X86ISelLowering.cpp revision d881627d3307ef3379627de4eeb65395867a7b08
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
65
66  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
67
68  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
69    if (is64Bit) return new X8664_MachoTargetObjectFile();
70    return new TargetLoweringObjectFileMachO();
71  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
72    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
73    return new X8632_ELFTargetObjectFile(TM);
74  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
75    return new TargetLoweringObjectFileCOFF();
76  }
77  llvm_unreachable("unknown subtarget type");
78}
79
80X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
81  : TargetLowering(TM, createTLOF(TM)) {
82  Subtarget = &TM.getSubtarget<X86Subtarget>();
83  X86ScalarSSEf64 = Subtarget->hasSSE2();
84  X86ScalarSSEf32 = Subtarget->hasSSE1();
85  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
86
87  RegInfo = TM.getRegisterInfo();
88  TD = getTargetData();
89
90  // Set up the TargetLowering object.
91
92  // X86 is weird, it always uses i8 for shift amounts and setcc results.
93  setShiftAmountType(MVT::i8);
94  setBooleanContents(ZeroOrOneBooleanContent);
95  setSchedulingPreference(Sched::RegPressure);
96  setStackPointerRegisterToSaveRestore(X86StackPtr);
97
98  if (Subtarget->isTargetDarwin()) {
99    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
100    setUseUnderscoreSetJmp(false);
101    setUseUnderscoreLongJmp(false);
102  } else if (Subtarget->isTargetMingw()) {
103    // MS runtime is weird: it exports _setjmp, but longjmp!
104    setUseUnderscoreSetJmp(true);
105    setUseUnderscoreLongJmp(false);
106  } else {
107    setUseUnderscoreSetJmp(true);
108    setUseUnderscoreLongJmp(true);
109  }
110
111  // Set up the register classes.
112  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
113  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
123  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
124  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
125  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
126  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
127
128  // SETOEQ and SETUNE require checking two conditions.
129  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
130  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
131  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
132  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
133  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
135
136  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
137  // operation.
138  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
139  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
141
142  if (Subtarget->is64Bit()) {
143    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
144    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
145  } else if (!UseSoftFloat) {
146    // We have an algorithm for SSE2->double, and we turn this into a
147    // 64-bit FILD followed by conditional FADD for other targets.
148    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
149    // We have an algorithm for SSE2, and we turn this into a 64-bit
150    // FILD for other targets.
151    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
152  }
153
154  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
155  // this operation.
156  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
157  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
158
159  if (!UseSoftFloat) {
160    // SSE has no i16 to fp conversion, only i32
161    if (X86ScalarSSEf32) {
162      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
163      // f32 and f64 cases are Legal, f80 case is not
164      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
165    } else {
166      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    }
169  } else {
170    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
171    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
172  }
173
174  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
175  // are Legal, f80 is custom lowered.
176  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
177  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
178
179  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
180  // this operation.
181  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
182  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
183
184  if (X86ScalarSSEf32) {
185    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
186    // f32 and f64 cases are Legal, f80 case is not
187    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
188  } else {
189    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  }
192
193  // Handle FP_TO_UINT by promoting the destination to a larger signed
194  // conversion.
195  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
197  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
198
199  if (Subtarget->is64Bit()) {
200    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
201    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
202  } else if (!UseSoftFloat) {
203    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
204      // Expand FP_TO_UINT into a select.
205      // FIXME: We would like to use a Custom expander here eventually to do
206      // the optimal thing for SSE vs. the default expansion in the legalizer.
207      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
208    else
209      // With SSE3 we can use fisttpll to convert to a signed i64; without
210      // SSE, we're stuck with a fistpll.
211      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
212  }
213
214  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
215  if (!X86ScalarSSEf64) {
216    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
217    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
218    if (Subtarget->is64Bit()) {
219      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
220      // Without SSE, i64->f64 goes through memory; i64->MMX is Legal.
221      if (Subtarget->hasMMX() && !DisableMMX)
222        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Custom);
223      else
224        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
225    }
226  }
227
228  // Scalar integer divide and remainder are lowered to use operations that
229  // produce two results, to match the available instructions. This exposes
230  // the two-result form to trivial CSE, which is able to combine x/y and x%y
231  // into a single instruction.
232  //
233  // Scalar integer multiply-high is also lowered to use two-result
234  // operations, to match the available instructions. However, plain multiply
235  // (low) operations are left as Legal, as there are single-result
236  // instructions for this in x86. Using the two-result multiply instructions
237  // when both high and low results are needed must be arranged by dagcombine.
238  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
240  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
241  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
242  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
243  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
244  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
248  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
249  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
262
263  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
264  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
265  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
266  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
267  if (Subtarget->is64Bit())
268    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
269  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
270  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
271  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
272  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
273  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
274  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
275  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
276  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
277
278  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
279  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
280  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
281  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
282  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
283  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
301  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
302  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
303  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
305  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
306  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
307  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
309  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
310  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
313    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
314  }
315  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
316
317  // Darwin ABI issue.
318  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
319  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
320  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
321  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
322  if (Subtarget->is64Bit())
323    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
324  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
325  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
326  if (Subtarget->is64Bit()) {
327    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
328    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
329    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
330    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
331    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
332  }
333  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
334  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
335  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
336  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
337  if (Subtarget->is64Bit()) {
338    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
339    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
340    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
341  }
342
343  if (Subtarget->hasSSE1())
344    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
345
346  // We may not have a libcall for MEMBARRIER so we should lower this.
347  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
348
349  // On X86 and X86-64, atomic operations are lowered to locked instructions.
350  // Locked instructions, in turn, have implicit fence semantics (all memory
351  // operations are flushed before issuing the locked instruction, and they
352  // are not buffered), so we can fold away the common pattern of
353  // fence-atomic-fence.
354  setShouldFoldAtomicFences(true);
355
356  // Expand certain atomics
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
359  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
360  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
361
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
364  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
365  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
366
367  if (!Subtarget->is64Bit()) {
368    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
374    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
375  }
376
377  // FIXME - use subtarget debug flags
378  if (!Subtarget->isTargetDarwin() &&
379      !Subtarget->isTargetELF() &&
380      !Subtarget->isTargetCygMing()) {
381    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
382  }
383
384  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
385  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
388  if (Subtarget->is64Bit()) {
389    setExceptionPointerRegister(X86::RAX);
390    setExceptionSelectorRegister(X86::RDX);
391  } else {
392    setExceptionPointerRegister(X86::EAX);
393    setExceptionSelectorRegister(X86::EDX);
394  }
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
397
398  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
399
400  setOperationAction(ISD::TRAP, MVT::Other, Legal);
401
402  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
403  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
404  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
405  if (Subtarget->is64Bit()) {
406    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
407    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
408  } else {
409    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
410    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
411  }
412
413  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
414  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
415  if (Subtarget->is64Bit())
416    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
417  if (Subtarget->isTargetCygMing())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
419  else
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
421
422  if (!UseSoftFloat && X86ScalarSSEf64) {
423    // f32 and f64 use SSE.
424    // Set up the FP register classes.
425    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
426    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
427
428    // Use ANDPD to simulate FABS.
429    setOperationAction(ISD::FABS , MVT::f64, Custom);
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f64, Custom);
434    setOperationAction(ISD::FNEG , MVT::f32, Custom);
435
436    // Use ANDPD and ORPD to simulate FCOPYSIGN.
437    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
438    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
439
440    // We don't support sin/cos/fmod
441    setOperationAction(ISD::FSIN , MVT::f64, Expand);
442    setOperationAction(ISD::FCOS , MVT::f64, Expand);
443    setOperationAction(ISD::FSIN , MVT::f32, Expand);
444    setOperationAction(ISD::FCOS , MVT::f32, Expand);
445
446    // Expand FP immediates into loads from the stack, except for the special
447    // cases we handle.
448    addLegalFPImmediate(APFloat(+0.0)); // xorpd
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450  } else if (!UseSoftFloat && X86ScalarSSEf32) {
451    // Use SSE for f32, x87 for f64.
452    // Set up the FP register classes.
453    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
454    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
455
456    // Use ANDPS to simulate FABS.
457    setOperationAction(ISD::FABS , MVT::f32, Custom);
458
459    // Use XORP to simulate FNEG.
460    setOperationAction(ISD::FNEG , MVT::f32, Custom);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463
464    // Use ANDPS and ORPS to simulate FCOPYSIGN.
465    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
467
468    // We don't support sin/cos/fmod
469    setOperationAction(ISD::FSIN , MVT::f32, Expand);
470    setOperationAction(ISD::FCOS , MVT::f32, Expand);
471
472    // Special cases we handle for FP constants.
473    addLegalFPImmediate(APFloat(+0.0f)); // xorps
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478
479    if (!UnsafeFPMath) {
480      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
481      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
482    }
483  } else if (!UseSoftFloat) {
484    // f32 and f64 in x87.
485    // Set up the FP register classes.
486    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
487    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
488
489    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
490    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
493
494    if (!UnsafeFPMath) {
495      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
496      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
497    }
498    addLegalFPImmediate(APFloat(+0.0)); // FLD0
499    addLegalFPImmediate(APFloat(+1.0)); // FLD1
500    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
501    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
502    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
503    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
504    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
505    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
506  }
507
508  // Long double always uses X87.
509  if (!UseSoftFloat) {
510    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
511    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
512    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
513    {
514      bool ignored;
515      APFloat TmpFlt(+0.0);
516      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                     &ignored);
518      addLegalFPImmediate(TmpFlt);  // FLD0
519      TmpFlt.changeSign();
520      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
521      APFloat TmpFlt2(+1.0);
522      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
523                      &ignored);
524      addLegalFPImmediate(TmpFlt2);  // FLD1
525      TmpFlt2.changeSign();
526      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
527    }
528
529    if (!UnsafeFPMath) {
530      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
531      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
532    }
533  }
534
535  // Always use a library call for pow.
536  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
537  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
539
540  setOperationAction(ISD::FLOG, MVT::f80, Expand);
541  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
543  setOperationAction(ISD::FEXP, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
545
546  // First set operation action for all vector types to either promote
547  // (for widening) or expand (for scalarization). Then we will selectively
548  // turn on ones that can be effectively codegen'd.
549  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
550       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
551    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
566    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
600    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
604    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
605         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
606      setTruncStoreAction((MVT::SimpleValueType)VT,
607                          (MVT::SimpleValueType)InnerVT, Expand);
608    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
609    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
610    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
611  }
612
613  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
614  // with -msoft-float, disable use of MMX as well.
615  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
616    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass, false);
617    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false);
618    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false);
619
620    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false);
621
622    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
623    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
624    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
625    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
626
627    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
628    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
629    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
630    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
631
632    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
633    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
634
635    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
636    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
637    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
638    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
639    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
640    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
641    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
642
643    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
644    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
645    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
646    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
647    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
648    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
649    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
650
651    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
652    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
653    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
654    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
655    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
656    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
657    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
658
659    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
660    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
661    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
662    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
663    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
664    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
665    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
666
667    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
668    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
669    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
670    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
671
672    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
674    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
675    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
676
677    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
678    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
679    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
680
681    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
682
683    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
684    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
685    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
686    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
687    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
688    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
689    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
690
691    if (!X86ScalarSSEf64 && Subtarget->is64Bit()) {
692      setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Custom);
693      setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Custom);
694      setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Custom);
695      setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Custom);
696    }
697  }
698
699  if (!UseSoftFloat && Subtarget->hasSSE1()) {
700    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
701
702    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
703    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
704    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
705    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
706    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
707    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
708    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
709    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
710    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
711    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
712    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
713    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
714  }
715
716  if (!UseSoftFloat && Subtarget->hasSSE2()) {
717    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
718
719    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
720    // registers cannot be used even for integer operations.
721    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
722    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
723    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
724    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
725
726    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
727    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
728    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
729    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
730    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
731    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
732    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
733    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
734    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
735    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
736    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
737    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
738    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
739    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
740    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
741    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
742
743    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
744    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
745    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
746    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
747
748    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
749    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
750    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
751    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
752    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
753
754    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
755    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
756    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
757    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
758    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
759
760    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
761    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
762      EVT VT = (MVT::SimpleValueType)i;
763      // Do not attempt to custom lower non-power-of-2 vectors
764      if (!isPowerOf2_32(VT.getVectorNumElements()))
765        continue;
766      // Do not attempt to custom lower non-128-bit vectors
767      if (!VT.is128BitVector())
768        continue;
769      setOperationAction(ISD::BUILD_VECTOR,
770                         VT.getSimpleVT().SimpleTy, Custom);
771      setOperationAction(ISD::VECTOR_SHUFFLE,
772                         VT.getSimpleVT().SimpleTy, Custom);
773      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
774                         VT.getSimpleVT().SimpleTy, Custom);
775    }
776
777    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
778    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
779    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
780    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
781    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
782    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
783
784    if (Subtarget->is64Bit()) {
785      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
786      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
787    }
788
789    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
790    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
791      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
792      EVT VT = SVT;
793
794      // Do not attempt to promote non-128-bit vectors
795      if (!VT.is128BitVector())
796        continue;
797
798      setOperationAction(ISD::AND,    SVT, Promote);
799      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
800      setOperationAction(ISD::OR,     SVT, Promote);
801      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
802      setOperationAction(ISD::XOR,    SVT, Promote);
803      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
804      setOperationAction(ISD::LOAD,   SVT, Promote);
805      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
806      setOperationAction(ISD::SELECT, SVT, Promote);
807      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
808    }
809
810    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
811
812    // Custom lower v2i64 and v2f64 selects.
813    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
814    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
815    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
816    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
817
818    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
819    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
820    if (!DisableMMX && Subtarget->hasMMX()) {
821      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
822      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
823    }
824  }
825
826  if (Subtarget->hasSSE41()) {
827    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
828    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
829    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
830    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
831    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
832    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
833    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
834    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
835    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
836    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
837
838    // FIXME: Do we need to handle scalar-to-vector here?
839    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
840
841    // Can turn SHL into an integer multiply.
842    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
843    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
844
845    // i8 and i16 vectors are custom , because the source register and source
846    // source memory operand types are not the same width.  f32 vectors are
847    // custom since the immediate controlling the insert encodes additional
848    // information.
849    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
850    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
851    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
852    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
853
854    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
855    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
856    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
857    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
858
859    if (Subtarget->is64Bit()) {
860      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
861      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
862    }
863  }
864
865  if (Subtarget->hasSSE42()) {
866    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
867  }
868
869  if (!UseSoftFloat && Subtarget->hasAVX()) {
870    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
871    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
872    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
873    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
874    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
875
876    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
877    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
879    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
880    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
881    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
882    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
883    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
884    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
885    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
886    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
887    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
888    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
889    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
890    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
891
892    // Operations to consider commented out -v16i16 v32i8
893    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
894    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
895    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
896    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
897    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
898    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
899    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
900    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
901    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
902    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
903    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
904    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
905    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
906    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
907
908    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
909    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
910    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
911    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
912
913    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
914    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
915    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
916    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
917    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
918
919    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
920    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
921    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
922    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
923    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
924    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
925
926#if 0
927    // Not sure we want to do this since there are no 256-bit integer
928    // operations in AVX
929
930    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
931    // This includes 256-bit vectors
932    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
933      EVT VT = (MVT::SimpleValueType)i;
934
935      // Do not attempt to custom lower non-power-of-2 vectors
936      if (!isPowerOf2_32(VT.getVectorNumElements()))
937        continue;
938
939      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
940      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
941      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
942    }
943
944    if (Subtarget->is64Bit()) {
945      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
946      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
947    }
948#endif
949
950#if 0
951    // Not sure we want to do this since there are no 256-bit integer
952    // operations in AVX
953
954    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
955    // Including 256-bit vectors
956    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
957      EVT VT = (MVT::SimpleValueType)i;
958
959      if (!VT.is256BitVector()) {
960        continue;
961      }
962      setOperationAction(ISD::AND,    VT, Promote);
963      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
964      setOperationAction(ISD::OR,     VT, Promote);
965      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
966      setOperationAction(ISD::XOR,    VT, Promote);
967      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
968      setOperationAction(ISD::LOAD,   VT, Promote);
969      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
970      setOperationAction(ISD::SELECT, VT, Promote);
971      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
972    }
973
974    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
975#endif
976  }
977
978  // We want to custom lower some of our intrinsics.
979  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
980
981  // Add/Sub/Mul with overflow operations are custom lowered.
982  setOperationAction(ISD::SADDO, MVT::i32, Custom);
983  setOperationAction(ISD::UADDO, MVT::i32, Custom);
984  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
985  setOperationAction(ISD::USUBO, MVT::i32, Custom);
986  setOperationAction(ISD::SMULO, MVT::i32, Custom);
987
988  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
989  // handle type legalization for these operations here.
990  //
991  // FIXME: We really should do custom legalization for addition and
992  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
993  // than generic legalization for 64-bit multiplication-with-overflow, though.
994  if (Subtarget->is64Bit()) {
995    setOperationAction(ISD::SADDO, MVT::i64, Custom);
996    setOperationAction(ISD::UADDO, MVT::i64, Custom);
997    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
998    setOperationAction(ISD::USUBO, MVT::i64, Custom);
999    setOperationAction(ISD::SMULO, MVT::i64, Custom);
1000  }
1001
1002  if (!Subtarget->is64Bit()) {
1003    // These libcalls are not available in 32-bit.
1004    setLibcallName(RTLIB::SHL_I128, 0);
1005    setLibcallName(RTLIB::SRL_I128, 0);
1006    setLibcallName(RTLIB::SRA_I128, 0);
1007  }
1008
1009  // We have target-specific dag combine patterns for the following nodes:
1010  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1011  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1012  setTargetDAGCombine(ISD::BUILD_VECTOR);
1013  setTargetDAGCombine(ISD::SELECT);
1014  setTargetDAGCombine(ISD::SHL);
1015  setTargetDAGCombine(ISD::SRA);
1016  setTargetDAGCombine(ISD::SRL);
1017  setTargetDAGCombine(ISD::OR);
1018  setTargetDAGCombine(ISD::STORE);
1019  setTargetDAGCombine(ISD::ZERO_EXTEND);
1020  if (Subtarget->is64Bit())
1021    setTargetDAGCombine(ISD::MUL);
1022
1023  computeRegisterProperties();
1024
1025  // FIXME: These should be based on subtarget info. Plus, the values should
1026  // be smaller when we are in optimizing for size mode.
1027  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1028  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1029  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1030  setPrefLoopAlignment(16);
1031  benefitFromCodePlacementOpt = true;
1032}
1033
1034
1035MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1036  return MVT::i8;
1037}
1038
1039
1040/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1041/// the desired ByVal argument alignment.
1042static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1043  if (MaxAlign == 16)
1044    return;
1045  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1046    if (VTy->getBitWidth() == 128)
1047      MaxAlign = 16;
1048  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1049    unsigned EltAlign = 0;
1050    getMaxByValAlign(ATy->getElementType(), EltAlign);
1051    if (EltAlign > MaxAlign)
1052      MaxAlign = EltAlign;
1053  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1054    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1055      unsigned EltAlign = 0;
1056      getMaxByValAlign(STy->getElementType(i), EltAlign);
1057      if (EltAlign > MaxAlign)
1058        MaxAlign = EltAlign;
1059      if (MaxAlign == 16)
1060        break;
1061    }
1062  }
1063  return;
1064}
1065
1066/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1067/// function arguments in the caller parameter area. For X86, aggregates
1068/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1069/// are at 4-byte boundaries.
1070unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1071  if (Subtarget->is64Bit()) {
1072    // Max of 8 and alignment of type.
1073    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1074    if (TyAlign > 8)
1075      return TyAlign;
1076    return 8;
1077  }
1078
1079  unsigned Align = 4;
1080  if (Subtarget->hasSSE1())
1081    getMaxByValAlign(Ty, Align);
1082  return Align;
1083}
1084
1085/// getOptimalMemOpType - Returns the target specific optimal type for load
1086/// and store operations as a result of memset, memcpy, and memmove
1087/// lowering. If DstAlign is zero that means it's safe to destination
1088/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1089/// means there isn't a need to check it against alignment requirement,
1090/// probably because the source does not need to be loaded. If
1091/// 'NonScalarIntSafe' is true, that means it's safe to return a
1092/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1093/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1094/// constant so it does not need to be loaded.
1095/// It returns EVT::Other if the type should be determined using generic
1096/// target-independent logic.
1097EVT
1098X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1099                                       unsigned DstAlign, unsigned SrcAlign,
1100                                       bool NonScalarIntSafe,
1101                                       bool MemcpyStrSrc,
1102                                       MachineFunction &MF) const {
1103  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1104  // linux.  This is because the stack realignment code can't handle certain
1105  // cases like PR2962.  This should be removed when PR2962 is fixed.
1106  const Function *F = MF.getFunction();
1107  if (NonScalarIntSafe &&
1108      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1109    if (Size >= 16 &&
1110        (Subtarget->isUnalignedMemAccessFast() ||
1111         ((DstAlign == 0 || DstAlign >= 16) &&
1112          (SrcAlign == 0 || SrcAlign >= 16))) &&
1113        Subtarget->getStackAlignment() >= 16) {
1114      if (Subtarget->hasSSE2())
1115        return MVT::v4i32;
1116      if (Subtarget->hasSSE1())
1117        return MVT::v4f32;
1118    } else if (!MemcpyStrSrc && Size >= 8 &&
1119               !Subtarget->is64Bit() &&
1120               Subtarget->getStackAlignment() >= 8 &&
1121               Subtarget->hasSSE2()) {
1122      // Do not use f64 to lower memcpy if source is string constant. It's
1123      // better to use i32 to avoid the loads.
1124      return MVT::f64;
1125    }
1126  }
1127  if (Subtarget->is64Bit() && Size >= 8)
1128    return MVT::i64;
1129  return MVT::i32;
1130}
1131
1132/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1133/// current function.  The returned value is a member of the
1134/// MachineJumpTableInfo::JTEntryKind enum.
1135unsigned X86TargetLowering::getJumpTableEncoding() const {
1136  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1137  // symbol.
1138  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1139      Subtarget->isPICStyleGOT())
1140    return MachineJumpTableInfo::EK_Custom32;
1141
1142  // Otherwise, use the normal jump table encoding heuristics.
1143  return TargetLowering::getJumpTableEncoding();
1144}
1145
1146/// getPICBaseSymbol - Return the X86-32 PIC base.
1147MCSymbol *
1148X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1149                                    MCContext &Ctx) const {
1150  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1151  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1152                               Twine(MF->getFunctionNumber())+"$pb");
1153}
1154
1155
1156const MCExpr *
1157X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1158                                             const MachineBasicBlock *MBB,
1159                                             unsigned uid,MCContext &Ctx) const{
1160  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1161         Subtarget->isPICStyleGOT());
1162  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1163  // entries.
1164  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1165                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1166}
1167
1168/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1169/// jumptable.
1170SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1171                                                    SelectionDAG &DAG) const {
1172  if (!Subtarget->is64Bit())
1173    // This doesn't have DebugLoc associated with it, but is not really the
1174    // same as a Register.
1175    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1176  return Table;
1177}
1178
1179/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1180/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1181/// MCExpr.
1182const MCExpr *X86TargetLowering::
1183getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1184                             MCContext &Ctx) const {
1185  // X86-64 uses RIP relative addressing based on the jump table label.
1186  if (Subtarget->isPICStyleRIPRel())
1187    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1188
1189  // Otherwise, the reference is relative to the PIC base.
1190  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1191}
1192
1193/// getFunctionAlignment - Return the Log2 alignment of this function.
1194unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1195  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1196}
1197
1198std::pair<const TargetRegisterClass*, uint8_t>
1199X86TargetLowering::findRepresentativeClass(EVT VT) const{
1200  const TargetRegisterClass *RRC = 0;
1201  uint8_t Cost = 1;
1202  switch (VT.getSimpleVT().SimpleTy) {
1203  default:
1204    return TargetLowering::findRepresentativeClass(VT);
1205  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1206    RRC = (Subtarget->is64Bit()
1207           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1208    break;
1209  case MVT::v8i8: case MVT::v4i16:
1210  case MVT::v2i32: case MVT::v1i64:
1211    RRC = X86::VR64RegisterClass;
1212    break;
1213  case MVT::f32: case MVT::f64:
1214  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1215  case MVT::v4f32: case MVT::v2f64:
1216  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1217  case MVT::v4f64:
1218    RRC = X86::VR128RegisterClass;
1219    break;
1220  }
1221  return std::make_pair(RRC, Cost);
1222}
1223
1224unsigned
1225X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1226                                       MachineFunction &MF) const {
1227  unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
1228  switch (RC->getID()) {
1229  default:
1230    return 0;
1231  case X86::GR32RegClassID:
1232    return 4 - FPDiff;
1233  case X86::GR64RegClassID:
1234    return 8 - FPDiff;
1235  case X86::VR128RegClassID:
1236    return Subtarget->is64Bit() ? 10 : 4;
1237  case X86::VR64RegClassID:
1238    return 4;
1239  }
1240}
1241
1242bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1243                                               unsigned &Offset) const {
1244  if (!Subtarget->isTargetLinux())
1245    return false;
1246
1247  if (Subtarget->is64Bit()) {
1248    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1249    Offset = 0x28;
1250    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1251      AddressSpace = 256;
1252    else
1253      AddressSpace = 257;
1254  } else {
1255    // %gs:0x14 on i386
1256    Offset = 0x14;
1257    AddressSpace = 256;
1258  }
1259  return true;
1260}
1261
1262
1263//===----------------------------------------------------------------------===//
1264//               Return Value Calling Convention Implementation
1265//===----------------------------------------------------------------------===//
1266
1267#include "X86GenCallingConv.inc"
1268
1269bool
1270X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1271                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1272                        LLVMContext &Context) const {
1273  SmallVector<CCValAssign, 16> RVLocs;
1274  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1275                 RVLocs, Context);
1276  return CCInfo.CheckReturn(Outs, RetCC_X86);
1277}
1278
1279SDValue
1280X86TargetLowering::LowerReturn(SDValue Chain,
1281                               CallingConv::ID CallConv, bool isVarArg,
1282                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1283                               const SmallVectorImpl<SDValue> &OutVals,
1284                               DebugLoc dl, SelectionDAG &DAG) const {
1285  MachineFunction &MF = DAG.getMachineFunction();
1286  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1287
1288  SmallVector<CCValAssign, 16> RVLocs;
1289  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1290                 RVLocs, *DAG.getContext());
1291  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1292
1293  // Add the regs to the liveout set for the function.
1294  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1295  for (unsigned i = 0; i != RVLocs.size(); ++i)
1296    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1297      MRI.addLiveOut(RVLocs[i].getLocReg());
1298
1299  SDValue Flag;
1300
1301  SmallVector<SDValue, 6> RetOps;
1302  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1303  // Operand #1 = Bytes To Pop
1304  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1305                   MVT::i16));
1306
1307  // Copy the result values into the output registers.
1308  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1309    CCValAssign &VA = RVLocs[i];
1310    assert(VA.isRegLoc() && "Can only return in registers!");
1311    SDValue ValToCopy = OutVals[i];
1312    EVT ValVT = ValToCopy.getValueType();
1313
1314    // If this is x86-64, and we disabled SSE, we can't return FP values
1315    if ((ValVT == MVT::f32 || ValVT == MVT::f64) &&
1316        (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1317      report_fatal_error("SSE register return with SSE disabled");
1318    }
1319    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1320    // llvm-gcc has never done it right and no one has noticed, so this
1321    // should be OK for now.
1322    if (ValVT == MVT::f64 &&
1323        (Subtarget->is64Bit() && !Subtarget->hasSSE2())) {
1324      report_fatal_error("SSE2 register return with SSE2 disabled");
1325    }
1326
1327    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1328    // the RET instruction and handled by the FP Stackifier.
1329    if (VA.getLocReg() == X86::ST0 ||
1330        VA.getLocReg() == X86::ST1) {
1331      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1332      // change the value to the FP stack register class.
1333      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1334        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1335      RetOps.push_back(ValToCopy);
1336      // Don't emit a copytoreg.
1337      continue;
1338    }
1339
1340    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1341    // which is returned in RAX / RDX.
1342    if (Subtarget->is64Bit()) {
1343      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1344        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1345        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1346          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1347                                  ValToCopy);
1348      }
1349    }
1350
1351    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1352    Flag = Chain.getValue(1);
1353  }
1354
1355  // The x86-64 ABI for returning structs by value requires that we copy
1356  // the sret argument into %rax for the return. We saved the argument into
1357  // a virtual register in the entry block, so now we copy the value out
1358  // and into %rax.
1359  if (Subtarget->is64Bit() &&
1360      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1361    MachineFunction &MF = DAG.getMachineFunction();
1362    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1363    unsigned Reg = FuncInfo->getSRetReturnReg();
1364    assert(Reg &&
1365           "SRetReturnReg should have been set in LowerFormalArguments().");
1366    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1367
1368    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1369    Flag = Chain.getValue(1);
1370
1371    // RAX now acts like a return value.
1372    MRI.addLiveOut(X86::RAX);
1373  }
1374
1375  RetOps[0] = Chain;  // Update chain.
1376
1377  // Add the flag if we have it.
1378  if (Flag.getNode())
1379    RetOps.push_back(Flag);
1380
1381  return DAG.getNode(X86ISD::RET_FLAG, dl,
1382                     MVT::Other, &RetOps[0], RetOps.size());
1383}
1384
1385/// LowerCallResult - Lower the result values of a call into the
1386/// appropriate copies out of appropriate physical registers.
1387///
1388SDValue
1389X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1390                                   CallingConv::ID CallConv, bool isVarArg,
1391                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1392                                   DebugLoc dl, SelectionDAG &DAG,
1393                                   SmallVectorImpl<SDValue> &InVals) const {
1394
1395  // Assign locations to each value returned by this call.
1396  SmallVector<CCValAssign, 16> RVLocs;
1397  bool Is64Bit = Subtarget->is64Bit();
1398  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1399                 RVLocs, *DAG.getContext());
1400  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1401
1402  // Copy all of the result registers out of their specified physreg.
1403  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1404    CCValAssign &VA = RVLocs[i];
1405    EVT CopyVT = VA.getValVT();
1406
1407    // If this is x86-64, and we disabled SSE, we can't return FP values
1408    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1409        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1410      report_fatal_error("SSE register return with SSE disabled");
1411    }
1412
1413    SDValue Val;
1414
1415    // If this is a call to a function that returns an fp value on the floating
1416    // point stack, we must guarantee the the value is popped from the stack, so
1417    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1418    // if the return value is not used. We use the FpGET_ST0 instructions
1419    // instead.
1420    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1421      // If we prefer to use the value in xmm registers, copy it out as f80 and
1422      // use a truncate to move it from fp stack reg to xmm reg.
1423      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1424      bool isST0 = VA.getLocReg() == X86::ST0;
1425      unsigned Opc = 0;
1426      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1427      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1428      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1429      SDValue Ops[] = { Chain, InFlag };
1430      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1431                                         Ops, 2), 1);
1432      Val = Chain.getValue(0);
1433
1434      // Round the f80 to the right size, which also moves it to the appropriate
1435      // xmm register.
1436      if (CopyVT != VA.getValVT())
1437        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1438                          // This truncation won't change the value.
1439                          DAG.getIntPtrConstant(1));
1440    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1441      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1442      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1443        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1444                                   MVT::v2i64, InFlag).getValue(1);
1445        Val = Chain.getValue(0);
1446        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1447                          Val, DAG.getConstant(0, MVT::i64));
1448      } else {
1449        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1450                                   MVT::i64, InFlag).getValue(1);
1451        Val = Chain.getValue(0);
1452      }
1453      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1454    } else {
1455      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1456                                 CopyVT, InFlag).getValue(1);
1457      Val = Chain.getValue(0);
1458    }
1459    InFlag = Chain.getValue(2);
1460    InVals.push_back(Val);
1461  }
1462
1463  return Chain;
1464}
1465
1466
1467//===----------------------------------------------------------------------===//
1468//                C & StdCall & Fast Calling Convention implementation
1469//===----------------------------------------------------------------------===//
1470//  StdCall calling convention seems to be standard for many Windows' API
1471//  routines and around. It differs from C calling convention just a little:
1472//  callee should clean up the stack, not caller. Symbols should be also
1473//  decorated in some fancy way :) It doesn't support any vector arguments.
1474//  For info on fast calling convention see Fast Calling Convention (tail call)
1475//  implementation LowerX86_32FastCCCallTo.
1476
1477/// CallIsStructReturn - Determines whether a call uses struct return
1478/// semantics.
1479static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1480  if (Outs.empty())
1481    return false;
1482
1483  return Outs[0].Flags.isSRet();
1484}
1485
1486/// ArgsAreStructReturn - Determines whether a function uses struct
1487/// return semantics.
1488static bool
1489ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1490  if (Ins.empty())
1491    return false;
1492
1493  return Ins[0].Flags.isSRet();
1494}
1495
1496/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1497/// given CallingConvention value.
1498CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1499  if (Subtarget->is64Bit()) {
1500    if (CC == CallingConv::GHC)
1501      return CC_X86_64_GHC;
1502    else if (Subtarget->isTargetWin64())
1503      return CC_X86_Win64_C;
1504    else
1505      return CC_X86_64_C;
1506  }
1507
1508  if (CC == CallingConv::X86_FastCall)
1509    return CC_X86_32_FastCall;
1510  else if (CC == CallingConv::X86_ThisCall)
1511    return CC_X86_32_ThisCall;
1512  else if (CC == CallingConv::Fast)
1513    return CC_X86_32_FastCC;
1514  else if (CC == CallingConv::GHC)
1515    return CC_X86_32_GHC;
1516  else
1517    return CC_X86_32_C;
1518}
1519
1520/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1521/// by "Src" to address "Dst" with size and alignment information specified by
1522/// the specific parameter attribute. The copy will be passed as a byval
1523/// function parameter.
1524static SDValue
1525CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1526                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1527                          DebugLoc dl) {
1528  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1529  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1530                       /*isVolatile*/false, /*AlwaysInline=*/true,
1531                       NULL, 0, NULL, 0);
1532}
1533
1534/// IsTailCallConvention - Return true if the calling convention is one that
1535/// supports tail call optimization.
1536static bool IsTailCallConvention(CallingConv::ID CC) {
1537  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1538}
1539
1540/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1541/// a tailcall target by changing its ABI.
1542static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1543  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1544}
1545
1546SDValue
1547X86TargetLowering::LowerMemArgument(SDValue Chain,
1548                                    CallingConv::ID CallConv,
1549                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1550                                    DebugLoc dl, SelectionDAG &DAG,
1551                                    const CCValAssign &VA,
1552                                    MachineFrameInfo *MFI,
1553                                    unsigned i) const {
1554  // Create the nodes corresponding to a load from this parameter slot.
1555  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1556  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1557  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1558  EVT ValVT;
1559
1560  // If value is passed by pointer we have address passed instead of the value
1561  // itself.
1562  if (VA.getLocInfo() == CCValAssign::Indirect)
1563    ValVT = VA.getLocVT();
1564  else
1565    ValVT = VA.getValVT();
1566
1567  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1568  // changed with more analysis.
1569  // In case of tail call optimization mark all arguments mutable. Since they
1570  // could be overwritten by lowering of arguments in case of a tail call.
1571  if (Flags.isByVal()) {
1572    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1573                                    VA.getLocMemOffset(), isImmutable);
1574    return DAG.getFrameIndex(FI, getPointerTy());
1575  } else {
1576    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1577                                    VA.getLocMemOffset(), isImmutable);
1578    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1579    return DAG.getLoad(ValVT, dl, Chain, FIN,
1580                       PseudoSourceValue::getFixedStack(FI), 0,
1581                       false, false, 0);
1582  }
1583}
1584
1585SDValue
1586X86TargetLowering::LowerFormalArguments(SDValue Chain,
1587                                        CallingConv::ID CallConv,
1588                                        bool isVarArg,
1589                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1590                                        DebugLoc dl,
1591                                        SelectionDAG &DAG,
1592                                        SmallVectorImpl<SDValue> &InVals)
1593                                          const {
1594  MachineFunction &MF = DAG.getMachineFunction();
1595  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1596
1597  const Function* Fn = MF.getFunction();
1598  if (Fn->hasExternalLinkage() &&
1599      Subtarget->isTargetCygMing() &&
1600      Fn->getName() == "main")
1601    FuncInfo->setForceFramePointer(true);
1602
1603  MachineFrameInfo *MFI = MF.getFrameInfo();
1604  bool Is64Bit = Subtarget->is64Bit();
1605  bool IsWin64 = Subtarget->isTargetWin64();
1606
1607  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1608         "Var args not supported with calling convention fastcc or ghc");
1609
1610  // Assign locations to all of the incoming arguments.
1611  SmallVector<CCValAssign, 16> ArgLocs;
1612  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1613                 ArgLocs, *DAG.getContext());
1614  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1615
1616  unsigned LastVal = ~0U;
1617  SDValue ArgValue;
1618  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1619    CCValAssign &VA = ArgLocs[i];
1620    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1621    // places.
1622    assert(VA.getValNo() != LastVal &&
1623           "Don't support value assigned to multiple locs yet");
1624    LastVal = VA.getValNo();
1625
1626    if (VA.isRegLoc()) {
1627      EVT RegVT = VA.getLocVT();
1628      TargetRegisterClass *RC = NULL;
1629      if (RegVT == MVT::i32)
1630        RC = X86::GR32RegisterClass;
1631      else if (Is64Bit && RegVT == MVT::i64)
1632        RC = X86::GR64RegisterClass;
1633      else if (RegVT == MVT::f32)
1634        RC = X86::FR32RegisterClass;
1635      else if (RegVT == MVT::f64)
1636        RC = X86::FR64RegisterClass;
1637      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1638        RC = X86::VR256RegisterClass;
1639      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1640        RC = X86::VR128RegisterClass;
1641      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1642        RC = X86::VR64RegisterClass;
1643      else
1644        llvm_unreachable("Unknown argument type!");
1645
1646      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1647      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1648
1649      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1650      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1651      // right size.
1652      if (VA.getLocInfo() == CCValAssign::SExt)
1653        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1654                               DAG.getValueType(VA.getValVT()));
1655      else if (VA.getLocInfo() == CCValAssign::ZExt)
1656        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1657                               DAG.getValueType(VA.getValVT()));
1658      else if (VA.getLocInfo() == CCValAssign::BCvt)
1659        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1660
1661      if (VA.isExtInLoc()) {
1662        // Handle MMX values passed in XMM regs.
1663        if (RegVT.isVector()) {
1664          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1665                                 ArgValue, DAG.getConstant(0, MVT::i64));
1666          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1667        } else
1668          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1669      }
1670    } else {
1671      assert(VA.isMemLoc());
1672      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1673    }
1674
1675    // If value is passed via pointer - do a load.
1676    if (VA.getLocInfo() == CCValAssign::Indirect)
1677      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1678                             false, false, 0);
1679
1680    InVals.push_back(ArgValue);
1681  }
1682
1683  // The x86-64 ABI for returning structs by value requires that we copy
1684  // the sret argument into %rax for the return. Save the argument into
1685  // a virtual register so that we can access it from the return points.
1686  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1687    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1688    unsigned Reg = FuncInfo->getSRetReturnReg();
1689    if (!Reg) {
1690      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1691      FuncInfo->setSRetReturnReg(Reg);
1692    }
1693    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1694    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1695  }
1696
1697  unsigned StackSize = CCInfo.getNextStackOffset();
1698  // Align stack specially for tail calls.
1699  if (FuncIsMadeTailCallSafe(CallConv))
1700    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1701
1702  // If the function takes variable number of arguments, make a frame index for
1703  // the start of the first vararg value... for expansion of llvm.va_start.
1704  if (isVarArg) {
1705    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1706                    CallConv != CallingConv::X86_ThisCall)) {
1707      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1708    }
1709    if (Is64Bit) {
1710      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1711
1712      // FIXME: We should really autogenerate these arrays
1713      static const unsigned GPR64ArgRegsWin64[] = {
1714        X86::RCX, X86::RDX, X86::R8,  X86::R9
1715      };
1716      static const unsigned XMMArgRegsWin64[] = {
1717        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1718      };
1719      static const unsigned GPR64ArgRegs64Bit[] = {
1720        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1721      };
1722      static const unsigned XMMArgRegs64Bit[] = {
1723        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1724        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1725      };
1726      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1727
1728      if (IsWin64) {
1729        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1730        GPR64ArgRegs = GPR64ArgRegsWin64;
1731        XMMArgRegs = XMMArgRegsWin64;
1732      } else {
1733        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1734        GPR64ArgRegs = GPR64ArgRegs64Bit;
1735        XMMArgRegs = XMMArgRegs64Bit;
1736      }
1737      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1738                                                       TotalNumIntRegs);
1739      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1740                                                       TotalNumXMMRegs);
1741
1742      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1743      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1744             "SSE register cannot be used when SSE is disabled!");
1745      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1746             "SSE register cannot be used when SSE is disabled!");
1747      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1748        // Kernel mode asks for SSE to be disabled, so don't push them
1749        // on the stack.
1750        TotalNumXMMRegs = 0;
1751
1752      // For X86-64, if there are vararg parameters that are passed via
1753      // registers, then we must store them to their spots on the stack so they
1754      // may be loaded by deferencing the result of va_next.
1755      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1756      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1757      FuncInfo->setRegSaveFrameIndex(
1758        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1759                               false));
1760
1761      // Store the integer parameter registers.
1762      SmallVector<SDValue, 8> MemOps;
1763      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1764                                        getPointerTy());
1765      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1766      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1767        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1768                                  DAG.getIntPtrConstant(Offset));
1769        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1770                                     X86::GR64RegisterClass);
1771        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1772        SDValue Store =
1773          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1774                       PseudoSourceValue::getFixedStack(
1775                         FuncInfo->getRegSaveFrameIndex()),
1776                       Offset, false, false, 0);
1777        MemOps.push_back(Store);
1778        Offset += 8;
1779      }
1780
1781      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1782        // Now store the XMM (fp + vector) parameter registers.
1783        SmallVector<SDValue, 11> SaveXMMOps;
1784        SaveXMMOps.push_back(Chain);
1785
1786        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1787        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1788        SaveXMMOps.push_back(ALVal);
1789
1790        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1791                               FuncInfo->getRegSaveFrameIndex()));
1792        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1793                               FuncInfo->getVarArgsFPOffset()));
1794
1795        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1796          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1797                                       X86::VR128RegisterClass);
1798          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1799          SaveXMMOps.push_back(Val);
1800        }
1801        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1802                                     MVT::Other,
1803                                     &SaveXMMOps[0], SaveXMMOps.size()));
1804      }
1805
1806      if (!MemOps.empty())
1807        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1808                            &MemOps[0], MemOps.size());
1809    }
1810  }
1811
1812  // Some CCs need callee pop.
1813  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1814    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1815  } else {
1816    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1817    // If this is an sret function, the return should pop the hidden pointer.
1818    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1819      FuncInfo->setBytesToPopOnReturn(4);
1820  }
1821
1822  if (!Is64Bit) {
1823    // RegSaveFrameIndex is X86-64 only.
1824    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1825    if (CallConv == CallingConv::X86_FastCall ||
1826        CallConv == CallingConv::X86_ThisCall)
1827      // fastcc functions can't have varargs.
1828      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1829  }
1830
1831  return Chain;
1832}
1833
1834SDValue
1835X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1836                                    SDValue StackPtr, SDValue Arg,
1837                                    DebugLoc dl, SelectionDAG &DAG,
1838                                    const CCValAssign &VA,
1839                                    ISD::ArgFlagsTy Flags) const {
1840  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1841  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1842  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1843  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1844  if (Flags.isByVal()) {
1845    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1846  }
1847  return DAG.getStore(Chain, dl, Arg, PtrOff,
1848                      PseudoSourceValue::getStack(), LocMemOffset,
1849                      false, false, 0);
1850}
1851
1852/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1853/// optimization is performed and it is required.
1854SDValue
1855X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1856                                           SDValue &OutRetAddr, SDValue Chain,
1857                                           bool IsTailCall, bool Is64Bit,
1858                                           int FPDiff, DebugLoc dl) const {
1859  // Adjust the Return address stack slot.
1860  EVT VT = getPointerTy();
1861  OutRetAddr = getReturnAddressFrameIndex(DAG);
1862
1863  // Load the "old" Return address.
1864  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1865  return SDValue(OutRetAddr.getNode(), 1);
1866}
1867
1868/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1869/// optimization is performed and it is required (FPDiff!=0).
1870static SDValue
1871EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1872                         SDValue Chain, SDValue RetAddrFrIdx,
1873                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1874  // Store the return address to the appropriate stack slot.
1875  if (!FPDiff) return Chain;
1876  // Calculate the new stack slot for the return address.
1877  int SlotSize = Is64Bit ? 8 : 4;
1878  int NewReturnAddrFI =
1879    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1880  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1881  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1882  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1883                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1884                       false, false, 0);
1885  return Chain;
1886}
1887
1888SDValue
1889X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1890                             CallingConv::ID CallConv, bool isVarArg,
1891                             bool &isTailCall,
1892                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1893                             const SmallVectorImpl<SDValue> &OutVals,
1894                             const SmallVectorImpl<ISD::InputArg> &Ins,
1895                             DebugLoc dl, SelectionDAG &DAG,
1896                             SmallVectorImpl<SDValue> &InVals) const {
1897  MachineFunction &MF = DAG.getMachineFunction();
1898  bool Is64Bit        = Subtarget->is64Bit();
1899  bool IsStructRet    = CallIsStructReturn(Outs);
1900  bool IsSibcall      = false;
1901
1902  if (isTailCall) {
1903    // Check if it's really possible to do a tail call.
1904    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1905                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1906                                                   Outs, OutVals, Ins, DAG);
1907
1908    // Sibcalls are automatically detected tailcalls which do not require
1909    // ABI changes.
1910    if (!GuaranteedTailCallOpt && isTailCall)
1911      IsSibcall = true;
1912
1913    if (isTailCall)
1914      ++NumTailCalls;
1915  }
1916
1917  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1918         "Var args not supported with calling convention fastcc or ghc");
1919
1920  // Analyze operands of the call, assigning locations to each operand.
1921  SmallVector<CCValAssign, 16> ArgLocs;
1922  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1923                 ArgLocs, *DAG.getContext());
1924  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1925
1926  // Get a count of how many bytes are to be pushed on the stack.
1927  unsigned NumBytes = CCInfo.getNextStackOffset();
1928  if (IsSibcall)
1929    // This is a sibcall. The memory operands are available in caller's
1930    // own caller's stack.
1931    NumBytes = 0;
1932  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1933    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1934
1935  int FPDiff = 0;
1936  if (isTailCall && !IsSibcall) {
1937    // Lower arguments at fp - stackoffset + fpdiff.
1938    unsigned NumBytesCallerPushed =
1939      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1940    FPDiff = NumBytesCallerPushed - NumBytes;
1941
1942    // Set the delta of movement of the returnaddr stackslot.
1943    // But only set if delta is greater than previous delta.
1944    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1945      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1946  }
1947
1948  if (!IsSibcall)
1949    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1950
1951  SDValue RetAddrFrIdx;
1952  // Load return adress for tail calls.
1953  if (isTailCall && FPDiff)
1954    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1955                                    Is64Bit, FPDiff, dl);
1956
1957  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1958  SmallVector<SDValue, 8> MemOpChains;
1959  SDValue StackPtr;
1960
1961  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1962  // of tail call optimization arguments are handle later.
1963  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1964    CCValAssign &VA = ArgLocs[i];
1965    EVT RegVT = VA.getLocVT();
1966    SDValue Arg = OutVals[i];
1967    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1968    bool isByVal = Flags.isByVal();
1969
1970    // Promote the value if needed.
1971    switch (VA.getLocInfo()) {
1972    default: llvm_unreachable("Unknown loc info!");
1973    case CCValAssign::Full: break;
1974    case CCValAssign::SExt:
1975      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1976      break;
1977    case CCValAssign::ZExt:
1978      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1979      break;
1980    case CCValAssign::AExt:
1981      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1982        // Special case: passing MMX values in XMM registers.
1983        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1984        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1985        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1986      } else
1987        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1988      break;
1989    case CCValAssign::BCvt:
1990      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1991      break;
1992    case CCValAssign::Indirect: {
1993      // Store the argument.
1994      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1995      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1996      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1997                           PseudoSourceValue::getFixedStack(FI), 0,
1998                           false, false, 0);
1999      Arg = SpillSlot;
2000      break;
2001    }
2002    }
2003
2004    if (VA.isRegLoc()) {
2005      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2006    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2007      assert(VA.isMemLoc());
2008      if (StackPtr.getNode() == 0)
2009        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2010      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2011                                             dl, DAG, VA, Flags));
2012    }
2013  }
2014
2015  if (!MemOpChains.empty())
2016    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2017                        &MemOpChains[0], MemOpChains.size());
2018
2019  // Build a sequence of copy-to-reg nodes chained together with token chain
2020  // and flag operands which copy the outgoing args into registers.
2021  SDValue InFlag;
2022  // Tail call byval lowering might overwrite argument registers so in case of
2023  // tail call optimization the copies to registers are lowered later.
2024  if (!isTailCall)
2025    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2026      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2027                               RegsToPass[i].second, InFlag);
2028      InFlag = Chain.getValue(1);
2029    }
2030
2031  if (Subtarget->isPICStyleGOT()) {
2032    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2033    // GOT pointer.
2034    if (!isTailCall) {
2035      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2036                               DAG.getNode(X86ISD::GlobalBaseReg,
2037                                           DebugLoc(), getPointerTy()),
2038                               InFlag);
2039      InFlag = Chain.getValue(1);
2040    } else {
2041      // If we are tail calling and generating PIC/GOT style code load the
2042      // address of the callee into ECX. The value in ecx is used as target of
2043      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2044      // for tail calls on PIC/GOT architectures. Normally we would just put the
2045      // address of GOT into ebx and then call target@PLT. But for tail calls
2046      // ebx would be restored (since ebx is callee saved) before jumping to the
2047      // target@PLT.
2048
2049      // Note: The actual moving to ECX is done further down.
2050      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2051      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2052          !G->getGlobal()->hasProtectedVisibility())
2053        Callee = LowerGlobalAddress(Callee, DAG);
2054      else if (isa<ExternalSymbolSDNode>(Callee))
2055        Callee = LowerExternalSymbol(Callee, DAG);
2056    }
2057  }
2058
2059  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2060    // From AMD64 ABI document:
2061    // For calls that may call functions that use varargs or stdargs
2062    // (prototype-less calls or calls to functions containing ellipsis (...) in
2063    // the declaration) %al is used as hidden argument to specify the number
2064    // of SSE registers used. The contents of %al do not need to match exactly
2065    // the number of registers, but must be an ubound on the number of SSE
2066    // registers used and is in the range 0 - 8 inclusive.
2067
2068    // Count the number of XMM registers allocated.
2069    static const unsigned XMMArgRegs[] = {
2070      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2071      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2072    };
2073    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2074    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2075           && "SSE registers cannot be used when SSE is disabled");
2076
2077    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2078                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2079    InFlag = Chain.getValue(1);
2080  }
2081
2082
2083  // For tail calls lower the arguments to the 'real' stack slot.
2084  if (isTailCall) {
2085    // Force all the incoming stack arguments to be loaded from the stack
2086    // before any new outgoing arguments are stored to the stack, because the
2087    // outgoing stack slots may alias the incoming argument stack slots, and
2088    // the alias isn't otherwise explicit. This is slightly more conservative
2089    // than necessary, because it means that each store effectively depends
2090    // on every argument instead of just those arguments it would clobber.
2091    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2092
2093    SmallVector<SDValue, 8> MemOpChains2;
2094    SDValue FIN;
2095    int FI = 0;
2096    // Do not flag preceeding copytoreg stuff together with the following stuff.
2097    InFlag = SDValue();
2098    if (GuaranteedTailCallOpt) {
2099      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2100        CCValAssign &VA = ArgLocs[i];
2101        if (VA.isRegLoc())
2102          continue;
2103        assert(VA.isMemLoc());
2104        SDValue Arg = OutVals[i];
2105        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2106        // Create frame index.
2107        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2108        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2109        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2110        FIN = DAG.getFrameIndex(FI, getPointerTy());
2111
2112        if (Flags.isByVal()) {
2113          // Copy relative to framepointer.
2114          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2115          if (StackPtr.getNode() == 0)
2116            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2117                                          getPointerTy());
2118          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2119
2120          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2121                                                           ArgChain,
2122                                                           Flags, DAG, dl));
2123        } else {
2124          // Store relative to framepointer.
2125          MemOpChains2.push_back(
2126            DAG.getStore(ArgChain, dl, Arg, FIN,
2127                         PseudoSourceValue::getFixedStack(FI), 0,
2128                         false, false, 0));
2129        }
2130      }
2131    }
2132
2133    if (!MemOpChains2.empty())
2134      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2135                          &MemOpChains2[0], MemOpChains2.size());
2136
2137    // Copy arguments to their registers.
2138    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2139      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2140                               RegsToPass[i].second, InFlag);
2141      InFlag = Chain.getValue(1);
2142    }
2143    InFlag =SDValue();
2144
2145    // Store the return address to the appropriate stack slot.
2146    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2147                                     FPDiff, dl);
2148  }
2149
2150  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2151    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2152    // In the 64-bit large code model, we have to make all calls
2153    // through a register, since the call instruction's 32-bit
2154    // pc-relative offset may not be large enough to hold the whole
2155    // address.
2156  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2157    // If the callee is a GlobalAddress node (quite common, every direct call
2158    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2159    // it.
2160
2161    // We should use extra load for direct calls to dllimported functions in
2162    // non-JIT mode.
2163    const GlobalValue *GV = G->getGlobal();
2164    if (!GV->hasDLLImportLinkage()) {
2165      unsigned char OpFlags = 0;
2166
2167      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2168      // external symbols most go through the PLT in PIC mode.  If the symbol
2169      // has hidden or protected visibility, or if it is static or local, then
2170      // we don't need to use the PLT - we can directly call it.
2171      if (Subtarget->isTargetELF() &&
2172          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2173          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2174        OpFlags = X86II::MO_PLT;
2175      } else if (Subtarget->isPICStyleStubAny() &&
2176               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2177               Subtarget->getDarwinVers() < 9) {
2178        // PC-relative references to external symbols should go through $stub,
2179        // unless we're building with the leopard linker or later, which
2180        // automatically synthesizes these stubs.
2181        OpFlags = X86II::MO_DARWIN_STUB;
2182      }
2183
2184      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2185                                          G->getOffset(), OpFlags);
2186    }
2187  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2188    unsigned char OpFlags = 0;
2189
2190    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2191    // symbols should go through the PLT.
2192    if (Subtarget->isTargetELF() &&
2193        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2194      OpFlags = X86II::MO_PLT;
2195    } else if (Subtarget->isPICStyleStubAny() &&
2196             Subtarget->getDarwinVers() < 9) {
2197      // PC-relative references to external symbols should go through $stub,
2198      // unless we're building with the leopard linker or later, which
2199      // automatically synthesizes these stubs.
2200      OpFlags = X86II::MO_DARWIN_STUB;
2201    }
2202
2203    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2204                                         OpFlags);
2205  }
2206
2207  // Returns a chain & a flag for retval copy to use.
2208  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2209  SmallVector<SDValue, 8> Ops;
2210
2211  if (!IsSibcall && isTailCall) {
2212    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2213                           DAG.getIntPtrConstant(0, true), InFlag);
2214    InFlag = Chain.getValue(1);
2215  }
2216
2217  Ops.push_back(Chain);
2218  Ops.push_back(Callee);
2219
2220  if (isTailCall)
2221    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2222
2223  // Add argument registers to the end of the list so that they are known live
2224  // into the call.
2225  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2226    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2227                                  RegsToPass[i].second.getValueType()));
2228
2229  // Add an implicit use GOT pointer in EBX.
2230  if (!isTailCall && Subtarget->isPICStyleGOT())
2231    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2232
2233  // Add an implicit use of AL for x86 vararg functions.
2234  if (Is64Bit && isVarArg)
2235    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2236
2237  if (InFlag.getNode())
2238    Ops.push_back(InFlag);
2239
2240  if (isTailCall) {
2241    // We used to do:
2242    //// If this is the first return lowered for this function, add the regs
2243    //// to the liveout set for the function.
2244    // This isn't right, although it's probably harmless on x86; liveouts
2245    // should be computed from returns not tail calls.  Consider a void
2246    // function making a tail call to a function returning int.
2247    return DAG.getNode(X86ISD::TC_RETURN, dl,
2248                       NodeTys, &Ops[0], Ops.size());
2249  }
2250
2251  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2252  InFlag = Chain.getValue(1);
2253
2254  // Create the CALLSEQ_END node.
2255  unsigned NumBytesForCalleeToPush;
2256  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2257    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2258  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2259    // If this is a call to a struct-return function, the callee
2260    // pops the hidden struct pointer, so we have to push it back.
2261    // This is common for Darwin/X86, Linux & Mingw32 targets.
2262    NumBytesForCalleeToPush = 4;
2263  else
2264    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2265
2266  // Returns a flag for retval copy to use.
2267  if (!IsSibcall) {
2268    Chain = DAG.getCALLSEQ_END(Chain,
2269                               DAG.getIntPtrConstant(NumBytes, true),
2270                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2271                                                     true),
2272                               InFlag);
2273    InFlag = Chain.getValue(1);
2274  }
2275
2276  // Handle result values, copying them out of physregs into vregs that we
2277  // return.
2278  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2279                         Ins, dl, DAG, InVals);
2280}
2281
2282
2283//===----------------------------------------------------------------------===//
2284//                Fast Calling Convention (tail call) implementation
2285//===----------------------------------------------------------------------===//
2286
2287//  Like std call, callee cleans arguments, convention except that ECX is
2288//  reserved for storing the tail called function address. Only 2 registers are
2289//  free for argument passing (inreg). Tail call optimization is performed
2290//  provided:
2291//                * tailcallopt is enabled
2292//                * caller/callee are fastcc
2293//  On X86_64 architecture with GOT-style position independent code only local
2294//  (within module) calls are supported at the moment.
2295//  To keep the stack aligned according to platform abi the function
2296//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2297//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2298//  If a tail called function callee has more arguments than the caller the
2299//  caller needs to make sure that there is room to move the RETADDR to. This is
2300//  achieved by reserving an area the size of the argument delta right after the
2301//  original REtADDR, but before the saved framepointer or the spilled registers
2302//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2303//  stack layout:
2304//    arg1
2305//    arg2
2306//    RETADDR
2307//    [ new RETADDR
2308//      move area ]
2309//    (possible EBP)
2310//    ESI
2311//    EDI
2312//    local1 ..
2313
2314/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2315/// for a 16 byte align requirement.
2316unsigned
2317X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2318                                               SelectionDAG& DAG) const {
2319  MachineFunction &MF = DAG.getMachineFunction();
2320  const TargetMachine &TM = MF.getTarget();
2321  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2322  unsigned StackAlignment = TFI.getStackAlignment();
2323  uint64_t AlignMask = StackAlignment - 1;
2324  int64_t Offset = StackSize;
2325  uint64_t SlotSize = TD->getPointerSize();
2326  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2327    // Number smaller than 12 so just add the difference.
2328    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2329  } else {
2330    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2331    Offset = ((~AlignMask) & Offset) + StackAlignment +
2332      (StackAlignment-SlotSize);
2333  }
2334  return Offset;
2335}
2336
2337/// MatchingStackOffset - Return true if the given stack call argument is
2338/// already available in the same position (relatively) of the caller's
2339/// incoming argument stack.
2340static
2341bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2342                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2343                         const X86InstrInfo *TII) {
2344  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2345  int FI = INT_MAX;
2346  if (Arg.getOpcode() == ISD::CopyFromReg) {
2347    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2348    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2349      return false;
2350    MachineInstr *Def = MRI->getVRegDef(VR);
2351    if (!Def)
2352      return false;
2353    if (!Flags.isByVal()) {
2354      if (!TII->isLoadFromStackSlot(Def, FI))
2355        return false;
2356    } else {
2357      unsigned Opcode = Def->getOpcode();
2358      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2359          Def->getOperand(1).isFI()) {
2360        FI = Def->getOperand(1).getIndex();
2361        Bytes = Flags.getByValSize();
2362      } else
2363        return false;
2364    }
2365  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2366    if (Flags.isByVal())
2367      // ByVal argument is passed in as a pointer but it's now being
2368      // dereferenced. e.g.
2369      // define @foo(%struct.X* %A) {
2370      //   tail call @bar(%struct.X* byval %A)
2371      // }
2372      return false;
2373    SDValue Ptr = Ld->getBasePtr();
2374    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2375    if (!FINode)
2376      return false;
2377    FI = FINode->getIndex();
2378  } else
2379    return false;
2380
2381  assert(FI != INT_MAX);
2382  if (!MFI->isFixedObjectIndex(FI))
2383    return false;
2384  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2385}
2386
2387/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2388/// for tail call optimization. Targets which want to do tail call
2389/// optimization should implement this function.
2390bool
2391X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2392                                                     CallingConv::ID CalleeCC,
2393                                                     bool isVarArg,
2394                                                     bool isCalleeStructRet,
2395                                                     bool isCallerStructRet,
2396                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2397                                    const SmallVectorImpl<SDValue> &OutVals,
2398                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2399                                                     SelectionDAG& DAG) const {
2400  if (!IsTailCallConvention(CalleeCC) &&
2401      CalleeCC != CallingConv::C)
2402    return false;
2403
2404  // If -tailcallopt is specified, make fastcc functions tail-callable.
2405  const MachineFunction &MF = DAG.getMachineFunction();
2406  const Function *CallerF = DAG.getMachineFunction().getFunction();
2407  CallingConv::ID CallerCC = CallerF->getCallingConv();
2408  bool CCMatch = CallerCC == CalleeCC;
2409
2410  if (GuaranteedTailCallOpt) {
2411    if (IsTailCallConvention(CalleeCC) && CCMatch)
2412      return true;
2413    return false;
2414  }
2415
2416  // Look for obvious safe cases to perform tail call optimization that do not
2417  // require ABI changes. This is what gcc calls sibcall.
2418
2419  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2420  // emit a special epilogue.
2421  if (RegInfo->needsStackRealignment(MF))
2422    return false;
2423
2424  // Do not sibcall optimize vararg calls unless the call site is not passing
2425  // any arguments.
2426  if (isVarArg && !Outs.empty())
2427    return false;
2428
2429  // Also avoid sibcall optimization if either caller or callee uses struct
2430  // return semantics.
2431  if (isCalleeStructRet || isCallerStructRet)
2432    return false;
2433
2434  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2435  // Therefore if it's not used by the call it is not safe to optimize this into
2436  // a sibcall.
2437  bool Unused = false;
2438  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2439    if (!Ins[i].Used) {
2440      Unused = true;
2441      break;
2442    }
2443  }
2444  if (Unused) {
2445    SmallVector<CCValAssign, 16> RVLocs;
2446    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2447                   RVLocs, *DAG.getContext());
2448    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2449    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2450      CCValAssign &VA = RVLocs[i];
2451      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2452        return false;
2453    }
2454  }
2455
2456  // If the calling conventions do not match, then we'd better make sure the
2457  // results are returned in the same way as what the caller expects.
2458  if (!CCMatch) {
2459    SmallVector<CCValAssign, 16> RVLocs1;
2460    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2461                    RVLocs1, *DAG.getContext());
2462    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2463
2464    SmallVector<CCValAssign, 16> RVLocs2;
2465    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2466                    RVLocs2, *DAG.getContext());
2467    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2468
2469    if (RVLocs1.size() != RVLocs2.size())
2470      return false;
2471    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2472      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2473        return false;
2474      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2475        return false;
2476      if (RVLocs1[i].isRegLoc()) {
2477        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2478          return false;
2479      } else {
2480        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2481          return false;
2482      }
2483    }
2484  }
2485
2486  // If the callee takes no arguments then go on to check the results of the
2487  // call.
2488  if (!Outs.empty()) {
2489    // Check if stack adjustment is needed. For now, do not do this if any
2490    // argument is passed on the stack.
2491    SmallVector<CCValAssign, 16> ArgLocs;
2492    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2493                   ArgLocs, *DAG.getContext());
2494    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2495    if (CCInfo.getNextStackOffset()) {
2496      MachineFunction &MF = DAG.getMachineFunction();
2497      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2498        return false;
2499      if (Subtarget->isTargetWin64())
2500        // Win64 ABI has additional complications.
2501        return false;
2502
2503      // Check if the arguments are already laid out in the right way as
2504      // the caller's fixed stack objects.
2505      MachineFrameInfo *MFI = MF.getFrameInfo();
2506      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2507      const X86InstrInfo *TII =
2508        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2509      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2510        CCValAssign &VA = ArgLocs[i];
2511        SDValue Arg = OutVals[i];
2512        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2513        if (VA.getLocInfo() == CCValAssign::Indirect)
2514          return false;
2515        if (!VA.isRegLoc()) {
2516          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2517                                   MFI, MRI, TII))
2518            return false;
2519        }
2520      }
2521    }
2522
2523    // If the tailcall address may be in a register, then make sure it's
2524    // possible to register allocate for it. In 32-bit, the call address can
2525    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2526    // callee-saved registers are restored. These happen to be the same
2527    // registers used to pass 'inreg' arguments so watch out for those.
2528    if (!Subtarget->is64Bit() &&
2529        !isa<GlobalAddressSDNode>(Callee) &&
2530        !isa<ExternalSymbolSDNode>(Callee)) {
2531      unsigned NumInRegs = 0;
2532      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2533        CCValAssign &VA = ArgLocs[i];
2534        if (!VA.isRegLoc())
2535          continue;
2536        unsigned Reg = VA.getLocReg();
2537        switch (Reg) {
2538        default: break;
2539        case X86::EAX: case X86::EDX: case X86::ECX:
2540          if (++NumInRegs == 3)
2541            return false;
2542          break;
2543        }
2544      }
2545    }
2546  }
2547
2548  return true;
2549}
2550
2551FastISel *
2552X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2553  return X86::createFastISel(funcInfo);
2554}
2555
2556
2557//===----------------------------------------------------------------------===//
2558//                           Other Lowering Hooks
2559//===----------------------------------------------------------------------===//
2560
2561
2562SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2563  MachineFunction &MF = DAG.getMachineFunction();
2564  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2565  int ReturnAddrIndex = FuncInfo->getRAIndex();
2566
2567  if (ReturnAddrIndex == 0) {
2568    // Set up a frame object for the return address.
2569    uint64_t SlotSize = TD->getPointerSize();
2570    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2571                                                           false);
2572    FuncInfo->setRAIndex(ReturnAddrIndex);
2573  }
2574
2575  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2576}
2577
2578
2579bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2580                                       bool hasSymbolicDisplacement) {
2581  // Offset should fit into 32 bit immediate field.
2582  if (!isInt<32>(Offset))
2583    return false;
2584
2585  // If we don't have a symbolic displacement - we don't have any extra
2586  // restrictions.
2587  if (!hasSymbolicDisplacement)
2588    return true;
2589
2590  // FIXME: Some tweaks might be needed for medium code model.
2591  if (M != CodeModel::Small && M != CodeModel::Kernel)
2592    return false;
2593
2594  // For small code model we assume that latest object is 16MB before end of 31
2595  // bits boundary. We may also accept pretty large negative constants knowing
2596  // that all objects are in the positive half of address space.
2597  if (M == CodeModel::Small && Offset < 16*1024*1024)
2598    return true;
2599
2600  // For kernel code model we know that all object resist in the negative half
2601  // of 32bits address space. We may not accept negative offsets, since they may
2602  // be just off and we may accept pretty large positive ones.
2603  if (M == CodeModel::Kernel && Offset > 0)
2604    return true;
2605
2606  return false;
2607}
2608
2609/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2610/// specific condition code, returning the condition code and the LHS/RHS of the
2611/// comparison to make.
2612static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2613                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2614  if (!isFP) {
2615    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2616      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2617        // X > -1   -> X == 0, jump !sign.
2618        RHS = DAG.getConstant(0, RHS.getValueType());
2619        return X86::COND_NS;
2620      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2621        // X < 0   -> X == 0, jump on sign.
2622        return X86::COND_S;
2623      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2624        // X < 1   -> X <= 0
2625        RHS = DAG.getConstant(0, RHS.getValueType());
2626        return X86::COND_LE;
2627      }
2628    }
2629
2630    switch (SetCCOpcode) {
2631    default: llvm_unreachable("Invalid integer condition!");
2632    case ISD::SETEQ:  return X86::COND_E;
2633    case ISD::SETGT:  return X86::COND_G;
2634    case ISD::SETGE:  return X86::COND_GE;
2635    case ISD::SETLT:  return X86::COND_L;
2636    case ISD::SETLE:  return X86::COND_LE;
2637    case ISD::SETNE:  return X86::COND_NE;
2638    case ISD::SETULT: return X86::COND_B;
2639    case ISD::SETUGT: return X86::COND_A;
2640    case ISD::SETULE: return X86::COND_BE;
2641    case ISD::SETUGE: return X86::COND_AE;
2642    }
2643  }
2644
2645  // First determine if it is required or is profitable to flip the operands.
2646
2647  // If LHS is a foldable load, but RHS is not, flip the condition.
2648  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2649      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2650    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2651    std::swap(LHS, RHS);
2652  }
2653
2654  switch (SetCCOpcode) {
2655  default: break;
2656  case ISD::SETOLT:
2657  case ISD::SETOLE:
2658  case ISD::SETUGT:
2659  case ISD::SETUGE:
2660    std::swap(LHS, RHS);
2661    break;
2662  }
2663
2664  // On a floating point condition, the flags are set as follows:
2665  // ZF  PF  CF   op
2666  //  0 | 0 | 0 | X > Y
2667  //  0 | 0 | 1 | X < Y
2668  //  1 | 0 | 0 | X == Y
2669  //  1 | 1 | 1 | unordered
2670  switch (SetCCOpcode) {
2671  default: llvm_unreachable("Condcode should be pre-legalized away");
2672  case ISD::SETUEQ:
2673  case ISD::SETEQ:   return X86::COND_E;
2674  case ISD::SETOLT:              // flipped
2675  case ISD::SETOGT:
2676  case ISD::SETGT:   return X86::COND_A;
2677  case ISD::SETOLE:              // flipped
2678  case ISD::SETOGE:
2679  case ISD::SETGE:   return X86::COND_AE;
2680  case ISD::SETUGT:              // flipped
2681  case ISD::SETULT:
2682  case ISD::SETLT:   return X86::COND_B;
2683  case ISD::SETUGE:              // flipped
2684  case ISD::SETULE:
2685  case ISD::SETLE:   return X86::COND_BE;
2686  case ISD::SETONE:
2687  case ISD::SETNE:   return X86::COND_NE;
2688  case ISD::SETUO:   return X86::COND_P;
2689  case ISD::SETO:    return X86::COND_NP;
2690  case ISD::SETOEQ:
2691  case ISD::SETUNE:  return X86::COND_INVALID;
2692  }
2693}
2694
2695/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2696/// code. Current x86 isa includes the following FP cmov instructions:
2697/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2698static bool hasFPCMov(unsigned X86CC) {
2699  switch (X86CC) {
2700  default:
2701    return false;
2702  case X86::COND_B:
2703  case X86::COND_BE:
2704  case X86::COND_E:
2705  case X86::COND_P:
2706  case X86::COND_A:
2707  case X86::COND_AE:
2708  case X86::COND_NE:
2709  case X86::COND_NP:
2710    return true;
2711  }
2712}
2713
2714/// isFPImmLegal - Returns true if the target can instruction select the
2715/// specified FP immediate natively. If false, the legalizer will
2716/// materialize the FP immediate as a load from a constant pool.
2717bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2718  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2719    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2720      return true;
2721  }
2722  return false;
2723}
2724
2725/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2726/// the specified range (L, H].
2727static bool isUndefOrInRange(int Val, int Low, int Hi) {
2728  return (Val < 0) || (Val >= Low && Val < Hi);
2729}
2730
2731/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2732/// specified value.
2733static bool isUndefOrEqual(int Val, int CmpVal) {
2734  if (Val < 0 || Val == CmpVal)
2735    return true;
2736  return false;
2737}
2738
2739/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2740/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2741/// the second operand.
2742static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2743  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2744    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2745  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2746    return (Mask[0] < 2 && Mask[1] < 2);
2747  return false;
2748}
2749
2750bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2751  SmallVector<int, 8> M;
2752  N->getMask(M);
2753  return ::isPSHUFDMask(M, N->getValueType(0));
2754}
2755
2756/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2757/// is suitable for input to PSHUFHW.
2758static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2759  if (VT != MVT::v8i16)
2760    return false;
2761
2762  // Lower quadword copied in order or undef.
2763  for (int i = 0; i != 4; ++i)
2764    if (Mask[i] >= 0 && Mask[i] != i)
2765      return false;
2766
2767  // Upper quadword shuffled.
2768  for (int i = 4; i != 8; ++i)
2769    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2770      return false;
2771
2772  return true;
2773}
2774
2775bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2776  SmallVector<int, 8> M;
2777  N->getMask(M);
2778  return ::isPSHUFHWMask(M, N->getValueType(0));
2779}
2780
2781/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2782/// is suitable for input to PSHUFLW.
2783static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2784  if (VT != MVT::v8i16)
2785    return false;
2786
2787  // Upper quadword copied in order.
2788  for (int i = 4; i != 8; ++i)
2789    if (Mask[i] >= 0 && Mask[i] != i)
2790      return false;
2791
2792  // Lower quadword shuffled.
2793  for (int i = 0; i != 4; ++i)
2794    if (Mask[i] >= 4)
2795      return false;
2796
2797  return true;
2798}
2799
2800bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2801  SmallVector<int, 8> M;
2802  N->getMask(M);
2803  return ::isPSHUFLWMask(M, N->getValueType(0));
2804}
2805
2806/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2807/// is suitable for input to PALIGNR.
2808static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2809                          bool hasSSSE3) {
2810  int i, e = VT.getVectorNumElements();
2811
2812  // Do not handle v2i64 / v2f64 shuffles with palignr.
2813  if (e < 4 || !hasSSSE3)
2814    return false;
2815
2816  for (i = 0; i != e; ++i)
2817    if (Mask[i] >= 0)
2818      break;
2819
2820  // All undef, not a palignr.
2821  if (i == e)
2822    return false;
2823
2824  // Determine if it's ok to perform a palignr with only the LHS, since we
2825  // don't have access to the actual shuffle elements to see if RHS is undef.
2826  bool Unary = Mask[i] < (int)e;
2827  bool NeedsUnary = false;
2828
2829  int s = Mask[i] - i;
2830
2831  // Check the rest of the elements to see if they are consecutive.
2832  for (++i; i != e; ++i) {
2833    int m = Mask[i];
2834    if (m < 0)
2835      continue;
2836
2837    Unary = Unary && (m < (int)e);
2838    NeedsUnary = NeedsUnary || (m < s);
2839
2840    if (NeedsUnary && !Unary)
2841      return false;
2842    if (Unary && m != ((s+i) & (e-1)))
2843      return false;
2844    if (!Unary && m != (s+i))
2845      return false;
2846  }
2847  return true;
2848}
2849
2850bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2851  SmallVector<int, 8> M;
2852  N->getMask(M);
2853  return ::isPALIGNRMask(M, N->getValueType(0), true);
2854}
2855
2856/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2857/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2858static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2859  int NumElems = VT.getVectorNumElements();
2860  if (NumElems != 2 && NumElems != 4)
2861    return false;
2862
2863  int Half = NumElems / 2;
2864  for (int i = 0; i < Half; ++i)
2865    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2866      return false;
2867  for (int i = Half; i < NumElems; ++i)
2868    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2869      return false;
2870
2871  return true;
2872}
2873
2874bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2875  SmallVector<int, 8> M;
2876  N->getMask(M);
2877  return ::isSHUFPMask(M, N->getValueType(0));
2878}
2879
2880/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2881/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2882/// half elements to come from vector 1 (which would equal the dest.) and
2883/// the upper half to come from vector 2.
2884static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2885  int NumElems = VT.getVectorNumElements();
2886
2887  if (NumElems != 2 && NumElems != 4)
2888    return false;
2889
2890  int Half = NumElems / 2;
2891  for (int i = 0; i < Half; ++i)
2892    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2893      return false;
2894  for (int i = Half; i < NumElems; ++i)
2895    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2896      return false;
2897  return true;
2898}
2899
2900static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2901  SmallVector<int, 8> M;
2902  N->getMask(M);
2903  return isCommutedSHUFPMask(M, N->getValueType(0));
2904}
2905
2906/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2907/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2908bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2909  if (N->getValueType(0).getVectorNumElements() != 4)
2910    return false;
2911
2912  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2913  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2914         isUndefOrEqual(N->getMaskElt(1), 7) &&
2915         isUndefOrEqual(N->getMaskElt(2), 2) &&
2916         isUndefOrEqual(N->getMaskElt(3), 3);
2917}
2918
2919/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2920/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2921/// <2, 3, 2, 3>
2922bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2923  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2924
2925  if (NumElems != 4)
2926    return false;
2927
2928  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2929  isUndefOrEqual(N->getMaskElt(1), 3) &&
2930  isUndefOrEqual(N->getMaskElt(2), 2) &&
2931  isUndefOrEqual(N->getMaskElt(3), 3);
2932}
2933
2934/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2935/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2936bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2937  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2938
2939  if (NumElems != 2 && NumElems != 4)
2940    return false;
2941
2942  for (unsigned i = 0; i < NumElems/2; ++i)
2943    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2944      return false;
2945
2946  for (unsigned i = NumElems/2; i < NumElems; ++i)
2947    if (!isUndefOrEqual(N->getMaskElt(i), i))
2948      return false;
2949
2950  return true;
2951}
2952
2953/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2954/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2955bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2956  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2957
2958  if (NumElems != 2 && NumElems != 4)
2959    return false;
2960
2961  for (unsigned i = 0; i < NumElems/2; ++i)
2962    if (!isUndefOrEqual(N->getMaskElt(i), i))
2963      return false;
2964
2965  for (unsigned i = 0; i < NumElems/2; ++i)
2966    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2967      return false;
2968
2969  return true;
2970}
2971
2972/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2973/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2974static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2975                         bool V2IsSplat = false) {
2976  int NumElts = VT.getVectorNumElements();
2977  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2978    return false;
2979
2980  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2981    int BitI  = Mask[i];
2982    int BitI1 = Mask[i+1];
2983    if (!isUndefOrEqual(BitI, j))
2984      return false;
2985    if (V2IsSplat) {
2986      if (!isUndefOrEqual(BitI1, NumElts))
2987        return false;
2988    } else {
2989      if (!isUndefOrEqual(BitI1, j + NumElts))
2990        return false;
2991    }
2992  }
2993  return true;
2994}
2995
2996bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2997  SmallVector<int, 8> M;
2998  N->getMask(M);
2999  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3000}
3001
3002/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3003/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3004static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3005                         bool V2IsSplat = false) {
3006  int NumElts = VT.getVectorNumElements();
3007  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3008    return false;
3009
3010  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3011    int BitI  = Mask[i];
3012    int BitI1 = Mask[i+1];
3013    if (!isUndefOrEqual(BitI, j + NumElts/2))
3014      return false;
3015    if (V2IsSplat) {
3016      if (isUndefOrEqual(BitI1, NumElts))
3017        return false;
3018    } else {
3019      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3020        return false;
3021    }
3022  }
3023  return true;
3024}
3025
3026bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3027  SmallVector<int, 8> M;
3028  N->getMask(M);
3029  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3030}
3031
3032/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3033/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3034/// <0, 0, 1, 1>
3035static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3036  int NumElems = VT.getVectorNumElements();
3037  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3038    return false;
3039
3040  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3041    int BitI  = Mask[i];
3042    int BitI1 = Mask[i+1];
3043    if (!isUndefOrEqual(BitI, j))
3044      return false;
3045    if (!isUndefOrEqual(BitI1, j))
3046      return false;
3047  }
3048  return true;
3049}
3050
3051bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3052  SmallVector<int, 8> M;
3053  N->getMask(M);
3054  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3055}
3056
3057/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3058/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3059/// <2, 2, 3, 3>
3060static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3061  int NumElems = VT.getVectorNumElements();
3062  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3063    return false;
3064
3065  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3066    int BitI  = Mask[i];
3067    int BitI1 = Mask[i+1];
3068    if (!isUndefOrEqual(BitI, j))
3069      return false;
3070    if (!isUndefOrEqual(BitI1, j))
3071      return false;
3072  }
3073  return true;
3074}
3075
3076bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3077  SmallVector<int, 8> M;
3078  N->getMask(M);
3079  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3080}
3081
3082/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3083/// specifies a shuffle of elements that is suitable for input to MOVSS,
3084/// MOVSD, and MOVD, i.e. setting the lowest element.
3085static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3086  if (VT.getVectorElementType().getSizeInBits() < 32)
3087    return false;
3088
3089  int NumElts = VT.getVectorNumElements();
3090
3091  if (!isUndefOrEqual(Mask[0], NumElts))
3092    return false;
3093
3094  for (int i = 1; i < NumElts; ++i)
3095    if (!isUndefOrEqual(Mask[i], i))
3096      return false;
3097
3098  return true;
3099}
3100
3101bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3102  SmallVector<int, 8> M;
3103  N->getMask(M);
3104  return ::isMOVLMask(M, N->getValueType(0));
3105}
3106
3107/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3108/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3109/// element of vector 2 and the other elements to come from vector 1 in order.
3110static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3111                               bool V2IsSplat = false, bool V2IsUndef = false) {
3112  int NumOps = VT.getVectorNumElements();
3113  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3114    return false;
3115
3116  if (!isUndefOrEqual(Mask[0], 0))
3117    return false;
3118
3119  for (int i = 1; i < NumOps; ++i)
3120    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3121          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3122          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3123      return false;
3124
3125  return true;
3126}
3127
3128static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3129                           bool V2IsUndef = false) {
3130  SmallVector<int, 8> M;
3131  N->getMask(M);
3132  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3133}
3134
3135/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3136/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3137bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3138  if (N->getValueType(0).getVectorNumElements() != 4)
3139    return false;
3140
3141  // Expect 1, 1, 3, 3
3142  for (unsigned i = 0; i < 2; ++i) {
3143    int Elt = N->getMaskElt(i);
3144    if (Elt >= 0 && Elt != 1)
3145      return false;
3146  }
3147
3148  bool HasHi = false;
3149  for (unsigned i = 2; i < 4; ++i) {
3150    int Elt = N->getMaskElt(i);
3151    if (Elt >= 0 && Elt != 3)
3152      return false;
3153    if (Elt == 3)
3154      HasHi = true;
3155  }
3156  // Don't use movshdup if it can be done with a shufps.
3157  // FIXME: verify that matching u, u, 3, 3 is what we want.
3158  return HasHi;
3159}
3160
3161/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3162/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3163bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3164  if (N->getValueType(0).getVectorNumElements() != 4)
3165    return false;
3166
3167  // Expect 0, 0, 2, 2
3168  for (unsigned i = 0; i < 2; ++i)
3169    if (N->getMaskElt(i) > 0)
3170      return false;
3171
3172  bool HasHi = false;
3173  for (unsigned i = 2; i < 4; ++i) {
3174    int Elt = N->getMaskElt(i);
3175    if (Elt >= 0 && Elt != 2)
3176      return false;
3177    if (Elt == 2)
3178      HasHi = true;
3179  }
3180  // Don't use movsldup if it can be done with a shufps.
3181  return HasHi;
3182}
3183
3184/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3185/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3186bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3187  int e = N->getValueType(0).getVectorNumElements() / 2;
3188
3189  for (int i = 0; i < e; ++i)
3190    if (!isUndefOrEqual(N->getMaskElt(i), i))
3191      return false;
3192  for (int i = 0; i < e; ++i)
3193    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3194      return false;
3195  return true;
3196}
3197
3198/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3199/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3200unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3201  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3202  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3203
3204  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3205  unsigned Mask = 0;
3206  for (int i = 0; i < NumOperands; ++i) {
3207    int Val = SVOp->getMaskElt(NumOperands-i-1);
3208    if (Val < 0) Val = 0;
3209    if (Val >= NumOperands) Val -= NumOperands;
3210    Mask |= Val;
3211    if (i != NumOperands - 1)
3212      Mask <<= Shift;
3213  }
3214  return Mask;
3215}
3216
3217/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3218/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3219unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3220  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3221  unsigned Mask = 0;
3222  // 8 nodes, but we only care about the last 4.
3223  for (unsigned i = 7; i >= 4; --i) {
3224    int Val = SVOp->getMaskElt(i);
3225    if (Val >= 0)
3226      Mask |= (Val - 4);
3227    if (i != 4)
3228      Mask <<= 2;
3229  }
3230  return Mask;
3231}
3232
3233/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3234/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3235unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3236  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3237  unsigned Mask = 0;
3238  // 8 nodes, but we only care about the first 4.
3239  for (int i = 3; i >= 0; --i) {
3240    int Val = SVOp->getMaskElt(i);
3241    if (Val >= 0)
3242      Mask |= Val;
3243    if (i != 0)
3244      Mask <<= 2;
3245  }
3246  return Mask;
3247}
3248
3249/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3250/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3251unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3252  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3253  EVT VVT = N->getValueType(0);
3254  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3255  int Val = 0;
3256
3257  unsigned i, e;
3258  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3259    Val = SVOp->getMaskElt(i);
3260    if (Val >= 0)
3261      break;
3262  }
3263  return (Val - i) * EltSize;
3264}
3265
3266/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3267/// constant +0.0.
3268bool X86::isZeroNode(SDValue Elt) {
3269  return ((isa<ConstantSDNode>(Elt) &&
3270           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3271          (isa<ConstantFPSDNode>(Elt) &&
3272           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3273}
3274
3275/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3276/// their permute mask.
3277static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3278                                    SelectionDAG &DAG) {
3279  EVT VT = SVOp->getValueType(0);
3280  unsigned NumElems = VT.getVectorNumElements();
3281  SmallVector<int, 8> MaskVec;
3282
3283  for (unsigned i = 0; i != NumElems; ++i) {
3284    int idx = SVOp->getMaskElt(i);
3285    if (idx < 0)
3286      MaskVec.push_back(idx);
3287    else if (idx < (int)NumElems)
3288      MaskVec.push_back(idx + NumElems);
3289    else
3290      MaskVec.push_back(idx - NumElems);
3291  }
3292  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3293                              SVOp->getOperand(0), &MaskVec[0]);
3294}
3295
3296/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3297/// the two vector operands have swapped position.
3298static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3299  unsigned NumElems = VT.getVectorNumElements();
3300  for (unsigned i = 0; i != NumElems; ++i) {
3301    int idx = Mask[i];
3302    if (idx < 0)
3303      continue;
3304    else if (idx < (int)NumElems)
3305      Mask[i] = idx + NumElems;
3306    else
3307      Mask[i] = idx - NumElems;
3308  }
3309}
3310
3311/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3312/// match movhlps. The lower half elements should come from upper half of
3313/// V1 (and in order), and the upper half elements should come from the upper
3314/// half of V2 (and in order).
3315static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3316  if (Op->getValueType(0).getVectorNumElements() != 4)
3317    return false;
3318  for (unsigned i = 0, e = 2; i != e; ++i)
3319    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3320      return false;
3321  for (unsigned i = 2; i != 4; ++i)
3322    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3323      return false;
3324  return true;
3325}
3326
3327/// isScalarLoadToVector - Returns true if the node is a scalar load that
3328/// is promoted to a vector. It also returns the LoadSDNode by reference if
3329/// required.
3330static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3331  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3332    return false;
3333  N = N->getOperand(0).getNode();
3334  if (!ISD::isNON_EXTLoad(N))
3335    return false;
3336  if (LD)
3337    *LD = cast<LoadSDNode>(N);
3338  return true;
3339}
3340
3341/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3342/// match movlp{s|d}. The lower half elements should come from lower half of
3343/// V1 (and in order), and the upper half elements should come from the upper
3344/// half of V2 (and in order). And since V1 will become the source of the
3345/// MOVLP, it must be either a vector load or a scalar load to vector.
3346static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3347                               ShuffleVectorSDNode *Op) {
3348  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3349    return false;
3350  // Is V2 is a vector load, don't do this transformation. We will try to use
3351  // load folding shufps op.
3352  if (ISD::isNON_EXTLoad(V2))
3353    return false;
3354
3355  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3356
3357  if (NumElems != 2 && NumElems != 4)
3358    return false;
3359  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3360    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3361      return false;
3362  for (unsigned i = NumElems/2; i != NumElems; ++i)
3363    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3364      return false;
3365  return true;
3366}
3367
3368/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3369/// all the same.
3370static bool isSplatVector(SDNode *N) {
3371  if (N->getOpcode() != ISD::BUILD_VECTOR)
3372    return false;
3373
3374  SDValue SplatValue = N->getOperand(0);
3375  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3376    if (N->getOperand(i) != SplatValue)
3377      return false;
3378  return true;
3379}
3380
3381/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3382/// to an zero vector.
3383/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3384static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3385  SDValue V1 = N->getOperand(0);
3386  SDValue V2 = N->getOperand(1);
3387  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3388  for (unsigned i = 0; i != NumElems; ++i) {
3389    int Idx = N->getMaskElt(i);
3390    if (Idx >= (int)NumElems) {
3391      unsigned Opc = V2.getOpcode();
3392      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3393        continue;
3394      if (Opc != ISD::BUILD_VECTOR ||
3395          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3396        return false;
3397    } else if (Idx >= 0) {
3398      unsigned Opc = V1.getOpcode();
3399      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3400        continue;
3401      if (Opc != ISD::BUILD_VECTOR ||
3402          !X86::isZeroNode(V1.getOperand(Idx)))
3403        return false;
3404    }
3405  }
3406  return true;
3407}
3408
3409/// getZeroVector - Returns a vector of specified type with all zero elements.
3410///
3411static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3412                             DebugLoc dl) {
3413  assert(VT.isVector() && "Expected a vector type");
3414
3415  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3416  // type.  This ensures they get CSE'd.
3417  SDValue Vec;
3418  if (VT.getSizeInBits() == 64) { // MMX
3419    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3420    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3421  } else if (HasSSE2) {  // SSE2
3422    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3423    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3424  } else { // SSE1
3425    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3426    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3427  }
3428  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3429}
3430
3431/// getOnesVector - Returns a vector of specified type with all bits set.
3432///
3433static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3434  assert(VT.isVector() && "Expected a vector type");
3435
3436  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3437  // type.  This ensures they get CSE'd.
3438  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3439  SDValue Vec;
3440  if (VT.getSizeInBits() == 64)  // MMX
3441    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3442  else                                              // SSE
3443    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3444  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3445}
3446
3447
3448/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3449/// that point to V2 points to its first element.
3450static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3451  EVT VT = SVOp->getValueType(0);
3452  unsigned NumElems = VT.getVectorNumElements();
3453
3454  bool Changed = false;
3455  SmallVector<int, 8> MaskVec;
3456  SVOp->getMask(MaskVec);
3457
3458  for (unsigned i = 0; i != NumElems; ++i) {
3459    if (MaskVec[i] > (int)NumElems) {
3460      MaskVec[i] = NumElems;
3461      Changed = true;
3462    }
3463  }
3464  if (Changed)
3465    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3466                                SVOp->getOperand(1), &MaskVec[0]);
3467  return SDValue(SVOp, 0);
3468}
3469
3470/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3471/// operation of specified width.
3472static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3473                       SDValue V2) {
3474  unsigned NumElems = VT.getVectorNumElements();
3475  SmallVector<int, 8> Mask;
3476  Mask.push_back(NumElems);
3477  for (unsigned i = 1; i != NumElems; ++i)
3478    Mask.push_back(i);
3479  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3480}
3481
3482/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3483static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3484                          SDValue V2) {
3485  unsigned NumElems = VT.getVectorNumElements();
3486  SmallVector<int, 8> Mask;
3487  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3488    Mask.push_back(i);
3489    Mask.push_back(i + NumElems);
3490  }
3491  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3492}
3493
3494/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3495static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3496                          SDValue V2) {
3497  unsigned NumElems = VT.getVectorNumElements();
3498  unsigned Half = NumElems/2;
3499  SmallVector<int, 8> Mask;
3500  for (unsigned i = 0; i != Half; ++i) {
3501    Mask.push_back(i + Half);
3502    Mask.push_back(i + NumElems + Half);
3503  }
3504  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3505}
3506
3507/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3508static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3509                            bool HasSSE2) {
3510  if (SV->getValueType(0).getVectorNumElements() <= 4)
3511    return SDValue(SV, 0);
3512
3513  EVT PVT = MVT::v4f32;
3514  EVT VT = SV->getValueType(0);
3515  DebugLoc dl = SV->getDebugLoc();
3516  SDValue V1 = SV->getOperand(0);
3517  int NumElems = VT.getVectorNumElements();
3518  int EltNo = SV->getSplatIndex();
3519
3520  // unpack elements to the correct location
3521  while (NumElems > 4) {
3522    if (EltNo < NumElems/2) {
3523      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3524    } else {
3525      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3526      EltNo -= NumElems/2;
3527    }
3528    NumElems >>= 1;
3529  }
3530
3531  // Perform the splat.
3532  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3533  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3534  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3535  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3536}
3537
3538/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3539/// vector of zero or undef vector.  This produces a shuffle where the low
3540/// element of V2 is swizzled into the zero/undef vector, landing at element
3541/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3542static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3543                                             bool isZero, bool HasSSE2,
3544                                             SelectionDAG &DAG) {
3545  EVT VT = V2.getValueType();
3546  SDValue V1 = isZero
3547    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3548  unsigned NumElems = VT.getVectorNumElements();
3549  SmallVector<int, 16> MaskVec;
3550  for (unsigned i = 0; i != NumElems; ++i)
3551    // If this is the insertion idx, put the low elt of V2 here.
3552    MaskVec.push_back(i == Idx ? NumElems : i);
3553  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3554}
3555
3556/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3557/// a shuffle that is zero.
3558static
3559unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3560                                  bool Low, SelectionDAG &DAG) {
3561  unsigned NumZeros = 0;
3562  for (int i = 0; i < NumElems; ++i) {
3563    unsigned Index = Low ? i : NumElems-i-1;
3564    int Idx = SVOp->getMaskElt(Index);
3565    if (Idx < 0) {
3566      ++NumZeros;
3567      continue;
3568    }
3569    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3570    if (Elt.getNode() && X86::isZeroNode(Elt))
3571      ++NumZeros;
3572    else
3573      break;
3574  }
3575  return NumZeros;
3576}
3577
3578/// isVectorShift - Returns true if the shuffle can be implemented as a
3579/// logical left or right shift of a vector.
3580/// FIXME: split into pslldqi, psrldqi, palignr variants.
3581static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3582                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3583  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3584
3585  isLeft = true;
3586  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3587  if (!NumZeros) {
3588    isLeft = false;
3589    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3590    if (!NumZeros)
3591      return false;
3592  }
3593  bool SeenV1 = false;
3594  bool SeenV2 = false;
3595  for (unsigned i = NumZeros; i < NumElems; ++i) {
3596    unsigned Val = isLeft ? (i - NumZeros) : i;
3597    int Idx_ = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3598    if (Idx_ < 0)
3599      continue;
3600    unsigned Idx = (unsigned) Idx_;
3601    if (Idx < NumElems)
3602      SeenV1 = true;
3603    else {
3604      Idx -= NumElems;
3605      SeenV2 = true;
3606    }
3607    if (Idx != Val)
3608      return false;
3609  }
3610  if (SeenV1 && SeenV2)
3611    return false;
3612
3613  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3614  ShAmt = NumZeros;
3615  return true;
3616}
3617
3618
3619/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3620///
3621static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3622                                       unsigned NumNonZero, unsigned NumZero,
3623                                       SelectionDAG &DAG,
3624                                       const TargetLowering &TLI) {
3625  if (NumNonZero > 8)
3626    return SDValue();
3627
3628  DebugLoc dl = Op.getDebugLoc();
3629  SDValue V(0, 0);
3630  bool First = true;
3631  for (unsigned i = 0; i < 16; ++i) {
3632    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3633    if (ThisIsNonZero && First) {
3634      if (NumZero)
3635        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3636      else
3637        V = DAG.getUNDEF(MVT::v8i16);
3638      First = false;
3639    }
3640
3641    if ((i & 1) != 0) {
3642      SDValue ThisElt(0, 0), LastElt(0, 0);
3643      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3644      if (LastIsNonZero) {
3645        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3646                              MVT::i16, Op.getOperand(i-1));
3647      }
3648      if (ThisIsNonZero) {
3649        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3650        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3651                              ThisElt, DAG.getConstant(8, MVT::i8));
3652        if (LastIsNonZero)
3653          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3654      } else
3655        ThisElt = LastElt;
3656
3657      if (ThisElt.getNode())
3658        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3659                        DAG.getIntPtrConstant(i/2));
3660    }
3661  }
3662
3663  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3664}
3665
3666/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3667///
3668static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3669                                     unsigned NumNonZero, unsigned NumZero,
3670                                     SelectionDAG &DAG,
3671                                     const TargetLowering &TLI) {
3672  if (NumNonZero > 4)
3673    return SDValue();
3674
3675  DebugLoc dl = Op.getDebugLoc();
3676  SDValue V(0, 0);
3677  bool First = true;
3678  for (unsigned i = 0; i < 8; ++i) {
3679    bool isNonZero = (NonZeros & (1 << i)) != 0;
3680    if (isNonZero) {
3681      if (First) {
3682        if (NumZero)
3683          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3684        else
3685          V = DAG.getUNDEF(MVT::v8i16);
3686        First = false;
3687      }
3688      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3689                      MVT::v8i16, V, Op.getOperand(i),
3690                      DAG.getIntPtrConstant(i));
3691    }
3692  }
3693
3694  return V;
3695}
3696
3697/// getVShift - Return a vector logical shift node.
3698///
3699static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3700                         unsigned NumBits, SelectionDAG &DAG,
3701                         const TargetLowering &TLI, DebugLoc dl) {
3702  bool isMMX = VT.getSizeInBits() == 64;
3703  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3704  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3705  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3706  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3707                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3708                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3709}
3710
3711SDValue
3712X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3713                                          SelectionDAG &DAG) const {
3714
3715  // Check if the scalar load can be widened into a vector load. And if
3716  // the address is "base + cst" see if the cst can be "absorbed" into
3717  // the shuffle mask.
3718  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3719    SDValue Ptr = LD->getBasePtr();
3720    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3721      return SDValue();
3722    EVT PVT = LD->getValueType(0);
3723    if (PVT != MVT::i32 && PVT != MVT::f32)
3724      return SDValue();
3725
3726    int FI = -1;
3727    int64_t Offset = 0;
3728    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3729      FI = FINode->getIndex();
3730      Offset = 0;
3731    } else if (Ptr.getOpcode() == ISD::ADD &&
3732               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3733               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3734      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3735      Offset = Ptr.getConstantOperandVal(1);
3736      Ptr = Ptr.getOperand(0);
3737    } else {
3738      return SDValue();
3739    }
3740
3741    SDValue Chain = LD->getChain();
3742    // Make sure the stack object alignment is at least 16.
3743    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3744    if (DAG.InferPtrAlignment(Ptr) < 16) {
3745      if (MFI->isFixedObjectIndex(FI)) {
3746        // Can't change the alignment. FIXME: It's possible to compute
3747        // the exact stack offset and reference FI + adjust offset instead.
3748        // If someone *really* cares about this. That's the way to implement it.
3749        return SDValue();
3750      } else {
3751        MFI->setObjectAlignment(FI, 16);
3752      }
3753    }
3754
3755    // (Offset % 16) must be multiple of 4. Then address is then
3756    // Ptr + (Offset & ~15).
3757    if (Offset < 0)
3758      return SDValue();
3759    if ((Offset % 16) & 3)
3760      return SDValue();
3761    int64_t StartOffset = Offset & ~15;
3762    if (StartOffset)
3763      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3764                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3765
3766    int EltNo = (Offset - StartOffset) >> 2;
3767    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3768    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3769    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3770                             false, false, 0);
3771    // Canonicalize it to a v4i32 shuffle.
3772    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3773    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3774                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3775                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3776  }
3777
3778  return SDValue();
3779}
3780
3781/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3782/// vector of type 'VT', see if the elements can be replaced by a single large
3783/// load which has the same value as a build_vector whose operands are 'elts'.
3784///
3785/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3786///
3787/// FIXME: we'd also like to handle the case where the last elements are zero
3788/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3789/// There's even a handy isZeroNode for that purpose.
3790static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3791                                        DebugLoc &dl, SelectionDAG &DAG) {
3792  EVT EltVT = VT.getVectorElementType();
3793  unsigned NumElems = Elts.size();
3794
3795  LoadSDNode *LDBase = NULL;
3796  unsigned LastLoadedElt = -1U;
3797
3798  // For each element in the initializer, see if we've found a load or an undef.
3799  // If we don't find an initial load element, or later load elements are
3800  // non-consecutive, bail out.
3801  for (unsigned i = 0; i < NumElems; ++i) {
3802    SDValue Elt = Elts[i];
3803
3804    if (!Elt.getNode() ||
3805        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
3806      return SDValue();
3807    if (!LDBase) {
3808      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
3809        return SDValue();
3810      LDBase = cast<LoadSDNode>(Elt.getNode());
3811      LastLoadedElt = i;
3812      continue;
3813    }
3814    if (Elt.getOpcode() == ISD::UNDEF)
3815      continue;
3816
3817    LoadSDNode *LD = cast<LoadSDNode>(Elt);
3818    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
3819      return SDValue();
3820    LastLoadedElt = i;
3821  }
3822
3823  // If we have found an entire vector of loads and undefs, then return a large
3824  // load of the entire vector width starting at the base pointer.  If we found
3825  // consecutive loads for the low half, generate a vzext_load node.
3826  if (LastLoadedElt == NumElems - 1) {
3827    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
3828      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3829                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3830                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
3831    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3832                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3833                       LDBase->isVolatile(), LDBase->isNonTemporal(),
3834                       LDBase->getAlignment());
3835  } else if (NumElems == 4 && LastLoadedElt == 1) {
3836    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
3837    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
3838    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
3839    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
3840  }
3841  return SDValue();
3842}
3843
3844SDValue
3845X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
3846  DebugLoc dl = Op.getDebugLoc();
3847  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3848  if (ISD::isBuildVectorAllZeros(Op.getNode())
3849      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3850    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3851    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3852    // eliminated on x86-32 hosts.
3853    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3854      return Op;
3855
3856    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3857      return getOnesVector(Op.getValueType(), DAG, dl);
3858    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3859  }
3860
3861  EVT VT = Op.getValueType();
3862  EVT ExtVT = VT.getVectorElementType();
3863  unsigned EVTBits = ExtVT.getSizeInBits();
3864
3865  unsigned NumElems = Op.getNumOperands();
3866  unsigned NumZero  = 0;
3867  unsigned NumNonZero = 0;
3868  unsigned NonZeros = 0;
3869  bool IsAllConstants = true;
3870  SmallSet<SDValue, 8> Values;
3871  for (unsigned i = 0; i < NumElems; ++i) {
3872    SDValue Elt = Op.getOperand(i);
3873    if (Elt.getOpcode() == ISD::UNDEF)
3874      continue;
3875    Values.insert(Elt);
3876    if (Elt.getOpcode() != ISD::Constant &&
3877        Elt.getOpcode() != ISD::ConstantFP)
3878      IsAllConstants = false;
3879    if (X86::isZeroNode(Elt))
3880      NumZero++;
3881    else {
3882      NonZeros |= (1 << i);
3883      NumNonZero++;
3884    }
3885  }
3886
3887  if (NumNonZero == 0) {
3888    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3889    return DAG.getUNDEF(VT);
3890  }
3891
3892  // Special case for single non-zero, non-undef, element.
3893  if (NumNonZero == 1) {
3894    unsigned Idx = CountTrailingZeros_32(NonZeros);
3895    SDValue Item = Op.getOperand(Idx);
3896
3897    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3898    // the value are obviously zero, truncate the value to i32 and do the
3899    // insertion that way.  Only do this if the value is non-constant or if the
3900    // value is a constant being inserted into element 0.  It is cheaper to do
3901    // a constant pool load than it is to do a movd + shuffle.
3902    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3903        (!IsAllConstants || Idx == 0)) {
3904      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3905        // Handle MMX and SSE both.
3906        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3907        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3908
3909        // Truncate the value (which may itself be a constant) to i32, and
3910        // convert it to a vector with movd (S2V+shuffle to zero extend).
3911        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3912        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3913        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3914                                           Subtarget->hasSSE2(), DAG);
3915
3916        // Now we have our 32-bit value zero extended in the low element of
3917        // a vector.  If Idx != 0, swizzle it into place.
3918        if (Idx != 0) {
3919          SmallVector<int, 4> Mask;
3920          Mask.push_back(Idx);
3921          for (unsigned i = 1; i != VecElts; ++i)
3922            Mask.push_back(i);
3923          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3924                                      DAG.getUNDEF(Item.getValueType()),
3925                                      &Mask[0]);
3926        }
3927        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3928      }
3929    }
3930
3931    // If we have a constant or non-constant insertion into the low element of
3932    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3933    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3934    // depending on what the source datatype is.
3935    if (Idx == 0) {
3936      if (NumZero == 0) {
3937        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3938      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3939          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3940        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3941        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3942        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3943                                           DAG);
3944      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3945        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3946        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3947        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3948        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3949                                           Subtarget->hasSSE2(), DAG);
3950        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3951      }
3952    }
3953
3954    // Is it a vector logical left shift?
3955    if (NumElems == 2 && Idx == 1 &&
3956        X86::isZeroNode(Op.getOperand(0)) &&
3957        !X86::isZeroNode(Op.getOperand(1))) {
3958      unsigned NumBits = VT.getSizeInBits();
3959      return getVShift(true, VT,
3960                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3961                                   VT, Op.getOperand(1)),
3962                       NumBits/2, DAG, *this, dl);
3963    }
3964
3965    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3966      return SDValue();
3967
3968    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3969    // is a non-constant being inserted into an element other than the low one,
3970    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3971    // movd/movss) to move this into the low element, then shuffle it into
3972    // place.
3973    if (EVTBits == 32) {
3974      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3975
3976      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3977      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3978                                         Subtarget->hasSSE2(), DAG);
3979      SmallVector<int, 8> MaskVec;
3980      for (unsigned i = 0; i < NumElems; i++)
3981        MaskVec.push_back(i == Idx ? 0 : 1);
3982      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3983    }
3984  }
3985
3986  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3987  if (Values.size() == 1) {
3988    if (EVTBits == 32) {
3989      // Instead of a shuffle like this:
3990      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3991      // Check if it's possible to issue this instead.
3992      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3993      unsigned Idx = CountTrailingZeros_32(NonZeros);
3994      SDValue Item = Op.getOperand(Idx);
3995      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3996        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3997    }
3998    return SDValue();
3999  }
4000
4001  // A vector full of immediates; various special cases are already
4002  // handled, so this is best done with a single constant-pool load.
4003  if (IsAllConstants)
4004    return SDValue();
4005
4006  // Let legalizer expand 2-wide build_vectors.
4007  if (EVTBits == 64) {
4008    if (NumNonZero == 1) {
4009      // One half is zero or undef.
4010      unsigned Idx = CountTrailingZeros_32(NonZeros);
4011      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4012                                 Op.getOperand(Idx));
4013      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4014                                         Subtarget->hasSSE2(), DAG);
4015    }
4016    return SDValue();
4017  }
4018
4019  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4020  if (EVTBits == 8 && NumElems == 16) {
4021    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4022                                        *this);
4023    if (V.getNode()) return V;
4024  }
4025
4026  if (EVTBits == 16 && NumElems == 8) {
4027    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4028                                        *this);
4029    if (V.getNode()) return V;
4030  }
4031
4032  // If element VT is == 32 bits, turn it into a number of shuffles.
4033  SmallVector<SDValue, 8> V;
4034  V.resize(NumElems);
4035  if (NumElems == 4 && NumZero > 0) {
4036    for (unsigned i = 0; i < 4; ++i) {
4037      bool isZero = !(NonZeros & (1 << i));
4038      if (isZero)
4039        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4040      else
4041        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4042    }
4043
4044    for (unsigned i = 0; i < 2; ++i) {
4045      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4046        default: break;
4047        case 0:
4048          V[i] = V[i*2];  // Must be a zero vector.
4049          break;
4050        case 1:
4051          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4052          break;
4053        case 2:
4054          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4055          break;
4056        case 3:
4057          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4058          break;
4059      }
4060    }
4061
4062    SmallVector<int, 8> MaskVec;
4063    bool Reverse = (NonZeros & 0x3) == 2;
4064    for (unsigned i = 0; i < 2; ++i)
4065      MaskVec.push_back(Reverse ? 1-i : i);
4066    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4067    for (unsigned i = 0; i < 2; ++i)
4068      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4069    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4070  }
4071
4072  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4073    // Check for a build vector of consecutive loads.
4074    for (unsigned i = 0; i < NumElems; ++i)
4075      V[i] = Op.getOperand(i);
4076
4077    // Check for elements which are consecutive loads.
4078    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4079    if (LD.getNode())
4080      return LD;
4081
4082    // For SSE 4.1, use inserts into undef.
4083    if (getSubtarget()->hasSSE41()) {
4084      V[0] = DAG.getUNDEF(VT);
4085      for (unsigned i = 0; i < NumElems; ++i)
4086        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4087          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
4088                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4089      return V[0];
4090    }
4091
4092    // Otherwise, expand into a number of unpckl*
4093    // e.g. for v4f32
4094    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4095    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4096    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4097    for (unsigned i = 0; i < NumElems; ++i)
4098      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4099    NumElems >>= 1;
4100    while (NumElems != 0) {
4101      for (unsigned i = 0; i < NumElems; ++i)
4102        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
4103      NumElems >>= 1;
4104    }
4105    return V[0];
4106  }
4107  return SDValue();
4108}
4109
4110SDValue
4111X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4112  // We support concatenate two MMX registers and place them in a MMX
4113  // register.  This is better than doing a stack convert.
4114  DebugLoc dl = Op.getDebugLoc();
4115  EVT ResVT = Op.getValueType();
4116  assert(Op.getNumOperands() == 2);
4117  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4118         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4119  int Mask[2];
4120  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4121  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4122  InVec = Op.getOperand(1);
4123  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4124    unsigned NumElts = ResVT.getVectorNumElements();
4125    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4126    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4127                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4128  } else {
4129    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4130    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4131    Mask[0] = 0; Mask[1] = 2;
4132    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4133  }
4134  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4135}
4136
4137// v8i16 shuffles - Prefer shuffles in the following order:
4138// 1. [all]   pshuflw, pshufhw, optional move
4139// 2. [ssse3] 1 x pshufb
4140// 3. [ssse3] 2 x pshufb + 1 x por
4141// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4142static
4143SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
4144                                 SelectionDAG &DAG,
4145                                 const X86TargetLowering &TLI) {
4146  SDValue V1 = SVOp->getOperand(0);
4147  SDValue V2 = SVOp->getOperand(1);
4148  DebugLoc dl = SVOp->getDebugLoc();
4149  SmallVector<int, 8> MaskVals;
4150
4151  // Determine if more than 1 of the words in each of the low and high quadwords
4152  // of the result come from the same quadword of one of the two inputs.  Undef
4153  // mask values count as coming from any quadword, for better codegen.
4154  SmallVector<unsigned, 4> LoQuad(4);
4155  SmallVector<unsigned, 4> HiQuad(4);
4156  BitVector InputQuads(4);
4157  for (unsigned i = 0; i < 8; ++i) {
4158    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4159    int EltIdx = SVOp->getMaskElt(i);
4160    MaskVals.push_back(EltIdx);
4161    if (EltIdx < 0) {
4162      ++Quad[0];
4163      ++Quad[1];
4164      ++Quad[2];
4165      ++Quad[3];
4166      continue;
4167    }
4168    ++Quad[EltIdx / 4];
4169    InputQuads.set(EltIdx / 4);
4170  }
4171
4172  int BestLoQuad = -1;
4173  unsigned MaxQuad = 1;
4174  for (unsigned i = 0; i < 4; ++i) {
4175    if (LoQuad[i] > MaxQuad) {
4176      BestLoQuad = i;
4177      MaxQuad = LoQuad[i];
4178    }
4179  }
4180
4181  int BestHiQuad = -1;
4182  MaxQuad = 1;
4183  for (unsigned i = 0; i < 4; ++i) {
4184    if (HiQuad[i] > MaxQuad) {
4185      BestHiQuad = i;
4186      MaxQuad = HiQuad[i];
4187    }
4188  }
4189
4190  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4191  // of the two input vectors, shuffle them into one input vector so only a
4192  // single pshufb instruction is necessary. If There are more than 2 input
4193  // quads, disable the next transformation since it does not help SSSE3.
4194  bool V1Used = InputQuads[0] || InputQuads[1];
4195  bool V2Used = InputQuads[2] || InputQuads[3];
4196  if (TLI.getSubtarget()->hasSSSE3()) {
4197    if (InputQuads.count() == 2 && V1Used && V2Used) {
4198      BestLoQuad = InputQuads.find_first();
4199      BestHiQuad = InputQuads.find_next(BestLoQuad);
4200    }
4201    if (InputQuads.count() > 2) {
4202      BestLoQuad = -1;
4203      BestHiQuad = -1;
4204    }
4205  }
4206
4207  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4208  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4209  // words from all 4 input quadwords.
4210  SDValue NewV;
4211  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4212    SmallVector<int, 8> MaskV;
4213    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4214    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4215    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4216                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4217                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4218    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4219
4220    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4221    // source words for the shuffle, to aid later transformations.
4222    bool AllWordsInNewV = true;
4223    bool InOrder[2] = { true, true };
4224    for (unsigned i = 0; i != 8; ++i) {
4225      int idx = MaskVals[i];
4226      if (idx != (int)i)
4227        InOrder[i/4] = false;
4228      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4229        continue;
4230      AllWordsInNewV = false;
4231      break;
4232    }
4233
4234    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4235    if (AllWordsInNewV) {
4236      for (int i = 0; i != 8; ++i) {
4237        int idx = MaskVals[i];
4238        if (idx < 0)
4239          continue;
4240        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4241        if ((idx != i) && idx < 4)
4242          pshufhw = false;
4243        if ((idx != i) && idx > 3)
4244          pshuflw = false;
4245      }
4246      V1 = NewV;
4247      V2Used = false;
4248      BestLoQuad = 0;
4249      BestHiQuad = 1;
4250    }
4251
4252    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4253    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4254    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4255      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4256                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4257    }
4258  }
4259
4260  // If we have SSSE3, and all words of the result are from 1 input vector,
4261  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4262  // is present, fall back to case 4.
4263  if (TLI.getSubtarget()->hasSSSE3()) {
4264    SmallVector<SDValue,16> pshufbMask;
4265
4266    // If we have elements from both input vectors, set the high bit of the
4267    // shuffle mask element to zero out elements that come from V2 in the V1
4268    // mask, and elements that come from V1 in the V2 mask, so that the two
4269    // results can be OR'd together.
4270    bool TwoInputs = V1Used && V2Used;
4271    for (unsigned i = 0; i != 8; ++i) {
4272      int EltIdx = MaskVals[i] * 2;
4273      if (TwoInputs && (EltIdx >= 16)) {
4274        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4275        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4276        continue;
4277      }
4278      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4279      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4280    }
4281    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4282    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4283                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4284                                 MVT::v16i8, &pshufbMask[0], 16));
4285    if (!TwoInputs)
4286      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4287
4288    // Calculate the shuffle mask for the second input, shuffle it, and
4289    // OR it with the first shuffled input.
4290    pshufbMask.clear();
4291    for (unsigned i = 0; i != 8; ++i) {
4292      int EltIdx = MaskVals[i] * 2;
4293      if (EltIdx < 16) {
4294        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4295        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4296        continue;
4297      }
4298      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4299      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4300    }
4301    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4302    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4303                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4304                                 MVT::v16i8, &pshufbMask[0], 16));
4305    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4306    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4307  }
4308
4309  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4310  // and update MaskVals with new element order.
4311  BitVector InOrder(8);
4312  if (BestLoQuad >= 0) {
4313    SmallVector<int, 8> MaskV;
4314    for (int i = 0; i != 4; ++i) {
4315      int idx = MaskVals[i];
4316      if (idx < 0) {
4317        MaskV.push_back(-1);
4318        InOrder.set(i);
4319      } else if ((idx / 4) == BestLoQuad) {
4320        MaskV.push_back(idx & 3);
4321        InOrder.set(i);
4322      } else {
4323        MaskV.push_back(-1);
4324      }
4325    }
4326    for (unsigned i = 4; i != 8; ++i)
4327      MaskV.push_back(i);
4328    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4329                                &MaskV[0]);
4330  }
4331
4332  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4333  // and update MaskVals with the new element order.
4334  if (BestHiQuad >= 0) {
4335    SmallVector<int, 8> MaskV;
4336    for (unsigned i = 0; i != 4; ++i)
4337      MaskV.push_back(i);
4338    for (unsigned i = 4; i != 8; ++i) {
4339      int idx = MaskVals[i];
4340      if (idx < 0) {
4341        MaskV.push_back(-1);
4342        InOrder.set(i);
4343      } else if ((idx / 4) == BestHiQuad) {
4344        MaskV.push_back((idx & 3) + 4);
4345        InOrder.set(i);
4346      } else {
4347        MaskV.push_back(-1);
4348      }
4349    }
4350    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4351                                &MaskV[0]);
4352  }
4353
4354  // In case BestHi & BestLo were both -1, which means each quadword has a word
4355  // from each of the four input quadwords, calculate the InOrder bitvector now
4356  // before falling through to the insert/extract cleanup.
4357  if (BestLoQuad == -1 && BestHiQuad == -1) {
4358    NewV = V1;
4359    for (int i = 0; i != 8; ++i)
4360      if (MaskVals[i] < 0 || MaskVals[i] == i)
4361        InOrder.set(i);
4362  }
4363
4364  // The other elements are put in the right place using pextrw and pinsrw.
4365  for (unsigned i = 0; i != 8; ++i) {
4366    if (InOrder[i])
4367      continue;
4368    int EltIdx = MaskVals[i];
4369    if (EltIdx < 0)
4370      continue;
4371    SDValue ExtOp = (EltIdx < 8)
4372    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4373                  DAG.getIntPtrConstant(EltIdx))
4374    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4375                  DAG.getIntPtrConstant(EltIdx - 8));
4376    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4377                       DAG.getIntPtrConstant(i));
4378  }
4379  return NewV;
4380}
4381
4382// v16i8 shuffles - Prefer shuffles in the following order:
4383// 1. [ssse3] 1 x pshufb
4384// 2. [ssse3] 2 x pshufb + 1 x por
4385// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4386static
4387SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4388                                 SelectionDAG &DAG,
4389                                 const X86TargetLowering &TLI) {
4390  SDValue V1 = SVOp->getOperand(0);
4391  SDValue V2 = SVOp->getOperand(1);
4392  DebugLoc dl = SVOp->getDebugLoc();
4393  SmallVector<int, 16> MaskVals;
4394  SVOp->getMask(MaskVals);
4395
4396  // If we have SSSE3, case 1 is generated when all result bytes come from
4397  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4398  // present, fall back to case 3.
4399  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4400  bool V1Only = true;
4401  bool V2Only = true;
4402  for (unsigned i = 0; i < 16; ++i) {
4403    int EltIdx = MaskVals[i];
4404    if (EltIdx < 0)
4405      continue;
4406    if (EltIdx < 16)
4407      V2Only = false;
4408    else
4409      V1Only = false;
4410  }
4411
4412  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4413  if (TLI.getSubtarget()->hasSSSE3()) {
4414    SmallVector<SDValue,16> pshufbMask;
4415
4416    // If all result elements are from one input vector, then only translate
4417    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4418    //
4419    // Otherwise, we have elements from both input vectors, and must zero out
4420    // elements that come from V2 in the first mask, and V1 in the second mask
4421    // so that we can OR them together.
4422    bool TwoInputs = !(V1Only || V2Only);
4423    for (unsigned i = 0; i != 16; ++i) {
4424      int EltIdx = MaskVals[i];
4425      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4426        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4427        continue;
4428      }
4429      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4430    }
4431    // If all the elements are from V2, assign it to V1 and return after
4432    // building the first pshufb.
4433    if (V2Only)
4434      V1 = V2;
4435    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4436                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4437                                 MVT::v16i8, &pshufbMask[0], 16));
4438    if (!TwoInputs)
4439      return V1;
4440
4441    // Calculate the shuffle mask for the second input, shuffle it, and
4442    // OR it with the first shuffled input.
4443    pshufbMask.clear();
4444    for (unsigned i = 0; i != 16; ++i) {
4445      int EltIdx = MaskVals[i];
4446      if (EltIdx < 16) {
4447        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4448        continue;
4449      }
4450      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4451    }
4452    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4453                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4454                                 MVT::v16i8, &pshufbMask[0], 16));
4455    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4456  }
4457
4458  // No SSSE3 - Calculate in place words and then fix all out of place words
4459  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4460  // the 16 different words that comprise the two doublequadword input vectors.
4461  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4462  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4463  SDValue NewV = V2Only ? V2 : V1;
4464  for (int i = 0; i != 8; ++i) {
4465    int Elt0 = MaskVals[i*2];
4466    int Elt1 = MaskVals[i*2+1];
4467
4468    // This word of the result is all undef, skip it.
4469    if (Elt0 < 0 && Elt1 < 0)
4470      continue;
4471
4472    // This word of the result is already in the correct place, skip it.
4473    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4474      continue;
4475    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4476      continue;
4477
4478    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4479    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4480    SDValue InsElt;
4481
4482    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4483    // using a single extract together, load it and store it.
4484    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4485      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4486                           DAG.getIntPtrConstant(Elt1 / 2));
4487      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4488                        DAG.getIntPtrConstant(i));
4489      continue;
4490    }
4491
4492    // If Elt1 is defined, extract it from the appropriate source.  If the
4493    // source byte is not also odd, shift the extracted word left 8 bits
4494    // otherwise clear the bottom 8 bits if we need to do an or.
4495    if (Elt1 >= 0) {
4496      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4497                           DAG.getIntPtrConstant(Elt1 / 2));
4498      if ((Elt1 & 1) == 0)
4499        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4500                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4501      else if (Elt0 >= 0)
4502        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4503                             DAG.getConstant(0xFF00, MVT::i16));
4504    }
4505    // If Elt0 is defined, extract it from the appropriate source.  If the
4506    // source byte is not also even, shift the extracted word right 8 bits. If
4507    // Elt1 was also defined, OR the extracted values together before
4508    // inserting them in the result.
4509    if (Elt0 >= 0) {
4510      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4511                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4512      if ((Elt0 & 1) != 0)
4513        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4514                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4515      else if (Elt1 >= 0)
4516        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4517                             DAG.getConstant(0x00FF, MVT::i16));
4518      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4519                         : InsElt0;
4520    }
4521    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4522                       DAG.getIntPtrConstant(i));
4523  }
4524  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4525}
4526
4527/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4528/// ones, or rewriting v4i32 / v2i32 as 2 wide ones if possible. This can be
4529/// done when every pair / quad of shuffle mask elements point to elements in
4530/// the right sequence. e.g.
4531/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4532static
4533SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4534                                 SelectionDAG &DAG,
4535                                 const TargetLowering &TLI, DebugLoc dl) {
4536  EVT VT = SVOp->getValueType(0);
4537  SDValue V1 = SVOp->getOperand(0);
4538  SDValue V2 = SVOp->getOperand(1);
4539  unsigned NumElems = VT.getVectorNumElements();
4540  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4541  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4542  EVT NewVT = MaskVT;
4543  switch (VT.getSimpleVT().SimpleTy) {
4544  default: assert(false && "Unexpected!");
4545  case MVT::v4f32: NewVT = MVT::v2f64; break;
4546  case MVT::v4i32: NewVT = MVT::v2i64; break;
4547  case MVT::v8i16: NewVT = MVT::v4i32; break;
4548  case MVT::v16i8: NewVT = MVT::v4i32; break;
4549  }
4550
4551  if (NewWidth == 2) {
4552    if (VT.isInteger())
4553      NewVT = MVT::v2i64;
4554    else
4555      NewVT = MVT::v2f64;
4556  }
4557  int Scale = NumElems / NewWidth;
4558  SmallVector<int, 8> MaskVec;
4559  for (unsigned i = 0; i < NumElems; i += Scale) {
4560    int StartIdx = -1;
4561    for (int j = 0; j < Scale; ++j) {
4562      int EltIdx = SVOp->getMaskElt(i+j);
4563      if (EltIdx < 0)
4564        continue;
4565      if (StartIdx == -1)
4566        StartIdx = EltIdx - (EltIdx % Scale);
4567      if (EltIdx != StartIdx + j)
4568        return SDValue();
4569    }
4570    if (StartIdx == -1)
4571      MaskVec.push_back(-1);
4572    else
4573      MaskVec.push_back(StartIdx / Scale);
4574  }
4575
4576  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4577  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4578  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4579}
4580
4581/// getVZextMovL - Return a zero-extending vector move low node.
4582///
4583static SDValue getVZextMovL(EVT VT, EVT OpVT,
4584                            SDValue SrcOp, SelectionDAG &DAG,
4585                            const X86Subtarget *Subtarget, DebugLoc dl) {
4586  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4587    LoadSDNode *LD = NULL;
4588    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4589      LD = dyn_cast<LoadSDNode>(SrcOp);
4590    if (!LD) {
4591      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4592      // instead.
4593      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4594      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4595          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4596          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4597          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4598        // PR2108
4599        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4600        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4601                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4602                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4603                                                   OpVT,
4604                                                   SrcOp.getOperand(0)
4605                                                          .getOperand(0))));
4606      }
4607    }
4608  }
4609
4610  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4611                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4612                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4613                                             OpVT, SrcOp)));
4614}
4615
4616/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4617/// shuffles.
4618static SDValue
4619LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4620  SDValue V1 = SVOp->getOperand(0);
4621  SDValue V2 = SVOp->getOperand(1);
4622  DebugLoc dl = SVOp->getDebugLoc();
4623  EVT VT = SVOp->getValueType(0);
4624
4625  SmallVector<std::pair<int, int>, 8> Locs;
4626  Locs.resize(4);
4627  SmallVector<int, 8> Mask1(4U, -1);
4628  SmallVector<int, 8> PermMask;
4629  SVOp->getMask(PermMask);
4630
4631  unsigned NumHi = 0;
4632  unsigned NumLo = 0;
4633  for (unsigned i = 0; i != 4; ++i) {
4634    int Idx = PermMask[i];
4635    if (Idx < 0) {
4636      Locs[i] = std::make_pair(-1, -1);
4637    } else {
4638      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4639      if (Idx < 4) {
4640        Locs[i] = std::make_pair(0, NumLo);
4641        Mask1[NumLo] = Idx;
4642        NumLo++;
4643      } else {
4644        Locs[i] = std::make_pair(1, NumHi);
4645        if (2+NumHi < 4)
4646          Mask1[2+NumHi] = Idx;
4647        NumHi++;
4648      }
4649    }
4650  }
4651
4652  if (NumLo <= 2 && NumHi <= 2) {
4653    // If no more than two elements come from either vector. This can be
4654    // implemented with two shuffles. First shuffle gather the elements.
4655    // The second shuffle, which takes the first shuffle as both of its
4656    // vector operands, put the elements into the right order.
4657    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4658
4659    SmallVector<int, 8> Mask2(4U, -1);
4660
4661    for (unsigned i = 0; i != 4; ++i) {
4662      if (Locs[i].first == -1)
4663        continue;
4664      else {
4665        unsigned Idx = (i < 2) ? 0 : 4;
4666        Idx += Locs[i].first * 2 + Locs[i].second;
4667        Mask2[i] = Idx;
4668      }
4669    }
4670
4671    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4672  } else if (NumLo == 3 || NumHi == 3) {
4673    // Otherwise, we must have three elements from one vector, call it X, and
4674    // one element from the other, call it Y.  First, use a shufps to build an
4675    // intermediate vector with the one element from Y and the element from X
4676    // that will be in the same half in the final destination (the indexes don't
4677    // matter). Then, use a shufps to build the final vector, taking the half
4678    // containing the element from Y from the intermediate, and the other half
4679    // from X.
4680    if (NumHi == 3) {
4681      // Normalize it so the 3 elements come from V1.
4682      CommuteVectorShuffleMask(PermMask, VT);
4683      std::swap(V1, V2);
4684    }
4685
4686    // Find the element from V2.
4687    unsigned HiIndex;
4688    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4689      int Val = PermMask[HiIndex];
4690      if (Val < 0)
4691        continue;
4692      if (Val >= 4)
4693        break;
4694    }
4695
4696    Mask1[0] = PermMask[HiIndex];
4697    Mask1[1] = -1;
4698    Mask1[2] = PermMask[HiIndex^1];
4699    Mask1[3] = -1;
4700    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4701
4702    if (HiIndex >= 2) {
4703      Mask1[0] = PermMask[0];
4704      Mask1[1] = PermMask[1];
4705      Mask1[2] = HiIndex & 1 ? 6 : 4;
4706      Mask1[3] = HiIndex & 1 ? 4 : 6;
4707      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4708    } else {
4709      Mask1[0] = HiIndex & 1 ? 2 : 0;
4710      Mask1[1] = HiIndex & 1 ? 0 : 2;
4711      Mask1[2] = PermMask[2];
4712      Mask1[3] = PermMask[3];
4713      if (Mask1[2] >= 0)
4714        Mask1[2] += 4;
4715      if (Mask1[3] >= 0)
4716        Mask1[3] += 4;
4717      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4718    }
4719  }
4720
4721  // Break it into (shuffle shuffle_hi, shuffle_lo).
4722  Locs.clear();
4723  SmallVector<int,8> LoMask(4U, -1);
4724  SmallVector<int,8> HiMask(4U, -1);
4725
4726  SmallVector<int,8> *MaskPtr = &LoMask;
4727  unsigned MaskIdx = 0;
4728  unsigned LoIdx = 0;
4729  unsigned HiIdx = 2;
4730  for (unsigned i = 0; i != 4; ++i) {
4731    if (i == 2) {
4732      MaskPtr = &HiMask;
4733      MaskIdx = 1;
4734      LoIdx = 0;
4735      HiIdx = 2;
4736    }
4737    int Idx = PermMask[i];
4738    if (Idx < 0) {
4739      Locs[i] = std::make_pair(-1, -1);
4740    } else if (Idx < 4) {
4741      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4742      (*MaskPtr)[LoIdx] = Idx;
4743      LoIdx++;
4744    } else {
4745      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4746      (*MaskPtr)[HiIdx] = Idx;
4747      HiIdx++;
4748    }
4749  }
4750
4751  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4752  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4753  SmallVector<int, 8> MaskOps;
4754  for (unsigned i = 0; i != 4; ++i) {
4755    if (Locs[i].first == -1) {
4756      MaskOps.push_back(-1);
4757    } else {
4758      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4759      MaskOps.push_back(Idx);
4760    }
4761  }
4762  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4763}
4764
4765SDValue
4766X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
4767  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4768  SDValue V1 = Op.getOperand(0);
4769  SDValue V2 = Op.getOperand(1);
4770  EVT VT = Op.getValueType();
4771  DebugLoc dl = Op.getDebugLoc();
4772  unsigned NumElems = VT.getVectorNumElements();
4773  bool isMMX = VT.getSizeInBits() == 64;
4774  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4775  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4776  bool V1IsSplat = false;
4777  bool V2IsSplat = false;
4778
4779  if (isZeroShuffle(SVOp))
4780    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4781
4782  // Promote splats to v4f32.
4783  if (SVOp->isSplat()) {
4784    if (isMMX || NumElems < 4)
4785      return Op;
4786    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4787  }
4788
4789  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4790  // do it!
4791  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4792    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4793    if (NewOp.getNode())
4794      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4795                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4796  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4797    // FIXME: Figure out a cleaner way to do this.
4798    // Try to make use of movq to zero out the top part.
4799    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4800      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4801      if (NewOp.getNode()) {
4802        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4803          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4804                              DAG, Subtarget, dl);
4805      }
4806    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4807      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4808      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4809        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4810                            DAG, Subtarget, dl);
4811    }
4812  }
4813
4814  if (X86::isPSHUFDMask(SVOp))
4815    return Op;
4816
4817  // Check if this can be converted into a logical shift.
4818  bool isLeft = false;
4819  unsigned ShAmt = 0;
4820  SDValue ShVal;
4821  bool isShift = getSubtarget()->hasSSE2() &&
4822    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4823  if (isShift && ShVal.hasOneUse()) {
4824    // If the shifted value has multiple uses, it may be cheaper to use
4825    // v_set0 + movlhps or movhlps, etc.
4826    EVT EltVT = VT.getVectorElementType();
4827    ShAmt *= EltVT.getSizeInBits();
4828    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4829  }
4830
4831  if (X86::isMOVLMask(SVOp)) {
4832    if (V1IsUndef)
4833      return V2;
4834    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4835      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4836    if (!isMMX)
4837      return Op;
4838  }
4839
4840  // FIXME: fold these into legal mask.
4841  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4842                 X86::isMOVSLDUPMask(SVOp) ||
4843                 X86::isMOVHLPSMask(SVOp) ||
4844                 X86::isMOVLHPSMask(SVOp) ||
4845                 X86::isMOVLPMask(SVOp)))
4846    return Op;
4847
4848  if (ShouldXformToMOVHLPS(SVOp) ||
4849      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4850    return CommuteVectorShuffle(SVOp, DAG);
4851
4852  if (isShift) {
4853    // No better options. Use a vshl / vsrl.
4854    EVT EltVT = VT.getVectorElementType();
4855    ShAmt *= EltVT.getSizeInBits();
4856    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4857  }
4858
4859  bool Commuted = false;
4860  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4861  // 1,1,1,1 -> v8i16 though.
4862  V1IsSplat = isSplatVector(V1.getNode());
4863  V2IsSplat = isSplatVector(V2.getNode());
4864
4865  // Canonicalize the splat or undef, if present, to be on the RHS.
4866  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4867    Op = CommuteVectorShuffle(SVOp, DAG);
4868    SVOp = cast<ShuffleVectorSDNode>(Op);
4869    V1 = SVOp->getOperand(0);
4870    V2 = SVOp->getOperand(1);
4871    std::swap(V1IsSplat, V2IsSplat);
4872    std::swap(V1IsUndef, V2IsUndef);
4873    Commuted = true;
4874  }
4875
4876  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4877    // Shuffling low element of v1 into undef, just return v1.
4878    if (V2IsUndef)
4879      return V1;
4880    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4881    // the instruction selector will not match, so get a canonical MOVL with
4882    // swapped operands to undo the commute.
4883    return getMOVL(DAG, dl, VT, V2, V1);
4884  }
4885
4886  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4887      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4888      X86::isUNPCKLMask(SVOp) ||
4889      X86::isUNPCKHMask(SVOp))
4890    return Op;
4891
4892  if (V2IsSplat) {
4893    // Normalize mask so all entries that point to V2 points to its first
4894    // element then try to match unpck{h|l} again. If match, return a
4895    // new vector_shuffle with the corrected mask.
4896    SDValue NewMask = NormalizeMask(SVOp, DAG);
4897    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4898    if (NSVOp != SVOp) {
4899      if (X86::isUNPCKLMask(NSVOp, true)) {
4900        return NewMask;
4901      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4902        return NewMask;
4903      }
4904    }
4905  }
4906
4907  if (Commuted) {
4908    // Commute is back and try unpck* again.
4909    // FIXME: this seems wrong.
4910    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4911    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4912    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4913        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4914        X86::isUNPCKLMask(NewSVOp) ||
4915        X86::isUNPCKHMask(NewSVOp))
4916      return NewOp;
4917  }
4918
4919  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4920
4921  // Normalize the node to match x86 shuffle ops if needed
4922  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4923    return CommuteVectorShuffle(SVOp, DAG);
4924
4925  // Check for legal shuffle and return?
4926  SmallVector<int, 16> PermMask;
4927  SVOp->getMask(PermMask);
4928  if (isShuffleMaskLegal(PermMask, VT))
4929    return Op;
4930
4931  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4932  if (VT == MVT::v8i16) {
4933    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4934    if (NewOp.getNode())
4935      return NewOp;
4936  }
4937
4938  if (VT == MVT::v16i8) {
4939    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4940    if (NewOp.getNode())
4941      return NewOp;
4942  }
4943
4944  // Handle all 4 wide cases with a number of shuffles except for MMX.
4945  if (NumElems == 4 && !isMMX)
4946    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4947
4948  return SDValue();
4949}
4950
4951SDValue
4952X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4953                                                SelectionDAG &DAG) const {
4954  EVT VT = Op.getValueType();
4955  DebugLoc dl = Op.getDebugLoc();
4956  if (VT.getSizeInBits() == 8) {
4957    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4958                                    Op.getOperand(0), Op.getOperand(1));
4959    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4960                                    DAG.getValueType(VT));
4961    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4962  } else if (VT.getSizeInBits() == 16) {
4963    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4964    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4965    if (Idx == 0)
4966      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4967                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4968                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4969                                                 MVT::v4i32,
4970                                                 Op.getOperand(0)),
4971                                     Op.getOperand(1)));
4972    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4973                                    Op.getOperand(0), Op.getOperand(1));
4974    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4975                                    DAG.getValueType(VT));
4976    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4977  } else if (VT == MVT::f32) {
4978    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4979    // the result back to FR32 register. It's only worth matching if the
4980    // result has a single use which is a store or a bitcast to i32.  And in
4981    // the case of a store, it's not worth it if the index is a constant 0,
4982    // because a MOVSSmr can be used instead, which is smaller and faster.
4983    if (!Op.hasOneUse())
4984      return SDValue();
4985    SDNode *User = *Op.getNode()->use_begin();
4986    if ((User->getOpcode() != ISD::STORE ||
4987         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4988          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4989        (User->getOpcode() != ISD::BIT_CONVERT ||
4990         User->getValueType(0) != MVT::i32))
4991      return SDValue();
4992    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4993                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4994                                              Op.getOperand(0)),
4995                                              Op.getOperand(1));
4996    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4997  } else if (VT == MVT::i32) {
4998    // ExtractPS works with constant index.
4999    if (isa<ConstantSDNode>(Op.getOperand(1)))
5000      return Op;
5001  }
5002  return SDValue();
5003}
5004
5005
5006SDValue
5007X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5008                                           SelectionDAG &DAG) const {
5009  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5010    return SDValue();
5011
5012  if (Subtarget->hasSSE41()) {
5013    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5014    if (Res.getNode())
5015      return Res;
5016  }
5017
5018  EVT VT = Op.getValueType();
5019  DebugLoc dl = Op.getDebugLoc();
5020  // TODO: handle v16i8.
5021  if (VT.getSizeInBits() == 16) {
5022    SDValue Vec = Op.getOperand(0);
5023    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5024    if (Idx == 0)
5025      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5026                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5027                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5028                                                 MVT::v4i32, Vec),
5029                                     Op.getOperand(1)));
5030    // Transform it so it match pextrw which produces a 32-bit result.
5031    EVT EltVT = MVT::i32;
5032    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5033                                    Op.getOperand(0), Op.getOperand(1));
5034    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5035                                    DAG.getValueType(VT));
5036    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5037  } else if (VT.getSizeInBits() == 32) {
5038    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5039    if (Idx == 0)
5040      return Op;
5041
5042    // SHUFPS the element to the lowest double word, then movss.
5043    int Mask[4] = { Idx, -1, -1, -1 };
5044    EVT VVT = Op.getOperand(0).getValueType();
5045    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5046                                       DAG.getUNDEF(VVT), Mask);
5047    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5048                       DAG.getIntPtrConstant(0));
5049  } else if (VT.getSizeInBits() == 64) {
5050    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5051    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5052    //        to match extract_elt for f64.
5053    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5054    if (Idx == 0)
5055      return Op;
5056
5057    // UNPCKHPD the element to the lowest double word, then movsd.
5058    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5059    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5060    int Mask[2] = { 1, -1 };
5061    EVT VVT = Op.getOperand(0).getValueType();
5062    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5063                                       DAG.getUNDEF(VVT), Mask);
5064    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5065                       DAG.getIntPtrConstant(0));
5066  }
5067
5068  return SDValue();
5069}
5070
5071SDValue
5072X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5073                                               SelectionDAG &DAG) const {
5074  EVT VT = Op.getValueType();
5075  EVT EltVT = VT.getVectorElementType();
5076  DebugLoc dl = Op.getDebugLoc();
5077
5078  SDValue N0 = Op.getOperand(0);
5079  SDValue N1 = Op.getOperand(1);
5080  SDValue N2 = Op.getOperand(2);
5081
5082  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5083      isa<ConstantSDNode>(N2)) {
5084    unsigned Opc;
5085    if (VT == MVT::v8i16)
5086      Opc = X86ISD::PINSRW;
5087    else if (VT == MVT::v4i16)
5088      Opc = X86ISD::MMX_PINSRW;
5089    else if (VT == MVT::v16i8)
5090      Opc = X86ISD::PINSRB;
5091    else
5092      Opc = X86ISD::PINSRB;
5093
5094    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5095    // argument.
5096    if (N1.getValueType() != MVT::i32)
5097      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5098    if (N2.getValueType() != MVT::i32)
5099      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5100    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5101  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5102    // Bits [7:6] of the constant are the source select.  This will always be
5103    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5104    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5105    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5106    // Bits [5:4] of the constant are the destination select.  This is the
5107    //  value of the incoming immediate.
5108    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5109    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5110    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5111    // Create this as a scalar to vector..
5112    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5113    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5114  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5115    // PINSR* works with constant index.
5116    return Op;
5117  }
5118  return SDValue();
5119}
5120
5121SDValue
5122X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5123  EVT VT = Op.getValueType();
5124  EVT EltVT = VT.getVectorElementType();
5125
5126  if (Subtarget->hasSSE41())
5127    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5128
5129  if (EltVT == MVT::i8)
5130    return SDValue();
5131
5132  DebugLoc dl = Op.getDebugLoc();
5133  SDValue N0 = Op.getOperand(0);
5134  SDValue N1 = Op.getOperand(1);
5135  SDValue N2 = Op.getOperand(2);
5136
5137  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5138    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5139    // as its second argument.
5140    if (N1.getValueType() != MVT::i32)
5141      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5142    if (N2.getValueType() != MVT::i32)
5143      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5144    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5145                       dl, VT, N0, N1, N2);
5146  }
5147  return SDValue();
5148}
5149
5150SDValue
5151X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5152  DebugLoc dl = Op.getDebugLoc();
5153
5154  if (Op.getValueType() == MVT::v1i64 &&
5155      Op.getOperand(0).getValueType() == MVT::i64)
5156    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5157
5158  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5159  EVT VT = MVT::v2i32;
5160  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5161  default: break;
5162  case MVT::v16i8:
5163  case MVT::v8i16:
5164    VT = MVT::v4i32;
5165    break;
5166  }
5167  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5168                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5169}
5170
5171// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5172// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5173// one of the above mentioned nodes. It has to be wrapped because otherwise
5174// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5175// be used to form addressing mode. These wrapped nodes will be selected
5176// into MOV32ri.
5177SDValue
5178X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5179  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5180
5181  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5182  // global base reg.
5183  unsigned char OpFlag = 0;
5184  unsigned WrapperKind = X86ISD::Wrapper;
5185  CodeModel::Model M = getTargetMachine().getCodeModel();
5186
5187  if (Subtarget->isPICStyleRIPRel() &&
5188      (M == CodeModel::Small || M == CodeModel::Kernel))
5189    WrapperKind = X86ISD::WrapperRIP;
5190  else if (Subtarget->isPICStyleGOT())
5191    OpFlag = X86II::MO_GOTOFF;
5192  else if (Subtarget->isPICStyleStubPIC())
5193    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5194
5195  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5196                                             CP->getAlignment(),
5197                                             CP->getOffset(), OpFlag);
5198  DebugLoc DL = CP->getDebugLoc();
5199  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5200  // With PIC, the address is actually $g + Offset.
5201  if (OpFlag) {
5202    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5203                         DAG.getNode(X86ISD::GlobalBaseReg,
5204                                     DebugLoc(), getPointerTy()),
5205                         Result);
5206  }
5207
5208  return Result;
5209}
5210
5211SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5212  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5213
5214  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5215  // global base reg.
5216  unsigned char OpFlag = 0;
5217  unsigned WrapperKind = X86ISD::Wrapper;
5218  CodeModel::Model M = getTargetMachine().getCodeModel();
5219
5220  if (Subtarget->isPICStyleRIPRel() &&
5221      (M == CodeModel::Small || M == CodeModel::Kernel))
5222    WrapperKind = X86ISD::WrapperRIP;
5223  else if (Subtarget->isPICStyleGOT())
5224    OpFlag = X86II::MO_GOTOFF;
5225  else if (Subtarget->isPICStyleStubPIC())
5226    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5227
5228  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5229                                          OpFlag);
5230  DebugLoc DL = JT->getDebugLoc();
5231  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5232
5233  // With PIC, the address is actually $g + Offset.
5234  if (OpFlag) {
5235    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5236                         DAG.getNode(X86ISD::GlobalBaseReg,
5237                                     DebugLoc(), getPointerTy()),
5238                         Result);
5239  }
5240
5241  return Result;
5242}
5243
5244SDValue
5245X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5246  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5247
5248  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5249  // global base reg.
5250  unsigned char OpFlag = 0;
5251  unsigned WrapperKind = X86ISD::Wrapper;
5252  CodeModel::Model M = getTargetMachine().getCodeModel();
5253
5254  if (Subtarget->isPICStyleRIPRel() &&
5255      (M == CodeModel::Small || M == CodeModel::Kernel))
5256    WrapperKind = X86ISD::WrapperRIP;
5257  else if (Subtarget->isPICStyleGOT())
5258    OpFlag = X86II::MO_GOTOFF;
5259  else if (Subtarget->isPICStyleStubPIC())
5260    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5261
5262  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5263
5264  DebugLoc DL = Op.getDebugLoc();
5265  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5266
5267
5268  // With PIC, the address is actually $g + Offset.
5269  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5270      !Subtarget->is64Bit()) {
5271    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5272                         DAG.getNode(X86ISD::GlobalBaseReg,
5273                                     DebugLoc(), getPointerTy()),
5274                         Result);
5275  }
5276
5277  return Result;
5278}
5279
5280SDValue
5281X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5282  // Create the TargetBlockAddressAddress node.
5283  unsigned char OpFlags =
5284    Subtarget->ClassifyBlockAddressReference();
5285  CodeModel::Model M = getTargetMachine().getCodeModel();
5286  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5287  DebugLoc dl = Op.getDebugLoc();
5288  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5289                                       /*isTarget=*/true, OpFlags);
5290
5291  if (Subtarget->isPICStyleRIPRel() &&
5292      (M == CodeModel::Small || M == CodeModel::Kernel))
5293    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5294  else
5295    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5296
5297  // With PIC, the address is actually $g + Offset.
5298  if (isGlobalRelativeToPICBase(OpFlags)) {
5299    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5300                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5301                         Result);
5302  }
5303
5304  return Result;
5305}
5306
5307SDValue
5308X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5309                                      int64_t Offset,
5310                                      SelectionDAG &DAG) const {
5311  // Create the TargetGlobalAddress node, folding in the constant
5312  // offset if it is legal.
5313  unsigned char OpFlags =
5314    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5315  CodeModel::Model M = getTargetMachine().getCodeModel();
5316  SDValue Result;
5317  if (OpFlags == X86II::MO_NO_FLAG &&
5318      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5319    // A direct static reference to a global.
5320    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5321    Offset = 0;
5322  } else {
5323    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5324  }
5325
5326  if (Subtarget->isPICStyleRIPRel() &&
5327      (M == CodeModel::Small || M == CodeModel::Kernel))
5328    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5329  else
5330    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5331
5332  // With PIC, the address is actually $g + Offset.
5333  if (isGlobalRelativeToPICBase(OpFlags)) {
5334    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5335                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5336                         Result);
5337  }
5338
5339  // For globals that require a load from a stub to get the address, emit the
5340  // load.
5341  if (isGlobalStubReference(OpFlags))
5342    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5343                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5344
5345  // If there was a non-zero offset that we didn't fold, create an explicit
5346  // addition for it.
5347  if (Offset != 0)
5348    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5349                         DAG.getConstant(Offset, getPointerTy()));
5350
5351  return Result;
5352}
5353
5354SDValue
5355X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
5356  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5357  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5358  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5359}
5360
5361static SDValue
5362GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5363           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5364           unsigned char OperandFlags) {
5365  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5366  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5367  DebugLoc dl = GA->getDebugLoc();
5368  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5369                                           GA->getValueType(0),
5370                                           GA->getOffset(),
5371                                           OperandFlags);
5372  if (InFlag) {
5373    SDValue Ops[] = { Chain,  TGA, *InFlag };
5374    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5375  } else {
5376    SDValue Ops[]  = { Chain, TGA };
5377    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5378  }
5379
5380  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5381  MFI->setAdjustsStack(true);
5382
5383  SDValue Flag = Chain.getValue(1);
5384  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5385}
5386
5387// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5388static SDValue
5389LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5390                                const EVT PtrVT) {
5391  SDValue InFlag;
5392  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5393  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5394                                     DAG.getNode(X86ISD::GlobalBaseReg,
5395                                                 DebugLoc(), PtrVT), InFlag);
5396  InFlag = Chain.getValue(1);
5397
5398  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5399}
5400
5401// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5402static SDValue
5403LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5404                                const EVT PtrVT) {
5405  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5406                    X86::RAX, X86II::MO_TLSGD);
5407}
5408
5409// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5410// "local exec" model.
5411static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5412                                   const EVT PtrVT, TLSModel::Model model,
5413                                   bool is64Bit) {
5414  DebugLoc dl = GA->getDebugLoc();
5415  // Get the Thread Pointer
5416  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5417                             DebugLoc(), PtrVT,
5418                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5419                                             MVT::i32));
5420
5421  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5422                                      NULL, 0, false, false, 0);
5423
5424  unsigned char OperandFlags = 0;
5425  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5426  // initialexec.
5427  unsigned WrapperKind = X86ISD::Wrapper;
5428  if (model == TLSModel::LocalExec) {
5429    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5430  } else if (is64Bit) {
5431    assert(model == TLSModel::InitialExec);
5432    OperandFlags = X86II::MO_GOTTPOFF;
5433    WrapperKind = X86ISD::WrapperRIP;
5434  } else {
5435    assert(model == TLSModel::InitialExec);
5436    OperandFlags = X86II::MO_INDNTPOFF;
5437  }
5438
5439  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5440  // exec)
5441  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5442                                           GA->getValueType(0),
5443                                           GA->getOffset(), OperandFlags);
5444  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5445
5446  if (model == TLSModel::InitialExec)
5447    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5448                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5449
5450  // The address of the thread local variable is the add of the thread
5451  // pointer with the offset of the variable.
5452  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5453}
5454
5455SDValue
5456X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
5457
5458  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5459  const GlobalValue *GV = GA->getGlobal();
5460
5461  if (Subtarget->isTargetELF()) {
5462    // TODO: implement the "local dynamic" model
5463    // TODO: implement the "initial exec"model for pic executables
5464
5465    // If GV is an alias then use the aliasee for determining
5466    // thread-localness.
5467    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5468      GV = GA->resolveAliasedGlobal(false);
5469
5470    TLSModel::Model model
5471      = getTLSModel(GV, getTargetMachine().getRelocationModel());
5472
5473    switch (model) {
5474      case TLSModel::GeneralDynamic:
5475      case TLSModel::LocalDynamic: // not implemented
5476        if (Subtarget->is64Bit())
5477          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5478        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5479
5480      case TLSModel::InitialExec:
5481      case TLSModel::LocalExec:
5482        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5483                                   Subtarget->is64Bit());
5484    }
5485  } else if (Subtarget->isTargetDarwin()) {
5486    // Darwin only has one model of TLS.  Lower to that.
5487    unsigned char OpFlag = 0;
5488    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
5489                           X86ISD::WrapperRIP : X86ISD::Wrapper;
5490
5491    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5492    // global base reg.
5493    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
5494                  !Subtarget->is64Bit();
5495    if (PIC32)
5496      OpFlag = X86II::MO_TLVP_PIC_BASE;
5497    else
5498      OpFlag = X86II::MO_TLVP;
5499    DebugLoc DL = Op.getDebugLoc();
5500    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
5501                                                getPointerTy(),
5502                                                GA->getOffset(), OpFlag);
5503    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5504
5505    // With PIC32, the address is actually $g + Offset.
5506    if (PIC32)
5507      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5508                           DAG.getNode(X86ISD::GlobalBaseReg,
5509                                       DebugLoc(), getPointerTy()),
5510                           Offset);
5511
5512    // Lowering the machine isd will make sure everything is in the right
5513    // location.
5514    SDValue Args[] = { Offset };
5515    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
5516
5517    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
5518    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5519    MFI->setAdjustsStack(true);
5520
5521    // And our return value (tls address) is in the standard call return value
5522    // location.
5523    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
5524    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
5525  }
5526
5527  assert(false &&
5528         "TLS not implemented for this target.");
5529
5530  llvm_unreachable("Unreachable");
5531  return SDValue();
5532}
5533
5534
5535/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5536/// take a 2 x i32 value to shift plus a shift amount.
5537SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
5538  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5539  EVT VT = Op.getValueType();
5540  unsigned VTBits = VT.getSizeInBits();
5541  DebugLoc dl = Op.getDebugLoc();
5542  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5543  SDValue ShOpLo = Op.getOperand(0);
5544  SDValue ShOpHi = Op.getOperand(1);
5545  SDValue ShAmt  = Op.getOperand(2);
5546  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5547                                     DAG.getConstant(VTBits - 1, MVT::i8))
5548                       : DAG.getConstant(0, VT);
5549
5550  SDValue Tmp2, Tmp3;
5551  if (Op.getOpcode() == ISD::SHL_PARTS) {
5552    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5553    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5554  } else {
5555    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5556    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5557  }
5558
5559  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5560                                DAG.getConstant(VTBits, MVT::i8));
5561  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5562                             AndNode, DAG.getConstant(0, MVT::i8));
5563
5564  SDValue Hi, Lo;
5565  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5566  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5567  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5568
5569  if (Op.getOpcode() == ISD::SHL_PARTS) {
5570    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5571    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5572  } else {
5573    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5574    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5575  }
5576
5577  SDValue Ops[2] = { Lo, Hi };
5578  return DAG.getMergeValues(Ops, 2, dl);
5579}
5580
5581SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
5582                                           SelectionDAG &DAG) const {
5583  EVT SrcVT = Op.getOperand(0).getValueType();
5584
5585  if (SrcVT.isVector()) {
5586    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5587      return Op;
5588    }
5589    return SDValue();
5590  }
5591
5592  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5593         "Unknown SINT_TO_FP to lower!");
5594
5595  // These are really Legal; return the operand so the caller accepts it as
5596  // Legal.
5597  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5598    return Op;
5599  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5600      Subtarget->is64Bit()) {
5601    return Op;
5602  }
5603
5604  DebugLoc dl = Op.getDebugLoc();
5605  unsigned Size = SrcVT.getSizeInBits()/8;
5606  MachineFunction &MF = DAG.getMachineFunction();
5607  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5608  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5609  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5610                               StackSlot,
5611                               PseudoSourceValue::getFixedStack(SSFI), 0,
5612                               false, false, 0);
5613  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5614}
5615
5616SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5617                                     SDValue StackSlot,
5618                                     SelectionDAG &DAG) const {
5619  // Build the FILD
5620  DebugLoc dl = Op.getDebugLoc();
5621  SDVTList Tys;
5622  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5623  if (useSSE)
5624    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5625  else
5626    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5627  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5628  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5629                               Tys, Ops, array_lengthof(Ops));
5630
5631  if (useSSE) {
5632    Chain = Result.getValue(1);
5633    SDValue InFlag = Result.getValue(2);
5634
5635    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5636    // shouldn't be necessary except that RFP cannot be live across
5637    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5638    MachineFunction &MF = DAG.getMachineFunction();
5639    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5640    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5641    Tys = DAG.getVTList(MVT::Other);
5642    SDValue Ops[] = {
5643      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5644    };
5645    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5646    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5647                         PseudoSourceValue::getFixedStack(SSFI), 0,
5648                         false, false, 0);
5649  }
5650
5651  return Result;
5652}
5653
5654// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5655SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
5656                                               SelectionDAG &DAG) const {
5657  // This algorithm is not obvious. Here it is in C code, more or less:
5658  /*
5659    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5660      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5661      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5662
5663      // Copy ints to xmm registers.
5664      __m128i xh = _mm_cvtsi32_si128( hi );
5665      __m128i xl = _mm_cvtsi32_si128( lo );
5666
5667      // Combine into low half of a single xmm register.
5668      __m128i x = _mm_unpacklo_epi32( xh, xl );
5669      __m128d d;
5670      double sd;
5671
5672      // Merge in appropriate exponents to give the integer bits the right
5673      // magnitude.
5674      x = _mm_unpacklo_epi32( x, exp );
5675
5676      // Subtract away the biases to deal with the IEEE-754 double precision
5677      // implicit 1.
5678      d = _mm_sub_pd( (__m128d) x, bias );
5679
5680      // All conversions up to here are exact. The correctly rounded result is
5681      // calculated using the current rounding mode using the following
5682      // horizontal add.
5683      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5684      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5685                                // store doesn't really need to be here (except
5686                                // maybe to zero the other double)
5687      return sd;
5688    }
5689  */
5690
5691  DebugLoc dl = Op.getDebugLoc();
5692  LLVMContext *Context = DAG.getContext();
5693
5694  // Build some magic constants.
5695  std::vector<Constant*> CV0;
5696  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5697  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5698  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5699  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5700  Constant *C0 = ConstantVector::get(CV0);
5701  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5702
5703  std::vector<Constant*> CV1;
5704  CV1.push_back(
5705    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5706  CV1.push_back(
5707    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5708  Constant *C1 = ConstantVector::get(CV1);
5709  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5710
5711  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5712                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5713                                        Op.getOperand(0),
5714                                        DAG.getIntPtrConstant(1)));
5715  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5716                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5717                                        Op.getOperand(0),
5718                                        DAG.getIntPtrConstant(0)));
5719  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5720  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5721                              PseudoSourceValue::getConstantPool(), 0,
5722                              false, false, 16);
5723  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5724  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5725  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5726                              PseudoSourceValue::getConstantPool(), 0,
5727                              false, false, 16);
5728  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5729
5730  // Add the halves; easiest way is to swap them into another reg first.
5731  int ShufMask[2] = { 1, -1 };
5732  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5733                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5734  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5735  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5736                     DAG.getIntPtrConstant(0));
5737}
5738
5739// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5740SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
5741                                               SelectionDAG &DAG) const {
5742  DebugLoc dl = Op.getDebugLoc();
5743  // FP constant to bias correct the final result.
5744  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5745                                   MVT::f64);
5746
5747  // Load the 32-bit value into an XMM register.
5748  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5749                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5750                                         Op.getOperand(0),
5751                                         DAG.getIntPtrConstant(0)));
5752
5753  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5754                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5755                     DAG.getIntPtrConstant(0));
5756
5757  // Or the load with the bias.
5758  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5759                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5760                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5761                                                   MVT::v2f64, Load)),
5762                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5763                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5764                                                   MVT::v2f64, Bias)));
5765  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5766                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5767                   DAG.getIntPtrConstant(0));
5768
5769  // Subtract the bias.
5770  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5771
5772  // Handle final rounding.
5773  EVT DestVT = Op.getValueType();
5774
5775  if (DestVT.bitsLT(MVT::f64)) {
5776    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5777                       DAG.getIntPtrConstant(0));
5778  } else if (DestVT.bitsGT(MVT::f64)) {
5779    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5780  }
5781
5782  // Handle final rounding.
5783  return Sub;
5784}
5785
5786SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
5787                                           SelectionDAG &DAG) const {
5788  SDValue N0 = Op.getOperand(0);
5789  DebugLoc dl = Op.getDebugLoc();
5790
5791  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
5792  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5793  // the optimization here.
5794  if (DAG.SignBitIsZero(N0))
5795    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5796
5797  EVT SrcVT = N0.getValueType();
5798  EVT DstVT = Op.getValueType();
5799  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
5800    return LowerUINT_TO_FP_i64(Op, DAG);
5801  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
5802    return LowerUINT_TO_FP_i32(Op, DAG);
5803
5804  // Make a 64-bit buffer, and use it to build an FILD.
5805  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5806  if (SrcVT == MVT::i32) {
5807    SDValue WordOff = DAG.getConstant(4, getPointerTy());
5808    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5809                                     getPointerTy(), StackSlot, WordOff);
5810    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5811                                  StackSlot, NULL, 0, false, false, 0);
5812    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5813                                  OffsetSlot, NULL, 0, false, false, 0);
5814    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5815    return Fild;
5816  }
5817
5818  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
5819  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5820                                StackSlot, NULL, 0, false, false, 0);
5821  // For i64 source, we need to add the appropriate power of 2 if the input
5822  // was negative.  This is the same as the optimization in
5823  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
5824  // we must be careful to do the computation in x87 extended precision, not
5825  // in SSE. (The generic code can't know it's OK to do this, or how to.)
5826  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
5827  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
5828  SDValue Fild = DAG.getNode(X86ISD::FILD, dl, Tys, Ops, 3);
5829
5830  APInt FF(32, 0x5F800000ULL);
5831
5832  // Check whether the sign bit is set.
5833  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
5834                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
5835                                 ISD::SETLT);
5836
5837  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
5838  SDValue FudgePtr = DAG.getConstantPool(
5839                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
5840                                         getPointerTy());
5841
5842  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
5843  SDValue Zero = DAG.getIntPtrConstant(0);
5844  SDValue Four = DAG.getIntPtrConstant(4);
5845  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
5846                               Zero, Four);
5847  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
5848
5849  // Load the value out, extending it from f32 to f80.
5850  // FIXME: Avoid the extend by constructing the right constant pool?
5851  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
5852                                 FudgePtr, PseudoSourceValue::getConstantPool(),
5853                                 0, MVT::f32, false, false, 4);
5854  // Extend everything to 80 bits to force it to be done on x87.
5855  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
5856  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
5857}
5858
5859std::pair<SDValue,SDValue> X86TargetLowering::
5860FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
5861  DebugLoc dl = Op.getDebugLoc();
5862
5863  EVT DstTy = Op.getValueType();
5864
5865  if (!IsSigned) {
5866    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5867    DstTy = MVT::i64;
5868  }
5869
5870  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5871         DstTy.getSimpleVT() >= MVT::i16 &&
5872         "Unknown FP_TO_SINT to lower!");
5873
5874  // These are really Legal.
5875  if (DstTy == MVT::i32 &&
5876      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5877    return std::make_pair(SDValue(), SDValue());
5878  if (Subtarget->is64Bit() &&
5879      DstTy == MVT::i64 &&
5880      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5881    return std::make_pair(SDValue(), SDValue());
5882
5883  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5884  // stack slot.
5885  MachineFunction &MF = DAG.getMachineFunction();
5886  unsigned MemSize = DstTy.getSizeInBits()/8;
5887  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5888  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5889
5890  unsigned Opc;
5891  switch (DstTy.getSimpleVT().SimpleTy) {
5892  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5893  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5894  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5895  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5896  }
5897
5898  SDValue Chain = DAG.getEntryNode();
5899  SDValue Value = Op.getOperand(0);
5900  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5901    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5902    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5903                         PseudoSourceValue::getFixedStack(SSFI), 0,
5904                         false, false, 0);
5905    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5906    SDValue Ops[] = {
5907      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5908    };
5909    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5910    Chain = Value.getValue(1);
5911    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5912    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5913  }
5914
5915  // Build the FP_TO_INT*_IN_MEM
5916  SDValue Ops[] = { Chain, Value, StackSlot };
5917  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5918
5919  return std::make_pair(FIST, StackSlot);
5920}
5921
5922SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
5923                                           SelectionDAG &DAG) const {
5924  if (Op.getValueType().isVector()) {
5925    if (Op.getValueType() == MVT::v2i32 &&
5926        Op.getOperand(0).getValueType() == MVT::v2f64) {
5927      return Op;
5928    }
5929    return SDValue();
5930  }
5931
5932  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5933  SDValue FIST = Vals.first, StackSlot = Vals.second;
5934  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5935  if (FIST.getNode() == 0) return Op;
5936
5937  // Load the result.
5938  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5939                     FIST, StackSlot, NULL, 0, false, false, 0);
5940}
5941
5942SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
5943                                           SelectionDAG &DAG) const {
5944  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5945  SDValue FIST = Vals.first, StackSlot = Vals.second;
5946  assert(FIST.getNode() && "Unexpected failure");
5947
5948  // Load the result.
5949  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5950                     FIST, StackSlot, NULL, 0, false, false, 0);
5951}
5952
5953SDValue X86TargetLowering::LowerFABS(SDValue Op,
5954                                     SelectionDAG &DAG) const {
5955  LLVMContext *Context = DAG.getContext();
5956  DebugLoc dl = Op.getDebugLoc();
5957  EVT VT = Op.getValueType();
5958  EVT EltVT = VT;
5959  if (VT.isVector())
5960    EltVT = VT.getVectorElementType();
5961  std::vector<Constant*> CV;
5962  if (EltVT == MVT::f64) {
5963    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5964    CV.push_back(C);
5965    CV.push_back(C);
5966  } else {
5967    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5968    CV.push_back(C);
5969    CV.push_back(C);
5970    CV.push_back(C);
5971    CV.push_back(C);
5972  }
5973  Constant *C = ConstantVector::get(CV);
5974  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5975  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5976                             PseudoSourceValue::getConstantPool(), 0,
5977                             false, false, 16);
5978  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5979}
5980
5981SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
5982  LLVMContext *Context = DAG.getContext();
5983  DebugLoc dl = Op.getDebugLoc();
5984  EVT VT = Op.getValueType();
5985  EVT EltVT = VT;
5986  if (VT.isVector())
5987    EltVT = VT.getVectorElementType();
5988  std::vector<Constant*> CV;
5989  if (EltVT == MVT::f64) {
5990    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5991    CV.push_back(C);
5992    CV.push_back(C);
5993  } else {
5994    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5995    CV.push_back(C);
5996    CV.push_back(C);
5997    CV.push_back(C);
5998    CV.push_back(C);
5999  }
6000  Constant *C = ConstantVector::get(CV);
6001  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6002  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6003                             PseudoSourceValue::getConstantPool(), 0,
6004                             false, false, 16);
6005  if (VT.isVector()) {
6006    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6007                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6008                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6009                                Op.getOperand(0)),
6010                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6011  } else {
6012    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6013  }
6014}
6015
6016SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6017  LLVMContext *Context = DAG.getContext();
6018  SDValue Op0 = Op.getOperand(0);
6019  SDValue Op1 = Op.getOperand(1);
6020  DebugLoc dl = Op.getDebugLoc();
6021  EVT VT = Op.getValueType();
6022  EVT SrcVT = Op1.getValueType();
6023
6024  // If second operand is smaller, extend it first.
6025  if (SrcVT.bitsLT(VT)) {
6026    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6027    SrcVT = VT;
6028  }
6029  // And if it is bigger, shrink it first.
6030  if (SrcVT.bitsGT(VT)) {
6031    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6032    SrcVT = VT;
6033  }
6034
6035  // At this point the operands and the result should have the same
6036  // type, and that won't be f80 since that is not custom lowered.
6037
6038  // First get the sign bit of second operand.
6039  std::vector<Constant*> CV;
6040  if (SrcVT == MVT::f64) {
6041    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6042    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6043  } else {
6044    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6045    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6046    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6047    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6048  }
6049  Constant *C = ConstantVector::get(CV);
6050  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6051  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6052                              PseudoSourceValue::getConstantPool(), 0,
6053                              false, false, 16);
6054  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6055
6056  // Shift sign bit right or left if the two operands have different types.
6057  if (SrcVT.bitsGT(VT)) {
6058    // Op0 is MVT::f32, Op1 is MVT::f64.
6059    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6060    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6061                          DAG.getConstant(32, MVT::i32));
6062    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6063    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6064                          DAG.getIntPtrConstant(0));
6065  }
6066
6067  // Clear first operand sign bit.
6068  CV.clear();
6069  if (VT == MVT::f64) {
6070    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6071    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6072  } else {
6073    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6074    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6075    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6076    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6077  }
6078  C = ConstantVector::get(CV);
6079  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6080  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6081                              PseudoSourceValue::getConstantPool(), 0,
6082                              false, false, 16);
6083  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6084
6085  // Or the value with the sign bit.
6086  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6087}
6088
6089/// Emit nodes that will be selected as "test Op0,Op0", or something
6090/// equivalent.
6091SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6092                                    SelectionDAG &DAG) const {
6093  DebugLoc dl = Op.getDebugLoc();
6094
6095  // CF and OF aren't always set the way we want. Determine which
6096  // of these we need.
6097  bool NeedCF = false;
6098  bool NeedOF = false;
6099  switch (X86CC) {
6100  default: break;
6101  case X86::COND_A: case X86::COND_AE:
6102  case X86::COND_B: case X86::COND_BE:
6103    NeedCF = true;
6104    break;
6105  case X86::COND_G: case X86::COND_GE:
6106  case X86::COND_L: case X86::COND_LE:
6107  case X86::COND_O: case X86::COND_NO:
6108    NeedOF = true;
6109    break;
6110  }
6111
6112  // See if we can use the EFLAGS value from the operand instead of
6113  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6114  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6115  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6116    // Emit a CMP with 0, which is the TEST pattern.
6117    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6118                       DAG.getConstant(0, Op.getValueType()));
6119
6120  unsigned Opcode = 0;
6121  unsigned NumOperands = 0;
6122  switch (Op.getNode()->getOpcode()) {
6123  case ISD::ADD:
6124    // Due to an isel shortcoming, be conservative if this add is likely to be
6125    // selected as part of a load-modify-store instruction. When the root node
6126    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6127    // uses of other nodes in the match, such as the ADD in this case. This
6128    // leads to the ADD being left around and reselected, with the result being
6129    // two adds in the output.  Alas, even if none our users are stores, that
6130    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6131    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6132    // climbing the DAG back to the root, and it doesn't seem to be worth the
6133    // effort.
6134    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6135           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6136      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6137        goto default_case;
6138
6139    if (ConstantSDNode *C =
6140        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6141      // An add of one will be selected as an INC.
6142      if (C->getAPIntValue() == 1) {
6143        Opcode = X86ISD::INC;
6144        NumOperands = 1;
6145        break;
6146      }
6147
6148      // An add of negative one (subtract of one) will be selected as a DEC.
6149      if (C->getAPIntValue().isAllOnesValue()) {
6150        Opcode = X86ISD::DEC;
6151        NumOperands = 1;
6152        break;
6153      }
6154    }
6155
6156    // Otherwise use a regular EFLAGS-setting add.
6157    Opcode = X86ISD::ADD;
6158    NumOperands = 2;
6159    break;
6160  case ISD::AND: {
6161    // If the primary and result isn't used, don't bother using X86ISD::AND,
6162    // because a TEST instruction will be better.
6163    bool NonFlagUse = false;
6164    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6165           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6166      SDNode *User = *UI;
6167      unsigned UOpNo = UI.getOperandNo();
6168      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6169        // Look pass truncate.
6170        UOpNo = User->use_begin().getOperandNo();
6171        User = *User->use_begin();
6172      }
6173
6174      if (User->getOpcode() != ISD::BRCOND &&
6175          User->getOpcode() != ISD::SETCC &&
6176          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6177        NonFlagUse = true;
6178        break;
6179      }
6180    }
6181
6182    if (!NonFlagUse)
6183      break;
6184  }
6185    // FALL THROUGH
6186  case ISD::SUB:
6187  case ISD::OR:
6188  case ISD::XOR:
6189    // Due to the ISEL shortcoming noted above, be conservative if this op is
6190    // likely to be selected as part of a load-modify-store instruction.
6191    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6192           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6193      if (UI->getOpcode() == ISD::STORE)
6194        goto default_case;
6195
6196    // Otherwise use a regular EFLAGS-setting instruction.
6197    switch (Op.getNode()->getOpcode()) {
6198    default: llvm_unreachable("unexpected operator!");
6199    case ISD::SUB: Opcode = X86ISD::SUB; break;
6200    case ISD::OR:  Opcode = X86ISD::OR;  break;
6201    case ISD::XOR: Opcode = X86ISD::XOR; break;
6202    case ISD::AND: Opcode = X86ISD::AND; break;
6203    }
6204
6205    NumOperands = 2;
6206    break;
6207  case X86ISD::ADD:
6208  case X86ISD::SUB:
6209  case X86ISD::INC:
6210  case X86ISD::DEC:
6211  case X86ISD::OR:
6212  case X86ISD::XOR:
6213  case X86ISD::AND:
6214    return SDValue(Op.getNode(), 1);
6215  default:
6216  default_case:
6217    break;
6218  }
6219
6220  if (Opcode == 0)
6221    // Emit a CMP with 0, which is the TEST pattern.
6222    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6223                       DAG.getConstant(0, Op.getValueType()));
6224
6225  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6226  SmallVector<SDValue, 4> Ops;
6227  for (unsigned i = 0; i != NumOperands; ++i)
6228    Ops.push_back(Op.getOperand(i));
6229
6230  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6231  DAG.ReplaceAllUsesWith(Op, New);
6232  return SDValue(New.getNode(), 1);
6233}
6234
6235/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6236/// equivalent.
6237SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6238                                   SelectionDAG &DAG) const {
6239  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6240    if (C->getAPIntValue() == 0)
6241      return EmitTest(Op0, X86CC, DAG);
6242
6243  DebugLoc dl = Op0.getDebugLoc();
6244  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6245}
6246
6247/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6248/// if it's possible.
6249SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6250                                     DebugLoc dl, SelectionDAG &DAG) const {
6251  SDValue Op0 = And.getOperand(0);
6252  SDValue Op1 = And.getOperand(1);
6253  if (Op0.getOpcode() == ISD::TRUNCATE)
6254    Op0 = Op0.getOperand(0);
6255  if (Op1.getOpcode() == ISD::TRUNCATE)
6256    Op1 = Op1.getOperand(0);
6257
6258  SDValue LHS, RHS;
6259  if (Op1.getOpcode() == ISD::SHL)
6260    std::swap(Op0, Op1);
6261  if (Op0.getOpcode() == ISD::SHL) {
6262    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6263      if (And00C->getZExtValue() == 1) {
6264        // If we looked past a truncate, check that it's only truncating away
6265        // known zeros.
6266        unsigned BitWidth = Op0.getValueSizeInBits();
6267        unsigned AndBitWidth = And.getValueSizeInBits();
6268        if (BitWidth > AndBitWidth) {
6269          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6270          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6271          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6272            return SDValue();
6273        }
6274        LHS = Op1;
6275        RHS = Op0.getOperand(1);
6276      }
6277  } else if (Op1.getOpcode() == ISD::Constant) {
6278    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6279    SDValue AndLHS = Op0;
6280    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6281      LHS = AndLHS.getOperand(0);
6282      RHS = AndLHS.getOperand(1);
6283    }
6284  }
6285
6286  if (LHS.getNode()) {
6287    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6288    // instruction.  Since the shift amount is in-range-or-undefined, we know
6289    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6290    // the encoding for the i16 version is larger than the i32 version.
6291    // Also promote i16 to i32 for performance / code size reason.
6292    if (LHS.getValueType() == MVT::i8 ||
6293        LHS.getValueType() == MVT::i16)
6294      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6295
6296    // If the operand types disagree, extend the shift amount to match.  Since
6297    // BT ignores high bits (like shifts) we can use anyextend.
6298    if (LHS.getValueType() != RHS.getValueType())
6299      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6300
6301    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6302    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6303    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6304                       DAG.getConstant(Cond, MVT::i8), BT);
6305  }
6306
6307  return SDValue();
6308}
6309
6310SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6311  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6312  SDValue Op0 = Op.getOperand(0);
6313  SDValue Op1 = Op.getOperand(1);
6314  DebugLoc dl = Op.getDebugLoc();
6315  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6316
6317  // Optimize to BT if possible.
6318  // Lower (X & (1 << N)) == 0 to BT(X, N).
6319  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6320  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6321  if (Op0.getOpcode() == ISD::AND &&
6322      Op0.hasOneUse() &&
6323      Op1.getOpcode() == ISD::Constant &&
6324      cast<ConstantSDNode>(Op1)->isNullValue() &&
6325      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6326    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6327    if (NewSetCC.getNode())
6328      return NewSetCC;
6329  }
6330
6331  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6332  if (Op0.getOpcode() == X86ISD::SETCC &&
6333      Op1.getOpcode() == ISD::Constant &&
6334      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6335       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6336      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6337    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6338    bool Invert = (CC == ISD::SETNE) ^
6339      cast<ConstantSDNode>(Op1)->isNullValue();
6340    if (Invert)
6341      CCode = X86::GetOppositeBranchCondition(CCode);
6342    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6343                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6344  }
6345
6346  bool isFP = Op1.getValueType().isFloatingPoint();
6347  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6348  if (X86CC == X86::COND_INVALID)
6349    return SDValue();
6350
6351  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6352
6353  // Use sbb x, x to materialize carry bit into a GPR.
6354  if (X86CC == X86::COND_B)
6355    return DAG.getNode(ISD::AND, dl, MVT::i8,
6356                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6357                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6358                       DAG.getConstant(1, MVT::i8));
6359
6360  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6361                     DAG.getConstant(X86CC, MVT::i8), Cond);
6362}
6363
6364SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
6365  SDValue Cond;
6366  SDValue Op0 = Op.getOperand(0);
6367  SDValue Op1 = Op.getOperand(1);
6368  SDValue CC = Op.getOperand(2);
6369  EVT VT = Op.getValueType();
6370  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6371  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6372  DebugLoc dl = Op.getDebugLoc();
6373
6374  if (isFP) {
6375    unsigned SSECC = 8;
6376    EVT VT0 = Op0.getValueType();
6377    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6378    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6379    bool Swap = false;
6380
6381    switch (SetCCOpcode) {
6382    default: break;
6383    case ISD::SETOEQ:
6384    case ISD::SETEQ:  SSECC = 0; break;
6385    case ISD::SETOGT:
6386    case ISD::SETGT: Swap = true; // Fallthrough
6387    case ISD::SETLT:
6388    case ISD::SETOLT: SSECC = 1; break;
6389    case ISD::SETOGE:
6390    case ISD::SETGE: Swap = true; // Fallthrough
6391    case ISD::SETLE:
6392    case ISD::SETOLE: SSECC = 2; break;
6393    case ISD::SETUO:  SSECC = 3; break;
6394    case ISD::SETUNE:
6395    case ISD::SETNE:  SSECC = 4; break;
6396    case ISD::SETULE: Swap = true;
6397    case ISD::SETUGE: SSECC = 5; break;
6398    case ISD::SETULT: Swap = true;
6399    case ISD::SETUGT: SSECC = 6; break;
6400    case ISD::SETO:   SSECC = 7; break;
6401    }
6402    if (Swap)
6403      std::swap(Op0, Op1);
6404
6405    // In the two special cases we can't handle, emit two comparisons.
6406    if (SSECC == 8) {
6407      if (SetCCOpcode == ISD::SETUEQ) {
6408        SDValue UNORD, EQ;
6409        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6410        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6411        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6412      }
6413      else if (SetCCOpcode == ISD::SETONE) {
6414        SDValue ORD, NEQ;
6415        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6416        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6417        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6418      }
6419      llvm_unreachable("Illegal FP comparison");
6420    }
6421    // Handle all other FP comparisons here.
6422    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6423  }
6424
6425  // We are handling one of the integer comparisons here.  Since SSE only has
6426  // GT and EQ comparisons for integer, swapping operands and multiple
6427  // operations may be required for some comparisons.
6428  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6429  bool Swap = false, Invert = false, FlipSigns = false;
6430
6431  switch (VT.getSimpleVT().SimpleTy) {
6432  default: break;
6433  case MVT::v8i8:
6434  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6435  case MVT::v4i16:
6436  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6437  case MVT::v2i32:
6438  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6439  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6440  }
6441
6442  switch (SetCCOpcode) {
6443  default: break;
6444  case ISD::SETNE:  Invert = true;
6445  case ISD::SETEQ:  Opc = EQOpc; break;
6446  case ISD::SETLT:  Swap = true;
6447  case ISD::SETGT:  Opc = GTOpc; break;
6448  case ISD::SETGE:  Swap = true;
6449  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6450  case ISD::SETULT: Swap = true;
6451  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6452  case ISD::SETUGE: Swap = true;
6453  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6454  }
6455  if (Swap)
6456    std::swap(Op0, Op1);
6457
6458  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6459  // bits of the inputs before performing those operations.
6460  if (FlipSigns) {
6461    EVT EltVT = VT.getVectorElementType();
6462    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6463                                      EltVT);
6464    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6465    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6466                                    SignBits.size());
6467    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6468    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6469  }
6470
6471  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6472
6473  // If the logical-not of the result is required, perform that now.
6474  if (Invert)
6475    Result = DAG.getNOT(dl, Result, VT);
6476
6477  return Result;
6478}
6479
6480// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6481static bool isX86LogicalCmp(SDValue Op) {
6482  unsigned Opc = Op.getNode()->getOpcode();
6483  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6484    return true;
6485  if (Op.getResNo() == 1 &&
6486      (Opc == X86ISD::ADD ||
6487       Opc == X86ISD::SUB ||
6488       Opc == X86ISD::SMUL ||
6489       Opc == X86ISD::UMUL ||
6490       Opc == X86ISD::INC ||
6491       Opc == X86ISD::DEC ||
6492       Opc == X86ISD::OR ||
6493       Opc == X86ISD::XOR ||
6494       Opc == X86ISD::AND))
6495    return true;
6496
6497  return false;
6498}
6499
6500SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
6501  bool addTest = true;
6502  SDValue Cond  = Op.getOperand(0);
6503  DebugLoc dl = Op.getDebugLoc();
6504  SDValue CC;
6505
6506  if (Cond.getOpcode() == ISD::SETCC) {
6507    SDValue NewCond = LowerSETCC(Cond, DAG);
6508    if (NewCond.getNode())
6509      Cond = NewCond;
6510  }
6511
6512  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6513  SDValue Op1 = Op.getOperand(1);
6514  SDValue Op2 = Op.getOperand(2);
6515  if (Cond.getOpcode() == X86ISD::SETCC &&
6516      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6517    SDValue Cmp = Cond.getOperand(1);
6518    if (Cmp.getOpcode() == X86ISD::CMP) {
6519      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6520      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6521      ConstantSDNode *RHSC =
6522        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6523      if (N1C && N1C->isAllOnesValue() &&
6524          N2C && N2C->isNullValue() &&
6525          RHSC && RHSC->isNullValue()) {
6526        SDValue CmpOp0 = Cmp.getOperand(0);
6527        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6528                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6529        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6530                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6531      }
6532    }
6533  }
6534
6535  // Look pass (and (setcc_carry (cmp ...)), 1).
6536  if (Cond.getOpcode() == ISD::AND &&
6537      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6538    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6539    if (C && C->getAPIntValue() == 1)
6540      Cond = Cond.getOperand(0);
6541  }
6542
6543  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6544  // setting operand in place of the X86ISD::SETCC.
6545  if (Cond.getOpcode() == X86ISD::SETCC ||
6546      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6547    CC = Cond.getOperand(0);
6548
6549    SDValue Cmp = Cond.getOperand(1);
6550    unsigned Opc = Cmp.getOpcode();
6551    EVT VT = Op.getValueType();
6552
6553    bool IllegalFPCMov = false;
6554    if (VT.isFloatingPoint() && !VT.isVector() &&
6555        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6556      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6557
6558    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6559        Opc == X86ISD::BT) { // FIXME
6560      Cond = Cmp;
6561      addTest = false;
6562    }
6563  }
6564
6565  if (addTest) {
6566    // Look pass the truncate.
6567    if (Cond.getOpcode() == ISD::TRUNCATE)
6568      Cond = Cond.getOperand(0);
6569
6570    // We know the result of AND is compared against zero. Try to match
6571    // it to BT.
6572    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6573      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6574      if (NewSetCC.getNode()) {
6575        CC = NewSetCC.getOperand(0);
6576        Cond = NewSetCC.getOperand(1);
6577        addTest = false;
6578      }
6579    }
6580  }
6581
6582  if (addTest) {
6583    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6584    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6585  }
6586
6587  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6588  // condition is true.
6589  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6590  SDValue Ops[] = { Op2, Op1, CC, Cond };
6591  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6592}
6593
6594// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6595// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6596// from the AND / OR.
6597static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6598  Opc = Op.getOpcode();
6599  if (Opc != ISD::OR && Opc != ISD::AND)
6600    return false;
6601  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6602          Op.getOperand(0).hasOneUse() &&
6603          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6604          Op.getOperand(1).hasOneUse());
6605}
6606
6607// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6608// 1 and that the SETCC node has a single use.
6609static bool isXor1OfSetCC(SDValue Op) {
6610  if (Op.getOpcode() != ISD::XOR)
6611    return false;
6612  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6613  if (N1C && N1C->getAPIntValue() == 1) {
6614    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6615      Op.getOperand(0).hasOneUse();
6616  }
6617  return false;
6618}
6619
6620SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
6621  bool addTest = true;
6622  SDValue Chain = Op.getOperand(0);
6623  SDValue Cond  = Op.getOperand(1);
6624  SDValue Dest  = Op.getOperand(2);
6625  DebugLoc dl = Op.getDebugLoc();
6626  SDValue CC;
6627
6628  if (Cond.getOpcode() == ISD::SETCC) {
6629    SDValue NewCond = LowerSETCC(Cond, DAG);
6630    if (NewCond.getNode())
6631      Cond = NewCond;
6632  }
6633#if 0
6634  // FIXME: LowerXALUO doesn't handle these!!
6635  else if (Cond.getOpcode() == X86ISD::ADD  ||
6636           Cond.getOpcode() == X86ISD::SUB  ||
6637           Cond.getOpcode() == X86ISD::SMUL ||
6638           Cond.getOpcode() == X86ISD::UMUL)
6639    Cond = LowerXALUO(Cond, DAG);
6640#endif
6641
6642  // Look pass (and (setcc_carry (cmp ...)), 1).
6643  if (Cond.getOpcode() == ISD::AND &&
6644      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6645    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6646    if (C && C->getAPIntValue() == 1)
6647      Cond = Cond.getOperand(0);
6648  }
6649
6650  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6651  // setting operand in place of the X86ISD::SETCC.
6652  if (Cond.getOpcode() == X86ISD::SETCC ||
6653      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6654    CC = Cond.getOperand(0);
6655
6656    SDValue Cmp = Cond.getOperand(1);
6657    unsigned Opc = Cmp.getOpcode();
6658    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6659    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6660      Cond = Cmp;
6661      addTest = false;
6662    } else {
6663      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6664      default: break;
6665      case X86::COND_O:
6666      case X86::COND_B:
6667        // These can only come from an arithmetic instruction with overflow,
6668        // e.g. SADDO, UADDO.
6669        Cond = Cond.getNode()->getOperand(1);
6670        addTest = false;
6671        break;
6672      }
6673    }
6674  } else {
6675    unsigned CondOpc;
6676    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6677      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6678      if (CondOpc == ISD::OR) {
6679        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6680        // two branches instead of an explicit OR instruction with a
6681        // separate test.
6682        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6683            isX86LogicalCmp(Cmp)) {
6684          CC = Cond.getOperand(0).getOperand(0);
6685          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6686                              Chain, Dest, CC, Cmp);
6687          CC = Cond.getOperand(1).getOperand(0);
6688          Cond = Cmp;
6689          addTest = false;
6690        }
6691      } else { // ISD::AND
6692        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6693        // two branches instead of an explicit AND instruction with a
6694        // separate test. However, we only do this if this block doesn't
6695        // have a fall-through edge, because this requires an explicit
6696        // jmp when the condition is false.
6697        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6698            isX86LogicalCmp(Cmp) &&
6699            Op.getNode()->hasOneUse()) {
6700          X86::CondCode CCode =
6701            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6702          CCode = X86::GetOppositeBranchCondition(CCode);
6703          CC = DAG.getConstant(CCode, MVT::i8);
6704          SDNode *User = *Op.getNode()->use_begin();
6705          // Look for an unconditional branch following this conditional branch.
6706          // We need this because we need to reverse the successors in order
6707          // to implement FCMP_OEQ.
6708          if (User->getOpcode() == ISD::BR) {
6709            SDValue FalseBB = User->getOperand(1);
6710            SDNode *NewBR =
6711              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
6712            assert(NewBR == User);
6713            (void)NewBR;
6714            Dest = FalseBB;
6715
6716            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6717                                Chain, Dest, CC, Cmp);
6718            X86::CondCode CCode =
6719              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6720            CCode = X86::GetOppositeBranchCondition(CCode);
6721            CC = DAG.getConstant(CCode, MVT::i8);
6722            Cond = Cmp;
6723            addTest = false;
6724          }
6725        }
6726      }
6727    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6728      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6729      // It should be transformed during dag combiner except when the condition
6730      // is set by a arithmetics with overflow node.
6731      X86::CondCode CCode =
6732        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6733      CCode = X86::GetOppositeBranchCondition(CCode);
6734      CC = DAG.getConstant(CCode, MVT::i8);
6735      Cond = Cond.getOperand(0).getOperand(1);
6736      addTest = false;
6737    }
6738  }
6739
6740  if (addTest) {
6741    // Look pass the truncate.
6742    if (Cond.getOpcode() == ISD::TRUNCATE)
6743      Cond = Cond.getOperand(0);
6744
6745    // We know the result of AND is compared against zero. Try to match
6746    // it to BT.
6747    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6748      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6749      if (NewSetCC.getNode()) {
6750        CC = NewSetCC.getOperand(0);
6751        Cond = NewSetCC.getOperand(1);
6752        addTest = false;
6753      }
6754    }
6755  }
6756
6757  if (addTest) {
6758    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6759    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6760  }
6761  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6762                     Chain, Dest, CC, Cond);
6763}
6764
6765
6766// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6767// Calls to _alloca is needed to probe the stack when allocating more than 4k
6768// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6769// that the guard pages used by the OS virtual memory manager are allocated in
6770// correct sequence.
6771SDValue
6772X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6773                                           SelectionDAG &DAG) const {
6774  assert(Subtarget->isTargetCygMing() &&
6775         "This should be used only on Cygwin/Mingw targets");
6776  DebugLoc dl = Op.getDebugLoc();
6777
6778  // Get the inputs.
6779  SDValue Chain = Op.getOperand(0);
6780  SDValue Size  = Op.getOperand(1);
6781  // FIXME: Ensure alignment here
6782
6783  SDValue Flag;
6784
6785  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6786
6787  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6788  Flag = Chain.getValue(1);
6789
6790  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6791
6792  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6793  Flag = Chain.getValue(1);
6794
6795  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6796
6797  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6798  return DAG.getMergeValues(Ops1, 2, dl);
6799}
6800
6801SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
6802  MachineFunction &MF = DAG.getMachineFunction();
6803  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
6804
6805  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6806  DebugLoc dl = Op.getDebugLoc();
6807
6808  if (!Subtarget->is64Bit()) {
6809    // vastart just stores the address of the VarArgsFrameIndex slot into the
6810    // memory location argument.
6811    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6812                                   getPointerTy());
6813    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6814                        false, false, 0);
6815  }
6816
6817  // __va_list_tag:
6818  //   gp_offset         (0 - 6 * 8)
6819  //   fp_offset         (48 - 48 + 8 * 16)
6820  //   overflow_arg_area (point to parameters coming in memory).
6821  //   reg_save_area
6822  SmallVector<SDValue, 8> MemOps;
6823  SDValue FIN = Op.getOperand(1);
6824  // Store gp_offset
6825  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6826                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
6827                                               MVT::i32),
6828                               FIN, SV, 0, false, false, 0);
6829  MemOps.push_back(Store);
6830
6831  // Store fp_offset
6832  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6833                    FIN, DAG.getIntPtrConstant(4));
6834  Store = DAG.getStore(Op.getOperand(0), dl,
6835                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
6836                                       MVT::i32),
6837                       FIN, SV, 4, false, false, 0);
6838  MemOps.push_back(Store);
6839
6840  // Store ptr to overflow_arg_area
6841  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6842                    FIN, DAG.getIntPtrConstant(4));
6843  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6844                                    getPointerTy());
6845  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 8,
6846                       false, false, 0);
6847  MemOps.push_back(Store);
6848
6849  // Store ptr to reg_save_area.
6850  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6851                    FIN, DAG.getIntPtrConstant(8));
6852  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
6853                                    getPointerTy());
6854  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 16,
6855                       false, false, 0);
6856  MemOps.push_back(Store);
6857  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6858                     &MemOps[0], MemOps.size());
6859}
6860
6861SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
6862  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6863  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6864
6865  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
6866  return SDValue();
6867}
6868
6869SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
6870  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6871  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6872  SDValue Chain = Op.getOperand(0);
6873  SDValue DstPtr = Op.getOperand(1);
6874  SDValue SrcPtr = Op.getOperand(2);
6875  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6876  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6877  DebugLoc dl = Op.getDebugLoc();
6878
6879  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6880                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
6881                       false, DstSV, 0, SrcSV, 0);
6882}
6883
6884SDValue
6885X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
6886  DebugLoc dl = Op.getDebugLoc();
6887  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6888  switch (IntNo) {
6889  default: return SDValue();    // Don't custom lower most intrinsics.
6890  // Comparison intrinsics.
6891  case Intrinsic::x86_sse_comieq_ss:
6892  case Intrinsic::x86_sse_comilt_ss:
6893  case Intrinsic::x86_sse_comile_ss:
6894  case Intrinsic::x86_sse_comigt_ss:
6895  case Intrinsic::x86_sse_comige_ss:
6896  case Intrinsic::x86_sse_comineq_ss:
6897  case Intrinsic::x86_sse_ucomieq_ss:
6898  case Intrinsic::x86_sse_ucomilt_ss:
6899  case Intrinsic::x86_sse_ucomile_ss:
6900  case Intrinsic::x86_sse_ucomigt_ss:
6901  case Intrinsic::x86_sse_ucomige_ss:
6902  case Intrinsic::x86_sse_ucomineq_ss:
6903  case Intrinsic::x86_sse2_comieq_sd:
6904  case Intrinsic::x86_sse2_comilt_sd:
6905  case Intrinsic::x86_sse2_comile_sd:
6906  case Intrinsic::x86_sse2_comigt_sd:
6907  case Intrinsic::x86_sse2_comige_sd:
6908  case Intrinsic::x86_sse2_comineq_sd:
6909  case Intrinsic::x86_sse2_ucomieq_sd:
6910  case Intrinsic::x86_sse2_ucomilt_sd:
6911  case Intrinsic::x86_sse2_ucomile_sd:
6912  case Intrinsic::x86_sse2_ucomigt_sd:
6913  case Intrinsic::x86_sse2_ucomige_sd:
6914  case Intrinsic::x86_sse2_ucomineq_sd: {
6915    unsigned Opc = 0;
6916    ISD::CondCode CC = ISD::SETCC_INVALID;
6917    switch (IntNo) {
6918    default: break;
6919    case Intrinsic::x86_sse_comieq_ss:
6920    case Intrinsic::x86_sse2_comieq_sd:
6921      Opc = X86ISD::COMI;
6922      CC = ISD::SETEQ;
6923      break;
6924    case Intrinsic::x86_sse_comilt_ss:
6925    case Intrinsic::x86_sse2_comilt_sd:
6926      Opc = X86ISD::COMI;
6927      CC = ISD::SETLT;
6928      break;
6929    case Intrinsic::x86_sse_comile_ss:
6930    case Intrinsic::x86_sse2_comile_sd:
6931      Opc = X86ISD::COMI;
6932      CC = ISD::SETLE;
6933      break;
6934    case Intrinsic::x86_sse_comigt_ss:
6935    case Intrinsic::x86_sse2_comigt_sd:
6936      Opc = X86ISD::COMI;
6937      CC = ISD::SETGT;
6938      break;
6939    case Intrinsic::x86_sse_comige_ss:
6940    case Intrinsic::x86_sse2_comige_sd:
6941      Opc = X86ISD::COMI;
6942      CC = ISD::SETGE;
6943      break;
6944    case Intrinsic::x86_sse_comineq_ss:
6945    case Intrinsic::x86_sse2_comineq_sd:
6946      Opc = X86ISD::COMI;
6947      CC = ISD::SETNE;
6948      break;
6949    case Intrinsic::x86_sse_ucomieq_ss:
6950    case Intrinsic::x86_sse2_ucomieq_sd:
6951      Opc = X86ISD::UCOMI;
6952      CC = ISD::SETEQ;
6953      break;
6954    case Intrinsic::x86_sse_ucomilt_ss:
6955    case Intrinsic::x86_sse2_ucomilt_sd:
6956      Opc = X86ISD::UCOMI;
6957      CC = ISD::SETLT;
6958      break;
6959    case Intrinsic::x86_sse_ucomile_ss:
6960    case Intrinsic::x86_sse2_ucomile_sd:
6961      Opc = X86ISD::UCOMI;
6962      CC = ISD::SETLE;
6963      break;
6964    case Intrinsic::x86_sse_ucomigt_ss:
6965    case Intrinsic::x86_sse2_ucomigt_sd:
6966      Opc = X86ISD::UCOMI;
6967      CC = ISD::SETGT;
6968      break;
6969    case Intrinsic::x86_sse_ucomige_ss:
6970    case Intrinsic::x86_sse2_ucomige_sd:
6971      Opc = X86ISD::UCOMI;
6972      CC = ISD::SETGE;
6973      break;
6974    case Intrinsic::x86_sse_ucomineq_ss:
6975    case Intrinsic::x86_sse2_ucomineq_sd:
6976      Opc = X86ISD::UCOMI;
6977      CC = ISD::SETNE;
6978      break;
6979    }
6980
6981    SDValue LHS = Op.getOperand(1);
6982    SDValue RHS = Op.getOperand(2);
6983    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6984    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6985    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6986    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6987                                DAG.getConstant(X86CC, MVT::i8), Cond);
6988    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6989  }
6990  // ptest and testp intrinsics. The intrinsic these come from are designed to
6991  // return an integer value, not just an instruction so lower it to the ptest
6992  // or testp pattern and a setcc for the result.
6993  case Intrinsic::x86_sse41_ptestz:
6994  case Intrinsic::x86_sse41_ptestc:
6995  case Intrinsic::x86_sse41_ptestnzc:
6996  case Intrinsic::x86_avx_ptestz_256:
6997  case Intrinsic::x86_avx_ptestc_256:
6998  case Intrinsic::x86_avx_ptestnzc_256:
6999  case Intrinsic::x86_avx_vtestz_ps:
7000  case Intrinsic::x86_avx_vtestc_ps:
7001  case Intrinsic::x86_avx_vtestnzc_ps:
7002  case Intrinsic::x86_avx_vtestz_pd:
7003  case Intrinsic::x86_avx_vtestc_pd:
7004  case Intrinsic::x86_avx_vtestnzc_pd:
7005  case Intrinsic::x86_avx_vtestz_ps_256:
7006  case Intrinsic::x86_avx_vtestc_ps_256:
7007  case Intrinsic::x86_avx_vtestnzc_ps_256:
7008  case Intrinsic::x86_avx_vtestz_pd_256:
7009  case Intrinsic::x86_avx_vtestc_pd_256:
7010  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7011    bool IsTestPacked = false;
7012    unsigned X86CC = 0;
7013    switch (IntNo) {
7014    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7015    case Intrinsic::x86_avx_vtestz_ps:
7016    case Intrinsic::x86_avx_vtestz_pd:
7017    case Intrinsic::x86_avx_vtestz_ps_256:
7018    case Intrinsic::x86_avx_vtestz_pd_256:
7019      IsTestPacked = true; // Fallthrough
7020    case Intrinsic::x86_sse41_ptestz:
7021    case Intrinsic::x86_avx_ptestz_256:
7022      // ZF = 1
7023      X86CC = X86::COND_E;
7024      break;
7025    case Intrinsic::x86_avx_vtestc_ps:
7026    case Intrinsic::x86_avx_vtestc_pd:
7027    case Intrinsic::x86_avx_vtestc_ps_256:
7028    case Intrinsic::x86_avx_vtestc_pd_256:
7029      IsTestPacked = true; // Fallthrough
7030    case Intrinsic::x86_sse41_ptestc:
7031    case Intrinsic::x86_avx_ptestc_256:
7032      // CF = 1
7033      X86CC = X86::COND_B;
7034      break;
7035    case Intrinsic::x86_avx_vtestnzc_ps:
7036    case Intrinsic::x86_avx_vtestnzc_pd:
7037    case Intrinsic::x86_avx_vtestnzc_ps_256:
7038    case Intrinsic::x86_avx_vtestnzc_pd_256:
7039      IsTestPacked = true; // Fallthrough
7040    case Intrinsic::x86_sse41_ptestnzc:
7041    case Intrinsic::x86_avx_ptestnzc_256:
7042      // ZF and CF = 0
7043      X86CC = X86::COND_A;
7044      break;
7045    }
7046
7047    SDValue LHS = Op.getOperand(1);
7048    SDValue RHS = Op.getOperand(2);
7049    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7050    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7051    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7052    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7053    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7054  }
7055
7056  // Fix vector shift instructions where the last operand is a non-immediate
7057  // i32 value.
7058  case Intrinsic::x86_sse2_pslli_w:
7059  case Intrinsic::x86_sse2_pslli_d:
7060  case Intrinsic::x86_sse2_pslli_q:
7061  case Intrinsic::x86_sse2_psrli_w:
7062  case Intrinsic::x86_sse2_psrli_d:
7063  case Intrinsic::x86_sse2_psrli_q:
7064  case Intrinsic::x86_sse2_psrai_w:
7065  case Intrinsic::x86_sse2_psrai_d:
7066  case Intrinsic::x86_mmx_pslli_w:
7067  case Intrinsic::x86_mmx_pslli_d:
7068  case Intrinsic::x86_mmx_pslli_q:
7069  case Intrinsic::x86_mmx_psrli_w:
7070  case Intrinsic::x86_mmx_psrli_d:
7071  case Intrinsic::x86_mmx_psrli_q:
7072  case Intrinsic::x86_mmx_psrai_w:
7073  case Intrinsic::x86_mmx_psrai_d: {
7074    SDValue ShAmt = Op.getOperand(2);
7075    if (isa<ConstantSDNode>(ShAmt))
7076      return SDValue();
7077
7078    unsigned NewIntNo = 0;
7079    EVT ShAmtVT = MVT::v4i32;
7080    switch (IntNo) {
7081    case Intrinsic::x86_sse2_pslli_w:
7082      NewIntNo = Intrinsic::x86_sse2_psll_w;
7083      break;
7084    case Intrinsic::x86_sse2_pslli_d:
7085      NewIntNo = Intrinsic::x86_sse2_psll_d;
7086      break;
7087    case Intrinsic::x86_sse2_pslli_q:
7088      NewIntNo = Intrinsic::x86_sse2_psll_q;
7089      break;
7090    case Intrinsic::x86_sse2_psrli_w:
7091      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7092      break;
7093    case Intrinsic::x86_sse2_psrli_d:
7094      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7095      break;
7096    case Intrinsic::x86_sse2_psrli_q:
7097      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7098      break;
7099    case Intrinsic::x86_sse2_psrai_w:
7100      NewIntNo = Intrinsic::x86_sse2_psra_w;
7101      break;
7102    case Intrinsic::x86_sse2_psrai_d:
7103      NewIntNo = Intrinsic::x86_sse2_psra_d;
7104      break;
7105    default: {
7106      ShAmtVT = MVT::v2i32;
7107      switch (IntNo) {
7108      case Intrinsic::x86_mmx_pslli_w:
7109        NewIntNo = Intrinsic::x86_mmx_psll_w;
7110        break;
7111      case Intrinsic::x86_mmx_pslli_d:
7112        NewIntNo = Intrinsic::x86_mmx_psll_d;
7113        break;
7114      case Intrinsic::x86_mmx_pslli_q:
7115        NewIntNo = Intrinsic::x86_mmx_psll_q;
7116        break;
7117      case Intrinsic::x86_mmx_psrli_w:
7118        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7119        break;
7120      case Intrinsic::x86_mmx_psrli_d:
7121        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7122        break;
7123      case Intrinsic::x86_mmx_psrli_q:
7124        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7125        break;
7126      case Intrinsic::x86_mmx_psrai_w:
7127        NewIntNo = Intrinsic::x86_mmx_psra_w;
7128        break;
7129      case Intrinsic::x86_mmx_psrai_d:
7130        NewIntNo = Intrinsic::x86_mmx_psra_d;
7131        break;
7132      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7133      }
7134      break;
7135    }
7136    }
7137
7138    // The vector shift intrinsics with scalars uses 32b shift amounts but
7139    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7140    // to be zero.
7141    SDValue ShOps[4];
7142    ShOps[0] = ShAmt;
7143    ShOps[1] = DAG.getConstant(0, MVT::i32);
7144    if (ShAmtVT == MVT::v4i32) {
7145      ShOps[2] = DAG.getUNDEF(MVT::i32);
7146      ShOps[3] = DAG.getUNDEF(MVT::i32);
7147      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7148    } else {
7149      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7150    }
7151
7152    EVT VT = Op.getValueType();
7153    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7154    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7155                       DAG.getConstant(NewIntNo, MVT::i32),
7156                       Op.getOperand(1), ShAmt);
7157  }
7158  }
7159}
7160
7161SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7162                                           SelectionDAG &DAG) const {
7163  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7164  MFI->setReturnAddressIsTaken(true);
7165
7166  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7167  DebugLoc dl = Op.getDebugLoc();
7168
7169  if (Depth > 0) {
7170    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7171    SDValue Offset =
7172      DAG.getConstant(TD->getPointerSize(),
7173                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7174    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7175                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7176                                   FrameAddr, Offset),
7177                       NULL, 0, false, false, 0);
7178  }
7179
7180  // Just load the return address.
7181  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7182  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7183                     RetAddrFI, NULL, 0, false, false, 0);
7184}
7185
7186SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7187  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7188  MFI->setFrameAddressIsTaken(true);
7189
7190  EVT VT = Op.getValueType();
7191  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7192  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7193  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7194  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7195  while (Depth--)
7196    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7197                            false, false, 0);
7198  return FrameAddr;
7199}
7200
7201SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7202                                                     SelectionDAG &DAG) const {
7203  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7204}
7205
7206SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7207  MachineFunction &MF = DAG.getMachineFunction();
7208  SDValue Chain     = Op.getOperand(0);
7209  SDValue Offset    = Op.getOperand(1);
7210  SDValue Handler   = Op.getOperand(2);
7211  DebugLoc dl       = Op.getDebugLoc();
7212
7213  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7214                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7215                                     getPointerTy());
7216  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7217
7218  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7219                                  DAG.getIntPtrConstant(TD->getPointerSize()));
7220  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7221  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7222  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7223  MF.getRegInfo().addLiveOut(StoreAddrReg);
7224
7225  return DAG.getNode(X86ISD::EH_RETURN, dl,
7226                     MVT::Other,
7227                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7228}
7229
7230SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7231                                             SelectionDAG &DAG) const {
7232  SDValue Root = Op.getOperand(0);
7233  SDValue Trmp = Op.getOperand(1); // trampoline
7234  SDValue FPtr = Op.getOperand(2); // nested function
7235  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7236  DebugLoc dl  = Op.getDebugLoc();
7237
7238  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7239
7240  if (Subtarget->is64Bit()) {
7241    SDValue OutChains[6];
7242
7243    // Large code-model.
7244    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7245    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7246
7247    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7248    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7249
7250    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7251
7252    // Load the pointer to the nested function into R11.
7253    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7254    SDValue Addr = Trmp;
7255    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7256                                Addr, TrmpAddr, 0, false, false, 0);
7257
7258    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7259                       DAG.getConstant(2, MVT::i64));
7260    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7261                                false, false, 2);
7262
7263    // Load the 'nest' parameter value into R10.
7264    // R10 is specified in X86CallingConv.td
7265    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7266    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7267                       DAG.getConstant(10, MVT::i64));
7268    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7269                                Addr, TrmpAddr, 10, false, false, 0);
7270
7271    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7272                       DAG.getConstant(12, MVT::i64));
7273    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7274                                false, false, 2);
7275
7276    // Jump to the nested function.
7277    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7278    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7279                       DAG.getConstant(20, MVT::i64));
7280    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7281                                Addr, TrmpAddr, 20, false, false, 0);
7282
7283    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7284    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7285                       DAG.getConstant(22, MVT::i64));
7286    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7287                                TrmpAddr, 22, false, false, 0);
7288
7289    SDValue Ops[] =
7290      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7291    return DAG.getMergeValues(Ops, 2, dl);
7292  } else {
7293    const Function *Func =
7294      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7295    CallingConv::ID CC = Func->getCallingConv();
7296    unsigned NestReg;
7297
7298    switch (CC) {
7299    default:
7300      llvm_unreachable("Unsupported calling convention");
7301    case CallingConv::C:
7302    case CallingConv::X86_StdCall: {
7303      // Pass 'nest' parameter in ECX.
7304      // Must be kept in sync with X86CallingConv.td
7305      NestReg = X86::ECX;
7306
7307      // Check that ECX wasn't needed by an 'inreg' parameter.
7308      const FunctionType *FTy = Func->getFunctionType();
7309      const AttrListPtr &Attrs = Func->getAttributes();
7310
7311      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7312        unsigned InRegCount = 0;
7313        unsigned Idx = 1;
7314
7315        for (FunctionType::param_iterator I = FTy->param_begin(),
7316             E = FTy->param_end(); I != E; ++I, ++Idx)
7317          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7318            // FIXME: should only count parameters that are lowered to integers.
7319            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7320
7321        if (InRegCount > 2) {
7322          report_fatal_error("Nest register in use - reduce number of inreg"
7323                             " parameters!");
7324        }
7325      }
7326      break;
7327    }
7328    case CallingConv::X86_FastCall:
7329    case CallingConv::X86_ThisCall:
7330    case CallingConv::Fast:
7331      // Pass 'nest' parameter in EAX.
7332      // Must be kept in sync with X86CallingConv.td
7333      NestReg = X86::EAX;
7334      break;
7335    }
7336
7337    SDValue OutChains[4];
7338    SDValue Addr, Disp;
7339
7340    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7341                       DAG.getConstant(10, MVT::i32));
7342    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7343
7344    // This is storing the opcode for MOV32ri.
7345    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7346    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7347    OutChains[0] = DAG.getStore(Root, dl,
7348                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7349                                Trmp, TrmpAddr, 0, false, false, 0);
7350
7351    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7352                       DAG.getConstant(1, MVT::i32));
7353    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7354                                false, false, 1);
7355
7356    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7357    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7358                       DAG.getConstant(5, MVT::i32));
7359    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7360                                TrmpAddr, 5, false, false, 1);
7361
7362    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7363                       DAG.getConstant(6, MVT::i32));
7364    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7365                                false, false, 1);
7366
7367    SDValue Ops[] =
7368      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7369    return DAG.getMergeValues(Ops, 2, dl);
7370  }
7371}
7372
7373SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7374                                            SelectionDAG &DAG) const {
7375  /*
7376   The rounding mode is in bits 11:10 of FPSR, and has the following
7377   settings:
7378     00 Round to nearest
7379     01 Round to -inf
7380     10 Round to +inf
7381     11 Round to 0
7382
7383  FLT_ROUNDS, on the other hand, expects the following:
7384    -1 Undefined
7385     0 Round to 0
7386     1 Round to nearest
7387     2 Round to +inf
7388     3 Round to -inf
7389
7390  To perform the conversion, we do:
7391    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7392  */
7393
7394  MachineFunction &MF = DAG.getMachineFunction();
7395  const TargetMachine &TM = MF.getTarget();
7396  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7397  unsigned StackAlignment = TFI.getStackAlignment();
7398  EVT VT = Op.getValueType();
7399  DebugLoc dl = Op.getDebugLoc();
7400
7401  // Save FP Control Word to stack slot
7402  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7403  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7404
7405  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7406                              DAG.getEntryNode(), StackSlot);
7407
7408  // Load FP Control Word from stack slot
7409  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7410                            false, false, 0);
7411
7412  // Transform as necessary
7413  SDValue CWD1 =
7414    DAG.getNode(ISD::SRL, dl, MVT::i16,
7415                DAG.getNode(ISD::AND, dl, MVT::i16,
7416                            CWD, DAG.getConstant(0x800, MVT::i16)),
7417                DAG.getConstant(11, MVT::i8));
7418  SDValue CWD2 =
7419    DAG.getNode(ISD::SRL, dl, MVT::i16,
7420                DAG.getNode(ISD::AND, dl, MVT::i16,
7421                            CWD, DAG.getConstant(0x400, MVT::i16)),
7422                DAG.getConstant(9, MVT::i8));
7423
7424  SDValue RetVal =
7425    DAG.getNode(ISD::AND, dl, MVT::i16,
7426                DAG.getNode(ISD::ADD, dl, MVT::i16,
7427                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7428                            DAG.getConstant(1, MVT::i16)),
7429                DAG.getConstant(3, MVT::i16));
7430
7431
7432  return DAG.getNode((VT.getSizeInBits() < 16 ?
7433                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7434}
7435
7436SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
7437  EVT VT = Op.getValueType();
7438  EVT OpVT = VT;
7439  unsigned NumBits = VT.getSizeInBits();
7440  DebugLoc dl = Op.getDebugLoc();
7441
7442  Op = Op.getOperand(0);
7443  if (VT == MVT::i8) {
7444    // Zero extend to i32 since there is not an i8 bsr.
7445    OpVT = MVT::i32;
7446    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7447  }
7448
7449  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7450  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7451  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7452
7453  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7454  SDValue Ops[] = {
7455    Op,
7456    DAG.getConstant(NumBits+NumBits-1, OpVT),
7457    DAG.getConstant(X86::COND_E, MVT::i8),
7458    Op.getValue(1)
7459  };
7460  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7461
7462  // Finally xor with NumBits-1.
7463  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7464
7465  if (VT == MVT::i8)
7466    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7467  return Op;
7468}
7469
7470SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
7471  EVT VT = Op.getValueType();
7472  EVT OpVT = VT;
7473  unsigned NumBits = VT.getSizeInBits();
7474  DebugLoc dl = Op.getDebugLoc();
7475
7476  Op = Op.getOperand(0);
7477  if (VT == MVT::i8) {
7478    OpVT = MVT::i32;
7479    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7480  }
7481
7482  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7483  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7484  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7485
7486  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7487  SDValue Ops[] = {
7488    Op,
7489    DAG.getConstant(NumBits, OpVT),
7490    DAG.getConstant(X86::COND_E, MVT::i8),
7491    Op.getValue(1)
7492  };
7493  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7494
7495  if (VT == MVT::i8)
7496    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7497  return Op;
7498}
7499
7500SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
7501  EVT VT = Op.getValueType();
7502  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7503  DebugLoc dl = Op.getDebugLoc();
7504
7505  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7506  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7507  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7508  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7509  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7510  //
7511  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7512  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7513  //  return AloBlo + AloBhi + AhiBlo;
7514
7515  SDValue A = Op.getOperand(0);
7516  SDValue B = Op.getOperand(1);
7517
7518  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7519                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7520                       A, DAG.getConstant(32, MVT::i32));
7521  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7522                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7523                       B, DAG.getConstant(32, MVT::i32));
7524  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7525                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7526                       A, B);
7527  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7528                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7529                       A, Bhi);
7530  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7531                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7532                       Ahi, B);
7533  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7534                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7535                       AloBhi, DAG.getConstant(32, MVT::i32));
7536  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7537                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7538                       AhiBlo, DAG.getConstant(32, MVT::i32));
7539  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7540  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7541  return Res;
7542}
7543
7544SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
7545  EVT VT = Op.getValueType();
7546  DebugLoc dl = Op.getDebugLoc();
7547  SDValue R = Op.getOperand(0);
7548
7549  LLVMContext *Context = DAG.getContext();
7550
7551  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
7552
7553  if (VT == MVT::v4i32) {
7554    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7555                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
7556                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
7557
7558    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
7559
7560    std::vector<Constant*> CV(4, CI);
7561    Constant *C = ConstantVector::get(CV);
7562    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7563    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7564                                 PseudoSourceValue::getConstantPool(), 0,
7565                                 false, false, 16);
7566
7567    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
7568    Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
7569    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
7570    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
7571  }
7572  if (VT == MVT::v16i8) {
7573    // a = a << 5;
7574    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7575                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
7576                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
7577
7578    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
7579    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
7580
7581    std::vector<Constant*> CVM1(16, CM1);
7582    std::vector<Constant*> CVM2(16, CM2);
7583    Constant *C = ConstantVector::get(CVM1);
7584    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7585    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7586                            PseudoSourceValue::getConstantPool(), 0,
7587                            false, false, 16);
7588
7589    // r = pblendv(r, psllw(r & (char16)15, 4), a);
7590    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7591    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7592                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
7593                    DAG.getConstant(4, MVT::i32));
7594    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7595                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7596                    R, M, Op);
7597    // a += a
7598    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
7599
7600    C = ConstantVector::get(CVM2);
7601    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7602    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7603                    PseudoSourceValue::getConstantPool(), 0, false, false, 16);
7604
7605    // r = pblendv(r, psllw(r & (char16)63, 2), a);
7606    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7607    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7608                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
7609                    DAG.getConstant(2, MVT::i32));
7610    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7611                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7612                    R, M, Op);
7613    // a += a
7614    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
7615
7616    // return pblendv(r, r+r, a);
7617    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7618                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7619                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
7620    return R;
7621  }
7622  return SDValue();
7623}
7624
7625SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
7626  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7627  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7628  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7629  // has only one use.
7630  SDNode *N = Op.getNode();
7631  SDValue LHS = N->getOperand(0);
7632  SDValue RHS = N->getOperand(1);
7633  unsigned BaseOp = 0;
7634  unsigned Cond = 0;
7635  DebugLoc dl = Op.getDebugLoc();
7636
7637  switch (Op.getOpcode()) {
7638  default: llvm_unreachable("Unknown ovf instruction!");
7639  case ISD::SADDO:
7640    // A subtract of one will be selected as a INC. Note that INC doesn't
7641    // set CF, so we can't do this for UADDO.
7642    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7643      if (C->getAPIntValue() == 1) {
7644        BaseOp = X86ISD::INC;
7645        Cond = X86::COND_O;
7646        break;
7647      }
7648    BaseOp = X86ISD::ADD;
7649    Cond = X86::COND_O;
7650    break;
7651  case ISD::UADDO:
7652    BaseOp = X86ISD::ADD;
7653    Cond = X86::COND_B;
7654    break;
7655  case ISD::SSUBO:
7656    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7657    // set CF, so we can't do this for USUBO.
7658    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7659      if (C->getAPIntValue() == 1) {
7660        BaseOp = X86ISD::DEC;
7661        Cond = X86::COND_O;
7662        break;
7663      }
7664    BaseOp = X86ISD::SUB;
7665    Cond = X86::COND_O;
7666    break;
7667  case ISD::USUBO:
7668    BaseOp = X86ISD::SUB;
7669    Cond = X86::COND_B;
7670    break;
7671  case ISD::SMULO:
7672    BaseOp = X86ISD::SMUL;
7673    Cond = X86::COND_O;
7674    break;
7675  case ISD::UMULO:
7676    BaseOp = X86ISD::UMUL;
7677    Cond = X86::COND_B;
7678    break;
7679  }
7680
7681  // Also sets EFLAGS.
7682  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7683  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7684
7685  SDValue SetCC =
7686    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7687                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7688
7689  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7690  return Sum;
7691}
7692
7693SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
7694  DebugLoc dl = Op.getDebugLoc();
7695
7696  if (!Subtarget->hasSSE2()) {
7697    SDValue Zero = DAG.getConstant(0,
7698                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7699    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
7700                       Zero);
7701  }
7702
7703  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7704  if(!isDev)
7705    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
7706  else {
7707    unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7708    unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
7709    unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7710    unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
7711
7712    // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
7713    if (!Op1 && !Op2 && !Op3 && Op4)
7714      return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
7715
7716    // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
7717    if (Op1 && !Op2 && !Op3 && !Op4)
7718      return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
7719
7720    // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
7721    //           (MFENCE)>;
7722    return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
7723  }
7724}
7725
7726SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
7727  EVT T = Op.getValueType();
7728  DebugLoc dl = Op.getDebugLoc();
7729  unsigned Reg = 0;
7730  unsigned size = 0;
7731  switch(T.getSimpleVT().SimpleTy) {
7732  default:
7733    assert(false && "Invalid value type!");
7734  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7735  case MVT::i16: Reg = X86::AX;  size = 2; break;
7736  case MVT::i32: Reg = X86::EAX; size = 4; break;
7737  case MVT::i64:
7738    assert(Subtarget->is64Bit() && "Node not type legal!");
7739    Reg = X86::RAX; size = 8;
7740    break;
7741  }
7742  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7743                                    Op.getOperand(2), SDValue());
7744  SDValue Ops[] = { cpIn.getValue(0),
7745                    Op.getOperand(1),
7746                    Op.getOperand(3),
7747                    DAG.getTargetConstant(size, MVT::i8),
7748                    cpIn.getValue(1) };
7749  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7750  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7751  SDValue cpOut =
7752    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7753  return cpOut;
7754}
7755
7756SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7757                                                 SelectionDAG &DAG) const {
7758  assert(Subtarget->is64Bit() && "Result not type legalized?");
7759  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7760  SDValue TheChain = Op.getOperand(0);
7761  DebugLoc dl = Op.getDebugLoc();
7762  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7763  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7764  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7765                                   rax.getValue(2));
7766  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7767                            DAG.getConstant(32, MVT::i8));
7768  SDValue Ops[] = {
7769    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7770    rdx.getValue(1)
7771  };
7772  return DAG.getMergeValues(Ops, 2, dl);
7773}
7774
7775SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
7776                                            SelectionDAG &DAG) const {
7777  EVT SrcVT = Op.getOperand(0).getValueType();
7778  EVT DstVT = Op.getValueType();
7779  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
7780          Subtarget->hasMMX() && !DisableMMX) &&
7781         "Unexpected custom BIT_CONVERT");
7782  assert((DstVT == MVT::i64 ||
7783          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
7784         "Unexpected custom BIT_CONVERT");
7785  // i64 <=> MMX conversions are Legal.
7786  if (SrcVT==MVT::i64 && DstVT.isVector())
7787    return Op;
7788  if (DstVT==MVT::i64 && SrcVT.isVector())
7789    return Op;
7790  // MMX <=> MMX conversions are Legal.
7791  if (SrcVT.isVector() && DstVT.isVector())
7792    return Op;
7793  // All other conversions need to be expanded.
7794  return SDValue();
7795}
7796SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
7797  SDNode *Node = Op.getNode();
7798  DebugLoc dl = Node->getDebugLoc();
7799  EVT T = Node->getValueType(0);
7800  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7801                              DAG.getConstant(0, T), Node->getOperand(2));
7802  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7803                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7804                       Node->getOperand(0),
7805                       Node->getOperand(1), negOp,
7806                       cast<AtomicSDNode>(Node)->getSrcValue(),
7807                       cast<AtomicSDNode>(Node)->getAlignment());
7808}
7809
7810/// LowerOperation - Provide custom lowering hooks for some operations.
7811///
7812SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7813  switch (Op.getOpcode()) {
7814  default: llvm_unreachable("Should not custom lower this!");
7815  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
7816  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7817  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7818  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7819  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7820  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7821  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7822  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7823  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7824  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7825  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7826  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7827  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7828  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7829  case ISD::SHL_PARTS:
7830  case ISD::SRA_PARTS:
7831  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7832  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7833  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7834  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7835  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7836  case ISD::FABS:               return LowerFABS(Op, DAG);
7837  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7838  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7839  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7840  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7841  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7842  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7843  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7844  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7845  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7846  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7847  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7848  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7849  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7850  case ISD::FRAME_TO_ARGS_OFFSET:
7851                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7852  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7853  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7854  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7855  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7856  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7857  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7858  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7859  case ISD::SHL:                return LowerSHL(Op, DAG);
7860  case ISD::SADDO:
7861  case ISD::UADDO:
7862  case ISD::SSUBO:
7863  case ISD::USUBO:
7864  case ISD::SMULO:
7865  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7866  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7867  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
7868  }
7869}
7870
7871void X86TargetLowering::
7872ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7873                        SelectionDAG &DAG, unsigned NewOp) const {
7874  EVT T = Node->getValueType(0);
7875  DebugLoc dl = Node->getDebugLoc();
7876  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7877
7878  SDValue Chain = Node->getOperand(0);
7879  SDValue In1 = Node->getOperand(1);
7880  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7881                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7882  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7883                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7884  SDValue Ops[] = { Chain, In1, In2L, In2H };
7885  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7886  SDValue Result =
7887    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7888                            cast<MemSDNode>(Node)->getMemOperand());
7889  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7890  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7891  Results.push_back(Result.getValue(2));
7892}
7893
7894/// ReplaceNodeResults - Replace a node with an illegal result type
7895/// with a new node built out of custom code.
7896void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7897                                           SmallVectorImpl<SDValue>&Results,
7898                                           SelectionDAG &DAG) const {
7899  DebugLoc dl = N->getDebugLoc();
7900  switch (N->getOpcode()) {
7901  default:
7902    assert(false && "Do not know how to custom type legalize this operation!");
7903    return;
7904  case ISD::FP_TO_SINT: {
7905    std::pair<SDValue,SDValue> Vals =
7906        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7907    SDValue FIST = Vals.first, StackSlot = Vals.second;
7908    if (FIST.getNode() != 0) {
7909      EVT VT = N->getValueType(0);
7910      // Return a load from the stack slot.
7911      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7912                                    false, false, 0));
7913    }
7914    return;
7915  }
7916  case ISD::READCYCLECOUNTER: {
7917    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7918    SDValue TheChain = N->getOperand(0);
7919    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7920    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7921                                     rd.getValue(1));
7922    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7923                                     eax.getValue(2));
7924    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7925    SDValue Ops[] = { eax, edx };
7926    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7927    Results.push_back(edx.getValue(1));
7928    return;
7929  }
7930  case ISD::ATOMIC_CMP_SWAP: {
7931    EVT T = N->getValueType(0);
7932    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7933    SDValue cpInL, cpInH;
7934    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7935                        DAG.getConstant(0, MVT::i32));
7936    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7937                        DAG.getConstant(1, MVT::i32));
7938    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7939    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7940                             cpInL.getValue(1));
7941    SDValue swapInL, swapInH;
7942    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7943                          DAG.getConstant(0, MVT::i32));
7944    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7945                          DAG.getConstant(1, MVT::i32));
7946    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7947                               cpInH.getValue(1));
7948    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7949                               swapInL.getValue(1));
7950    SDValue Ops[] = { swapInH.getValue(0),
7951                      N->getOperand(1),
7952                      swapInH.getValue(1) };
7953    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7954    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7955    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7956                                        MVT::i32, Result.getValue(1));
7957    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7958                                        MVT::i32, cpOutL.getValue(2));
7959    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7960    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7961    Results.push_back(cpOutH.getValue(1));
7962    return;
7963  }
7964  case ISD::ATOMIC_LOAD_ADD:
7965    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7966    return;
7967  case ISD::ATOMIC_LOAD_AND:
7968    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7969    return;
7970  case ISD::ATOMIC_LOAD_NAND:
7971    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7972    return;
7973  case ISD::ATOMIC_LOAD_OR:
7974    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7975    return;
7976  case ISD::ATOMIC_LOAD_SUB:
7977    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7978    return;
7979  case ISD::ATOMIC_LOAD_XOR:
7980    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7981    return;
7982  case ISD::ATOMIC_SWAP:
7983    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7984    return;
7985  }
7986}
7987
7988const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7989  switch (Opcode) {
7990  default: return NULL;
7991  case X86ISD::BSF:                return "X86ISD::BSF";
7992  case X86ISD::BSR:                return "X86ISD::BSR";
7993  case X86ISD::SHLD:               return "X86ISD::SHLD";
7994  case X86ISD::SHRD:               return "X86ISD::SHRD";
7995  case X86ISD::FAND:               return "X86ISD::FAND";
7996  case X86ISD::FOR:                return "X86ISD::FOR";
7997  case X86ISD::FXOR:               return "X86ISD::FXOR";
7998  case X86ISD::FSRL:               return "X86ISD::FSRL";
7999  case X86ISD::FILD:               return "X86ISD::FILD";
8000  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8001  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8002  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8003  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8004  case X86ISD::FLD:                return "X86ISD::FLD";
8005  case X86ISD::FST:                return "X86ISD::FST";
8006  case X86ISD::CALL:               return "X86ISD::CALL";
8007  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8008  case X86ISD::BT:                 return "X86ISD::BT";
8009  case X86ISD::CMP:                return "X86ISD::CMP";
8010  case X86ISD::COMI:               return "X86ISD::COMI";
8011  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8012  case X86ISD::SETCC:              return "X86ISD::SETCC";
8013  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8014  case X86ISD::CMOV:               return "X86ISD::CMOV";
8015  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8016  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8017  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8018  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8019  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8020  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8021  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8022  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8023  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8024  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8025  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8026  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8027  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
8028  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8029  case X86ISD::FMAX:               return "X86ISD::FMAX";
8030  case X86ISD::FMIN:               return "X86ISD::FMIN";
8031  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8032  case X86ISD::FRCP:               return "X86ISD::FRCP";
8033  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8034  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8035  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
8036  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8037  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8038  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8039  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8040  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8041  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8042  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8043  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8044  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8045  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8046  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8047  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8048  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8049  case X86ISD::VSHL:               return "X86ISD::VSHL";
8050  case X86ISD::VSRL:               return "X86ISD::VSRL";
8051  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8052  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8053  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8054  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8055  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8056  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8057  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8058  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8059  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8060  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8061  case X86ISD::ADD:                return "X86ISD::ADD";
8062  case X86ISD::SUB:                return "X86ISD::SUB";
8063  case X86ISD::SMUL:               return "X86ISD::SMUL";
8064  case X86ISD::UMUL:               return "X86ISD::UMUL";
8065  case X86ISD::INC:                return "X86ISD::INC";
8066  case X86ISD::DEC:                return "X86ISD::DEC";
8067  case X86ISD::OR:                 return "X86ISD::OR";
8068  case X86ISD::XOR:                return "X86ISD::XOR";
8069  case X86ISD::AND:                return "X86ISD::AND";
8070  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8071  case X86ISD::PTEST:              return "X86ISD::PTEST";
8072  case X86ISD::TESTP:              return "X86ISD::TESTP";
8073  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8074  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
8075  }
8076}
8077
8078// isLegalAddressingMode - Return true if the addressing mode represented
8079// by AM is legal for this target, for a load/store of the specified type.
8080bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8081                                              const Type *Ty) const {
8082  // X86 supports extremely general addressing modes.
8083  CodeModel::Model M = getTargetMachine().getCodeModel();
8084
8085  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8086  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8087    return false;
8088
8089  if (AM.BaseGV) {
8090    unsigned GVFlags =
8091      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8092
8093    // If a reference to this global requires an extra load, we can't fold it.
8094    if (isGlobalStubReference(GVFlags))
8095      return false;
8096
8097    // If BaseGV requires a register for the PIC base, we cannot also have a
8098    // BaseReg specified.
8099    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8100      return false;
8101
8102    // If lower 4G is not available, then we must use rip-relative addressing.
8103    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8104      return false;
8105  }
8106
8107  switch (AM.Scale) {
8108  case 0:
8109  case 1:
8110  case 2:
8111  case 4:
8112  case 8:
8113    // These scales always work.
8114    break;
8115  case 3:
8116  case 5:
8117  case 9:
8118    // These scales are formed with basereg+scalereg.  Only accept if there is
8119    // no basereg yet.
8120    if (AM.HasBaseReg)
8121      return false;
8122    break;
8123  default:  // Other stuff never works.
8124    return false;
8125  }
8126
8127  return true;
8128}
8129
8130
8131bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8132  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8133    return false;
8134  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8135  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8136  if (NumBits1 <= NumBits2)
8137    return false;
8138  return true;
8139}
8140
8141bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8142  if (!VT1.isInteger() || !VT2.isInteger())
8143    return false;
8144  unsigned NumBits1 = VT1.getSizeInBits();
8145  unsigned NumBits2 = VT2.getSizeInBits();
8146  if (NumBits1 <= NumBits2)
8147    return false;
8148  return true;
8149}
8150
8151bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8152  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8153  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8154}
8155
8156bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8157  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8158  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8159}
8160
8161bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8162  // i16 instructions are longer (0x66 prefix) and potentially slower.
8163  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8164}
8165
8166/// isShuffleMaskLegal - Targets can use this to indicate that they only
8167/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8168/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8169/// are assumed to be legal.
8170bool
8171X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8172                                      EVT VT) const {
8173  // Very little shuffling can be done for 64-bit vectors right now.
8174  if (VT.getSizeInBits() == 64)
8175    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8176
8177  // FIXME: pshufb, blends, shifts.
8178  return (VT.getVectorNumElements() == 2 ||
8179          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8180          isMOVLMask(M, VT) ||
8181          isSHUFPMask(M, VT) ||
8182          isPSHUFDMask(M, VT) ||
8183          isPSHUFHWMask(M, VT) ||
8184          isPSHUFLWMask(M, VT) ||
8185          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
8186          isUNPCKLMask(M, VT) ||
8187          isUNPCKHMask(M, VT) ||
8188          isUNPCKL_v_undef_Mask(M, VT) ||
8189          isUNPCKH_v_undef_Mask(M, VT));
8190}
8191
8192bool
8193X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
8194                                          EVT VT) const {
8195  unsigned NumElts = VT.getVectorNumElements();
8196  // FIXME: This collection of masks seems suspect.
8197  if (NumElts == 2)
8198    return true;
8199  if (NumElts == 4 && VT.getSizeInBits() == 128) {
8200    return (isMOVLMask(Mask, VT)  ||
8201            isCommutedMOVLMask(Mask, VT, true) ||
8202            isSHUFPMask(Mask, VT) ||
8203            isCommutedSHUFPMask(Mask, VT));
8204  }
8205  return false;
8206}
8207
8208//===----------------------------------------------------------------------===//
8209//                           X86 Scheduler Hooks
8210//===----------------------------------------------------------------------===//
8211
8212// private utility function
8213MachineBasicBlock *
8214X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
8215                                                       MachineBasicBlock *MBB,
8216                                                       unsigned regOpc,
8217                                                       unsigned immOpc,
8218                                                       unsigned LoadOpc,
8219                                                       unsigned CXchgOpc,
8220                                                       unsigned notOpc,
8221                                                       unsigned EAXreg,
8222                                                       TargetRegisterClass *RC,
8223                                                       bool invSrc) const {
8224  // For the atomic bitwise operator, we generate
8225  //   thisMBB:
8226  //   newMBB:
8227  //     ld  t1 = [bitinstr.addr]
8228  //     op  t2 = t1, [bitinstr.val]
8229  //     mov EAX = t1
8230  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8231  //     bz  newMBB
8232  //     fallthrough -->nextMBB
8233  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8234  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8235  MachineFunction::iterator MBBIter = MBB;
8236  ++MBBIter;
8237
8238  /// First build the CFG
8239  MachineFunction *F = MBB->getParent();
8240  MachineBasicBlock *thisMBB = MBB;
8241  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8242  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8243  F->insert(MBBIter, newMBB);
8244  F->insert(MBBIter, nextMBB);
8245
8246  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8247  nextMBB->splice(nextMBB->begin(), thisMBB,
8248                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8249                  thisMBB->end());
8250  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8251
8252  // Update thisMBB to fall through to newMBB
8253  thisMBB->addSuccessor(newMBB);
8254
8255  // newMBB jumps to itself and fall through to nextMBB
8256  newMBB->addSuccessor(nextMBB);
8257  newMBB->addSuccessor(newMBB);
8258
8259  // Insert instructions into newMBB based on incoming instruction
8260  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8261         "unexpected number of operands");
8262  DebugLoc dl = bInstr->getDebugLoc();
8263  MachineOperand& destOper = bInstr->getOperand(0);
8264  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8265  int numArgs = bInstr->getNumOperands() - 1;
8266  for (int i=0; i < numArgs; ++i)
8267    argOpers[i] = &bInstr->getOperand(i+1);
8268
8269  // x86 address has 4 operands: base, index, scale, and displacement
8270  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8271  int valArgIndx = lastAddrIndx + 1;
8272
8273  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8274  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8275  for (int i=0; i <= lastAddrIndx; ++i)
8276    (*MIB).addOperand(*argOpers[i]);
8277
8278  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8279  if (invSrc) {
8280    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8281  }
8282  else
8283    tt = t1;
8284
8285  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8286  assert((argOpers[valArgIndx]->isReg() ||
8287          argOpers[valArgIndx]->isImm()) &&
8288         "invalid operand");
8289  if (argOpers[valArgIndx]->isReg())
8290    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8291  else
8292    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8293  MIB.addReg(tt);
8294  (*MIB).addOperand(*argOpers[valArgIndx]);
8295
8296  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
8297  MIB.addReg(t1);
8298
8299  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8300  for (int i=0; i <= lastAddrIndx; ++i)
8301    (*MIB).addOperand(*argOpers[i]);
8302  MIB.addReg(t2);
8303  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8304  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8305                    bInstr->memoperands_end());
8306
8307  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8308  MIB.addReg(EAXreg);
8309
8310  // insert branch
8311  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8312
8313  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8314  return nextMBB;
8315}
8316
8317// private utility function:  64 bit atomics on 32 bit host.
8318MachineBasicBlock *
8319X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8320                                                       MachineBasicBlock *MBB,
8321                                                       unsigned regOpcL,
8322                                                       unsigned regOpcH,
8323                                                       unsigned immOpcL,
8324                                                       unsigned immOpcH,
8325                                                       bool invSrc) const {
8326  // For the atomic bitwise operator, we generate
8327  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8328  //     ld t1,t2 = [bitinstr.addr]
8329  //   newMBB:
8330  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8331  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8332  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8333  //     mov ECX, EBX <- t5, t6
8334  //     mov EAX, EDX <- t1, t2
8335  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8336  //     mov t3, t4 <- EAX, EDX
8337  //     bz  newMBB
8338  //     result in out1, out2
8339  //     fallthrough -->nextMBB
8340
8341  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8342  const unsigned LoadOpc = X86::MOV32rm;
8343  const unsigned NotOpc = X86::NOT32r;
8344  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8345  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8346  MachineFunction::iterator MBBIter = MBB;
8347  ++MBBIter;
8348
8349  /// First build the CFG
8350  MachineFunction *F = MBB->getParent();
8351  MachineBasicBlock *thisMBB = MBB;
8352  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8353  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8354  F->insert(MBBIter, newMBB);
8355  F->insert(MBBIter, nextMBB);
8356
8357  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8358  nextMBB->splice(nextMBB->begin(), thisMBB,
8359                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8360                  thisMBB->end());
8361  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8362
8363  // Update thisMBB to fall through to newMBB
8364  thisMBB->addSuccessor(newMBB);
8365
8366  // newMBB jumps to itself and fall through to nextMBB
8367  newMBB->addSuccessor(nextMBB);
8368  newMBB->addSuccessor(newMBB);
8369
8370  DebugLoc dl = bInstr->getDebugLoc();
8371  // Insert instructions into newMBB based on incoming instruction
8372  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8373  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
8374         "unexpected number of operands");
8375  MachineOperand& dest1Oper = bInstr->getOperand(0);
8376  MachineOperand& dest2Oper = bInstr->getOperand(1);
8377  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8378  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
8379    argOpers[i] = &bInstr->getOperand(i+2);
8380
8381    // We use some of the operands multiple times, so conservatively just
8382    // clear any kill flags that might be present.
8383    if (argOpers[i]->isReg() && argOpers[i]->isUse())
8384      argOpers[i]->setIsKill(false);
8385  }
8386
8387  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8388  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8389
8390  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8391  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8392  for (int i=0; i <= lastAddrIndx; ++i)
8393    (*MIB).addOperand(*argOpers[i]);
8394  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8395  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8396  // add 4 to displacement.
8397  for (int i=0; i <= lastAddrIndx-2; ++i)
8398    (*MIB).addOperand(*argOpers[i]);
8399  MachineOperand newOp3 = *(argOpers[3]);
8400  if (newOp3.isImm())
8401    newOp3.setImm(newOp3.getImm()+4);
8402  else
8403    newOp3.setOffset(newOp3.getOffset()+4);
8404  (*MIB).addOperand(newOp3);
8405  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8406
8407  // t3/4 are defined later, at the bottom of the loop
8408  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8409  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8410  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8411    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8412  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8413    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8414
8415  // The subsequent operations should be using the destination registers of
8416  //the PHI instructions.
8417  if (invSrc) {
8418    t1 = F->getRegInfo().createVirtualRegister(RC);
8419    t2 = F->getRegInfo().createVirtualRegister(RC);
8420    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8421    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8422  } else {
8423    t1 = dest1Oper.getReg();
8424    t2 = dest2Oper.getReg();
8425  }
8426
8427  int valArgIndx = lastAddrIndx + 1;
8428  assert((argOpers[valArgIndx]->isReg() ||
8429          argOpers[valArgIndx]->isImm()) &&
8430         "invalid operand");
8431  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8432  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8433  if (argOpers[valArgIndx]->isReg())
8434    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8435  else
8436    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8437  if (regOpcL != X86::MOV32rr)
8438    MIB.addReg(t1);
8439  (*MIB).addOperand(*argOpers[valArgIndx]);
8440  assert(argOpers[valArgIndx + 1]->isReg() ==
8441         argOpers[valArgIndx]->isReg());
8442  assert(argOpers[valArgIndx + 1]->isImm() ==
8443         argOpers[valArgIndx]->isImm());
8444  if (argOpers[valArgIndx + 1]->isReg())
8445    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8446  else
8447    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8448  if (regOpcH != X86::MOV32rr)
8449    MIB.addReg(t2);
8450  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8451
8452  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8453  MIB.addReg(t1);
8454  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
8455  MIB.addReg(t2);
8456
8457  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
8458  MIB.addReg(t5);
8459  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
8460  MIB.addReg(t6);
8461
8462  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8463  for (int i=0; i <= lastAddrIndx; ++i)
8464    (*MIB).addOperand(*argOpers[i]);
8465
8466  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8467  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8468                    bInstr->memoperands_end());
8469
8470  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
8471  MIB.addReg(X86::EAX);
8472  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
8473  MIB.addReg(X86::EDX);
8474
8475  // insert branch
8476  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8477
8478  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8479  return nextMBB;
8480}
8481
8482// private utility function
8483MachineBasicBlock *
8484X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8485                                                      MachineBasicBlock *MBB,
8486                                                      unsigned cmovOpc) const {
8487  // For the atomic min/max operator, we generate
8488  //   thisMBB:
8489  //   newMBB:
8490  //     ld t1 = [min/max.addr]
8491  //     mov t2 = [min/max.val]
8492  //     cmp  t1, t2
8493  //     cmov[cond] t2 = t1
8494  //     mov EAX = t1
8495  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8496  //     bz   newMBB
8497  //     fallthrough -->nextMBB
8498  //
8499  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8500  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8501  MachineFunction::iterator MBBIter = MBB;
8502  ++MBBIter;
8503
8504  /// First build the CFG
8505  MachineFunction *F = MBB->getParent();
8506  MachineBasicBlock *thisMBB = MBB;
8507  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8508  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8509  F->insert(MBBIter, newMBB);
8510  F->insert(MBBIter, nextMBB);
8511
8512  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8513  nextMBB->splice(nextMBB->begin(), thisMBB,
8514                  llvm::next(MachineBasicBlock::iterator(mInstr)),
8515                  thisMBB->end());
8516  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8517
8518  // Update thisMBB to fall through to newMBB
8519  thisMBB->addSuccessor(newMBB);
8520
8521  // newMBB jumps to newMBB and fall through to nextMBB
8522  newMBB->addSuccessor(nextMBB);
8523  newMBB->addSuccessor(newMBB);
8524
8525  DebugLoc dl = mInstr->getDebugLoc();
8526  // Insert instructions into newMBB based on incoming instruction
8527  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8528         "unexpected number of operands");
8529  MachineOperand& destOper = mInstr->getOperand(0);
8530  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8531  int numArgs = mInstr->getNumOperands() - 1;
8532  for (int i=0; i < numArgs; ++i)
8533    argOpers[i] = &mInstr->getOperand(i+1);
8534
8535  // x86 address has 4 operands: base, index, scale, and displacement
8536  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8537  int valArgIndx = lastAddrIndx + 1;
8538
8539  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8540  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8541  for (int i=0; i <= lastAddrIndx; ++i)
8542    (*MIB).addOperand(*argOpers[i]);
8543
8544  // We only support register and immediate values
8545  assert((argOpers[valArgIndx]->isReg() ||
8546          argOpers[valArgIndx]->isImm()) &&
8547         "invalid operand");
8548
8549  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8550  if (argOpers[valArgIndx]->isReg())
8551    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
8552  else
8553    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8554  (*MIB).addOperand(*argOpers[valArgIndx]);
8555
8556  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8557  MIB.addReg(t1);
8558
8559  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8560  MIB.addReg(t1);
8561  MIB.addReg(t2);
8562
8563  // Generate movc
8564  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8565  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8566  MIB.addReg(t2);
8567  MIB.addReg(t1);
8568
8569  // Cmp and exchange if none has modified the memory location
8570  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8571  for (int i=0; i <= lastAddrIndx; ++i)
8572    (*MIB).addOperand(*argOpers[i]);
8573  MIB.addReg(t3);
8574  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8575  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8576                    mInstr->memoperands_end());
8577
8578  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8579  MIB.addReg(X86::EAX);
8580
8581  // insert branch
8582  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8583
8584  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
8585  return nextMBB;
8586}
8587
8588// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8589// or XMM0_V32I8 in AVX all of this code can be replaced with that
8590// in the .td file.
8591MachineBasicBlock *
8592X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8593                            unsigned numArgs, bool memArg) const {
8594
8595  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
8596         "Target must have SSE4.2 or AVX features enabled");
8597
8598  DebugLoc dl = MI->getDebugLoc();
8599  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8600
8601  unsigned Opc;
8602
8603  if (!Subtarget->hasAVX()) {
8604    if (memArg)
8605      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8606    else
8607      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8608  } else {
8609    if (memArg)
8610      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
8611    else
8612      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
8613  }
8614
8615  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8616
8617  for (unsigned i = 0; i < numArgs; ++i) {
8618    MachineOperand &Op = MI->getOperand(i+1);
8619
8620    if (!(Op.isReg() && Op.isImplicit()))
8621      MIB.addOperand(Op);
8622  }
8623
8624  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8625    .addReg(X86::XMM0);
8626
8627  MI->eraseFromParent();
8628
8629  return BB;
8630}
8631
8632MachineBasicBlock *
8633X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8634                                                 MachineInstr *MI,
8635                                                 MachineBasicBlock *MBB) const {
8636  // Emit code to save XMM registers to the stack. The ABI says that the
8637  // number of registers to save is given in %al, so it's theoretically
8638  // possible to do an indirect jump trick to avoid saving all of them,
8639  // however this code takes a simpler approach and just executes all
8640  // of the stores if %al is non-zero. It's less code, and it's probably
8641  // easier on the hardware branch predictor, and stores aren't all that
8642  // expensive anyway.
8643
8644  // Create the new basic blocks. One block contains all the XMM stores,
8645  // and one block is the final destination regardless of whether any
8646  // stores were performed.
8647  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8648  MachineFunction *F = MBB->getParent();
8649  MachineFunction::iterator MBBIter = MBB;
8650  ++MBBIter;
8651  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8652  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8653  F->insert(MBBIter, XMMSaveMBB);
8654  F->insert(MBBIter, EndMBB);
8655
8656  // Transfer the remainder of MBB and its successor edges to EndMBB.
8657  EndMBB->splice(EndMBB->begin(), MBB,
8658                 llvm::next(MachineBasicBlock::iterator(MI)),
8659                 MBB->end());
8660  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
8661
8662  // The original block will now fall through to the XMM save block.
8663  MBB->addSuccessor(XMMSaveMBB);
8664  // The XMMSaveMBB will fall through to the end block.
8665  XMMSaveMBB->addSuccessor(EndMBB);
8666
8667  // Now add the instructions.
8668  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8669  DebugLoc DL = MI->getDebugLoc();
8670
8671  unsigned CountReg = MI->getOperand(0).getReg();
8672  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8673  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8674
8675  if (!Subtarget->isTargetWin64()) {
8676    // If %al is 0, branch around the XMM save block.
8677    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8678    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8679    MBB->addSuccessor(EndMBB);
8680  }
8681
8682  // In the XMM save block, save all the XMM argument registers.
8683  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8684    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8685    MachineMemOperand *MMO =
8686      F->getMachineMemOperand(
8687        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8688        MachineMemOperand::MOStore, Offset,
8689        /*Size=*/16, /*Align=*/16);
8690    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8691      .addFrameIndex(RegSaveFrameIndex)
8692      .addImm(/*Scale=*/1)
8693      .addReg(/*IndexReg=*/0)
8694      .addImm(/*Disp=*/Offset)
8695      .addReg(/*Segment=*/0)
8696      .addReg(MI->getOperand(i).getReg())
8697      .addMemOperand(MMO);
8698  }
8699
8700  MI->eraseFromParent();   // The pseudo instruction is gone now.
8701
8702  return EndMBB;
8703}
8704
8705MachineBasicBlock *
8706X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8707                                     MachineBasicBlock *BB) const {
8708  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8709  DebugLoc DL = MI->getDebugLoc();
8710
8711  // To "insert" a SELECT_CC instruction, we actually have to insert the
8712  // diamond control-flow pattern.  The incoming instruction knows the
8713  // destination vreg to set, the condition code register to branch on, the
8714  // true/false values to select between, and a branch opcode to use.
8715  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8716  MachineFunction::iterator It = BB;
8717  ++It;
8718
8719  //  thisMBB:
8720  //  ...
8721  //   TrueVal = ...
8722  //   cmpTY ccX, r1, r2
8723  //   bCC copy1MBB
8724  //   fallthrough --> copy0MBB
8725  MachineBasicBlock *thisMBB = BB;
8726  MachineFunction *F = BB->getParent();
8727  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8728  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8729  F->insert(It, copy0MBB);
8730  F->insert(It, sinkMBB);
8731
8732  // If the EFLAGS register isn't dead in the terminator, then claim that it's
8733  // live into the sink and copy blocks.
8734  const MachineFunction *MF = BB->getParent();
8735  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
8736  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
8737
8738  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
8739    const MachineOperand &MO = MI->getOperand(I);
8740    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
8741    unsigned Reg = MO.getReg();
8742    if (Reg != X86::EFLAGS) continue;
8743    copy0MBB->addLiveIn(Reg);
8744    sinkMBB->addLiveIn(Reg);
8745  }
8746
8747  // Transfer the remainder of BB and its successor edges to sinkMBB.
8748  sinkMBB->splice(sinkMBB->begin(), BB,
8749                  llvm::next(MachineBasicBlock::iterator(MI)),
8750                  BB->end());
8751  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8752
8753  // Add the true and fallthrough blocks as its successors.
8754  BB->addSuccessor(copy0MBB);
8755  BB->addSuccessor(sinkMBB);
8756
8757  // Create the conditional branch instruction.
8758  unsigned Opc =
8759    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8760  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8761
8762  //  copy0MBB:
8763  //   %FalseValue = ...
8764  //   # fallthrough to sinkMBB
8765  copy0MBB->addSuccessor(sinkMBB);
8766
8767  //  sinkMBB:
8768  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8769  //  ...
8770  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8771          TII->get(X86::PHI), MI->getOperand(0).getReg())
8772    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8773    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8774
8775  MI->eraseFromParent();   // The pseudo instruction is gone now.
8776  return sinkMBB;
8777}
8778
8779MachineBasicBlock *
8780X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8781                                          MachineBasicBlock *BB) const {
8782  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8783  DebugLoc DL = MI->getDebugLoc();
8784
8785  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8786  // non-trivial part is impdef of ESP.
8787  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8788  // mingw-w64.
8789
8790  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
8791    .addExternalSymbol("_alloca")
8792    .addReg(X86::EAX, RegState::Implicit)
8793    .addReg(X86::ESP, RegState::Implicit)
8794    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8795    .addReg(X86::ESP, RegState::Define | RegState::Implicit);
8796
8797  MI->eraseFromParent();   // The pseudo instruction is gone now.
8798  return BB;
8799}
8800
8801MachineBasicBlock *
8802X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
8803                                      MachineBasicBlock *BB) const {
8804  // This is pretty easy.  We're taking the value that we received from
8805  // our load from the relocation, sticking it in either RDI (x86-64)
8806  // or EAX and doing an indirect call.  The return value will then
8807  // be in the normal return register.
8808  const X86InstrInfo *TII
8809    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
8810  DebugLoc DL = MI->getDebugLoc();
8811  MachineFunction *F = BB->getParent();
8812
8813  assert(MI->getOperand(3).isGlobal() && "This should be a global");
8814
8815  if (Subtarget->is64Bit()) {
8816    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8817                                      TII->get(X86::MOV64rm), X86::RDI)
8818    .addReg(X86::RIP)
8819    .addImm(0).addReg(0)
8820    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8821                      MI->getOperand(3).getTargetFlags())
8822    .addReg(0);
8823    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
8824    addDirectMem(MIB, X86::RDI);
8825  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
8826    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8827                                      TII->get(X86::MOV32rm), X86::EAX)
8828    .addReg(0)
8829    .addImm(0).addReg(0)
8830    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8831                      MI->getOperand(3).getTargetFlags())
8832    .addReg(0);
8833    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
8834    addDirectMem(MIB, X86::EAX);
8835  } else {
8836    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8837                                      TII->get(X86::MOV32rm), X86::EAX)
8838    .addReg(TII->getGlobalBaseReg(F))
8839    .addImm(0).addReg(0)
8840    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8841                      MI->getOperand(3).getTargetFlags())
8842    .addReg(0);
8843    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
8844    addDirectMem(MIB, X86::EAX);
8845  }
8846
8847  MI->eraseFromParent(); // The pseudo instruction is gone now.
8848  return BB;
8849}
8850
8851MachineBasicBlock *
8852X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8853                                               MachineBasicBlock *BB) const {
8854  switch (MI->getOpcode()) {
8855  default: assert(false && "Unexpected instr type to insert");
8856  case X86::MINGW_ALLOCA:
8857    return EmitLoweredMingwAlloca(MI, BB);
8858  case X86::TLSCall_32:
8859  case X86::TLSCall_64:
8860    return EmitLoweredTLSCall(MI, BB);
8861  case X86::CMOV_GR8:
8862  case X86::CMOV_V1I64:
8863  case X86::CMOV_FR32:
8864  case X86::CMOV_FR64:
8865  case X86::CMOV_V4F32:
8866  case X86::CMOV_V2F64:
8867  case X86::CMOV_V2I64:
8868  case X86::CMOV_GR16:
8869  case X86::CMOV_GR32:
8870  case X86::CMOV_RFP32:
8871  case X86::CMOV_RFP64:
8872  case X86::CMOV_RFP80:
8873    return EmitLoweredSelect(MI, BB);
8874
8875  case X86::FP32_TO_INT16_IN_MEM:
8876  case X86::FP32_TO_INT32_IN_MEM:
8877  case X86::FP32_TO_INT64_IN_MEM:
8878  case X86::FP64_TO_INT16_IN_MEM:
8879  case X86::FP64_TO_INT32_IN_MEM:
8880  case X86::FP64_TO_INT64_IN_MEM:
8881  case X86::FP80_TO_INT16_IN_MEM:
8882  case X86::FP80_TO_INT32_IN_MEM:
8883  case X86::FP80_TO_INT64_IN_MEM: {
8884    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8885    DebugLoc DL = MI->getDebugLoc();
8886
8887    // Change the floating point control register to use "round towards zero"
8888    // mode when truncating to an integer value.
8889    MachineFunction *F = BB->getParent();
8890    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8891    addFrameReference(BuildMI(*BB, MI, DL,
8892                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
8893
8894    // Load the old value of the high byte of the control word...
8895    unsigned OldCW =
8896      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8897    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
8898                      CWFrameIdx);
8899
8900    // Set the high part to be round to zero...
8901    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8902      .addImm(0xC7F);
8903
8904    // Reload the modified control word now...
8905    addFrameReference(BuildMI(*BB, MI, DL,
8906                              TII->get(X86::FLDCW16m)), CWFrameIdx);
8907
8908    // Restore the memory image of control word to original value
8909    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8910      .addReg(OldCW);
8911
8912    // Get the X86 opcode to use.
8913    unsigned Opc;
8914    switch (MI->getOpcode()) {
8915    default: llvm_unreachable("illegal opcode!");
8916    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8917    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8918    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8919    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8920    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8921    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8922    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8923    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8924    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8925    }
8926
8927    X86AddressMode AM;
8928    MachineOperand &Op = MI->getOperand(0);
8929    if (Op.isReg()) {
8930      AM.BaseType = X86AddressMode::RegBase;
8931      AM.Base.Reg = Op.getReg();
8932    } else {
8933      AM.BaseType = X86AddressMode::FrameIndexBase;
8934      AM.Base.FrameIndex = Op.getIndex();
8935    }
8936    Op = MI->getOperand(1);
8937    if (Op.isImm())
8938      AM.Scale = Op.getImm();
8939    Op = MI->getOperand(2);
8940    if (Op.isImm())
8941      AM.IndexReg = Op.getImm();
8942    Op = MI->getOperand(3);
8943    if (Op.isGlobal()) {
8944      AM.GV = Op.getGlobal();
8945    } else {
8946      AM.Disp = Op.getImm();
8947    }
8948    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
8949                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
8950
8951    // Reload the original control word now.
8952    addFrameReference(BuildMI(*BB, MI, DL,
8953                              TII->get(X86::FLDCW16m)), CWFrameIdx);
8954
8955    MI->eraseFromParent();   // The pseudo instruction is gone now.
8956    return BB;
8957  }
8958    // String/text processing lowering.
8959  case X86::PCMPISTRM128REG:
8960  case X86::VPCMPISTRM128REG:
8961    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8962  case X86::PCMPISTRM128MEM:
8963  case X86::VPCMPISTRM128MEM:
8964    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8965  case X86::PCMPESTRM128REG:
8966  case X86::VPCMPESTRM128REG:
8967    return EmitPCMP(MI, BB, 5, false /* in mem */);
8968  case X86::PCMPESTRM128MEM:
8969  case X86::VPCMPESTRM128MEM:
8970    return EmitPCMP(MI, BB, 5, true /* in mem */);
8971
8972    // Atomic Lowering.
8973  case X86::ATOMAND32:
8974    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8975                                               X86::AND32ri, X86::MOV32rm,
8976                                               X86::LCMPXCHG32,
8977                                               X86::NOT32r, X86::EAX,
8978                                               X86::GR32RegisterClass);
8979  case X86::ATOMOR32:
8980    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8981                                               X86::OR32ri, X86::MOV32rm,
8982                                               X86::LCMPXCHG32,
8983                                               X86::NOT32r, X86::EAX,
8984                                               X86::GR32RegisterClass);
8985  case X86::ATOMXOR32:
8986    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8987                                               X86::XOR32ri, X86::MOV32rm,
8988                                               X86::LCMPXCHG32,
8989                                               X86::NOT32r, X86::EAX,
8990                                               X86::GR32RegisterClass);
8991  case X86::ATOMNAND32:
8992    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8993                                               X86::AND32ri, X86::MOV32rm,
8994                                               X86::LCMPXCHG32,
8995                                               X86::NOT32r, X86::EAX,
8996                                               X86::GR32RegisterClass, true);
8997  case X86::ATOMMIN32:
8998    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8999  case X86::ATOMMAX32:
9000    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
9001  case X86::ATOMUMIN32:
9002    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
9003  case X86::ATOMUMAX32:
9004    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
9005
9006  case X86::ATOMAND16:
9007    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9008                                               X86::AND16ri, X86::MOV16rm,
9009                                               X86::LCMPXCHG16,
9010                                               X86::NOT16r, X86::AX,
9011                                               X86::GR16RegisterClass);
9012  case X86::ATOMOR16:
9013    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
9014                                               X86::OR16ri, X86::MOV16rm,
9015                                               X86::LCMPXCHG16,
9016                                               X86::NOT16r, X86::AX,
9017                                               X86::GR16RegisterClass);
9018  case X86::ATOMXOR16:
9019    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
9020                                               X86::XOR16ri, X86::MOV16rm,
9021                                               X86::LCMPXCHG16,
9022                                               X86::NOT16r, X86::AX,
9023                                               X86::GR16RegisterClass);
9024  case X86::ATOMNAND16:
9025    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9026                                               X86::AND16ri, X86::MOV16rm,
9027                                               X86::LCMPXCHG16,
9028                                               X86::NOT16r, X86::AX,
9029                                               X86::GR16RegisterClass, true);
9030  case X86::ATOMMIN16:
9031    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
9032  case X86::ATOMMAX16:
9033    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
9034  case X86::ATOMUMIN16:
9035    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
9036  case X86::ATOMUMAX16:
9037    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
9038
9039  case X86::ATOMAND8:
9040    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9041                                               X86::AND8ri, X86::MOV8rm,
9042                                               X86::LCMPXCHG8,
9043                                               X86::NOT8r, X86::AL,
9044                                               X86::GR8RegisterClass);
9045  case X86::ATOMOR8:
9046    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
9047                                               X86::OR8ri, X86::MOV8rm,
9048                                               X86::LCMPXCHG8,
9049                                               X86::NOT8r, X86::AL,
9050                                               X86::GR8RegisterClass);
9051  case X86::ATOMXOR8:
9052    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
9053                                               X86::XOR8ri, X86::MOV8rm,
9054                                               X86::LCMPXCHG8,
9055                                               X86::NOT8r, X86::AL,
9056                                               X86::GR8RegisterClass);
9057  case X86::ATOMNAND8:
9058    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9059                                               X86::AND8ri, X86::MOV8rm,
9060                                               X86::LCMPXCHG8,
9061                                               X86::NOT8r, X86::AL,
9062                                               X86::GR8RegisterClass, true);
9063  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
9064  // This group is for 64-bit host.
9065  case X86::ATOMAND64:
9066    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9067                                               X86::AND64ri32, X86::MOV64rm,
9068                                               X86::LCMPXCHG64,
9069                                               X86::NOT64r, X86::RAX,
9070                                               X86::GR64RegisterClass);
9071  case X86::ATOMOR64:
9072    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
9073                                               X86::OR64ri32, X86::MOV64rm,
9074                                               X86::LCMPXCHG64,
9075                                               X86::NOT64r, X86::RAX,
9076                                               X86::GR64RegisterClass);
9077  case X86::ATOMXOR64:
9078    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
9079                                               X86::XOR64ri32, X86::MOV64rm,
9080                                               X86::LCMPXCHG64,
9081                                               X86::NOT64r, X86::RAX,
9082                                               X86::GR64RegisterClass);
9083  case X86::ATOMNAND64:
9084    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9085                                               X86::AND64ri32, X86::MOV64rm,
9086                                               X86::LCMPXCHG64,
9087                                               X86::NOT64r, X86::RAX,
9088                                               X86::GR64RegisterClass, true);
9089  case X86::ATOMMIN64:
9090    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
9091  case X86::ATOMMAX64:
9092    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
9093  case X86::ATOMUMIN64:
9094    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
9095  case X86::ATOMUMAX64:
9096    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
9097
9098  // This group does 64-bit operations on a 32-bit host.
9099  case X86::ATOMAND6432:
9100    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9101                                               X86::AND32rr, X86::AND32rr,
9102                                               X86::AND32ri, X86::AND32ri,
9103                                               false);
9104  case X86::ATOMOR6432:
9105    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9106                                               X86::OR32rr, X86::OR32rr,
9107                                               X86::OR32ri, X86::OR32ri,
9108                                               false);
9109  case X86::ATOMXOR6432:
9110    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9111                                               X86::XOR32rr, X86::XOR32rr,
9112                                               X86::XOR32ri, X86::XOR32ri,
9113                                               false);
9114  case X86::ATOMNAND6432:
9115    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9116                                               X86::AND32rr, X86::AND32rr,
9117                                               X86::AND32ri, X86::AND32ri,
9118                                               true);
9119  case X86::ATOMADD6432:
9120    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9121                                               X86::ADD32rr, X86::ADC32rr,
9122                                               X86::ADD32ri, X86::ADC32ri,
9123                                               false);
9124  case X86::ATOMSUB6432:
9125    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9126                                               X86::SUB32rr, X86::SBB32rr,
9127                                               X86::SUB32ri, X86::SBB32ri,
9128                                               false);
9129  case X86::ATOMSWAP6432:
9130    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9131                                               X86::MOV32rr, X86::MOV32rr,
9132                                               X86::MOV32ri, X86::MOV32ri,
9133                                               false);
9134  case X86::VASTART_SAVE_XMM_REGS:
9135    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
9136  }
9137}
9138
9139//===----------------------------------------------------------------------===//
9140//                           X86 Optimization Hooks
9141//===----------------------------------------------------------------------===//
9142
9143void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9144                                                       const APInt &Mask,
9145                                                       APInt &KnownZero,
9146                                                       APInt &KnownOne,
9147                                                       const SelectionDAG &DAG,
9148                                                       unsigned Depth) const {
9149  unsigned Opc = Op.getOpcode();
9150  assert((Opc >= ISD::BUILTIN_OP_END ||
9151          Opc == ISD::INTRINSIC_WO_CHAIN ||
9152          Opc == ISD::INTRINSIC_W_CHAIN ||
9153          Opc == ISD::INTRINSIC_VOID) &&
9154         "Should use MaskedValueIsZero if you don't know whether Op"
9155         " is a target node!");
9156
9157  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
9158  switch (Opc) {
9159  default: break;
9160  case X86ISD::ADD:
9161  case X86ISD::SUB:
9162  case X86ISD::SMUL:
9163  case X86ISD::UMUL:
9164  case X86ISD::INC:
9165  case X86ISD::DEC:
9166  case X86ISD::OR:
9167  case X86ISD::XOR:
9168  case X86ISD::AND:
9169    // These nodes' second result is a boolean.
9170    if (Op.getResNo() == 0)
9171      break;
9172    // Fallthrough
9173  case X86ISD::SETCC:
9174    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
9175                                       Mask.getBitWidth() - 1);
9176    break;
9177  }
9178}
9179
9180/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
9181/// node is a GlobalAddress + offset.
9182bool X86TargetLowering::isGAPlusOffset(SDNode *N,
9183                                       const GlobalValue* &GA,
9184                                       int64_t &Offset) const {
9185  if (N->getOpcode() == X86ISD::Wrapper) {
9186    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
9187      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
9188      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
9189      return true;
9190    }
9191  }
9192  return TargetLowering::isGAPlusOffset(N, GA, Offset);
9193}
9194
9195/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
9196/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
9197/// if the load addresses are consecutive, non-overlapping, and in the right
9198/// order.
9199static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
9200                                     const TargetLowering &TLI) {
9201  DebugLoc dl = N->getDebugLoc();
9202  EVT VT = N->getValueType(0);
9203  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9204
9205  if (VT.getSizeInBits() != 128)
9206    return SDValue();
9207
9208  SmallVector<SDValue, 16> Elts;
9209  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
9210    Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
9211
9212  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
9213}
9214
9215/// PerformShuffleCombine - Detect vector gather/scatter index generation
9216/// and convert it from being a bunch of shuffles and extracts to a simple
9217/// store and scalar loads to extract the elements.
9218static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
9219                                                const TargetLowering &TLI) {
9220  SDValue InputVector = N->getOperand(0);
9221
9222  // Only operate on vectors of 4 elements, where the alternative shuffling
9223  // gets to be more expensive.
9224  if (InputVector.getValueType() != MVT::v4i32)
9225    return SDValue();
9226
9227  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
9228  // single use which is a sign-extend or zero-extend, and all elements are
9229  // used.
9230  SmallVector<SDNode *, 4> Uses;
9231  unsigned ExtractedElements = 0;
9232  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
9233       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
9234    if (UI.getUse().getResNo() != InputVector.getResNo())
9235      return SDValue();
9236
9237    SDNode *Extract = *UI;
9238    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9239      return SDValue();
9240
9241    if (Extract->getValueType(0) != MVT::i32)
9242      return SDValue();
9243    if (!Extract->hasOneUse())
9244      return SDValue();
9245    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
9246        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
9247      return SDValue();
9248    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
9249      return SDValue();
9250
9251    // Record which element was extracted.
9252    ExtractedElements |=
9253      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
9254
9255    Uses.push_back(Extract);
9256  }
9257
9258  // If not all the elements were used, this may not be worthwhile.
9259  if (ExtractedElements != 15)
9260    return SDValue();
9261
9262  // Ok, we've now decided to do the transformation.
9263  DebugLoc dl = InputVector.getDebugLoc();
9264
9265  // Store the value to a temporary stack slot.
9266  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
9267  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL,
9268                            0, false, false, 0);
9269
9270  // Replace each use (extract) with a load of the appropriate element.
9271  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
9272       UE = Uses.end(); UI != UE; ++UI) {
9273    SDNode *Extract = *UI;
9274
9275    // Compute the element's address.
9276    SDValue Idx = Extract->getOperand(1);
9277    unsigned EltSize =
9278        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
9279    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
9280    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
9281
9282    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
9283                                     OffsetVal, StackPtr);
9284
9285    // Load the scalar.
9286    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
9287                                     ScalarAddr, NULL, 0, false, false, 0);
9288
9289    // Replace the exact with the load.
9290    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
9291  }
9292
9293  // The replacement was made in place; don't return anything.
9294  return SDValue();
9295}
9296
9297/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
9298static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9299                                    const X86Subtarget *Subtarget) {
9300  DebugLoc DL = N->getDebugLoc();
9301  SDValue Cond = N->getOperand(0);
9302  // Get the LHS/RHS of the select.
9303  SDValue LHS = N->getOperand(1);
9304  SDValue RHS = N->getOperand(2);
9305
9306  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9307  // instructions match the semantics of the common C idiom x<y?x:y but not
9308  // x<=y?x:y, because of how they handle negative zero (which can be
9309  // ignored in unsafe-math mode).
9310  if (Subtarget->hasSSE2() &&
9311      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9312      Cond.getOpcode() == ISD::SETCC) {
9313    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9314
9315    unsigned Opcode = 0;
9316    // Check for x CC y ? x : y.
9317    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9318        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9319      switch (CC) {
9320      default: break;
9321      case ISD::SETULT:
9322        // Converting this to a min would handle NaNs incorrectly, and swapping
9323        // the operands would cause it to handle comparisons between positive
9324        // and negative zero incorrectly.
9325        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9326          if (!UnsafeFPMath &&
9327              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9328            break;
9329          std::swap(LHS, RHS);
9330        }
9331        Opcode = X86ISD::FMIN;
9332        break;
9333      case ISD::SETOLE:
9334        // Converting this to a min would handle comparisons between positive
9335        // and negative zero incorrectly.
9336        if (!UnsafeFPMath &&
9337            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9338          break;
9339        Opcode = X86ISD::FMIN;
9340        break;
9341      case ISD::SETULE:
9342        // Converting this to a min would handle both negative zeros and NaNs
9343        // incorrectly, but we can swap the operands to fix both.
9344        std::swap(LHS, RHS);
9345      case ISD::SETOLT:
9346      case ISD::SETLT:
9347      case ISD::SETLE:
9348        Opcode = X86ISD::FMIN;
9349        break;
9350
9351      case ISD::SETOGE:
9352        // Converting this to a max would handle comparisons between positive
9353        // and negative zero incorrectly.
9354        if (!UnsafeFPMath &&
9355            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9356          break;
9357        Opcode = X86ISD::FMAX;
9358        break;
9359      case ISD::SETUGT:
9360        // Converting this to a max would handle NaNs incorrectly, and swapping
9361        // the operands would cause it to handle comparisons between positive
9362        // and negative zero incorrectly.
9363        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9364          if (!UnsafeFPMath &&
9365              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9366            break;
9367          std::swap(LHS, RHS);
9368        }
9369        Opcode = X86ISD::FMAX;
9370        break;
9371      case ISD::SETUGE:
9372        // Converting this to a max would handle both negative zeros and NaNs
9373        // incorrectly, but we can swap the operands to fix both.
9374        std::swap(LHS, RHS);
9375      case ISD::SETOGT:
9376      case ISD::SETGT:
9377      case ISD::SETGE:
9378        Opcode = X86ISD::FMAX;
9379        break;
9380      }
9381    // Check for x CC y ? y : x -- a min/max with reversed arms.
9382    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9383               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9384      switch (CC) {
9385      default: break;
9386      case ISD::SETOGE:
9387        // Converting this to a min would handle comparisons between positive
9388        // and negative zero incorrectly, and swapping the operands would
9389        // cause it to handle NaNs incorrectly.
9390        if (!UnsafeFPMath &&
9391            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9392          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9393            break;
9394          std::swap(LHS, RHS);
9395        }
9396        Opcode = X86ISD::FMIN;
9397        break;
9398      case ISD::SETUGT:
9399        // Converting this to a min would handle NaNs incorrectly.
9400        if (!UnsafeFPMath &&
9401            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9402          break;
9403        Opcode = X86ISD::FMIN;
9404        break;
9405      case ISD::SETUGE:
9406        // Converting this to a min would handle both negative zeros and NaNs
9407        // incorrectly, but we can swap the operands to fix both.
9408        std::swap(LHS, RHS);
9409      case ISD::SETOGT:
9410      case ISD::SETGT:
9411      case ISD::SETGE:
9412        Opcode = X86ISD::FMIN;
9413        break;
9414
9415      case ISD::SETULT:
9416        // Converting this to a max would handle NaNs incorrectly.
9417        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9418          break;
9419        Opcode = X86ISD::FMAX;
9420        break;
9421      case ISD::SETOLE:
9422        // Converting this to a max would handle comparisons between positive
9423        // and negative zero incorrectly, and swapping the operands would
9424        // cause it to handle NaNs incorrectly.
9425        if (!UnsafeFPMath &&
9426            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9427          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9428            break;
9429          std::swap(LHS, RHS);
9430        }
9431        Opcode = X86ISD::FMAX;
9432        break;
9433      case ISD::SETULE:
9434        // Converting this to a max would handle both negative zeros and NaNs
9435        // incorrectly, but we can swap the operands to fix both.
9436        std::swap(LHS, RHS);
9437      case ISD::SETOLT:
9438      case ISD::SETLT:
9439      case ISD::SETLE:
9440        Opcode = X86ISD::FMAX;
9441        break;
9442      }
9443    }
9444
9445    if (Opcode)
9446      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9447  }
9448
9449  // If this is a select between two integer constants, try to do some
9450  // optimizations.
9451  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9452    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9453      // Don't do this for crazy integer types.
9454      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9455        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9456        // so that TrueC (the true value) is larger than FalseC.
9457        bool NeedsCondInvert = false;
9458
9459        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9460            // Efficiently invertible.
9461            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9462             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9463              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9464          NeedsCondInvert = true;
9465          std::swap(TrueC, FalseC);
9466        }
9467
9468        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9469        if (FalseC->getAPIntValue() == 0 &&
9470            TrueC->getAPIntValue().isPowerOf2()) {
9471          if (NeedsCondInvert) // Invert the condition if needed.
9472            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9473                               DAG.getConstant(1, Cond.getValueType()));
9474
9475          // Zero extend the condition if needed.
9476          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9477
9478          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9479          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9480                             DAG.getConstant(ShAmt, MVT::i8));
9481        }
9482
9483        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9484        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9485          if (NeedsCondInvert) // Invert the condition if needed.
9486            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9487                               DAG.getConstant(1, Cond.getValueType()));
9488
9489          // Zero extend the condition if needed.
9490          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9491                             FalseC->getValueType(0), Cond);
9492          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9493                             SDValue(FalseC, 0));
9494        }
9495
9496        // Optimize cases that will turn into an LEA instruction.  This requires
9497        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9498        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9499          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9500          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9501
9502          bool isFastMultiplier = false;
9503          if (Diff < 10) {
9504            switch ((unsigned char)Diff) {
9505              default: break;
9506              case 1:  // result = add base, cond
9507              case 2:  // result = lea base(    , cond*2)
9508              case 3:  // result = lea base(cond, cond*2)
9509              case 4:  // result = lea base(    , cond*4)
9510              case 5:  // result = lea base(cond, cond*4)
9511              case 8:  // result = lea base(    , cond*8)
9512              case 9:  // result = lea base(cond, cond*8)
9513                isFastMultiplier = true;
9514                break;
9515            }
9516          }
9517
9518          if (isFastMultiplier) {
9519            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9520            if (NeedsCondInvert) // Invert the condition if needed.
9521              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9522                                 DAG.getConstant(1, Cond.getValueType()));
9523
9524            // Zero extend the condition if needed.
9525            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9526                               Cond);
9527            // Scale the condition by the difference.
9528            if (Diff != 1)
9529              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9530                                 DAG.getConstant(Diff, Cond.getValueType()));
9531
9532            // Add the base if non-zero.
9533            if (FalseC->getAPIntValue() != 0)
9534              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9535                                 SDValue(FalseC, 0));
9536            return Cond;
9537          }
9538        }
9539      }
9540  }
9541
9542  return SDValue();
9543}
9544
9545/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9546static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9547                                  TargetLowering::DAGCombinerInfo &DCI) {
9548  DebugLoc DL = N->getDebugLoc();
9549
9550  // If the flag operand isn't dead, don't touch this CMOV.
9551  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9552    return SDValue();
9553
9554  // If this is a select between two integer constants, try to do some
9555  // optimizations.  Note that the operands are ordered the opposite of SELECT
9556  // operands.
9557  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9558    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9559      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9560      // larger than FalseC (the false value).
9561      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9562
9563      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9564        CC = X86::GetOppositeBranchCondition(CC);
9565        std::swap(TrueC, FalseC);
9566      }
9567
9568      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9569      // This is efficient for any integer data type (including i8/i16) and
9570      // shift amount.
9571      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9572        SDValue Cond = N->getOperand(3);
9573        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9574                           DAG.getConstant(CC, MVT::i8), Cond);
9575
9576        // Zero extend the condition if needed.
9577        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9578
9579        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9580        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9581                           DAG.getConstant(ShAmt, MVT::i8));
9582        if (N->getNumValues() == 2)  // Dead flag value?
9583          return DCI.CombineTo(N, Cond, SDValue());
9584        return Cond;
9585      }
9586
9587      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9588      // for any integer data type, including i8/i16.
9589      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9590        SDValue Cond = N->getOperand(3);
9591        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9592                           DAG.getConstant(CC, MVT::i8), Cond);
9593
9594        // Zero extend the condition if needed.
9595        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9596                           FalseC->getValueType(0), Cond);
9597        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9598                           SDValue(FalseC, 0));
9599
9600        if (N->getNumValues() == 2)  // Dead flag value?
9601          return DCI.CombineTo(N, Cond, SDValue());
9602        return Cond;
9603      }
9604
9605      // Optimize cases that will turn into an LEA instruction.  This requires
9606      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9607      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9608        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9609        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9610
9611        bool isFastMultiplier = false;
9612        if (Diff < 10) {
9613          switch ((unsigned char)Diff) {
9614          default: break;
9615          case 1:  // result = add base, cond
9616          case 2:  // result = lea base(    , cond*2)
9617          case 3:  // result = lea base(cond, cond*2)
9618          case 4:  // result = lea base(    , cond*4)
9619          case 5:  // result = lea base(cond, cond*4)
9620          case 8:  // result = lea base(    , cond*8)
9621          case 9:  // result = lea base(cond, cond*8)
9622            isFastMultiplier = true;
9623            break;
9624          }
9625        }
9626
9627        if (isFastMultiplier) {
9628          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9629          SDValue Cond = N->getOperand(3);
9630          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9631                             DAG.getConstant(CC, MVT::i8), Cond);
9632          // Zero extend the condition if needed.
9633          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9634                             Cond);
9635          // Scale the condition by the difference.
9636          if (Diff != 1)
9637            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9638                               DAG.getConstant(Diff, Cond.getValueType()));
9639
9640          // Add the base if non-zero.
9641          if (FalseC->getAPIntValue() != 0)
9642            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9643                               SDValue(FalseC, 0));
9644          if (N->getNumValues() == 2)  // Dead flag value?
9645            return DCI.CombineTo(N, Cond, SDValue());
9646          return Cond;
9647        }
9648      }
9649    }
9650  }
9651  return SDValue();
9652}
9653
9654
9655/// PerformMulCombine - Optimize a single multiply with constant into two
9656/// in order to implement it with two cheaper instructions, e.g.
9657/// LEA + SHL, LEA + LEA.
9658static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9659                                 TargetLowering::DAGCombinerInfo &DCI) {
9660  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9661    return SDValue();
9662
9663  EVT VT = N->getValueType(0);
9664  if (VT != MVT::i64)
9665    return SDValue();
9666
9667  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9668  if (!C)
9669    return SDValue();
9670  uint64_t MulAmt = C->getZExtValue();
9671  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9672    return SDValue();
9673
9674  uint64_t MulAmt1 = 0;
9675  uint64_t MulAmt2 = 0;
9676  if ((MulAmt % 9) == 0) {
9677    MulAmt1 = 9;
9678    MulAmt2 = MulAmt / 9;
9679  } else if ((MulAmt % 5) == 0) {
9680    MulAmt1 = 5;
9681    MulAmt2 = MulAmt / 5;
9682  } else if ((MulAmt % 3) == 0) {
9683    MulAmt1 = 3;
9684    MulAmt2 = MulAmt / 3;
9685  }
9686  if (MulAmt2 &&
9687      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9688    DebugLoc DL = N->getDebugLoc();
9689
9690    if (isPowerOf2_64(MulAmt2) &&
9691        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9692      // If second multiplifer is pow2, issue it first. We want the multiply by
9693      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9694      // is an add.
9695      std::swap(MulAmt1, MulAmt2);
9696
9697    SDValue NewMul;
9698    if (isPowerOf2_64(MulAmt1))
9699      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9700                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9701    else
9702      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9703                           DAG.getConstant(MulAmt1, VT));
9704
9705    if (isPowerOf2_64(MulAmt2))
9706      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9707                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9708    else
9709      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9710                           DAG.getConstant(MulAmt2, VT));
9711
9712    // Do not add new nodes to DAG combiner worklist.
9713    DCI.CombineTo(N, NewMul, false);
9714  }
9715  return SDValue();
9716}
9717
9718static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9719  SDValue N0 = N->getOperand(0);
9720  SDValue N1 = N->getOperand(1);
9721  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9722  EVT VT = N0.getValueType();
9723
9724  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9725  // since the result of setcc_c is all zero's or all ones.
9726  if (N1C && N0.getOpcode() == ISD::AND &&
9727      N0.getOperand(1).getOpcode() == ISD::Constant) {
9728    SDValue N00 = N0.getOperand(0);
9729    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9730        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9731          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9732         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9733      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9734      APInt ShAmt = N1C->getAPIntValue();
9735      Mask = Mask.shl(ShAmt);
9736      if (Mask != 0)
9737        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9738                           N00, DAG.getConstant(Mask, VT));
9739    }
9740  }
9741
9742  return SDValue();
9743}
9744
9745/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9746///                       when possible.
9747static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9748                                   const X86Subtarget *Subtarget) {
9749  EVT VT = N->getValueType(0);
9750  if (!VT.isVector() && VT.isInteger() &&
9751      N->getOpcode() == ISD::SHL)
9752    return PerformSHLCombine(N, DAG);
9753
9754  // On X86 with SSE2 support, we can transform this to a vector shift if
9755  // all elements are shifted by the same amount.  We can't do this in legalize
9756  // because the a constant vector is typically transformed to a constant pool
9757  // so we have no knowledge of the shift amount.
9758  if (!Subtarget->hasSSE2())
9759    return SDValue();
9760
9761  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9762    return SDValue();
9763
9764  SDValue ShAmtOp = N->getOperand(1);
9765  EVT EltVT = VT.getVectorElementType();
9766  DebugLoc DL = N->getDebugLoc();
9767  SDValue BaseShAmt = SDValue();
9768  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9769    unsigned NumElts = VT.getVectorNumElements();
9770    unsigned i = 0;
9771    for (; i != NumElts; ++i) {
9772      SDValue Arg = ShAmtOp.getOperand(i);
9773      if (Arg.getOpcode() == ISD::UNDEF) continue;
9774      BaseShAmt = Arg;
9775      break;
9776    }
9777    for (; i != NumElts; ++i) {
9778      SDValue Arg = ShAmtOp.getOperand(i);
9779      if (Arg.getOpcode() == ISD::UNDEF) continue;
9780      if (Arg != BaseShAmt) {
9781        return SDValue();
9782      }
9783    }
9784  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9785             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9786    SDValue InVec = ShAmtOp.getOperand(0);
9787    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9788      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9789      unsigned i = 0;
9790      for (; i != NumElts; ++i) {
9791        SDValue Arg = InVec.getOperand(i);
9792        if (Arg.getOpcode() == ISD::UNDEF) continue;
9793        BaseShAmt = Arg;
9794        break;
9795      }
9796    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9797       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9798         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9799         if (C->getZExtValue() == SplatIdx)
9800           BaseShAmt = InVec.getOperand(1);
9801       }
9802    }
9803    if (BaseShAmt.getNode() == 0)
9804      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9805                              DAG.getIntPtrConstant(0));
9806  } else
9807    return SDValue();
9808
9809  // The shift amount is an i32.
9810  if (EltVT.bitsGT(MVT::i32))
9811    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9812  else if (EltVT.bitsLT(MVT::i32))
9813    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9814
9815  // The shift amount is identical so we can do a vector shift.
9816  SDValue  ValOp = N->getOperand(0);
9817  switch (N->getOpcode()) {
9818  default:
9819    llvm_unreachable("Unknown shift opcode!");
9820    break;
9821  case ISD::SHL:
9822    if (VT == MVT::v2i64)
9823      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9824                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9825                         ValOp, BaseShAmt);
9826    if (VT == MVT::v4i32)
9827      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9828                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9829                         ValOp, BaseShAmt);
9830    if (VT == MVT::v8i16)
9831      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9832                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9833                         ValOp, BaseShAmt);
9834    break;
9835  case ISD::SRA:
9836    if (VT == MVT::v4i32)
9837      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9838                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9839                         ValOp, BaseShAmt);
9840    if (VT == MVT::v8i16)
9841      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9842                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9843                         ValOp, BaseShAmt);
9844    break;
9845  case ISD::SRL:
9846    if (VT == MVT::v2i64)
9847      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9848                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9849                         ValOp, BaseShAmt);
9850    if (VT == MVT::v4i32)
9851      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9852                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9853                         ValOp, BaseShAmt);
9854    if (VT ==  MVT::v8i16)
9855      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9856                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9857                         ValOp, BaseShAmt);
9858    break;
9859  }
9860  return SDValue();
9861}
9862
9863static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9864                                TargetLowering::DAGCombinerInfo &DCI,
9865                                const X86Subtarget *Subtarget) {
9866  if (DCI.isBeforeLegalizeOps())
9867    return SDValue();
9868
9869  EVT VT = N->getValueType(0);
9870  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
9871    return SDValue();
9872
9873  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9874  SDValue N0 = N->getOperand(0);
9875  SDValue N1 = N->getOperand(1);
9876  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9877    std::swap(N0, N1);
9878  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9879    return SDValue();
9880  if (!N0.hasOneUse() || !N1.hasOneUse())
9881    return SDValue();
9882
9883  SDValue ShAmt0 = N0.getOperand(1);
9884  if (ShAmt0.getValueType() != MVT::i8)
9885    return SDValue();
9886  SDValue ShAmt1 = N1.getOperand(1);
9887  if (ShAmt1.getValueType() != MVT::i8)
9888    return SDValue();
9889  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9890    ShAmt0 = ShAmt0.getOperand(0);
9891  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9892    ShAmt1 = ShAmt1.getOperand(0);
9893
9894  DebugLoc DL = N->getDebugLoc();
9895  unsigned Opc = X86ISD::SHLD;
9896  SDValue Op0 = N0.getOperand(0);
9897  SDValue Op1 = N1.getOperand(0);
9898  if (ShAmt0.getOpcode() == ISD::SUB) {
9899    Opc = X86ISD::SHRD;
9900    std::swap(Op0, Op1);
9901    std::swap(ShAmt0, ShAmt1);
9902  }
9903
9904  unsigned Bits = VT.getSizeInBits();
9905  if (ShAmt1.getOpcode() == ISD::SUB) {
9906    SDValue Sum = ShAmt1.getOperand(0);
9907    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9908      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
9909      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
9910        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
9911      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
9912        return DAG.getNode(Opc, DL, VT,
9913                           Op0, Op1,
9914                           DAG.getNode(ISD::TRUNCATE, DL,
9915                                       MVT::i8, ShAmt0));
9916    }
9917  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9918    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9919    if (ShAmt0C &&
9920        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
9921      return DAG.getNode(Opc, DL, VT,
9922                         N0.getOperand(0), N1.getOperand(0),
9923                         DAG.getNode(ISD::TRUNCATE, DL,
9924                                       MVT::i8, ShAmt0));
9925  }
9926
9927  return SDValue();
9928}
9929
9930/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9931static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9932                                   const X86Subtarget *Subtarget) {
9933  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9934  // the FP state in cases where an emms may be missing.
9935  // A preferable solution to the general problem is to figure out the right
9936  // places to insert EMMS.  This qualifies as a quick hack.
9937
9938  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9939  StoreSDNode *St = cast<StoreSDNode>(N);
9940  EVT VT = St->getValue().getValueType();
9941  if (VT.getSizeInBits() != 64)
9942    return SDValue();
9943
9944  const Function *F = DAG.getMachineFunction().getFunction();
9945  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9946  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9947    && Subtarget->hasSSE2();
9948  if ((VT.isVector() ||
9949       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9950      isa<LoadSDNode>(St->getValue()) &&
9951      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9952      St->getChain().hasOneUse() && !St->isVolatile()) {
9953    SDNode* LdVal = St->getValue().getNode();
9954    LoadSDNode *Ld = 0;
9955    int TokenFactorIndex = -1;
9956    SmallVector<SDValue, 8> Ops;
9957    SDNode* ChainVal = St->getChain().getNode();
9958    // Must be a store of a load.  We currently handle two cases:  the load
9959    // is a direct child, and it's under an intervening TokenFactor.  It is
9960    // possible to dig deeper under nested TokenFactors.
9961    if (ChainVal == LdVal)
9962      Ld = cast<LoadSDNode>(St->getChain());
9963    else if (St->getValue().hasOneUse() &&
9964             ChainVal->getOpcode() == ISD::TokenFactor) {
9965      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9966        if (ChainVal->getOperand(i).getNode() == LdVal) {
9967          TokenFactorIndex = i;
9968          Ld = cast<LoadSDNode>(St->getValue());
9969        } else
9970          Ops.push_back(ChainVal->getOperand(i));
9971      }
9972    }
9973
9974    if (!Ld || !ISD::isNormalLoad(Ld))
9975      return SDValue();
9976
9977    // If this is not the MMX case, i.e. we are just turning i64 load/store
9978    // into f64 load/store, avoid the transformation if there are multiple
9979    // uses of the loaded value.
9980    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9981      return SDValue();
9982
9983    DebugLoc LdDL = Ld->getDebugLoc();
9984    DebugLoc StDL = N->getDebugLoc();
9985    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9986    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9987    // pair instead.
9988    if (Subtarget->is64Bit() || F64IsLegal) {
9989      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9990      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9991                                  Ld->getBasePtr(), Ld->getSrcValue(),
9992                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9993                                  Ld->isNonTemporal(), Ld->getAlignment());
9994      SDValue NewChain = NewLd.getValue(1);
9995      if (TokenFactorIndex != -1) {
9996        Ops.push_back(NewChain);
9997        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9998                               Ops.size());
9999      }
10000      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
10001                          St->getSrcValue(), St->getSrcValueOffset(),
10002                          St->isVolatile(), St->isNonTemporal(),
10003                          St->getAlignment());
10004    }
10005
10006    // Otherwise, lower to two pairs of 32-bit loads / stores.
10007    SDValue LoAddr = Ld->getBasePtr();
10008    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
10009                                 DAG.getConstant(4, MVT::i32));
10010
10011    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
10012                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
10013                               Ld->isVolatile(), Ld->isNonTemporal(),
10014                               Ld->getAlignment());
10015    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
10016                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
10017                               Ld->isVolatile(), Ld->isNonTemporal(),
10018                               MinAlign(Ld->getAlignment(), 4));
10019
10020    SDValue NewChain = LoLd.getValue(1);
10021    if (TokenFactorIndex != -1) {
10022      Ops.push_back(LoLd);
10023      Ops.push_back(HiLd);
10024      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10025                             Ops.size());
10026    }
10027
10028    LoAddr = St->getBasePtr();
10029    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
10030                         DAG.getConstant(4, MVT::i32));
10031
10032    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
10033                                St->getSrcValue(), St->getSrcValueOffset(),
10034                                St->isVolatile(), St->isNonTemporal(),
10035                                St->getAlignment());
10036    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
10037                                St->getSrcValue(),
10038                                St->getSrcValueOffset() + 4,
10039                                St->isVolatile(),
10040                                St->isNonTemporal(),
10041                                MinAlign(St->getAlignment(), 4));
10042    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
10043  }
10044  return SDValue();
10045}
10046
10047/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
10048/// X86ISD::FXOR nodes.
10049static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
10050  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
10051  // F[X]OR(0.0, x) -> x
10052  // F[X]OR(x, 0.0) -> x
10053  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10054    if (C->getValueAPF().isPosZero())
10055      return N->getOperand(1);
10056  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10057    if (C->getValueAPF().isPosZero())
10058      return N->getOperand(0);
10059  return SDValue();
10060}
10061
10062/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
10063static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
10064  // FAND(0.0, x) -> 0.0
10065  // FAND(x, 0.0) -> 0.0
10066  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10067    if (C->getValueAPF().isPosZero())
10068      return N->getOperand(0);
10069  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10070    if (C->getValueAPF().isPosZero())
10071      return N->getOperand(1);
10072  return SDValue();
10073}
10074
10075static SDValue PerformBTCombine(SDNode *N,
10076                                SelectionDAG &DAG,
10077                                TargetLowering::DAGCombinerInfo &DCI) {
10078  // BT ignores high bits in the bit index operand.
10079  SDValue Op1 = N->getOperand(1);
10080  if (Op1.hasOneUse()) {
10081    unsigned BitWidth = Op1.getValueSizeInBits();
10082    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
10083    APInt KnownZero, KnownOne;
10084    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10085                                          !DCI.isBeforeLegalizeOps());
10086    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10087    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
10088        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
10089      DCI.CommitTargetLoweringOpt(TLO);
10090  }
10091  return SDValue();
10092}
10093
10094static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
10095  SDValue Op = N->getOperand(0);
10096  if (Op.getOpcode() == ISD::BIT_CONVERT)
10097    Op = Op.getOperand(0);
10098  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
10099  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
10100      VT.getVectorElementType().getSizeInBits() ==
10101      OpVT.getVectorElementType().getSizeInBits()) {
10102    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
10103  }
10104  return SDValue();
10105}
10106
10107static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
10108  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
10109  //           (and (i32 x86isd::setcc_carry), 1)
10110  // This eliminates the zext. This transformation is necessary because
10111  // ISD::SETCC is always legalized to i8.
10112  DebugLoc dl = N->getDebugLoc();
10113  SDValue N0 = N->getOperand(0);
10114  EVT VT = N->getValueType(0);
10115  if (N0.getOpcode() == ISD::AND &&
10116      N0.hasOneUse() &&
10117      N0.getOperand(0).hasOneUse()) {
10118    SDValue N00 = N0.getOperand(0);
10119    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
10120      return SDValue();
10121    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10122    if (!C || C->getZExtValue() != 1)
10123      return SDValue();
10124    return DAG.getNode(ISD::AND, dl, VT,
10125                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
10126                                   N00.getOperand(0), N00.getOperand(1)),
10127                       DAG.getConstant(1, VT));
10128  }
10129
10130  return SDValue();
10131}
10132
10133SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
10134                                             DAGCombinerInfo &DCI) const {
10135  SelectionDAG &DAG = DCI.DAG;
10136  switch (N->getOpcode()) {
10137  default: break;
10138  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
10139  case ISD::EXTRACT_VECTOR_ELT:
10140                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
10141  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
10142  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
10143  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
10144  case ISD::SHL:
10145  case ISD::SRA:
10146  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
10147  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
10148  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
10149  case X86ISD::FXOR:
10150  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
10151  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
10152  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
10153  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
10154  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
10155  }
10156
10157  return SDValue();
10158}
10159
10160/// isTypeDesirableForOp - Return true if the target has native support for
10161/// the specified value type and it is 'desirable' to use the type for the
10162/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
10163/// instruction encodings are longer and some i16 instructions are slow.
10164bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
10165  if (!isTypeLegal(VT))
10166    return false;
10167  if (VT != MVT::i16)
10168    return true;
10169
10170  switch (Opc) {
10171  default:
10172    return true;
10173  case ISD::LOAD:
10174  case ISD::SIGN_EXTEND:
10175  case ISD::ZERO_EXTEND:
10176  case ISD::ANY_EXTEND:
10177  case ISD::SHL:
10178  case ISD::SRL:
10179  case ISD::SUB:
10180  case ISD::ADD:
10181  case ISD::MUL:
10182  case ISD::AND:
10183  case ISD::OR:
10184  case ISD::XOR:
10185    return false;
10186  }
10187}
10188
10189static bool MayFoldLoad(SDValue Op) {
10190  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
10191}
10192
10193static bool MayFoldIntoStore(SDValue Op) {
10194  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
10195}
10196
10197/// IsDesirableToPromoteOp - This method query the target whether it is
10198/// beneficial for dag combiner to promote the specified node. If true, it
10199/// should return the desired promotion type by reference.
10200bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
10201  EVT VT = Op.getValueType();
10202  if (VT != MVT::i16)
10203    return false;
10204
10205  bool Promote = false;
10206  bool Commute = false;
10207  switch (Op.getOpcode()) {
10208  default: break;
10209  case ISD::LOAD: {
10210    LoadSDNode *LD = cast<LoadSDNode>(Op);
10211    // If the non-extending load has a single use and it's not live out, then it
10212    // might be folded.
10213    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
10214                                                     Op.hasOneUse()*/) {
10215      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
10216             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
10217        // The only case where we'd want to promote LOAD (rather then it being
10218        // promoted as an operand is when it's only use is liveout.
10219        if (UI->getOpcode() != ISD::CopyToReg)
10220          return false;
10221      }
10222    }
10223    Promote = true;
10224    break;
10225  }
10226  case ISD::SIGN_EXTEND:
10227  case ISD::ZERO_EXTEND:
10228  case ISD::ANY_EXTEND:
10229    Promote = true;
10230    break;
10231  case ISD::SHL:
10232  case ISD::SRL: {
10233    SDValue N0 = Op.getOperand(0);
10234    // Look out for (store (shl (load), x)).
10235    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
10236      return false;
10237    Promote = true;
10238    break;
10239  }
10240  case ISD::ADD:
10241  case ISD::MUL:
10242  case ISD::AND:
10243  case ISD::OR:
10244  case ISD::XOR:
10245    Commute = true;
10246    // fallthrough
10247  case ISD::SUB: {
10248    SDValue N0 = Op.getOperand(0);
10249    SDValue N1 = Op.getOperand(1);
10250    if (!Commute && MayFoldLoad(N1))
10251      return false;
10252    // Avoid disabling potential load folding opportunities.
10253    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
10254      return false;
10255    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
10256      return false;
10257    Promote = true;
10258  }
10259  }
10260
10261  PVT = MVT::i32;
10262  return Promote;
10263}
10264
10265//===----------------------------------------------------------------------===//
10266//                           X86 Inline Assembly Support
10267//===----------------------------------------------------------------------===//
10268
10269static bool LowerToBSwap(CallInst *CI) {
10270  // FIXME: this should verify that we are targetting a 486 or better.  If not,
10271  // we will turn this bswap into something that will be lowered to logical ops
10272  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
10273  // so don't worry about this.
10274
10275  // Verify this is a simple bswap.
10276  if (CI->getNumArgOperands() != 1 ||
10277      CI->getType() != CI->getArgOperand(0)->getType() ||
10278      !CI->getType()->isIntegerTy())
10279    return false;
10280
10281  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10282  if (!Ty || Ty->getBitWidth() % 16 != 0)
10283    return false;
10284
10285  // Okay, we can do this xform, do so now.
10286  const Type *Tys[] = { Ty };
10287  Module *M = CI->getParent()->getParent()->getParent();
10288  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
10289
10290  Value *Op = CI->getArgOperand(0);
10291  Op = CallInst::Create(Int, Op, CI->getName(), CI);
10292
10293  CI->replaceAllUsesWith(Op);
10294  CI->eraseFromParent();
10295  return true;
10296}
10297
10298bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
10299  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10300  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
10301
10302  std::string AsmStr = IA->getAsmString();
10303
10304  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
10305  SmallVector<StringRef, 4> AsmPieces;
10306  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
10307
10308  switch (AsmPieces.size()) {
10309  default: return false;
10310  case 1:
10311    AsmStr = AsmPieces[0];
10312    AsmPieces.clear();
10313    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
10314
10315    // bswap $0
10316    if (AsmPieces.size() == 2 &&
10317        (AsmPieces[0] == "bswap" ||
10318         AsmPieces[0] == "bswapq" ||
10319         AsmPieces[0] == "bswapl") &&
10320        (AsmPieces[1] == "$0" ||
10321         AsmPieces[1] == "${0:q}")) {
10322      // No need to check constraints, nothing other than the equivalent of
10323      // "=r,0" would be valid here.
10324      return LowerToBSwap(CI);
10325    }
10326    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
10327    if (CI->getType()->isIntegerTy(16) &&
10328        AsmPieces.size() == 3 &&
10329        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
10330        AsmPieces[1] == "$$8," &&
10331        AsmPieces[2] == "${0:w}" &&
10332        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
10333      AsmPieces.clear();
10334      const std::string &Constraints = IA->getConstraintString();
10335      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
10336      std::sort(AsmPieces.begin(), AsmPieces.end());
10337      if (AsmPieces.size() == 4 &&
10338          AsmPieces[0] == "~{cc}" &&
10339          AsmPieces[1] == "~{dirflag}" &&
10340          AsmPieces[2] == "~{flags}" &&
10341          AsmPieces[3] == "~{fpsr}") {
10342        return LowerToBSwap(CI);
10343      }
10344    }
10345    break;
10346  case 3:
10347    if (CI->getType()->isIntegerTy(64) &&
10348        Constraints.size() >= 2 &&
10349        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
10350        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
10351      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
10352      SmallVector<StringRef, 4> Words;
10353      SplitString(AsmPieces[0], Words, " \t");
10354      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
10355        Words.clear();
10356        SplitString(AsmPieces[1], Words, " \t");
10357        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
10358          Words.clear();
10359          SplitString(AsmPieces[2], Words, " \t,");
10360          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10361              Words[2] == "%edx") {
10362            return LowerToBSwap(CI);
10363          }
10364        }
10365      }
10366    }
10367    break;
10368  }
10369  return false;
10370}
10371
10372
10373
10374/// getConstraintType - Given a constraint letter, return the type of
10375/// constraint it is for this target.
10376X86TargetLowering::ConstraintType
10377X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10378  if (Constraint.size() == 1) {
10379    switch (Constraint[0]) {
10380    case 'A':
10381      return C_Register;
10382    case 'f':
10383    case 'r':
10384    case 'R':
10385    case 'l':
10386    case 'q':
10387    case 'Q':
10388    case 'x':
10389    case 'y':
10390    case 'Y':
10391      return C_RegisterClass;
10392    case 'e':
10393    case 'Z':
10394      return C_Other;
10395    default:
10396      break;
10397    }
10398  }
10399  return TargetLowering::getConstraintType(Constraint);
10400}
10401
10402/// LowerXConstraint - try to replace an X constraint, which matches anything,
10403/// with another that has more specific requirements based on the type of the
10404/// corresponding operand.
10405const char *X86TargetLowering::
10406LowerXConstraint(EVT ConstraintVT) const {
10407  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10408  // 'f' like normal targets.
10409  if (ConstraintVT.isFloatingPoint()) {
10410    if (Subtarget->hasSSE2())
10411      return "Y";
10412    if (Subtarget->hasSSE1())
10413      return "x";
10414  }
10415
10416  return TargetLowering::LowerXConstraint(ConstraintVT);
10417}
10418
10419/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10420/// vector.  If it is invalid, don't add anything to Ops.
10421void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10422                                                     char Constraint,
10423                                                     std::vector<SDValue>&Ops,
10424                                                     SelectionDAG &DAG) const {
10425  SDValue Result(0, 0);
10426
10427  switch (Constraint) {
10428  default: break;
10429  case 'I':
10430    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10431      if (C->getZExtValue() <= 31) {
10432        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10433        break;
10434      }
10435    }
10436    return;
10437  case 'J':
10438    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10439      if (C->getZExtValue() <= 63) {
10440        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10441        break;
10442      }
10443    }
10444    return;
10445  case 'K':
10446    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10447      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10448        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10449        break;
10450      }
10451    }
10452    return;
10453  case 'N':
10454    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10455      if (C->getZExtValue() <= 255) {
10456        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10457        break;
10458      }
10459    }
10460    return;
10461  case 'e': {
10462    // 32-bit signed value
10463    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10464      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10465                                           C->getSExtValue())) {
10466        // Widen to 64 bits here to get it sign extended.
10467        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10468        break;
10469      }
10470    // FIXME gcc accepts some relocatable values here too, but only in certain
10471    // memory models; it's complicated.
10472    }
10473    return;
10474  }
10475  case 'Z': {
10476    // 32-bit unsigned value
10477    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10478      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10479                                           C->getZExtValue())) {
10480        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10481        break;
10482      }
10483    }
10484    // FIXME gcc accepts some relocatable values here too, but only in certain
10485    // memory models; it's complicated.
10486    return;
10487  }
10488  case 'i': {
10489    // Literal immediates are always ok.
10490    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10491      // Widen to 64 bits here to get it sign extended.
10492      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10493      break;
10494    }
10495
10496    // In any sort of PIC mode addresses need to be computed at runtime by
10497    // adding in a register or some sort of table lookup.  These can't
10498    // be used as immediates.
10499    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
10500      return;
10501
10502    // If we are in non-pic codegen mode, we allow the address of a global (with
10503    // an optional displacement) to be used with 'i'.
10504    GlobalAddressSDNode *GA = 0;
10505    int64_t Offset = 0;
10506
10507    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10508    while (1) {
10509      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10510        Offset += GA->getOffset();
10511        break;
10512      } else if (Op.getOpcode() == ISD::ADD) {
10513        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10514          Offset += C->getZExtValue();
10515          Op = Op.getOperand(0);
10516          continue;
10517        }
10518      } else if (Op.getOpcode() == ISD::SUB) {
10519        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10520          Offset += -C->getZExtValue();
10521          Op = Op.getOperand(0);
10522          continue;
10523        }
10524      }
10525
10526      // Otherwise, this isn't something we can handle, reject it.
10527      return;
10528    }
10529
10530    const GlobalValue *GV = GA->getGlobal();
10531    // If we require an extra load to get this address, as in PIC mode, we
10532    // can't accept it.
10533    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10534                                                        getTargetMachine())))
10535      return;
10536
10537    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
10538                                        GA->getValueType(0), Offset);
10539    break;
10540  }
10541  }
10542
10543  if (Result.getNode()) {
10544    Ops.push_back(Result);
10545    return;
10546  }
10547  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10548}
10549
10550std::vector<unsigned> X86TargetLowering::
10551getRegClassForInlineAsmConstraint(const std::string &Constraint,
10552                                  EVT VT) const {
10553  if (Constraint.size() == 1) {
10554    // FIXME: not handling fp-stack yet!
10555    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10556    default: break;  // Unknown constraint letter
10557    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10558      if (Subtarget->is64Bit()) {
10559        if (VT == MVT::i32)
10560          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10561                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10562                                       X86::R10D,X86::R11D,X86::R12D,
10563                                       X86::R13D,X86::R14D,X86::R15D,
10564                                       X86::EBP, X86::ESP, 0);
10565        else if (VT == MVT::i16)
10566          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10567                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10568                                       X86::R10W,X86::R11W,X86::R12W,
10569                                       X86::R13W,X86::R14W,X86::R15W,
10570                                       X86::BP,  X86::SP, 0);
10571        else if (VT == MVT::i8)
10572          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10573                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10574                                       X86::R10B,X86::R11B,X86::R12B,
10575                                       X86::R13B,X86::R14B,X86::R15B,
10576                                       X86::BPL, X86::SPL, 0);
10577
10578        else if (VT == MVT::i64)
10579          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10580                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10581                                       X86::R10, X86::R11, X86::R12,
10582                                       X86::R13, X86::R14, X86::R15,
10583                                       X86::RBP, X86::RSP, 0);
10584
10585        break;
10586      }
10587      // 32-bit fallthrough
10588    case 'Q':   // Q_REGS
10589      if (VT == MVT::i32)
10590        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10591      else if (VT == MVT::i16)
10592        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10593      else if (VT == MVT::i8)
10594        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10595      else if (VT == MVT::i64)
10596        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10597      break;
10598    }
10599  }
10600
10601  return std::vector<unsigned>();
10602}
10603
10604std::pair<unsigned, const TargetRegisterClass*>
10605X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10606                                                EVT VT) const {
10607  // First, see if this is a constraint that directly corresponds to an LLVM
10608  // register class.
10609  if (Constraint.size() == 1) {
10610    // GCC Constraint Letters
10611    switch (Constraint[0]) {
10612    default: break;
10613    case 'r':   // GENERAL_REGS
10614    case 'l':   // INDEX_REGS
10615      if (VT == MVT::i8)
10616        return std::make_pair(0U, X86::GR8RegisterClass);
10617      if (VT == MVT::i16)
10618        return std::make_pair(0U, X86::GR16RegisterClass);
10619      if (VT == MVT::i32 || !Subtarget->is64Bit())
10620        return std::make_pair(0U, X86::GR32RegisterClass);
10621      return std::make_pair(0U, X86::GR64RegisterClass);
10622    case 'R':   // LEGACY_REGS
10623      if (VT == MVT::i8)
10624        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10625      if (VT == MVT::i16)
10626        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10627      if (VT == MVT::i32 || !Subtarget->is64Bit())
10628        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10629      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10630    case 'f':  // FP Stack registers.
10631      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10632      // value to the correct fpstack register class.
10633      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10634        return std::make_pair(0U, X86::RFP32RegisterClass);
10635      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10636        return std::make_pair(0U, X86::RFP64RegisterClass);
10637      return std::make_pair(0U, X86::RFP80RegisterClass);
10638    case 'y':   // MMX_REGS if MMX allowed.
10639      if (!Subtarget->hasMMX()) break;
10640      return std::make_pair(0U, X86::VR64RegisterClass);
10641    case 'Y':   // SSE_REGS if SSE2 allowed
10642      if (!Subtarget->hasSSE2()) break;
10643      // FALL THROUGH.
10644    case 'x':   // SSE_REGS if SSE1 allowed
10645      if (!Subtarget->hasSSE1()) break;
10646
10647      switch (VT.getSimpleVT().SimpleTy) {
10648      default: break;
10649      // Scalar SSE types.
10650      case MVT::f32:
10651      case MVT::i32:
10652        return std::make_pair(0U, X86::FR32RegisterClass);
10653      case MVT::f64:
10654      case MVT::i64:
10655        return std::make_pair(0U, X86::FR64RegisterClass);
10656      // Vector types.
10657      case MVT::v16i8:
10658      case MVT::v8i16:
10659      case MVT::v4i32:
10660      case MVT::v2i64:
10661      case MVT::v4f32:
10662      case MVT::v2f64:
10663        return std::make_pair(0U, X86::VR128RegisterClass);
10664      }
10665      break;
10666    }
10667  }
10668
10669  // Use the default implementation in TargetLowering to convert the register
10670  // constraint into a member of a register class.
10671  std::pair<unsigned, const TargetRegisterClass*> Res;
10672  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10673
10674  // Not found as a standard register?
10675  if (Res.second == 0) {
10676    // Map st(0) -> st(7) -> ST0
10677    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10678        tolower(Constraint[1]) == 's' &&
10679        tolower(Constraint[2]) == 't' &&
10680        Constraint[3] == '(' &&
10681        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10682        Constraint[5] == ')' &&
10683        Constraint[6] == '}') {
10684
10685      Res.first = X86::ST0+Constraint[4]-'0';
10686      Res.second = X86::RFP80RegisterClass;
10687      return Res;
10688    }
10689
10690    // GCC allows "st(0)" to be called just plain "st".
10691    if (StringRef("{st}").equals_lower(Constraint)) {
10692      Res.first = X86::ST0;
10693      Res.second = X86::RFP80RegisterClass;
10694      return Res;
10695    }
10696
10697    // flags -> EFLAGS
10698    if (StringRef("{flags}").equals_lower(Constraint)) {
10699      Res.first = X86::EFLAGS;
10700      Res.second = X86::CCRRegisterClass;
10701      return Res;
10702    }
10703
10704    // 'A' means EAX + EDX.
10705    if (Constraint == "A") {
10706      Res.first = X86::EAX;
10707      Res.second = X86::GR32_ADRegisterClass;
10708      return Res;
10709    }
10710    return Res;
10711  }
10712
10713  // Otherwise, check to see if this is a register class of the wrong value
10714  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10715  // turn into {ax},{dx}.
10716  if (Res.second->hasType(VT))
10717    return Res;   // Correct type already, nothing to do.
10718
10719  // All of the single-register GCC register classes map their values onto
10720  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10721  // really want an 8-bit or 32-bit register, map to the appropriate register
10722  // class and return the appropriate register.
10723  if (Res.second == X86::GR16RegisterClass) {
10724    if (VT == MVT::i8) {
10725      unsigned DestReg = 0;
10726      switch (Res.first) {
10727      default: break;
10728      case X86::AX: DestReg = X86::AL; break;
10729      case X86::DX: DestReg = X86::DL; break;
10730      case X86::CX: DestReg = X86::CL; break;
10731      case X86::BX: DestReg = X86::BL; break;
10732      }
10733      if (DestReg) {
10734        Res.first = DestReg;
10735        Res.second = X86::GR8RegisterClass;
10736      }
10737    } else if (VT == MVT::i32) {
10738      unsigned DestReg = 0;
10739      switch (Res.first) {
10740      default: break;
10741      case X86::AX: DestReg = X86::EAX; break;
10742      case X86::DX: DestReg = X86::EDX; break;
10743      case X86::CX: DestReg = X86::ECX; break;
10744      case X86::BX: DestReg = X86::EBX; break;
10745      case X86::SI: DestReg = X86::ESI; break;
10746      case X86::DI: DestReg = X86::EDI; break;
10747      case X86::BP: DestReg = X86::EBP; break;
10748      case X86::SP: DestReg = X86::ESP; break;
10749      }
10750      if (DestReg) {
10751        Res.first = DestReg;
10752        Res.second = X86::GR32RegisterClass;
10753      }
10754    } else if (VT == MVT::i64) {
10755      unsigned DestReg = 0;
10756      switch (Res.first) {
10757      default: break;
10758      case X86::AX: DestReg = X86::RAX; break;
10759      case X86::DX: DestReg = X86::RDX; break;
10760      case X86::CX: DestReg = X86::RCX; break;
10761      case X86::BX: DestReg = X86::RBX; break;
10762      case X86::SI: DestReg = X86::RSI; break;
10763      case X86::DI: DestReg = X86::RDI; break;
10764      case X86::BP: DestReg = X86::RBP; break;
10765      case X86::SP: DestReg = X86::RSP; break;
10766      }
10767      if (DestReg) {
10768        Res.first = DestReg;
10769        Res.second = X86::GR64RegisterClass;
10770      }
10771    }
10772  } else if (Res.second == X86::FR32RegisterClass ||
10773             Res.second == X86::FR64RegisterClass ||
10774             Res.second == X86::VR128RegisterClass) {
10775    // Handle references to XMM physical registers that got mapped into the
10776    // wrong class.  This can happen with constraints like {xmm0} where the
10777    // target independent register mapper will just pick the first match it can
10778    // find, ignoring the required type.
10779    if (VT == MVT::f32)
10780      Res.second = X86::FR32RegisterClass;
10781    else if (VT == MVT::f64)
10782      Res.second = X86::FR64RegisterClass;
10783    else if (X86::VR128RegisterClass->hasType(VT))
10784      Res.second = X86::VR128RegisterClass;
10785  }
10786
10787  return Res;
10788}
10789