SExt)
1184        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1185                               DAG.getValueType(VA.getValVT()));
1186      else if (VA.getLocInfo() == CCValAssign::ZExt)
1187        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1188                               DAG.getValueType(VA.getValVT()));
1189
1190      if (VA.getLocInfo() != CCValAssign::Full)
1191        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1192
1193      // Handle MMX values passed in GPRs.
1194      if (Is64Bit && RegVT != VA.getLocVT()) {
1195        if (MVT::getSizeInBits(RegVT) == 64 && RC == X86::GR64RegisterClass)
1196          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1197        else if (RC == X86::VR128RegisterClass) {
1198          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
1199                                 DAG.getConstant(0, MVT::i64));
1200          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1201        }
1202      }
1203
1204      ArgValues.push_back(ArgValue);
1205    } else {
1206      assert(VA.isMemLoc());
1207      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1208    }
1209  }
1210
1211  // The x86-64 ABI for returning structs by value requires that we copy
1212  // the sret argument into %rax for the return. Save the argument into
1213  // a virtual register so that we can access it from the return points.
1214  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1215    MachineFunction &MF = DAG.getMachineFunction();
1216    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1217    unsigned Reg = FuncInfo->getSRetReturnReg();
1218    if (!Reg) {
1219      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1220      FuncInfo->setSRetReturnReg(Reg);
1221    }
1222    SDOperand Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
1223    Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
1224  }
1225
1226  unsigned StackSize = CCInfo.getNextStackOffset();
1227  // align stack specially for tail calls
1228  if (CC == CallingConv::Fast)
1229    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1230
1231  // If the function takes variable number of arguments, make a frame index for
1232  // the start of the first vararg value... for expansion of llvm.va_start.
1233  if (isVarArg) {
1234    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1235      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1236    }
1237    if (Is64Bit) {
1238      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1239
1240      // FIXME: We should really autogenerate these arrays
1241      static const unsigned GPR64ArgRegsWin64[] = {
1242        X86::RCX, X86::RDX, X86::R8,  X86::R9
1243      };
1244      static const unsigned XMMArgRegsWin64[] = {
1245        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1246      };
1247      static const unsigned GPR64ArgRegs64Bit[] = {
1248        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1249      };
1250      static const unsigned XMMArgRegs64Bit[] = {
1251        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1252        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1253      };
1254      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1255
1256      if (IsWin64) {
1257        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1258        GPR64ArgRegs = GPR64ArgRegsWin64;
1259        XMMArgRegs = XMMArgRegsWin64;
1260      } else {
1261        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1262        GPR64ArgRegs = GPR64ArgRegs64Bit;
1263        XMMArgRegs = XMMArgRegs64Bit;
1264      }
1265      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1266                                                       TotalNumIntRegs);
1267      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1268                                                       TotalNumXMMRegs);
1269
1270      // For X86-64, if there are vararg parameters that are passed via
1271      // registers, then we must store them to their spots on the stack so they
1272      // may be loaded by deferencing the result of va_next.
1273      VarArgsGPOffset = NumIntRegs * 8;
1274      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1275      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1276                                                 TotalNumXMMRegs * 16, 16);
1277
1278      // Store the integer parameter registers.
1279      SmallVector<SDOperand, 8> MemOps;
1280      SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1281      SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1282                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1283      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1284        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1285                                  X86::GR64RegisterClass);
1286        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1287        SDOperand Store =
1288          DAG.getStore(Val.getValue(1), Val, FIN,
1289                       PseudoSourceValue::getFixedStack(),
1290                       RegSaveFrameIndex);
1291        MemOps.push_back(Store);
1292        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1293                          DAG.getIntPtrConstant(8));
1294      }
1295
1296      // Now store the XMM (fp + vector) parameter registers.
1297      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1298                        DAG.getIntPtrConstant(VarArgsFPOffset));
1299      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1300        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1301                                  X86::VR128RegisterClass);
1302        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1303        SDOperand Store =
1304          DAG.getStore(Val.getValue(1), Val, FIN,
1305                       PseudoSourceValue::getFixedStack(),
1306                       RegSaveFrameIndex);
1307        MemOps.push_back(Store);
1308        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1309                          DAG.getIntPtrConstant(16));
1310      }
1311      if (!MemOps.empty())
1312          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1313                             &MemOps[0], MemOps.size());
1314    }
1315  }
1316
1317  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1318  // arguments and the arguments after the retaddr has been pushed are
1319  // aligned.
1320  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1321      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1322      (StackSize & 7) == 0)
1323    StackSize += 4;
1324
1325  ArgValues.push_back(Root);
1326
1327  // Some CCs need callee pop.
1328  if (IsCalleePop(Op)) {
1329    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1330    BytesCallerReserves = 0;
1331  } else {
1332    BytesToPopOnReturn  = 0; // Callee pops nothing.
1333    // If this is an sret function, the return should pop the hidden pointer.
1334    if (!Is64Bit && ArgsAreStructReturn(Op))
1335      BytesToPopOnReturn = 4;
1336    BytesCallerReserves = StackSize;
1337  }
1338
1339  if (!Is64Bit) {
1340    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1341    if (CC == CallingConv::X86_FastCall)
1342      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1343  }
1344
1345  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1346
1347  // Return the new list of results.
1348  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1349                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1350}
1351
1352SDOperand
1353X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1354                                    const SDOperand &StackPtr,
1355                                    const CCValAssign &VA,
1356                                    SDOperand Chain,
1357                                    SDOperand Arg) {
1358  unsigned LocMemOffset = VA.getLocMemOffset();
1359  SDOperand PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1360  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1361  ISD::ArgFlagsTy Flags =
1362    cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->getArgFlags();
1363  if (Flags.isByVal()) {
1364    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1365  }
1366  return DAG.getStore(Chain, Arg, PtrOff,
1367                      PseudoSourceValue::getStack(), LocMemOffset);
1368}
1369
1370/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call
1371/// optimization is performed and it is required.
1372SDOperand
1373X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1374                                           SDOperand &OutRetAddr,
1375                                           SDOperand Chain,
1376                                           bool IsTailCall,
1377                                           bool Is64Bit,
1378                                           int FPDiff) {
1379  if (!IsTailCall || FPDiff==0) return Chain;
1380
1381  // Adjust the Return address stack slot.
1382  MVT::ValueType VT = getPointerTy();
1383  OutRetAddr = getReturnAddressFrameIndex(DAG);
1384  // Load the "old" Return address.
1385  OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0);
1386  return SDOperand(OutRetAddr.Val, 1);
1387}
1388
1389/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1390/// optimization is performed and it is required (FPDiff!=0).
1391static SDOperand
1392EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1393                         SDOperand Chain, SDOperand RetAddrFrIdx,
1394                         bool Is64Bit, int FPDiff) {
1395  // Store the return address to the appropriate stack slot.
1396  if (!FPDiff) return Chain;
1397  // Calculate the new stack slot for the return address.
1398  int SlotSize = Is64Bit ? 8 : 4;
1399  int NewReturnAddrFI =
1400    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1401  MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32;
1402  SDOperand NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1403  Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1404                       PseudoSourceValue::getFixedStack(), NewReturnAddrFI);
1405  return Chain;
1406}
1407
1408SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1409  MachineFunction &MF = DAG.getMachineFunction();
1410  SDOperand Chain     = Op.getOperand(0);
1411  unsigned CC         = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1412  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1413  bool IsTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0
1414                        && CC == CallingConv::Fast && PerformTailCallOpt;
1415  SDOperand Callee    = Op.getOperand(4);
1416  bool Is64Bit        = Subtarget->is64Bit();
1417  bool IsStructRet    = CallIsStructReturn(Op);
1418
1419  assert(!(isVarArg && CC == CallingConv::Fast) &&
1420         "Var args not supported with calling convention fastcc");
1421
1422  // Analyze operands of the call, assigning locations to each operand.
1423  SmallVector<CCValAssign, 16> ArgLocs;
1424  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1425  CCInfo.AnalyzeCallOperands(Op.Val, CCAssignFnForNode(Op));
1426
1427  // Get a count of how many bytes are to be pushed on the stack.
1428  unsigned NumBytes = CCInfo.getNextStackOffset();
1429  if (CC == CallingConv::Fast)
1430    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1431
1432  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1433  // arguments and the arguments after the retaddr has been pushed are aligned.
1434  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1435      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1436      (NumBytes & 7) == 0)
1437    NumBytes += 4;
1438
1439  int FPDiff = 0;
1440  if (IsTailCall) {
1441    // Lower arguments at fp - stackoffset + fpdiff.
1442    unsigned NumBytesCallerPushed =
1443      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1444    FPDiff = NumBytesCallerPushed - NumBytes;
1445
1446    // Set the delta of movement of the returnaddr stackslot.
1447    // But only set if delta is greater than previous delta.
1448    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1449      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1450  }
1451
1452  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes));
1453
1454  SDOperand RetAddrFrIdx;
1455  // Load return adress for tail calls.
1456  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1457                                  FPDiff);
1458
1459  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1460  SmallVector<SDOperand, 8> MemOpChains;
1461  SDOperand StackPtr;
1462
1463  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1464  // of tail call optimization arguments are handle later.
1465  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1466    CCValAssign &VA = ArgLocs[i];
1467    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1468    bool isByVal = cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->
1469      getArgFlags().isByVal();
1470
1471    // Promote the value if needed.
1472    switch (VA.getLocInfo()) {
1473    default: assert(0 && "Unknown loc info!");
1474    case CCValAssign::Full: break;
1475    case CCValAssign::SExt:
1476      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1477      break;
1478    case CCValAssign::ZExt:
1479      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1480      break;
1481    case CCValAssign::AExt:
1482      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1483      break;
1484    }
1485
1486    if (VA.isRegLoc()) {
1487      if (Is64Bit) {
1488        MVT::ValueType RegVT = VA.getLocVT();
1489        if (MVT::isVector(RegVT) && MVT::getSizeInBits(RegVT) == 64)
1490          switch (VA.getLocReg()) {
1491          default:
1492            break;
1493          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1494          case X86::R8: {
1495            // Special case: passing MMX values in GPR registers.
1496            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1497            break;
1498          }
1499          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1500          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1501            // Special case: passing MMX values in XMM registers.
1502            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1503            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
1504            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
1505                              DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
1506                              getMOVLMask(2, DAG));
1507            break;
1508          }
1509          }
1510      }
1511      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1512    } else {
1513      if (!IsTailCall || (IsTailCall && isByVal)) {
1514        assert(VA.isMemLoc());
1515        if (StackPtr.Val == 0)
1516          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1517
1518        MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1519                                               Arg));
1520      }
1521    }
1522  }
1523
1524  if (!MemOpChains.empty())
1525    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1526                        &MemOpChains[0], MemOpChains.size());
1527
1528  // Build a sequence of copy-to-reg nodes chained together with token chain
1529  // and flag operands which copy the outgoing args into registers.
1530  SDOperand InFlag;
1531  // Tail call byval lowering might overwrite argument registers so in case of
1532  // tail call optimization the copies to registers are lowered later.
1533  if (!IsTailCall)
1534    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1535      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1536                               InFlag);
1537      InFlag = Chain.getValue(1);
1538    }
1539
1540  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1541  // GOT pointer.
1542  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1543    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1544                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1545                             InFlag);
1546    InFlag = Chain.getValue(1);
1547  }
1548  // If we are tail calling and generating PIC/GOT style code load the address
1549  // of the callee into ecx. The value in ecx is used as target of the tail
1550  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1551  // calls on PIC/GOT architectures. Normally we would just put the address of
1552  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1553  // restored (since ebx is callee saved) before jumping to the target@PLT.
1554  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1555    // Note: The actual moving to ecx is done further down.
1556    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1557    if (G &&  !G->getGlobal()->hasHiddenVisibility() &&
1558        !G->getGlobal()->hasProtectedVisibility())
1559      Callee =  LowerGlobalAddress(Callee, DAG);
1560    else if (isa<ExternalSymbolSDNode>(Callee))
1561      Callee = LowerExternalSymbol(Callee,DAG);
1562  }
1563
1564  if (Is64Bit && isVarArg) {
1565    // From AMD64 ABI document:
1566    // For calls that may call functions that use varargs or stdargs
1567    // (prototype-less calls or calls to functions containing ellipsis (...) in
1568    // the declaration) %al is used as hidden argument to specify the number
1569    // of SSE registers used. The contents of %al do not need to match exactly
1570    // the number of registers, but must be an ubound on the number of SSE
1571    // registers used and is in the range 0 - 8 inclusive.
1572
1573    // FIXME: Verify this on Win64
1574    // Count the number of XMM registers allocated.
1575    static const unsigned XMMArgRegs[] = {
1576      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1577      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1578    };
1579    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1580
1581    Chain = DAG.getCopyToReg(Chain, X86::AL,
1582                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1583    InFlag = Chain.getValue(1);
1584  }
1585
1586
1587  // For tail calls lower the arguments to the 'real' stack slot.
1588  if (IsTailCall) {
1589    SmallVector<SDOperand, 8> MemOpChains2;
1590    SDOperand FIN;
1591    int FI = 0;
1592    // Do not flag preceeding copytoreg stuff together with the following stuff.
1593    InFlag = SDOperand();
1594    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1595      CCValAssign &VA = ArgLocs[i];
1596      if (!VA.isRegLoc()) {
1597        assert(VA.isMemLoc());
1598        SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1599        SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1600        ISD::ArgFlagsTy Flags =
1601          cast<ARG_FLAGSSDNode>(FlagsOp)->getArgFlags();
1602        // Create frame index.
1603        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1604        uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1605        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1606        FIN = DAG.getFrameIndex(FI, getPointerTy());
1607
1608        if (Flags.isByVal()) {
1609          // Copy relative to framepointer.
1610          SDOperand Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1611          if (StackPtr.Val == 0)
1612            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1613          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1614
1615          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1616                                                           Flags, DAG));
1617        } else {
1618          // Store relative to framepointer.
1619          MemOpChains2.push_back(
1620            DAG.getStore(Chain, Arg, FIN,
1621                         PseudoSourceValue::getFixedStack(), FI));
1622        }
1623      }
1624    }
1625
1626    if (!MemOpChains2.empty())
1627      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1628                          &MemOpChains2[0], MemOpChains2.size());
1629
1630    // Copy arguments to their registers.
1631    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1632      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1633                               InFlag);
1634      InFlag = Chain.getValue(1);
1635    }
1636    InFlag =SDOperand();
1637
1638    // Store the return address to the appropriate stack slot.
1639    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1640                                     FPDiff);
1641  }
1642
1643  // If the callee is a GlobalAddress node (quite common, every direct call is)
1644  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1645  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1646    // We should use extra load for direct calls to dllimported functions in
1647    // non-JIT mode.
1648    if ((IsTailCall || !Is64Bit ||
1649         getTargetMachine().getCodeModel() != CodeModel::Large)
1650        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1651                                           getTargetMachine(), true))
1652      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1653  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1654    if (IsTailCall || !Is64Bit ||
1655        getTargetMachine().getCodeModel() != CodeModel::Large)
1656      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1657  } else if (IsTailCall) {
1658    unsigned Opc = Is64Bit ? X86::R9 : X86::ECX;
1659
1660    Chain = DAG.getCopyToReg(Chain,
1661                             DAG.getRegister(Opc, getPointerTy()),
1662                             Callee,InFlag);
1663    Callee = DAG.getRegister(Opc, getPointerTy());
1664    // Add register as live out.
1665    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1666  }
1667
1668  // Returns a chain & a flag for retval copy to use.
1669  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1670  SmallVector<SDOperand, 8> Ops;
1671
1672  if (IsTailCall) {
1673    Ops.push_back(Chain);
1674    Ops.push_back(DAG.getIntPtrConstant(NumBytes));
1675    Ops.push_back(DAG.getIntPtrConstant(0));
1676    if (InFlag.Val)
1677      Ops.push_back(InFlag);
1678    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1679    InFlag = Chain.getValue(1);
1680
1681    // Returns a chain & a flag for retval copy to use.
1682    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1683    Ops.clear();
1684  }
1685
1686  Ops.push_back(Chain);
1687  Ops.push_back(Callee);
1688
1689  if (IsTailCall)
1690    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1691
1692  // Add argument registers to the end of the list so that they are known live
1693  // into the call.
1694  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1695    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1696                                  RegsToPass[i].second.getValueType()));
1697
1698  // Add an implicit use GOT pointer in EBX.
1699  if (!IsTailCall && !Is64Bit &&
1700      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1701      Subtarget->isPICStyleGOT())
1702    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1703
1704  // Add an implicit use of AL for x86 vararg functions.
1705  if (Is64Bit && isVarArg)
1706    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1707
1708  if (InFlag.Val)
1709    Ops.push_back(InFlag);
1710
1711  if (IsTailCall) {
1712    assert(InFlag.Val &&
1713           "Flag must be set. Depend on flag being set in LowerRET");
1714    Chain = DAG.getNode(X86ISD::TAILCALL,
1715                        Op.Val->getVTList(), &Ops[0], Ops.size());
1716
1717    return SDOperand(Chain.Val, Op.ResNo);
1718  }
1719
1720  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1721  InFlag = Chain.getValue(1);
1722
1723  // Create the CALLSEQ_END node.
1724  unsigned NumBytesForCalleeToPush;
1725  if (IsCalleePop(Op))
1726    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1727  else if (!Is64Bit && IsStructRet)
1728    // If this is is a call to a struct-return function, the callee
1729    // pops the hidden struct pointer, so we have to push it back.
1730    // This is common for Darwin/X86, Linux & Mingw32 targets.
1731    NumBytesForCalleeToPush = 4;
1732  else
1733    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1734
1735  // Returns a flag for retval copy to use.
1736  Chain = DAG.getCALLSEQ_END(Chain,
1737                             DAG.getIntPtrConstant(NumBytes),
1738                             DAG.getIntPtrConstant(NumBytesForCalleeToPush),
1739                             InFlag);
1740  InFlag = Chain.getValue(1);
1741
1742  // Handle result values, copying them out of physregs into vregs that we
1743  // return.
1744  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1745}
1746
1747
1748//===----------------------------------------------------------------------===//
1749//                Fast Calling Convention (tail call) implementation
1750//===----------------------------------------------------------------------===//
1751
1752//  Like std call, callee cleans arguments, convention except that ECX is
1753//  reserved for storing the tail called function address. Only 2 registers are
1754//  free for argument passing (inreg). Tail call optimization is performed
1755//  provided:
1756//                * tailcallopt is enabled
1757//                * caller/callee are fastcc
1758//  On X86_64 architecture with GOT-style position independent code only local
1759//  (within module) calls are supported at the moment.
1760//  To keep the stack aligned according to platform abi the function
1761//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1762//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1763//  If a tail called function callee has more arguments than the caller the
1764//  caller needs to make sure that there is room to move the RETADDR to. This is
1765//  achieved by reserving an area the size of the argument delta right after the
1766//  original REtADDR, but before the saved framepointer or the spilled registers
1767//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1768//  stack layout:
1769//    arg1
1770//    arg2
1771//    RETADDR
1772//    [ new RETADDR
1773//      move area ]
1774//    (possible EBP)
1775//    ESI
1776//    EDI
1777//    local1 ..
1778
1779/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1780/// for a 16 byte align requirement.
1781unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1782                                                        SelectionDAG& DAG) {
1783  if (PerformTailCallOpt) {
1784    MachineFunction &MF = DAG.getMachineFunction();
1785    const TargetMachine &TM = MF.getTarget();
1786    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1787    unsigned StackAlignment = TFI.getStackAlignment();
1788    uint64_t AlignMask = StackAlignment - 1;
1789    int64_t Offset = StackSize;
1790    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1791    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1792      // Number smaller than 12 so just add the difference.
1793      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1794    } else {
1795      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1796      Offset = ((~AlignMask) & Offset) + StackAlignment +
1797        (StackAlignment-SlotSize);
1798    }
1799    StackSize = Offset;
1800  }
1801  return StackSize;
1802}
1803
1804/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1805/// following the call is a return. A function is eligible if caller/callee
1806/// calling conventions match, currently only fastcc supports tail calls, and
1807/// the function CALL is immediatly followed by a RET.
1808bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1809                                                      SDOperand Ret,
1810                                                      SelectionDAG& DAG) const {
1811  if (!PerformTailCallOpt)
1812    return false;
1813
1814  if (CheckTailCallReturnConstraints(Call, Ret)) {
1815    MachineFunction &MF = DAG.getMachineFunction();
1816    unsigned CallerCC = MF.getFunction()->getCallingConv();
1817    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1818    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1819      SDOperand Callee = Call.getOperand(4);
1820      // On x86/32Bit PIC/GOT  tail calls are supported.
1821      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1822          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1823        return true;
1824
1825      // Can only do local tail calls (in same module, hidden or protected) on
1826      // x86_64 PIC/GOT at the moment.
1827      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1828        return G->getGlobal()->hasHiddenVisibility()
1829            || G->getGlobal()->hasProtectedVisibility();
1830    }
1831  }
1832
1833  return false;
1834}
1835
1836//===----------------------------------------------------------------------===//
1837//                           Other Lowering Hooks
1838//===----------------------------------------------------------------------===//
1839
1840
1841SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1842  MachineFunction &MF = DAG.getMachineFunction();
1843  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1844  int ReturnAddrIndex = FuncInfo->getRAIndex();
1845
1846  if (ReturnAddrIndex == 0) {
1847    // Set up a frame object for the return address.
1848    if (Subtarget->is64Bit())
1849      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1850    else
1851      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1852
1853    FuncInfo->setRAIndex(ReturnAddrIndex);
1854  }
1855
1856  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1857}
1858
1859
1860
1861/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1862/// specific condition code. It returns a false if it cannot do a direct
1863/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1864/// needed.
1865static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1866                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1867                           SelectionDAG &DAG) {
1868  X86CC = X86::COND_INVALID;
1869  if (!isFP) {
1870    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1871      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1872        // X > -1   -> X == 0, jump !sign.
1873        RHS = DAG.getConstant(0, RHS.getValueType());
1874        X86CC = X86::COND_NS;
1875        return true;
1876      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1877        // X < 0   -> X == 0, jump on sign.
1878        X86CC = X86::COND_S;
1879        return true;
1880      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1881        // X < 1   -> X <= 0
1882        RHS = DAG.getConstant(0, RHS.getValueType());
1883        X86CC = X86::COND_LE;
1884        return true;
1885      }
1886    }
1887
1888    switch (SetCCOpcode) {
1889    default: break;
1890    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1891    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1892    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1893    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1894    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1895    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1896    case ISD::SETULT: X86CC = X86::COND_B;  break;
1897    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1898    case ISD::SETULE: X86CC = X86::COND_BE; break;
1899    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1900    }
1901  } else {
1902    // On a floating point condition, the flags are set as follows:
1903    // ZF  PF  CF   op
1904    //  0 | 0 | 0 | X > Y
1905    //  0 | 0 | 1 | X < Y
1906    //  1 | 0 | 0 | X == Y
1907    //  1 | 1 | 1 | unordered
1908    bool Flip = false;
1909    switch (SetCCOpcode) {
1910    default: break;
1911    case ISD::SETUEQ:
1912    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1913    case ISD::SETOLT: Flip = true; // Fallthrough
1914    case ISD::SETOGT:
1915    case ISD::SETGT: X86CC = X86::COND_A;  break;
1916    case ISD::SETOLE: Flip = true; // Fallthrough
1917    case ISD::SETOGE:
1918    case ISD::SETGE: X86CC = X86::COND_AE; break;
1919    case ISD::SETUGT: Flip = true; // Fallthrough
1920    case ISD::SETULT:
1921    case ISD::SETLT: X86CC = X86::COND_B;  break;
1922    case ISD::SETUGE: Flip = true; // Fallthrough
1923    case ISD::SETULE:
1924    case ISD::SETLE: X86CC = X86::COND_BE; break;
1925    case ISD::SETONE:
1926    case ISD::SETNE: X86CC = X86::COND_NE; break;
1927    case ISD::SETUO: X86CC = X86::COND_P;  break;
1928    case ISD::SETO:  X86CC = X86::COND_NP; break;
1929    }
1930    if (Flip)
1931      std::swap(LHS, RHS);
1932  }
1933
1934  return X86CC != X86::COND_INVALID;
1935}
1936
1937/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1938/// code. Current x86 isa includes the following FP cmov instructions:
1939/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1940static bool hasFPCMov(unsigned X86CC) {
1941  switch (X86CC) {
1942  default:
1943    return false;
1944  case X86::COND_B:
1945  case X86::COND_BE:
1946  case X86::COND_E:
1947  case X86::COND_P:
1948  case X86::COND_A:
1949  case X86::COND_AE:
1950  case X86::COND_NE:
1951  case X86::COND_NP:
1952    return true;
1953  }
1954}
1955
1956/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1957/// true if Op is undef or if its value falls within the specified range (L, H].
1958static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1959  if (Op.getOpcode() == ISD::UNDEF)
1960    return true;
1961
1962  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1963  return (Val >= Low && Val < Hi);
1964}
1965
1966/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1967/// true if Op is undef or if its value equal to the specified value.
1968static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1969  if (Op.getOpcode() == ISD::UNDEF)
1970    return true;
1971  return cast<ConstantSDNode>(Op)->getValue() == Val;
1972}
1973
1974/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1975/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1976bool X86::isPSHUFDMask(SDNode *N) {
1977  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1978
1979  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
1980    return false;
1981
1982  // Check if the value doesn't reference the second vector.
1983  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1984    SDOperand Arg = N->getOperand(i);
1985    if (Arg.getOpcode() == ISD::UNDEF) continue;
1986    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1987    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
1988      return false;
1989  }
1990
1991  return true;
1992}
1993
1994/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1995/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1996bool X86::isPSHUFHWMask(SDNode *N) {
1997  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1998
1999  if (N->getNumOperands() != 8)
2000    return false;
2001
2002  // Lower quadword copied in order.
2003  for (unsigned i = 0; i != 4; ++i) {
2004    SDOperand Arg = N->getOperand(i);
2005    if (Arg.getOpcode() == ISD::UNDEF) continue;
2006    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2007    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2008      return false;
2009  }
2010
2011  // Upper quadword shuffled.
2012  for (unsigned i = 4; i != 8; ++i) {
2013    SDOperand Arg = N->getOperand(i);
2014    if (Arg.getOpcode() == ISD::UNDEF) continue;
2015    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2016    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2017    if (Val < 4 || Val > 7)
2018      return false;
2019  }
2020
2021  return true;
2022}
2023
2024/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2025/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2026bool X86::isPSHUFLWMask(SDNode *N) {
2027  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2028
2029  if (N->getNumOperands() != 8)
2030    return false;
2031
2032  // Upper quadword copied in order.
2033  for (unsigned i = 4; i != 8; ++i)
2034    if (!isUndefOrEqual(N->getOperand(i), i))
2035      return false;
2036
2037  // Lower quadword shuffled.
2038  for (unsigned i = 0; i != 4; ++i)
2039    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2040      return false;
2041
2042  return true;
2043}
2044
2045/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2046/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2047static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) {
2048  if (NumElems != 2 && NumElems != 4) return false;
2049
2050  unsigned Half = NumElems / 2;
2051  for (unsigned i = 0; i < Half; ++i)
2052    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2053      return false;
2054  for (unsigned i = Half; i < NumElems; ++i)
2055    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2056      return false;
2057
2058  return true;
2059}
2060
2061bool X86::isSHUFPMask(SDNode *N) {
2062  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2063  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2064}
2065
2066/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2067/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2068/// half elements to come from vector 1 (which would equal the dest.) and
2069/// the upper half to come from vector 2.
2070static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) {
2071  if (NumOps != 2 && NumOps != 4) return false;
2072
2073  unsigned Half = NumOps / 2;
2074  for (unsigned i = 0; i < Half; ++i)
2075    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2076      return false;
2077  for (unsigned i = Half; i < NumOps; ++i)
2078    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2079      return false;
2080  return true;
2081}
2082
2083static bool isCommutedSHUFP(SDNode *N) {
2084  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2085  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2086}
2087
2088/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2089/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2090bool X86::isMOVHLPSMask(SDNode *N) {
2091  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2092
2093  if (N->getNumOperands() != 4)
2094    return false;
2095
2096  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2097  return isUndefOrEqual(N->getOperand(0), 6) &&
2098         isUndefOrEqual(N->getOperand(1), 7) &&
2099         isUndefOrEqual(N->getOperand(2), 2) &&
2100         isUndefOrEqual(N->getOperand(3), 3);
2101}
2102
2103/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2104/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2105/// <2, 3, 2, 3>
2106bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2107  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2108
2109  if (N->getNumOperands() != 4)
2110    return false;
2111
2112  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2113  return isUndefOrEqual(N->getOperand(0), 2) &&
2114         isUndefOrEqual(N->getOperand(1), 3) &&
2115         isUndefOrEqual(N->getOperand(2), 2) &&
2116         isUndefOrEqual(N->getOperand(3), 3);
2117}
2118
2119/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2120/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2121bool X86::isMOVLPMask(SDNode *N) {
2122  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2123
2124  unsigned NumElems = N->getNumOperands();
2125  if (NumElems != 2 && NumElems != 4)
2126    return false;
2127
2128  for (unsigned i = 0; i < NumElems/2; ++i)
2129    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2130      return false;
2131
2132  for (unsigned i = NumElems/2; i < NumElems; ++i)
2133    if (!isUndefOrEqual(N->getOperand(i), i))
2134      return false;
2135
2136  return true;
2137}
2138
2139/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2140/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2141/// and MOVLHPS.
2142bool X86::isMOVHPMask(SDNode *N) {
2143  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2144
2145  unsigned NumElems = N->getNumOperands();
2146  if (NumElems != 2 && NumElems != 4)
2147    return false;
2148
2149  for (unsigned i = 0; i < NumElems/2; ++i)
2150    if (!isUndefOrEqual(N->getOperand(i), i))
2151      return false;
2152
2153  for (unsigned i = 0; i < NumElems/2; ++i) {
2154    SDOperand Arg = N->getOperand(i + NumElems/2);
2155    if (!isUndefOrEqual(Arg, i + NumElems))
2156      return false;
2157  }
2158
2159  return true;
2160}
2161
2162/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2163/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2164bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts,
2165                         bool V2IsSplat = false) {
2166  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2167    return false;
2168
2169  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2170    SDOperand BitI  = Elts[i];
2171    SDOperand BitI1 = Elts[i+1];
2172    if (!isUndefOrEqual(BitI, j))
2173      return false;
2174    if (V2IsSplat) {
2175      if (isUndefOrEqual(BitI1, NumElts))
2176        return false;
2177    } else {
2178      if (!isUndefOrEqual(BitI1, j + NumElts))
2179        return false;
2180    }
2181  }
2182
2183  return true;
2184}
2185
2186bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2187  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2188  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2189}
2190
2191/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2192/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2193bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts,
2194                         bool V2IsSplat = false) {
2195  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2196    return false;
2197
2198  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2199    SDOperand BitI  = Elts[i];
2200    SDOperand BitI1 = Elts[i+1];
2201    if (!isUndefOrEqual(BitI, j + NumElts/2))
2202      return false;
2203    if (V2IsSplat) {
2204      if (isUndefOrEqual(BitI1, NumElts))
2205        return false;
2206    } else {
2207      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2208        return false;
2209    }
2210  }
2211
2212  return true;
2213}
2214
2215bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2216  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2217  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2218}
2219
2220/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2221/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2222/// <0, 0, 1, 1>
2223bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2224  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2225
2226  unsigned NumElems = N->getNumOperands();
2227  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2228    return false;
2229
2230  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2231    SDOperand BitI  = N->getOperand(i);
2232    SDOperand BitI1 = N->getOperand(i+1);
2233
2234    if (!isUndefOrEqual(BitI, j))
2235      return false;
2236    if (!isUndefOrEqual(BitI1, j))
2237      return false;
2238  }
2239
2240  return true;
2241}
2242
2243/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2244/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2245/// <2, 2, 3, 3>
2246bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2247  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2248
2249  unsigned NumElems = N->getNumOperands();
2250  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2251    return false;
2252
2253  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2254    SDOperand BitI  = N->getOperand(i);
2255    SDOperand BitI1 = N->getOperand(i + 1);
2256
2257    if (!isUndefOrEqual(BitI, j))
2258      return false;
2259    if (!isUndefOrEqual(BitI1, j))
2260      return false;
2261  }
2262
2263  return true;
2264}
2265
2266/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2267/// specifies a shuffle of elements that is suitable for input to MOVSS,
2268/// MOVSD, and MOVD, i.e. setting the lowest element.
2269static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) {
2270  if (NumElts != 2 && NumElts != 4)
2271    return false;
2272
2273  if (!isUndefOrEqual(Elts[0], NumElts))
2274    return false;
2275
2276  for (unsigned i = 1; i < NumElts; ++i) {
2277    if (!isUndefOrEqual(Elts[i], i))
2278      return false;
2279  }
2280
2281  return true;
2282}
2283
2284bool X86::isMOVLMask(SDNode *N) {
2285  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2286  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2287}
2288
2289/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2290/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2291/// element of vector 2 and the other elements to come from vector 1 in order.
2292static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps,
2293                           bool V2IsSplat = false,
2294                           bool V2IsUndef = false) {
2295  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2296    return false;
2297
2298  if (!isUndefOrEqual(Ops[0], 0))
2299    return false;
2300
2301  for (unsigned i = 1; i < NumOps; ++i) {
2302    SDOperand Arg = Ops[i];
2303    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2304          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2305          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2306      return false;
2307  }
2308
2309  return true;
2310}
2311
2312static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2313                           bool V2IsUndef = false) {
2314  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2315  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2316                        V2IsSplat, V2IsUndef);
2317}
2318
2319/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2320/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2321bool X86::isMOVSHDUPMask(SDNode *N) {
2322  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2323
2324  if (N->getNumOperands() != 4)
2325    return false;
2326
2327  // Expect 1, 1, 3, 3
2328  for (unsigned i = 0; i < 2; ++i) {
2329    SDOperand Arg = N->getOperand(i);
2330    if (Arg.getOpcode() == ISD::UNDEF) continue;
2331    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2332    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2333    if (Val != 1) return false;
2334  }
2335
2336  bool HasHi = false;
2337  for (unsigned i = 2; i < 4; ++i) {
2338    SDOperand Arg = N->getOperand(i);
2339    if (Arg.getOpcode() == ISD::UNDEF) continue;
2340    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2341    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2342    if (Val != 3) return false;
2343    HasHi = true;
2344  }
2345
2346  // Don't use movshdup if it can be done with a shufps.
2347  return HasHi;
2348}
2349
2350/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2351/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2352bool X86::isMOVSLDUPMask(SDNode *N) {
2353  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2354
2355  if (N->getNumOperands() != 4)
2356    return false;
2357
2358  // Expect 0, 0, 2, 2
2359  for (unsigned i = 0; i < 2; ++i) {
2360    SDOperand Arg = N->getOperand(i);
2361    if (Arg.getOpcode() == ISD::UNDEF) continue;
2362    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2363    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2364    if (Val != 0) return false;
2365  }
2366
2367  bool HasHi = false;
2368  for (unsigned i = 2; i < 4; ++i) {
2369    SDOperand Arg = N->getOperand(i);
2370    if (Arg.getOpcode() == ISD::UNDEF) continue;
2371    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2372    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2373    if (Val != 2) return false;
2374    HasHi = true;
2375  }
2376
2377  // Don't use movshdup if it can be done with a shufps.
2378  return HasHi;
2379}
2380
2381/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2382/// specifies a identity operation on the LHS or RHS.
2383static bool isIdentityMask(SDNode *N, bool RHS = false) {
2384  unsigned NumElems = N->getNumOperands();
2385  for (unsigned i = 0; i < NumElems; ++i)
2386    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2387      return false;
2388  return true;
2389}
2390
2391/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2392/// a splat of a single element.
2393static bool isSplatMask(SDNode *N) {
2394  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2395
2396  // This is a splat operation if each element of the permute is the same, and
2397  // if the value doesn't reference the second vector.
2398  unsigned NumElems = N->getNumOperands();
2399  SDOperand ElementBase;
2400  unsigned i = 0;
2401  for (; i != NumElems; ++i) {
2402    SDOperand Elt = N->getOperand(i);
2403    if (isa<ConstantSDNode>(Elt)) {
2404      ElementBase = Elt;
2405      break;
2406    }
2407  }
2408
2409  if (!ElementBase.Val)
2410    return false;
2411
2412  for (; i != NumElems; ++i) {
2413    SDOperand Arg = N->getOperand(i);
2414    if (Arg.getOpcode() == ISD::UNDEF) continue;
2415    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2416    if (Arg != ElementBase) return false;
2417  }
2418
2419  // Make sure it is a splat of the first vector operand.
2420  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2421}
2422
2423/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2424/// a splat of a single element and it's a 2 or 4 element mask.
2425bool X86::isSplatMask(SDNode *N) {
2426  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2427
2428  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2429  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2430    return false;
2431  return ::isSplatMask(N);
2432}
2433
2434/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2435/// specifies a splat of zero element.
2436bool X86::isSplatLoMask(SDNode *N) {
2437  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2438
2439  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2440    if (!isUndefOrEqual(N->getOperand(i), 0))
2441      return false;
2442  return true;
2443}
2444
2445/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2446/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2447/// instructions.
2448unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2449  unsigned NumOperands = N->getNumOperands();
2450  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2451  unsigned Mask = 0;
2452  for (unsigned i = 0; i < NumOperands; ++i) {
2453    unsigned Val = 0;
2454    SDOperand Arg = N->getOperand(NumOperands-i-1);
2455    if (Arg.getOpcode() != ISD::UNDEF)
2456      Val = cast<ConstantSDNode>(Arg)->getValue();
2457    if (Val >= NumOperands) Val -= NumOperands;
2458    Mask |= Val;
2459    if (i != NumOperands - 1)
2460      Mask <<= Shift;
2461  }
2462
2463  return Mask;
2464}
2465
2466/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2467/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2468/// instructions.
2469unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2470  unsigned Mask = 0;
2471  // 8 nodes, but we only care about the last 4.
2472  for (unsigned i = 7; i >= 4; --i) {
2473    unsigned Val = 0;
2474    SDOperand Arg = N->getOperand(i);
2475    if (Arg.getOpcode() != ISD::UNDEF)
2476      Val = cast<ConstantSDNode>(Arg)->getValue();
2477    Mask |= (Val - 4);
2478    if (i != 4)
2479      Mask <<= 2;
2480  }
2481
2482  return Mask;
2483}
2484
2485/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2486/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2487/// instructions.
2488unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2489  unsigned Mask = 0;
2490  // 8 nodes, but we only care about the first 4.
2491  for (int i = 3; i >= 0; --i) {
2492    unsigned Val = 0;
2493    SDOperand Arg = N->getOperand(i);
2494    if (Arg.getOpcode() != ISD::UNDEF)
2495      Val = cast<ConstantSDNode>(Arg)->getValue();
2496    Mask |= Val;
2497    if (i != 0)
2498      Mask <<= 2;
2499  }
2500
2501  return Mask;
2502}
2503
2504/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2505/// specifies a 8 element shuffle that can be broken into a pair of
2506/// PSHUFHW and PSHUFLW.
2507static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2508  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2509
2510  if (N->getNumOperands() != 8)
2511    return false;
2512
2513  // Lower quadword shuffled.
2514  for (unsigned i = 0; i != 4; ++i) {
2515    SDOperand Arg = N->getOperand(i);
2516    if (Arg.getOpcode() == ISD::UNDEF) continue;
2517    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2518    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2519    if (Val >= 4)
2520      return false;
2521  }
2522
2523  // Upper quadword shuffled.
2524  for (unsigned i = 4; i != 8; ++i) {
2525    SDOperand Arg = N->getOperand(i);
2526    if (Arg.getOpcode() == ISD::UNDEF) continue;
2527    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2528    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2529    if (Val < 4 || Val > 7)
2530      return false;
2531  }
2532
2533  return true;
2534}
2535
2536/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2537/// values in ther permute mask.
2538static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2539                                      SDOperand &V2, SDOperand &Mask,
2540                                      SelectionDAG &DAG) {
2541  MVT::ValueType VT = Op.getValueType();
2542  MVT::ValueType MaskVT = Mask.getValueType();
2543  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2544  unsigned NumElems = Mask.getNumOperands();
2545  SmallVector<SDOperand, 8> MaskVec;
2546
2547  for (unsigned i = 0; i != NumElems; ++i) {
2548    SDOperand Arg = Mask.getOperand(i);
2549    if (Arg.getOpcode() == ISD::UNDEF) {
2550      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2551      continue;
2552    }
2553    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2554    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2555    if (Val < NumElems)
2556      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2557    else
2558      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2559  }
2560
2561  std::swap(V1, V2);
2562  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2563  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2564}
2565
2566/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2567/// the two vector operands have swapped position.
2568static
2569SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) {
2570  MVT::ValueType MaskVT = Mask.getValueType();
2571  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2572  unsigned NumElems = Mask.getNumOperands();
2573  SmallVector<SDOperand, 8> MaskVec;
2574  for (unsigned i = 0; i != NumElems; ++i) {
2575    SDOperand Arg = Mask.getOperand(i);
2576    if (Arg.getOpcode() == ISD::UNDEF) {
2577      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2578      continue;
2579    }
2580    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2581    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2582    if (Val < NumElems)
2583      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2584    else
2585      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2586  }
2587  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2588}
2589
2590
2591/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2592/// match movhlps. The lower half elements should come from upper half of
2593/// V1 (and in order), and the upper half elements should come from the upper
2594/// half of V2 (and in order).
2595static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2596  unsigned NumElems = Mask->getNumOperands();
2597  if (NumElems != 4)
2598    return false;
2599  for (unsigned i = 0, e = 2; i != e; ++i)
2600    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2601      return false;
2602  for (unsigned i = 2; i != 4; ++i)
2603    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2604      return false;
2605  return true;
2606}
2607
2608/// isScalarLoadToVector - Returns true if the node is a scalar load that
2609/// is promoted to a vector. It also returns the LoadSDNode by reference if
2610/// required.
2611static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2612  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2613    N = N->getOperand(0).Val;
2614    if (ISD::isNON_EXTLoad(N)) {
2615      if (LD)
2616        *LD = cast<LoadSDNode>(N);
2617      return true;
2618    }
2619  }
2620  return false;
2621}
2622
2623/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2624/// match movlp{s|d}. The lower half elements should come from lower half of
2625/// V1 (and in order), and the upper half elements should come from the upper
2626/// half of V2 (and in order). And since V1 will become the source of the
2627/// MOVLP, it must be either a vector load or a scalar load to vector.
2628static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2629  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2630    return false;
2631  // Is V2 is a vector load, don't do this transformation. We will try to use
2632  // load folding shufps op.
2633  if (ISD::isNON_EXTLoad(V2))
2634    return false;
2635
2636  unsigned NumElems = Mask->getNumOperands();
2637  if (NumElems != 2 && NumElems != 4)
2638    return false;
2639  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2640    if (!isUndefOrEqual(Mask->getOperand(i), i))
2641      return false;
2642  for (unsigned i = NumElems/2; i != NumElems; ++i)
2643    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2644      return false;
2645  return true;
2646}
2647
2648/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2649/// all the same.
2650static bool isSplatVector(SDNode *N) {
2651  if (N->getOpcode() != ISD::BUILD_VECTOR)
2652    return false;
2653
2654  SDOperand SplatValue = N->getOperand(0);
2655  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2656    if (N->getOperand(i) != SplatValue)
2657      return false;
2658  return true;
2659}
2660
2661/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2662/// to an undef.
2663static bool isUndefShuffle(SDNode *N) {
2664  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2665    return false;
2666
2667  SDOperand V1 = N->getOperand(0);
2668  SDOperand V2 = N->getOperand(1);
2669  SDOperand Mask = N->getOperand(2);
2670  unsigned NumElems = Mask.getNumOperands();
2671  for (unsigned i = 0; i != NumElems; ++i) {
2672    SDOperand Arg = Mask.getOperand(i);
2673    if (Arg.getOpcode() != ISD::UNDEF) {
2674      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2675      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2676        return false;
2677      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2678        return false;
2679    }
2680  }
2681  return true;
2682}
2683
2684/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2685/// constant +0.0.
2686static inline bool isZeroNode(SDOperand Elt) {
2687  return ((isa<ConstantSDNode>(Elt) &&
2688           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2689          (isa<ConstantFPSDNode>(Elt) &&
2690           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2691}
2692
2693/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2694/// to an zero vector.
2695static bool isZeroShuffle(SDNode *N) {
2696  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2697    return false;
2698
2699  SDOperand V1 = N->getOperand(0);
2700  SDOperand V2 = N->getOperand(1);
2701  SDOperand Mask = N->getOperand(2);
2702  unsigned NumElems = Mask.getNumOperands();
2703  for (unsigned i = 0; i != NumElems; ++i) {
2704    SDOperand Arg = Mask.getOperand(i);
2705    if (Arg.getOpcode() == ISD::UNDEF)
2706      continue;
2707
2708    unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2709    if (Idx < NumElems) {
2710      unsigned Opc = V1.Val->getOpcode();
2711      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2712        continue;
2713      if (Opc != ISD::BUILD_VECTOR ||
2714          !isZeroNode(V1.Val->getOperand(Idx)))
2715        return false;
2716    } else if (Idx >= NumElems) {
2717      unsigned Opc = V2.Val->getOpcode();
2718      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2719        continue;
2720      if (Opc != ISD::BUILD_VECTOR ||
2721          !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2722        return false;
2723    }
2724  }
2725  return true;
2726}
2727
2728/// getZeroVector - Returns a vector of specified type with all zero elements.
2729///
2730static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2731  assert(MVT::isVector(VT) && "Expected a vector type");
2732
2733  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2734  // type.  This ensures they get CSE'd.
2735  SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2736  SDOperand Vec;
2737  if (MVT::getSizeInBits(VT) == 64)  // MMX
2738    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2739  else                                              // SSE
2740    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2741  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2742}
2743
2744/// getOnesVector - Returns a vector of specified type with all bits set.
2745///
2746static SDOperand getOnesVector(MVT::ValueType VT, SelectionDAG &DAG) {
2747  assert(MVT::isVector(VT) && "Expected a vector type");
2748
2749  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2750  // type.  This ensures they get CSE'd.
2751  SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32);
2752  SDOperand Vec;
2753  if (MVT::getSizeInBits(VT) == 64)  // MMX
2754    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2755  else                                              // SSE
2756    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2757  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2758}
2759
2760
2761/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2762/// that point to V2 points to its first element.
2763static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2764  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2765
2766  bool Changed = false;
2767  SmallVector<SDOperand, 8> MaskVec;
2768  unsigned NumElems = Mask.getNumOperands();
2769  for (unsigned i = 0; i != NumElems; ++i) {
2770    SDOperand Arg = Mask.getOperand(i);
2771    if (Arg.getOpcode() != ISD::UNDEF) {
2772      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2773      if (Val > NumElems) {
2774        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2775        Changed = true;
2776      }
2777    }
2778    MaskVec.push_back(Arg);
2779  }
2780
2781  if (Changed)
2782    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2783                       &MaskVec[0], MaskVec.size());
2784  return Mask;
2785}
2786
2787/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2788/// operation of specified width.
2789static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2790  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2791  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2792
2793  SmallVector<SDOperand, 8> MaskVec;
2794  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2795  for (unsigned i = 1; i != NumElems; ++i)
2796    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2797  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2798}
2799
2800/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2801/// of specified width.
2802static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2803  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2804  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2805  SmallVector<SDOperand, 8> MaskVec;
2806  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2807    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2808    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2809  }
2810  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2811}
2812
2813/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2814/// of specified width.
2815static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2816  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2817  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2818  unsigned Half = NumElems/2;
2819  SmallVector<SDOperand, 8> MaskVec;
2820  for (unsigned i = 0; i != Half; ++i) {
2821    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2822    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2823  }
2824  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2825}
2826
2827/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2828/// element #0 of a vector with the specified index, leaving the rest of the
2829/// elements in place.
2830static SDOperand getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2831                                   SelectionDAG &DAG) {
2832  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2833  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2834  SmallVector<SDOperand, 8> MaskVec;
2835  // Element #0 of the result gets the elt we are replacing.
2836  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2837  for (unsigned i = 1; i != NumElems; ++i)
2838    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2839  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2840}
2841
2842/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2843static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG, bool HasSSE2) {
2844  MVT::ValueType PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
2845  MVT::ValueType VT = Op.getValueType();
2846  if (PVT == VT)
2847    return Op;
2848  SDOperand V1 = Op.getOperand(0);
2849  SDOperand Mask = Op.getOperand(2);
2850  unsigned NumElems = Mask.getNumOperands();
2851  // Special handling of v4f32 -> v4i32.
2852  if (VT != MVT::v4f32) {
2853    Mask = getUnpacklMask(NumElems, DAG);
2854    while (NumElems > 4) {
2855      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2856      NumElems >>= 1;
2857    }
2858    Mask = getZeroVector(MVT::v4i32, DAG);
2859  }
2860
2861  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
2862  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
2863                                  DAG.getNode(ISD::UNDEF, PVT), Mask);
2864  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2865}
2866
2867/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2868/// vector of zero or undef vector.  This produces a shuffle where the low
2869/// element of V2 is swizzled into the zero/undef vector, landing at element
2870/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2871static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, unsigned Idx,
2872                                             bool isZero, SelectionDAG &DAG) {
2873  MVT::ValueType VT = V2.getValueType();
2874  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2875  unsigned NumElems = MVT::getVectorNumElements(V2.getValueType());
2876  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2877  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2878  SmallVector<SDOperand, 16> MaskVec;
2879  for (unsigned i = 0; i != NumElems; ++i)
2880    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
2881      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
2882    else
2883      MaskVec.push_back(DAG.getConstant(i, EVT));
2884  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2885                               &MaskVec[0], MaskVec.size());
2886  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2887}
2888
2889/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2890///
2891static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2892                                       unsigned NumNonZero, unsigned NumZero,
2893                                       SelectionDAG &DAG, TargetLowering &TLI) {
2894  if (NumNonZero > 8)
2895    return SDOperand();
2896
2897  SDOperand V(0, 0);
2898  bool First = true;
2899  for (unsigned i = 0; i < 16; ++i) {
2900    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2901    if (ThisIsNonZero && First) {
2902      if (NumZero)
2903        V = getZeroVector(MVT::v8i16, DAG);
2904      else
2905        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2906      First = false;
2907    }
2908
2909    if ((i & 1) != 0) {
2910      SDOperand ThisElt(0, 0), LastElt(0, 0);
2911      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2912      if (LastIsNonZero) {
2913        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2914      }
2915      if (ThisIsNonZero) {
2916        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2917        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2918                              ThisElt, DAG.getConstant(8, MVT::i8));
2919        if (LastIsNonZero)
2920          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2921      } else
2922        ThisElt = LastElt;
2923
2924      if (ThisElt.Val)
2925        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2926                        DAG.getIntPtrConstant(i/2));
2927    }
2928  }
2929
2930  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2931}
2932
2933/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2934///
2935static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2936                                       unsigned NumNonZero, unsigned NumZero,
2937                                       SelectionDAG &DAG, TargetLowering &TLI) {
2938  if (NumNonZero > 4)
2939    return SDOperand();
2940
2941  SDOperand V(0, 0);
2942  bool First = true;
2943  for (unsigned i = 0; i < 8; ++i) {
2944    bool isNonZero = (NonZeros & (1 << i)) != 0;
2945    if (isNonZero) {
2946      if (First) {
2947        if (NumZero)
2948          V = getZeroVector(MVT::v8i16, DAG);
2949        else
2950          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2951        First = false;
2952      }
2953      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2954                      DAG.getIntPtrConstant(i));
2955    }
2956  }
2957
2958  return V;
2959}
2960
2961SDOperand
2962X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2963  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
2964  if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
2965    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
2966    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
2967    // eliminated on x86-32 hosts.
2968    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
2969      return Op;
2970
2971    if (ISD::isBuildVectorAllOnes(Op.Val))
2972      return getOnesVector(Op.getValueType(), DAG);
2973    return getZeroVector(Op.getValueType(), DAG);
2974  }
2975
2976  MVT::ValueType VT = Op.getValueType();
2977  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2978  unsigned EVTBits = MVT::getSizeInBits(EVT);
2979
2980  unsigned NumElems = Op.getNumOperands();
2981  unsigned NumZero  = 0;
2982  unsigned NumNonZero = 0;
2983  unsigned NonZeros = 0;
2984  bool IsAllConstants = true;
2985  SmallSet<SDOperand, 8> Values;
2986  for (unsigned i = 0; i < NumElems; ++i) {
2987    SDOperand Elt = Op.getOperand(i);
2988    if (Elt.getOpcode() == ISD::UNDEF)
2989      continue;
2990    Values.insert(Elt);
2991    if (Elt.getOpcode() != ISD::Constant &&
2992        Elt.getOpcode() != ISD::ConstantFP)
2993      IsAllConstants = false;
2994    if (isZeroNode(Elt))
2995      NumZero++;
2996    else {
2997      NonZeros |= (1 << i);
2998      NumNonZero++;
2999    }
3000  }
3001
3002  if (NumNonZero == 0) {
3003    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3004    return DAG.getNode(ISD::UNDEF, VT);
3005  }
3006
3007  // Special case for single non-zero, non-undef, element.
3008  if (NumNonZero == 1 && NumElems <= 4) {
3009    unsigned Idx = CountTrailingZeros_32(NonZeros);
3010    SDOperand Item = Op.getOperand(Idx);
3011
3012    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3013    // the value are obviously zero, truncate the value to i32 and do the
3014    // insertion that way.  Only do this if the value is non-constant or if the
3015    // value is a constant being inserted into element 0.  It is cheaper to do
3016    // a constant pool load than it is to do a movd + shuffle.
3017    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3018        (!IsAllConstants || Idx == 0)) {
3019      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3020        // Handle MMX and SSE both.
3021        MVT::ValueType VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3022        MVT::ValueType VecElts = VT == MVT::v2i64 ? 4 : 2;
3023
3024        // Truncate the value (which may itself be a constant) to i32, and
3025        // convert it to a vector with movd (S2V+shuffle to zero extend).
3026        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3027        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3028        Item = getShuffleVectorZeroOrUndef(Item, 0, true, DAG);
3029
3030        // Now we have our 32-bit value zero extended in the low element of
3031        // a vector.  If Idx != 0, swizzle it into place.
3032        if (Idx != 0) {
3033          SDOperand Ops[] = {
3034            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3035            getSwapEltZeroMask(VecElts, Idx, DAG)
3036          };
3037          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3038        }
3039        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3040      }
3041    }
3042
3043    // If we have a constant or non-constant insertion into the low element of
3044    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3045    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3046    // depending on what the source datatype is.  Because we can only get here
3047    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3048    if (Idx == 0 &&
3049        // Don't do this for i64 values on x86-32.
3050        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3051      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3052      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3053      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG);
3054    }
3055
3056    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3057      return SDOperand();
3058
3059    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3060    // is a non-constant being inserted into an element other than the low one,
3061    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3062    // movd/movss) to move this into the low element, then shuffle it into
3063    // place.
3064    if (EVTBits == 32) {
3065      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3066
3067      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3068      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG);
3069      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3070      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3071      SmallVector<SDOperand, 8> MaskVec;
3072      for (unsigned i = 0; i < NumElems; i++)
3073        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3074      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3075                                   &MaskVec[0], MaskVec.size());
3076      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3077                         DAG.getNode(ISD::UNDEF, VT), Mask);
3078    }
3079  }
3080
3081  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3082  if (Values.size() == 1)
3083    return SDOperand();
3084
3085  // A vector full of immediates; various special cases are already
3086  // handled, so this is best done with a single constant-pool load.
3087  if (IsAllConstants)
3088    return SDOperand();
3089
3090  // Let legalizer expand 2-wide build_vectors.
3091  if (EVTBits == 64) {
3092    if (NumNonZero == 1) {
3093      // One half is zero or undef.
3094      unsigned Idx = CountTrailingZeros_32(NonZeros);
3095      SDOperand V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
3096                                 Op.getOperand(Idx));
3097      return getShuffleVectorZeroOrUndef(V2, Idx, true, DAG);
3098    }
3099    return SDOperand();
3100  }
3101
3102  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3103  if (EVTBits == 8 && NumElems == 16) {
3104    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3105                                        *this);
3106    if (V.Val) return V;
3107  }
3108
3109  if (EVTBits == 16 && NumElems == 8) {
3110    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3111                                        *this);
3112    if (V.Val) return V;
3113  }
3114
3115  // If element VT is == 32 bits, turn it into a number of shuffles.
3116  SmallVector<SDOperand, 8> V;
3117  V.resize(NumElems);
3118  if (NumElems == 4 && NumZero > 0) {
3119    for (unsigned i = 0; i < 4; ++i) {
3120      bool isZero = !(NonZeros & (1 << i));
3121      if (isZero)
3122        V[i] = getZeroVector(VT, DAG);
3123      else
3124        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3125    }
3126
3127    for (unsigned i = 0; i < 2; ++i) {
3128      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3129        default: break;
3130        case 0:
3131          V[i] = V[i*2];  // Must be a zero vector.
3132          break;
3133        case 1:
3134          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3135                             getMOVLMask(NumElems, DAG));
3136          break;
3137        case 2:
3138          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3139                             getMOVLMask(NumElems, DAG));
3140          break;
3141        case 3:
3142          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3143                             getUnpacklMask(NumElems, DAG));
3144          break;
3145      }
3146    }
3147
3148    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3149    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3150    SmallVector<SDOperand, 8> MaskVec;
3151    bool Reverse = (NonZeros & 0x3) == 2;
3152    for (unsigned i = 0; i < 2; ++i)
3153      if (Reverse)
3154        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3155      else
3156        MaskVec.push_back(DAG.getConstant(i, EVT));
3157    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3158    for (unsigned i = 0; i < 2; ++i)
3159      if (Reverse)
3160        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3161      else
3162        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3163    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3164                                     &MaskVec[0], MaskVec.size());
3165    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3166  }
3167
3168  if (Values.size() > 2) {
3169    // Expand into a number of unpckl*.
3170    // e.g. for v4f32
3171    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3172    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3173    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3174    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3175    for (unsigned i = 0; i < NumElems; ++i)
3176      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3177    NumElems >>= 1;
3178    while (NumElems != 0) {
3179      for (unsigned i = 0; i < NumElems; ++i)
3180        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3181                           UnpckMask);
3182      NumElems >>= 1;
3183    }
3184    return V[0];
3185  }
3186
3187  return SDOperand();
3188}
3189
3190static
3191SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2,
3192                                   SDOperand PermMask, SelectionDAG &DAG,
3193                                   TargetLowering &TLI) {
3194  SDOperand NewV;
3195  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(8);
3196  MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3197  MVT::ValueType PtrVT = TLI.getPointerTy();
3198  SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(),
3199                                     PermMask.Val->op_end());
3200
3201  // First record which half of which vector the low elements come from.
3202  SmallVector<unsigned, 4> LowQuad(4);
3203  for (unsigned i = 0; i < 4; ++i) {
3204    SDOperand Elt = MaskElts[i];
3205    if (Elt.getOpcode() == ISD::UNDEF)
3206      continue;
3207    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3208    int QuadIdx = EltIdx / 4;
3209    ++LowQuad[QuadIdx];
3210  }
3211  int BestLowQuad = -1;
3212  unsigned MaxQuad = 1;
3213  for (unsigned i = 0; i < 4; ++i) {
3214    if (LowQuad[i] > MaxQuad) {
3215      BestLowQuad = i;
3216      MaxQuad = LowQuad[i];
3217    }
3218  }
3219
3220  // Record which half of which vector the high elements come from.
3221  SmallVector<unsigned, 4> HighQuad(4);
3222  for (unsigned i = 4; i < 8; ++i) {
3223    SDOperand Elt = MaskElts[i];
3224    if (Elt.getOpcode() == ISD::UNDEF)
3225      continue;
3226    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3227    int QuadIdx = EltIdx / 4;
3228    ++HighQuad[QuadIdx];
3229  }
3230  int BestHighQuad = -1;
3231  MaxQuad = 1;
3232  for (unsigned i = 0; i < 4; ++i) {
3233    if (HighQuad[i] > MaxQuad) {
3234      BestHighQuad = i;
3235      MaxQuad = HighQuad[i];
3236    }
3237  }
3238
3239  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3240  if (BestLowQuad != -1 || BestHighQuad != -1) {
3241    // First sort the 4 chunks in order using shufpd.
3242    SmallVector<SDOperand, 8> MaskVec;
3243    if (BestLowQuad != -1)
3244      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3245    else
3246      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3247    if (BestHighQuad != -1)
3248      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3249    else
3250      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3251    SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3252    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3253                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3254                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3255    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3256
3257    // Now sort high and low parts separately.
3258    BitVector InOrder(8);
3259    if (BestLowQuad != -1) {
3260      // Sort lower half in order using PSHUFLW.
3261      MaskVec.clear();
3262      bool AnyOutOrder = false;
3263      for (unsigned i = 0; i != 4; ++i) {
3264        SDOperand Elt = MaskElts[i];
3265        if (Elt.getOpcode() == ISD::UNDEF) {
3266          MaskVec.push_back(Elt);
3267          InOrder.set(i);
3268        } else {
3269          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3270          if (EltIdx != i)
3271            AnyOutOrder = true;
3272          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3273          // If this element is in the right place after this shuffle, then
3274          // remember it.
3275          if ((int)(EltIdx / 4) == BestLowQuad)
3276            InOrder.set(i);
3277        }
3278      }
3279      if (AnyOutOrder) {
3280        for (unsigned i = 4; i != 8; ++i)
3281          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3282        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3283        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3284      }
3285    }
3286
3287    if (BestHighQuad != -1) {
3288      // Sort high half in order using PSHUFHW if possible.
3289      MaskVec.clear();
3290      for (unsigned i = 0; i != 4; ++i)
3291        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3292      bool AnyOutOrder = false;
3293      for (unsigned i = 4; i != 8; ++i) {
3294        SDOperand Elt = MaskElts[i];
3295        if (Elt.getOpcode() == ISD::UNDEF) {
3296          MaskVec.push_back(Elt);
3297          InOrder.set(i);
3298        } else {
3299          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3300          if (EltIdx != i)
3301            AnyOutOrder = true;
3302          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3303          // If this element is in the right place after this shuffle, then
3304          // remember it.
3305          if ((int)(EltIdx / 4) == BestHighQuad)
3306            InOrder.set(i);
3307        }
3308      }
3309      if (AnyOutOrder) {
3310        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3311        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3312      }
3313    }
3314
3315    // The other elements are put in the right place using pextrw and pinsrw.
3316    for (unsigned i = 0; i != 8; ++i) {
3317      if (InOrder[i])
3318        continue;
3319      SDOperand Elt = MaskElts[i];
3320      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3321      if (EltIdx == i)
3322        continue;
3323      SDOperand ExtOp = (EltIdx < 8)
3324        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3325                      DAG.getConstant(EltIdx, PtrVT))
3326        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3327                      DAG.getConstant(EltIdx - 8, PtrVT));
3328      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3329                         DAG.getConstant(i, PtrVT));
3330    }
3331    return NewV;
3332  }
3333
3334  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
3335  ///as few as possible.
3336  // First, let's find out how many elements are already in the right order.
3337  unsigned V1InOrder = 0;
3338  unsigned V1FromV1 = 0;
3339  unsigned V2InOrder = 0;
3340  unsigned V2FromV2 = 0;
3341  SmallVector<SDOperand, 8> V1Elts;
3342  SmallVector<SDOperand, 8> V2Elts;
3343  for (unsigned i = 0; i < 8; ++i) {
3344    SDOperand Elt = MaskElts[i];
3345    if (Elt.getOpcode() == ISD::UNDEF) {
3346      V1Elts.push_back(Elt);
3347      V2Elts.push_back(Elt);
3348      ++V1InOrder;
3349      ++V2InOrder;
3350      continue;
3351    }
3352    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3353    if (EltIdx == i) {
3354      V1Elts.push_back(Elt);
3355      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3356      ++V1InOrder;
3357    } else if (EltIdx == i+8) {
3358      V1Elts.push_back(Elt);
3359      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3360      ++V2InOrder;
3361    } else if (EltIdx < 8) {
3362      V1Elts.push_back(Elt);
3363      ++V1FromV1;
3364    } else {
3365      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3366      ++V2FromV2;
3367    }
3368  }
3369
3370  if (V2InOrder > V1InOrder) {
3371    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3372    std::swap(V1, V2);
3373    std::swap(V1Elts, V2Elts);
3374    std::swap(V1FromV1, V2FromV2);
3375  }
3376
3377  if ((V1FromV1 + V1InOrder) != 8) {
3378    // Some elements are from V2.
3379    if (V1FromV1) {
3380      // If there are elements that are from V1 but out of place,
3381      // then first sort them in place
3382      SmallVector<SDOperand, 8> MaskVec;
3383      for (unsigned i = 0; i < 8; ++i) {
3384        SDOperand Elt = V1Elts[i];
3385        if (Elt.getOpcode() == ISD::UNDEF) {
3386          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3387          continue;
3388        }
3389        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3390        if (EltIdx >= 8)
3391          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3392        else
3393          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3394      }
3395      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3396      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3397    }
3398
3399    NewV = V1;
3400    for (unsigned i = 0; i < 8; ++i) {
3401      SDOperand Elt = V1Elts[i];
3402      if (Elt.getOpcode() == ISD::UNDEF)
3403        continue;
3404      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3405      if (EltIdx < 8)
3406        continue;
3407      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3408                                    DAG.getConstant(EltIdx - 8, PtrVT));
3409      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3410                         DAG.getConstant(i, PtrVT));
3411    }
3412    return NewV;
3413  } else {
3414    // All elements are from V1.
3415    NewV = V1;
3416    for (unsigned i = 0; i < 8; ++i) {
3417      SDOperand Elt = V1Elts[i];
3418      if (Elt.getOpcode() == ISD::UNDEF)
3419        continue;
3420      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3421      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3422                                    DAG.getConstant(EltIdx, PtrVT));
3423      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3424                         DAG.getConstant(i, PtrVT));
3425    }
3426    return NewV;
3427  }
3428}
3429
3430/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3431/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3432/// done when every pair / quad of shuffle mask elements point to elements in
3433/// the right sequence. e.g.
3434/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3435static
3436SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2,
3437                                MVT::ValueType VT,
3438                                SDOperand PermMask, SelectionDAG &DAG,
3439                                TargetLowering &TLI) {
3440  unsigned NumElems = PermMask.getNumOperands();
3441  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3442  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3443  MVT::ValueType NewVT = MaskVT;
3444  switch (VT) {
3445  case MVT::v4f32: NewVT = MVT::v2f64; break;
3446  case MVT::v4i32: NewVT = MVT::v2i64; break;
3447  case MVT::v8i16: NewVT = MVT::v4i32; break;
3448  case MVT::v16i8: NewVT = MVT::v4i32; break;
3449  default: assert(false && "Unexpected!");
3450  }
3451
3452  if (NewWidth == 2) {
3453    if (MVT::isInteger(VT))
3454      NewVT = MVT::v2i64;
3455    else
3456      NewVT = MVT::v2f64;
3457  }
3458  unsigned Scale = NumElems / NewWidth;
3459  SmallVector<SDOperand, 8> MaskVec;
3460  for (unsigned i = 0; i < NumElems; i += Scale) {
3461    unsigned StartIdx = ~0U;
3462    for (unsigned j = 0; j < Scale; ++j) {
3463      SDOperand Elt = PermMask.getOperand(i+j);
3464      if (Elt.getOpcode() == ISD::UNDEF)
3465        continue;
3466      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3467      if (StartIdx == ~0U)
3468        StartIdx = EltIdx - (EltIdx % Scale);
3469      if (EltIdx != StartIdx + j)
3470        return SDOperand();
3471    }
3472    if (StartIdx == ~0U)
3473      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
3474    else
3475      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32));
3476  }
3477
3478  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3479  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3480  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3481                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3482                                 &MaskVec[0], MaskVec.size()));
3483}
3484
3485/// getVZextMovL - Return a zero-extending vector move low node.
3486///
3487static SDOperand getVZextMovL(MVT::ValueType VT, MVT::ValueType OpVT,
3488                               SDOperand SrcOp, SelectionDAG &DAG,
3489                               const X86Subtarget *Subtarget) {
3490  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3491    LoadSDNode *LD = NULL;
3492    if (!isScalarLoadToVector(SrcOp.Val, &LD))
3493      LD = dyn_cast<LoadSDNode>(SrcOp);
3494    if (!LD) {
3495      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3496      // instead.
3497      MVT::ValueType EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3498      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3499          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3500          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3501          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3502        // PR2108
3503        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3504        return DAG.getNode(ISD::BIT_CONVERT, VT,
3505                           DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3506                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
3507                                                   SrcOp.getOperand(0).getOperand(0))));
3508      }
3509    }
3510  }
3511
3512  return DAG.getNode(ISD::BIT_CONVERT, VT,
3513                     DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3514                                 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
3515}
3516
3517SDOperand
3518X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3519  SDOperand V1 = Op.getOperand(0);
3520  SDOperand V2 = Op.getOperand(1);
3521  SDOperand PermMask = Op.getOperand(2);
3522  MVT::ValueType VT = Op.getValueType();
3523  unsigned NumElems = PermMask.getNumOperands();
3524  bool isMMX = MVT::getSizeInBits(VT) == 64;
3525  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3526  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3527  bool V1IsSplat = false;
3528  bool V2IsSplat = false;
3529
3530  if (isUndefShuffle(Op.Val))
3531    return DAG.getNode(ISD::UNDEF, VT);
3532
3533  if (isZeroShuffle(Op.Val))
3534    return getZeroVector(VT, DAG);
3535
3536  if (isIdentityMask(PermMask.Val))
3537    return V1;
3538  else if (isIdentityMask(PermMask.Val, true))
3539    return V2;
3540
3541  if (isSplatMask(PermMask.Val)) {
3542    if (isMMX || NumElems < 4) return Op;
3543    // Promote it to a v4{if}32 splat.
3544    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
3545  }
3546
3547  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3548  // do it!
3549  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3550    SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3551    if (NewOp.Val)
3552      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3553  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3554    // FIXME: Figure out a cleaner way to do this.
3555    // Try to make use of movq to zero out the top part.
3556    if (ISD::isBuildVectorAllZeros(V2.Val)) {
3557      SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
3558                                                 DAG, *this);
3559      if (NewOp.Val) {
3560        SDOperand NewV1 = NewOp.getOperand(0);
3561        SDOperand NewV2 = NewOp.getOperand(1);
3562        SDOperand NewMask = NewOp.getOperand(2);
3563        if (isCommutedMOVL(NewMask.Val, true, false)) {
3564          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3565          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
3566        }
3567      }
3568    } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
3569      SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
3570                                                DAG, *this);
3571      if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
3572        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
3573                             DAG, Subtarget);
3574    }
3575  }
3576
3577  if (X86::isMOVLMask(PermMask.Val)) {
3578    if (V1IsUndef)
3579      return V2;
3580    if (ISD::isBuildVectorAllZeros(V1.Val))
3581      return getVZextMovL(VT, VT, V2, DAG, Subtarget);
3582    return Op;
3583  }
3584
3585  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3586      X86::isMOVSLDUPMask(PermMask.Val) ||
3587      X86::isMOVHLPSMask(PermMask.Val) ||
3588      X86::isMOVHPMask(PermMask.Val) ||
3589      X86::isMOVLPMask(PermMask.Val))
3590    return Op;
3591
3592  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3593      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3594    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3595
3596  bool Commuted = false;
3597  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3598  // 1,1,1,1 -> v8i16 though.
3599  V1IsSplat = isSplatVector(V1.Val);
3600  V2IsSplat = isSplatVector(V2.Val);
3601
3602  // Canonicalize the splat or undef, if present, to be on the RHS.
3603  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3604    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3605    std::swap(V1IsSplat, V2IsSplat);
3606    std::swap(V1IsUndef, V2IsUndef);
3607    Commuted = true;
3608  }
3609
3610  // FIXME: Figure out a cleaner way to do this.
3611  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3612    if (V2IsUndef) return V1;
3613    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3614    if (V2IsSplat) {
3615      // V2 is a splat, so the mask may be malformed. That is, it may point
3616      // to any V2 element. The instruction selectior won't like this. Get
3617      // a corrected mask and commute to form a proper MOVS{S|D}.
3618      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3619      if (NewMask.Val != PermMask.Val)
3620        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3621    }
3622    return Op;
3623  }
3624
3625  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3626      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3627      X86::isUNPCKLMask(PermMask.Val) ||
3628      X86::isUNPCKHMask(PermMask.Val))
3629    return Op;
3630
3631  if (V2IsSplat) {
3632    // Normalize mask so all entries that point to V2 points to its first
3633    // element then try to match unpck{h|l} again. If match, return a
3634    // new vector_shuffle with the corrected mask.
3635    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3636    if (NewMask.Val != PermMask.Val) {
3637      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3638        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3639        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3640      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3641        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3642        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3643      }
3644    }
3645  }
3646
3647  // Normalize the node to match x86 shuffle ops if needed
3648  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3649      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3650
3651  if (Commuted) {
3652    // Commute is back and try unpck* again.
3653    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3654    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3655        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3656        X86::isUNPCKLMask(PermMask.Val) ||
3657        X86::isUNPCKHMask(PermMask.Val))
3658      return Op;
3659  }
3660
3661  // Try PSHUF* first, then SHUFP*.
3662  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
3663  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3664  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.Val)) {
3665    if (V2.getOpcode() != ISD::UNDEF)
3666      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3667                         DAG.getNode(ISD::UNDEF, VT), PermMask);
3668    return Op;
3669  }
3670
3671  if (!isMMX) {
3672    if (Subtarget->hasSSE2() &&
3673        (X86::isPSHUFDMask(PermMask.Val) ||
3674         X86::isPSHUFHWMask(PermMask.Val) ||
3675         X86::isPSHUFLWMask(PermMask.Val))) {
3676      MVT::ValueType RVT = VT;
3677      if (VT == MVT::v4f32) {
3678        RVT = MVT::v4i32;
3679        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
3680                         DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
3681                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
3682      } else if (V2.getOpcode() != ISD::UNDEF)
3683        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
3684                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
3685      if (RVT != VT)
3686        Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
3687      return Op;
3688    }
3689
3690    // Binary or unary shufps.
3691    if (X86::isSHUFPMask(PermMask.Val) ||
3692        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.Val)))
3693      return Op;
3694  }
3695
3696  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
3697  if (VT == MVT::v8i16) {
3698    SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
3699    if (NewOp.Val)
3700      return NewOp;
3701  }
3702
3703  // Handle all 4 wide cases with a number of shuffles.
3704  if (NumElems == 4 && !isMMX) {
3705    // Don't do this for MMX.
3706    MVT::ValueType MaskVT = PermMask.getValueType();
3707    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3708    SmallVector<std::pair<int, int>, 8> Locs;
3709    Locs.reserve(NumElems);
3710    SmallVector<SDOperand, 8> Mask1(NumElems,
3711                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3712    SmallVector<SDOperand, 8> Mask2(NumElems,
3713                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3714    unsigned NumHi = 0;
3715    unsigned NumLo = 0;
3716    // If no more than two elements come from either vector. This can be
3717    // implemented with two shuffles. First shuffle gather the elements.
3718    // The second shuffle, which takes the first shuffle as both of its
3719    // vector operands, put the elements into the right order.
3720    for (unsigned i = 0; i != NumElems; ++i) {
3721      SDOperand Elt = PermMask.getOperand(i);
3722      if (Elt.getOpcode() == ISD::UNDEF) {
3723        Locs[i] = std::make_pair(-1, -1);
3724      } else {
3725        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3726        if (Val < NumElems) {
3727          Locs[i] = std::make_pair(0, NumLo);
3728          Mask1[NumLo] = Elt;
3729          NumLo++;
3730        } else {
3731          Locs[i] = std::make_pair(1, NumHi);
3732          if (2+NumHi < NumElems)
3733            Mask1[2+NumHi] = Elt;
3734          NumHi++;
3735        }
3736      }
3737    }
3738    if (NumLo <= 2 && NumHi <= 2) {
3739      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3740                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3741                                   &Mask1[0], Mask1.size()));
3742      for (unsigned i = 0; i != NumElems; ++i) {
3743        if (Locs[i].first == -1)
3744          continue;
3745        else {
3746          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3747          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3748          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3749        }
3750      }
3751
3752      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3753                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3754                                     &Mask2[0], Mask2.size()));
3755    }
3756
3757    // Break it into (shuffle shuffle_hi, shuffle_lo).
3758    Locs.clear();
3759    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3760    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3761    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3762    unsigned MaskIdx = 0;
3763    unsigned LoIdx = 0;
3764    unsigned HiIdx = NumElems/2;
3765    for (unsigned i = 0; i != NumElems; ++i) {
3766      if (i == NumElems/2) {
3767        MaskPtr = &HiMask;
3768        MaskIdx = 1;
3769        LoIdx = 0;
3770        HiIdx = NumElems/2;
3771      }
3772      SDOperand Elt = PermMask.getOperand(i);
3773      if (Elt.getOpcode() == ISD::UNDEF) {
3774        Locs[i] = std::make_pair(-1, -1);
3775      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3776        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3777        (*MaskPtr)[LoIdx] = Elt;
3778        LoIdx++;
3779      } else {
3780        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3781        (*MaskPtr)[HiIdx] = Elt;
3782        HiIdx++;
3783      }
3784    }
3785
3786    SDOperand LoShuffle =
3787      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3788                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3789                              &LoMask[0], LoMask.size()));
3790    SDOperand HiShuffle =
3791      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3792                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3793                              &HiMask[0], HiMask.size()));
3794    SmallVector<SDOperand, 8> MaskOps;
3795    for (unsigned i = 0; i != NumElems; ++i) {
3796      if (Locs[i].first == -1) {
3797        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3798      } else {
3799        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3800        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3801      }
3802    }
3803    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3804                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3805                                   &MaskOps[0], MaskOps.size()));
3806  }
3807
3808  return SDOperand();
3809}
3810
3811SDOperand
3812X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDOperand Op,
3813                                                SelectionDAG &DAG) {
3814  MVT::ValueType VT = Op.getValueType();
3815  if (MVT::getSizeInBits(VT) == 8) {
3816    SDOperand Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
3817                                    Op.getOperand(0), Op.getOperand(1));
3818    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
3819                                    DAG.getValueType(VT));
3820    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3821  } else if (MVT::getSizeInBits(VT) == 16) {
3822    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
3823                                    Op.getOperand(0), Op.getOperand(1));
3824    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
3825                                    DAG.getValueType(VT));
3826    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3827  } else if (VT == MVT::f32) {
3828    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
3829    // the result back to FR32 register. It's only worth matching if the
3830    // result has a single use which is a store or a bitcast to i32.
3831    if (!Op.hasOneUse())
3832      return SDOperand();
3833    SDNode *User = Op.Val->use_begin()->getUser();
3834    if (User->getOpcode() != ISD::STORE &&
3835        (User->getOpcode() != ISD::BIT_CONVERT ||
3836         User->getValueType(0) != MVT::i32))
3837      return SDOperand();
3838    SDOperand Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
3839                    DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
3840                                    Op.getOperand(1));
3841    return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
3842  }
3843  return SDOperand();
3844}
3845
3846
3847SDOperand
3848X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3849  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3850    return SDOperand();
3851
3852  if (Subtarget->hasSSE41()) {
3853    SDOperand Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
3854    if (Res.Val)
3855      return Res;
3856  }
3857
3858  MVT::ValueType VT = Op.getValueType();
3859  // TODO: handle v16i8.
3860  if (MVT::getSizeInBits(VT) == 16) {
3861    SDOperand Vec = Op.getOperand(0);
3862    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3863    if (Idx == 0)
3864      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
3865                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
3866                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
3867                                     Op.getOperand(1)));
3868    // Transform it so it match pextrw which produces a 32-bit result.
3869    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3870    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3871                                    Op.getOperand(0), Op.getOperand(1));
3872    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3873                                    DAG.getValueType(VT));
3874    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3875  } else if (MVT::getSizeInBits(VT) == 32) {
3876    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3877    if (Idx == 0)
3878      return Op;
3879    // SHUFPS the element to the lowest double word, then movss.
3880    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3881    SmallVector<SDOperand, 8> IdxVec;
3882    IdxVec.
3883      push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3884    IdxVec.
3885      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3886    IdxVec.
3887      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3888    IdxVec.
3889      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3890    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3891                                 &IdxVec[0], IdxVec.size());
3892    SDOperand Vec = Op.getOperand(0);
3893    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3894                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3895    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3896                       DAG.getIntPtrConstant(0));
3897  } else if (MVT::getSizeInBits(VT) == 64) {
3898    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
3899    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
3900    //        to match extract_elt for f64.
3901    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3902    if (Idx == 0)
3903      return Op;
3904
3905    // UNPCKHPD the element to the lowest double word, then movsd.
3906    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3907    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3908    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3909    SmallVector<SDOperand, 8> IdxVec;
3910    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3911    IdxVec.
3912      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3913    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3914                                 &IdxVec[0], IdxVec.size());
3915    SDOperand Vec = Op.getOperand(0);
3916    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3917                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3918    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3919                       DAG.getIntPtrConstant(0));
3920  }
3921
3922  return SDOperand();
3923}
3924
3925SDOperand
3926X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDOperand Op, SelectionDAG &DAG){
3927  MVT::ValueType VT = Op.getValueType();
3928  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3929
3930  SDOperand N0 = Op.getOperand(0);
3931  SDOperand N1 = Op.getOperand(1);
3932  SDOperand N2 = Op.getOperand(2);
3933
3934  if ((MVT::getSizeInBits(EVT) == 8) || (MVT::getSizeInBits(EVT) == 16)) {
3935    unsigned Opc = (MVT::getSizeInBits(EVT) == 8) ? X86ISD::PINSRB
3936                                                  : X86ISD::PINSRW;
3937    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
3938    // argument.
3939    if (N1.getValueType() != MVT::i32)
3940      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3941    if (N2.getValueType() != MVT::i32)
3942      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
3943    return DAG.getNode(Opc, VT, N0, N1, N2);
3944  } else if (EVT == MVT::f32) {
3945    // Bits [7:6] of the constant are the source select.  This will always be
3946    //  zero here.  The DAG Combiner may combine an extract_elt index into these
3947    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
3948    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
3949    // Bits [5:4] of the constant are the destination select.  This is the
3950    //  value of the incoming immediate.
3951    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
3952    //   combine either bitwise AND or insert of float 0.0 to set these bits.
3953    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue() << 4);
3954    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
3955  }
3956  return SDOperand();
3957}
3958
3959SDOperand
3960X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3961  MVT::ValueType VT = Op.getValueType();
3962  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3963
3964  if (Subtarget->hasSSE41())
3965    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
3966
3967  if (EVT == MVT::i8)
3968    return SDOperand();
3969
3970  SDOperand N0 = Op.getOperand(0);
3971  SDOperand N1 = Op.getOperand(1);
3972  SDOperand N2 = Op.getOperand(2);
3973
3974  if (MVT::getSizeInBits(EVT) == 16) {
3975    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3976    // as its second argument.
3977    if (N1.getValueType() != MVT::i32)
3978      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3979    if (N2.getValueType() != MVT::i32)
3980      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
3981    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3982  }
3983  return SDOperand();
3984}
3985
3986SDOperand
3987X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3988  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3989  MVT::ValueType VT = MVT::v2i32;
3990  switch (Op.getValueType()) {
3991  default: break;
3992  case MVT::v16i8:
3993  case MVT::v8i16:
3994    VT = MVT::v4i32;
3995    break;
3996  }
3997  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
3998                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
3999}
4000
4001// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4002// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4003// one of the above mentioned nodes. It has to be wrapped because otherwise
4004// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4005// be used to form addressing mode. These wrapped nodes will be selected
4006// into MOV32ri.
4007SDOperand
4008X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
4009  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4010  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
4011                                               getPointerTy(),
4012                                               CP->getAlignment());
4013  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4014  // With PIC, the address is actually $g + Offset.
4015  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4016      !Subtarget->isPICStyleRIPRel()) {
4017    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4018                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4019                         Result);
4020  }
4021
4022  return Result;
4023}
4024
4025SDOperand
4026X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
4027  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4028  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
4029  // If it's a debug information descriptor, don't mess with it.
4030  if (DAG.isVerifiedDebugInfoDesc(Op))
4031    return Result;
4032  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4033  // With PIC, the address is actually $g + Offset.
4034  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4035      !Subtarget->isPICStyleRIPRel()) {
4036    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4037                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4038                         Result);
4039  }
4040
4041  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4042  // load the value at address GV, not the value of GV itself. This means that
4043  // the GlobalAddress must be in the base or index register of the address, not
4044  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4045  // The same applies for external symbols during PIC codegen
4046  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
4047    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4048                         PseudoSourceValue::getGOT(), 0);
4049
4050  return Result;
4051}
4052
4053// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4054static SDOperand
4055LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4056                                const MVT::ValueType PtrVT) {
4057  SDOperand InFlag;
4058  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4059                                     DAG.getNode(X86ISD::GlobalBaseReg,
4060                                                 PtrVT), InFlag);
4061  InFlag = Chain.getValue(1);
4062
4063  // emit leal symbol@TLSGD(,%ebx,1), %eax
4064  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4065  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4066                                             GA->getValueType(0),
4067                                             GA->getOffset());
4068  SDOperand Ops[] = { Chain,  TGA, InFlag };
4069  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4070  InFlag = Result.getValue(2);
4071  Chain = Result.getValue(1);
4072
4073  // call ___tls_get_addr. This function receives its argument in
4074  // the register EAX.
4075  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4076  InFlag = Chain.getValue(1);
4077
4078  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4079  SDOperand Ops1[] = { Chain,
4080                      DAG.getTargetExternalSymbol("___tls_get_addr",
4081                                                  PtrVT),
4082                      DAG.getRegister(X86::EAX, PtrVT),
4083                      DAG.getRegister(X86::EBX, PtrVT),
4084                      InFlag };
4085  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4086  InFlag = Chain.getValue(1);
4087
4088  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4089}
4090
4091// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4092static SDOperand
4093LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4094                                const MVT::ValueType PtrVT) {
4095  SDOperand InFlag, Chain;
4096
4097  // emit leaq symbol@TLSGD(%rip), %rdi
4098  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4099  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4100                                             GA->getValueType(0),
4101                                             GA->getOffset());
4102  SDOperand Ops[]  = { DAG.getEntryNode(), TGA};
4103  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
4104  Chain  = Result.getValue(1);
4105  InFlag = Result.getValue(2);
4106
4107  // call ___tls_get_addr. This function receives its argument in
4108  // the register RDI.
4109  Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
4110  InFlag = Chain.getValue(1);
4111
4112  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4113  SDOperand Ops1[] = { Chain,
4114                      DAG.getTargetExternalSymbol("___tls_get_addr",
4115                                                  PtrVT),
4116                      DAG.getRegister(X86::RDI, PtrVT),
4117                      InFlag };
4118  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
4119  InFlag = Chain.getValue(1);
4120
4121  return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
4122}
4123
4124// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4125// "local exec" model.
4126static SDOperand
4127LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4128                         const MVT::ValueType PtrVT) {
4129  // Get the Thread Pointer
4130  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4131  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4132  // exec)
4133  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4134                                             GA->getValueType(0),
4135                                             GA->getOffset());
4136  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4137
4138  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4139    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4140                         PseudoSourceValue::getGOT(), 0);
4141
4142  // The address of the thread local variable is the add of the thread
4143  // pointer with the offset of the variable.
4144  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4145}
4146
4147SDOperand
4148X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
4149  // TODO: implement the "local dynamic" model
4150  // TODO: implement the "initial exec"model for pic executables
4151  assert(Subtarget->isTargetELF() &&
4152         "TLS not implemented for non-ELF targets");
4153  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4154  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4155  // otherwise use the "Local Exec"TLS Model
4156  if (Subtarget->is64Bit()) {
4157    return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4158  } else {
4159    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4160      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4161    else
4162      return LowerToTLSExecModel(GA, DAG, getPointerTy());
4163  }
4164}
4165
4166SDOperand
4167X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
4168  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4169  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4170  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4171  // With PIC, the address is actually $g + Offset.
4172  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4173      !Subtarget->isPICStyleRIPRel()) {
4174    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4175                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4176                         Result);
4177  }
4178
4179  return Result;
4180}
4181
4182SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
4183  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4184  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4185  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4186  // With PIC, the address is actually $g + Offset.
4187  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4188      !Subtarget->isPICStyleRIPRel()) {
4189    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4190                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4191                         Result);
4192  }
4193
4194  return Result;
4195}
4196
4197/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4198/// take a 2 x i32 value to shift plus a shift amount.
4199SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
4200  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4201  MVT::ValueType VT = Op.getValueType();
4202  unsigned VTBits = MVT::getSizeInBits(VT);
4203  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4204  SDOperand ShOpLo = Op.getOperand(0);
4205  SDOperand ShOpHi = Op.getOperand(1);
4206  SDOperand ShAmt  = Op.getOperand(2);
4207  SDOperand Tmp1 = isSRA ?
4208    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4209    DAG.getConstant(0, VT);
4210
4211  SDOperand Tmp2, Tmp3;
4212  if (Op.getOpcode() == ISD::SHL_PARTS) {
4213    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4214    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4215  } else {
4216    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4217    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4218  }
4219
4220  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4221  SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4222                                  DAG.getConstant(VTBits, MVT::i8));
4223  SDOperand Cond = DAG.getNode(X86ISD::CMP, VT,
4224                               AndNode, DAG.getConstant(0, MVT::i8));
4225
4226  SDOperand Hi, Lo;
4227  SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4228  VTs = DAG.getNodeValueTypes(VT, MVT::Flag);
4229  SmallVector<SDOperand, 4> Ops;
4230  if (Op.getOpcode() == ISD::SHL_PARTS) {
4231    Ops.push_back(Tmp2);
4232    Ops.push_back(Tmp3);
4233    Ops.push_back(CC);
4234    Ops.push_back(Cond);
4235    Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4236
4237    Ops.clear();
4238    Ops.push_back(Tmp3);
4239    Ops.push_back(Tmp1);
4240    Ops.push_back(CC);
4241    Ops.push_back(Cond);
4242    Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4243  } else {
4244    Ops.push_back(Tmp2);
4245    Ops.push_back(Tmp3);
4246    Ops.push_back(CC);
4247    Ops.push_back(Cond);
4248    Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4249
4250    Ops.clear();
4251    Ops.push_back(Tmp3);
4252    Ops.push_back(Tmp1);
4253    Ops.push_back(CC);
4254    Ops.push_back(Cond);
4255    Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4256  }
4257
4258  VTs = DAG.getNodeValueTypes(VT, VT);
4259  Ops.clear();
4260  Ops.push_back(Lo);
4261  Ops.push_back(Hi);
4262  return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
4263}
4264
4265SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
4266  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
4267  assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
4268         "Unknown SINT_TO_FP to lower!");
4269
4270  // These are really Legal; caller falls through into that case.
4271  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4272    return SDOperand();
4273  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4274      Subtarget->is64Bit())
4275    return SDOperand();
4276
4277  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
4278  MachineFunction &MF = DAG.getMachineFunction();
4279  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4280  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4281  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4282                                 StackSlot,
4283                                 PseudoSourceValue::getFixedStack(),
4284                                 SSFI);
4285
4286  // Build the FILD
4287  SDVTList Tys;
4288  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4289  if (useSSE)
4290    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4291  else
4292    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4293  SmallVector<SDOperand, 8> Ops;
4294  Ops.push_back(Chain);
4295  Ops.push_back(StackSlot);
4296  Ops.push_back(DAG.getValueType(SrcVT));
4297  SDOperand Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4298                                 Tys, &Ops[0], Ops.size());
4299
4300  if (useSSE) {
4301    Chain = Result.getValue(1);
4302    SDOperand InFlag = Result.getValue(2);
4303
4304    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4305    // shouldn't be necessary except that RFP cannot be live across
4306    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4307    MachineFunction &MF = DAG.getMachineFunction();
4308    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4309    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4310    Tys = DAG.getVTList(MVT::Other);
4311    SmallVector<SDOperand, 8> Ops;
4312    Ops.push_back(Chain);
4313    Ops.push_back(Result);
4314    Ops.push_back(StackSlot);
4315    Ops.push_back(DAG.getValueType(Op.getValueType()));
4316    Ops.push_back(InFlag);
4317    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4318    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4319                         PseudoSourceValue::getFixedStack(), SSFI);
4320  }
4321
4322  return Result;
4323}
4324
4325std::pair<SDOperand,SDOperand> X86TargetLowering::
4326FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
4327  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
4328         "Unknown FP_TO_SINT to lower!");
4329
4330  // These are really Legal.
4331  if (Op.getValueType() == MVT::i32 &&
4332      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4333    return std::make_pair(SDOperand(), SDOperand());
4334  if (Subtarget->is64Bit() &&
4335      Op.getValueType() == MVT::i64 &&
4336      Op.getOperand(0).getValueType() != MVT::f80)
4337    return std::make_pair(SDOperand(), SDOperand());
4338
4339  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4340  // stack slot.
4341  MachineFunction &MF = DAG.getMachineFunction();
4342  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
4343  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4344  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4345  unsigned Opc;
4346  switch (Op.getValueType()) {
4347  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4348  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4349  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4350  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4351  }
4352
4353  SDOperand Chain = DAG.getEntryNode();
4354  SDOperand Value = Op.getOperand(0);
4355  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4356    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4357    Chain = DAG.getStore(Chain, Value, StackSlot,
4358                         PseudoSourceValue::getFixedStack(), SSFI);
4359    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4360    SDOperand Ops[] = {
4361      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4362    };
4363    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4364    Chain = Value.getValue(1);
4365    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4366    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4367  }
4368
4369  // Build the FP_TO_INT*_IN_MEM
4370  SDOperand Ops[] = { Chain, Value, StackSlot };
4371  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4372
4373  return std::make_pair(FIST, StackSlot);
4374}
4375
4376SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
4377  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
4378  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4379  if (FIST.Val == 0) return SDOperand();
4380
4381  // Load the result.
4382  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4383}
4384
4385SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4386  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
4387  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4388  if (FIST.Val == 0) return 0;
4389
4390  // Return an i64 load from the stack slot.
4391  SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0);
4392
4393  // Use a MERGE_VALUES node to drop the chain result value.
4394  return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val;
4395}
4396
4397SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4398  MVT::ValueType VT = Op.getValueType();
4399  MVT::ValueType EltVT = VT;
4400  if (MVT::isVector(VT))
4401    EltVT = MVT::getVectorElementType(VT);
4402  std::vector<Constant*> CV;
4403  if (EltVT == MVT::f64) {
4404    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4405    CV.push_back(C);
4406    CV.push_back(C);
4407  } else {
4408    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4409    CV.push_back(C);
4410    CV.push_back(C);
4411    CV.push_back(C);
4412    CV.push_back(C);
4413  }
4414  Constant *C = ConstantVector::get(CV);
4415  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4416  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4417                               PseudoSourceValue::getConstantPool(), 0,
4418                               false, 16);
4419  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4420}
4421
4422SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4423  MVT::ValueType VT = Op.getValueType();
4424  MVT::ValueType EltVT = VT;
4425  unsigned EltNum = 1;
4426  if (MVT::isVector(VT)) {
4427    EltVT = MVT::getVectorElementType(VT);
4428    EltNum = MVT::getVectorNumElements(VT);
4429  }
4430  std::vector<Constant*> CV;
4431  if (EltVT == MVT::f64) {
4432    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4433    CV.push_back(C);
4434    CV.push_back(C);
4435  } else {
4436    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4437    CV.push_back(C);
4438    CV.push_back(C);
4439    CV.push_back(C);
4440    CV.push_back(C);
4441  }
4442  Constant *C = ConstantVector::get(CV);
4443  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4444  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4445                               PseudoSourceValue::getConstantPool(), 0,
4446                               false, 16);
4447  if (MVT::isVector(VT)) {
4448    return DAG.getNode(ISD::BIT_CONVERT, VT,
4449                       DAG.getNode(ISD::XOR, MVT::v2i64,
4450                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4451                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4452  } else {
4453    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4454  }
4455}
4456
4457SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4458  SDOperand Op0 = Op.getOperand(0);
4459  SDOperand Op1 = Op.getOperand(1);
4460  MVT::ValueType VT = Op.getValueType();
4461  MVT::ValueType SrcVT = Op1.getValueType();
4462
4463  // If second operand is smaller, extend it first.
4464  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4465    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4466    SrcVT = VT;
4467  }
4468  // And if it is bigger, shrink it first.
4469  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4470    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4471    SrcVT = VT;
4472  }
4473
4474  // At this point the operands and the result should have the same
4475  // type, and that won't be f80 since that is not custom lowered.
4476
4477  // First get the sign bit of second operand.
4478  std::vector<Constant*> CV;
4479  if (SrcVT == MVT::f64) {
4480    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4481    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4482  } else {
4483    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4484    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4485    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4486    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4487  }
4488  Constant *C = ConstantVector::get(CV);
4489  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4490  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4491                                PseudoSourceValue::getConstantPool(), 0,
4492                                false, 16);
4493  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4494
4495  // Shift sign bit right or left if the two operands have different types.
4496  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4497    // Op0 is MVT::f32, Op1 is MVT::f64.
4498    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4499    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4500                          DAG.getConstant(32, MVT::i32));
4501    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4502    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4503                          DAG.getIntPtrConstant(0));
4504  }
4505
4506  // Clear first operand sign bit.
4507  CV.clear();
4508  if (VT == MVT::f64) {
4509    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
4510    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4511  } else {
4512    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
4513    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4514    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4515    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4516  }
4517  C = ConstantVector::get(CV);
4518  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4519  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4520                                PseudoSourceValue::getConstantPool(), 0,
4521                                false, 16);
4522  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4523
4524  // Or the value with the sign bit.
4525  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4526}
4527
4528SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
4529  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4530  SDOperand Cond;
4531  SDOperand Op0 = Op.getOperand(0);
4532  SDOperand Op1 = Op.getOperand(1);
4533  SDOperand CC = Op.getOperand(2);
4534  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4535  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4536  unsigned X86CC;
4537
4538  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4539                     Op0, Op1, DAG)) {
4540    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4541    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4542                       DAG.getConstant(X86CC, MVT::i8), Cond);
4543  }
4544
4545  assert(isFP && "Illegal integer SetCC!");
4546
4547  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4548  switch (SetCCOpcode) {
4549  default: assert(false && "Illegal floating point SetCC!");
4550  case ISD::SETOEQ: {  // !PF & ZF
4551    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4552                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4553    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4554                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4555    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4556  }
4557  case ISD::SETUNE: {  // PF | !ZF
4558    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4559                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4560    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4561                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4562    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4563  }
4564  }
4565}
4566
4567
4568SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4569  bool addTest = true;
4570  SDOperand Cond  = Op.getOperand(0);
4571  SDOperand CC;
4572
4573  if (Cond.getOpcode() == ISD::SETCC)
4574    Cond = LowerSETCC(Cond, DAG);
4575
4576  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4577  // setting operand in place of the X86ISD::SETCC.
4578  if (Cond.getOpcode() == X86ISD::SETCC) {
4579    CC = Cond.getOperand(0);
4580
4581    SDOperand Cmp = Cond.getOperand(1);
4582    unsigned Opc = Cmp.getOpcode();
4583    MVT::ValueType VT = Op.getValueType();
4584
4585    bool IllegalFPCMov = false;
4586    if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT) &&
4587        !isScalarFPTypeInSSEReg(VT))  // FPStack?
4588      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4589
4590    if ((Opc == X86ISD::CMP ||
4591         Opc == X86ISD::COMI ||
4592         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4593      Cond = Cmp;
4594      addTest = false;
4595    }
4596  }
4597
4598  if (addTest) {
4599    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4600    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4601  }
4602
4603  const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4604                                                    MVT::Flag);
4605  SmallVector<SDOperand, 4> Ops;
4606  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4607  // condition is true.
4608  Ops.push_back(Op.getOperand(2));
4609  Ops.push_back(Op.getOperand(1));
4610  Ops.push_back(CC);
4611  Ops.push_back(Cond);
4612  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4613}
4614
4615SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4616  bool addTest = true;
4617  SDOperand Chain = Op.getOperand(0);
4618  SDOperand Cond  = Op.getOperand(1);
4619  SDOperand Dest  = Op.getOperand(2);
4620  SDOperand CC;
4621
4622  if (Cond.getOpcode() == ISD::SETCC)
4623    Cond = LowerSETCC(Cond, DAG);
4624
4625  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4626  // setting operand in place of the X86ISD::SETCC.
4627  if (Cond.getOpcode() == X86ISD::SETCC) {
4628    CC = Cond.getOperand(0);
4629
4630    SDOperand Cmp = Cond.getOperand(1);
4631    unsigned Opc = Cmp.getOpcode();
4632    if (Opc == X86ISD::CMP ||
4633        Opc == X86ISD::COMI ||
4634        Opc == X86ISD::UCOMI) {
4635      Cond = Cmp;
4636      addTest = false;
4637    }
4638  }
4639
4640  if (addTest) {
4641    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4642    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4643  }
4644  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4645                     Chain, Op.getOperand(2), CC, Cond);
4646}
4647
4648
4649// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4650// Calls to _alloca is needed to probe the stack when allocating more than 4k
4651// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4652// that the guard pages used by the OS virtual memory manager are allocated in
4653// correct sequence.
4654SDOperand
4655X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4656                                           SelectionDAG &DAG) {
4657  assert(Subtarget->isTargetCygMing() &&
4658         "This should be used only on Cygwin/Mingw targets");
4659
4660  // Get the inputs.
4661  SDOperand Chain = Op.getOperand(0);
4662  SDOperand Size  = Op.getOperand(1);
4663  // FIXME: Ensure alignment here
4664
4665  SDOperand Flag;
4666
4667  MVT::ValueType IntPtr = getPointerTy();
4668  MVT::ValueType SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
4669
4670  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4671  Flag = Chain.getValue(1);
4672
4673  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4674  SDOperand Ops[] = { Chain,
4675                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4676                      DAG.getRegister(X86::EAX, IntPtr),
4677                      Flag };
4678  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4679  Flag = Chain.getValue(1);
4680
4681  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4682
4683  std::vector<MVT::ValueType> Tys;
4684  Tys.push_back(SPTy);
4685  Tys.push_back(MVT::Other);
4686  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4687  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4688}
4689
4690SDOperand
4691X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
4692                                           SDOperand Chain,
4693                                           SDOperand Dst, SDOperand Src,
4694                                           SDOperand Size, unsigned Align,
4695                                        const Value *DstSV, uint64_t DstSVOff) {
4696  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4697
4698  /// If not DWORD aligned or size is more than the threshold, call the library.
4699  /// The libc version is likely to be faster for these cases. It can use the
4700  /// address value and run time information about the CPU.
4701  if ((Align & 3) == 0 ||
4702      !ConstantSize ||
4703      ConstantSize->getValue() > getSubtarget()->getMaxInlineSizeThreshold()) {
4704    SDOperand InFlag(0, 0);
4705
4706    // Check to see if there is a specialized entry-point for memory zeroing.
4707    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
4708    if (const char *bzeroEntry =
4709          V && V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
4710      MVT::ValueType IntPtr = getPointerTy();
4711      const Type *IntPtrTy = getTargetData()->getIntPtrType();
4712      TargetLowering::ArgListTy Args;
4713      TargetLowering::ArgListEntry Entry;
4714      Entry.Node = Dst;
4715      Entry.Ty = IntPtrTy;
4716      Args.push_back(Entry);
4717      Entry.Node = Size;
4718      Args.push_back(Entry);
4719      std::pair<SDOperand,SDOperand> CallResult =
4720        LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C,
4721                    false, DAG.getExternalSymbol(bzeroEntry, IntPtr),
4722                    Args, DAG);
4723      return CallResult.second;
4724    }
4725
4726    // Otherwise have the target-independent code call memset.
4727    return SDOperand();
4728  }
4729
4730  uint64_t SizeVal = ConstantSize->getValue();
4731  SDOperand InFlag(0, 0);
4732  MVT::ValueType AVT;
4733  SDOperand Count;
4734  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
4735  unsigned BytesLeft = 0;
4736  bool TwoRepStos = false;
4737  if (ValC) {
4738    unsigned ValReg;
4739    uint64_t Val = ValC->getValue() & 255;
4740
4741    // If the value is a constant, then we can potentially use larger sets.
4742    switch (Align & 3) {
4743      case 2:   // WORD aligned
4744        AVT = MVT::i16;
4745        ValReg = X86::AX;
4746        Val = (Val << 8) | Val;
4747        break;
4748      case 0:  // DWORD aligned
4749        AVT = MVT::i32;
4750        ValReg = X86::EAX;
4751        Val = (Val << 8)  | Val;
4752        Val = (Val << 16) | Val;
4753        if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
4754          AVT = MVT::i64;
4755          ValReg = X86::RAX;
4756          Val = (Val << 32) | Val;
4757        }
4758        break;
4759      default:  // Byte aligned
4760        AVT = MVT::i8;
4761        ValReg = X86::AL;
4762        Count = DAG.getIntPtrConstant(SizeVal);
4763        break;
4764    }
4765
4766    if (AVT > MVT::i8) {
4767      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4768      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
4769      BytesLeft = SizeVal % UBytes;
4770    }
4771
4772    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4773                              InFlag);
4774    InFlag = Chain.getValue(1);
4775  } else {
4776    AVT = MVT::i8;
4777    Count  = DAG.getIntPtrConstant(SizeVal);
4778    Chain  = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
4779    InFlag = Chain.getValue(1);
4780  }
4781
4782  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4783                            Count, InFlag);
4784  InFlag = Chain.getValue(1);
4785  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4786                            Dst, InFlag);
4787  InFlag = Chain.getValue(1);
4788
4789  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4790  SmallVector<SDOperand, 8> Ops;
4791  Ops.push_back(Chain);
4792  Ops.push_back(DAG.getValueType(AVT));
4793  Ops.push_back(InFlag);
4794  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4795
4796  if (TwoRepStos) {
4797    InFlag = Chain.getValue(1);
4798    Count  = Size;
4799    MVT::ValueType CVT = Count.getValueType();
4800    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4801                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4802    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4803                              Left, InFlag);
4804    InFlag = Chain.getValue(1);
4805    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4806    Ops.clear();
4807    Ops.push_back(Chain);
4808    Ops.push_back(DAG.getValueType(MVT::i8));
4809    Ops.push_back(InFlag);
4810    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4811  } else if (BytesLeft) {
4812    // Handle the last 1 - 7 bytes.
4813    unsigned Offset = SizeVal - BytesLeft;
4814    MVT::ValueType AddrVT = Dst.getValueType();
4815    MVT::ValueType SizeVT = Size.getValueType();
4816
4817    Chain = DAG.getMemset(Chain,
4818                          DAG.getNode(ISD::ADD, AddrVT, Dst,
4819                                      DAG.getConstant(Offset, AddrVT)),
4820                          Src,
4821                          DAG.getConstant(BytesLeft, SizeVT),
4822                          Align, DstSV, DstSVOff + Offset);
4823  }
4824
4825  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
4826  return Chain;
4827}
4828
4829SDOperand
4830X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
4831                                           SDOperand Chain,
4832                                           SDOperand Dst, SDOperand Src,
4833                                           SDOperand Size, unsigned Align,
4834                                           bool AlwaysInline,
4835                                           const Value *DstSV, uint64_t DstSVOff,
4836                                           const Value *SrcSV, uint64_t SrcSVOff){
4837
4838  // This requires the copy size to be a constant, preferrably
4839  // within a subtarget-specific limit.
4840  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4841  if (!ConstantSize)
4842    return SDOperand();
4843  uint64_t SizeVal = ConstantSize->getValue();
4844  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
4845    return SDOperand();
4846
4847  MVT::ValueType AVT;
4848  unsigned BytesLeft = 0;
4849  if (Align >= 8 && Subtarget->is64Bit())
4850    AVT = MVT::i64;
4851  else if (Align >= 4)
4852    AVT = MVT::i32;
4853  else if (Align >= 2)
4854    AVT = MVT::i16;
4855  else
4856    AVT = MVT::i8;
4857
4858  unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4859  unsigned CountVal = SizeVal / UBytes;
4860  SDOperand Count = DAG.getIntPtrConstant(CountVal);
4861  BytesLeft = SizeVal % UBytes;
4862
4863  SDOperand InFlag(0, 0);
4864  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4865                            Count, InFlag);
4866  InFlag = Chain.getValue(1);
4867  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4868                            Dst, InFlag);
4869  InFlag = Chain.getValue(1);
4870  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4871                            Src, InFlag);
4872  InFlag = Chain.getValue(1);
4873
4874  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4875  SmallVector<SDOperand, 8> Ops;
4876  Ops.push_back(Chain);
4877  Ops.push_back(DAG.getValueType(AVT));
4878  Ops.push_back(InFlag);
4879  SDOperand RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4880
4881  SmallVector<SDOperand, 4> Results;
4882  Results.push_back(RepMovs);
4883  if (BytesLeft) {
4884    // Handle the last 1 - 7 bytes.
4885    unsigned Offset = SizeVal - BytesLeft;
4886    MVT::ValueType DstVT = Dst.getValueType();
4887    MVT::ValueType SrcVT = Src.getValueType();
4888    MVT::ValueType SizeVT = Size.getValueType();
4889    Results.push_back(DAG.getMemcpy(Chain,
4890                                    DAG.getNode(ISD::ADD, DstVT, Dst,
4891                                                DAG.getConstant(Offset, DstVT)),
4892                                    DAG.getNode(ISD::ADD, SrcVT, Src,
4893                                                DAG.getConstant(Offset, SrcVT)),
4894                                    DAG.getConstant(BytesLeft, SizeVT),
4895                                    Align, AlwaysInline,
4896                                    DstSV, DstSVOff + Offset,
4897                                    SrcSV, SrcSVOff + Offset));
4898  }
4899
4900  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
4901}
4902
4903/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
4904SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
4905  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4906  SDOperand TheChain = N->getOperand(0);
4907  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
4908  if (Subtarget->is64Bit()) {
4909    SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4910    SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
4911                                       MVT::i64, rax.getValue(2));
4912    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
4913                                DAG.getConstant(32, MVT::i8));
4914    SDOperand Ops[] = {
4915      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
4916    };
4917
4918    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4919    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4920  }
4921
4922  SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4923  SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
4924                                       MVT::i32, eax.getValue(2));
4925  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
4926  SDOperand Ops[] = { eax, edx };
4927  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
4928
4929  // Use a MERGE_VALUES to return the value and chain.
4930  Ops[1] = edx.getValue(1);
4931  Tys = DAG.getVTList(MVT::i64, MVT::Other);
4932  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4933}
4934
4935SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4936  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4937
4938  if (!Subtarget->is64Bit()) {
4939    // vastart just stores the address of the VarArgsFrameIndex slot into the
4940    // memory location argument.
4941    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4942    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
4943  }
4944
4945  // __va_list_tag:
4946  //   gp_offset         (0 - 6 * 8)
4947  //   fp_offset         (48 - 48 + 8 * 16)
4948  //   overflow_arg_area (point to parameters coming in memory).
4949  //   reg_save_area
4950  SmallVector<SDOperand, 8> MemOps;
4951  SDOperand FIN = Op.getOperand(1);
4952  // Store gp_offset
4953  SDOperand Store = DAG.getStore(Op.getOperand(0),
4954                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4955                                 FIN, SV, 0);
4956  MemOps.push_back(Store);
4957
4958  // Store fp_offset
4959  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
4960  Store = DAG.getStore(Op.getOperand(0),
4961                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4962                       FIN, SV, 0);
4963  MemOps.push_back(Store);
4964
4965  // Store ptr to overflow_arg_area
4966  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
4967  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4968  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
4969  MemOps.push_back(Store);
4970
4971  // Store ptr to reg_save_area.
4972  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
4973  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4974  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
4975  MemOps.push_back(Store);
4976  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4977}
4978
4979SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4980  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4981  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
4982  SDOperand Chain = Op.getOperand(0);
4983  SDOperand DstPtr = Op.getOperand(1);
4984  SDOperand SrcPtr = Op.getOperand(2);
4985  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4986  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4987
4988  return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
4989                       DAG.getIntPtrConstant(24), 8, false,
4990                       DstSV, 0, SrcSV, 0);
4991}
4992
4993SDOperand
4994X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4995  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4996  switch (IntNo) {
4997  default: return SDOperand();    // Don't custom lower most intrinsics.
4998  // Comparison intrinsics.
4999  case Intrinsic::x86_sse_comieq_ss:
5000  case Intrinsic::x86_sse_comilt_ss:
5001  case Intrinsic::x86_sse_comile_ss:
5002  case Intrinsic::x86_sse_comigt_ss:
5003  case Intrinsic::x86_sse_comige_ss:
5004  case Intrinsic::x86_sse_comineq_ss:
5005  case Intrinsic::x86_sse_ucomieq_ss:
5006  case Intrinsic::x86_sse_ucomilt_ss:
5007  case Intrinsic::x86_sse_ucomile_ss:
5008  case Intrinsic::x86_sse_ucomigt_ss:
5009  case Intrinsic::x86_sse_ucomige_ss:
5010  case Intrinsic::x86_sse_ucomineq_ss:
5011  case Intrinsic::x86_sse2_comieq_sd:
5012  case Intrinsic::x86_sse2_comilt_sd:
5013  case Intrinsic::x86_sse2_comile_sd:
5014  case Intrinsic::x86_sse2_comigt_sd:
5015  case Intrinsic::x86_sse2_comige_sd:
5016  case Intrinsic::x86_sse2_comineq_sd:
5017  case Intrinsic::x86_sse2_ucomieq_sd:
5018  case Intrinsic::x86_sse2_ucomilt_sd:
5019  case Intrinsic::x86_sse2_ucomile_sd:
5020  case Intrinsic::x86_sse2_ucomigt_sd:
5021  case Intrinsic::x86_sse2_ucomige_sd:
5022  case Intrinsic::x86_sse2_ucomineq_sd: {
5023    unsigned Opc = 0;
5024    ISD::CondCode CC = ISD::SETCC_INVALID;
5025    switch (IntNo) {
5026    default: break;
5027    case Intrinsic::x86_sse_comieq_ss:
5028    case Intrinsic::x86_sse2_comieq_sd:
5029      Opc = X86ISD::COMI;
5030      CC = ISD::SETEQ;
5031      break;
5032    case Intrinsic::x86_sse_comilt_ss:
5033    case Intrinsic::x86_sse2_comilt_sd:
5034      Opc = X86ISD::COMI;
5035      CC = ISD::SETLT;
5036      break;
5037    case Intrinsic::x86_sse_comile_ss:
5038    case Intrinsic::x86_sse2_comile_sd:
5039      Opc = X86ISD::COMI;
5040      CC = ISD::SETLE;
5041      break;
5042    case Intrinsic::x86_sse_comigt_ss:
5043    case Intrinsic::x86_sse2_comigt_sd:
5044      Opc = X86ISD::COMI;
5045      CC = ISD::SETGT;
5046      break;
5047    case Intrinsic::x86_sse_comige_ss:
5048    case Intrinsic::x86_sse2_comige_sd:
5049      Opc = X86ISD::COMI;
5050      CC = ISD::SETGE;
5051      break;
5052    case Intrinsic::x86_sse_comineq_ss:
5053    case Intrinsic::x86_sse2_comineq_sd:
5054      Opc = X86ISD::COMI;
5055      CC = ISD::SETNE;
5056      break;
5057    case Intrinsic::x86_sse_ucomieq_ss:
5058    case Intrinsic::x86_sse2_ucomieq_sd:
5059      Opc = X86ISD::UCOMI;
5060      CC = ISD::SETEQ;
5061      break;
5062    case Intrinsic::x86_sse_ucomilt_ss:
5063    case Intrinsic::x86_sse2_ucomilt_sd:
5064      Opc = X86ISD::UCOMI;
5065      CC = ISD::SETLT;
5066      break;
5067    case Intrinsic::x86_sse_ucomile_ss:
5068    case Intrinsic::x86_sse2_ucomile_sd:
5069      Opc = X86ISD::UCOMI;
5070      CC = ISD::SETLE;
5071      break;
5072    case Intrinsic::x86_sse_ucomigt_ss:
5073    case Intrinsic::x86_sse2_ucomigt_sd:
5074      Opc = X86ISD::UCOMI;
5075      CC = ISD::SETGT;
5076      break;
5077    case Intrinsic::x86_sse_ucomige_ss:
5078    case Intrinsic::x86_sse2_ucomige_sd:
5079      Opc = X86ISD::UCOMI;
5080      CC = ISD::SETGE;
5081      break;
5082    case Intrinsic::x86_sse_ucomineq_ss:
5083    case Intrinsic::x86_sse2_ucomineq_sd:
5084      Opc = X86ISD::UCOMI;
5085      CC = ISD::SETNE;
5086      break;
5087    }
5088
5089    unsigned X86CC;
5090    SDOperand LHS = Op.getOperand(1);
5091    SDOperand RHS = Op.getOperand(2);
5092    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5093
5094    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5095    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5096                                  DAG.getConstant(X86CC, MVT::i8), Cond);
5097    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
5098  }
5099
5100  // Fix vector shift instructions where the last operand is a non-immediate
5101  // i32 value.
5102  case Intrinsic::x86_sse2_pslli_w:
5103  case Intrinsic::x86_sse2_pslli_d:
5104  case Intrinsic::x86_sse2_pslli_q:
5105  case Intrinsic::x86_sse2_psrli_w:
5106  case Intrinsic::x86_sse2_psrli_d:
5107  case Intrinsic::x86_sse2_psrli_q:
5108  case Intrinsic::x86_sse2_psrai_w:
5109  case Intrinsic::x86_sse2_psrai_d:
5110  case Intrinsic::x86_mmx_pslli_w:
5111  case Intrinsic::x86_mmx_pslli_d:
5112  case Intrinsic::x86_mmx_pslli_q:
5113  case Intrinsic::x86_mmx_psrli_w:
5114  case Intrinsic::x86_mmx_psrli_d:
5115  case Intrinsic::x86_mmx_psrli_q:
5116  case Intrinsic::x86_mmx_psrai_w:
5117  case Intrinsic::x86_mmx_psrai_d: {
5118    SDOperand ShAmt = Op.getOperand(2);
5119    if (isa<ConstantSDNode>(ShAmt))
5120      return SDOperand();
5121
5122    unsigned NewIntNo = 0;
5123    MVT::ValueType ShAmtVT = MVT::v4i32;
5124    switch (IntNo) {
5125    case Intrinsic::x86_sse2_pslli_w:
5126      NewIntNo = Intrinsic::x86_sse2_psll_w;
5127      break;
5128    case Intrinsic::x86_sse2_pslli_d:
5129      NewIntNo = Intrinsic::x86_sse2_psll_d;
5130      break;
5131    case Intrinsic::x86_sse2_pslli_q:
5132      NewIntNo = Intrinsic::x86_sse2_psll_q;
5133      break;
5134    case Intrinsic::x86_sse2_psrli_w:
5135      NewIntNo = Intrinsic::x86_sse2_psrl_w;
5136      break;
5137    case Intrinsic::x86_sse2_psrli_d:
5138      NewIntNo = Intrinsic::x86_sse2_psrl_d;
5139      break;
5140    case Intrinsic::x86_sse2_psrli_q:
5141      NewIntNo = Intrinsic::x86_sse2_psrl_q;
5142      break;
5143    case Intrinsic::x86_sse2_psrai_w:
5144      NewIntNo = Intrinsic::x86_sse2_psra_w;
5145      break;
5146    case Intrinsic::x86_sse2_psrai_d:
5147      NewIntNo = Intrinsic::x86_sse2_psra_d;
5148      break;
5149    default: {
5150      ShAmtVT = MVT::v2i32;
5151      switch (IntNo) {
5152      case Intrinsic::x86_mmx_pslli_w:
5153        NewIntNo = Intrinsic::x86_mmx_psll_w;
5154        break;
5155      case Intrinsic::x86_mmx_pslli_d:
5156        NewIntNo = Intrinsic::x86_mmx_psll_d;
5157        break;
5158      case Intrinsic::x86_mmx_pslli_q:
5159        NewIntNo = Intrinsic::x86_mmx_psll_q;
5160        break;
5161      case Intrinsic::x86_mmx_psrli_w:
5162        NewIntNo = Intrinsic::x86_mmx_psrl_w;
5163        break;
5164      case Intrinsic::x86_mmx_psrli_d:
5165        NewIntNo = Intrinsic::x86_mmx_psrl_d;
5166        break;
5167      case Intrinsic::x86_mmx_psrli_q:
5168        NewIntNo = Intrinsic::x86_mmx_psrl_q;
5169        break;
5170      case Intrinsic::x86_mmx_psrai_w:
5171        NewIntNo = Intrinsic::x86_mmx_psra_w;
5172        break;
5173      case Intrinsic::x86_mmx_psrai_d:
5174        NewIntNo = Intrinsic::x86_mmx_psra_d;
5175        break;
5176      default: abort();  // Can't reach here.
5177      }
5178      break;
5179    }
5180    }
5181    MVT::ValueType VT = Op.getValueType();
5182    ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
5183                        DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
5184    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
5185                       DAG.getConstant(NewIntNo, MVT::i32),
5186                       Op.getOperand(1), ShAmt);
5187  }
5188  }
5189}
5190
5191SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
5192  // Depths > 0 not supported yet!
5193  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5194    return SDOperand();
5195
5196  // Just load the return address
5197  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5198  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5199}
5200
5201SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
5202  // Depths > 0 not supported yet!
5203  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5204    return SDOperand();
5205
5206  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5207  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
5208                     DAG.getIntPtrConstant(4));
5209}
5210
5211SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
5212                                                       SelectionDAG &DAG) {
5213  // Is not yet supported on x86-64
5214  if (Subtarget->is64Bit())
5215    return SDOperand();
5216
5217  return DAG.getIntPtrConstant(8);
5218}
5219
5220SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
5221{
5222  assert(!Subtarget->is64Bit() &&
5223         "Lowering of eh_return builtin is not supported yet on x86-64");
5224
5225  MachineFunction &MF = DAG.getMachineFunction();
5226  SDOperand Chain     = Op.getOperand(0);
5227  SDOperand Offset    = Op.getOperand(1);
5228  SDOperand Handler   = Op.getOperand(2);
5229
5230  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
5231                                    getPointerTy());
5232
5233  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5234                                    DAG.getIntPtrConstant(-4UL));
5235  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5236  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5237  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
5238  MF.getRegInfo().addLiveOut(X86::ECX);
5239
5240  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
5241                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
5242}
5243
5244SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
5245                                             SelectionDAG &DAG) {
5246  SDOperand Root = Op.getOperand(0);
5247  SDOperand Trmp = Op.getOperand(1); // trampoline
5248  SDOperand FPtr = Op.getOperand(2); // nested function
5249  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
5250
5251  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5252
5253  const X86InstrInfo *TII =
5254    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5255
5256  if (Subtarget->is64Bit()) {
5257    SDOperand OutChains[6];
5258
5259    // Large code-model.
5260
5261    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5262    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5263
5264    const unsigned char N86R10 =
5265      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R10);
5266    const unsigned char N86R11 =
5267      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R11);
5268
5269    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5270
5271    // Load the pointer to the nested function into R11.
5272    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5273    SDOperand Addr = Trmp;
5274    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5275                                TrmpAddr, 0);
5276
5277    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5278    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5279
5280    // Load the 'nest' parameter value into R10.
5281    // R10 is specified in X86CallingConv.td
5282    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5283    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5284    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5285                                TrmpAddr, 10);
5286
5287    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5288    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5289
5290    // Jump to the nested function.
5291    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5292    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5293    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5294                                TrmpAddr, 20);
5295
5296    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5297    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5298    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5299                                TrmpAddr, 22);
5300
5301    SDOperand Ops[] =
5302      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5303    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5304  } else {
5305    const Function *Func =
5306      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5307    unsigned CC = Func->getCallingConv();
5308    unsigned NestReg;
5309
5310    switch (CC) {
5311    default:
5312      assert(0 && "Unsupported calling convention");
5313    case CallingConv::C:
5314    case CallingConv::X86_StdCall: {
5315      // Pass 'nest' parameter in ECX.
5316      // Must be kept in sync with X86CallingConv.td
5317      NestReg = X86::ECX;
5318
5319      // Check that ECX wasn't needed by an 'inreg' parameter.
5320      const FunctionType *FTy = Func->getFunctionType();
5321      const PAListPtr &Attrs = Func->getParamAttrs();
5322
5323      if (!Attrs.isEmpty() && !Func->isVarArg()) {
5324        unsigned InRegCount = 0;
5325        unsigned Idx = 1;
5326
5327        for (FunctionType::param_iterator I = FTy->param_begin(),
5328             E = FTy->param_end(); I != E; ++I, ++Idx)
5329          if (Attrs.paramHasAttr(Idx, ParamAttr::InReg))
5330            // FIXME: should only count parameters that are lowered to integers.
5331            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
5332
5333        if (InRegCount > 2) {
5334          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5335          abort();
5336        }
5337      }
5338      break;
5339    }
5340    case CallingConv::X86_FastCall:
5341      // Pass 'nest' parameter in EAX.
5342      // Must be kept in sync with X86CallingConv.td
5343      NestReg = X86::EAX;
5344      break;
5345    }
5346
5347    SDOperand OutChains[4];
5348    SDOperand Addr, Disp;
5349
5350    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5351    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5352
5353    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5354    const unsigned char N86Reg =
5355      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(NestReg);
5356    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5357                                Trmp, TrmpAddr, 0);
5358
5359    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5360    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
5361
5362    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
5363    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5364    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5365                                TrmpAddr, 5, false, 1);
5366
5367    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5368    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
5369
5370    SDOperand Ops[] =
5371      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5372    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5373  }
5374}
5375
5376SDOperand X86TargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
5377  /*
5378   The rounding mode is in bits 11:10 of FPSR, and has the following
5379   settings:
5380     00 Round to nearest
5381     01 Round to -inf
5382     10 Round to +inf
5383     11 Round to 0
5384
5385  FLT_ROUNDS, on the other hand, expects the following:
5386    -1 Undefined
5387     0 Round to 0
5388     1 Round to nearest
5389     2 Round to +inf
5390     3 Round to -inf
5391
5392  To perform the conversion, we do:
5393    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5394  */
5395
5396  MachineFunction &MF = DAG.getMachineFunction();
5397  const TargetMachine &TM = MF.getTarget();
5398  const TargetFrameInfo &TFI = *TM.getFrameInfo();
5399  unsigned StackAlignment = TFI.getStackAlignment();
5400  MVT::ValueType VT = Op.getValueType();
5401
5402  // Save FP Control Word to stack slot
5403  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5404  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5405
5406  SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5407                                DAG.getEntryNode(), StackSlot);
5408
5409  // Load FP Control Word from stack slot
5410  SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5411
5412  // Transform as necessary
5413  SDOperand CWD1 =
5414    DAG.getNode(ISD::SRL, MVT::i16,
5415                DAG.getNode(ISD::AND, MVT::i16,
5416                            CWD, DAG.getConstant(0x800, MVT::i16)),
5417                DAG.getConstant(11, MVT::i8));
5418  SDOperand CWD2 =
5419    DAG.getNode(ISD::SRL, MVT::i16,
5420                DAG.getNode(ISD::AND, MVT::i16,
5421                            CWD, DAG.getConstant(0x400, MVT::i16)),
5422                DAG.getConstant(9, MVT::i8));
5423
5424  SDOperand RetVal =
5425    DAG.getNode(ISD::AND, MVT::i16,
5426                DAG.getNode(ISD::ADD, MVT::i16,
5427                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5428                            DAG.getConstant(1, MVT::i16)),
5429                DAG.getConstant(3, MVT::i16));
5430
5431
5432  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
5433                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5434}
5435
5436SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) {
5437  MVT::ValueType VT = Op.getValueType();
5438  MVT::ValueType OpVT = VT;
5439  unsigned NumBits = MVT::getSizeInBits(VT);
5440
5441  Op = Op.getOperand(0);
5442  if (VT == MVT::i8) {
5443    // Zero extend to i32 since there is not an i8 bsr.
5444    OpVT = MVT::i32;
5445    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5446  }
5447
5448  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
5449  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5450  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
5451
5452  // If src is zero (i.e. bsr sets ZF), returns NumBits.
5453  SmallVector<SDOperand, 4> Ops;
5454  Ops.push_back(Op);
5455  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
5456  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5457  Ops.push_back(Op.getValue(1));
5458  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5459
5460  // Finally xor with NumBits-1.
5461  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
5462
5463  if (VT == MVT::i8)
5464    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5465  return Op;
5466}
5467
5468SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) {
5469  MVT::ValueType VT = Op.getValueType();
5470  MVT::ValueType OpVT = VT;
5471  unsigned NumBits = MVT::getSizeInBits(VT);
5472
5473  Op = Op.getOperand(0);
5474  if (VT == MVT::i8) {
5475    OpVT = MVT::i32;
5476    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5477  }
5478
5479  // Issue a bsf (scan bits forward) which also sets EFLAGS.
5480  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5481  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
5482
5483  // If src is zero (i.e. bsf sets ZF), returns NumBits.
5484  SmallVector<SDOperand, 4> Ops;
5485  Ops.push_back(Op);
5486  Ops.push_back(DAG.getConstant(NumBits, OpVT));
5487  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5488  Ops.push_back(Op.getValue(1));
5489  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5490
5491  if (VT == MVT::i8)
5492    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5493  return Op;
5494}
5495
5496SDOperand X86TargetLowering::LowerLCS(SDOperand Op, SelectionDAG &DAG) {
5497  MVT::ValueType T = cast<AtomicSDNode>(Op.Val)->getVT();
5498  unsigned Reg = 0;
5499  unsigned size = 0;
5500  switch(T) {
5501  case MVT::i8:  Reg = X86::AL;  size = 1; break;
5502  case MVT::i16: Reg = X86::AX;  size = 2; break;
5503  case MVT::i32: Reg = X86::EAX; size = 4; break;
5504  case MVT::i64:
5505    if (Subtarget->is64Bit()) {
5506      Reg = X86::RAX; size = 8;
5507    } else //Should go away when LowerType stuff lands
5508      return SDOperand(ExpandATOMIC_LCS(Op.Val, DAG), 0);
5509    break;
5510  };
5511  SDOperand cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
5512                                    Op.getOperand(3), SDOperand());
5513  SDOperand Ops[] = { cpIn.getValue(0),
5514                      Op.getOperand(1),
5515                      Op.getOperand(2),
5516                      DAG.getTargetConstant(size, MVT::i8),
5517                      cpIn.getValue(1) };
5518  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5519  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
5520  SDOperand cpOut =
5521    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
5522  return cpOut;
5523}
5524
5525SDNode* X86TargetLowering::ExpandATOMIC_LCS(SDNode* Op, SelectionDAG &DAG) {
5526  MVT::ValueType T = cast<AtomicSDNode>(Op)->getVT();
5527  assert (T == MVT::i64 && "Only know how to expand i64 CAS");
5528  SDOperand cpInL, cpInH;
5529  cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5530                      DAG.getConstant(0, MVT::i32));
5531  cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5532                      DAG.getConstant(1, MVT::i32));
5533  cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX,
5534                           cpInL, SDOperand());
5535  cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX,
5536                           cpInH, cpInL.getValue(1));
5537  SDOperand swapInL, swapInH;
5538  swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5539                        DAG.getConstant(0, MVT::i32));
5540  swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5541                        DAG.getConstant(1, MVT::i32));
5542  swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX,
5543                             swapInL, cpInH.getValue(1));
5544  swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX,
5545                             swapInH, swapInL.getValue(1));
5546  SDOperand Ops[] = { swapInH.getValue(0),
5547                      Op->getOperand(1),
5548                      swapInH.getValue(1)};
5549  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5550  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
5551  SDOperand cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
5552                                        Result.getValue(1));
5553  SDOperand cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
5554                                        cpOutL.getValue(2));
5555  SDOperand OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
5556  SDOperand ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
5557  Tys = DAG.getVTList(MVT::i64, MVT::Other);
5558  return DAG.getNode(ISD::MERGE_VALUES, Tys, ResultVal, cpOutH.getValue(1)).Val;
5559}
5560
5561SDNode* X86TargetLowering::ExpandATOMIC_LSS(SDNode* Op, SelectionDAG &DAG) {
5562  MVT::ValueType T = cast<AtomicSDNode>(Op)->getVT();
5563  assert (T == MVT::i32 && "Only know how to expand i32 LSS");
5564  SDOperand negOp = DAG.getNode(ISD::SUB, T,
5565                                DAG.getConstant(0, T), Op->getOperand(2));
5566  return DAG.getAtomic(ISD::ATOMIC_LAS, Op->getOperand(0),
5567                       Op->getOperand(1), negOp, T).Val;
5568}
5569
5570/// LowerOperation - Provide custom lowering hooks for some operations.
5571///
5572SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
5573  switch (Op.getOpcode()) {
5574  default: assert(0 && "Should not custom lower this!");
5575  case ISD::ATOMIC_LCS:         return LowerLCS(Op,DAG);
5576  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5577  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5578  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5579  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
5580  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5581  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5582  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5583  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5584  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
5585  case ISD::SHL_PARTS:
5586  case ISD::SRA_PARTS:
5587  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
5588  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5589  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5590  case ISD::FABS:               return LowerFABS(Op, DAG);
5591  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5592  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5593  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5594  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5595  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5596  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5597  case ISD::CALL:               return LowerCALL(Op, DAG);
5598  case ISD::RET:                return LowerRET(Op, DAG);
5599  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5600  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5601  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
5602  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5603  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5604  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5605  case ISD::FRAME_TO_ARGS_OFFSET:
5606                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5607  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5608  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
5609  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
5610  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5611  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
5612  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
5613
5614  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5615  case ISD::READCYCLECOUNTER:
5616    return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
5617  }
5618}
5619
5620/// ExpandOperation - Provide custom lowering hooks for expanding operations.
5621SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
5622  switch (N->getOpcode()) {
5623  default: assert(0 && "Should not custom lower this!");
5624  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
5625  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
5626  case ISD::ATOMIC_LCS:         return ExpandATOMIC_LCS(N, DAG);
5627  case ISD::ATOMIC_LSS:         return ExpandATOMIC_LSS(N,DAG);
5628  }
5629}
5630
5631const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5632  switch (Opcode) {
5633  default: return NULL;
5634  case X86ISD::BSF:                return "X86ISD::BSF";
5635  case X86ISD::BSR:                return "X86ISD::BSR";
5636  case X86ISD::SHLD:               return "X86ISD::SHLD";
5637  case X86ISD::SHRD:               return "X86ISD::SHRD";
5638  case X86ISD::FAND:               return "X86ISD::FAND";
5639  case X86ISD::FOR:                return "X86ISD::FOR";
5640  case X86ISD::FXOR:               return "X86ISD::FXOR";
5641  case X86ISD::FSRL:               return "X86ISD::FSRL";
5642  case X86ISD::FILD:               return "X86ISD::FILD";
5643  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5644  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5645  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5646  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5647  case X86ISD::FLD:                return "X86ISD::FLD";
5648  case X86ISD::FST:                return "X86ISD::FST";
5649  case X86ISD::CALL:               return "X86ISD::CALL";
5650  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5651  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5652  case X86ISD::CMP:                return "X86ISD::CMP";
5653  case X86ISD::COMI:               return "X86ISD::COMI";
5654  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5655  case X86ISD::SETCC:              return "X86ISD::SETCC";
5656  case X86ISD::CMOV:               return "X86ISD::CMOV";
5657  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5658  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5659  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5660  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5661  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5662  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5663  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
5664  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5665  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
5666  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
5667  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5668  case X86ISD::FMAX:               return "X86ISD::FMAX";
5669  case X86ISD::FMIN:               return "X86ISD::FMIN";
5670  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
5671  case X86ISD::FRCP:               return "X86ISD::FRCP";
5672  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
5673  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
5674  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
5675  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
5676  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
5677  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
5678  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
5679  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
5680  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
5681  }
5682}
5683
5684// isLegalAddressingMode - Return true if the addressing mode represented
5685// by AM is legal for this target, for a load/store of the specified type.
5686bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5687                                              const Type *Ty) const {
5688  // X86 supports extremely general addressing modes.
5689
5690  // X86 allows a sign-extended 32-bit immediate field as a displacement.
5691  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5692    return false;
5693
5694  if (AM.BaseGV) {
5695    // We can only fold this if we don't need an extra load.
5696    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5697      return false;
5698
5699    // X86-64 only supports addr of globals in small code model.
5700    if (Subtarget->is64Bit()) {
5701      if (getTargetMachine().getCodeModel() != CodeModel::Small)
5702        return false;
5703      // If lower 4G is not available, then we must use rip-relative addressing.
5704      if (AM.BaseOffs || AM.Scale > 1)
5705        return false;
5706    }
5707  }
5708
5709  switch (AM.Scale) {
5710  case 0:
5711  case 1:
5712  case 2:
5713  case 4:
5714  case 8:
5715    // These scales always work.
5716    break;
5717  case 3:
5718  case 5:
5719  case 9:
5720    // These scales are formed with basereg+scalereg.  Only accept if there is
5721    // no basereg yet.
5722    if (AM.HasBaseReg)
5723      return false;
5724    break;
5725  default:  // Other stuff never works.
5726    return false;
5727  }
5728
5729  return true;
5730}
5731
5732
5733bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5734  if (!Ty1->isInteger() || !Ty2->isInteger())
5735    return false;
5736  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5737  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5738  if (NumBits1 <= NumBits2)
5739    return false;
5740  return Subtarget->is64Bit() || NumBits1 < 64;
5741}
5742
5743bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5744                                       MVT::ValueType VT2) const {
5745  if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5746    return false;
5747  unsigned NumBits1 = MVT::getSizeInBits(VT1);
5748  unsigned NumBits2 = MVT::getSizeInBits(VT2);
5749  if (NumBits1 <= NumBits2)
5750    return false;
5751  return Subtarget->is64Bit() || NumBits1 < 64;
5752}
5753
5754/// isShuffleMaskLegal - Targets can use this to indicate that they only
5755/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5756/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5757/// are assumed to be legal.
5758bool
5759X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5760  // Only do shuffles on 128-bit vector types for now.
5761  if (MVT::getSizeInBits(VT) == 64) return false;
5762  return (Mask.Val->getNumOperands() <= 4 ||
5763          isIdentityMask(Mask.Val) ||
5764          isIdentityMask(Mask.Val, true) ||
5765          isSplatMask(Mask.Val)  ||
5766          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5767          X86::isUNPCKLMask(Mask.Val) ||
5768          X86::isUNPCKHMask(Mask.Val) ||
5769          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5770          X86::isUNPCKH_v_undef_Mask(Mask.Val));
5771}
5772
5773bool
5774X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDOperand> &BVOps,
5775                                          MVT::ValueType EVT,
5776                                          SelectionDAG &DAG) const {
5777  unsigned NumElts = BVOps.size();
5778  // Only do shuffles on 128-bit vector types for now.
5779  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5780  if (NumElts == 2) return true;
5781  if (NumElts == 4) {
5782    return (isMOVLMask(&BVOps[0], 4)  ||
5783            isCommutedMOVL(&BVOps[0], 4, true) ||
5784            isSHUFPMask(&BVOps[0], 4) ||
5785            isCommutedSHUFP(&BVOps[0], 4));
5786  }
5787  return false;
5788}
5789
5790//===----------------------------------------------------------------------===//
5791//                           X86 Scheduler Hooks
5792//===----------------------------------------------------------------------===//
5793
5794// private utility function
5795MachineBasicBlock *
5796X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
5797                                                       MachineBasicBlock *MBB,
5798                                                       unsigned regOpc,
5799                                                       unsigned immOpc) {
5800  // For the atomic bitwise operator, we generate
5801  //   thisMBB:
5802  //   newMBB:
5803  //     ld  t1 = [bitinstr.addr]
5804  //     op  t2 = t1, [bitinstr.val]
5805  //     mov EAX = t1
5806  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
5807  //     bz  newMBB
5808  //     fallthrough -->nextMBB
5809  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5810  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
5811  ilist<MachineBasicBlock>::iterator MBBIter = MBB;
5812  ++MBBIter;
5813
5814  /// First build the CFG
5815  MachineFunction *F = MBB->getParent();
5816  MachineBasicBlock *thisMBB = MBB;
5817  MachineBasicBlock *newMBB = new MachineBasicBlock(LLVM_BB);
5818  MachineBasicBlock *nextMBB = new MachineBasicBlock(LLVM_BB);
5819  F->getBasicBlockList().insert(MBBIter, newMBB);
5820  F->getBasicBlockList().insert(MBBIter, nextMBB);
5821
5822  // Move all successors to thisMBB to nextMBB
5823  nextMBB->transferSuccessors(thisMBB);
5824
5825  // Update thisMBB to fall through to newMBB
5826  thisMBB->addSuccessor(newMBB);
5827
5828  // newMBB jumps to itself and fall through to nextMBB
5829  newMBB->addSuccessor(nextMBB);
5830  newMBB->addSuccessor(newMBB);
5831
5832  // Insert instructions into newMBB based on incoming instruction
5833  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
5834  MachineOperand& destOper = bInstr->getOperand(0);
5835  MachineOperand* argOpers[6];
5836  int numArgs = bInstr->getNumOperands() - 1;
5837  for (int i=0; i < numArgs; ++i)
5838    argOpers[i] = &bInstr->getOperand(i+1);
5839
5840  // x86 address has 4 operands: base, index, scale, and displacement
5841  int lastAddrIndx = 3; // [0,3]
5842  int valArgIndx = 4;
5843
5844  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
5845  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
5846  for (int i=0; i <= lastAddrIndx; ++i)
5847    (*MIB).addOperand(*argOpers[i]);
5848
5849  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
5850  assert(   (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm())
5851         && "invalid operand");
5852  if (argOpers[valArgIndx]->isReg())
5853    MIB = BuildMI(newMBB, TII->get(regOpc), t2);
5854  else
5855    MIB = BuildMI(newMBB, TII->get(immOpc), t2);
5856  MIB.addReg(t1);
5857  (*MIB).addOperand(*argOpers[valArgIndx]);
5858
5859  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
5860  MIB.addReg(t1);
5861
5862  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
5863  for (int i=0; i <= lastAddrIndx; ++i)
5864    (*MIB).addOperand(*argOpers[i]);
5865  MIB.addReg(t2);
5866
5867  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
5868  MIB.addReg(X86::EAX);
5869
5870  // insert branch
5871  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
5872
5873  delete bInstr;   // The pseudo instruction is gone now.
5874  return nextMBB;
5875}
5876
5877// private utility function
5878MachineBasicBlock *
5879X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
5880                                                      MachineBasicBlock *MBB,
5881                                                      unsigned cmovOpc) {
5882  // For the atomic min/max operator, we generate
5883  //   thisMBB:
5884  //   newMBB:
5885  //     ld t1 = [min/max.addr]
5886  //     mov t2 = [min/max.val]
5887  //     cmp  t1, t2
5888  //     cmov[cond] t2 = t1
5889  //     mov EAX = t1
5890  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
5891  //     bz   newMBB
5892  //     fallthrough -->nextMBB
5893  //
5894  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5895  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
5896  ilist<MachineBasicBlock>::iterator MBBIter = MBB;
5897  ++MBBIter;
5898
5899  /// First build the CFG
5900  MachineFunction *F = MBB->getParent();
5901  MachineBasicBlock *thisMBB = MBB;
5902  MachineBasicBlock *newMBB = new MachineBasicBlock(LLVM_BB);
5903  MachineBasicBlock *nextMBB = new MachineBasicBlock(LLVM_BB);
5904  F->getBasicBlockList().insert(MBBIter, newMBB);
5905  F->getBasicBlockList().insert(MBBIter, nextMBB);
5906
5907  // Move all successors to thisMBB to nextMBB
5908  nextMBB->transferSuccessors(thisMBB);
5909
5910  // Update thisMBB to fall through to newMBB
5911  thisMBB->addSuccessor(newMBB);
5912
5913  // newMBB jumps to newMBB and fall through to nextMBB
5914  newMBB->addSuccessor(nextMBB);
5915  newMBB->addSuccessor(newMBB);
5916
5917  // Insert instructions into newMBB based on incoming instruction
5918  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
5919  MachineOperand& destOper = mInstr->getOperand(0);
5920  MachineOperand* argOpers[6];
5921  int numArgs = mInstr->getNumOperands() - 1;
5922  for (int i=0; i < numArgs; ++i)
5923    argOpers[i] = &mInstr->getOperand(i+1);
5924
5925  // x86 address has 4 operands: base, index, scale, and displacement
5926  int lastAddrIndx = 3; // [0,3]
5927  int valArgIndx = 4;
5928
5929  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
5930  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
5931  for (int i=0; i <= lastAddrIndx; ++i)
5932    (*MIB).addOperand(*argOpers[i]);
5933
5934  // We only support register and immediate values
5935  assert(   (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm())
5936         && "invalid operand");
5937
5938  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
5939  if (argOpers[valArgIndx]->isReg())
5940    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
5941  else
5942    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
5943  (*MIB).addOperand(*argOpers[valArgIndx]);
5944
5945  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
5946  MIB.addReg(t1);
5947
5948  MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
5949  MIB.addReg(t1);
5950  MIB.addReg(t2);
5951
5952  // Generate movc
5953  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
5954  MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
5955  MIB.addReg(t2);
5956  MIB.addReg(t1);
5957
5958  // Cmp and exchange if none has modified the memory location
5959  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
5960  for (int i=0; i <= lastAddrIndx; ++i)
5961    (*MIB).addOperand(*argOpers[i]);
5962  MIB.addReg(t3);
5963
5964  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
5965  MIB.addReg(X86::EAX);
5966
5967  // insert branch
5968  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
5969
5970  delete mInstr;   // The pseudo instruction is gone now.
5971  return nextMBB;
5972}
5973
5974
5975MachineBasicBlock *
5976X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5977                                               MachineBasicBlock *BB) {
5978  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5979  switch (MI->getOpcode()) {
5980  default: assert(false && "Unexpected instr type to insert");
5981  case X86::CMOV_FR32:
5982  case X86::CMOV_FR64:
5983  case X86::CMOV_V4F32:
5984  case X86::CMOV_V2F64:
5985  case X86::CMOV_V2I64: {
5986    // To "insert" a SELECT_CC instruction, we actually have to insert the
5987    // diamond control-flow pattern.  The incoming instruction knows the
5988    // destination vreg to set, the condition code register to branch on, the
5989    // true/false values to select between, and a branch opcode to use.
5990    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5991    ilist<MachineBasicBlock>::iterator It = BB;
5992    ++It;
5993
5994    //  thisMBB:
5995    //  ...
5996    //   TrueVal = ...
5997    //   cmpTY ccX, r1, r2
5998    //   bCC copy1MBB
5999    //   fallthrough --> copy0MBB
6000    MachineBasicBlock *thisMBB = BB;
6001    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
6002    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
6003    unsigned Opc =
6004      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
6005    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
6006    MachineFunction *F = BB->getParent();
6007    F->getBasicBlockList().insert(It, copy0MBB);
6008    F->getBasicBlockList().insert(It, sinkMBB);
6009    // Update machine-CFG edges by transferring all successors of the current
6010    // block to the new block which will contain the Phi node for the select.
6011    sinkMBB->transferSuccessors(BB);
6012
6013    // Add the true and fallthrough blocks as its successors.
6014    BB->addSuccessor(copy0MBB);
6015    BB->addSuccessor(sinkMBB);
6016
6017    //  copy0MBB:
6018    //   %FalseValue = ...
6019    //   # fallthrough to sinkMBB
6020    BB = copy0MBB;
6021
6022    // Update machine-CFG edges
6023    BB->addSuccessor(sinkMBB);
6024
6025    //  sinkMBB:
6026    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6027    //  ...
6028    BB = sinkMBB;
6029    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
6030      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6031      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6032
6033    delete MI;   // The pseudo instruction is gone now.
6034    return BB;
6035  }
6036
6037  case X86::FP32_TO_INT16_IN_MEM:
6038  case X86::FP32_TO_INT32_IN_MEM:
6039  case X86::FP32_TO_INT64_IN_MEM:
6040  case X86::FP64_TO_INT16_IN_MEM:
6041  case X86::FP64_TO_INT32_IN_MEM:
6042  case X86::FP64_TO_INT64_IN_MEM:
6043  case X86::FP80_TO_INT16_IN_MEM:
6044  case X86::FP80_TO_INT32_IN_MEM:
6045  case X86::FP80_TO_INT64_IN_MEM: {
6046    // Change the floating point control register to use "round towards zero"
6047    // mode when truncating to an integer value.
6048    MachineFunction *F = BB->getParent();
6049    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
6050    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
6051
6052    // Load the old value of the high byte of the control word...
6053    unsigned OldCW =
6054      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
6055    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
6056
6057    // Set the high part to be round to zero...
6058    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
6059      .addImm(0xC7F);
6060
6061    // Reload the modified control word now...
6062    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6063
6064    // Restore the memory image of control word to original value
6065    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
6066      .addReg(OldCW);
6067
6068    // Get the X86 opcode to use.
6069    unsigned Opc;
6070    switch (MI->getOpcode()) {
6071    default: assert(0 && "illegal opcode!");
6072    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
6073    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
6074    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
6075    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
6076    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
6077    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
6078    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
6079    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
6080    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
6081    }
6082
6083    X86AddressMode AM;
6084    MachineOperand &Op = MI->getOperand(0);
6085    if (Op.isRegister()) {
6086      AM.BaseType = X86AddressMode::RegBase;
6087      AM.Base.Reg = Op.getReg();
6088    } else {
6089      AM.BaseType = X86AddressMode::FrameIndexBase;
6090      AM.Base.FrameIndex = Op.getIndex();
6091    }
6092    Op = MI->getOperand(1);
6093    if (Op.isImmediate())
6094      AM.Scale = Op.getImm();
6095    Op = MI->getOperand(2);
6096    if (Op.isImmediate())
6097      AM.IndexReg = Op.getImm();
6098    Op = MI->getOperand(3);
6099    if (Op.isGlobalAddress()) {
6100      AM.GV = Op.getGlobal();
6101    } else {
6102      AM.Disp = Op.getImm();
6103    }
6104    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
6105                      .addReg(MI->getOperand(4).getReg());
6106
6107    // Reload the original control word now.
6108    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6109
6110    delete MI;   // The pseudo instruction is gone now.
6111    return BB;
6112  }
6113  case X86::ATOMAND32:
6114    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
6115                                                       X86::AND32ri);
6116  case X86::ATOMOR32:
6117    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
6118                                                       X86::OR32ri);
6119  case X86::ATOMXOR32:
6120    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
6121                                                       X86::XOR32ri);
6122  case X86::ATOMMIN32:
6123    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
6124  case X86::ATOMMAX32:
6125    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
6126  case X86::ATOMUMIN32:
6127    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
6128  case X86::ATOMUMAX32:
6129    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
6130  }
6131}
6132
6133//===----------------------------------------------------------------------===//
6134//                           X86 Optimization Hooks
6135//===----------------------------------------------------------------------===//
6136
6137void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
6138                                                       const APInt &Mask,
6139                                                       APInt &KnownZero,
6140                                                       APInt &KnownOne,
6141                                                       const SelectionDAG &DAG,
6142                                                       unsigned Depth) const {
6143  unsigned Opc = Op.getOpcode();
6144  assert((Opc >= ISD::BUILTIN_OP_END ||
6145          Opc == ISD::INTRINSIC_WO_CHAIN ||
6146          Opc == ISD::INTRINSIC_W_CHAIN ||
6147          Opc == ISD::INTRINSIC_VOID) &&
6148         "Should use MaskedValueIsZero if you don't know whether Op"
6149         " is a target node!");
6150
6151  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
6152  switch (Opc) {
6153  default: break;
6154  case X86ISD::SETCC:
6155    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
6156                                       Mask.getBitWidth() - 1);
6157    break;
6158  }
6159}
6160
6161/// getShuffleScalarElt - Returns the scalar element that will make up the ith
6162/// element of the result of the vector shuffle.
6163static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
6164  MVT::ValueType VT = N->getValueType(0);
6165  SDOperand PermMask = N->getOperand(2);
6166  unsigned NumElems = PermMask.getNumOperands();
6167  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
6168  i %= NumElems;
6169  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
6170    return (i == 0)
6171     ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
6172  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
6173    SDOperand Idx = PermMask.getOperand(i);
6174    if (Idx.getOpcode() == ISD::UNDEF)
6175      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
6176    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
6177  }
6178  return SDOperand();
6179}
6180
6181/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
6182/// node is a GlobalAddress + an offset.
6183static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
6184  unsigned Opc = N->getOpcode();
6185  if (Opc == X86ISD::Wrapper) {
6186    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
6187      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
6188      return true;
6189    }
6190  } else if (Opc == ISD::ADD) {
6191    SDOperand N1 = N->getOperand(0);
6192    SDOperand N2 = N->getOperand(1);
6193    if (isGAPlusOffset(N1.Val, GA, Offset)) {
6194      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
6195      if (V) {
6196        Offset += V->getSignExtended();
6197        return true;
6198      }
6199    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
6200      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
6201      if (V) {
6202        Offset += V->getSignExtended();
6203        return true;
6204      }
6205    }
6206  }
6207  return false;
6208}
6209
6210/// isConsecutiveLoad - Returns true if N is loading from an address of Base
6211/// + Dist * Size.
6212static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
6213                              MachineFrameInfo *MFI) {
6214  if (N->getOperand(0).Val != Base->getOperand(0).Val)
6215    return false;
6216
6217  SDOperand Loc = N->getOperand(1);
6218  SDOperand BaseLoc = Base->getOperand(1);
6219  if (Loc.getOpcode() == ISD::FrameIndex) {
6220    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6221      return false;
6222    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6223    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6224    int FS  = MFI->getObjectSize(FI);
6225    int BFS = MFI->getObjectSize(BFI);
6226    if (FS != BFS || FS != Size) return false;
6227    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
6228  } else {
6229    GlobalValue *GV1 = NULL;
6230    GlobalValue *GV2 = NULL;
6231    int64_t Offset1 = 0;
6232    int64_t Offset2 = 0;
6233    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
6234    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
6235    if (isGA1 && isGA2 && GV1 == GV2)
6236      return Offset1 == (Offset2 + Dist*Size);
6237  }
6238
6239  return false;
6240}
6241
6242static bool isBaseAlignmentOfN(unsigned N, SDNode *Base, MachineFrameInfo *MFI,
6243                               const X86Subtarget *Subtarget) {
6244  GlobalValue *GV;
6245  int64_t Offset = 0;
6246  if (isGAPlusOffset(Base, GV, Offset))
6247    return (GV->getAlignment() >= N && (Offset % N) == 0);
6248  // DAG combine handles the stack object case.
6249  return false;
6250}
6251
6252static bool EltsFromConsecutiveLoads(SDNode *N, SDOperand PermMask,
6253                                     unsigned NumElems, MVT::ValueType EVT,
6254                                     MachineFrameInfo *MFI,
6255                                     SelectionDAG &DAG, SDNode *&Base) {
6256  Base = NULL;
6257  for (unsigned i = 0; i < NumElems; ++i) {
6258    SDOperand Idx = PermMask.getOperand(i);
6259    if (Idx.getOpcode() == ISD::UNDEF) {
6260      if (!Base)
6261        return false;
6262      continue;
6263    }
6264
6265    unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
6266    SDOperand Elt = getShuffleScalarElt(N, Index, DAG);
6267    if (!Elt.Val ||
6268        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.Val)))
6269      return false;
6270    if (!Base) {
6271      Base = Elt.Val;
6272      continue;
6273    }
6274    if (Elt.getOpcode() == ISD::UNDEF)
6275      continue;
6276
6277    if (!isConsecutiveLoad(Elt.Val, Base, i, MVT::getSizeInBits(EVT)/8,MFI))
6278      return false;
6279  }
6280  return true;
6281}
6282
6283/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
6284/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
6285/// if the load addresses are consecutive, non-overlapping, and in the right
6286/// order.
6287static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
6288                                       const X86Subtarget *Subtarget) {
6289  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6290  MVT::ValueType VT = N->getValueType(0);
6291  MVT::ValueType EVT = MVT::getVectorElementType(VT);
6292  SDOperand PermMask = N->getOperand(2);
6293  unsigned NumElems = PermMask.getNumOperands();
6294  SDNode *Base = NULL;
6295  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, MFI, DAG, Base))
6296    return SDOperand();
6297
6298  LoadSDNode *LD = cast<LoadSDNode>(Base);
6299  if (isBaseAlignmentOfN(16, Base->getOperand(1).Val, MFI, Subtarget))
6300    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6301                       LD->getSrcValueOffset(), LD->isVolatile());
6302  return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6303                     LD->getSrcValueOffset(), LD->isVolatile(),
6304                     LD->getAlignment());
6305}
6306
6307static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
6308  SDOperand Elt = N->getOperand(i);
6309  if (Elt.getOpcode() != ISD::MERGE_VALUES)
6310    return Elt.Val;
6311  return Elt.getOperand(Elt.ResNo).Val;
6312}
6313
6314static SDOperand PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
6315                                       const X86Subtarget *Subtarget) {
6316  // Ignore single operand BUILD_VECTOR.
6317  if (N->getNumOperands() == 1)
6318    return SDOperand();
6319
6320  MVT::ValueType VT = N->getValueType(0);
6321  MVT::ValueType EVT = MVT::getVectorElementType(VT);
6322  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
6323    // We are looking for load i64 and zero extend. We want to transform
6324    // it before legalizer has a chance to expand it. Also look for i64
6325    // BUILD_PAIR bit casted to f64.
6326    return SDOperand();
6327  // This must be an insertion into a zero vector.
6328  SDOperand HighElt = N->getOperand(1);
6329  if (HighElt.getOpcode() != ISD::UNDEF &&
6330      !isZeroNode(HighElt))
6331    return SDOperand();
6332
6333  // Value must be a load.
6334  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6335  SDNode *Base = N->getOperand(0).Val;
6336  if (!isa<LoadSDNode>(Base)) {
6337    if (Base->getOpcode() == ISD::BIT_CONVERT)
6338      Base = Base->getOperand(0).Val;
6339    if (Base->getOpcode() != ISD::BUILD_PAIR)
6340      return SDOperand();
6341    SDNode *Pair = Base;
6342    Base = getBuildPairElt(Pair, 0);
6343    if (!ISD::isNON_EXTLoad(Base))
6344      return SDOperand();
6345    SDNode *NextLD = getBuildPairElt(Pair, 1);
6346    if (!ISD::isNON_EXTLoad(NextLD) ||
6347        !isConsecutiveLoad(NextLD, Base, 1, 4/*32 bits*/, MFI))
6348      return SDOperand();
6349  }
6350  LoadSDNode *LD = cast<LoadSDNode>(Base);
6351
6352  // Transform it into VZEXT_LOAD addr.
6353  return DAG.getNode(X86ISD::VZEXT_LOAD, VT, LD->getChain(), LD->getBasePtr());
6354}
6355
6356/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
6357static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
6358                                      const X86Subtarget *Subtarget) {
6359  SDOperand Cond = N->getOperand(0);
6360
6361  // If we have SSE[12] support, try to form min/max nodes.
6362  if (Subtarget->hasSSE2() &&
6363      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
6364    if (Cond.getOpcode() == ISD::SETCC) {
6365      // Get the LHS/RHS of the select.
6366      SDOperand LHS = N->getOperand(1);
6367      SDOperand RHS = N->getOperand(2);
6368      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
6369
6370      unsigned Opcode = 0;
6371      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
6372        switch (CC) {
6373        default: break;
6374        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
6375        case ISD::SETULE:
6376        case ISD::SETLE:
6377          if (!UnsafeFPMath) break;
6378          // FALL THROUGH.
6379        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
6380        case ISD::SETLT:
6381          Opcode = X86ISD::FMIN;
6382          break;
6383
6384        case ISD::SETOGT: // (X > Y) ? X : Y -> max
6385        case ISD::SETUGT:
6386        case ISD::SETGT:
6387          if (!UnsafeFPMath) break;
6388          // FALL THROUGH.
6389        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
6390        case ISD::SETGE:
6391          Opcode = X86ISD::FMAX;
6392          break;
6393        }
6394      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
6395        switch (CC) {
6396        default: break;
6397        case ISD::SETOGT: // (X > Y) ? Y : X -> min
6398        case ISD::SETUGT:
6399        case ISD::SETGT:
6400          if (!UnsafeFPMath) break;
6401          // FALL THROUGH.
6402        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
6403        case ISD::SETGE:
6404          Opcode = X86ISD::FMIN;
6405          break;
6406
6407        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
6408        case ISD::SETULE:
6409        case ISD::SETLE:
6410          if (!UnsafeFPMath) break;
6411          // FALL THROUGH.
6412        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
6413        case ISD::SETLT:
6414          Opcode = X86ISD::FMAX;
6415          break;
6416        }
6417      }
6418
6419      if (Opcode)
6420        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
6421    }
6422
6423  }
6424
6425  return SDOperand();
6426}
6427
6428/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
6429static SDOperand PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
6430                                     const X86Subtarget *Subtarget) {
6431  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
6432  // the FP state in cases where an emms may be missing.
6433  // A preferable solution to the general problem is to figure out the right
6434  // places to insert EMMS.  This qualifies as a quick hack.
6435  StoreSDNode *St = cast<StoreSDNode>(N);
6436  if (MVT::isVector(St->getValue().getValueType()) &&
6437      MVT::getSizeInBits(St->getValue().getValueType()) == 64 &&
6438      isa<LoadSDNode>(St->getValue()) &&
6439      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
6440      St->getChain().hasOneUse() && !St->isVolatile()) {
6441    SDNode* LdVal = St->getValue().Val;
6442    LoadSDNode *Ld = 0;
6443    int TokenFactorIndex = -1;
6444    SmallVector<SDOperand, 8> Ops;
6445    SDNode* ChainVal = St->getChain().Val;
6446    // Must be a store of a load.  We currently handle two cases:  the load
6447    // is a direct child, and it's under an intervening TokenFactor.  It is
6448    // possible to dig deeper under nested TokenFactors.
6449    if (ChainVal == LdVal)
6450      Ld = cast<LoadSDNode>(St->getChain());
6451    else if (St->getValue().hasOneUse() &&
6452             ChainVal->getOpcode() == ISD::TokenFactor) {
6453      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
6454        if (ChainVal->getOperand(i).Val == LdVal) {
6455          TokenFactorIndex = i;
6456          Ld = cast<LoadSDNode>(St->getValue());
6457        } else
6458          Ops.push_back(ChainVal->getOperand(i));
6459      }
6460    }
6461    if (Ld) {
6462      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
6463      if (Subtarget->is64Bit()) {
6464        SDOperand NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
6465                                      Ld->getBasePtr(), Ld->getSrcValue(),
6466                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
6467                                      Ld->getAlignment());
6468        SDOperand NewChain = NewLd.getValue(1);
6469        if (TokenFactorIndex != -1) {
6470          Ops.push_back(NewChain);
6471          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6472                                 Ops.size());
6473        }
6474        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
6475                            St->getSrcValue(), St->getSrcValueOffset(),
6476                            St->isVolatile(), St->getAlignment());
6477      }
6478
6479      // Otherwise, lower to two 32-bit copies.
6480      SDOperand LoAddr = Ld->getBasePtr();
6481      SDOperand HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6482                                     DAG.getConstant(MVT::i32, 4));
6483
6484      SDOperand LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
6485                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
6486                                   Ld->isVolatile(), Ld->getAlignment());
6487      SDOperand HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
6488                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
6489                                   Ld->isVolatile(),
6490                                   MinAlign(Ld->getAlignment(), 4));
6491
6492      SDOperand NewChain = LoLd.getValue(1);
6493      if (TokenFactorIndex != -1) {
6494        Ops.push_back(LoLd);
6495        Ops.push_back(HiLd);
6496        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6497                               Ops.size());
6498      }
6499
6500      LoAddr = St->getBasePtr();
6501      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6502                           DAG.getConstant(MVT::i32, 4));
6503
6504      SDOperand LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
6505                          St->getSrcValue(), St->getSrcValueOffset(),
6506                          St->isVolatile(), St->getAlignment());
6507      SDOperand HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
6508                                    St->getSrcValue(), St->getSrcValueOffset()+4,
6509                                    St->isVolatile(),
6510                                    MinAlign(St->getAlignment(), 4));
6511      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
6512    }
6513  }
6514  return SDOperand();
6515}
6516
6517/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
6518/// X86ISD::FXOR nodes.
6519static SDOperand PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
6520  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
6521  // F[X]OR(0.0, x) -> x
6522  // F[X]OR(x, 0.0) -> x
6523  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6524    if (C->getValueAPF().isPosZero())
6525      return N->getOperand(1);
6526  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6527    if (C->getValueAPF().isPosZero())
6528      return N->getOperand(0);
6529  return SDOperand();
6530}
6531
6532/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
6533static SDOperand PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
6534  // FAND(0.0, x) -> 0.0
6535  // FAND(x, 0.0) -> 0.0
6536  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6537    if (C->getValueAPF().isPosZero())
6538      return N->getOperand(0);
6539  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6540    if (C->getValueAPF().isPosZero())
6541      return N->getOperand(1);
6542  return SDOperand();
6543}
6544
6545
6546SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
6547                                               DAGCombinerInfo &DCI) const {
6548  SelectionDAG &DAG = DCI.DAG;
6549  switch (N->getOpcode()) {
6550  default: break;
6551  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, Subtarget);
6552  case ISD::BUILD_VECTOR:   return PerformBuildVectorCombine(N, DAG, Subtarget);
6553  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
6554  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
6555  case X86ISD::FXOR:
6556  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
6557  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
6558  }
6559
6560  return SDOperand();
6561}
6562
6563//===----------------------------------------------------------------------===//
6564//                           X86 Inline Assembly Support
6565//===----------------------------------------------------------------------===//
6566
6567/// getConstraintType - Given a constraint letter, return the type of
6568/// constraint it is for this target.
6569X86TargetLowering::ConstraintType
6570X86TargetLowering::getConstraintType(const std::string &Constraint) const {
6571  if (Constraint.size() == 1) {
6572    switch (Constraint[0]) {
6573    case 'A':
6574    case 'f':
6575    case 'r':
6576    case 'R':
6577    case 'l':
6578    case 'q':
6579    case 'Q':
6580    case 'x':
6581    case 'y':
6582    case 'Y':
6583      return C_RegisterClass;
6584    default:
6585      break;
6586    }
6587  }
6588  return TargetLowering::getConstraintType(Constraint);
6589}
6590
6591/// LowerXConstraint - try to replace an X constraint, which matches anything,
6592/// with another that has more specific requirements based on the type of the
6593/// corresponding operand.
6594const char *X86TargetLowering::
6595LowerXConstraint(MVT::ValueType ConstraintVT) const {
6596  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
6597  // 'f' like normal targets.
6598  if (MVT::isFloatingPoint(ConstraintVT)) {
6599    if (Subtarget->hasSSE2())
6600      return "Y";
6601    if (Subtarget->hasSSE1())
6602      return "x";
6603  }
6604
6605  return TargetLowering::LowerXConstraint(ConstraintVT);
6606}
6607
6608/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6609/// vector.  If it is invalid, don't add anything to Ops.
6610void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
6611                                                     char Constraint,
6612                                                     std::vector<SDOperand>&Ops,
6613                                                     SelectionDAG &DAG) const {
6614  SDOperand Result(0, 0);
6615
6616  switch (Constraint) {
6617  default: break;
6618  case 'I':
6619    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6620      if (C->getValue() <= 31) {
6621        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6622        break;
6623      }
6624    }
6625    return;
6626  case 'N':
6627    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6628      if (C->getValue() <= 255) {
6629        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6630        break;
6631      }
6632    }
6633    return;
6634  case 'i': {
6635    // Literal immediates are always ok.
6636    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
6637      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
6638      break;
6639    }
6640
6641    // If we are in non-pic codegen mode, we allow the address of a global (with
6642    // an optional displacement) to be used with 'i'.
6643    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
6644    int64_t Offset = 0;
6645
6646    // Match either (GA) or (GA+C)
6647    if (GA) {
6648      Offset = GA->getOffset();
6649    } else if (Op.getOpcode() == ISD::ADD) {
6650      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6651      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6652      if (C && GA) {
6653        Offset = GA->getOffset()+C->getValue();
6654      } else {
6655        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6656        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6657        if (C && GA)
6658          Offset = GA->getOffset()+C->getValue();
6659        else
6660          C = 0, GA = 0;
6661      }
6662    }
6663
6664    if (GA) {
6665      // If addressing this global requires a load (e.g. in PIC mode), we can't
6666      // match.
6667      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
6668                                         false))
6669        return;
6670
6671      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
6672                                      Offset);
6673      Result = Op;
6674      break;
6675    }
6676
6677    // Otherwise, not valid for this mode.
6678    return;
6679  }
6680  }
6681
6682  if (Result.Val) {
6683    Ops.push_back(Result);
6684    return;
6685  }
6686  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6687}
6688
6689std::vector<unsigned> X86TargetLowering::
6690getRegClassForInlineAsmConstraint(const std::string &Constraint,
6691                                  MVT::ValueType VT) const {
6692  if (Constraint.size() == 1) {
6693    // FIXME: not handling fp-stack yet!
6694    switch (Constraint[0]) {      // GCC X86 Constraint Letters
6695    default: break;  // Unknown constraint letter
6696    case 'A':   // EAX/EDX
6697      if (VT == MVT::i32 || VT == MVT::i64)
6698        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
6699      break;
6700    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
6701    case 'Q':   // Q_REGS
6702      if (VT == MVT::i32)
6703        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
6704      else if (VT == MVT::i16)
6705        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
6706      else if (VT == MVT::i8)
6707        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
6708      else if (VT == MVT::i64)
6709        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
6710      break;
6711    }
6712  }
6713
6714  return std::vector<unsigned>();
6715}
6716
6717std::pair<unsigned, const TargetRegisterClass*>
6718X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6719                                                MVT::ValueType VT) const {
6720  // First, see if this is a constraint that directly corresponds to an LLVM
6721  // register class.
6722  if (Constraint.size() == 1) {
6723    // GCC Constraint Letters
6724    switch (Constraint[0]) {
6725    default: break;
6726    case 'r':   // GENERAL_REGS
6727    case 'R':   // LEGACY_REGS
6728    case 'l':   // INDEX_REGS
6729      if (VT == MVT::i64 && Subtarget->is64Bit())
6730        return std::make_pair(0U, X86::GR64RegisterClass);
6731      if (VT == MVT::i32)
6732        return std::make_pair(0U, X86::GR32RegisterClass);
6733      else if (VT == MVT::i16)
6734        return std::make_pair(0U, X86::GR16RegisterClass);
6735      else if (VT == MVT::i8)
6736        return std::make_pair(0U, X86::GR8RegisterClass);
6737      break;
6738    case 'f':  // FP Stack registers.
6739      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
6740      // value to the correct fpstack register class.
6741      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
6742        return std::make_pair(0U, X86::RFP32RegisterClass);
6743      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
6744        return std::make_pair(0U, X86::RFP64RegisterClass);
6745      return std::make_pair(0U, X86::RFP80RegisterClass);
6746    case 'y':   // MMX_REGS if MMX allowed.
6747      if (!Subtarget->hasMMX()) break;
6748      return std::make_pair(0U, X86::VR64RegisterClass);
6749      break;
6750    case 'Y':   // SSE_REGS if SSE2 allowed
6751      if (!Subtarget->hasSSE2()) break;
6752      // FALL THROUGH.
6753    case 'x':   // SSE_REGS if SSE1 allowed
6754      if (!Subtarget->hasSSE1()) break;
6755
6756      switch (VT) {
6757      default: break;
6758      // Scalar SSE types.
6759      case MVT::f32:
6760      case MVT::i32:
6761        return std::make_pair(0U, X86::FR32RegisterClass);
6762      case MVT::f64:
6763      case MVT::i64:
6764        return std::make_pair(0U, X86::FR64RegisterClass);
6765      // Vector types.
6766      case MVT::v16i8:
6767      case MVT::v8i16:
6768      case MVT::v4i32:
6769      case MVT::v2i64:
6770      case MVT::v4f32:
6771      case MVT::v2f64:
6772        return std::make_pair(0U, X86::VR128RegisterClass);
6773      }
6774      break;
6775    }
6776  }
6777
6778  // Use the default implementation in TargetLowering to convert the register
6779  // constraint into a member of a register class.
6780  std::pair<unsigned, const TargetRegisterClass*> Res;
6781  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6782
6783  // Not found as a standard register?
6784  if (Res.second == 0) {
6785    // GCC calls "st(0)" just plain "st".
6786    if (StringsEqualNoCase("{st}", Constraint)) {
6787      Res.first = X86::ST0;
6788      Res.second = X86::RFP80RegisterClass;
6789    }
6790
6791    return Res;
6792  }
6793
6794  // Otherwise, check to see if this is a register class of the wrong value
6795  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
6796  // turn into {ax},{dx}.
6797  if (Res.second->hasType(VT))
6798    return Res;   // Correct type already, nothing to do.
6799
6800  // All of the single-register GCC register classes map their values onto
6801  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
6802  // really want an 8-bit or 32-bit register, map to the appropriate register
6803  // class and return the appropriate register.
6804  if (Res.second != X86::GR16RegisterClass)
6805    return Res;
6806
6807  if (VT == MVT::i8) {
6808    unsigned DestReg = 0;
6809    switch (Res.first) {
6810    default: break;
6811    case X86::AX: DestReg = X86::AL; break;
6812    case X86::DX: DestReg = X86::DL; break;
6813    case X86::CX: DestReg = X86::CL; break;
6814    case X86::BX: DestReg = X86::BL; break;
6815    }
6816    if (DestReg) {
6817      Res.first = DestReg;
6818      Res.second = Res.second = X86::GR8RegisterClass;
6819    }
6820  } else if (VT == MVT::i32) {
6821    unsigned DestReg = 0;
6822    switch (Res.first) {
6823    default: break;
6824    case X86::AX: DestReg = X86::EAX; break;
6825    case X86::DX: DestReg = X86::EDX; break;
6826    case X86::CX: DestReg = X86::ECX; break;
6827    case X86::BX: DestReg = X86::EBX; break;
6828    case X86::SI: DestReg = X86::ESI; break;
6829    case X86::DI: DestReg = X86::EDI; break;
6830    case X86::BP: DestReg = X86::EBP; break;
6831    case X86::SP: DestReg = X86::ESP; break;
6832    }
6833    if (DestReg) {
6834      Res.first = DestReg;
6835      Res.second = Res.second = X86::GR32RegisterClass;
6836    }
6837  } else if (VT == MVT::i64) {
6838    unsigned DestReg = 0;
6839    switch (Res.first) {
6840    default: break;
6841    case X86::AX: DestReg = X86::RAX; break;
6842    case X86::DX: DestReg = X86::RDX; break;
6843    case X86::CX: DestReg = X86::RCX; break;
6844    case X86::BX: DestReg = X86::RBX; break;
6845    case X86::SI: DestReg = X86::RSI; break;
6846    case X86::DI: DestReg = X86::RDI; break;
6847    case X86::BP: DestReg = X86::RBP; break;
6848    case X86::SP: DestReg = X86::RSP; break;
6849    }
6850    if (DestReg) {
6851      Res.first = DestReg;
6852      Res.second = Res.second = X86::GR64RegisterClass;
6853    }
6854  }
6855
6856  return Res;
6857}
6858