X86ISelLowering.cpp revision d96d0723323847156928fd34d3f049311ba948f6
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/ADT/VectorExtras.h"
26#include "llvm/Analysis/ScalarEvolutionExpressions.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/CodeGen/SSARegMap.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/ADT/StringExtras.h"
36using namespace llvm;
37
38// FIXME: temporary.
39static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden,
40                                  cl::desc("Enable fastcc on X86"));
41X86TargetLowering::X86TargetLowering(TargetMachine &TM)
42  : TargetLowering(TM) {
43  Subtarget = &TM.getSubtarget<X86Subtarget>();
44  X86ScalarSSE = Subtarget->hasSSE2();
45  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
46
47  // Set up the TargetLowering object.
48
49  // X86 is weird, it always uses i8 for shift amounts and setcc results.
50  setShiftAmountType(MVT::i8);
51  setSetCCResultType(MVT::i8);
52  setSetCCResultContents(ZeroOrOneSetCCResult);
53  setSchedulingPreference(SchedulingForRegPressure);
54  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
55  setStackPointerRegisterToSaveRestore(X86StackPtr);
56
57  if (Subtarget->isTargetDarwin()) {
58    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
59    setUseUnderscoreSetJmp(false);
60    setUseUnderscoreLongJmp(false);
61  } else if (Subtarget->isTargetMingw()) {
62    // MS runtime is weird: it exports _setjmp, but longjmp!
63    setUseUnderscoreSetJmp(true);
64    setUseUnderscoreLongJmp(false);
65  } else {
66    setUseUnderscoreSetJmp(true);
67    setUseUnderscoreLongJmp(true);
68  }
69
70  // Add legal addressing mode scale values.
71  addLegalAddressScale(8);
72  addLegalAddressScale(4);
73  addLegalAddressScale(2);
74  // Enter the ones which require both scale + index last. These are more
75  // expensive.
76  addLegalAddressScale(9);
77  addLegalAddressScale(5);
78  addLegalAddressScale(3);
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
82  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
83  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
84  if (Subtarget->is64Bit())
85    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
86
87  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
88
89  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
90  // operation.
91  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
92  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
93  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
94
95  if (Subtarget->is64Bit()) {
96    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
97    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
98  } else {
99    if (X86ScalarSSE)
100      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
101      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
102    else
103      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
104  }
105
106  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
107  // this operation.
108  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
109  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
110  // SSE has no i16 to fp conversion, only i32
111  if (X86ScalarSSE)
112    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
113  else {
114    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
115    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
116  }
117
118  if (!Subtarget->is64Bit()) {
119    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
120    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
121    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
122  }
123
124  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
125  // this operation.
126  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
127  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
128
129  if (X86ScalarSSE) {
130    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
131  } else {
132    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
133    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
134  }
135
136  // Handle FP_TO_UINT by promoting the destination to a larger signed
137  // conversion.
138  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
139  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
140  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
141
142  if (Subtarget->is64Bit()) {
143    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
144    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
145  } else {
146    if (X86ScalarSSE && !Subtarget->hasSSE3())
147      // Expand FP_TO_UINT into a select.
148      // FIXME: We would like to use a Custom expander here eventually to do
149      // the optimal thing for SSE vs. the default expansion in the legalizer.
150      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
151    else
152      // With SSE3 we can use fisttpll to convert to a signed i64.
153      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
154  }
155
156  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
157  if (!X86ScalarSSE) {
158    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
159    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
160  }
161
162  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
163  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
164  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
165  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
166  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
167  if (Subtarget->is64Bit())
168    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
169  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
170  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
171  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
172  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
173  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
174
175  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
176  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
177  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
178  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
179  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
180  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
181  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
182  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
183  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
184  if (Subtarget->is64Bit()) {
185    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
186    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
187    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
188  }
189
190  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
191  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
192
193  // These should be promoted to a larger select which is supported.
194  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
195  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
196  // X86 wants to expand cmov itself.
197  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
198  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
199  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
200  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
201  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
202  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
203  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
204  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
205  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
206  if (Subtarget->is64Bit()) {
207    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
208    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
209  }
210  // X86 ret instruction may pop stack.
211  setOperationAction(ISD::RET             , MVT::Other, Custom);
212  // Darwin ABI issue.
213  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
214  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
215  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
216  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
217  if (Subtarget->is64Bit()) {
218    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
219    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
220    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
221    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
222  }
223  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
224  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
225  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
226  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
227  // X86 wants to expand memset / memcpy itself.
228  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
229  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
230
231  // We don't have line number support yet.
232  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
233  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
234  // FIXME - use subtarget debug flags
235  if (!Subtarget->isTargetDarwin() &&
236      !Subtarget->isTargetELF() &&
237      !Subtarget->isTargetCygMing())
238    setOperationAction(ISD::LABEL, MVT::Other, Expand);
239
240  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
241  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
242
243  // Use the default implementation.
244  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
245  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
246  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
247  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
248  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
249  if (Subtarget->is64Bit())
250    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
251  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
252
253  if (X86ScalarSSE) {
254    // Set up the FP register classes.
255    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
256    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
257
258    // Use ANDPD to simulate FABS.
259    setOperationAction(ISD::FABS , MVT::f64, Custom);
260    setOperationAction(ISD::FABS , MVT::f32, Custom);
261
262    // Use XORP to simulate FNEG.
263    setOperationAction(ISD::FNEG , MVT::f64, Custom);
264    setOperationAction(ISD::FNEG , MVT::f32, Custom);
265
266    // Use ANDPD and ORPD to simulate FCOPYSIGN.
267    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
268    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
269
270    // We don't support sin/cos/fmod
271    setOperationAction(ISD::FSIN , MVT::f64, Expand);
272    setOperationAction(ISD::FCOS , MVT::f64, Expand);
273    setOperationAction(ISD::FREM , MVT::f64, Expand);
274    setOperationAction(ISD::FSIN , MVT::f32, Expand);
275    setOperationAction(ISD::FCOS , MVT::f32, Expand);
276    setOperationAction(ISD::FREM , MVT::f32, Expand);
277
278    // Expand FP immediates into loads from the stack, except for the special
279    // cases we handle.
280    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
281    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
282    addLegalFPImmediate(+0.0); // xorps / xorpd
283  } else {
284    // Set up the FP register classes.
285    addRegisterClass(MVT::f64, X86::RFPRegisterClass);
286
287    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
288    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
289    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
290
291    if (!UnsafeFPMath) {
292      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
293      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
294    }
295
296    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
297    addLegalFPImmediate(+0.0); // FLD0
298    addLegalFPImmediate(+1.0); // FLD1
299    addLegalFPImmediate(-0.0); // FLD0/FCHS
300    addLegalFPImmediate(-1.0); // FLD1/FCHS
301  }
302
303  // First set operation action for all vector types to expand. Then we
304  // will selectively turn on ones that can be effectively codegen'd.
305  for (unsigned VT = (unsigned)MVT::Vector + 1;
306       VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
307    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
308    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
309    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
310    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
311    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
312    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
313    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
314    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
315    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
316    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
317    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
318    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
319    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
320    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
321    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
322  }
323
324  if (Subtarget->hasMMX()) {
325    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
326    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
327    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
328
329    // FIXME: add MMX packed arithmetics
330    setOperationAction(ISD::BUILD_VECTOR,     MVT::v8i8,  Expand);
331    setOperationAction(ISD::BUILD_VECTOR,     MVT::v4i16, Expand);
332    setOperationAction(ISD::BUILD_VECTOR,     MVT::v2i32, Expand);
333  }
334
335  if (Subtarget->hasSSE1()) {
336    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
337
338    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
339    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
340    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
341    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
342    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
343    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
344    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
345    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
346    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
347  }
348
349  if (Subtarget->hasSSE2()) {
350    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
351    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
352    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
353    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
354    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
355
356    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
357    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
358    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
359    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
360    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
361    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
362    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
363    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
364    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
365    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
366    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
367
368    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
369    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
370    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
371    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
372    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
373    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
374
375    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
376    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
377      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
378      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
379      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
380    }
381    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
382    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
383    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
384    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
385    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
386    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
387
388    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
389    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
390      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
391      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
392      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
393      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
394      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
395      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
396      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
397      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
398      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
399      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
400    }
401
402    // Custom lower v2i64 and v2f64 selects.
403    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
404    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
405    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
406    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
407  }
408
409  // We want to custom lower some of our intrinsics.
410  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
411
412  // We have target-specific dag combine patterns for the following nodes:
413  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
414  setTargetDAGCombine(ISD::SELECT);
415
416  computeRegisterProperties();
417
418  // FIXME: These should be based on subtarget info. Plus, the values should
419  // be smaller when we are in optimizing for size mode.
420  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
421  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
422  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
423  allowUnalignedMemoryAccesses = true; // x86 supports it!
424}
425
426//===----------------------------------------------------------------------===//
427//                C & StdCall Calling Convention implementation
428//===----------------------------------------------------------------------===//
429//  StdCall calling convention seems to be standard for many Windows' API
430//  routines and around. It differs from C calling convention just a little:
431//  callee should clean up the stack, not caller. Symbols should be also
432//  decorated in some fancy way :) It doesn't support any vector arguments.
433
434/// AddLiveIn - This helper function adds the specified physical register to the
435/// MachineFunction as a live in value.  It also creates a corresponding virtual
436/// register for it.
437static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
438                          const TargetRegisterClass *RC) {
439  assert(RC->contains(PReg) && "Not the correct regclass!");
440  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
441  MF.addLiveIn(PReg, VReg);
442  return VReg;
443}
444
445/// HowToPassArgument - Returns how an formal argument of the specified type
446/// should be passed. If it is through stack, returns the size of the stack
447/// slot; if it is through integer or XMM register, returns the number of
448/// integer or XMM registers are needed.
449static void
450HowToPassCallArgument(MVT::ValueType ObjectVT,
451                      bool ArgInReg,
452                      unsigned NumIntRegs, unsigned NumXMMRegs,
453                      unsigned MaxNumIntRegs,
454                      unsigned &ObjSize, unsigned &ObjIntRegs,
455                      unsigned &ObjXMMRegs,
456                      bool AllowVectors = true) {
457  ObjSize = 0;
458  ObjIntRegs = 0;
459  ObjXMMRegs = 0;
460
461  if (MaxNumIntRegs>3) {
462    // We don't have too much registers on ia32! :)
463    MaxNumIntRegs = 3;
464  }
465
466  switch (ObjectVT) {
467  default: assert(0 && "Unhandled argument type!");
468  case MVT::i8:
469   if (ArgInReg && (NumIntRegs < MaxNumIntRegs))
470     ObjIntRegs = 1;
471   else
472     ObjSize = 1;
473   break;
474  case MVT::i16:
475   if (ArgInReg && (NumIntRegs < MaxNumIntRegs))
476     ObjIntRegs = 1;
477   else
478     ObjSize = 2;
479   break;
480  case MVT::i32:
481   if (ArgInReg && (NumIntRegs < MaxNumIntRegs))
482     ObjIntRegs = 1;
483   else
484     ObjSize = 4;
485   break;
486  case MVT::i64:
487   if (ArgInReg && (NumIntRegs+2 <= MaxNumIntRegs)) {
488     ObjIntRegs = 2;
489   } else if (ArgInReg && (NumIntRegs+1 <= MaxNumIntRegs)) {
490     ObjIntRegs = 1;
491     ObjSize = 4;
492   } else
493     ObjSize = 8;
494  case MVT::f32:
495    ObjSize = 4;
496    break;
497  case MVT::f64:
498    ObjSize = 8;
499    break;
500  case MVT::v16i8:
501  case MVT::v8i16:
502  case MVT::v4i32:
503  case MVT::v2i64:
504  case MVT::v4f32:
505  case MVT::v2f64:
506   if (AllowVectors) {
507     if (NumXMMRegs < 4)
508       ObjXMMRegs = 1;
509     else
510       ObjSize = 16;
511     break;
512   } else
513     assert(0 && "Unhandled argument type [vector]!");
514  }
515}
516
517SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
518                                               bool isStdCall) {
519  unsigned NumArgs = Op.Val->getNumValues() - 1;
520  MachineFunction &MF = DAG.getMachineFunction();
521  MachineFrameInfo *MFI = MF.getFrameInfo();
522  SDOperand Root = Op.getOperand(0);
523  std::vector<SDOperand> ArgValues;
524  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
525
526  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
527  // the stack frame looks like this:
528  //
529  // [ESP] -- return address
530  // [ESP + 4] -- first argument (leftmost lexically)
531  // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
532  //    ...
533  //
534  unsigned ArgOffset   = 0; // Frame mechanisms handle retaddr slot
535  unsigned NumSRetBytes= 0; // How much bytes on stack used for struct return
536  unsigned NumXMMRegs  = 0; // XMM regs used for parameter passing.
537  unsigned NumIntRegs  = 0; // Integer regs used for parameter passing
538
539  static const unsigned XMMArgRegs[] = {
540    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
541  };
542  static const unsigned GPRArgRegs[][3] = {
543    { X86::AL,  X86::DL,  X86::CL  },
544    { X86::AX,  X86::DX,  X86::CX  },
545    { X86::EAX, X86::EDX, X86::ECX }
546  };
547  static const TargetRegisterClass* GPRClasses[3] = {
548    X86::GR8RegisterClass, X86::GR16RegisterClass, X86::GR32RegisterClass
549  };
550
551  // Handle regparm attribute
552  std::vector<bool> ArgInRegs(NumArgs, false);
553  std::vector<bool> SRetArgs(NumArgs, false);
554  if (!isVarArg) {
555    for (unsigned i = 0; i<NumArgs; ++i) {
556      unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3+i))->getValue();
557      ArgInRegs[i]   = (Flags >> 1) & 1;
558      SRetArgs[i]    = (Flags >> 2) & 1;
559    }
560  }
561
562  for (unsigned i = 0; i < NumArgs; ++i) {
563    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
564    unsigned ArgIncrement = 4;
565    unsigned ObjSize = 0;
566    unsigned ObjXMMRegs = 0;
567    unsigned ObjIntRegs = 0;
568    unsigned Reg = 0;
569    SDOperand ArgValue;
570
571    HowToPassCallArgument(ObjectVT,
572                          ArgInRegs[i],
573                          NumIntRegs, NumXMMRegs, 3,
574                          ObjSize, ObjIntRegs, ObjXMMRegs,
575                          !isStdCall);
576
577    if (ObjSize > 4)
578      ArgIncrement = ObjSize;
579
580    if (ObjIntRegs || ObjXMMRegs) {
581      switch (ObjectVT) {
582      default: assert(0 && "Unhandled argument type!");
583      case MVT::i8:
584      case MVT::i16:
585      case MVT::i32: {
586       unsigned RegToUse = GPRArgRegs[ObjectVT-MVT::i8][NumIntRegs];
587       Reg = AddLiveIn(MF, RegToUse, GPRClasses[ObjectVT-MVT::i8]);
588       ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
589       break;
590      }
591      case MVT::v16i8:
592      case MVT::v8i16:
593      case MVT::v4i32:
594      case MVT::v2i64:
595      case MVT::v4f32:
596      case MVT::v2f64:
597       assert(!isStdCall && "Unhandled argument type!");
598       Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass);
599       ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
600       break;
601      }
602      NumIntRegs += ObjIntRegs;
603      NumXMMRegs += ObjXMMRegs;
604    }
605    if (ObjSize) {
606      // XMM arguments have to be aligned on 16-byte boundary.
607      if (ObjSize == 16)
608        ArgOffset = ((ArgOffset + 15) / 16) * 16;
609      // Create the SelectionDAG nodes corresponding to a load from this
610      // parameter.
611      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
612      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
613      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
614
615      ArgOffset += ArgIncrement;   // Move on to the next argument.
616      if (SRetArgs[i])
617        NumSRetBytes += ArgIncrement;
618    }
619
620    ArgValues.push_back(ArgValue);
621  }
622
623  ArgValues.push_back(Root);
624
625  // If the function takes variable number of arguments, make a frame index for
626  // the start of the first vararg value... for expansion of llvm.va_start.
627  if (isVarArg)
628    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
629
630  if (isStdCall && !isVarArg) {
631    BytesToPopOnReturn  = ArgOffset;    // Callee pops everything..
632    BytesCallerReserves = 0;
633  } else {
634    BytesToPopOnReturn  = NumSRetBytes; // Callee pops hidden struct pointer.
635    BytesCallerReserves = ArgOffset;
636  }
637
638  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
639  ReturnAddrIndex = 0;            // No return address slot generated yet.
640
641
642  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
643
644  // Return the new list of results.
645  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
646                                     Op.Val->value_end());
647  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
648}
649
650SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
651                                            bool isStdCall) {
652  SDOperand Chain     = Op.getOperand(0);
653  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
654  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
655  SDOperand Callee    = Op.getOperand(4);
656  MVT::ValueType RetVT= Op.Val->getValueType(0);
657  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
658
659  static const unsigned XMMArgRegs[] = {
660    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
661  };
662  static const unsigned GPR32ArgRegs[] = {
663    X86::EAX, X86::EDX,  X86::ECX
664  };
665
666  // Count how many bytes are to be pushed on the stack.
667  unsigned NumBytes   = 0;
668  // Keep track of the number of integer regs passed so far.
669  unsigned NumIntRegs = 0;
670  // Keep track of the number of XMM regs passed so far.
671  unsigned NumXMMRegs = 0;
672  // How much bytes on stack used for struct return
673  unsigned NumSRetBytes= 0;
674
675  // Handle regparm attribute
676  std::vector<bool> ArgInRegs(NumOps, false);
677  std::vector<bool> SRetArgs(NumOps, false);
678  for (unsigned i = 0; i<NumOps; ++i) {
679    unsigned Flags =
680      dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
681    ArgInRegs[i] = (Flags >> 1) & 1;
682    SRetArgs[i]  = (Flags >> 2) & 1;
683  }
684
685  // Calculate stack frame size
686  for (unsigned i = 0; i != NumOps; ++i) {
687    SDOperand Arg = Op.getOperand(5+2*i);
688    unsigned ArgIncrement = 4;
689    unsigned ObjSize = 0;
690    unsigned ObjIntRegs = 0;
691    unsigned ObjXMMRegs = 0;
692
693    HowToPassCallArgument(Arg.getValueType(),
694                          ArgInRegs[i],
695                          NumIntRegs, NumXMMRegs, 3,
696                          ObjSize, ObjIntRegs, ObjXMMRegs,
697                          !isStdCall);
698    if (ObjSize > 4)
699      ArgIncrement = ObjSize;
700
701    NumIntRegs += ObjIntRegs;
702    NumXMMRegs += ObjXMMRegs;
703    if (ObjSize) {
704      // XMM arguments have to be aligned on 16-byte boundary.
705      if (ObjSize == 16)
706        NumBytes = ((NumBytes + 15) / 16) * 16;
707      NumBytes += ArgIncrement;
708    }
709  }
710
711  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
712
713  // Arguments go on the stack in reverse order, as specified by the ABI.
714  unsigned ArgOffset = 0;
715  NumXMMRegs = 0;
716  NumIntRegs = 0;
717  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
718  std::vector<SDOperand> MemOpChains;
719  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
720  for (unsigned i = 0; i != NumOps; ++i) {
721    SDOperand Arg = Op.getOperand(5+2*i);
722    unsigned ArgIncrement = 4;
723    unsigned ObjSize = 0;
724    unsigned ObjIntRegs = 0;
725    unsigned ObjXMMRegs = 0;
726
727    HowToPassCallArgument(Arg.getValueType(),
728                          ArgInRegs[i],
729                          NumIntRegs, NumXMMRegs, 3,
730                          ObjSize, ObjIntRegs, ObjXMMRegs,
731                          !isStdCall);
732
733    if (ObjSize > 4)
734      ArgIncrement = ObjSize;
735
736    if (Arg.getValueType() == MVT::i8 || Arg.getValueType() == MVT::i16) {
737      // Promote the integer to 32 bits.  If the input type is signed use a
738      // sign extend, otherwise use a zero extend.
739      unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
740
741      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
742      Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
743    }
744
745    if (ObjIntRegs || ObjXMMRegs) {
746      switch (Arg.getValueType()) {
747      default: assert(0 && "Unhandled argument type!");
748      case MVT::i32:
749       RegsToPass.push_back(std::make_pair(GPR32ArgRegs[NumIntRegs], Arg));
750       break;
751      case MVT::v16i8:
752      case MVT::v8i16:
753      case MVT::v4i32:
754      case MVT::v2i64:
755      case MVT::v4f32:
756      case MVT::v2f64:
757       assert(!isStdCall && "Unhandled argument type!");
758       RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
759       break;
760      }
761
762      NumIntRegs += ObjIntRegs;
763      NumXMMRegs += ObjXMMRegs;
764    }
765    if (ObjSize) {
766      // XMM arguments have to be aligned on 16-byte boundary.
767      if (ObjSize == 16)
768        ArgOffset = ((ArgOffset + 15) / 16) * 16;
769
770      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
771      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
772      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
773
774      ArgOffset += ArgIncrement;   // Move on to the next argument.
775      if (SRetArgs[i])
776        NumSRetBytes += ArgIncrement;
777    }
778  }
779
780  // Sanity check: we haven't seen NumSRetBytes > 4
781  assert((NumSRetBytes<=4) &&
782         "Too much space for struct-return pointer requested");
783
784  if (!MemOpChains.empty())
785    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
786                        &MemOpChains[0], MemOpChains.size());
787
788  // Build a sequence of copy-to-reg nodes chained together with token chain
789  // and flag operands which copy the outgoing args into registers.
790  SDOperand InFlag;
791  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
792    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
793                             InFlag);
794    InFlag = Chain.getValue(1);
795  }
796
797  // ELF / PIC requires GOT in the EBX register before function calls via PLT
798  // GOT pointer.
799  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
800      Subtarget->isPICStyleGOT()) {
801    Chain = DAG.getCopyToReg(Chain, X86::EBX,
802                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
803                             InFlag);
804    InFlag = Chain.getValue(1);
805  }
806
807  // If the callee is a GlobalAddress node (quite common, every direct call is)
808  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
809  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
810    // We should use extra load for direct calls to dllimported functions in
811    // non-JIT mode.
812    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
813                                        getTargetMachine(), true))
814      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
815  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
816    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
817
818  // Returns a chain & a flag for retval copy to use.
819  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
820  std::vector<SDOperand> Ops;
821  Ops.push_back(Chain);
822  Ops.push_back(Callee);
823
824  // Add argument registers to the end of the list so that they are known live
825  // into the call.
826  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
827    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
828                                  RegsToPass[i].second.getValueType()));
829
830  // Add an implicit use GOT pointer in EBX.
831  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
832      Subtarget->isPICStyleGOT())
833    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
834
835  if (InFlag.Val)
836    Ops.push_back(InFlag);
837
838  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
839                      NodeTys, &Ops[0], Ops.size());
840  InFlag = Chain.getValue(1);
841
842  // Create the CALLSEQ_END node.
843  unsigned NumBytesForCalleeToPush = 0;
844
845  if (isStdCall) {
846    if (isVarArg) {
847      NumBytesForCalleeToPush = NumSRetBytes;
848    } else {
849      NumBytesForCalleeToPush = NumBytes;
850    }
851  } else {
852    // If this is is a call to a struct-return function, the callee
853    // pops the hidden struct pointer, so we have to push it back.
854    // This is common for Darwin/X86, Linux & Mingw32 targets.
855    NumBytesForCalleeToPush = NumSRetBytes;
856  }
857
858  if (RetVT != MVT::Other)
859    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
860  else
861    NodeTys = DAG.getVTList(MVT::Other);
862  Ops.clear();
863  Ops.push_back(Chain);
864  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
865  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
866  Ops.push_back(InFlag);
867  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
868  if (RetVT != MVT::Other)
869    InFlag = Chain.getValue(1);
870
871  std::vector<SDOperand> ResultVals;
872  switch (RetVT) {
873  default: assert(0 && "Unknown value type to return!");
874  case MVT::Other: break;
875  case MVT::i8:
876    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
877    ResultVals.push_back(Chain.getValue(0));
878    NodeTys = DAG.getVTList(MVT::i8, MVT::Other);
879    break;
880  case MVT::i16:
881    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
882    ResultVals.push_back(Chain.getValue(0));
883    NodeTys = DAG.getVTList(MVT::i16, MVT::Other);
884    break;
885  case MVT::i32:
886    if (Op.Val->getValueType(1) == MVT::i32) {
887      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
888      ResultVals.push_back(Chain.getValue(0));
889      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
890                                 Chain.getValue(2)).getValue(1);
891      ResultVals.push_back(Chain.getValue(0));
892      NodeTys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
893    } else {
894      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
895      ResultVals.push_back(Chain.getValue(0));
896      NodeTys = DAG.getVTList(MVT::i32, MVT::Other);
897    }
898    break;
899  case MVT::v16i8:
900  case MVT::v8i16:
901  case MVT::v4i32:
902  case MVT::v2i64:
903  case MVT::v4f32:
904  case MVT::v2f64:
905    assert(!isStdCall && "Unknown value type to return!");
906    Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
907    ResultVals.push_back(Chain.getValue(0));
908    NodeTys = DAG.getVTList(RetVT, MVT::Other);
909    break;
910  case MVT::f32:
911  case MVT::f64: {
912    std::vector<MVT::ValueType> Tys;
913    Tys.push_back(MVT::f64);
914    Tys.push_back(MVT::Other);
915    Tys.push_back(MVT::Flag);
916    std::vector<SDOperand> Ops;
917    Ops.push_back(Chain);
918    Ops.push_back(InFlag);
919    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
920                                   &Ops[0], Ops.size());
921    Chain  = RetVal.getValue(1);
922    InFlag = RetVal.getValue(2);
923    if (X86ScalarSSE) {
924      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
925      // shouldn't be necessary except that RFP cannot be live across
926      // multiple blocks. When stackifier is fixed, they can be uncoupled.
927      MachineFunction &MF = DAG.getMachineFunction();
928      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
929      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
930      Tys.clear();
931      Tys.push_back(MVT::Other);
932      Ops.clear();
933      Ops.push_back(Chain);
934      Ops.push_back(RetVal);
935      Ops.push_back(StackSlot);
936      Ops.push_back(DAG.getValueType(RetVT));
937      Ops.push_back(InFlag);
938      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
939      RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
940      Chain = RetVal.getValue(1);
941    }
942
943    if (RetVT == MVT::f32 && !X86ScalarSSE)
944      // FIXME: we would really like to remember that this FP_ROUND
945      // operation is okay to eliminate if we allow excess FP precision.
946      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
947    ResultVals.push_back(RetVal);
948    NodeTys = DAG.getVTList(RetVT, MVT::Other);
949    break;
950  }
951  }
952
953  // If the function returns void, just return the chain.
954  if (ResultVals.empty())
955    return Chain;
956
957  // Otherwise, merge everything together with a MERGE_VALUES node.
958  ResultVals.push_back(Chain);
959  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
960                              &ResultVals[0], ResultVals.size());
961  return Res.getValue(Op.ResNo);
962}
963
964
965//===----------------------------------------------------------------------===//
966//                 X86-64 C Calling Convention implementation
967//===----------------------------------------------------------------------===//
968
969/// HowToPassX86_64CCCArgument - Returns how an formal argument of the specified
970/// type should be passed. If it is through stack, returns the size of the stack
971/// slot; if it is through integer or XMM register, returns the number of
972/// integer or XMM registers are needed.
973static void
974HowToPassX86_64CCCArgument(MVT::ValueType ObjectVT,
975                           unsigned NumIntRegs, unsigned NumXMMRegs,
976                           unsigned &ObjSize, unsigned &ObjIntRegs,
977                           unsigned &ObjXMMRegs) {
978  ObjSize = 0;
979  ObjIntRegs = 0;
980  ObjXMMRegs = 0;
981
982  switch (ObjectVT) {
983  default: assert(0 && "Unhandled argument type!");
984  case MVT::i8:
985  case MVT::i16:
986  case MVT::i32:
987  case MVT::i64:
988    if (NumIntRegs < 6)
989      ObjIntRegs = 1;
990    else {
991      switch (ObjectVT) {
992      default: break;
993      case MVT::i8:  ObjSize = 1; break;
994      case MVT::i16: ObjSize = 2; break;
995      case MVT::i32: ObjSize = 4; break;
996      case MVT::i64: ObjSize = 8; break;
997      }
998    }
999    break;
1000  case MVT::f32:
1001  case MVT::f64:
1002  case MVT::v16i8:
1003  case MVT::v8i16:
1004  case MVT::v4i32:
1005  case MVT::v2i64:
1006  case MVT::v4f32:
1007  case MVT::v2f64:
1008    if (NumXMMRegs < 8)
1009      ObjXMMRegs = 1;
1010    else {
1011      switch (ObjectVT) {
1012      default: break;
1013      case MVT::f32:  ObjSize = 4; break;
1014      case MVT::f64:  ObjSize = 8; break;
1015      case MVT::v16i8:
1016      case MVT::v8i16:
1017      case MVT::v4i32:
1018      case MVT::v2i64:
1019      case MVT::v4f32:
1020      case MVT::v2f64: ObjSize = 16; break;
1021    }
1022    break;
1023  }
1024  }
1025}
1026
1027SDOperand
1028X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1029  unsigned NumArgs = Op.Val->getNumValues() - 1;
1030  MachineFunction &MF = DAG.getMachineFunction();
1031  MachineFrameInfo *MFI = MF.getFrameInfo();
1032  SDOperand Root = Op.getOperand(0);
1033  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1034  std::vector<SDOperand> ArgValues;
1035
1036  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
1037  // the stack frame looks like this:
1038  //
1039  // [RSP] -- return address
1040  // [RSP + 8] -- first nonreg argument (leftmost lexically)
1041  // [RSP +16] -- second nonreg argument, if 1st argument is <= 8 bytes in size
1042  //    ...
1043  //
1044  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
1045  unsigned NumIntRegs = 0;  // Int regs used for parameter passing.
1046  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1047
1048  static const unsigned GPR8ArgRegs[] = {
1049    X86::DIL, X86::SIL, X86::DL,  X86::CL,  X86::R8B, X86::R9B
1050  };
1051  static const unsigned GPR16ArgRegs[] = {
1052    X86::DI,  X86::SI,  X86::DX,  X86::CX,  X86::R8W, X86::R9W
1053  };
1054  static const unsigned GPR32ArgRegs[] = {
1055    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
1056  };
1057  static const unsigned GPR64ArgRegs[] = {
1058    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1059  };
1060  static const unsigned XMMArgRegs[] = {
1061    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1062    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1063  };
1064
1065  for (unsigned i = 0; i < NumArgs; ++i) {
1066    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
1067    unsigned ArgIncrement = 8;
1068    unsigned ObjSize = 0;
1069    unsigned ObjIntRegs = 0;
1070    unsigned ObjXMMRegs = 0;
1071
1072    // FIXME: __int128 and long double support?
1073    HowToPassX86_64CCCArgument(ObjectVT, NumIntRegs, NumXMMRegs,
1074                               ObjSize, ObjIntRegs, ObjXMMRegs);
1075    if (ObjSize > 8)
1076      ArgIncrement = ObjSize;
1077
1078    unsigned Reg = 0;
1079    SDOperand ArgValue;
1080    if (ObjIntRegs || ObjXMMRegs) {
1081      switch (ObjectVT) {
1082      default: assert(0 && "Unhandled argument type!");
1083      case MVT::i8:
1084      case MVT::i16:
1085      case MVT::i32:
1086      case MVT::i64: {
1087        TargetRegisterClass *RC = NULL;
1088        switch (ObjectVT) {
1089        default: break;
1090        case MVT::i8:
1091          RC = X86::GR8RegisterClass;
1092          Reg = GPR8ArgRegs[NumIntRegs];
1093          break;
1094        case MVT::i16:
1095          RC = X86::GR16RegisterClass;
1096          Reg = GPR16ArgRegs[NumIntRegs];
1097          break;
1098        case MVT::i32:
1099          RC = X86::GR32RegisterClass;
1100          Reg = GPR32ArgRegs[NumIntRegs];
1101          break;
1102        case MVT::i64:
1103          RC = X86::GR64RegisterClass;
1104          Reg = GPR64ArgRegs[NumIntRegs];
1105          break;
1106        }
1107        Reg = AddLiveIn(MF, Reg, RC);
1108        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
1109        break;
1110      }
1111      case MVT::f32:
1112      case MVT::f64:
1113      case MVT::v16i8:
1114      case MVT::v8i16:
1115      case MVT::v4i32:
1116      case MVT::v2i64:
1117      case MVT::v4f32:
1118      case MVT::v2f64: {
1119        TargetRegisterClass *RC= (ObjectVT == MVT::f32) ?
1120          X86::FR32RegisterClass : ((ObjectVT == MVT::f64) ?
1121                              X86::FR64RegisterClass : X86::VR128RegisterClass);
1122        Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], RC);
1123        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
1124        break;
1125      }
1126      }
1127      NumIntRegs += ObjIntRegs;
1128      NumXMMRegs += ObjXMMRegs;
1129    } else if (ObjSize) {
1130      // XMM arguments have to be aligned on 16-byte boundary.
1131      if (ObjSize == 16)
1132        ArgOffset = ((ArgOffset + 15) / 16) * 16;
1133      // Create the SelectionDAG nodes corresponding to a load from this
1134      // parameter.
1135      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1136      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1137      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
1138      ArgOffset += ArgIncrement;   // Move on to the next argument.
1139    }
1140
1141    ArgValues.push_back(ArgValue);
1142  }
1143
1144  // If the function takes variable number of arguments, make a frame index for
1145  // the start of the first vararg value... for expansion of llvm.va_start.
1146  if (isVarArg) {
1147    // For X86-64, if there are vararg parameters that are passed via
1148    // registers, then we must store them to their spots on the stack so they
1149    // may be loaded by deferencing the result of va_next.
1150    VarArgsGPOffset = NumIntRegs * 8;
1151    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1152    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
1153    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1154
1155    // Store the integer parameter registers.
1156    std::vector<SDOperand> MemOps;
1157    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1158    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1159                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1160    for (; NumIntRegs != 6; ++NumIntRegs) {
1161      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1162                                X86::GR64RegisterClass);
1163      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1164      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1165      MemOps.push_back(Store);
1166      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1167                        DAG.getConstant(8, getPointerTy()));
1168    }
1169
1170    // Now store the XMM (fp + vector) parameter registers.
1171    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1172                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1173    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1174      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1175                                X86::VR128RegisterClass);
1176      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1177      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1178      MemOps.push_back(Store);
1179      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1180                        DAG.getConstant(16, getPointerTy()));
1181    }
1182    if (!MemOps.empty())
1183        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1184                           &MemOps[0], MemOps.size());
1185  }
1186
1187  ArgValues.push_back(Root);
1188
1189  ReturnAddrIndex = 0;     // No return address slot generated yet.
1190  BytesToPopOnReturn = 0;  // Callee pops nothing.
1191  BytesCallerReserves = ArgOffset;
1192
1193  // Return the new list of results.
1194  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
1195                                     Op.Val->value_end());
1196  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
1197}
1198
1199SDOperand
1200X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG) {
1201  SDOperand Chain     = Op.getOperand(0);
1202  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1203  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1204  SDOperand Callee    = Op.getOperand(4);
1205  MVT::ValueType RetVT= Op.Val->getValueType(0);
1206  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1207
1208  // Count how many bytes are to be pushed on the stack.
1209  unsigned NumBytes = 0;
1210  unsigned NumIntRegs = 0;  // Int regs used for parameter passing.
1211  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1212
1213  static const unsigned GPR8ArgRegs[] = {
1214    X86::DIL, X86::SIL, X86::DL,  X86::CL,  X86::R8B, X86::R9B
1215  };
1216  static const unsigned GPR16ArgRegs[] = {
1217    X86::DI,  X86::SI,  X86::DX,  X86::CX,  X86::R8W, X86::R9W
1218  };
1219  static const unsigned GPR32ArgRegs[] = {
1220    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
1221  };
1222  static const unsigned GPR64ArgRegs[] = {
1223    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1224  };
1225  static const unsigned XMMArgRegs[] = {
1226    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1227    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1228  };
1229
1230  for (unsigned i = 0; i != NumOps; ++i) {
1231    SDOperand Arg = Op.getOperand(5+2*i);
1232    MVT::ValueType ArgVT = Arg.getValueType();
1233
1234    switch (ArgVT) {
1235    default: assert(0 && "Unknown value type!");
1236    case MVT::i8:
1237    case MVT::i16:
1238    case MVT::i32:
1239    case MVT::i64:
1240      if (NumIntRegs < 6)
1241        ++NumIntRegs;
1242      else
1243        NumBytes += 8;
1244      break;
1245    case MVT::f32:
1246    case MVT::f64:
1247    case MVT::v16i8:
1248    case MVT::v8i16:
1249    case MVT::v4i32:
1250    case MVT::v2i64:
1251    case MVT::v4f32:
1252    case MVT::v2f64:
1253      if (NumXMMRegs < 8)
1254        NumXMMRegs++;
1255      else if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
1256        NumBytes += 8;
1257      else {
1258        // XMM arguments have to be aligned on 16-byte boundary.
1259        NumBytes = ((NumBytes + 15) / 16) * 16;
1260        NumBytes += 16;
1261      }
1262      break;
1263    }
1264  }
1265
1266  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1267
1268  // Arguments go on the stack in reverse order, as specified by the ABI.
1269  unsigned ArgOffset = 0;
1270  NumIntRegs = 0;
1271  NumXMMRegs = 0;
1272  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1273  std::vector<SDOperand> MemOpChains;
1274  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1275  for (unsigned i = 0; i != NumOps; ++i) {
1276    SDOperand Arg = Op.getOperand(5+2*i);
1277    MVT::ValueType ArgVT = Arg.getValueType();
1278
1279    switch (ArgVT) {
1280    default: assert(0 && "Unexpected ValueType for argument!");
1281    case MVT::i8:
1282    case MVT::i16:
1283    case MVT::i32:
1284    case MVT::i64:
1285      if (NumIntRegs < 6) {
1286        unsigned Reg = 0;
1287        switch (ArgVT) {
1288        default: break;
1289        case MVT::i8:  Reg = GPR8ArgRegs[NumIntRegs];  break;
1290        case MVT::i16: Reg = GPR16ArgRegs[NumIntRegs]; break;
1291        case MVT::i32: Reg = GPR32ArgRegs[NumIntRegs]; break;
1292        case MVT::i64: Reg = GPR64ArgRegs[NumIntRegs]; break;
1293        }
1294        RegsToPass.push_back(std::make_pair(Reg, Arg));
1295        ++NumIntRegs;
1296      } else {
1297        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1298        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1299        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1300        ArgOffset += 8;
1301      }
1302      break;
1303    case MVT::f32:
1304    case MVT::f64:
1305    case MVT::v16i8:
1306    case MVT::v8i16:
1307    case MVT::v4i32:
1308    case MVT::v2i64:
1309    case MVT::v4f32:
1310    case MVT::v2f64:
1311      if (NumXMMRegs < 8) {
1312        RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
1313        NumXMMRegs++;
1314      } else {
1315        if (ArgVT != MVT::f32 && ArgVT != MVT::f64) {
1316          // XMM arguments have to be aligned on 16-byte boundary.
1317          ArgOffset = ((ArgOffset + 15) / 16) * 16;
1318        }
1319        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1320        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1321        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1322        if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
1323          ArgOffset += 8;
1324        else
1325          ArgOffset += 16;
1326      }
1327    }
1328  }
1329
1330  if (!MemOpChains.empty())
1331    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1332                        &MemOpChains[0], MemOpChains.size());
1333
1334  // Build a sequence of copy-to-reg nodes chained together with token chain
1335  // and flag operands which copy the outgoing args into registers.
1336  SDOperand InFlag;
1337  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1338    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1339                             InFlag);
1340    InFlag = Chain.getValue(1);
1341  }
1342
1343  if (isVarArg) {
1344    // From AMD64 ABI document:
1345    // For calls that may call functions that use varargs or stdargs
1346    // (prototype-less calls or calls to functions containing ellipsis (...) in
1347    // the declaration) %al is used as hidden argument to specify the number
1348    // of SSE registers used. The contents of %al do not need to match exactly
1349    // the number of registers, but must be an ubound on the number of SSE
1350    // registers used and is in the range 0 - 8 inclusive.
1351    Chain = DAG.getCopyToReg(Chain, X86::AL,
1352                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1353    InFlag = Chain.getValue(1);
1354  }
1355
1356  // If the callee is a GlobalAddress node (quite common, every direct call is)
1357  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1358  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1359    // We should use extra load for direct calls to dllimported functions in
1360    // non-JIT mode.
1361    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1362                                        getTargetMachine(), true))
1363      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1364  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1365    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1366
1367  // Returns a chain & a flag for retval copy to use.
1368  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1369  std::vector<SDOperand> Ops;
1370  Ops.push_back(Chain);
1371  Ops.push_back(Callee);
1372
1373  // Add argument registers to the end of the list so that they are known live
1374  // into the call.
1375  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1376    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1377                                  RegsToPass[i].second.getValueType()));
1378
1379  if (InFlag.Val)
1380    Ops.push_back(InFlag);
1381
1382  // FIXME: Do not generate X86ISD::TAILCALL for now.
1383  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1384                      NodeTys, &Ops[0], Ops.size());
1385  InFlag = Chain.getValue(1);
1386
1387  if (RetVT != MVT::Other)
1388    // Returns a flag for retval copy to use.
1389    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1390  else
1391    NodeTys = DAG.getVTList(MVT::Other);
1392  Ops.clear();
1393  Ops.push_back(Chain);
1394  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1395  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1396  Ops.push_back(InFlag);
1397  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1398  if (RetVT != MVT::Other)
1399    InFlag = Chain.getValue(1);
1400
1401  std::vector<SDOperand> ResultVals;
1402  switch (RetVT) {
1403  default: assert(0 && "Unknown value type to return!");
1404  case MVT::Other: break;
1405  case MVT::i8:
1406    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
1407    ResultVals.push_back(Chain.getValue(0));
1408    NodeTys = DAG.getVTList(MVT::i8, MVT::Other);
1409    break;
1410  case MVT::i16:
1411    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
1412    ResultVals.push_back(Chain.getValue(0));
1413    NodeTys = DAG.getVTList(MVT::i16, MVT::Other);
1414    break;
1415  case MVT::i32:
1416    Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1417    ResultVals.push_back(Chain.getValue(0));
1418    NodeTys = DAG.getVTList(MVT::i32, MVT::Other);
1419    break;
1420  case MVT::i64:
1421    if (Op.Val->getValueType(1) == MVT::i64) {
1422      // FIXME: __int128 support?
1423      Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1);
1424      ResultVals.push_back(Chain.getValue(0));
1425      Chain = DAG.getCopyFromReg(Chain, X86::RDX, MVT::i64,
1426                                 Chain.getValue(2)).getValue(1);
1427      ResultVals.push_back(Chain.getValue(0));
1428      NodeTys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
1429    } else {
1430      Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1);
1431      ResultVals.push_back(Chain.getValue(0));
1432      NodeTys = DAG.getVTList(MVT::i64, MVT::Other);
1433    }
1434    break;
1435  case MVT::f32:
1436  case MVT::f64:
1437  case MVT::v16i8:
1438  case MVT::v8i16:
1439  case MVT::v4i32:
1440  case MVT::v2i64:
1441  case MVT::v4f32:
1442  case MVT::v2f64:
1443    // FIXME: long double support?
1444    Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
1445    ResultVals.push_back(Chain.getValue(0));
1446    NodeTys = DAG.getVTList(RetVT, MVT::Other);
1447    break;
1448  }
1449
1450  // If the function returns void, just return the chain.
1451  if (ResultVals.empty())
1452    return Chain;
1453
1454  // Otherwise, merge everything together with a MERGE_VALUES node.
1455  ResultVals.push_back(Chain);
1456  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1457                              &ResultVals[0], ResultVals.size());
1458  return Res.getValue(Op.ResNo);
1459}
1460
1461//===----------------------------------------------------------------------===//
1462//                 Fast & FastCall Calling Convention implementation
1463//===----------------------------------------------------------------------===//
1464//
1465// The X86 'fast' calling convention passes up to two integer arguments in
1466// registers (an appropriate portion of EAX/EDX), passes arguments in C order,
1467// and requires that the callee pop its arguments off the stack (allowing proper
1468// tail calls), and has the same return value conventions as C calling convs.
1469//
1470// This calling convention always arranges for the callee pop value to be 8n+4
1471// bytes, which is needed for tail recursion elimination and stack alignment
1472// reasons.
1473//
1474// Note that this can be enhanced in the future to pass fp vals in registers
1475// (when we have a global fp allocator) and do other tricks.
1476//
1477//===----------------------------------------------------------------------===//
1478// The X86 'fastcall' calling convention passes up to two integer arguments in
1479// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1480// and requires that the callee pop its arguments off the stack (allowing proper
1481// tail calls), and has the same return value conventions as C calling convs.
1482//
1483// This calling convention always arranges for the callee pop value to be 8n+4
1484// bytes, which is needed for tail recursion elimination and stack alignment
1485// reasons.
1486
1487
1488SDOperand
1489X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG,
1490                                        bool isFastCall) {
1491  unsigned NumArgs = Op.Val->getNumValues()-1;
1492  MachineFunction &MF = DAG.getMachineFunction();
1493  MachineFrameInfo *MFI = MF.getFrameInfo();
1494  SDOperand Root = Op.getOperand(0);
1495  std::vector<SDOperand> ArgValues;
1496
1497  // Add DAG nodes to load the arguments...  On entry to a function the stack
1498  // frame looks like this:
1499  //
1500  // [ESP] -- return address
1501  // [ESP + 4] -- first nonreg argument (leftmost lexically)
1502  // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
1503  //    ...
1504  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
1505
1506  // Keep track of the number of integer regs passed so far.  This can be either
1507  // 0 (neither EAX/ECX or EDX used), 1 (EAX/ECX is used) or 2 (EAX/ECX and EDX
1508  // are both used).
1509  unsigned NumIntRegs = 0;
1510  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1511
1512  static const unsigned XMMArgRegs[] = {
1513    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1514  };
1515
1516  static const unsigned GPRArgRegs[][2][2] = {
1517    {{ X86::AL,  X86::DL },  { X86::CL,  X86::DL }},
1518    {{ X86::AX,  X86::DX },  { X86::CX,  X86::DX }},
1519    {{ X86::EAX, X86::EDX }, { X86::ECX,  X86::EDX }}
1520  };
1521
1522  static const TargetRegisterClass* GPRClasses[3] = {
1523    X86::GR8RegisterClass, X86::GR16RegisterClass, X86::GR32RegisterClass
1524  };
1525
1526  unsigned GPRInd = (isFastCall ? 1 : 0);
1527  for (unsigned i = 0; i < NumArgs; ++i) {
1528    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
1529    unsigned ArgIncrement = 4;
1530    unsigned ObjSize = 0;
1531    unsigned ObjXMMRegs = 0;
1532    unsigned ObjIntRegs = 0;
1533    unsigned Reg = 0;
1534    SDOperand ArgValue;
1535
1536    HowToPassCallArgument(ObjectVT,
1537                          true, // Use as much registers as possible
1538                          NumIntRegs, NumXMMRegs,
1539                          (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS),
1540                          ObjSize, ObjIntRegs, ObjXMMRegs,
1541                          !isFastCall);
1542
1543    if (ObjSize > 4)
1544      ArgIncrement = ObjSize;
1545
1546    if (ObjIntRegs || ObjXMMRegs) {
1547      switch (ObjectVT) {
1548      default: assert(0 && "Unhandled argument type!");
1549      case MVT::i8:
1550      case MVT::i16:
1551      case MVT::i32: {
1552        unsigned RegToUse = GPRArgRegs[ObjectVT-MVT::i8][GPRInd][NumIntRegs];
1553        Reg = AddLiveIn(MF, RegToUse, GPRClasses[ObjectVT-MVT::i8]);
1554        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
1555        break;
1556      }
1557      case MVT::v16i8:
1558      case MVT::v8i16:
1559      case MVT::v4i32:
1560      case MVT::v2i64:
1561      case MVT::v4f32:
1562      case MVT::v2f64: {
1563        assert(!isFastCall && "Unhandled argument type!");
1564        Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass);
1565        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
1566        break;
1567      }
1568      }
1569      NumIntRegs += ObjIntRegs;
1570      NumXMMRegs += ObjXMMRegs;
1571    }
1572    if (ObjSize) {
1573      // XMM arguments have to be aligned on 16-byte boundary.
1574      if (ObjSize == 16)
1575        ArgOffset = ((ArgOffset + 15) / 16) * 16;
1576      // Create the SelectionDAG nodes corresponding to a load from this
1577      // parameter.
1578      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1579      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1580      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
1581
1582      ArgOffset += ArgIncrement;   // Move on to the next argument.
1583    }
1584
1585    ArgValues.push_back(ArgValue);
1586  }
1587
1588  ArgValues.push_back(Root);
1589
1590  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1591  // arguments and the arguments after the retaddr has been pushed are aligned.
1592  if ((ArgOffset & 7) == 0)
1593    ArgOffset += 4;
1594
1595  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1596  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1597  ReturnAddrIndex = 0;             // No return address slot generated yet.
1598  BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments.
1599  BytesCallerReserves = 0;
1600
1601  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
1602
1603  // Finally, inform the code generator which regs we return values in.
1604  switch (getValueType(MF.getFunction()->getReturnType())) {
1605  default: assert(0 && "Unknown type!");
1606  case MVT::isVoid: break;
1607  case MVT::i1:
1608  case MVT::i8:
1609  case MVT::i16:
1610  case MVT::i32:
1611    MF.addLiveOut(X86::EAX);
1612    break;
1613  case MVT::i64:
1614    MF.addLiveOut(X86::EAX);
1615    MF.addLiveOut(X86::EDX);
1616    break;
1617  case MVT::f32:
1618  case MVT::f64:
1619    MF.addLiveOut(X86::ST0);
1620    break;
1621  case MVT::v16i8:
1622  case MVT::v8i16:
1623  case MVT::v4i32:
1624  case MVT::v2i64:
1625  case MVT::v4f32:
1626  case MVT::v2f64:
1627    assert(!isFastCall && "Unknown result type");
1628    MF.addLiveOut(X86::XMM0);
1629    break;
1630  }
1631
1632  // Return the new list of results.
1633  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
1634                                     Op.Val->value_end());
1635  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
1636}
1637
1638SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1639                                               bool isFastCall) {
1640  SDOperand Chain     = Op.getOperand(0);
1641  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1642  SDOperand Callee    = Op.getOperand(4);
1643  MVT::ValueType RetVT= Op.Val->getValueType(0);
1644  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1645
1646  // Count how many bytes are to be pushed on the stack.
1647  unsigned NumBytes = 0;
1648
1649  // Keep track of the number of integer regs passed so far.  This can be either
1650  // 0 (neither EAX/ECX or EDX used), 1 (EAX/ECX is used) or 2 (EAX/ECX and EDX
1651  // are both used).
1652  unsigned NumIntRegs = 0;
1653  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1654
1655  static const unsigned GPRArgRegs[][2][2] = {
1656    {{ X86::AL,  X86::DL },  { X86::CL,  X86::DL }},
1657    {{ X86::AX,  X86::DX },  { X86::CX,  X86::DX }},
1658    {{ X86::EAX, X86::EDX }, { X86::ECX,  X86::EDX }}
1659  };
1660  static const unsigned XMMArgRegs[] = {
1661    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1662  };
1663
1664  unsigned GPRInd = (isFastCall ? 1 : 0);
1665  for (unsigned i = 0; i != NumOps; ++i) {
1666    SDOperand Arg = Op.getOperand(5+2*i);
1667
1668    switch (Arg.getValueType()) {
1669    default: assert(0 && "Unknown value type!");
1670    case MVT::i8:
1671    case MVT::i16:
1672    case MVT::i32: {
1673     unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
1674     if (NumIntRegs < MaxNumIntRegs) {
1675       ++NumIntRegs;
1676       break;
1677     }
1678     } // Fall through
1679    case MVT::f32:
1680      NumBytes += 4;
1681      break;
1682    case MVT::f64:
1683      NumBytes += 8;
1684      break;
1685    case MVT::v16i8:
1686    case MVT::v8i16:
1687    case MVT::v4i32:
1688    case MVT::v2i64:
1689    case MVT::v4f32:
1690    case MVT::v2f64:
1691      assert(!isFastCall && "Unknown value type!");
1692      if (NumXMMRegs < 4)
1693        NumXMMRegs++;
1694      else {
1695        // XMM arguments have to be aligned on 16-byte boundary.
1696        NumBytes = ((NumBytes + 15) / 16) * 16;
1697        NumBytes += 16;
1698      }
1699      break;
1700    }
1701  }
1702
1703  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1704  // arguments and the arguments after the retaddr has been pushed are aligned.
1705  if ((NumBytes & 7) == 0)
1706    NumBytes += 4;
1707
1708  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1709
1710  // Arguments go on the stack in reverse order, as specified by the ABI.
1711  unsigned ArgOffset = 0;
1712  NumIntRegs = 0;
1713  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1714  std::vector<SDOperand> MemOpChains;
1715  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1716  for (unsigned i = 0; i != NumOps; ++i) {
1717    SDOperand Arg = Op.getOperand(5+2*i);
1718
1719    switch (Arg.getValueType()) {
1720    default: assert(0 && "Unexpected ValueType for argument!");
1721    case MVT::i8:
1722    case MVT::i16:
1723    case MVT::i32: {
1724     unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
1725     if (NumIntRegs < MaxNumIntRegs) {
1726       unsigned RegToUse =
1727         GPRArgRegs[Arg.getValueType()-MVT::i8][GPRInd][NumIntRegs];
1728       RegsToPass.push_back(std::make_pair(RegToUse, Arg));
1729       ++NumIntRegs;
1730       break;
1731     }
1732    } // Fall through
1733    case MVT::f32: {
1734      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1735      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1736      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1737      ArgOffset += 4;
1738      break;
1739    }
1740    case MVT::f64: {
1741      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1742      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1743      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1744      ArgOffset += 8;
1745      break;
1746    }
1747    case MVT::v16i8:
1748    case MVT::v8i16:
1749    case MVT::v4i32:
1750    case MVT::v2i64:
1751    case MVT::v4f32:
1752    case MVT::v2f64:
1753      assert(!isFastCall && "Unexpected ValueType for argument!");
1754      if (NumXMMRegs < 4) {
1755        RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
1756        NumXMMRegs++;
1757      } else {
1758        // XMM arguments have to be aligned on 16-byte boundary.
1759        ArgOffset = ((ArgOffset + 15) / 16) * 16;
1760        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1761        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1762        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1763        ArgOffset += 16;
1764      }
1765      break;
1766    }
1767  }
1768
1769  if (!MemOpChains.empty())
1770    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1771                        &MemOpChains[0], MemOpChains.size());
1772
1773  // Build a sequence of copy-to-reg nodes chained together with token chain
1774  // and flag operands which copy the outgoing args into registers.
1775  SDOperand InFlag;
1776  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1777    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1778                             InFlag);
1779    InFlag = Chain.getValue(1);
1780  }
1781
1782  // If the callee is a GlobalAddress node (quite common, every direct call is)
1783  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1784  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1785    // We should use extra load for direct calls to dllimported functions in
1786    // non-JIT mode.
1787    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1788                                        getTargetMachine(), true))
1789      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1790  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1791    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1792
1793  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1794  // GOT pointer.
1795  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1796      Subtarget->isPICStyleGOT()) {
1797    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1798                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1799                             InFlag);
1800    InFlag = Chain.getValue(1);
1801  }
1802
1803  // Returns a chain & a flag for retval copy to use.
1804  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1805  std::vector<SDOperand> Ops;
1806  Ops.push_back(Chain);
1807  Ops.push_back(Callee);
1808
1809  // Add argument registers to the end of the list so that they are known live
1810  // into the call.
1811  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1812    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1813                                  RegsToPass[i].second.getValueType()));
1814
1815  // Add an implicit use GOT pointer in EBX.
1816  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1817      Subtarget->isPICStyleGOT())
1818    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1819
1820  if (InFlag.Val)
1821    Ops.push_back(InFlag);
1822
1823  // FIXME: Do not generate X86ISD::TAILCALL for now.
1824  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1825                      NodeTys, &Ops[0], Ops.size());
1826  InFlag = Chain.getValue(1);
1827
1828  if (RetVT != MVT::Other)
1829    // Returns a flag for retval copy to use.
1830    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1831  else
1832    NodeTys = DAG.getVTList(MVT::Other);
1833  Ops.clear();
1834  Ops.push_back(Chain);
1835  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1836  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1837  Ops.push_back(InFlag);
1838  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1839  if (RetVT != MVT::Other)
1840    InFlag = Chain.getValue(1);
1841
1842  std::vector<SDOperand> ResultVals;
1843  switch (RetVT) {
1844  default: assert(0 && "Unknown value type to return!");
1845  case MVT::Other: break;
1846  case MVT::i8:
1847    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
1848    ResultVals.push_back(Chain.getValue(0));
1849    NodeTys = DAG.getVTList(MVT::i8, MVT::Other);
1850    break;
1851  case MVT::i16:
1852    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
1853    ResultVals.push_back(Chain.getValue(0));
1854    NodeTys = DAG.getVTList(MVT::i16, MVT::Other);
1855    break;
1856  case MVT::i32:
1857    if (Op.Val->getValueType(1) == MVT::i32) {
1858      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1859      ResultVals.push_back(Chain.getValue(0));
1860      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
1861                                 Chain.getValue(2)).getValue(1);
1862      ResultVals.push_back(Chain.getValue(0));
1863      NodeTys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
1864    } else {
1865      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1866      ResultVals.push_back(Chain.getValue(0));
1867      NodeTys = DAG.getVTList(MVT::i32, MVT::Other);
1868    }
1869    break;
1870  case MVT::v16i8:
1871  case MVT::v8i16:
1872  case MVT::v4i32:
1873  case MVT::v2i64:
1874  case MVT::v4f32:
1875  case MVT::v2f64:
1876   if (isFastCall) {
1877     assert(0 && "Unknown value type to return!");
1878   } else {
1879     Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
1880     ResultVals.push_back(Chain.getValue(0));
1881     NodeTys = DAG.getVTList(RetVT, MVT::Other);
1882   }
1883   break;
1884  case MVT::f32:
1885  case MVT::f64: {
1886    std::vector<MVT::ValueType> Tys;
1887    Tys.push_back(MVT::f64);
1888    Tys.push_back(MVT::Other);
1889    Tys.push_back(MVT::Flag);
1890    std::vector<SDOperand> Ops;
1891    Ops.push_back(Chain);
1892    Ops.push_back(InFlag);
1893    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
1894                                   &Ops[0], Ops.size());
1895    Chain  = RetVal.getValue(1);
1896    InFlag = RetVal.getValue(2);
1897    if (X86ScalarSSE) {
1898      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
1899      // shouldn't be necessary except that RFP cannot be live across
1900      // multiple blocks. When stackifier is fixed, they can be uncoupled.
1901      MachineFunction &MF = DAG.getMachineFunction();
1902      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
1903      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
1904      Tys.clear();
1905      Tys.push_back(MVT::Other);
1906      Ops.clear();
1907      Ops.push_back(Chain);
1908      Ops.push_back(RetVal);
1909      Ops.push_back(StackSlot);
1910      Ops.push_back(DAG.getValueType(RetVT));
1911      Ops.push_back(InFlag);
1912      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
1913      RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
1914      Chain = RetVal.getValue(1);
1915    }
1916
1917    if (RetVT == MVT::f32 && !X86ScalarSSE)
1918      // FIXME: we would really like to remember that this FP_ROUND
1919      // operation is okay to eliminate if we allow excess FP precision.
1920      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
1921    ResultVals.push_back(RetVal);
1922    NodeTys = DAG.getVTList(RetVT, MVT::Other);
1923
1924    break;
1925  }
1926  }
1927
1928
1929  // If the function returns void, just return the chain.
1930  if (ResultVals.empty())
1931    return Chain;
1932
1933  // Otherwise, merge everything together with a MERGE_VALUES node.
1934  ResultVals.push_back(Chain);
1935  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1936                              &ResultVals[0], ResultVals.size());
1937  return Res.getValue(Op.ResNo);
1938}
1939
1940SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1941  if (ReturnAddrIndex == 0) {
1942    // Set up a frame object for the return address.
1943    MachineFunction &MF = DAG.getMachineFunction();
1944    if (Subtarget->is64Bit())
1945      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1946    else
1947      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1948  }
1949
1950  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1951}
1952
1953
1954
1955/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1956/// specific condition code. It returns a false if it cannot do a direct
1957/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1958/// needed.
1959static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1960                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1961                           SelectionDAG &DAG) {
1962  X86CC = X86::COND_INVALID;
1963  if (!isFP) {
1964    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1965      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1966        // X > -1   -> X == 0, jump !sign.
1967        RHS = DAG.getConstant(0, RHS.getValueType());
1968        X86CC = X86::COND_NS;
1969        return true;
1970      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1971        // X < 0   -> X == 0, jump on sign.
1972        X86CC = X86::COND_S;
1973        return true;
1974      }
1975    }
1976
1977    switch (SetCCOpcode) {
1978    default: break;
1979    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1980    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1981    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1982    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1983    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1984    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1985    case ISD::SETULT: X86CC = X86::COND_B;  break;
1986    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1987    case ISD::SETULE: X86CC = X86::COND_BE; break;
1988    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1989    }
1990  } else {
1991    // On a floating point condition, the flags are set as follows:
1992    // ZF  PF  CF   op
1993    //  0 | 0 | 0 | X > Y
1994    //  0 | 0 | 1 | X < Y
1995    //  1 | 0 | 0 | X == Y
1996    //  1 | 1 | 1 | unordered
1997    bool Flip = false;
1998    switch (SetCCOpcode) {
1999    default: break;
2000    case ISD::SETUEQ:
2001    case ISD::SETEQ: X86CC = X86::COND_E;  break;
2002    case ISD::SETOLT: Flip = true; // Fallthrough
2003    case ISD::SETOGT:
2004    case ISD::SETGT: X86CC = X86::COND_A;  break;
2005    case ISD::SETOLE: Flip = true; // Fallthrough
2006    case ISD::SETOGE:
2007    case ISD::SETGE: X86CC = X86::COND_AE; break;
2008    case ISD::SETUGT: Flip = true; // Fallthrough
2009    case ISD::SETULT:
2010    case ISD::SETLT: X86CC = X86::COND_B;  break;
2011    case ISD::SETUGE: Flip = true; // Fallthrough
2012    case ISD::SETULE:
2013    case ISD::SETLE: X86CC = X86::COND_BE; break;
2014    case ISD::SETONE:
2015    case ISD::SETNE: X86CC = X86::COND_NE; break;
2016    case ISD::SETUO: X86CC = X86::COND_P;  break;
2017    case ISD::SETO:  X86CC = X86::COND_NP; break;
2018    }
2019    if (Flip)
2020      std::swap(LHS, RHS);
2021  }
2022
2023  return X86CC != X86::COND_INVALID;
2024}
2025
2026/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2027/// code. Current x86 isa includes the following FP cmov instructions:
2028/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2029static bool hasFPCMov(unsigned X86CC) {
2030  switch (X86CC) {
2031  default:
2032    return false;
2033  case X86::COND_B:
2034  case X86::COND_BE:
2035  case X86::COND_E:
2036  case X86::COND_P:
2037  case X86::COND_A:
2038  case X86::COND_AE:
2039  case X86::COND_NE:
2040  case X86::COND_NP:
2041    return true;
2042  }
2043}
2044
2045/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2046/// true if Op is undef or if its value falls within the specified range (L, H].
2047static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2048  if (Op.getOpcode() == ISD::UNDEF)
2049    return true;
2050
2051  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2052  return (Val >= Low && Val < Hi);
2053}
2054
2055/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2056/// true if Op is undef or if its value equal to the specified value.
2057static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2058  if (Op.getOpcode() == ISD::UNDEF)
2059    return true;
2060  return cast<ConstantSDNode>(Op)->getValue() == Val;
2061}
2062
2063/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2064/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2065bool X86::isPSHUFDMask(SDNode *N) {
2066  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2067
2068  if (N->getNumOperands() != 4)
2069    return false;
2070
2071  // Check if the value doesn't reference the second vector.
2072  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2073    SDOperand Arg = N->getOperand(i);
2074    if (Arg.getOpcode() == ISD::UNDEF) continue;
2075    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2076    if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
2077      return false;
2078  }
2079
2080  return true;
2081}
2082
2083/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2084/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2085bool X86::isPSHUFHWMask(SDNode *N) {
2086  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2087
2088  if (N->getNumOperands() != 8)
2089    return false;
2090
2091  // Lower quadword copied in order.
2092  for (unsigned i = 0; i != 4; ++i) {
2093    SDOperand Arg = N->getOperand(i);
2094    if (Arg.getOpcode() == ISD::UNDEF) continue;
2095    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2096    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2097      return false;
2098  }
2099
2100  // Upper quadword shuffled.
2101  for (unsigned i = 4; i != 8; ++i) {
2102    SDOperand Arg = N->getOperand(i);
2103    if (Arg.getOpcode() == ISD::UNDEF) continue;
2104    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2105    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2106    if (Val < 4 || Val > 7)
2107      return false;
2108  }
2109
2110  return true;
2111}
2112
2113/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2114/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2115bool X86::isPSHUFLWMask(SDNode *N) {
2116  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2117
2118  if (N->getNumOperands() != 8)
2119    return false;
2120
2121  // Upper quadword copied in order.
2122  for (unsigned i = 4; i != 8; ++i)
2123    if (!isUndefOrEqual(N->getOperand(i), i))
2124      return false;
2125
2126  // Lower quadword shuffled.
2127  for (unsigned i = 0; i != 4; ++i)
2128    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2129      return false;
2130
2131  return true;
2132}
2133
2134/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2135/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2136static bool isSHUFPMask(std::vector<SDOperand> &N) {
2137  unsigned NumElems = N.size();
2138  if (NumElems != 2 && NumElems != 4) return false;
2139
2140  unsigned Half = NumElems / 2;
2141  for (unsigned i = 0; i < Half; ++i)
2142    if (!isUndefOrInRange(N[i], 0, NumElems))
2143      return false;
2144  for (unsigned i = Half; i < NumElems; ++i)
2145    if (!isUndefOrInRange(N[i], NumElems, NumElems*2))
2146      return false;
2147
2148  return true;
2149}
2150
2151bool X86::isSHUFPMask(SDNode *N) {
2152  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2153  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2154  return ::isSHUFPMask(Ops);
2155}
2156
2157/// isCommutedSHUFP - Returns true if the shuffle mask is except
2158/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2159/// half elements to come from vector 1 (which would equal the dest.) and
2160/// the upper half to come from vector 2.
2161static bool isCommutedSHUFP(std::vector<SDOperand> &Ops) {
2162  unsigned NumElems = Ops.size();
2163  if (NumElems != 2 && NumElems != 4) return false;
2164
2165  unsigned Half = NumElems / 2;
2166  for (unsigned i = 0; i < Half; ++i)
2167    if (!isUndefOrInRange(Ops[i], NumElems, NumElems*2))
2168      return false;
2169  for (unsigned i = Half; i < NumElems; ++i)
2170    if (!isUndefOrInRange(Ops[i], 0, NumElems))
2171      return false;
2172  return true;
2173}
2174
2175static bool isCommutedSHUFP(SDNode *N) {
2176  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2177  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2178  return isCommutedSHUFP(Ops);
2179}
2180
2181/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2182/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2183bool X86::isMOVHLPSMask(SDNode *N) {
2184  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2185
2186  if (N->getNumOperands() != 4)
2187    return false;
2188
2189  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2190  return isUndefOrEqual(N->getOperand(0), 6) &&
2191         isUndefOrEqual(N->getOperand(1), 7) &&
2192         isUndefOrEqual(N->getOperand(2), 2) &&
2193         isUndefOrEqual(N->getOperand(3), 3);
2194}
2195
2196/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2197/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2198/// <2, 3, 2, 3>
2199bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2200  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2201
2202  if (N->getNumOperands() != 4)
2203    return false;
2204
2205  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2206  return isUndefOrEqual(N->getOperand(0), 2) &&
2207         isUndefOrEqual(N->getOperand(1), 3) &&
2208         isUndefOrEqual(N->getOperand(2), 2) &&
2209         isUndefOrEqual(N->getOperand(3), 3);
2210}
2211
2212/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2213/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2214bool X86::isMOVLPMask(SDNode *N) {
2215  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2216
2217  unsigned NumElems = N->getNumOperands();
2218  if (NumElems != 2 && NumElems != 4)
2219    return false;
2220
2221  for (unsigned i = 0; i < NumElems/2; ++i)
2222    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2223      return false;
2224
2225  for (unsigned i = NumElems/2; i < NumElems; ++i)
2226    if (!isUndefOrEqual(N->getOperand(i), i))
2227      return false;
2228
2229  return true;
2230}
2231
2232/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2233/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2234/// and MOVLHPS.
2235bool X86::isMOVHPMask(SDNode *N) {
2236  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2237
2238  unsigned NumElems = N->getNumOperands();
2239  if (NumElems != 2 && NumElems != 4)
2240    return false;
2241
2242  for (unsigned i = 0; i < NumElems/2; ++i)
2243    if (!isUndefOrEqual(N->getOperand(i), i))
2244      return false;
2245
2246  for (unsigned i = 0; i < NumElems/2; ++i) {
2247    SDOperand Arg = N->getOperand(i + NumElems/2);
2248    if (!isUndefOrEqual(Arg, i + NumElems))
2249      return false;
2250  }
2251
2252  return true;
2253}
2254
2255/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2256/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2257bool static isUNPCKLMask(std::vector<SDOperand> &N, bool V2IsSplat = false) {
2258  unsigned NumElems = N.size();
2259  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2260    return false;
2261
2262  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2263    SDOperand BitI  = N[i];
2264    SDOperand BitI1 = N[i+1];
2265    if (!isUndefOrEqual(BitI, j))
2266      return false;
2267    if (V2IsSplat) {
2268      if (isUndefOrEqual(BitI1, NumElems))
2269        return false;
2270    } else {
2271      if (!isUndefOrEqual(BitI1, j + NumElems))
2272        return false;
2273    }
2274  }
2275
2276  return true;
2277}
2278
2279bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2280  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2281  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2282  return ::isUNPCKLMask(Ops, V2IsSplat);
2283}
2284
2285/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2286/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2287bool static isUNPCKHMask(std::vector<SDOperand> &N, bool V2IsSplat = false) {
2288  unsigned NumElems = N.size();
2289  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2290    return false;
2291
2292  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2293    SDOperand BitI  = N[i];
2294    SDOperand BitI1 = N[i+1];
2295    if (!isUndefOrEqual(BitI, j + NumElems/2))
2296      return false;
2297    if (V2IsSplat) {
2298      if (isUndefOrEqual(BitI1, NumElems))
2299        return false;
2300    } else {
2301      if (!isUndefOrEqual(BitI1, j + NumElems/2 + NumElems))
2302        return false;
2303    }
2304  }
2305
2306  return true;
2307}
2308
2309bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2310  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2311  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2312  return ::isUNPCKHMask(Ops, V2IsSplat);
2313}
2314
2315/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2316/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2317/// <0, 0, 1, 1>
2318bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2319  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2320
2321  unsigned NumElems = N->getNumOperands();
2322  if (NumElems != 4 && NumElems != 8 && NumElems != 16)
2323    return false;
2324
2325  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2326    SDOperand BitI  = N->getOperand(i);
2327    SDOperand BitI1 = N->getOperand(i+1);
2328
2329    if (!isUndefOrEqual(BitI, j))
2330      return false;
2331    if (!isUndefOrEqual(BitI1, j))
2332      return false;
2333  }
2334
2335  return true;
2336}
2337
2338/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2339/// specifies a shuffle of elements that is suitable for input to MOVSS,
2340/// MOVSD, and MOVD, i.e. setting the lowest element.
2341static bool isMOVLMask(std::vector<SDOperand> &N) {
2342  unsigned NumElems = N.size();
2343  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2344    return false;
2345
2346  if (!isUndefOrEqual(N[0], NumElems))
2347    return false;
2348
2349  for (unsigned i = 1; i < NumElems; ++i) {
2350    SDOperand Arg = N[i];
2351    if (!isUndefOrEqual(Arg, i))
2352      return false;
2353  }
2354
2355  return true;
2356}
2357
2358bool X86::isMOVLMask(SDNode *N) {
2359  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2360  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2361  return ::isMOVLMask(Ops);
2362}
2363
2364/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2365/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2366/// element of vector 2 and the other elements to come from vector 1 in order.
2367static bool isCommutedMOVL(std::vector<SDOperand> &Ops, bool V2IsSplat = false,
2368                           bool V2IsUndef = false) {
2369  unsigned NumElems = Ops.size();
2370  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2371    return false;
2372
2373  if (!isUndefOrEqual(Ops[0], 0))
2374    return false;
2375
2376  for (unsigned i = 1; i < NumElems; ++i) {
2377    SDOperand Arg = Ops[i];
2378    if (!(isUndefOrEqual(Arg, i+NumElems) ||
2379          (V2IsUndef && isUndefOrInRange(Arg, NumElems, NumElems*2)) ||
2380          (V2IsSplat && isUndefOrEqual(Arg, NumElems))))
2381      return false;
2382  }
2383
2384  return true;
2385}
2386
2387static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2388                           bool V2IsUndef = false) {
2389  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2390  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2391  return isCommutedMOVL(Ops, V2IsSplat, V2IsUndef);
2392}
2393
2394/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2395/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2396bool X86::isMOVSHDUPMask(SDNode *N) {
2397  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2398
2399  if (N->getNumOperands() != 4)
2400    return false;
2401
2402  // Expect 1, 1, 3, 3
2403  for (unsigned i = 0; i < 2; ++i) {
2404    SDOperand Arg = N->getOperand(i);
2405    if (Arg.getOpcode() == ISD::UNDEF) continue;
2406    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2407    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2408    if (Val != 1) return false;
2409  }
2410
2411  bool HasHi = false;
2412  for (unsigned i = 2; i < 4; ++i) {
2413    SDOperand Arg = N->getOperand(i);
2414    if (Arg.getOpcode() == ISD::UNDEF) continue;
2415    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2416    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2417    if (Val != 3) return false;
2418    HasHi = true;
2419  }
2420
2421  // Don't use movshdup if it can be done with a shufps.
2422  return HasHi;
2423}
2424
2425/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2426/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2427bool X86::isMOVSLDUPMask(SDNode *N) {
2428  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2429
2430  if (N->getNumOperands() != 4)
2431    return false;
2432
2433  // Expect 0, 0, 2, 2
2434  for (unsigned i = 0; i < 2; ++i) {
2435    SDOperand Arg = N->getOperand(i);
2436    if (Arg.getOpcode() == ISD::UNDEF) continue;
2437    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2438    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2439    if (Val != 0) return false;
2440  }
2441
2442  bool HasHi = false;
2443  for (unsigned i = 2; i < 4; ++i) {
2444    SDOperand Arg = N->getOperand(i);
2445    if (Arg.getOpcode() == ISD::UNDEF) continue;
2446    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2447    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2448    if (Val != 2) return false;
2449    HasHi = true;
2450  }
2451
2452  // Don't use movshdup if it can be done with a shufps.
2453  return HasHi;
2454}
2455
2456/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2457/// a splat of a single element.
2458static bool isSplatMask(SDNode *N) {
2459  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2460
2461  // This is a splat operation if each element of the permute is the same, and
2462  // if the value doesn't reference the second vector.
2463  unsigned NumElems = N->getNumOperands();
2464  SDOperand ElementBase;
2465  unsigned i = 0;
2466  for (; i != NumElems; ++i) {
2467    SDOperand Elt = N->getOperand(i);
2468    if (isa<ConstantSDNode>(Elt)) {
2469      ElementBase = Elt;
2470      break;
2471    }
2472  }
2473
2474  if (!ElementBase.Val)
2475    return false;
2476
2477  for (; i != NumElems; ++i) {
2478    SDOperand Arg = N->getOperand(i);
2479    if (Arg.getOpcode() == ISD::UNDEF) continue;
2480    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2481    if (Arg != ElementBase) return false;
2482  }
2483
2484  // Make sure it is a splat of the first vector operand.
2485  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2486}
2487
2488/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2489/// a splat of a single element and it's a 2 or 4 element mask.
2490bool X86::isSplatMask(SDNode *N) {
2491  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2492
2493  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2494  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2495    return false;
2496  return ::isSplatMask(N);
2497}
2498
2499/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2500/// specifies a splat of zero element.
2501bool X86::isSplatLoMask(SDNode *N) {
2502  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2503
2504  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2505    if (!isUndefOrEqual(N->getOperand(i), 0))
2506      return false;
2507  return true;
2508}
2509
2510/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2511/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2512/// instructions.
2513unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2514  unsigned NumOperands = N->getNumOperands();
2515  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2516  unsigned Mask = 0;
2517  for (unsigned i = 0; i < NumOperands; ++i) {
2518    unsigned Val = 0;
2519    SDOperand Arg = N->getOperand(NumOperands-i-1);
2520    if (Arg.getOpcode() != ISD::UNDEF)
2521      Val = cast<ConstantSDNode>(Arg)->getValue();
2522    if (Val >= NumOperands) Val -= NumOperands;
2523    Mask |= Val;
2524    if (i != NumOperands - 1)
2525      Mask <<= Shift;
2526  }
2527
2528  return Mask;
2529}
2530
2531/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2532/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2533/// instructions.
2534unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2535  unsigned Mask = 0;
2536  // 8 nodes, but we only care about the last 4.
2537  for (unsigned i = 7; i >= 4; --i) {
2538    unsigned Val = 0;
2539    SDOperand Arg = N->getOperand(i);
2540    if (Arg.getOpcode() != ISD::UNDEF)
2541      Val = cast<ConstantSDNode>(Arg)->getValue();
2542    Mask |= (Val - 4);
2543    if (i != 4)
2544      Mask <<= 2;
2545  }
2546
2547  return Mask;
2548}
2549
2550/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2551/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2552/// instructions.
2553unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2554  unsigned Mask = 0;
2555  // 8 nodes, but we only care about the first 4.
2556  for (int i = 3; i >= 0; --i) {
2557    unsigned Val = 0;
2558    SDOperand Arg = N->getOperand(i);
2559    if (Arg.getOpcode() != ISD::UNDEF)
2560      Val = cast<ConstantSDNode>(Arg)->getValue();
2561    Mask |= Val;
2562    if (i != 0)
2563      Mask <<= 2;
2564  }
2565
2566  return Mask;
2567}
2568
2569/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2570/// specifies a 8 element shuffle that can be broken into a pair of
2571/// PSHUFHW and PSHUFLW.
2572static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2573  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2574
2575  if (N->getNumOperands() != 8)
2576    return false;
2577
2578  // Lower quadword shuffled.
2579  for (unsigned i = 0; i != 4; ++i) {
2580    SDOperand Arg = N->getOperand(i);
2581    if (Arg.getOpcode() == ISD::UNDEF) continue;
2582    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2583    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2584    if (Val > 4)
2585      return false;
2586  }
2587
2588  // Upper quadword shuffled.
2589  for (unsigned i = 4; i != 8; ++i) {
2590    SDOperand Arg = N->getOperand(i);
2591    if (Arg.getOpcode() == ISD::UNDEF) continue;
2592    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2593    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2594    if (Val < 4 || Val > 7)
2595      return false;
2596  }
2597
2598  return true;
2599}
2600
2601/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2602/// values in ther permute mask.
2603static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2604                                      SDOperand &V2, SDOperand &Mask,
2605                                      SelectionDAG &DAG) {
2606  MVT::ValueType VT = Op.getValueType();
2607  MVT::ValueType MaskVT = Mask.getValueType();
2608  MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT);
2609  unsigned NumElems = Mask.getNumOperands();
2610  std::vector<SDOperand> MaskVec;
2611
2612  for (unsigned i = 0; i != NumElems; ++i) {
2613    SDOperand Arg = Mask.getOperand(i);
2614    if (Arg.getOpcode() == ISD::UNDEF) {
2615      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2616      continue;
2617    }
2618    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2619    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2620    if (Val < NumElems)
2621      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2622    else
2623      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2624  }
2625
2626  std::swap(V1, V2);
2627  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2628  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2629}
2630
2631/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2632/// match movhlps. The lower half elements should come from upper half of
2633/// V1 (and in order), and the upper half elements should come from the upper
2634/// half of V2 (and in order).
2635static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2636  unsigned NumElems = Mask->getNumOperands();
2637  if (NumElems != 4)
2638    return false;
2639  for (unsigned i = 0, e = 2; i != e; ++i)
2640    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2641      return false;
2642  for (unsigned i = 2; i != 4; ++i)
2643    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2644      return false;
2645  return true;
2646}
2647
2648/// isScalarLoadToVector - Returns true if the node is a scalar load that
2649/// is promoted to a vector.
2650static inline bool isScalarLoadToVector(SDNode *N) {
2651  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2652    N = N->getOperand(0).Val;
2653    return ISD::isNON_EXTLoad(N);
2654  }
2655  return false;
2656}
2657
2658/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2659/// match movlp{s|d}. The lower half elements should come from lower half of
2660/// V1 (and in order), and the upper half elements should come from the upper
2661/// half of V2 (and in order). And since V1 will become the source of the
2662/// MOVLP, it must be either a vector load or a scalar load to vector.
2663static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2664  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2665    return false;
2666  // Is V2 is a vector load, don't do this transformation. We will try to use
2667  // load folding shufps op.
2668  if (ISD::isNON_EXTLoad(V2))
2669    return false;
2670
2671  unsigned NumElems = Mask->getNumOperands();
2672  if (NumElems != 2 && NumElems != 4)
2673    return false;
2674  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2675    if (!isUndefOrEqual(Mask->getOperand(i), i))
2676      return false;
2677  for (unsigned i = NumElems/2; i != NumElems; ++i)
2678    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2679      return false;
2680  return true;
2681}
2682
2683/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2684/// all the same.
2685static bool isSplatVector(SDNode *N) {
2686  if (N->getOpcode() != ISD::BUILD_VECTOR)
2687    return false;
2688
2689  SDOperand SplatValue = N->getOperand(0);
2690  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2691    if (N->getOperand(i) != SplatValue)
2692      return false;
2693  return true;
2694}
2695
2696/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2697/// to an undef.
2698static bool isUndefShuffle(SDNode *N) {
2699  if (N->getOpcode() != ISD::BUILD_VECTOR)
2700    return false;
2701
2702  SDOperand V1 = N->getOperand(0);
2703  SDOperand V2 = N->getOperand(1);
2704  SDOperand Mask = N->getOperand(2);
2705  unsigned NumElems = Mask.getNumOperands();
2706  for (unsigned i = 0; i != NumElems; ++i) {
2707    SDOperand Arg = Mask.getOperand(i);
2708    if (Arg.getOpcode() != ISD::UNDEF) {
2709      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2710      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2711        return false;
2712      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2713        return false;
2714    }
2715  }
2716  return true;
2717}
2718
2719/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2720/// that point to V2 points to its first element.
2721static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2722  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2723
2724  bool Changed = false;
2725  std::vector<SDOperand> MaskVec;
2726  unsigned NumElems = Mask.getNumOperands();
2727  for (unsigned i = 0; i != NumElems; ++i) {
2728    SDOperand Arg = Mask.getOperand(i);
2729    if (Arg.getOpcode() != ISD::UNDEF) {
2730      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2731      if (Val > NumElems) {
2732        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2733        Changed = true;
2734      }
2735    }
2736    MaskVec.push_back(Arg);
2737  }
2738
2739  if (Changed)
2740    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2741                       &MaskVec[0], MaskVec.size());
2742  return Mask;
2743}
2744
2745/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2746/// operation of specified width.
2747static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2748  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2749  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2750
2751  std::vector<SDOperand> MaskVec;
2752  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2753  for (unsigned i = 1; i != NumElems; ++i)
2754    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2755  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2756}
2757
2758/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2759/// of specified width.
2760static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2761  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2762  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2763  std::vector<SDOperand> MaskVec;
2764  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2765    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2766    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2767  }
2768  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2769}
2770
2771/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2772/// of specified width.
2773static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2774  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2775  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2776  unsigned Half = NumElems/2;
2777  std::vector<SDOperand> MaskVec;
2778  for (unsigned i = 0; i != Half; ++i) {
2779    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2780    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2781  }
2782  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2783}
2784
2785/// getZeroVector - Returns a vector of specified type with all zero elements.
2786///
2787static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2788  assert(MVT::isVector(VT) && "Expected a vector type");
2789  unsigned NumElems = getVectorNumElements(VT);
2790  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
2791  bool isFP = MVT::isFloatingPoint(EVT);
2792  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2793  std::vector<SDOperand> ZeroVec(NumElems, Zero);
2794  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2795}
2796
2797/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2798///
2799static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2800  SDOperand V1 = Op.getOperand(0);
2801  SDOperand Mask = Op.getOperand(2);
2802  MVT::ValueType VT = Op.getValueType();
2803  unsigned NumElems = Mask.getNumOperands();
2804  Mask = getUnpacklMask(NumElems, DAG);
2805  while (NumElems != 4) {
2806    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2807    NumElems >>= 1;
2808  }
2809  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2810
2811  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2812  Mask = getZeroVector(MaskVT, DAG);
2813  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2814                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2815  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2816}
2817
2818/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2819/// constant +0.0.
2820static inline bool isZeroNode(SDOperand Elt) {
2821  return ((isa<ConstantSDNode>(Elt) &&
2822           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2823          (isa<ConstantFPSDNode>(Elt) &&
2824           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
2825}
2826
2827/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2828/// vector and zero or undef vector.
2829static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2830                                             unsigned NumElems, unsigned Idx,
2831                                             bool isZero, SelectionDAG &DAG) {
2832  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2833  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2834  MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
2835  SDOperand Zero = DAG.getConstant(0, EVT);
2836  std::vector<SDOperand> MaskVec(NumElems, Zero);
2837  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2838  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2839                               &MaskVec[0], MaskVec.size());
2840  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2841}
2842
2843/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2844///
2845static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2846                                       unsigned NumNonZero, unsigned NumZero,
2847                                       SelectionDAG &DAG, TargetLowering &TLI) {
2848  if (NumNonZero > 8)
2849    return SDOperand();
2850
2851  SDOperand V(0, 0);
2852  bool First = true;
2853  for (unsigned i = 0; i < 16; ++i) {
2854    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2855    if (ThisIsNonZero && First) {
2856      if (NumZero)
2857        V = getZeroVector(MVT::v8i16, DAG);
2858      else
2859        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2860      First = false;
2861    }
2862
2863    if ((i & 1) != 0) {
2864      SDOperand ThisElt(0, 0), LastElt(0, 0);
2865      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2866      if (LastIsNonZero) {
2867        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2868      }
2869      if (ThisIsNonZero) {
2870        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2871        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2872                              ThisElt, DAG.getConstant(8, MVT::i8));
2873        if (LastIsNonZero)
2874          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2875      } else
2876        ThisElt = LastElt;
2877
2878      if (ThisElt.Val)
2879        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2880                        DAG.getConstant(i/2, TLI.getPointerTy()));
2881    }
2882  }
2883
2884  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2885}
2886
2887/// LowerBuildVectorv16i8 - Custom lower build_vector of v8i16.
2888///
2889static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2890                                       unsigned NumNonZero, unsigned NumZero,
2891                                       SelectionDAG &DAG, TargetLowering &TLI) {
2892  if (NumNonZero > 4)
2893    return SDOperand();
2894
2895  SDOperand V(0, 0);
2896  bool First = true;
2897  for (unsigned i = 0; i < 8; ++i) {
2898    bool isNonZero = (NonZeros & (1 << i)) != 0;
2899    if (isNonZero) {
2900      if (First) {
2901        if (NumZero)
2902          V = getZeroVector(MVT::v8i16, DAG);
2903        else
2904          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2905        First = false;
2906      }
2907      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2908                      DAG.getConstant(i, TLI.getPointerTy()));
2909    }
2910  }
2911
2912  return V;
2913}
2914
2915SDOperand
2916X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2917  // All zero's are handled with pxor.
2918  if (ISD::isBuildVectorAllZeros(Op.Val))
2919    return Op;
2920
2921  // All one's are handled with pcmpeqd.
2922  if (ISD::isBuildVectorAllOnes(Op.Val))
2923    return Op;
2924
2925  MVT::ValueType VT = Op.getValueType();
2926  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
2927  unsigned EVTBits = MVT::getSizeInBits(EVT);
2928
2929  unsigned NumElems = Op.getNumOperands();
2930  unsigned NumZero  = 0;
2931  unsigned NumNonZero = 0;
2932  unsigned NonZeros = 0;
2933  std::set<SDOperand> Values;
2934  for (unsigned i = 0; i < NumElems; ++i) {
2935    SDOperand Elt = Op.getOperand(i);
2936    if (Elt.getOpcode() != ISD::UNDEF) {
2937      Values.insert(Elt);
2938      if (isZeroNode(Elt))
2939        NumZero++;
2940      else {
2941        NonZeros |= (1 << i);
2942        NumNonZero++;
2943      }
2944    }
2945  }
2946
2947  if (NumNonZero == 0)
2948    // Must be a mix of zero and undef. Return a zero vector.
2949    return getZeroVector(VT, DAG);
2950
2951  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2952  if (Values.size() == 1)
2953    return SDOperand();
2954
2955  // Special case for single non-zero element.
2956  if (NumNonZero == 1) {
2957    unsigned Idx = CountTrailingZeros_32(NonZeros);
2958    SDOperand Item = Op.getOperand(Idx);
2959    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2960    if (Idx == 0)
2961      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2962      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2963                                         NumZero > 0, DAG);
2964
2965    if (EVTBits == 32) {
2966      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2967      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2968                                         DAG);
2969      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2970      MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
2971      std::vector<SDOperand> MaskVec;
2972      for (unsigned i = 0; i < NumElems; i++)
2973        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2974      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2975                                   &MaskVec[0], MaskVec.size());
2976      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2977                         DAG.getNode(ISD::UNDEF, VT), Mask);
2978    }
2979  }
2980
2981  // Let legalizer expand 2-wide build_vector's.
2982  if (EVTBits == 64)
2983    return SDOperand();
2984
2985  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2986  if (EVTBits == 8) {
2987    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2988                                        *this);
2989    if (V.Val) return V;
2990  }
2991
2992  if (EVTBits == 16) {
2993    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2994                                        *this);
2995    if (V.Val) return V;
2996  }
2997
2998  // If element VT is == 32 bits, turn it into a number of shuffles.
2999  std::vector<SDOperand> V(NumElems);
3000  if (NumElems == 4 && NumZero > 0) {
3001    for (unsigned i = 0; i < 4; ++i) {
3002      bool isZero = !(NonZeros & (1 << i));
3003      if (isZero)
3004        V[i] = getZeroVector(VT, DAG);
3005      else
3006        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3007    }
3008
3009    for (unsigned i = 0; i < 2; ++i) {
3010      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3011        default: break;
3012        case 0:
3013          V[i] = V[i*2];  // Must be a zero vector.
3014          break;
3015        case 1:
3016          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3017                             getMOVLMask(NumElems, DAG));
3018          break;
3019        case 2:
3020          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3021                             getMOVLMask(NumElems, DAG));
3022          break;
3023        case 3:
3024          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3025                             getUnpacklMask(NumElems, DAG));
3026          break;
3027      }
3028    }
3029
3030    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3031    // clears the upper bits.
3032    // FIXME: we can do the same for v4f32 case when we know both parts of
3033    // the lower half come from scalar_to_vector (loadf32). We should do
3034    // that in post legalizer dag combiner with target specific hooks.
3035    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3036      return V[0];
3037    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3038    MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
3039    std::vector<SDOperand> MaskVec;
3040    bool Reverse = (NonZeros & 0x3) == 2;
3041    for (unsigned i = 0; i < 2; ++i)
3042      if (Reverse)
3043        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3044      else
3045        MaskVec.push_back(DAG.getConstant(i, EVT));
3046    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3047    for (unsigned i = 0; i < 2; ++i)
3048      if (Reverse)
3049        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3050      else
3051        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3052    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3053                                     &MaskVec[0], MaskVec.size());
3054    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3055  }
3056
3057  if (Values.size() > 2) {
3058    // Expand into a number of unpckl*.
3059    // e.g. for v4f32
3060    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3061    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3062    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3063    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3064    for (unsigned i = 0; i < NumElems; ++i)
3065      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3066    NumElems >>= 1;
3067    while (NumElems != 0) {
3068      for (unsigned i = 0; i < NumElems; ++i)
3069        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3070                           UnpckMask);
3071      NumElems >>= 1;
3072    }
3073    return V[0];
3074  }
3075
3076  return SDOperand();
3077}
3078
3079SDOperand
3080X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3081  SDOperand V1 = Op.getOperand(0);
3082  SDOperand V2 = Op.getOperand(1);
3083  SDOperand PermMask = Op.getOperand(2);
3084  MVT::ValueType VT = Op.getValueType();
3085  unsigned NumElems = PermMask.getNumOperands();
3086  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3087  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3088  bool V1IsSplat = false;
3089  bool V2IsSplat = false;
3090
3091  if (isUndefShuffle(Op.Val))
3092    return DAG.getNode(ISD::UNDEF, VT);
3093
3094  if (isSplatMask(PermMask.Val)) {
3095    if (NumElems <= 4) return Op;
3096    // Promote it to a v4i32 splat.
3097    return PromoteSplat(Op, DAG);
3098  }
3099
3100  if (X86::isMOVLMask(PermMask.Val))
3101    return (V1IsUndef) ? V2 : Op;
3102
3103  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3104      X86::isMOVSLDUPMask(PermMask.Val) ||
3105      X86::isMOVHLPSMask(PermMask.Val) ||
3106      X86::isMOVHPMask(PermMask.Val) ||
3107      X86::isMOVLPMask(PermMask.Val))
3108    return Op;
3109
3110  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3111      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3112    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3113
3114  bool Commuted = false;
3115  V1IsSplat = isSplatVector(V1.Val);
3116  V2IsSplat = isSplatVector(V2.Val);
3117  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3118    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3119    std::swap(V1IsSplat, V2IsSplat);
3120    std::swap(V1IsUndef, V2IsUndef);
3121    Commuted = true;
3122  }
3123
3124  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3125    if (V2IsUndef) return V1;
3126    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3127    if (V2IsSplat) {
3128      // V2 is a splat, so the mask may be malformed. That is, it may point
3129      // to any V2 element. The instruction selectior won't like this. Get
3130      // a corrected mask and commute to form a proper MOVS{S|D}.
3131      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3132      if (NewMask.Val != PermMask.Val)
3133        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3134    }
3135    return Op;
3136  }
3137
3138  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3139      X86::isUNPCKLMask(PermMask.Val) ||
3140      X86::isUNPCKHMask(PermMask.Val))
3141    return Op;
3142
3143  if (V2IsSplat) {
3144    // Normalize mask so all entries that point to V2 points to its first
3145    // element then try to match unpck{h|l} again. If match, return a
3146    // new vector_shuffle with the corrected mask.
3147    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3148    if (NewMask.Val != PermMask.Val) {
3149      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3150        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3151        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3152      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3153        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3154        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3155      }
3156    }
3157  }
3158
3159  // Normalize the node to match x86 shuffle ops if needed
3160  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3161      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3162
3163  if (Commuted) {
3164    // Commute is back and try unpck* again.
3165    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3166    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3167        X86::isUNPCKLMask(PermMask.Val) ||
3168        X86::isUNPCKHMask(PermMask.Val))
3169      return Op;
3170  }
3171
3172  // If VT is integer, try PSHUF* first, then SHUFP*.
3173  if (MVT::isInteger(VT)) {
3174    if (X86::isPSHUFDMask(PermMask.Val) ||
3175        X86::isPSHUFHWMask(PermMask.Val) ||
3176        X86::isPSHUFLWMask(PermMask.Val)) {
3177      if (V2.getOpcode() != ISD::UNDEF)
3178        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3179                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3180      return Op;
3181    }
3182
3183    if (X86::isSHUFPMask(PermMask.Val))
3184      return Op;
3185
3186    // Handle v8i16 shuffle high / low shuffle node pair.
3187    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
3188      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3189      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3190      std::vector<SDOperand> MaskVec;
3191      for (unsigned i = 0; i != 4; ++i)
3192        MaskVec.push_back(PermMask.getOperand(i));
3193      for (unsigned i = 4; i != 8; ++i)
3194        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3195      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3196                                   &MaskVec[0], MaskVec.size());
3197      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3198      MaskVec.clear();
3199      for (unsigned i = 0; i != 4; ++i)
3200        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3201      for (unsigned i = 4; i != 8; ++i)
3202        MaskVec.push_back(PermMask.getOperand(i));
3203      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
3204      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3205    }
3206  } else {
3207    // Floating point cases in the other order.
3208    if (X86::isSHUFPMask(PermMask.Val))
3209      return Op;
3210    if (X86::isPSHUFDMask(PermMask.Val) ||
3211        X86::isPSHUFHWMask(PermMask.Val) ||
3212        X86::isPSHUFLWMask(PermMask.Val)) {
3213      if (V2.getOpcode() != ISD::UNDEF)
3214        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3215                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3216      return Op;
3217    }
3218  }
3219
3220  if (NumElems == 4) {
3221    MVT::ValueType MaskVT = PermMask.getValueType();
3222    MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
3223    std::vector<std::pair<int, int> > Locs;
3224    Locs.reserve(NumElems);
3225    std::vector<SDOperand> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3226    std::vector<SDOperand> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3227    unsigned NumHi = 0;
3228    unsigned NumLo = 0;
3229    // If no more than two elements come from either vector. This can be
3230    // implemented with two shuffles. First shuffle gather the elements.
3231    // The second shuffle, which takes the first shuffle as both of its
3232    // vector operands, put the elements into the right order.
3233    for (unsigned i = 0; i != NumElems; ++i) {
3234      SDOperand Elt = PermMask.getOperand(i);
3235      if (Elt.getOpcode() == ISD::UNDEF) {
3236        Locs[i] = std::make_pair(-1, -1);
3237      } else {
3238        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3239        if (Val < NumElems) {
3240          Locs[i] = std::make_pair(0, NumLo);
3241          Mask1[NumLo] = Elt;
3242          NumLo++;
3243        } else {
3244          Locs[i] = std::make_pair(1, NumHi);
3245          if (2+NumHi < NumElems)
3246            Mask1[2+NumHi] = Elt;
3247          NumHi++;
3248        }
3249      }
3250    }
3251    if (NumLo <= 2 && NumHi <= 2) {
3252      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3253                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3254                                   &Mask1[0], Mask1.size()));
3255      for (unsigned i = 0; i != NumElems; ++i) {
3256        if (Locs[i].first == -1)
3257          continue;
3258        else {
3259          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3260          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3261          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3262        }
3263      }
3264
3265      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3266                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3267                                     &Mask2[0], Mask2.size()));
3268    }
3269
3270    // Break it into (shuffle shuffle_hi, shuffle_lo).
3271    Locs.clear();
3272    std::vector<SDOperand> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3273    std::vector<SDOperand> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3274    std::vector<SDOperand> *MaskPtr = &LoMask;
3275    unsigned MaskIdx = 0;
3276    unsigned LoIdx = 0;
3277    unsigned HiIdx = NumElems/2;
3278    for (unsigned i = 0; i != NumElems; ++i) {
3279      if (i == NumElems/2) {
3280        MaskPtr = &HiMask;
3281        MaskIdx = 1;
3282        LoIdx = 0;
3283        HiIdx = NumElems/2;
3284      }
3285      SDOperand Elt = PermMask.getOperand(i);
3286      if (Elt.getOpcode() == ISD::UNDEF) {
3287        Locs[i] = std::make_pair(-1, -1);
3288      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3289        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3290        (*MaskPtr)[LoIdx] = Elt;
3291        LoIdx++;
3292      } else {
3293        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3294        (*MaskPtr)[HiIdx] = Elt;
3295        HiIdx++;
3296      }
3297    }
3298
3299    SDOperand LoShuffle =
3300      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3301                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3302                              &LoMask[0], LoMask.size()));
3303    SDOperand HiShuffle =
3304      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3305                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3306                              &HiMask[0], HiMask.size()));
3307    std::vector<SDOperand> MaskOps;
3308    for (unsigned i = 0; i != NumElems; ++i) {
3309      if (Locs[i].first == -1) {
3310        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3311      } else {
3312        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3313        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3314      }
3315    }
3316    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3317                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3318                                   &MaskOps[0], MaskOps.size()));
3319  }
3320
3321  return SDOperand();
3322}
3323
3324SDOperand
3325X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3326  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3327    return SDOperand();
3328
3329  MVT::ValueType VT = Op.getValueType();
3330  // TODO: handle v16i8.
3331  if (MVT::getSizeInBits(VT) == 16) {
3332    // Transform it so it match pextrw which produces a 32-bit result.
3333    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3334    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3335                                    Op.getOperand(0), Op.getOperand(1));
3336    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3337                                    DAG.getValueType(VT));
3338    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3339  } else if (MVT::getSizeInBits(VT) == 32) {
3340    SDOperand Vec = Op.getOperand(0);
3341    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3342    if (Idx == 0)
3343      return Op;
3344    // SHUFPS the element to the lowest double word, then movss.
3345    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3346    std::vector<SDOperand> IdxVec;
3347    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT)));
3348    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3349    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3350    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3351    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3352                                 &IdxVec[0], IdxVec.size());
3353    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3354                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3355    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3356                       DAG.getConstant(0, getPointerTy()));
3357  } else if (MVT::getSizeInBits(VT) == 64) {
3358    SDOperand Vec = Op.getOperand(0);
3359    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3360    if (Idx == 0)
3361      return Op;
3362
3363    // UNPCKHPD the element to the lowest double word, then movsd.
3364    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3365    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3366    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3367    std::vector<SDOperand> IdxVec;
3368    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT)));
3369    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3370    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3371                                 &IdxVec[0], IdxVec.size());
3372    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3373                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3374    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3375                       DAG.getConstant(0, getPointerTy()));
3376  }
3377
3378  return SDOperand();
3379}
3380
3381SDOperand
3382X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3383  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3384  // as its second argument.
3385  MVT::ValueType VT = Op.getValueType();
3386  MVT::ValueType BaseVT = MVT::getVectorBaseType(VT);
3387  SDOperand N0 = Op.getOperand(0);
3388  SDOperand N1 = Op.getOperand(1);
3389  SDOperand N2 = Op.getOperand(2);
3390  if (MVT::getSizeInBits(BaseVT) == 16) {
3391    if (N1.getValueType() != MVT::i32)
3392      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3393    if (N2.getValueType() != MVT::i32)
3394      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32);
3395    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3396  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3397    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3398    if (Idx == 0) {
3399      // Use a movss.
3400      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3401      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3402      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3403      std::vector<SDOperand> MaskVec;
3404      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3405      for (unsigned i = 1; i <= 3; ++i)
3406        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3407      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3408                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3409                                     &MaskVec[0], MaskVec.size()));
3410    } else {
3411      // Use two pinsrw instructions to insert a 32 bit value.
3412      Idx <<= 1;
3413      if (MVT::isFloatingPoint(N1.getValueType())) {
3414        if (ISD::isNON_EXTLoad(N1.Val)) {
3415          // Just load directly from f32mem to GR32.
3416          LoadSDNode *LD = cast<LoadSDNode>(N1);
3417          N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
3418                           LD->getSrcValue(), LD->getSrcValueOffset());
3419        } else {
3420          N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3421          N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3422          N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3423                           DAG.getConstant(0, getPointerTy()));
3424        }
3425      }
3426      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3427      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3428                       DAG.getConstant(Idx, getPointerTy()));
3429      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3430      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3431                       DAG.getConstant(Idx+1, getPointerTy()));
3432      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3433    }
3434  }
3435
3436  return SDOperand();
3437}
3438
3439SDOperand
3440X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3441  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3442  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3443}
3444
3445// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3446// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3447// one of the above mentioned nodes. It has to be wrapped because otherwise
3448// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3449// be used to form addressing mode. These wrapped nodes will be selected
3450// into MOV32ri.
3451SDOperand
3452X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3453  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3454  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3455                                               getPointerTy(),
3456                                               CP->getAlignment());
3457  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3458  // With PIC, the address is actually $g + Offset.
3459  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3460      !Subtarget->isPICStyleRIPRel()) {
3461    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3462                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3463                         Result);
3464  }
3465
3466  return Result;
3467}
3468
3469SDOperand
3470X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3471  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3472  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3473  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3474  // With PIC, the address is actually $g + Offset.
3475  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3476      !Subtarget->isPICStyleRIPRel()) {
3477    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3478                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3479                         Result);
3480  }
3481
3482  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3483  // load the value at address GV, not the value of GV itself. This means that
3484  // the GlobalAddress must be in the base or index register of the address, not
3485  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3486  // The same applies for external symbols during PIC codegen
3487  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3488    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3489
3490  return Result;
3491}
3492
3493SDOperand
3494X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3495  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3496  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3497  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3498  // With PIC, the address is actually $g + Offset.
3499  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3500      !Subtarget->isPICStyleRIPRel()) {
3501    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3502                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3503                         Result);
3504  }
3505
3506  return Result;
3507}
3508
3509SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3510  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3511  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3512  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3513  // With PIC, the address is actually $g + Offset.
3514  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3515      !Subtarget->isPICStyleRIPRel()) {
3516    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3517                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3518                         Result);
3519  }
3520
3521  return Result;
3522}
3523
3524SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3525    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3526           "Not an i64 shift!");
3527    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3528    SDOperand ShOpLo = Op.getOperand(0);
3529    SDOperand ShOpHi = Op.getOperand(1);
3530    SDOperand ShAmt  = Op.getOperand(2);
3531    SDOperand Tmp1 = isSRA ?
3532      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3533      DAG.getConstant(0, MVT::i32);
3534
3535    SDOperand Tmp2, Tmp3;
3536    if (Op.getOpcode() == ISD::SHL_PARTS) {
3537      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3538      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3539    } else {
3540      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3541      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3542    }
3543
3544    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3545    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3546                                    DAG.getConstant(32, MVT::i8));
3547    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3548    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3549
3550    SDOperand Hi, Lo;
3551    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3552
3553    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3554    SmallVector<SDOperand, 4> Ops;
3555    if (Op.getOpcode() == ISD::SHL_PARTS) {
3556      Ops.push_back(Tmp2);
3557      Ops.push_back(Tmp3);
3558      Ops.push_back(CC);
3559      Ops.push_back(InFlag);
3560      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3561      InFlag = Hi.getValue(1);
3562
3563      Ops.clear();
3564      Ops.push_back(Tmp3);
3565      Ops.push_back(Tmp1);
3566      Ops.push_back(CC);
3567      Ops.push_back(InFlag);
3568      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3569    } else {
3570      Ops.push_back(Tmp2);
3571      Ops.push_back(Tmp3);
3572      Ops.push_back(CC);
3573      Ops.push_back(InFlag);
3574      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3575      InFlag = Lo.getValue(1);
3576
3577      Ops.clear();
3578      Ops.push_back(Tmp3);
3579      Ops.push_back(Tmp1);
3580      Ops.push_back(CC);
3581      Ops.push_back(InFlag);
3582      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3583    }
3584
3585    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3586    Ops.clear();
3587    Ops.push_back(Lo);
3588    Ops.push_back(Hi);
3589    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3590}
3591
3592SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3593  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3594         Op.getOperand(0).getValueType() >= MVT::i16 &&
3595         "Unknown SINT_TO_FP to lower!");
3596
3597  SDOperand Result;
3598  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3599  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3600  MachineFunction &MF = DAG.getMachineFunction();
3601  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3602  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3603  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3604                                 StackSlot, NULL, 0);
3605
3606  // Build the FILD
3607  std::vector<MVT::ValueType> Tys;
3608  Tys.push_back(MVT::f64);
3609  Tys.push_back(MVT::Other);
3610  if (X86ScalarSSE) Tys.push_back(MVT::Flag);
3611  std::vector<SDOperand> Ops;
3612  Ops.push_back(Chain);
3613  Ops.push_back(StackSlot);
3614  Ops.push_back(DAG.getValueType(SrcVT));
3615  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3616                       Tys, &Ops[0], Ops.size());
3617
3618  if (X86ScalarSSE) {
3619    Chain = Result.getValue(1);
3620    SDOperand InFlag = Result.getValue(2);
3621
3622    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3623    // shouldn't be necessary except that RFP cannot be live across
3624    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3625    MachineFunction &MF = DAG.getMachineFunction();
3626    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3627    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3628    std::vector<MVT::ValueType> Tys;
3629    Tys.push_back(MVT::Other);
3630    std::vector<SDOperand> Ops;
3631    Ops.push_back(Chain);
3632    Ops.push_back(Result);
3633    Ops.push_back(StackSlot);
3634    Ops.push_back(DAG.getValueType(Op.getValueType()));
3635    Ops.push_back(InFlag);
3636    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3637    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3638  }
3639
3640  return Result;
3641}
3642
3643SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3644  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3645         "Unknown FP_TO_SINT to lower!");
3646  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3647  // stack slot.
3648  MachineFunction &MF = DAG.getMachineFunction();
3649  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3650  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3651  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3652
3653  unsigned Opc;
3654  switch (Op.getValueType()) {
3655    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3656    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3657    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3658    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3659  }
3660
3661  SDOperand Chain = DAG.getEntryNode();
3662  SDOperand Value = Op.getOperand(0);
3663  if (X86ScalarSSE) {
3664    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3665    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3666    std::vector<MVT::ValueType> Tys;
3667    Tys.push_back(MVT::f64);
3668    Tys.push_back(MVT::Other);
3669    std::vector<SDOperand> Ops;
3670    Ops.push_back(Chain);
3671    Ops.push_back(StackSlot);
3672    Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType()));
3673    Value = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size());
3674    Chain = Value.getValue(1);
3675    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3676    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3677  }
3678
3679  // Build the FP_TO_INT*_IN_MEM
3680  std::vector<SDOperand> Ops;
3681  Ops.push_back(Chain);
3682  Ops.push_back(Value);
3683  Ops.push_back(StackSlot);
3684  SDOperand FIST = DAG.getNode(Opc, MVT::Other, &Ops[0], Ops.size());
3685
3686  // Load the result.
3687  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3688}
3689
3690SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3691  MVT::ValueType VT = Op.getValueType();
3692  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3693  std::vector<Constant*> CV;
3694  if (VT == MVT::f64) {
3695    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
3696    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3697  } else {
3698    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
3699    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3700    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3701    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3702  }
3703  Constant *CS = ConstantStruct::get(CV);
3704  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3705  std::vector<MVT::ValueType> Tys;
3706  Tys.push_back(VT);
3707  Tys.push_back(MVT::Other);
3708  SmallVector<SDOperand, 3> Ops;
3709  Ops.push_back(DAG.getEntryNode());
3710  Ops.push_back(CPIdx);
3711  Ops.push_back(DAG.getSrcValue(NULL));
3712  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3713  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3714}
3715
3716SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3717  MVT::ValueType VT = Op.getValueType();
3718  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3719  std::vector<Constant*> CV;
3720  if (VT == MVT::f64) {
3721    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
3722    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3723  } else {
3724    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
3725    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3726    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3727    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3728  }
3729  Constant *CS = ConstantStruct::get(CV);
3730  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3731  std::vector<MVT::ValueType> Tys;
3732  Tys.push_back(VT);
3733  Tys.push_back(MVT::Other);
3734  SmallVector<SDOperand, 3> Ops;
3735  Ops.push_back(DAG.getEntryNode());
3736  Ops.push_back(CPIdx);
3737  Ops.push_back(DAG.getSrcValue(NULL));
3738  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3739  return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3740}
3741
3742SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3743  SDOperand Op0 = Op.getOperand(0);
3744  SDOperand Op1 = Op.getOperand(1);
3745  MVT::ValueType VT = Op.getValueType();
3746  MVT::ValueType SrcVT = Op1.getValueType();
3747  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
3748
3749  // If second operand is smaller, extend it first.
3750  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3751    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3752    SrcVT = VT;
3753  }
3754
3755  // First get the sign bit of second operand.
3756  std::vector<Constant*> CV;
3757  if (SrcVT == MVT::f64) {
3758    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
3759    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3760  } else {
3761    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
3762    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3763    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3764    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3765  }
3766  Constant *CS = ConstantStruct::get(CV);
3767  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3768  SDVTList Tys = DAG.getVTList(SrcVT, MVT::Other);
3769  SmallVector<SDOperand, 3> Ops;
3770  Ops.push_back(DAG.getEntryNode());
3771  Ops.push_back(CPIdx);
3772  Ops.push_back(DAG.getSrcValue(NULL));
3773  SDOperand Mask1 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3774  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3775
3776  // Shift sign bit right or left if the two operands have different types.
3777  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3778    // Op0 is MVT::f32, Op1 is MVT::f64.
3779    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3780    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3781                          DAG.getConstant(32, MVT::i32));
3782    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3783    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3784                          DAG.getConstant(0, getPointerTy()));
3785  }
3786
3787  // Clear first operand sign bit.
3788  CV.clear();
3789  if (VT == MVT::f64) {
3790    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
3791    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3792  } else {
3793    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
3794    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3795    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3796    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3797  }
3798  CS = ConstantStruct::get(CV);
3799  CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3800  Tys = DAG.getVTList(VT, MVT::Other);
3801  Ops.clear();
3802  Ops.push_back(DAG.getEntryNode());
3803  Ops.push_back(CPIdx);
3804  Ops.push_back(DAG.getSrcValue(NULL));
3805  SDOperand Mask2 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3806  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3807
3808  // Or the value with the sign bit.
3809  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3810}
3811
3812SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3813                                        SDOperand Chain) {
3814  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3815  SDOperand Cond;
3816  SDOperand Op0 = Op.getOperand(0);
3817  SDOperand Op1 = Op.getOperand(1);
3818  SDOperand CC = Op.getOperand(2);
3819  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3820  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3821  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3822  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3823  unsigned X86CC;
3824
3825  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3826                     Op0, Op1, DAG)) {
3827    SDOperand Ops1[] = { Chain, Op0, Op1 };
3828    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3829    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3830    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3831  }
3832
3833  assert(isFP && "Illegal integer SetCC!");
3834
3835  SDOperand COps[] = { Chain, Op0, Op1 };
3836  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3837
3838  switch (SetCCOpcode) {
3839  default: assert(false && "Illegal floating point SetCC!");
3840  case ISD::SETOEQ: {  // !PF & ZF
3841    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3842    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3843    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3844                         Tmp1.getValue(1) };
3845    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3846    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3847  }
3848  case ISD::SETUNE: {  // PF | !ZF
3849    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3850    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3851    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3852                         Tmp1.getValue(1) };
3853    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3854    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3855  }
3856  }
3857}
3858
3859SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3860  bool addTest = true;
3861  SDOperand Chain = DAG.getEntryNode();
3862  SDOperand Cond  = Op.getOperand(0);
3863  SDOperand CC;
3864  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3865
3866  if (Cond.getOpcode() == ISD::SETCC)
3867    Cond = LowerSETCC(Cond, DAG, Chain);
3868
3869  if (Cond.getOpcode() == X86ISD::SETCC) {
3870    CC = Cond.getOperand(0);
3871
3872    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3873    // (since flag operand cannot be shared). Use it as the condition setting
3874    // operand in place of the X86ISD::SETCC.
3875    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3876    // to use a test instead of duplicating the X86ISD::CMP (for register
3877    // pressure reason)?
3878    SDOperand Cmp = Cond.getOperand(1);
3879    unsigned Opc = Cmp.getOpcode();
3880    bool IllegalFPCMov = !X86ScalarSSE &&
3881      MVT::isFloatingPoint(Op.getValueType()) &&
3882      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3883    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3884        !IllegalFPCMov) {
3885      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3886      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3887      addTest = false;
3888    }
3889  }
3890
3891  if (addTest) {
3892    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3893    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3894    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3895  }
3896
3897  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3898  SmallVector<SDOperand, 4> Ops;
3899  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3900  // condition is true.
3901  Ops.push_back(Op.getOperand(2));
3902  Ops.push_back(Op.getOperand(1));
3903  Ops.push_back(CC);
3904  Ops.push_back(Cond.getValue(1));
3905  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3906}
3907
3908SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3909  bool addTest = true;
3910  SDOperand Chain = Op.getOperand(0);
3911  SDOperand Cond  = Op.getOperand(1);
3912  SDOperand Dest  = Op.getOperand(2);
3913  SDOperand CC;
3914  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3915
3916  if (Cond.getOpcode() == ISD::SETCC)
3917    Cond = LowerSETCC(Cond, DAG, Chain);
3918
3919  if (Cond.getOpcode() == X86ISD::SETCC) {
3920    CC = Cond.getOperand(0);
3921
3922    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3923    // (since flag operand cannot be shared). Use it as the condition setting
3924    // operand in place of the X86ISD::SETCC.
3925    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3926    // to use a test instead of duplicating the X86ISD::CMP (for register
3927    // pressure reason)?
3928    SDOperand Cmp = Cond.getOperand(1);
3929    unsigned Opc = Cmp.getOpcode();
3930    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3931      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3932      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3933      addTest = false;
3934    }
3935  }
3936
3937  if (addTest) {
3938    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3939    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3940    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3941  }
3942  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3943                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
3944}
3945
3946SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3947  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3948
3949  if (Subtarget->is64Bit())
3950    return LowerX86_64CCCCallTo(Op, DAG);
3951  else
3952    switch (CallingConv) {
3953    default:
3954      assert(0 && "Unsupported calling convention");
3955    case CallingConv::Fast:
3956      if (EnableFastCC) {
3957        return LowerFastCCCallTo(Op, DAG);
3958      }
3959      // Falls through
3960    case CallingConv::C:
3961      return LowerCCCCallTo(Op, DAG);
3962    case CallingConv::X86_StdCall:
3963      return LowerCCCCallTo(Op, DAG, true);
3964    case CallingConv::X86_FastCall:
3965      return LowerFastCCCallTo(Op, DAG, true);
3966    }
3967}
3968
3969SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
3970  SDOperand Copy;
3971
3972  switch(Op.getNumOperands()) {
3973    default:
3974      assert(0 && "Do not know how to return this many arguments!");
3975      abort();
3976    case 1:    // ret void.
3977      return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0),
3978                        DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
3979    case 3: {
3980      MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
3981
3982      if (MVT::isVector(ArgVT) ||
3983          (Subtarget->is64Bit() && MVT::isFloatingPoint(ArgVT))) {
3984        // Integer or FP vector result -> XMM0.
3985        if (DAG.getMachineFunction().liveout_empty())
3986          DAG.getMachineFunction().addLiveOut(X86::XMM0);
3987        Copy = DAG.getCopyToReg(Op.getOperand(0), X86::XMM0, Op.getOperand(1),
3988                                SDOperand());
3989      } else if (MVT::isInteger(ArgVT)) {
3990        // Integer result -> EAX / RAX.
3991        // The C calling convention guarantees the return value has been
3992        // promoted to at least MVT::i32. The X86-64 ABI doesn't require the
3993        // value to be promoted MVT::i64. So we don't have to extend it to
3994        // 64-bit. Return the value in EAX, but mark RAX as liveout.
3995        unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
3996        if (DAG.getMachineFunction().liveout_empty())
3997          DAG.getMachineFunction().addLiveOut(Reg);
3998
3999        Reg = (ArgVT == MVT::i64) ? X86::RAX : X86::EAX;
4000        Copy = DAG.getCopyToReg(Op.getOperand(0), Reg, Op.getOperand(1),
4001                                SDOperand());
4002      } else if (!X86ScalarSSE) {
4003        // FP return with fp-stack value.
4004        if (DAG.getMachineFunction().liveout_empty())
4005          DAG.getMachineFunction().addLiveOut(X86::ST0);
4006
4007        SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4008        SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) };
4009        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
4010      } else {
4011        // FP return with ScalarSSE (return on fp-stack).
4012        if (DAG.getMachineFunction().liveout_empty())
4013          DAG.getMachineFunction().addLiveOut(X86::ST0);
4014
4015        SDOperand MemLoc;
4016        SDOperand Chain = Op.getOperand(0);
4017        SDOperand Value = Op.getOperand(1);
4018
4019        if (ISD::isNON_EXTLoad(Value.Val) &&
4020            (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
4021          Chain  = Value.getOperand(0);
4022          MemLoc = Value.getOperand(1);
4023        } else {
4024          // Spill the value to memory and reload it into top of stack.
4025          unsigned Size = MVT::getSizeInBits(ArgVT)/8;
4026          MachineFunction &MF = DAG.getMachineFunction();
4027          int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4028          MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
4029          Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
4030        }
4031        SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
4032        SDOperand Ops[] = { Chain, MemLoc, DAG.getValueType(ArgVT) };
4033        Copy = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4034
4035        Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4036        Ops[0] = Copy.getValue(1);
4037        Ops[1] = Copy;
4038        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
4039      }
4040      break;
4041    }
4042    case 5: {
4043      unsigned Reg1 = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
4044      unsigned Reg2 = Subtarget->is64Bit() ? X86::RDX : X86::EDX;
4045      if (DAG.getMachineFunction().liveout_empty()) {
4046        DAG.getMachineFunction().addLiveOut(Reg1);
4047        DAG.getMachineFunction().addLiveOut(Reg2);
4048      }
4049
4050      Copy = DAG.getCopyToReg(Op.getOperand(0), Reg2, Op.getOperand(3),
4051                              SDOperand());
4052      Copy = DAG.getCopyToReg(Copy, Reg1, Op.getOperand(1), Copy.getValue(1));
4053      break;
4054    }
4055  }
4056  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other,
4057                     Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16),
4058                     Copy.getValue(1));
4059}
4060
4061SDOperand
4062X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4063  MachineFunction &MF = DAG.getMachineFunction();
4064  const Function* Fn = MF.getFunction();
4065  if (Fn->hasExternalLinkage() &&
4066      Subtarget->isTargetCygMing() &&
4067      Fn->getName() == "main")
4068    MF.getInfo<X86FunctionInfo>()->setForceFramePointer(true);
4069
4070  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4071  if (Subtarget->is64Bit())
4072    return LowerX86_64CCCArguments(Op, DAG);
4073  else
4074    switch(CC) {
4075    default:
4076      assert(0 && "Unsupported calling convention");
4077    case CallingConv::Fast:
4078      if (EnableFastCC) {
4079        return LowerFastCCArguments(Op, DAG);
4080      }
4081      // Falls through
4082    case CallingConv::C:
4083      return LowerCCCArguments(Op, DAG);
4084    case CallingConv::X86_StdCall:
4085      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(StdCall);
4086      return LowerCCCArguments(Op, DAG, true);
4087    case CallingConv::X86_FastCall:
4088      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(FastCall);
4089      return LowerFastCCArguments(Op, DAG, true);
4090    }
4091}
4092
4093SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4094  SDOperand InFlag(0, 0);
4095  SDOperand Chain = Op.getOperand(0);
4096  unsigned Align =
4097    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4098  if (Align == 0) Align = 1;
4099
4100  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4101  // If not DWORD aligned, call memset if size is less than the threshold.
4102  // It knows how to align to the right boundary first.
4103  if ((Align & 3) != 0 ||
4104      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
4105    MVT::ValueType IntPtr = getPointerTy();
4106    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4107    TargetLowering::ArgListTy Args;
4108    TargetLowering::ArgListEntry Entry;
4109    Entry.Node = Op.getOperand(1);
4110    Entry.Ty = IntPtrTy;
4111    Entry.isSigned = false;
4112    Entry.isInReg = false;
4113    Entry.isSRet = false;
4114    Args.push_back(Entry);
4115    // Extend the unsigned i8 argument to be an int value for the call.
4116    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4117    Entry.Ty = IntPtrTy;
4118    Entry.isSigned = false;
4119    Entry.isInReg = false;
4120    Entry.isSRet = false;
4121    Args.push_back(Entry);
4122    Entry.Node = Op.getOperand(3);
4123    Args.push_back(Entry);
4124    std::pair<SDOperand,SDOperand> CallResult =
4125      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4126                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4127    return CallResult.second;
4128  }
4129
4130  MVT::ValueType AVT;
4131  SDOperand Count;
4132  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4133  unsigned BytesLeft = 0;
4134  bool TwoRepStos = false;
4135  if (ValC) {
4136    unsigned ValReg;
4137    uint64_t Val = ValC->getValue() & 255;
4138
4139    // If the value is a constant, then we can potentially use larger sets.
4140    switch (Align & 3) {
4141      case 2:   // WORD aligned
4142        AVT = MVT::i16;
4143        ValReg = X86::AX;
4144        Val = (Val << 8) | Val;
4145        break;
4146      case 0:  // DWORD aligned
4147        AVT = MVT::i32;
4148        ValReg = X86::EAX;
4149        Val = (Val << 8)  | Val;
4150        Val = (Val << 16) | Val;
4151        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4152          AVT = MVT::i64;
4153          ValReg = X86::RAX;
4154          Val = (Val << 32) | Val;
4155        }
4156        break;
4157      default:  // Byte aligned
4158        AVT = MVT::i8;
4159        ValReg = X86::AL;
4160        Count = Op.getOperand(3);
4161        break;
4162    }
4163
4164    if (AVT > MVT::i8) {
4165      if (I) {
4166        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4167        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4168        BytesLeft = I->getValue() % UBytes;
4169      } else {
4170        assert(AVT >= MVT::i32 &&
4171               "Do not use rep;stos if not at least DWORD aligned");
4172        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4173                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4174        TwoRepStos = true;
4175      }
4176    }
4177
4178    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4179                              InFlag);
4180    InFlag = Chain.getValue(1);
4181  } else {
4182    AVT = MVT::i8;
4183    Count  = Op.getOperand(3);
4184    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4185    InFlag = Chain.getValue(1);
4186  }
4187
4188  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4189                            Count, InFlag);
4190  InFlag = Chain.getValue(1);
4191  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4192                            Op.getOperand(1), InFlag);
4193  InFlag = Chain.getValue(1);
4194
4195  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4196  std::vector<SDOperand> Ops;
4197  Ops.push_back(Chain);
4198  Ops.push_back(DAG.getValueType(AVT));
4199  Ops.push_back(InFlag);
4200  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4201
4202  if (TwoRepStos) {
4203    InFlag = Chain.getValue(1);
4204    Count = Op.getOperand(3);
4205    MVT::ValueType CVT = Count.getValueType();
4206    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4207                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4208    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4209                              Left, InFlag);
4210    InFlag = Chain.getValue(1);
4211    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4212    Ops.clear();
4213    Ops.push_back(Chain);
4214    Ops.push_back(DAG.getValueType(MVT::i8));
4215    Ops.push_back(InFlag);
4216    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4217  } else if (BytesLeft) {
4218    // Issue stores for the last 1 - 7 bytes.
4219    SDOperand Value;
4220    unsigned Val = ValC->getValue() & 255;
4221    unsigned Offset = I->getValue() - BytesLeft;
4222    SDOperand DstAddr = Op.getOperand(1);
4223    MVT::ValueType AddrVT = DstAddr.getValueType();
4224    if (BytesLeft >= 4) {
4225      Val = (Val << 8)  | Val;
4226      Val = (Val << 16) | Val;
4227      Value = DAG.getConstant(Val, MVT::i32);
4228      Chain = DAG.getStore(Chain, Value,
4229                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4230                                       DAG.getConstant(Offset, AddrVT)),
4231                           NULL, 0);
4232      BytesLeft -= 4;
4233      Offset += 4;
4234    }
4235    if (BytesLeft >= 2) {
4236      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4237      Chain = DAG.getStore(Chain, Value,
4238                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4239                                       DAG.getConstant(Offset, AddrVT)),
4240                           NULL, 0);
4241      BytesLeft -= 2;
4242      Offset += 2;
4243    }
4244    if (BytesLeft == 1) {
4245      Value = DAG.getConstant(Val, MVT::i8);
4246      Chain = DAG.getStore(Chain, Value,
4247                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4248                                       DAG.getConstant(Offset, AddrVT)),
4249                           NULL, 0);
4250    }
4251  }
4252
4253  return Chain;
4254}
4255
4256SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
4257  SDOperand Chain = Op.getOperand(0);
4258  unsigned Align =
4259    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4260  if (Align == 0) Align = 1;
4261
4262  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4263  // If not DWORD aligned, call memcpy if size is less than the threshold.
4264  // It knows how to align to the right boundary first.
4265  if ((Align & 3) != 0 ||
4266      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
4267    MVT::ValueType IntPtr = getPointerTy();
4268    TargetLowering::ArgListTy Args;
4269    TargetLowering::ArgListEntry Entry;
4270    Entry.Ty = getTargetData()->getIntPtrType();
4271    Entry.isSigned = false;
4272    Entry.isInReg = false;
4273    Entry.isSRet = false;
4274    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
4275    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
4276    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
4277    std::pair<SDOperand,SDOperand> CallResult =
4278      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4279                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
4280    return CallResult.second;
4281  }
4282
4283  MVT::ValueType AVT;
4284  SDOperand Count;
4285  unsigned BytesLeft = 0;
4286  bool TwoRepMovs = false;
4287  switch (Align & 3) {
4288    case 2:   // WORD aligned
4289      AVT = MVT::i16;
4290      break;
4291    case 0:  // DWORD aligned
4292      AVT = MVT::i32;
4293      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4294        AVT = MVT::i64;
4295      break;
4296    default:  // Byte aligned
4297      AVT = MVT::i8;
4298      Count = Op.getOperand(3);
4299      break;
4300  }
4301
4302  if (AVT > MVT::i8) {
4303    if (I) {
4304      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4305      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4306      BytesLeft = I->getValue() % UBytes;
4307    } else {
4308      assert(AVT >= MVT::i32 &&
4309             "Do not use rep;movs if not at least DWORD aligned");
4310      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4311                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4312      TwoRepMovs = true;
4313    }
4314  }
4315
4316  SDOperand InFlag(0, 0);
4317  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4318                            Count, InFlag);
4319  InFlag = Chain.getValue(1);
4320  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4321                            Op.getOperand(1), InFlag);
4322  InFlag = Chain.getValue(1);
4323  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4324                            Op.getOperand(2), InFlag);
4325  InFlag = Chain.getValue(1);
4326
4327  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4328  std::vector<SDOperand> Ops;
4329  Ops.push_back(Chain);
4330  Ops.push_back(DAG.getValueType(AVT));
4331  Ops.push_back(InFlag);
4332  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4333
4334  if (TwoRepMovs) {
4335    InFlag = Chain.getValue(1);
4336    Count = Op.getOperand(3);
4337    MVT::ValueType CVT = Count.getValueType();
4338    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4339                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4340    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4341                              Left, InFlag);
4342    InFlag = Chain.getValue(1);
4343    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4344    Ops.clear();
4345    Ops.push_back(Chain);
4346    Ops.push_back(DAG.getValueType(MVT::i8));
4347    Ops.push_back(InFlag);
4348    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4349  } else if (BytesLeft) {
4350    // Issue loads and stores for the last 1 - 7 bytes.
4351    unsigned Offset = I->getValue() - BytesLeft;
4352    SDOperand DstAddr = Op.getOperand(1);
4353    MVT::ValueType DstVT = DstAddr.getValueType();
4354    SDOperand SrcAddr = Op.getOperand(2);
4355    MVT::ValueType SrcVT = SrcAddr.getValueType();
4356    SDOperand Value;
4357    if (BytesLeft >= 4) {
4358      Value = DAG.getLoad(MVT::i32, Chain,
4359                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4360                                      DAG.getConstant(Offset, SrcVT)),
4361                          NULL, 0);
4362      Chain = Value.getValue(1);
4363      Chain = DAG.getStore(Chain, Value,
4364                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4365                                       DAG.getConstant(Offset, DstVT)),
4366                           NULL, 0);
4367      BytesLeft -= 4;
4368      Offset += 4;
4369    }
4370    if (BytesLeft >= 2) {
4371      Value = DAG.getLoad(MVT::i16, Chain,
4372                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4373                                      DAG.getConstant(Offset, SrcVT)),
4374                          NULL, 0);
4375      Chain = Value.getValue(1);
4376      Chain = DAG.getStore(Chain, Value,
4377                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4378                                       DAG.getConstant(Offset, DstVT)),
4379                           NULL, 0);
4380      BytesLeft -= 2;
4381      Offset += 2;
4382    }
4383
4384    if (BytesLeft == 1) {
4385      Value = DAG.getLoad(MVT::i8, Chain,
4386                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4387                                      DAG.getConstant(Offset, SrcVT)),
4388                          NULL, 0);
4389      Chain = Value.getValue(1);
4390      Chain = DAG.getStore(Chain, Value,
4391                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4392                                       DAG.getConstant(Offset, DstVT)),
4393                           NULL, 0);
4394    }
4395  }
4396
4397  return Chain;
4398}
4399
4400SDOperand
4401X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4402  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4403  std::vector<SDOperand> Ops;
4404  Ops.push_back(Op.getOperand(0));
4405  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &Ops[0], Ops.size());
4406  Ops.clear();
4407  if (Subtarget->is64Bit()) {
4408    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4409    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4410                                         MVT::i64, Copy1.getValue(2));
4411    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4412                                DAG.getConstant(32, MVT::i8));
4413    Ops.push_back(DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp));
4414    Ops.push_back(Copy2.getValue(1));
4415
4416    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4417  } else {
4418    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4419    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4420                                         MVT::i32, Copy1.getValue(2));
4421    Ops.push_back(Copy1);
4422    Ops.push_back(Copy2);
4423    Ops.push_back(Copy2.getValue(1));
4424    Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4425  }
4426  return DAG.getNode(ISD::MERGE_VALUES, Tys, &Ops[0], Ops.size());
4427}
4428
4429SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4430  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4431
4432  if (!Subtarget->is64Bit()) {
4433    // vastart just stores the address of the VarArgsFrameIndex slot into the
4434    // memory location argument.
4435    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4436    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4437                        SV->getOffset());
4438  }
4439
4440  // __va_list_tag:
4441  //   gp_offset         (0 - 6 * 8)
4442  //   fp_offset         (48 - 48 + 8 * 16)
4443  //   overflow_arg_area (point to parameters coming in memory).
4444  //   reg_save_area
4445  std::vector<SDOperand> MemOps;
4446  SDOperand FIN = Op.getOperand(1);
4447  // Store gp_offset
4448  SDOperand Store = DAG.getStore(Op.getOperand(0),
4449                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4450                                 FIN, SV->getValue(), SV->getOffset());
4451  MemOps.push_back(Store);
4452
4453  // Store fp_offset
4454  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4455                    DAG.getConstant(4, getPointerTy()));
4456  Store = DAG.getStore(Op.getOperand(0),
4457                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4458                       FIN, SV->getValue(), SV->getOffset());
4459  MemOps.push_back(Store);
4460
4461  // Store ptr to overflow_arg_area
4462  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4463                    DAG.getConstant(4, getPointerTy()));
4464  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4465  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4466                       SV->getOffset());
4467  MemOps.push_back(Store);
4468
4469  // Store ptr to reg_save_area.
4470  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4471                    DAG.getConstant(8, getPointerTy()));
4472  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4473  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4474                       SV->getOffset());
4475  MemOps.push_back(Store);
4476  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4477}
4478
4479SDOperand
4480X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4481  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4482  switch (IntNo) {
4483  default: return SDOperand();    // Don't custom lower most intrinsics.
4484    // Comparison intrinsics.
4485  case Intrinsic::x86_sse_comieq_ss:
4486  case Intrinsic::x86_sse_comilt_ss:
4487  case Intrinsic::x86_sse_comile_ss:
4488  case Intrinsic::x86_sse_comigt_ss:
4489  case Intrinsic::x86_sse_comige_ss:
4490  case Intrinsic::x86_sse_comineq_ss:
4491  case Intrinsic::x86_sse_ucomieq_ss:
4492  case Intrinsic::x86_sse_ucomilt_ss:
4493  case Intrinsic::x86_sse_ucomile_ss:
4494  case Intrinsic::x86_sse_ucomigt_ss:
4495  case Intrinsic::x86_sse_ucomige_ss:
4496  case Intrinsic::x86_sse_ucomineq_ss:
4497  case Intrinsic::x86_sse2_comieq_sd:
4498  case Intrinsic::x86_sse2_comilt_sd:
4499  case Intrinsic::x86_sse2_comile_sd:
4500  case Intrinsic::x86_sse2_comigt_sd:
4501  case Intrinsic::x86_sse2_comige_sd:
4502  case Intrinsic::x86_sse2_comineq_sd:
4503  case Intrinsic::x86_sse2_ucomieq_sd:
4504  case Intrinsic::x86_sse2_ucomilt_sd:
4505  case Intrinsic::x86_sse2_ucomile_sd:
4506  case Intrinsic::x86_sse2_ucomigt_sd:
4507  case Intrinsic::x86_sse2_ucomige_sd:
4508  case Intrinsic::x86_sse2_ucomineq_sd: {
4509    unsigned Opc = 0;
4510    ISD::CondCode CC = ISD::SETCC_INVALID;
4511    switch (IntNo) {
4512    default: break;
4513    case Intrinsic::x86_sse_comieq_ss:
4514    case Intrinsic::x86_sse2_comieq_sd:
4515      Opc = X86ISD::COMI;
4516      CC = ISD::SETEQ;
4517      break;
4518    case Intrinsic::x86_sse_comilt_ss:
4519    case Intrinsic::x86_sse2_comilt_sd:
4520      Opc = X86ISD::COMI;
4521      CC = ISD::SETLT;
4522      break;
4523    case Intrinsic::x86_sse_comile_ss:
4524    case Intrinsic::x86_sse2_comile_sd:
4525      Opc = X86ISD::COMI;
4526      CC = ISD::SETLE;
4527      break;
4528    case Intrinsic::x86_sse_comigt_ss:
4529    case Intrinsic::x86_sse2_comigt_sd:
4530      Opc = X86ISD::COMI;
4531      CC = ISD::SETGT;
4532      break;
4533    case Intrinsic::x86_sse_comige_ss:
4534    case Intrinsic::x86_sse2_comige_sd:
4535      Opc = X86ISD::COMI;
4536      CC = ISD::SETGE;
4537      break;
4538    case Intrinsic::x86_sse_comineq_ss:
4539    case Intrinsic::x86_sse2_comineq_sd:
4540      Opc = X86ISD::COMI;
4541      CC = ISD::SETNE;
4542      break;
4543    case Intrinsic::x86_sse_ucomieq_ss:
4544    case Intrinsic::x86_sse2_ucomieq_sd:
4545      Opc = X86ISD::UCOMI;
4546      CC = ISD::SETEQ;
4547      break;
4548    case Intrinsic::x86_sse_ucomilt_ss:
4549    case Intrinsic::x86_sse2_ucomilt_sd:
4550      Opc = X86ISD::UCOMI;
4551      CC = ISD::SETLT;
4552      break;
4553    case Intrinsic::x86_sse_ucomile_ss:
4554    case Intrinsic::x86_sse2_ucomile_sd:
4555      Opc = X86ISD::UCOMI;
4556      CC = ISD::SETLE;
4557      break;
4558    case Intrinsic::x86_sse_ucomigt_ss:
4559    case Intrinsic::x86_sse2_ucomigt_sd:
4560      Opc = X86ISD::UCOMI;
4561      CC = ISD::SETGT;
4562      break;
4563    case Intrinsic::x86_sse_ucomige_ss:
4564    case Intrinsic::x86_sse2_ucomige_sd:
4565      Opc = X86ISD::UCOMI;
4566      CC = ISD::SETGE;
4567      break;
4568    case Intrinsic::x86_sse_ucomineq_ss:
4569    case Intrinsic::x86_sse2_ucomineq_sd:
4570      Opc = X86ISD::UCOMI;
4571      CC = ISD::SETNE;
4572      break;
4573    }
4574
4575    unsigned X86CC;
4576    SDOperand LHS = Op.getOperand(1);
4577    SDOperand RHS = Op.getOperand(2);
4578    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4579
4580    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4581    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4582    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4583    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4584    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4585    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4586    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4587  }
4588  }
4589}
4590
4591SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4592  // Depths > 0 not supported yet!
4593  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4594    return SDOperand();
4595
4596  // Just load the return address
4597  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4598  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4599}
4600
4601SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4602  // Depths > 0 not supported yet!
4603  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4604    return SDOperand();
4605
4606  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4607  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4608                     DAG.getConstant(4, getPointerTy()));
4609}
4610
4611/// LowerOperation - Provide custom lowering hooks for some operations.
4612///
4613SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4614  switch (Op.getOpcode()) {
4615  default: assert(0 && "Should not custom lower this!");
4616  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4617  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4618  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4619  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4620  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4621  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4622  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4623  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4624  case ISD::SHL_PARTS:
4625  case ISD::SRA_PARTS:
4626  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4627  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4628  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4629  case ISD::FABS:               return LowerFABS(Op, DAG);
4630  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4631  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
4632  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4633  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4634  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4635  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4636  case ISD::CALL:               return LowerCALL(Op, DAG);
4637  case ISD::RET:                return LowerRET(Op, DAG);
4638  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4639  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4640  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4641  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4642  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4643  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4644  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4645  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4646  }
4647  return SDOperand();
4648}
4649
4650const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4651  switch (Opcode) {
4652  default: return NULL;
4653  case X86ISD::SHLD:               return "X86ISD::SHLD";
4654  case X86ISD::SHRD:               return "X86ISD::SHRD";
4655  case X86ISD::FAND:               return "X86ISD::FAND";
4656  case X86ISD::FOR:                return "X86ISD::FOR";
4657  case X86ISD::FXOR:               return "X86ISD::FXOR";
4658  case X86ISD::FSRL:               return "X86ISD::FSRL";
4659  case X86ISD::FILD:               return "X86ISD::FILD";
4660  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4661  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4662  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4663  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4664  case X86ISD::FLD:                return "X86ISD::FLD";
4665  case X86ISD::FST:                return "X86ISD::FST";
4666  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4667  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4668  case X86ISD::CALL:               return "X86ISD::CALL";
4669  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4670  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4671  case X86ISD::CMP:                return "X86ISD::CMP";
4672  case X86ISD::COMI:               return "X86ISD::COMI";
4673  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4674  case X86ISD::SETCC:              return "X86ISD::SETCC";
4675  case X86ISD::CMOV:               return "X86ISD::CMOV";
4676  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4677  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4678  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4679  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4680  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
4681  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
4682  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4683  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4684  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4685  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4686  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4687  case X86ISD::FMAX:               return "X86ISD::FMAX";
4688  case X86ISD::FMIN:               return "X86ISD::FMIN";
4689  }
4690}
4691
4692/// isLegalAddressImmediate - Return true if the integer value or
4693/// GlobalValue can be used as the offset of the target addressing mode.
4694bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const {
4695  // X86 allows a sign-extended 32-bit immediate field.
4696  return (V > -(1LL << 32) && V < (1LL << 32)-1);
4697}
4698
4699bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
4700  // In 64-bit mode, GV is 64-bit so it won't fit in the 32-bit displacement
4701  // field unless we are in small code model.
4702  if (Subtarget->is64Bit() &&
4703      getTargetMachine().getCodeModel() != CodeModel::Small)
4704    return false;
4705
4706  return (!Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false));
4707}
4708
4709/// isShuffleMaskLegal - Targets can use this to indicate that they only
4710/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4711/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4712/// are assumed to be legal.
4713bool
4714X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4715  // Only do shuffles on 128-bit vector types for now.
4716  if (MVT::getSizeInBits(VT) == 64) return false;
4717  return (Mask.Val->getNumOperands() <= 4 ||
4718          isSplatMask(Mask.Val)  ||
4719          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4720          X86::isUNPCKLMask(Mask.Val) ||
4721          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4722          X86::isUNPCKHMask(Mask.Val));
4723}
4724
4725bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4726                                               MVT::ValueType EVT,
4727                                               SelectionDAG &DAG) const {
4728  unsigned NumElts = BVOps.size();
4729  // Only do shuffles on 128-bit vector types for now.
4730  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4731  if (NumElts == 2) return true;
4732  if (NumElts == 4) {
4733    return (isMOVLMask(BVOps)  || isCommutedMOVL(BVOps, true) ||
4734            isSHUFPMask(BVOps) || isCommutedSHUFP(BVOps));
4735  }
4736  return false;
4737}
4738
4739//===----------------------------------------------------------------------===//
4740//                           X86 Scheduler Hooks
4741//===----------------------------------------------------------------------===//
4742
4743MachineBasicBlock *
4744X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4745                                           MachineBasicBlock *BB) {
4746  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4747  switch (MI->getOpcode()) {
4748  default: assert(false && "Unexpected instr type to insert");
4749  case X86::CMOV_FR32:
4750  case X86::CMOV_FR64:
4751  case X86::CMOV_V4F32:
4752  case X86::CMOV_V2F64:
4753  case X86::CMOV_V2I64: {
4754    // To "insert" a SELECT_CC instruction, we actually have to insert the
4755    // diamond control-flow pattern.  The incoming instruction knows the
4756    // destination vreg to set, the condition code register to branch on, the
4757    // true/false values to select between, and a branch opcode to use.
4758    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4759    ilist<MachineBasicBlock>::iterator It = BB;
4760    ++It;
4761
4762    //  thisMBB:
4763    //  ...
4764    //   TrueVal = ...
4765    //   cmpTY ccX, r1, r2
4766    //   bCC copy1MBB
4767    //   fallthrough --> copy0MBB
4768    MachineBasicBlock *thisMBB = BB;
4769    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4770    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4771    unsigned Opc =
4772      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4773    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4774    MachineFunction *F = BB->getParent();
4775    F->getBasicBlockList().insert(It, copy0MBB);
4776    F->getBasicBlockList().insert(It, sinkMBB);
4777    // Update machine-CFG edges by first adding all successors of the current
4778    // block to the new block which will contain the Phi node for the select.
4779    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4780        e = BB->succ_end(); i != e; ++i)
4781      sinkMBB->addSuccessor(*i);
4782    // Next, remove all successors of the current block, and add the true
4783    // and fallthrough blocks as its successors.
4784    while(!BB->succ_empty())
4785      BB->removeSuccessor(BB->succ_begin());
4786    BB->addSuccessor(copy0MBB);
4787    BB->addSuccessor(sinkMBB);
4788
4789    //  copy0MBB:
4790    //   %FalseValue = ...
4791    //   # fallthrough to sinkMBB
4792    BB = copy0MBB;
4793
4794    // Update machine-CFG edges
4795    BB->addSuccessor(sinkMBB);
4796
4797    //  sinkMBB:
4798    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4799    //  ...
4800    BB = sinkMBB;
4801    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4802      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4803      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4804
4805    delete MI;   // The pseudo instruction is gone now.
4806    return BB;
4807  }
4808
4809  case X86::FP_TO_INT16_IN_MEM:
4810  case X86::FP_TO_INT32_IN_MEM:
4811  case X86::FP_TO_INT64_IN_MEM: {
4812    // Change the floating point control register to use "round towards zero"
4813    // mode when truncating to an integer value.
4814    MachineFunction *F = BB->getParent();
4815    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4816    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4817
4818    // Load the old value of the high byte of the control word...
4819    unsigned OldCW =
4820      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4821    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4822
4823    // Set the high part to be round to zero...
4824    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4825      .addImm(0xC7F);
4826
4827    // Reload the modified control word now...
4828    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4829
4830    // Restore the memory image of control word to original value
4831    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4832      .addReg(OldCW);
4833
4834    // Get the X86 opcode to use.
4835    unsigned Opc;
4836    switch (MI->getOpcode()) {
4837    default: assert(0 && "illegal opcode!");
4838    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
4839    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
4840    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
4841    }
4842
4843    X86AddressMode AM;
4844    MachineOperand &Op = MI->getOperand(0);
4845    if (Op.isRegister()) {
4846      AM.BaseType = X86AddressMode::RegBase;
4847      AM.Base.Reg = Op.getReg();
4848    } else {
4849      AM.BaseType = X86AddressMode::FrameIndexBase;
4850      AM.Base.FrameIndex = Op.getFrameIndex();
4851    }
4852    Op = MI->getOperand(1);
4853    if (Op.isImmediate())
4854      AM.Scale = Op.getImm();
4855    Op = MI->getOperand(2);
4856    if (Op.isImmediate())
4857      AM.IndexReg = Op.getImm();
4858    Op = MI->getOperand(3);
4859    if (Op.isGlobalAddress()) {
4860      AM.GV = Op.getGlobal();
4861    } else {
4862      AM.Disp = Op.getImm();
4863    }
4864    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4865                      .addReg(MI->getOperand(4).getReg());
4866
4867    // Reload the original control word now.
4868    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4869
4870    delete MI;   // The pseudo instruction is gone now.
4871    return BB;
4872  }
4873  }
4874}
4875
4876//===----------------------------------------------------------------------===//
4877//                           X86 Optimization Hooks
4878//===----------------------------------------------------------------------===//
4879
4880void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4881                                                       uint64_t Mask,
4882                                                       uint64_t &KnownZero,
4883                                                       uint64_t &KnownOne,
4884                                                       unsigned Depth) const {
4885  unsigned Opc = Op.getOpcode();
4886  assert((Opc >= ISD::BUILTIN_OP_END ||
4887          Opc == ISD::INTRINSIC_WO_CHAIN ||
4888          Opc == ISD::INTRINSIC_W_CHAIN ||
4889          Opc == ISD::INTRINSIC_VOID) &&
4890         "Should use MaskedValueIsZero if you don't know whether Op"
4891         " is a target node!");
4892
4893  KnownZero = KnownOne = 0;   // Don't know anything.
4894  switch (Opc) {
4895  default: break;
4896  case X86ISD::SETCC:
4897    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4898    break;
4899  }
4900}
4901
4902/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4903/// element of the result of the vector shuffle.
4904static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4905  MVT::ValueType VT = N->getValueType(0);
4906  SDOperand PermMask = N->getOperand(2);
4907  unsigned NumElems = PermMask.getNumOperands();
4908  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4909  i %= NumElems;
4910  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4911    return (i == 0)
4912      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
4913  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4914    SDOperand Idx = PermMask.getOperand(i);
4915    if (Idx.getOpcode() == ISD::UNDEF)
4916      return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
4917    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4918  }
4919  return SDOperand();
4920}
4921
4922/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4923/// node is a GlobalAddress + an offset.
4924static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4925  unsigned Opc = N->getOpcode();
4926  if (Opc == X86ISD::Wrapper) {
4927    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4928      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4929      return true;
4930    }
4931  } else if (Opc == ISD::ADD) {
4932    SDOperand N1 = N->getOperand(0);
4933    SDOperand N2 = N->getOperand(1);
4934    if (isGAPlusOffset(N1.Val, GA, Offset)) {
4935      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4936      if (V) {
4937        Offset += V->getSignExtended();
4938        return true;
4939      }
4940    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4941      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4942      if (V) {
4943        Offset += V->getSignExtended();
4944        return true;
4945      }
4946    }
4947  }
4948  return false;
4949}
4950
4951/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4952/// + Dist * Size.
4953static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4954                              MachineFrameInfo *MFI) {
4955  if (N->getOperand(0).Val != Base->getOperand(0).Val)
4956    return false;
4957
4958  SDOperand Loc = N->getOperand(1);
4959  SDOperand BaseLoc = Base->getOperand(1);
4960  if (Loc.getOpcode() == ISD::FrameIndex) {
4961    if (BaseLoc.getOpcode() != ISD::FrameIndex)
4962      return false;
4963    int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
4964    int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
4965    int FS  = MFI->getObjectSize(FI);
4966    int BFS = MFI->getObjectSize(BFI);
4967    if (FS != BFS || FS != Size) return false;
4968    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4969  } else {
4970    GlobalValue *GV1 = NULL;
4971    GlobalValue *GV2 = NULL;
4972    int64_t Offset1 = 0;
4973    int64_t Offset2 = 0;
4974    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4975    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4976    if (isGA1 && isGA2 && GV1 == GV2)
4977      return Offset1 == (Offset2 + Dist*Size);
4978  }
4979
4980  return false;
4981}
4982
4983static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4984                              const X86Subtarget *Subtarget) {
4985  GlobalValue *GV;
4986  int64_t Offset;
4987  if (isGAPlusOffset(Base, GV, Offset))
4988    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4989  else {
4990    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
4991    int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
4992    if (BFI < 0)
4993      // Fixed objects do not specify alignment, however the offsets are known.
4994      return ((Subtarget->getStackAlignment() % 16) == 0 &&
4995              (MFI->getObjectOffset(BFI) % 16) == 0);
4996    else
4997      return MFI->getObjectAlignment(BFI) >= 16;
4998  }
4999  return false;
5000}
5001
5002
5003/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5004/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5005/// if the load addresses are consecutive, non-overlapping, and in the right
5006/// order.
5007static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5008                                       const X86Subtarget *Subtarget) {
5009  MachineFunction &MF = DAG.getMachineFunction();
5010  MachineFrameInfo *MFI = MF.getFrameInfo();
5011  MVT::ValueType VT = N->getValueType(0);
5012  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
5013  SDOperand PermMask = N->getOperand(2);
5014  int NumElems = (int)PermMask.getNumOperands();
5015  SDNode *Base = NULL;
5016  for (int i = 0; i < NumElems; ++i) {
5017    SDOperand Idx = PermMask.getOperand(i);
5018    if (Idx.getOpcode() == ISD::UNDEF) {
5019      if (!Base) return SDOperand();
5020    } else {
5021      SDOperand Arg =
5022        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5023      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5024        return SDOperand();
5025      if (!Base)
5026        Base = Arg.Val;
5027      else if (!isConsecutiveLoad(Arg.Val, Base,
5028                                  i, MVT::getSizeInBits(EVT)/8,MFI))
5029        return SDOperand();
5030    }
5031  }
5032
5033  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
5034  if (isAlign16) {
5035    LoadSDNode *LD = cast<LoadSDNode>(Base);
5036    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5037                       LD->getSrcValueOffset());
5038  } else {
5039    // Just use movups, it's shorter.
5040    SDVTList Tys = DAG.getVTList(MVT::v4f32, MVT::Other);
5041    SmallVector<SDOperand, 3> Ops;
5042    Ops.push_back(Base->getOperand(0));
5043    Ops.push_back(Base->getOperand(1));
5044    Ops.push_back(Base->getOperand(2));
5045    return DAG.getNode(ISD::BIT_CONVERT, VT,
5046                       DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
5047  }
5048}
5049
5050/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5051static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5052                                      const X86Subtarget *Subtarget) {
5053  SDOperand Cond = N->getOperand(0);
5054
5055  // If we have SSE[12] support, try to form min/max nodes.
5056  if (Subtarget->hasSSE2() &&
5057      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5058    if (Cond.getOpcode() == ISD::SETCC) {
5059      // Get the LHS/RHS of the select.
5060      SDOperand LHS = N->getOperand(1);
5061      SDOperand RHS = N->getOperand(2);
5062      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5063
5064      unsigned Opcode = 0;
5065      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5066        switch (CC) {
5067        default: break;
5068        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5069        case ISD::SETULE:
5070        case ISD::SETLE:
5071          if (!UnsafeFPMath) break;
5072          // FALL THROUGH.
5073        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
5074        case ISD::SETLT:
5075          Opcode = X86ISD::FMIN;
5076          break;
5077
5078        case ISD::SETOGT: // (X > Y) ? X : Y -> max
5079        case ISD::SETUGT:
5080        case ISD::SETGT:
5081          if (!UnsafeFPMath) break;
5082          // FALL THROUGH.
5083        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
5084        case ISD::SETGE:
5085          Opcode = X86ISD::FMAX;
5086          break;
5087        }
5088      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5089        switch (CC) {
5090        default: break;
5091        case ISD::SETOGT: // (X > Y) ? Y : X -> min
5092        case ISD::SETUGT:
5093        case ISD::SETGT:
5094          if (!UnsafeFPMath) break;
5095          // FALL THROUGH.
5096        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
5097        case ISD::SETGE:
5098          Opcode = X86ISD::FMIN;
5099          break;
5100
5101        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
5102        case ISD::SETULE:
5103        case ISD::SETLE:
5104          if (!UnsafeFPMath) break;
5105          // FALL THROUGH.
5106        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
5107        case ISD::SETLT:
5108          Opcode = X86ISD::FMAX;
5109          break;
5110        }
5111      }
5112
5113      if (Opcode)
5114        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5115    }
5116
5117  }
5118
5119  return SDOperand();
5120}
5121
5122
5123SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5124                                               DAGCombinerInfo &DCI) const {
5125  SelectionDAG &DAG = DCI.DAG;
5126  switch (N->getOpcode()) {
5127  default: break;
5128  case ISD::VECTOR_SHUFFLE:
5129    return PerformShuffleCombine(N, DAG, Subtarget);
5130  case ISD::SELECT:
5131    return PerformSELECTCombine(N, DAG, Subtarget);
5132  }
5133
5134  return SDOperand();
5135}
5136
5137//===----------------------------------------------------------------------===//
5138//                           X86 Inline Assembly Support
5139//===----------------------------------------------------------------------===//
5140
5141/// getConstraintType - Given a constraint letter, return the type of
5142/// constraint it is for this target.
5143X86TargetLowering::ConstraintType
5144X86TargetLowering::getConstraintType(char ConstraintLetter) const {
5145  switch (ConstraintLetter) {
5146  case 'A':
5147  case 'r':
5148  case 'R':
5149  case 'l':
5150  case 'q':
5151  case 'Q':
5152  case 'x':
5153  case 'Y':
5154    return C_RegisterClass;
5155  default: return TargetLowering::getConstraintType(ConstraintLetter);
5156  }
5157}
5158
5159/// isOperandValidForConstraint - Return the specified operand (possibly
5160/// modified) if the specified SDOperand is valid for the specified target
5161/// constraint letter, otherwise return null.
5162SDOperand X86TargetLowering::
5163isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
5164  switch (Constraint) {
5165  default: break;
5166  case 'i':
5167    // Literal immediates are always ok.
5168    if (isa<ConstantSDNode>(Op)) return Op;
5169
5170    // If we are in non-pic codegen mode, we allow the address of a global to
5171    // be used with 'i'.
5172    if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5173      if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
5174        return SDOperand(0, 0);
5175
5176      if (GA->getOpcode() != ISD::TargetGlobalAddress)
5177        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5178                                        GA->getOffset());
5179      return Op;
5180    }
5181
5182    // Otherwise, not valid for this mode.
5183    return SDOperand(0, 0);
5184  }
5185  return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
5186}
5187
5188
5189std::vector<unsigned> X86TargetLowering::
5190getRegClassForInlineAsmConstraint(const std::string &Constraint,
5191                                  MVT::ValueType VT) const {
5192  if (Constraint.size() == 1) {
5193    // FIXME: not handling fp-stack yet!
5194    // FIXME: not handling MMX registers yet ('y' constraint).
5195    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5196    default: break;  // Unknown constraint letter
5197    case 'A':   // EAX/EDX
5198      if (VT == MVT::i32 || VT == MVT::i64)
5199        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5200      break;
5201    case 'r':   // GENERAL_REGS
5202    case 'R':   // LEGACY_REGS
5203      if (VT == MVT::i64 && Subtarget->is64Bit())
5204        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
5205                                     X86::RSI, X86::RDI, X86::RBP, X86::RSP,
5206                                     X86::R8,  X86::R9,  X86::R10, X86::R11,
5207                                     X86::R12, X86::R13, X86::R14, X86::R15, 0);
5208      if (VT == MVT::i32)
5209        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
5210                                     X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0);
5211      else if (VT == MVT::i16)
5212        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
5213                                     X86::SI, X86::DI, X86::BP, X86::SP, 0);
5214      else if (VT == MVT::i8)
5215        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5216      break;
5217    case 'l':   // INDEX_REGS
5218      if (VT == MVT::i32)
5219        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
5220                                     X86::ESI, X86::EDI, X86::EBP, 0);
5221      else if (VT == MVT::i16)
5222        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
5223                                     X86::SI, X86::DI, X86::BP, 0);
5224      else if (VT == MVT::i8)
5225        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
5226      break;
5227    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5228    case 'Q':   // Q_REGS
5229      if (VT == MVT::i32)
5230        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5231      else if (VT == MVT::i16)
5232        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5233      else if (VT == MVT::i8)
5234        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
5235        break;
5236    case 'x':   // SSE_REGS if SSE1 allowed
5237      if (Subtarget->hasSSE1())
5238        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
5239                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
5240                                     0);
5241      return std::vector<unsigned>();
5242    case 'Y':   // SSE_REGS if SSE2 allowed
5243      if (Subtarget->hasSSE2())
5244        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
5245                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
5246                                     0);
5247      return std::vector<unsigned>();
5248    }
5249  }
5250
5251  return std::vector<unsigned>();
5252}
5253
5254std::pair<unsigned, const TargetRegisterClass*>
5255X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5256                                                MVT::ValueType VT) const {
5257  // Use the default implementation in TargetLowering to convert the register
5258  // constraint into a member of a register class.
5259  std::pair<unsigned, const TargetRegisterClass*> Res;
5260  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5261
5262  // Not found as a standard register?
5263  if (Res.second == 0) {
5264    // GCC calls "st(0)" just plain "st".
5265    if (StringsEqualNoCase("{st}", Constraint)) {
5266      Res.first = X86::ST0;
5267      Res.second = X86::RSTRegisterClass;
5268    }
5269
5270    return Res;
5271  }
5272
5273  // Otherwise, check to see if this is a register class of the wrong value
5274  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5275  // turn into {ax},{dx}.
5276  if (Res.second->hasType(VT))
5277    return Res;   // Correct type already, nothing to do.
5278
5279  // All of the single-register GCC register classes map their values onto
5280  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5281  // really want an 8-bit or 32-bit register, map to the appropriate register
5282  // class and return the appropriate register.
5283  if (Res.second != X86::GR16RegisterClass)
5284    return Res;
5285
5286  if (VT == MVT::i8) {
5287    unsigned DestReg = 0;
5288    switch (Res.first) {
5289    default: break;
5290    case X86::AX: DestReg = X86::AL; break;
5291    case X86::DX: DestReg = X86::DL; break;
5292    case X86::CX: DestReg = X86::CL; break;
5293    case X86::BX: DestReg = X86::BL; break;
5294    }
5295    if (DestReg) {
5296      Res.first = DestReg;
5297      Res.second = Res.second = X86::GR8RegisterClass;
5298    }
5299  } else if (VT == MVT::i32) {
5300    unsigned DestReg = 0;
5301    switch (Res.first) {
5302    default: break;
5303    case X86::AX: DestReg = X86::EAX; break;
5304    case X86::DX: DestReg = X86::EDX; break;
5305    case X86::CX: DestReg = X86::ECX; break;
5306    case X86::BX: DestReg = X86::EBX; break;
5307    case X86::SI: DestReg = X86::ESI; break;
5308    case X86::DI: DestReg = X86::EDI; break;
5309    case X86::BP: DestReg = X86::EBP; break;
5310    case X86::SP: DestReg = X86::ESP; break;
5311    }
5312    if (DestReg) {
5313      Res.first = DestReg;
5314      Res.second = Res.second = X86::GR32RegisterClass;
5315    }
5316  } else if (VT == MVT::i64) {
5317    unsigned DestReg = 0;
5318    switch (Res.first) {
5319    default: break;
5320    case X86::AX: DestReg = X86::RAX; break;
5321    case X86::DX: DestReg = X86::RDX; break;
5322    case X86::CX: DestReg = X86::RCX; break;
5323    case X86::BX: DestReg = X86::RBX; break;
5324    case X86::SI: DestReg = X86::RSI; break;
5325    case X86::DI: DestReg = X86::RDI; break;
5326    case X86::BP: DestReg = X86::RBP; break;
5327    case X86::SP: DestReg = X86::RSP; break;
5328    }
5329    if (DestReg) {
5330      Res.first = DestReg;
5331      Res.second = Res.second = X86::GR64RegisterClass;
5332    }
5333  }
5334
5335  return Res;
5336}
5337