X86ISelLowering.cpp revision d978c54e607fbcf426db20727d5fed71e1def2f6
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// Forward declarations.
57static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58                       SDValue V2);
59
60/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62/// simple subregister reference.  Idx is an index in the 128 bits we
63/// want.  It need not be aligned to a 128-bit bounday.  That makes
64/// lowering EXTRACT_VECTOR_ELT operations easier.
65static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
66                                   SelectionDAG &DAG, DebugLoc dl) {
67  EVT VT = Vec.getValueType();
68  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
69  EVT ElVT = VT.getVectorElementType();
70  unsigned Factor = VT.getSizeInBits()/128;
71  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
72                                  VT.getVectorNumElements()/Factor);
73
74  // Extract from UNDEF is UNDEF.
75  if (Vec.getOpcode() == ISD::UNDEF)
76    return DAG.getUNDEF(ResultVT);
77
78  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
79  // we can match to VEXTRACTF128.
80  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
81
82  // This is the index of the first element of the 128-bit chunk
83  // we want.
84  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
85                               * ElemsPerChunk);
86
87  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
88  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
89                               VecIdx);
90
91  return Result;
92}
93
94/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
95/// sets things up to match to an AVX VINSERTF128 instruction or a
96/// simple superregister reference.  Idx is an index in the 128 bits
97/// we want.  It need not be aligned to a 128-bit bounday.  That makes
98/// lowering INSERT_VECTOR_ELT operations easier.
99static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
100                                  unsigned IdxVal, SelectionDAG &DAG,
101                                  DebugLoc dl) {
102  EVT VT = Vec.getValueType();
103  assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
104
105  EVT ElVT = VT.getVectorElementType();
106  EVT ResultVT = Result.getValueType();
107
108  // Insert the relevant 128 bits.
109  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
110
111  // This is the index of the first element of the 128-bit chunk
112  // we want.
113  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
114                               * ElemsPerChunk);
115
116  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
117  Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
118                       VecIdx);
119  return Result;
120}
121
122/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
123/// instructions. This is used because creating CONCAT_VECTOR nodes of
124/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
125/// large BUILD_VECTORS.
126static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
127                                   unsigned NumElems, SelectionDAG &DAG,
128                                   DebugLoc dl) {
129  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
130  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
131}
132
133static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
134  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
135  bool is64Bit = Subtarget->is64Bit();
136
137  if (Subtarget->isTargetEnvMacho()) {
138    if (is64Bit)
139      return new X8664_MachoTargetObjectFile();
140    return new TargetLoweringObjectFileMachO();
141  }
142
143  if (Subtarget->isTargetELF())
144    return new TargetLoweringObjectFileELF();
145  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
146    return new TargetLoweringObjectFileCOFF();
147  llvm_unreachable("unknown subtarget type");
148}
149
150X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
151  : TargetLowering(TM, createTLOF(TM)) {
152  Subtarget = &TM.getSubtarget<X86Subtarget>();
153  X86ScalarSSEf64 = Subtarget->hasSSE2();
154  X86ScalarSSEf32 = Subtarget->hasSSE1();
155  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
156
157  RegInfo = TM.getRegisterInfo();
158  TD = getTargetData();
159
160  // Set up the TargetLowering object.
161  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
162
163  // X86 is weird, it always uses i8 for shift amounts and setcc results.
164  setBooleanContents(ZeroOrOneBooleanContent);
165  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
166  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
167
168  // For 64-bit since we have so many registers use the ILP scheduler, for
169  // 32-bit code use the register pressure specific scheduling.
170  // For Atom, always use ILP scheduling.
171  if (Subtarget->isAtom())
172    setSchedulingPreference(Sched::ILP);
173  else if (Subtarget->is64Bit())
174    setSchedulingPreference(Sched::ILP);
175  else
176    setSchedulingPreference(Sched::RegPressure);
177  setStackPointerRegisterToSaveRestore(X86StackPtr);
178
179  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
180    // Setup Windows compiler runtime calls.
181    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
182    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
183    setLibcallName(RTLIB::SREM_I64, "_allrem");
184    setLibcallName(RTLIB::UREM_I64, "_aullrem");
185    setLibcallName(RTLIB::MUL_I64, "_allmul");
186    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
187    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
188    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
189    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
190    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
191
192    // The _ftol2 runtime function has an unusual calling conv, which
193    // is modeled by a special pseudo-instruction.
194    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
195    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
196    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
197    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
198  }
199
200  if (Subtarget->isTargetDarwin()) {
201    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
202    setUseUnderscoreSetJmp(false);
203    setUseUnderscoreLongJmp(false);
204  } else if (Subtarget->isTargetMingw()) {
205    // MS runtime is weird: it exports _setjmp, but longjmp!
206    setUseUnderscoreSetJmp(true);
207    setUseUnderscoreLongJmp(false);
208  } else {
209    setUseUnderscoreSetJmp(true);
210    setUseUnderscoreLongJmp(true);
211  }
212
213  // Set up the register classes.
214  addRegisterClass(MVT::i8, &X86::GR8RegClass);
215  addRegisterClass(MVT::i16, &X86::GR16RegClass);
216  addRegisterClass(MVT::i32, &X86::GR32RegClass);
217  if (Subtarget->is64Bit())
218    addRegisterClass(MVT::i64, &X86::GR64RegClass);
219
220  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
221
222  // We don't accept any truncstore of integer registers.
223  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
224  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
225  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
226  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
227  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
228  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
229
230  // SETOEQ and SETUNE require checking two conditions.
231  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
232  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
233  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
234  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
235  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
236  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
237
238  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
239  // operation.
240  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
241  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
242  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
243
244  if (Subtarget->is64Bit()) {
245    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
246    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
247  } else if (!TM.Options.UseSoftFloat) {
248    // We have an algorithm for SSE2->double, and we turn this into a
249    // 64-bit FILD followed by conditional FADD for other targets.
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
251    // We have an algorithm for SSE2, and we turn this into a 64-bit
252    // FILD for other targets.
253    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
254  }
255
256  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
257  // this operation.
258  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
259  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
260
261  if (!TM.Options.UseSoftFloat) {
262    // SSE has no i16 to fp conversion, only i32
263    if (X86ScalarSSEf32) {
264      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
265      // f32 and f64 cases are Legal, f80 case is not
266      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
267    } else {
268      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
269      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
270    }
271  } else {
272    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
273    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
274  }
275
276  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
277  // are Legal, f80 is custom lowered.
278  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
279  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
280
281  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
282  // this operation.
283  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
284  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
285
286  if (X86ScalarSSEf32) {
287    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
288    // f32 and f64 cases are Legal, f80 case is not
289    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
290  } else {
291    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
292    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
293  }
294
295  // Handle FP_TO_UINT by promoting the destination to a larger signed
296  // conversion.
297  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
298  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
299  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
300
301  if (Subtarget->is64Bit()) {
302    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
303    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
304  } else if (!TM.Options.UseSoftFloat) {
305    // Since AVX is a superset of SSE3, only check for SSE here.
306    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
307      // Expand FP_TO_UINT into a select.
308      // FIXME: We would like to use a Custom expander here eventually to do
309      // the optimal thing for SSE vs. the default expansion in the legalizer.
310      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
311    else
312      // With SSE3 we can use fisttpll to convert to a signed i64; without
313      // SSE, we're stuck with a fistpll.
314      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
315  }
316
317  if (isTargetFTOL()) {
318    // Use the _ftol2 runtime function, which has a pseudo-instruction
319    // to handle its weird calling convention.
320    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
321  }
322
323  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
324  if (!X86ScalarSSEf64) {
325    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
326    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
327    if (Subtarget->is64Bit()) {
328      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
329      // Without SSE, i64->f64 goes through memory.
330      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
331    }
332  }
333
334  // Scalar integer divide and remainder are lowered to use operations that
335  // produce two results, to match the available instructions. This exposes
336  // the two-result form to trivial CSE, which is able to combine x/y and x%y
337  // into a single instruction.
338  //
339  // Scalar integer multiply-high is also lowered to use two-result
340  // operations, to match the available instructions. However, plain multiply
341  // (low) operations are left as Legal, as there are single-result
342  // instructions for this in x86. Using the two-result multiply instructions
343  // when both high and low results are needed must be arranged by dagcombine.
344  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
345    MVT VT = IntVTs[i];
346    setOperationAction(ISD::MULHS, VT, Expand);
347    setOperationAction(ISD::MULHU, VT, Expand);
348    setOperationAction(ISD::SDIV, VT, Expand);
349    setOperationAction(ISD::UDIV, VT, Expand);
350    setOperationAction(ISD::SREM, VT, Expand);
351    setOperationAction(ISD::UREM, VT, Expand);
352
353    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
354    setOperationAction(ISD::ADDC, VT, Custom);
355    setOperationAction(ISD::ADDE, VT, Custom);
356    setOperationAction(ISD::SUBC, VT, Custom);
357    setOperationAction(ISD::SUBE, VT, Custom);
358  }
359
360  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
361  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
362  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
363  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
364  if (Subtarget->is64Bit())
365    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
366  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
367  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
368  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
369  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
370  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
371  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
372  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
373  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
374
375  // Promote the i8 variants and force them on up to i32 which has a shorter
376  // encoding.
377  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
378  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
379  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
380  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
381  if (Subtarget->hasBMI()) {
382    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
383    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
384    if (Subtarget->is64Bit())
385      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
386  } else {
387    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
388    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
389    if (Subtarget->is64Bit())
390      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
391  }
392
393  if (Subtarget->hasLZCNT()) {
394    // When promoting the i8 variants, force them to i32 for a shorter
395    // encoding.
396    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
397    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
398    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
399    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
400    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
401    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
402    if (Subtarget->is64Bit())
403      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
404  } else {
405    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
406    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
407    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
409    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
411    if (Subtarget->is64Bit()) {
412      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
414    }
415  }
416
417  if (Subtarget->hasPOPCNT()) {
418    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
419  } else {
420    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
421    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
422    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
423    if (Subtarget->is64Bit())
424      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
425  }
426
427  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
428  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
429
430  // These should be promoted to a larger select which is supported.
431  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
432  // X86 wants to expand cmov itself.
433  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
434  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
435  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
436  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
437  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
438  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
439  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
440  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
441  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
442  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
444  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
445  if (Subtarget->is64Bit()) {
446    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
447    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
448  }
449  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
450
451  // Darwin ABI issue.
452  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
453  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
454  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
455  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
456  if (Subtarget->is64Bit())
457    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
458  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
459  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
460  if (Subtarget->is64Bit()) {
461    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
462    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
463    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
464    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
465    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
466  }
467  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
468  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
469  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
470  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
471  if (Subtarget->is64Bit()) {
472    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
473    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
474    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
475  }
476
477  if (Subtarget->hasSSE1())
478    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
479
480  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
481  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
482
483  // On X86 and X86-64, atomic operations are lowered to locked instructions.
484  // Locked instructions, in turn, have implicit fence semantics (all memory
485  // operations are flushed before issuing the locked instruction, and they
486  // are not buffered), so we can fold away the common pattern of
487  // fence-atomic-fence.
488  setShouldFoldAtomicFences(true);
489
490  // Expand certain atomics
491  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
492    MVT VT = IntVTs[i];
493    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
494    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
495    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
496  }
497
498  if (!Subtarget->is64Bit()) {
499    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
501    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
502    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
503    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
507  }
508
509  if (Subtarget->hasCmpxchg16b()) {
510    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
511  }
512
513  // FIXME - use subtarget debug flags
514  if (!Subtarget->isTargetDarwin() &&
515      !Subtarget->isTargetELF() &&
516      !Subtarget->isTargetCygMing()) {
517    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
518  }
519
520  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
521  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
522  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
523  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
524  if (Subtarget->is64Bit()) {
525    setExceptionPointerRegister(X86::RAX);
526    setExceptionSelectorRegister(X86::RDX);
527  } else {
528    setExceptionPointerRegister(X86::EAX);
529    setExceptionSelectorRegister(X86::EDX);
530  }
531  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
532  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
533
534  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
535  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
536
537  setOperationAction(ISD::TRAP, MVT::Other, Legal);
538
539  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
540  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
541  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
542  if (Subtarget->is64Bit()) {
543    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
544    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
545  } else {
546    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
547    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
548  }
549
550  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
551  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
552
553  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
554    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
555                       MVT::i64 : MVT::i32, Custom);
556  else if (TM.Options.EnableSegmentedStacks)
557    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
558                       MVT::i64 : MVT::i32, Custom);
559  else
560    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
561                       MVT::i64 : MVT::i32, Expand);
562
563  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
564    // f32 and f64 use SSE.
565    // Set up the FP register classes.
566    addRegisterClass(MVT::f32, &X86::FR32RegClass);
567    addRegisterClass(MVT::f64, &X86::FR64RegClass);
568
569    // Use ANDPD to simulate FABS.
570    setOperationAction(ISD::FABS , MVT::f64, Custom);
571    setOperationAction(ISD::FABS , MVT::f32, Custom);
572
573    // Use XORP to simulate FNEG.
574    setOperationAction(ISD::FNEG , MVT::f64, Custom);
575    setOperationAction(ISD::FNEG , MVT::f32, Custom);
576
577    // Use ANDPD and ORPD to simulate FCOPYSIGN.
578    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
579    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
580
581    // Lower this to FGETSIGNx86 plus an AND.
582    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
583    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
584
585    // We don't support sin/cos/fmod
586    setOperationAction(ISD::FSIN , MVT::f64, Expand);
587    setOperationAction(ISD::FCOS , MVT::f64, Expand);
588    setOperationAction(ISD::FSIN , MVT::f32, Expand);
589    setOperationAction(ISD::FCOS , MVT::f32, Expand);
590
591    // Expand FP immediates into loads from the stack, except for the special
592    // cases we handle.
593    addLegalFPImmediate(APFloat(+0.0)); // xorpd
594    addLegalFPImmediate(APFloat(+0.0f)); // xorps
595  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
596    // Use SSE for f32, x87 for f64.
597    // Set up the FP register classes.
598    addRegisterClass(MVT::f32, &X86::FR32RegClass);
599    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
600
601    // Use ANDPS to simulate FABS.
602    setOperationAction(ISD::FABS , MVT::f32, Custom);
603
604    // Use XORP to simulate FNEG.
605    setOperationAction(ISD::FNEG , MVT::f32, Custom);
606
607    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
608
609    // Use ANDPS and ORPS to simulate FCOPYSIGN.
610    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
611    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
612
613    // We don't support sin/cos/fmod
614    setOperationAction(ISD::FSIN , MVT::f32, Expand);
615    setOperationAction(ISD::FCOS , MVT::f32, Expand);
616
617    // Special cases we handle for FP constants.
618    addLegalFPImmediate(APFloat(+0.0f)); // xorps
619    addLegalFPImmediate(APFloat(+0.0)); // FLD0
620    addLegalFPImmediate(APFloat(+1.0)); // FLD1
621    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
622    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
623
624    if (!TM.Options.UnsafeFPMath) {
625      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
626      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
627    }
628  } else if (!TM.Options.UseSoftFloat) {
629    // f32 and f64 in x87.
630    // Set up the FP register classes.
631    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
632    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
633
634    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
635    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
636    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
637    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
638
639    if (!TM.Options.UnsafeFPMath) {
640      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
641      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
642    }
643    addLegalFPImmediate(APFloat(+0.0)); // FLD0
644    addLegalFPImmediate(APFloat(+1.0)); // FLD1
645    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
646    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
647    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
648    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
649    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
650    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
651  }
652
653  // We don't support FMA.
654  setOperationAction(ISD::FMA, MVT::f64, Expand);
655  setOperationAction(ISD::FMA, MVT::f32, Expand);
656
657  // Long double always uses X87.
658  if (!TM.Options.UseSoftFloat) {
659    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
660    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
661    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
662    {
663      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
664      addLegalFPImmediate(TmpFlt);  // FLD0
665      TmpFlt.changeSign();
666      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
667
668      bool ignored;
669      APFloat TmpFlt2(+1.0);
670      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
671                      &ignored);
672      addLegalFPImmediate(TmpFlt2);  // FLD1
673      TmpFlt2.changeSign();
674      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
675    }
676
677    if (!TM.Options.UnsafeFPMath) {
678      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
679      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
680    }
681
682    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
683    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
684    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
685    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
686    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
687    setOperationAction(ISD::FMA, MVT::f80, Expand);
688  }
689
690  // Always use a library call for pow.
691  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
692  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
693  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
694
695  setOperationAction(ISD::FLOG, MVT::f80, Expand);
696  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
697  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
698  setOperationAction(ISD::FEXP, MVT::f80, Expand);
699  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
700
701  // First set operation action for all vector types to either promote
702  // (for widening) or expand (for scalarization). Then we will selectively
703  // turn on ones that can be effectively codegen'd.
704  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
705           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
706    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
721    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
723    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
724    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
758    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
763    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
764             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
765      setTruncStoreAction((MVT::SimpleValueType)VT,
766                          (MVT::SimpleValueType)InnerVT, Expand);
767    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
768    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
769    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
770  }
771
772  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
773  // with -msoft-float, disable use of MMX as well.
774  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
775    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
776    // No operations on x86mmx supported, everything uses intrinsics.
777  }
778
779  // MMX-sized vectors (other than x86mmx) are expected to be expanded
780  // into smaller operations.
781  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
782  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
783  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
784  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
785  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
786  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
787  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
788  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
789  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
790  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
791  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
792  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
793  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
794  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
795  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
796  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
797  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
798  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
799  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
800  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
801  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
802  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
803  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
804  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
805  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
806  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
807  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
808  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
809  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
810
811  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
812    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
813
814    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
815    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
816    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
817    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
818    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
819    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
820    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
821    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
822    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
823    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
824    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
825    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
826  }
827
828  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
829    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
830
831    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
832    // registers cannot be used even for integer operations.
833    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
834    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
835    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
836    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
837
838    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
839    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
840    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
841    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
842    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
843    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
844    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
845    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
846    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
847    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
848    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
849    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
850    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
851    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
852    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
853    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
854
855    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
856    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
857    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
858    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
859
860    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
861    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
862    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
863    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
864    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
865
866    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
867    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
868    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
869    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
871
872    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
873    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
874      EVT VT = (MVT::SimpleValueType)i;
875      // Do not attempt to custom lower non-power-of-2 vectors
876      if (!isPowerOf2_32(VT.getVectorNumElements()))
877        continue;
878      // Do not attempt to custom lower non-128-bit vectors
879      if (!VT.is128BitVector())
880        continue;
881      setOperationAction(ISD::BUILD_VECTOR,
882                         VT.getSimpleVT().SimpleTy, Custom);
883      setOperationAction(ISD::VECTOR_SHUFFLE,
884                         VT.getSimpleVT().SimpleTy, Custom);
885      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
886                         VT.getSimpleVT().SimpleTy, Custom);
887    }
888
889    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
890    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
891    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
892    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
893    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
894    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
895
896    if (Subtarget->is64Bit()) {
897      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
898      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
899    }
900
901    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
902    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
903      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
904      EVT VT = SVT;
905
906      // Do not attempt to promote non-128-bit vectors
907      if (!VT.is128BitVector())
908        continue;
909
910      setOperationAction(ISD::AND,    SVT, Promote);
911      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
912      setOperationAction(ISD::OR,     SVT, Promote);
913      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
914      setOperationAction(ISD::XOR,    SVT, Promote);
915      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
916      setOperationAction(ISD::LOAD,   SVT, Promote);
917      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
918      setOperationAction(ISD::SELECT, SVT, Promote);
919      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
920    }
921
922    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
923
924    // Custom lower v2i64 and v2f64 selects.
925    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
926    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
927    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
928    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
929
930    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
931    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
932  }
933
934  if (Subtarget->hasSSE41()) {
935    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
936    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
937    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
938    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
939    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
940    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
941    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
942    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
943    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
944    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
945
946    // FIXME: Do we need to handle scalar-to-vector here?
947    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
948
949    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
950    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
951    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
952    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
953    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
954
955    // i8 and i16 vectors are custom , because the source register and source
956    // source memory operand types are not the same width.  f32 vectors are
957    // custom since the immediate controlling the insert encodes additional
958    // information.
959    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
960    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
961    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
962    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
963
964    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
965    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
966    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
967    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
968
969    // FIXME: these should be Legal but thats only for the case where
970    // the index is constant.  For now custom expand to deal with that.
971    if (Subtarget->is64Bit()) {
972      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
973      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
974    }
975  }
976
977  if (Subtarget->hasSSE2()) {
978    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
979    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
980
981    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
982    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
983
984    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
985    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
986
987    if (Subtarget->hasAVX2()) {
988      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
989      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
990
991      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
992      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
993
994      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
995    } else {
996      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
997      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
998
999      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1000      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1001
1002      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1003    }
1004  }
1005
1006  if (Subtarget->hasSSE42())
1007    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1008
1009  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1010    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1011    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1012    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1013    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1014    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1015    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1016
1017    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1018    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1019    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1020
1021    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1023    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1024    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1025    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1026    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1027
1028    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1029    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1030    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1031    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1032    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1033    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1034
1035    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1036    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1037    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1038
1039    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1040    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1041    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1042    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1045
1046    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1047    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1048
1049    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1050    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1051
1052    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1053    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1054
1055    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1056    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1057    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1058    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1059
1060    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1061    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1062    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1063
1064    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1065    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1066    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1067    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1068
1069    if (Subtarget->hasAVX2()) {
1070      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1071      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1072      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1073      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1074
1075      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1076      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1077      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1078      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1079
1080      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1081      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1082      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1083      // Don't lower v32i8 because there is no 128-bit byte mul
1084
1085      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1086
1087      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1088      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1089
1090      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1091      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1092
1093      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1094    } else {
1095      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1096      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1097      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1098      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1099
1100      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1101      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1102      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1103      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1104
1105      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1106      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1107      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1108      // Don't lower v32i8 because there is no 128-bit byte mul
1109
1110      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1111      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1112
1113      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1114      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1115
1116      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1117    }
1118
1119    // Custom lower several nodes for 256-bit types.
1120    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1121             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1122      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1123      EVT VT = SVT;
1124
1125      // Extract subvector is special because the value type
1126      // (result) is 128-bit but the source is 256-bit wide.
1127      if (VT.is128BitVector())
1128        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1129
1130      // Do not attempt to custom lower other non-256-bit vectors
1131      if (!VT.is256BitVector())
1132        continue;
1133
1134      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1135      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1136      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1137      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1138      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1139      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1140    }
1141
1142    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1143    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1144      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1145      EVT VT = SVT;
1146
1147      // Do not attempt to promote non-256-bit vectors
1148      if (!VT.is256BitVector())
1149        continue;
1150
1151      setOperationAction(ISD::AND,    SVT, Promote);
1152      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1153      setOperationAction(ISD::OR,     SVT, Promote);
1154      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1155      setOperationAction(ISD::XOR,    SVT, Promote);
1156      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1157      setOperationAction(ISD::LOAD,   SVT, Promote);
1158      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1159      setOperationAction(ISD::SELECT, SVT, Promote);
1160      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1161    }
1162  }
1163
1164  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1165  // of this type with custom code.
1166  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1167           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1168    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1169                       Custom);
1170  }
1171
1172  // We want to custom lower some of our intrinsics.
1173  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1174
1175
1176  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1177  // handle type legalization for these operations here.
1178  //
1179  // FIXME: We really should do custom legalization for addition and
1180  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1181  // than generic legalization for 64-bit multiplication-with-overflow, though.
1182  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1183    // Add/Sub/Mul with overflow operations are custom lowered.
1184    MVT VT = IntVTs[i];
1185    setOperationAction(ISD::SADDO, VT, Custom);
1186    setOperationAction(ISD::UADDO, VT, Custom);
1187    setOperationAction(ISD::SSUBO, VT, Custom);
1188    setOperationAction(ISD::USUBO, VT, Custom);
1189    setOperationAction(ISD::SMULO, VT, Custom);
1190    setOperationAction(ISD::UMULO, VT, Custom);
1191  }
1192
1193  // There are no 8-bit 3-address imul/mul instructions
1194  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1195  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1196
1197  if (!Subtarget->is64Bit()) {
1198    // These libcalls are not available in 32-bit.
1199    setLibcallName(RTLIB::SHL_I128, 0);
1200    setLibcallName(RTLIB::SRL_I128, 0);
1201    setLibcallName(RTLIB::SRA_I128, 0);
1202  }
1203
1204  // We have target-specific dag combine patterns for the following nodes:
1205  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1206  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1207  setTargetDAGCombine(ISD::VSELECT);
1208  setTargetDAGCombine(ISD::SELECT);
1209  setTargetDAGCombine(ISD::SHL);
1210  setTargetDAGCombine(ISD::SRA);
1211  setTargetDAGCombine(ISD::SRL);
1212  setTargetDAGCombine(ISD::OR);
1213  setTargetDAGCombine(ISD::AND);
1214  setTargetDAGCombine(ISD::ADD);
1215  setTargetDAGCombine(ISD::FADD);
1216  setTargetDAGCombine(ISD::FSUB);
1217  setTargetDAGCombine(ISD::SUB);
1218  setTargetDAGCombine(ISD::LOAD);
1219  setTargetDAGCombine(ISD::STORE);
1220  setTargetDAGCombine(ISD::ZERO_EXTEND);
1221  setTargetDAGCombine(ISD::ANY_EXTEND);
1222  setTargetDAGCombine(ISD::SIGN_EXTEND);
1223  setTargetDAGCombine(ISD::TRUNCATE);
1224  setTargetDAGCombine(ISD::UINT_TO_FP);
1225  setTargetDAGCombine(ISD::SINT_TO_FP);
1226  setTargetDAGCombine(ISD::SETCC);
1227  setTargetDAGCombine(ISD::FP_TO_SINT);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  // Predictable cmov don't hurt on atom because it's in-order.
1247  predictableSelectIsExpensive = !Subtarget->isAtom();
1248
1249  setPrefFunctionAlignment(4); // 2^4 bytes.
1250}
1251
1252
1253EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1254  if (!VT.isVector()) return MVT::i8;
1255  return VT.changeVectorElementTypeToInteger();
1256}
1257
1258
1259/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1260/// the desired ByVal argument alignment.
1261static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1262  if (MaxAlign == 16)
1263    return;
1264  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1265    if (VTy->getBitWidth() == 128)
1266      MaxAlign = 16;
1267  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1268    unsigned EltAlign = 0;
1269    getMaxByValAlign(ATy->getElementType(), EltAlign);
1270    if (EltAlign > MaxAlign)
1271      MaxAlign = EltAlign;
1272  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1273    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1274      unsigned EltAlign = 0;
1275      getMaxByValAlign(STy->getElementType(i), EltAlign);
1276      if (EltAlign > MaxAlign)
1277        MaxAlign = EltAlign;
1278      if (MaxAlign == 16)
1279        break;
1280    }
1281  }
1282}
1283
1284/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1285/// function arguments in the caller parameter area. For X86, aggregates
1286/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1287/// are at 4-byte boundaries.
1288unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1289  if (Subtarget->is64Bit()) {
1290    // Max of 8 and alignment of type.
1291    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1292    if (TyAlign > 8)
1293      return TyAlign;
1294    return 8;
1295  }
1296
1297  unsigned Align = 4;
1298  if (Subtarget->hasSSE1())
1299    getMaxByValAlign(Ty, Align);
1300  return Align;
1301}
1302
1303/// getOptimalMemOpType - Returns the target specific optimal type for load
1304/// and store operations as a result of memset, memcpy, and memmove
1305/// lowering. If DstAlign is zero that means it's safe to destination
1306/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1307/// means there isn't a need to check it against alignment requirement,
1308/// probably because the source does not need to be loaded. If
1309/// 'IsZeroVal' is true, that means it's safe to return a
1310/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1311/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1312/// constant so it does not need to be loaded.
1313/// It returns EVT::Other if the type should be determined using generic
1314/// target-independent logic.
1315EVT
1316X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1317                                       unsigned DstAlign, unsigned SrcAlign,
1318                                       bool IsZeroVal,
1319                                       bool MemcpyStrSrc,
1320                                       MachineFunction &MF) const {
1321  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1322  // linux.  This is because the stack realignment code can't handle certain
1323  // cases like PR2962.  This should be removed when PR2962 is fixed.
1324  const Function *F = MF.getFunction();
1325  if (IsZeroVal &&
1326      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1327    if (Size >= 16 &&
1328        (Subtarget->isUnalignedMemAccessFast() ||
1329         ((DstAlign == 0 || DstAlign >= 16) &&
1330          (SrcAlign == 0 || SrcAlign >= 16))) &&
1331        Subtarget->getStackAlignment() >= 16) {
1332      if (Subtarget->getStackAlignment() >= 32) {
1333        if (Subtarget->hasAVX2())
1334          return MVT::v8i32;
1335        if (Subtarget->hasAVX())
1336          return MVT::v8f32;
1337      }
1338      if (Subtarget->hasSSE2())
1339        return MVT::v4i32;
1340      if (Subtarget->hasSSE1())
1341        return MVT::v4f32;
1342    } else if (!MemcpyStrSrc && Size >= 8 &&
1343               !Subtarget->is64Bit() &&
1344               Subtarget->getStackAlignment() >= 8 &&
1345               Subtarget->hasSSE2()) {
1346      // Do not use f64 to lower memcpy if source is string constant. It's
1347      // better to use i32 to avoid the loads.
1348      return MVT::f64;
1349    }
1350  }
1351  if (Subtarget->is64Bit() && Size >= 8)
1352    return MVT::i64;
1353  return MVT::i32;
1354}
1355
1356/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1357/// current function.  The returned value is a member of the
1358/// MachineJumpTableInfo::JTEntryKind enum.
1359unsigned X86TargetLowering::getJumpTableEncoding() const {
1360  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1361  // symbol.
1362  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1363      Subtarget->isPICStyleGOT())
1364    return MachineJumpTableInfo::EK_Custom32;
1365
1366  // Otherwise, use the normal jump table encoding heuristics.
1367  return TargetLowering::getJumpTableEncoding();
1368}
1369
1370const MCExpr *
1371X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1372                                             const MachineBasicBlock *MBB,
1373                                             unsigned uid,MCContext &Ctx) const{
1374  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1375         Subtarget->isPICStyleGOT());
1376  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1377  // entries.
1378  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1379                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1380}
1381
1382/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1383/// jumptable.
1384SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1385                                                    SelectionDAG &DAG) const {
1386  if (!Subtarget->is64Bit())
1387    // This doesn't have DebugLoc associated with it, but is not really the
1388    // same as a Register.
1389    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1390  return Table;
1391}
1392
1393/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1394/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1395/// MCExpr.
1396const MCExpr *X86TargetLowering::
1397getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1398                             MCContext &Ctx) const {
1399  // X86-64 uses RIP relative addressing based on the jump table label.
1400  if (Subtarget->isPICStyleRIPRel())
1401    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1402
1403  // Otherwise, the reference is relative to the PIC base.
1404  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1405}
1406
1407// FIXME: Why this routine is here? Move to RegInfo!
1408std::pair<const TargetRegisterClass*, uint8_t>
1409X86TargetLowering::findRepresentativeClass(EVT VT) const{
1410  const TargetRegisterClass *RRC = 0;
1411  uint8_t Cost = 1;
1412  switch (VT.getSimpleVT().SimpleTy) {
1413  default:
1414    return TargetLowering::findRepresentativeClass(VT);
1415  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1416    RRC = Subtarget->is64Bit() ?
1417      (const TargetRegisterClass*)&X86::GR64RegClass :
1418      (const TargetRegisterClass*)&X86::GR32RegClass;
1419    break;
1420  case MVT::x86mmx:
1421    RRC = &X86::VR64RegClass;
1422    break;
1423  case MVT::f32: case MVT::f64:
1424  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1425  case MVT::v4f32: case MVT::v2f64:
1426  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1427  case MVT::v4f64:
1428    RRC = &X86::VR128RegClass;
1429    break;
1430  }
1431  return std::make_pair(RRC, Cost);
1432}
1433
1434bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1435                                               unsigned &Offset) const {
1436  if (!Subtarget->isTargetLinux())
1437    return false;
1438
1439  if (Subtarget->is64Bit()) {
1440    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1441    Offset = 0x28;
1442    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1443      AddressSpace = 256;
1444    else
1445      AddressSpace = 257;
1446  } else {
1447    // %gs:0x14 on i386
1448    Offset = 0x14;
1449    AddressSpace = 256;
1450  }
1451  return true;
1452}
1453
1454
1455//===----------------------------------------------------------------------===//
1456//               Return Value Calling Convention Implementation
1457//===----------------------------------------------------------------------===//
1458
1459#include "X86GenCallingConv.inc"
1460
1461bool
1462X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1463                                  MachineFunction &MF, bool isVarArg,
1464                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1465                        LLVMContext &Context) const {
1466  SmallVector<CCValAssign, 16> RVLocs;
1467  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1468                 RVLocs, Context);
1469  return CCInfo.CheckReturn(Outs, RetCC_X86);
1470}
1471
1472SDValue
1473X86TargetLowering::LowerReturn(SDValue Chain,
1474                               CallingConv::ID CallConv, bool isVarArg,
1475                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1476                               const SmallVectorImpl<SDValue> &OutVals,
1477                               DebugLoc dl, SelectionDAG &DAG) const {
1478  MachineFunction &MF = DAG.getMachineFunction();
1479  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1480
1481  SmallVector<CCValAssign, 16> RVLocs;
1482  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1483                 RVLocs, *DAG.getContext());
1484  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1485
1486  // Add the regs to the liveout set for the function.
1487  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1488  for (unsigned i = 0; i != RVLocs.size(); ++i)
1489    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1490      MRI.addLiveOut(RVLocs[i].getLocReg());
1491
1492  SDValue Flag;
1493
1494  SmallVector<SDValue, 6> RetOps;
1495  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1496  // Operand #1 = Bytes To Pop
1497  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1498                   MVT::i16));
1499
1500  // Copy the result values into the output registers.
1501  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1502    CCValAssign &VA = RVLocs[i];
1503    assert(VA.isRegLoc() && "Can only return in registers!");
1504    SDValue ValToCopy = OutVals[i];
1505    EVT ValVT = ValToCopy.getValueType();
1506
1507    // If this is x86-64, and we disabled SSE, we can't return FP values,
1508    // or SSE or MMX vectors.
1509    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1510         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1511          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1512      report_fatal_error("SSE register return with SSE disabled");
1513    }
1514    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1515    // llvm-gcc has never done it right and no one has noticed, so this
1516    // should be OK for now.
1517    if (ValVT == MVT::f64 &&
1518        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1519      report_fatal_error("SSE2 register return with SSE2 disabled");
1520
1521    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1522    // the RET instruction and handled by the FP Stackifier.
1523    if (VA.getLocReg() == X86::ST0 ||
1524        VA.getLocReg() == X86::ST1) {
1525      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1526      // change the value to the FP stack register class.
1527      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1528        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1529      RetOps.push_back(ValToCopy);
1530      // Don't emit a copytoreg.
1531      continue;
1532    }
1533
1534    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1535    // which is returned in RAX / RDX.
1536    if (Subtarget->is64Bit()) {
1537      if (ValVT == MVT::x86mmx) {
1538        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1539          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1540          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1541                                  ValToCopy);
1542          // If we don't have SSE2 available, convert to v4f32 so the generated
1543          // register is legal.
1544          if (!Subtarget->hasSSE2())
1545            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1546        }
1547      }
1548    }
1549
1550    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1551    Flag = Chain.getValue(1);
1552  }
1553
1554  // The x86-64 ABI for returning structs by value requires that we copy
1555  // the sret argument into %rax for the return. We saved the argument into
1556  // a virtual register in the entry block, so now we copy the value out
1557  // and into %rax.
1558  if (Subtarget->is64Bit() &&
1559      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1560    MachineFunction &MF = DAG.getMachineFunction();
1561    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1562    unsigned Reg = FuncInfo->getSRetReturnReg();
1563    assert(Reg &&
1564           "SRetReturnReg should have been set in LowerFormalArguments().");
1565    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1566
1567    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1568    Flag = Chain.getValue(1);
1569
1570    // RAX now acts like a return value.
1571    MRI.addLiveOut(X86::RAX);
1572  }
1573
1574  RetOps[0] = Chain;  // Update chain.
1575
1576  // Add the flag if we have it.
1577  if (Flag.getNode())
1578    RetOps.push_back(Flag);
1579
1580  return DAG.getNode(X86ISD::RET_FLAG, dl,
1581                     MVT::Other, &RetOps[0], RetOps.size());
1582}
1583
1584bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1585  if (N->getNumValues() != 1)
1586    return false;
1587  if (!N->hasNUsesOfValue(1, 0))
1588    return false;
1589
1590  SDValue TCChain = Chain;
1591  SDNode *Copy = *N->use_begin();
1592  if (Copy->getOpcode() == ISD::CopyToReg) {
1593    // If the copy has a glue operand, we conservatively assume it isn't safe to
1594    // perform a tail call.
1595    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1596      return false;
1597    TCChain = Copy->getOperand(0);
1598  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1599    return false;
1600
1601  bool HasRet = false;
1602  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1603       UI != UE; ++UI) {
1604    if (UI->getOpcode() != X86ISD::RET_FLAG)
1605      return false;
1606    HasRet = true;
1607  }
1608
1609  if (!HasRet)
1610    return false;
1611
1612  Chain = TCChain;
1613  return true;
1614}
1615
1616EVT
1617X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1618                                            ISD::NodeType ExtendKind) const {
1619  MVT ReturnMVT;
1620  // TODO: Is this also valid on 32-bit?
1621  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1622    ReturnMVT = MVT::i8;
1623  else
1624    ReturnMVT = MVT::i32;
1625
1626  EVT MinVT = getRegisterType(Context, ReturnMVT);
1627  return VT.bitsLT(MinVT) ? MinVT : VT;
1628}
1629
1630/// LowerCallResult - Lower the result values of a call into the
1631/// appropriate copies out of appropriate physical registers.
1632///
1633SDValue
1634X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1635                                   CallingConv::ID CallConv, bool isVarArg,
1636                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1637                                   DebugLoc dl, SelectionDAG &DAG,
1638                                   SmallVectorImpl<SDValue> &InVals) const {
1639
1640  // Assign locations to each value returned by this call.
1641  SmallVector<CCValAssign, 16> RVLocs;
1642  bool Is64Bit = Subtarget->is64Bit();
1643  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1644                 getTargetMachine(), RVLocs, *DAG.getContext());
1645  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1646
1647  // Copy all of the result registers out of their specified physreg.
1648  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1649    CCValAssign &VA = RVLocs[i];
1650    EVT CopyVT = VA.getValVT();
1651
1652    // If this is x86-64, and we disabled SSE, we can't return FP values
1653    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1654        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1655      report_fatal_error("SSE register return with SSE disabled");
1656    }
1657
1658    SDValue Val;
1659
1660    // If this is a call to a function that returns an fp value on the floating
1661    // point stack, we must guarantee the the value is popped from the stack, so
1662    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1663    // if the return value is not used. We use the FpPOP_RETVAL instruction
1664    // instead.
1665    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1666      // If we prefer to use the value in xmm registers, copy it out as f80 and
1667      // use a truncate to move it from fp stack reg to xmm reg.
1668      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1669      SDValue Ops[] = { Chain, InFlag };
1670      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1671                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1672      Val = Chain.getValue(0);
1673
1674      // Round the f80 to the right size, which also moves it to the appropriate
1675      // xmm register.
1676      if (CopyVT != VA.getValVT())
1677        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1678                          // This truncation won't change the value.
1679                          DAG.getIntPtrConstant(1));
1680    } else {
1681      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1682                                 CopyVT, InFlag).getValue(1);
1683      Val = Chain.getValue(0);
1684    }
1685    InFlag = Chain.getValue(2);
1686    InVals.push_back(Val);
1687  }
1688
1689  return Chain;
1690}
1691
1692
1693//===----------------------------------------------------------------------===//
1694//                C & StdCall & Fast Calling Convention implementation
1695//===----------------------------------------------------------------------===//
1696//  StdCall calling convention seems to be standard for many Windows' API
1697//  routines and around. It differs from C calling convention just a little:
1698//  callee should clean up the stack, not caller. Symbols should be also
1699//  decorated in some fancy way :) It doesn't support any vector arguments.
1700//  For info on fast calling convention see Fast Calling Convention (tail call)
1701//  implementation LowerX86_32FastCCCallTo.
1702
1703/// CallIsStructReturn - Determines whether a call uses struct return
1704/// semantics.
1705static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1706  if (Outs.empty())
1707    return false;
1708
1709  return Outs[0].Flags.isSRet();
1710}
1711
1712/// ArgsAreStructReturn - Determines whether a function uses struct
1713/// return semantics.
1714static bool
1715ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1716  if (Ins.empty())
1717    return false;
1718
1719  return Ins[0].Flags.isSRet();
1720}
1721
1722/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1723/// by "Src" to address "Dst" with size and alignment information specified by
1724/// the specific parameter attribute. The copy will be passed as a byval
1725/// function parameter.
1726static SDValue
1727CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1728                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1729                          DebugLoc dl) {
1730  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1731
1732  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1733                       /*isVolatile*/false, /*AlwaysInline=*/true,
1734                       MachinePointerInfo(), MachinePointerInfo());
1735}
1736
1737/// IsTailCallConvention - Return true if the calling convention is one that
1738/// supports tail call optimization.
1739static bool IsTailCallConvention(CallingConv::ID CC) {
1740  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1741}
1742
1743bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1744  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1745    return false;
1746
1747  CallSite CS(CI);
1748  CallingConv::ID CalleeCC = CS.getCallingConv();
1749  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1750    return false;
1751
1752  return true;
1753}
1754
1755/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1756/// a tailcall target by changing its ABI.
1757static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1758                                   bool GuaranteedTailCallOpt) {
1759  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1760}
1761
1762SDValue
1763X86TargetLowering::LowerMemArgument(SDValue Chain,
1764                                    CallingConv::ID CallConv,
1765                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1766                                    DebugLoc dl, SelectionDAG &DAG,
1767                                    const CCValAssign &VA,
1768                                    MachineFrameInfo *MFI,
1769                                    unsigned i) const {
1770  // Create the nodes corresponding to a load from this parameter slot.
1771  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1772  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1773                              getTargetMachine().Options.GuaranteedTailCallOpt);
1774  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1775  EVT ValVT;
1776
1777  // If value is passed by pointer we have address passed instead of the value
1778  // itself.
1779  if (VA.getLocInfo() == CCValAssign::Indirect)
1780    ValVT = VA.getLocVT();
1781  else
1782    ValVT = VA.getValVT();
1783
1784  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1785  // changed with more analysis.
1786  // In case of tail call optimization mark all arguments mutable. Since they
1787  // could be overwritten by lowering of arguments in case of a tail call.
1788  if (Flags.isByVal()) {
1789    unsigned Bytes = Flags.getByValSize();
1790    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1791    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1792    return DAG.getFrameIndex(FI, getPointerTy());
1793  } else {
1794    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1795                                    VA.getLocMemOffset(), isImmutable);
1796    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1797    return DAG.getLoad(ValVT, dl, Chain, FIN,
1798                       MachinePointerInfo::getFixedStack(FI),
1799                       false, false, false, 0);
1800  }
1801}
1802
1803SDValue
1804X86TargetLowering::LowerFormalArguments(SDValue Chain,
1805                                        CallingConv::ID CallConv,
1806                                        bool isVarArg,
1807                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1808                                        DebugLoc dl,
1809                                        SelectionDAG &DAG,
1810                                        SmallVectorImpl<SDValue> &InVals)
1811                                          const {
1812  MachineFunction &MF = DAG.getMachineFunction();
1813  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1814
1815  const Function* Fn = MF.getFunction();
1816  if (Fn->hasExternalLinkage() &&
1817      Subtarget->isTargetCygMing() &&
1818      Fn->getName() == "main")
1819    FuncInfo->setForceFramePointer(true);
1820
1821  MachineFrameInfo *MFI = MF.getFrameInfo();
1822  bool Is64Bit = Subtarget->is64Bit();
1823  bool IsWindows = Subtarget->isTargetWindows();
1824  bool IsWin64 = Subtarget->isTargetWin64();
1825
1826  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1827         "Var args not supported with calling convention fastcc or ghc");
1828
1829  // Assign locations to all of the incoming arguments.
1830  SmallVector<CCValAssign, 16> ArgLocs;
1831  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1832                 ArgLocs, *DAG.getContext());
1833
1834  // Allocate shadow area for Win64
1835  if (IsWin64) {
1836    CCInfo.AllocateStack(32, 8);
1837  }
1838
1839  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1840
1841  unsigned LastVal = ~0U;
1842  SDValue ArgValue;
1843  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1844    CCValAssign &VA = ArgLocs[i];
1845    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1846    // places.
1847    assert(VA.getValNo() != LastVal &&
1848           "Don't support value assigned to multiple locs yet");
1849    (void)LastVal;
1850    LastVal = VA.getValNo();
1851
1852    if (VA.isRegLoc()) {
1853      EVT RegVT = VA.getLocVT();
1854      const TargetRegisterClass *RC;
1855      if (RegVT == MVT::i32)
1856        RC = &X86::GR32RegClass;
1857      else if (Is64Bit && RegVT == MVT::i64)
1858        RC = &X86::GR64RegClass;
1859      else if (RegVT == MVT::f32)
1860        RC = &X86::FR32RegClass;
1861      else if (RegVT == MVT::f64)
1862        RC = &X86::FR64RegClass;
1863      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1864        RC = &X86::VR256RegClass;
1865      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1866        RC = &X86::VR128RegClass;
1867      else if (RegVT == MVT::x86mmx)
1868        RC = &X86::VR64RegClass;
1869      else
1870        llvm_unreachable("Unknown argument type!");
1871
1872      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1873      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1874
1875      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1876      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1877      // right size.
1878      if (VA.getLocInfo() == CCValAssign::SExt)
1879        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1880                               DAG.getValueType(VA.getValVT()));
1881      else if (VA.getLocInfo() == CCValAssign::ZExt)
1882        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1883                               DAG.getValueType(VA.getValVT()));
1884      else if (VA.getLocInfo() == CCValAssign::BCvt)
1885        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1886
1887      if (VA.isExtInLoc()) {
1888        // Handle MMX values passed in XMM regs.
1889        if (RegVT.isVector()) {
1890          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1891                                 ArgValue);
1892        } else
1893          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1894      }
1895    } else {
1896      assert(VA.isMemLoc());
1897      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1898    }
1899
1900    // If value is passed via pointer - do a load.
1901    if (VA.getLocInfo() == CCValAssign::Indirect)
1902      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1903                             MachinePointerInfo(), false, false, false, 0);
1904
1905    InVals.push_back(ArgValue);
1906  }
1907
1908  // The x86-64 ABI for returning structs by value requires that we copy
1909  // the sret argument into %rax for the return. Save the argument into
1910  // a virtual register so that we can access it from the return points.
1911  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1912    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1913    unsigned Reg = FuncInfo->getSRetReturnReg();
1914    if (!Reg) {
1915      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1916      FuncInfo->setSRetReturnReg(Reg);
1917    }
1918    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1919    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1920  }
1921
1922  unsigned StackSize = CCInfo.getNextStackOffset();
1923  // Align stack specially for tail calls.
1924  if (FuncIsMadeTailCallSafe(CallConv,
1925                             MF.getTarget().Options.GuaranteedTailCallOpt))
1926    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1927
1928  // If the function takes variable number of arguments, make a frame index for
1929  // the start of the first vararg value... for expansion of llvm.va_start.
1930  if (isVarArg) {
1931    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1932                    CallConv != CallingConv::X86_ThisCall)) {
1933      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1934    }
1935    if (Is64Bit) {
1936      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1937
1938      // FIXME: We should really autogenerate these arrays
1939      static const uint16_t GPR64ArgRegsWin64[] = {
1940        X86::RCX, X86::RDX, X86::R8,  X86::R9
1941      };
1942      static const uint16_t GPR64ArgRegs64Bit[] = {
1943        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1944      };
1945      static const uint16_t XMMArgRegs64Bit[] = {
1946        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1947        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1948      };
1949      const uint16_t *GPR64ArgRegs;
1950      unsigned NumXMMRegs = 0;
1951
1952      if (IsWin64) {
1953        // The XMM registers which might contain var arg parameters are shadowed
1954        // in their paired GPR.  So we only need to save the GPR to their home
1955        // slots.
1956        TotalNumIntRegs = 4;
1957        GPR64ArgRegs = GPR64ArgRegsWin64;
1958      } else {
1959        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1960        GPR64ArgRegs = GPR64ArgRegs64Bit;
1961
1962        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1963                                                TotalNumXMMRegs);
1964      }
1965      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1966                                                       TotalNumIntRegs);
1967
1968      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1969      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1970             "SSE register cannot be used when SSE is disabled!");
1971      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1972               NoImplicitFloatOps) &&
1973             "SSE register cannot be used when SSE is disabled!");
1974      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1975          !Subtarget->hasSSE1())
1976        // Kernel mode asks for SSE to be disabled, so don't push them
1977        // on the stack.
1978        TotalNumXMMRegs = 0;
1979
1980      if (IsWin64) {
1981        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1982        // Get to the caller-allocated home save location.  Add 8 to account
1983        // for the return address.
1984        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1985        FuncInfo->setRegSaveFrameIndex(
1986          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1987        // Fixup to set vararg frame on shadow area (4 x i64).
1988        if (NumIntRegs < 4)
1989          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1990      } else {
1991        // For X86-64, if there are vararg parameters that are passed via
1992        // registers, then we must store them to their spots on the stack so
1993        // they may be loaded by deferencing the result of va_next.
1994        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1995        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1996        FuncInfo->setRegSaveFrameIndex(
1997          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1998                               false));
1999      }
2000
2001      // Store the integer parameter registers.
2002      SmallVector<SDValue, 8> MemOps;
2003      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2004                                        getPointerTy());
2005      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2006      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2007        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2008                                  DAG.getIntPtrConstant(Offset));
2009        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2010                                     &X86::GR64RegClass);
2011        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2012        SDValue Store =
2013          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2014                       MachinePointerInfo::getFixedStack(
2015                         FuncInfo->getRegSaveFrameIndex(), Offset),
2016                       false, false, 0);
2017        MemOps.push_back(Store);
2018        Offset += 8;
2019      }
2020
2021      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2022        // Now store the XMM (fp + vector) parameter registers.
2023        SmallVector<SDValue, 11> SaveXMMOps;
2024        SaveXMMOps.push_back(Chain);
2025
2026        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2027        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2028        SaveXMMOps.push_back(ALVal);
2029
2030        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2031                               FuncInfo->getRegSaveFrameIndex()));
2032        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2033                               FuncInfo->getVarArgsFPOffset()));
2034
2035        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2036          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2037                                       &X86::VR128RegClass);
2038          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2039          SaveXMMOps.push_back(Val);
2040        }
2041        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2042                                     MVT::Other,
2043                                     &SaveXMMOps[0], SaveXMMOps.size()));
2044      }
2045
2046      if (!MemOps.empty())
2047        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2048                            &MemOps[0], MemOps.size());
2049    }
2050  }
2051
2052  // Some CCs need callee pop.
2053  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2054                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2055    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2056  } else {
2057    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2058    // If this is an sret function, the return should pop the hidden pointer.
2059    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2060        ArgsAreStructReturn(Ins))
2061      FuncInfo->setBytesToPopOnReturn(4);
2062  }
2063
2064  if (!Is64Bit) {
2065    // RegSaveFrameIndex is X86-64 only.
2066    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2067    if (CallConv == CallingConv::X86_FastCall ||
2068        CallConv == CallingConv::X86_ThisCall)
2069      // fastcc functions can't have varargs.
2070      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2071  }
2072
2073  FuncInfo->setArgumentStackSize(StackSize);
2074
2075  return Chain;
2076}
2077
2078SDValue
2079X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2080                                    SDValue StackPtr, SDValue Arg,
2081                                    DebugLoc dl, SelectionDAG &DAG,
2082                                    const CCValAssign &VA,
2083                                    ISD::ArgFlagsTy Flags) const {
2084  unsigned LocMemOffset = VA.getLocMemOffset();
2085  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2086  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2087  if (Flags.isByVal())
2088    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2089
2090  return DAG.getStore(Chain, dl, Arg, PtrOff,
2091                      MachinePointerInfo::getStack(LocMemOffset),
2092                      false, false, 0);
2093}
2094
2095/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2096/// optimization is performed and it is required.
2097SDValue
2098X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2099                                           SDValue &OutRetAddr, SDValue Chain,
2100                                           bool IsTailCall, bool Is64Bit,
2101                                           int FPDiff, DebugLoc dl) const {
2102  // Adjust the Return address stack slot.
2103  EVT VT = getPointerTy();
2104  OutRetAddr = getReturnAddressFrameIndex(DAG);
2105
2106  // Load the "old" Return address.
2107  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2108                           false, false, false, 0);
2109  return SDValue(OutRetAddr.getNode(), 1);
2110}
2111
2112/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2113/// optimization is performed and it is required (FPDiff!=0).
2114static SDValue
2115EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2116                         SDValue Chain, SDValue RetAddrFrIdx,
2117                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2118  // Store the return address to the appropriate stack slot.
2119  if (!FPDiff) return Chain;
2120  // Calculate the new stack slot for the return address.
2121  int SlotSize = Is64Bit ? 8 : 4;
2122  int NewReturnAddrFI =
2123    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2124  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2125  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2126  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2127                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2128                       false, false, 0);
2129  return Chain;
2130}
2131
2132SDValue
2133X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2134                             CallingConv::ID CallConv, bool isVarArg,
2135                             bool doesNotRet, bool &isTailCall,
2136                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2137                             const SmallVectorImpl<SDValue> &OutVals,
2138                             const SmallVectorImpl<ISD::InputArg> &Ins,
2139                             DebugLoc dl, SelectionDAG &DAG,
2140                             SmallVectorImpl<SDValue> &InVals) const {
2141  MachineFunction &MF = DAG.getMachineFunction();
2142  bool Is64Bit        = Subtarget->is64Bit();
2143  bool IsWin64        = Subtarget->isTargetWin64();
2144  bool IsWindows      = Subtarget->isTargetWindows();
2145  bool IsStructRet    = CallIsStructReturn(Outs);
2146  bool IsSibcall      = false;
2147
2148  if (MF.getTarget().Options.DisableTailCalls)
2149    isTailCall = false;
2150
2151  if (isTailCall) {
2152    // Check if it's really possible to do a tail call.
2153    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2154                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2155                                                   Outs, OutVals, Ins, DAG);
2156
2157    // Sibcalls are automatically detected tailcalls which do not require
2158    // ABI changes.
2159    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2160      IsSibcall = true;
2161
2162    if (isTailCall)
2163      ++NumTailCalls;
2164  }
2165
2166  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2167         "Var args not supported with calling convention fastcc or ghc");
2168
2169  // Analyze operands of the call, assigning locations to each operand.
2170  SmallVector<CCValAssign, 16> ArgLocs;
2171  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2172                 ArgLocs, *DAG.getContext());
2173
2174  // Allocate shadow area for Win64
2175  if (IsWin64) {
2176    CCInfo.AllocateStack(32, 8);
2177  }
2178
2179  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2180
2181  // Get a count of how many bytes are to be pushed on the stack.
2182  unsigned NumBytes = CCInfo.getNextStackOffset();
2183  if (IsSibcall)
2184    // This is a sibcall. The memory operands are available in caller's
2185    // own caller's stack.
2186    NumBytes = 0;
2187  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2188           IsTailCallConvention(CallConv))
2189    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2190
2191  int FPDiff = 0;
2192  if (isTailCall && !IsSibcall) {
2193    // Lower arguments at fp - stackoffset + fpdiff.
2194    unsigned NumBytesCallerPushed =
2195      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2196    FPDiff = NumBytesCallerPushed - NumBytes;
2197
2198    // Set the delta of movement of the returnaddr stackslot.
2199    // But only set if delta is greater than previous delta.
2200    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2201      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2202  }
2203
2204  if (!IsSibcall)
2205    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2206
2207  SDValue RetAddrFrIdx;
2208  // Load return address for tail calls.
2209  if (isTailCall && FPDiff)
2210    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2211                                    Is64Bit, FPDiff, dl);
2212
2213  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2214  SmallVector<SDValue, 8> MemOpChains;
2215  SDValue StackPtr;
2216
2217  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2218  // of tail call optimization arguments are handle later.
2219  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2220    CCValAssign &VA = ArgLocs[i];
2221    EVT RegVT = VA.getLocVT();
2222    SDValue Arg = OutVals[i];
2223    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2224    bool isByVal = Flags.isByVal();
2225
2226    // Promote the value if needed.
2227    switch (VA.getLocInfo()) {
2228    default: llvm_unreachable("Unknown loc info!");
2229    case CCValAssign::Full: break;
2230    case CCValAssign::SExt:
2231      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2232      break;
2233    case CCValAssign::ZExt:
2234      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2235      break;
2236    case CCValAssign::AExt:
2237      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2238        // Special case: passing MMX values in XMM registers.
2239        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2240        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2241        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2242      } else
2243        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2244      break;
2245    case CCValAssign::BCvt:
2246      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2247      break;
2248    case CCValAssign::Indirect: {
2249      // Store the argument.
2250      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2251      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2252      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2253                           MachinePointerInfo::getFixedStack(FI),
2254                           false, false, 0);
2255      Arg = SpillSlot;
2256      break;
2257    }
2258    }
2259
2260    if (VA.isRegLoc()) {
2261      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2262      if (isVarArg && IsWin64) {
2263        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2264        // shadow reg if callee is a varargs function.
2265        unsigned ShadowReg = 0;
2266        switch (VA.getLocReg()) {
2267        case X86::XMM0: ShadowReg = X86::RCX; break;
2268        case X86::XMM1: ShadowReg = X86::RDX; break;
2269        case X86::XMM2: ShadowReg = X86::R8; break;
2270        case X86::XMM3: ShadowReg = X86::R9; break;
2271        }
2272        if (ShadowReg)
2273          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2274      }
2275    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2276      assert(VA.isMemLoc());
2277      if (StackPtr.getNode() == 0)
2278        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2279      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2280                                             dl, DAG, VA, Flags));
2281    }
2282  }
2283
2284  if (!MemOpChains.empty())
2285    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2286                        &MemOpChains[0], MemOpChains.size());
2287
2288  // Build a sequence of copy-to-reg nodes chained together with token chain
2289  // and flag operands which copy the outgoing args into registers.
2290  SDValue InFlag;
2291  // Tail call byval lowering might overwrite argument registers so in case of
2292  // tail call optimization the copies to registers are lowered later.
2293  if (!isTailCall)
2294    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2295      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2296                               RegsToPass[i].second, InFlag);
2297      InFlag = Chain.getValue(1);
2298    }
2299
2300  if (Subtarget->isPICStyleGOT()) {
2301    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2302    // GOT pointer.
2303    if (!isTailCall) {
2304      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2305                               DAG.getNode(X86ISD::GlobalBaseReg,
2306                                           DebugLoc(), getPointerTy()),
2307                               InFlag);
2308      InFlag = Chain.getValue(1);
2309    } else {
2310      // If we are tail calling and generating PIC/GOT style code load the
2311      // address of the callee into ECX. The value in ecx is used as target of
2312      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2313      // for tail calls on PIC/GOT architectures. Normally we would just put the
2314      // address of GOT into ebx and then call target@PLT. But for tail calls
2315      // ebx would be restored (since ebx is callee saved) before jumping to the
2316      // target@PLT.
2317
2318      // Note: The actual moving to ECX is done further down.
2319      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2320      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2321          !G->getGlobal()->hasProtectedVisibility())
2322        Callee = LowerGlobalAddress(Callee, DAG);
2323      else if (isa<ExternalSymbolSDNode>(Callee))
2324        Callee = LowerExternalSymbol(Callee, DAG);
2325    }
2326  }
2327
2328  if (Is64Bit && isVarArg && !IsWin64) {
2329    // From AMD64 ABI document:
2330    // For calls that may call functions that use varargs or stdargs
2331    // (prototype-less calls or calls to functions containing ellipsis (...) in
2332    // the declaration) %al is used as hidden argument to specify the number
2333    // of SSE registers used. The contents of %al do not need to match exactly
2334    // the number of registers, but must be an ubound on the number of SSE
2335    // registers used and is in the range 0 - 8 inclusive.
2336
2337    // Count the number of XMM registers allocated.
2338    static const uint16_t XMMArgRegs[] = {
2339      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2340      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2341    };
2342    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2343    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2344           && "SSE registers cannot be used when SSE is disabled");
2345
2346    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2347                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2348    InFlag = Chain.getValue(1);
2349  }
2350
2351
2352  // For tail calls lower the arguments to the 'real' stack slot.
2353  if (isTailCall) {
2354    // Force all the incoming stack arguments to be loaded from the stack
2355    // before any new outgoing arguments are stored to the stack, because the
2356    // outgoing stack slots may alias the incoming argument stack slots, and
2357    // the alias isn't otherwise explicit. This is slightly more conservative
2358    // than necessary, because it means that each store effectively depends
2359    // on every argument instead of just those arguments it would clobber.
2360    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2361
2362    SmallVector<SDValue, 8> MemOpChains2;
2363    SDValue FIN;
2364    int FI = 0;
2365    // Do not flag preceding copytoreg stuff together with the following stuff.
2366    InFlag = SDValue();
2367    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2368      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2369        CCValAssign &VA = ArgLocs[i];
2370        if (VA.isRegLoc())
2371          continue;
2372        assert(VA.isMemLoc());
2373        SDValue Arg = OutVals[i];
2374        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2375        // Create frame index.
2376        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2377        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2378        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2379        FIN = DAG.getFrameIndex(FI, getPointerTy());
2380
2381        if (Flags.isByVal()) {
2382          // Copy relative to framepointer.
2383          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2384          if (StackPtr.getNode() == 0)
2385            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2386                                          getPointerTy());
2387          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2388
2389          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2390                                                           ArgChain,
2391                                                           Flags, DAG, dl));
2392        } else {
2393          // Store relative to framepointer.
2394          MemOpChains2.push_back(
2395            DAG.getStore(ArgChain, dl, Arg, FIN,
2396                         MachinePointerInfo::getFixedStack(FI),
2397                         false, false, 0));
2398        }
2399      }
2400    }
2401
2402    if (!MemOpChains2.empty())
2403      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2404                          &MemOpChains2[0], MemOpChains2.size());
2405
2406    // Copy arguments to their registers.
2407    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2408      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2409                               RegsToPass[i].second, InFlag);
2410      InFlag = Chain.getValue(1);
2411    }
2412    InFlag =SDValue();
2413
2414    // Store the return address to the appropriate stack slot.
2415    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2416                                     FPDiff, dl);
2417  }
2418
2419  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2420    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2421    // In the 64-bit large code model, we have to make all calls
2422    // through a register, since the call instruction's 32-bit
2423    // pc-relative offset may not be large enough to hold the whole
2424    // address.
2425  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2426    // If the callee is a GlobalAddress node (quite common, every direct call
2427    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2428    // it.
2429
2430    // We should use extra load for direct calls to dllimported functions in
2431    // non-JIT mode.
2432    const GlobalValue *GV = G->getGlobal();
2433    if (!GV->hasDLLImportLinkage()) {
2434      unsigned char OpFlags = 0;
2435      bool ExtraLoad = false;
2436      unsigned WrapperKind = ISD::DELETED_NODE;
2437
2438      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2439      // external symbols most go through the PLT in PIC mode.  If the symbol
2440      // has hidden or protected visibility, or if it is static or local, then
2441      // we don't need to use the PLT - we can directly call it.
2442      if (Subtarget->isTargetELF() &&
2443          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2444          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2445        OpFlags = X86II::MO_PLT;
2446      } else if (Subtarget->isPICStyleStubAny() &&
2447                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2448                 (!Subtarget->getTargetTriple().isMacOSX() ||
2449                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2450        // PC-relative references to external symbols should go through $stub,
2451        // unless we're building with the leopard linker or later, which
2452        // automatically synthesizes these stubs.
2453        OpFlags = X86II::MO_DARWIN_STUB;
2454      } else if (Subtarget->isPICStyleRIPRel() &&
2455                 isa<Function>(GV) &&
2456                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2457        // If the function is marked as non-lazy, generate an indirect call
2458        // which loads from the GOT directly. This avoids runtime overhead
2459        // at the cost of eager binding (and one extra byte of encoding).
2460        OpFlags = X86II::MO_GOTPCREL;
2461        WrapperKind = X86ISD::WrapperRIP;
2462        ExtraLoad = true;
2463      }
2464
2465      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2466                                          G->getOffset(), OpFlags);
2467
2468      // Add a wrapper if needed.
2469      if (WrapperKind != ISD::DELETED_NODE)
2470        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2471      // Add extra indirection if needed.
2472      if (ExtraLoad)
2473        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2474                             MachinePointerInfo::getGOT(),
2475                             false, false, false, 0);
2476    }
2477  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2478    unsigned char OpFlags = 0;
2479
2480    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2481    // external symbols should go through the PLT.
2482    if (Subtarget->isTargetELF() &&
2483        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2484      OpFlags = X86II::MO_PLT;
2485    } else if (Subtarget->isPICStyleStubAny() &&
2486               (!Subtarget->getTargetTriple().isMacOSX() ||
2487                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2488      // PC-relative references to external symbols should go through $stub,
2489      // unless we're building with the leopard linker or later, which
2490      // automatically synthesizes these stubs.
2491      OpFlags = X86II::MO_DARWIN_STUB;
2492    }
2493
2494    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2495                                         OpFlags);
2496  }
2497
2498  // Returns a chain & a flag for retval copy to use.
2499  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2500  SmallVector<SDValue, 8> Ops;
2501
2502  if (!IsSibcall && isTailCall) {
2503    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2504                           DAG.getIntPtrConstant(0, true), InFlag);
2505    InFlag = Chain.getValue(1);
2506  }
2507
2508  Ops.push_back(Chain);
2509  Ops.push_back(Callee);
2510
2511  if (isTailCall)
2512    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2513
2514  // Add argument registers to the end of the list so that they are known live
2515  // into the call.
2516  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2517    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2518                                  RegsToPass[i].second.getValueType()));
2519
2520  // Add an implicit use GOT pointer in EBX.
2521  if (!isTailCall && Subtarget->isPICStyleGOT())
2522    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2523
2524  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2525  if (Is64Bit && isVarArg && !IsWin64)
2526    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2527
2528  // Add a register mask operand representing the call-preserved registers.
2529  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2530  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2531  assert(Mask && "Missing call preserved mask for calling convention");
2532  Ops.push_back(DAG.getRegisterMask(Mask));
2533
2534  if (InFlag.getNode())
2535    Ops.push_back(InFlag);
2536
2537  if (isTailCall) {
2538    // We used to do:
2539    //// If this is the first return lowered for this function, add the regs
2540    //// to the liveout set for the function.
2541    // This isn't right, although it's probably harmless on x86; liveouts
2542    // should be computed from returns not tail calls.  Consider a void
2543    // function making a tail call to a function returning int.
2544    return DAG.getNode(X86ISD::TC_RETURN, dl,
2545                       NodeTys, &Ops[0], Ops.size());
2546  }
2547
2548  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2549  InFlag = Chain.getValue(1);
2550
2551  // Create the CALLSEQ_END node.
2552  unsigned NumBytesForCalleeToPush;
2553  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2554                       getTargetMachine().Options.GuaranteedTailCallOpt))
2555    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2556  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2557           IsStructRet)
2558    // If this is a call to a struct-return function, the callee
2559    // pops the hidden struct pointer, so we have to push it back.
2560    // This is common for Darwin/X86, Linux & Mingw32 targets.
2561    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2562    NumBytesForCalleeToPush = 4;
2563  else
2564    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2565
2566  // Returns a flag for retval copy to use.
2567  if (!IsSibcall) {
2568    Chain = DAG.getCALLSEQ_END(Chain,
2569                               DAG.getIntPtrConstant(NumBytes, true),
2570                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2571                                                     true),
2572                               InFlag);
2573    InFlag = Chain.getValue(1);
2574  }
2575
2576  // Handle result values, copying them out of physregs into vregs that we
2577  // return.
2578  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2579                         Ins, dl, DAG, InVals);
2580}
2581
2582
2583//===----------------------------------------------------------------------===//
2584//                Fast Calling Convention (tail call) implementation
2585//===----------------------------------------------------------------------===//
2586
2587//  Like std call, callee cleans arguments, convention except that ECX is
2588//  reserved for storing the tail called function address. Only 2 registers are
2589//  free for argument passing (inreg). Tail call optimization is performed
2590//  provided:
2591//                * tailcallopt is enabled
2592//                * caller/callee are fastcc
2593//  On X86_64 architecture with GOT-style position independent code only local
2594//  (within module) calls are supported at the moment.
2595//  To keep the stack aligned according to platform abi the function
2596//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2597//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2598//  If a tail called function callee has more arguments than the caller the
2599//  caller needs to make sure that there is room to move the RETADDR to. This is
2600//  achieved by reserving an area the size of the argument delta right after the
2601//  original REtADDR, but before the saved framepointer or the spilled registers
2602//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2603//  stack layout:
2604//    arg1
2605//    arg2
2606//    RETADDR
2607//    [ new RETADDR
2608//      move area ]
2609//    (possible EBP)
2610//    ESI
2611//    EDI
2612//    local1 ..
2613
2614/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2615/// for a 16 byte align requirement.
2616unsigned
2617X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2618                                               SelectionDAG& DAG) const {
2619  MachineFunction &MF = DAG.getMachineFunction();
2620  const TargetMachine &TM = MF.getTarget();
2621  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2622  unsigned StackAlignment = TFI.getStackAlignment();
2623  uint64_t AlignMask = StackAlignment - 1;
2624  int64_t Offset = StackSize;
2625  uint64_t SlotSize = TD->getPointerSize();
2626  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2627    // Number smaller than 12 so just add the difference.
2628    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2629  } else {
2630    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2631    Offset = ((~AlignMask) & Offset) + StackAlignment +
2632      (StackAlignment-SlotSize);
2633  }
2634  return Offset;
2635}
2636
2637/// MatchingStackOffset - Return true if the given stack call argument is
2638/// already available in the same position (relatively) of the caller's
2639/// incoming argument stack.
2640static
2641bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2642                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2643                         const X86InstrInfo *TII) {
2644  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2645  int FI = INT_MAX;
2646  if (Arg.getOpcode() == ISD::CopyFromReg) {
2647    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2648    if (!TargetRegisterInfo::isVirtualRegister(VR))
2649      return false;
2650    MachineInstr *Def = MRI->getVRegDef(VR);
2651    if (!Def)
2652      return false;
2653    if (!Flags.isByVal()) {
2654      if (!TII->isLoadFromStackSlot(Def, FI))
2655        return false;
2656    } else {
2657      unsigned Opcode = Def->getOpcode();
2658      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2659          Def->getOperand(1).isFI()) {
2660        FI = Def->getOperand(1).getIndex();
2661        Bytes = Flags.getByValSize();
2662      } else
2663        return false;
2664    }
2665  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2666    if (Flags.isByVal())
2667      // ByVal argument is passed in as a pointer but it's now being
2668      // dereferenced. e.g.
2669      // define @foo(%struct.X* %A) {
2670      //   tail call @bar(%struct.X* byval %A)
2671      // }
2672      return false;
2673    SDValue Ptr = Ld->getBasePtr();
2674    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2675    if (!FINode)
2676      return false;
2677    FI = FINode->getIndex();
2678  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2679    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2680    FI = FINode->getIndex();
2681    Bytes = Flags.getByValSize();
2682  } else
2683    return false;
2684
2685  assert(FI != INT_MAX);
2686  if (!MFI->isFixedObjectIndex(FI))
2687    return false;
2688  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2689}
2690
2691/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2692/// for tail call optimization. Targets which want to do tail call
2693/// optimization should implement this function.
2694bool
2695X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2696                                                     CallingConv::ID CalleeCC,
2697                                                     bool isVarArg,
2698                                                     bool isCalleeStructRet,
2699                                                     bool isCallerStructRet,
2700                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2701                                    const SmallVectorImpl<SDValue> &OutVals,
2702                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2703                                                     SelectionDAG& DAG) const {
2704  if (!IsTailCallConvention(CalleeCC) &&
2705      CalleeCC != CallingConv::C)
2706    return false;
2707
2708  // If -tailcallopt is specified, make fastcc functions tail-callable.
2709  const MachineFunction &MF = DAG.getMachineFunction();
2710  const Function *CallerF = DAG.getMachineFunction().getFunction();
2711  CallingConv::ID CallerCC = CallerF->getCallingConv();
2712  bool CCMatch = CallerCC == CalleeCC;
2713
2714  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2715    if (IsTailCallConvention(CalleeCC) && CCMatch)
2716      return true;
2717    return false;
2718  }
2719
2720  // Look for obvious safe cases to perform tail call optimization that do not
2721  // require ABI changes. This is what gcc calls sibcall.
2722
2723  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2724  // emit a special epilogue.
2725  if (RegInfo->needsStackRealignment(MF))
2726    return false;
2727
2728  // Also avoid sibcall optimization if either caller or callee uses struct
2729  // return semantics.
2730  if (isCalleeStructRet || isCallerStructRet)
2731    return false;
2732
2733  // An stdcall caller is expected to clean up its arguments; the callee
2734  // isn't going to do that.
2735  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2736    return false;
2737
2738  // Do not sibcall optimize vararg calls unless all arguments are passed via
2739  // registers.
2740  if (isVarArg && !Outs.empty()) {
2741
2742    // Optimizing for varargs on Win64 is unlikely to be safe without
2743    // additional testing.
2744    if (Subtarget->isTargetWin64())
2745      return false;
2746
2747    SmallVector<CCValAssign, 16> ArgLocs;
2748    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2749                   getTargetMachine(), ArgLocs, *DAG.getContext());
2750
2751    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2752    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2753      if (!ArgLocs[i].isRegLoc())
2754        return false;
2755  }
2756
2757  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2758  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2759  // this into a sibcall.
2760  bool Unused = false;
2761  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2762    if (!Ins[i].Used) {
2763      Unused = true;
2764      break;
2765    }
2766  }
2767  if (Unused) {
2768    SmallVector<CCValAssign, 16> RVLocs;
2769    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2770                   getTargetMachine(), RVLocs, *DAG.getContext());
2771    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2772    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2773      CCValAssign &VA = RVLocs[i];
2774      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2775        return false;
2776    }
2777  }
2778
2779  // If the calling conventions do not match, then we'd better make sure the
2780  // results are returned in the same way as what the caller expects.
2781  if (!CCMatch) {
2782    SmallVector<CCValAssign, 16> RVLocs1;
2783    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2784                    getTargetMachine(), RVLocs1, *DAG.getContext());
2785    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2786
2787    SmallVector<CCValAssign, 16> RVLocs2;
2788    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2789                    getTargetMachine(), RVLocs2, *DAG.getContext());
2790    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2791
2792    if (RVLocs1.size() != RVLocs2.size())
2793      return false;
2794    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2795      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2796        return false;
2797      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2798        return false;
2799      if (RVLocs1[i].isRegLoc()) {
2800        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2801          return false;
2802      } else {
2803        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2804          return false;
2805      }
2806    }
2807  }
2808
2809  // If the callee takes no arguments then go on to check the results of the
2810  // call.
2811  if (!Outs.empty()) {
2812    // Check if stack adjustment is needed. For now, do not do this if any
2813    // argument is passed on the stack.
2814    SmallVector<CCValAssign, 16> ArgLocs;
2815    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2816                   getTargetMachine(), ArgLocs, *DAG.getContext());
2817
2818    // Allocate shadow area for Win64
2819    if (Subtarget->isTargetWin64()) {
2820      CCInfo.AllocateStack(32, 8);
2821    }
2822
2823    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2824    if (CCInfo.getNextStackOffset()) {
2825      MachineFunction &MF = DAG.getMachineFunction();
2826      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2827        return false;
2828
2829      // Check if the arguments are already laid out in the right way as
2830      // the caller's fixed stack objects.
2831      MachineFrameInfo *MFI = MF.getFrameInfo();
2832      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2833      const X86InstrInfo *TII =
2834        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2835      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2836        CCValAssign &VA = ArgLocs[i];
2837        SDValue Arg = OutVals[i];
2838        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2839        if (VA.getLocInfo() == CCValAssign::Indirect)
2840          return false;
2841        if (!VA.isRegLoc()) {
2842          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2843                                   MFI, MRI, TII))
2844            return false;
2845        }
2846      }
2847    }
2848
2849    // If the tailcall address may be in a register, then make sure it's
2850    // possible to register allocate for it. In 32-bit, the call address can
2851    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2852    // callee-saved registers are restored. These happen to be the same
2853    // registers used to pass 'inreg' arguments so watch out for those.
2854    if (!Subtarget->is64Bit() &&
2855        !isa<GlobalAddressSDNode>(Callee) &&
2856        !isa<ExternalSymbolSDNode>(Callee)) {
2857      unsigned NumInRegs = 0;
2858      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2859        CCValAssign &VA = ArgLocs[i];
2860        if (!VA.isRegLoc())
2861          continue;
2862        unsigned Reg = VA.getLocReg();
2863        switch (Reg) {
2864        default: break;
2865        case X86::EAX: case X86::EDX: case X86::ECX:
2866          if (++NumInRegs == 3)
2867            return false;
2868          break;
2869        }
2870      }
2871    }
2872  }
2873
2874  return true;
2875}
2876
2877FastISel *
2878X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2879  return X86::createFastISel(funcInfo);
2880}
2881
2882
2883//===----------------------------------------------------------------------===//
2884//                           Other Lowering Hooks
2885//===----------------------------------------------------------------------===//
2886
2887static bool MayFoldLoad(SDValue Op) {
2888  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2889}
2890
2891static bool MayFoldIntoStore(SDValue Op) {
2892  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2893}
2894
2895static bool isTargetShuffle(unsigned Opcode) {
2896  switch(Opcode) {
2897  default: return false;
2898  case X86ISD::PSHUFD:
2899  case X86ISD::PSHUFHW:
2900  case X86ISD::PSHUFLW:
2901  case X86ISD::SHUFP:
2902  case X86ISD::PALIGN:
2903  case X86ISD::MOVLHPS:
2904  case X86ISD::MOVLHPD:
2905  case X86ISD::MOVHLPS:
2906  case X86ISD::MOVLPS:
2907  case X86ISD::MOVLPD:
2908  case X86ISD::MOVSHDUP:
2909  case X86ISD::MOVSLDUP:
2910  case X86ISD::MOVDDUP:
2911  case X86ISD::MOVSS:
2912  case X86ISD::MOVSD:
2913  case X86ISD::UNPCKL:
2914  case X86ISD::UNPCKH:
2915  case X86ISD::VPERMILP:
2916  case X86ISD::VPERM2X128:
2917  case X86ISD::VPERMI:
2918    return true;
2919  }
2920}
2921
2922static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2923                                    SDValue V1, SelectionDAG &DAG) {
2924  switch(Opc) {
2925  default: llvm_unreachable("Unknown x86 shuffle node");
2926  case X86ISD::MOVSHDUP:
2927  case X86ISD::MOVSLDUP:
2928  case X86ISD::MOVDDUP:
2929    return DAG.getNode(Opc, dl, VT, V1);
2930  }
2931}
2932
2933static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2934                                    SDValue V1, unsigned TargetMask,
2935                                    SelectionDAG &DAG) {
2936  switch(Opc) {
2937  default: llvm_unreachable("Unknown x86 shuffle node");
2938  case X86ISD::PSHUFD:
2939  case X86ISD::PSHUFHW:
2940  case X86ISD::PSHUFLW:
2941  case X86ISD::VPERMILP:
2942  case X86ISD::VPERMI:
2943    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2944  }
2945}
2946
2947static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2948                                    SDValue V1, SDValue V2, unsigned TargetMask,
2949                                    SelectionDAG &DAG) {
2950  switch(Opc) {
2951  default: llvm_unreachable("Unknown x86 shuffle node");
2952  case X86ISD::PALIGN:
2953  case X86ISD::SHUFP:
2954  case X86ISD::VPERM2X128:
2955    return DAG.getNode(Opc, dl, VT, V1, V2,
2956                       DAG.getConstant(TargetMask, MVT::i8));
2957  }
2958}
2959
2960static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2961                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2962  switch(Opc) {
2963  default: llvm_unreachable("Unknown x86 shuffle node");
2964  case X86ISD::MOVLHPS:
2965  case X86ISD::MOVLHPD:
2966  case X86ISD::MOVHLPS:
2967  case X86ISD::MOVLPS:
2968  case X86ISD::MOVLPD:
2969  case X86ISD::MOVSS:
2970  case X86ISD::MOVSD:
2971  case X86ISD::UNPCKL:
2972  case X86ISD::UNPCKH:
2973    return DAG.getNode(Opc, dl, VT, V1, V2);
2974  }
2975}
2976
2977SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2978  MachineFunction &MF = DAG.getMachineFunction();
2979  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2980  int ReturnAddrIndex = FuncInfo->getRAIndex();
2981
2982  if (ReturnAddrIndex == 0) {
2983    // Set up a frame object for the return address.
2984    uint64_t SlotSize = TD->getPointerSize();
2985    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2986                                                           false);
2987    FuncInfo->setRAIndex(ReturnAddrIndex);
2988  }
2989
2990  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2991}
2992
2993
2994bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2995                                       bool hasSymbolicDisplacement) {
2996  // Offset should fit into 32 bit immediate field.
2997  if (!isInt<32>(Offset))
2998    return false;
2999
3000  // If we don't have a symbolic displacement - we don't have any extra
3001  // restrictions.
3002  if (!hasSymbolicDisplacement)
3003    return true;
3004
3005  // FIXME: Some tweaks might be needed for medium code model.
3006  if (M != CodeModel::Small && M != CodeModel::Kernel)
3007    return false;
3008
3009  // For small code model we assume that latest object is 16MB before end of 31
3010  // bits boundary. We may also accept pretty large negative constants knowing
3011  // that all objects are in the positive half of address space.
3012  if (M == CodeModel::Small && Offset < 16*1024*1024)
3013    return true;
3014
3015  // For kernel code model we know that all object resist in the negative half
3016  // of 32bits address space. We may not accept negative offsets, since they may
3017  // be just off and we may accept pretty large positive ones.
3018  if (M == CodeModel::Kernel && Offset > 0)
3019    return true;
3020
3021  return false;
3022}
3023
3024/// isCalleePop - Determines whether the callee is required to pop its
3025/// own arguments. Callee pop is necessary to support tail calls.
3026bool X86::isCalleePop(CallingConv::ID CallingConv,
3027                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3028  if (IsVarArg)
3029    return false;
3030
3031  switch (CallingConv) {
3032  default:
3033    return false;
3034  case CallingConv::X86_StdCall:
3035    return !is64Bit;
3036  case CallingConv::X86_FastCall:
3037    return !is64Bit;
3038  case CallingConv::X86_ThisCall:
3039    return !is64Bit;
3040  case CallingConv::Fast:
3041    return TailCallOpt;
3042  case CallingConv::GHC:
3043    return TailCallOpt;
3044  }
3045}
3046
3047/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3048/// specific condition code, returning the condition code and the LHS/RHS of the
3049/// comparison to make.
3050static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3051                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3052  if (!isFP) {
3053    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3054      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3055        // X > -1   -> X == 0, jump !sign.
3056        RHS = DAG.getConstant(0, RHS.getValueType());
3057        return X86::COND_NS;
3058      }
3059      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3060        // X < 0   -> X == 0, jump on sign.
3061        return X86::COND_S;
3062      }
3063      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3064        // X < 1   -> X <= 0
3065        RHS = DAG.getConstant(0, RHS.getValueType());
3066        return X86::COND_LE;
3067      }
3068    }
3069
3070    switch (SetCCOpcode) {
3071    default: llvm_unreachable("Invalid integer condition!");
3072    case ISD::SETEQ:  return X86::COND_E;
3073    case ISD::SETGT:  return X86::COND_G;
3074    case ISD::SETGE:  return X86::COND_GE;
3075    case ISD::SETLT:  return X86::COND_L;
3076    case ISD::SETLE:  return X86::COND_LE;
3077    case ISD::SETNE:  return X86::COND_NE;
3078    case ISD::SETULT: return X86::COND_B;
3079    case ISD::SETUGT: return X86::COND_A;
3080    case ISD::SETULE: return X86::COND_BE;
3081    case ISD::SETUGE: return X86::COND_AE;
3082    }
3083  }
3084
3085  // First determine if it is required or is profitable to flip the operands.
3086
3087  // If LHS is a foldable load, but RHS is not, flip the condition.
3088  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3089      !ISD::isNON_EXTLoad(RHS.getNode())) {
3090    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3091    std::swap(LHS, RHS);
3092  }
3093
3094  switch (SetCCOpcode) {
3095  default: break;
3096  case ISD::SETOLT:
3097  case ISD::SETOLE:
3098  case ISD::SETUGT:
3099  case ISD::SETUGE:
3100    std::swap(LHS, RHS);
3101    break;
3102  }
3103
3104  // On a floating point condition, the flags are set as follows:
3105  // ZF  PF  CF   op
3106  //  0 | 0 | 0 | X > Y
3107  //  0 | 0 | 1 | X < Y
3108  //  1 | 0 | 0 | X == Y
3109  //  1 | 1 | 1 | unordered
3110  switch (SetCCOpcode) {
3111  default: llvm_unreachable("Condcode should be pre-legalized away");
3112  case ISD::SETUEQ:
3113  case ISD::SETEQ:   return X86::COND_E;
3114  case ISD::SETOLT:              // flipped
3115  case ISD::SETOGT:
3116  case ISD::SETGT:   return X86::COND_A;
3117  case ISD::SETOLE:              // flipped
3118  case ISD::SETOGE:
3119  case ISD::SETGE:   return X86::COND_AE;
3120  case ISD::SETUGT:              // flipped
3121  case ISD::SETULT:
3122  case ISD::SETLT:   return X86::COND_B;
3123  case ISD::SETUGE:              // flipped
3124  case ISD::SETULE:
3125  case ISD::SETLE:   return X86::COND_BE;
3126  case ISD::SETONE:
3127  case ISD::SETNE:   return X86::COND_NE;
3128  case ISD::SETUO:   return X86::COND_P;
3129  case ISD::SETO:    return X86::COND_NP;
3130  case ISD::SETOEQ:
3131  case ISD::SETUNE:  return X86::COND_INVALID;
3132  }
3133}
3134
3135/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3136/// code. Current x86 isa includes the following FP cmov instructions:
3137/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3138static bool hasFPCMov(unsigned X86CC) {
3139  switch (X86CC) {
3140  default:
3141    return false;
3142  case X86::COND_B:
3143  case X86::COND_BE:
3144  case X86::COND_E:
3145  case X86::COND_P:
3146  case X86::COND_A:
3147  case X86::COND_AE:
3148  case X86::COND_NE:
3149  case X86::COND_NP:
3150    return true;
3151  }
3152}
3153
3154/// isFPImmLegal - Returns true if the target can instruction select the
3155/// specified FP immediate natively. If false, the legalizer will
3156/// materialize the FP immediate as a load from a constant pool.
3157bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3158  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3159    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3160      return true;
3161  }
3162  return false;
3163}
3164
3165/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3166/// the specified range (L, H].
3167static bool isUndefOrInRange(int Val, int Low, int Hi) {
3168  return (Val < 0) || (Val >= Low && Val < Hi);
3169}
3170
3171/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3172/// specified value.
3173static bool isUndefOrEqual(int Val, int CmpVal) {
3174  if (Val < 0 || Val == CmpVal)
3175    return true;
3176  return false;
3177}
3178
3179/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3180/// from position Pos and ending in Pos+Size, falls within the specified
3181/// sequential range (L, L+Pos]. or is undef.
3182static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3183                                       unsigned Pos, unsigned Size, int Low) {
3184  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3185    if (!isUndefOrEqual(Mask[i], Low))
3186      return false;
3187  return true;
3188}
3189
3190/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3191/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3192/// the second operand.
3193static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3194  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3195    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3196  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3197    return (Mask[0] < 2 && Mask[1] < 2);
3198  return false;
3199}
3200
3201/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3202/// is suitable for input to PSHUFHW.
3203static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3204  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3205    return false;
3206
3207  // Lower quadword copied in order or undef.
3208  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3209    return false;
3210
3211  // Upper quadword shuffled.
3212  for (unsigned i = 4; i != 8; ++i)
3213    if (!isUndefOrInRange(Mask[i], 4, 8))
3214      return false;
3215
3216  if (VT == MVT::v16i16) {
3217    // Lower quadword copied in order or undef.
3218    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3219      return false;
3220
3221    // Upper quadword shuffled.
3222    for (unsigned i = 12; i != 16; ++i)
3223      if (!isUndefOrInRange(Mask[i], 12, 16))
3224        return false;
3225  }
3226
3227  return true;
3228}
3229
3230/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3231/// is suitable for input to PSHUFLW.
3232static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3233  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3234    return false;
3235
3236  // Upper quadword copied in order.
3237  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3238    return false;
3239
3240  // Lower quadword shuffled.
3241  for (unsigned i = 0; i != 4; ++i)
3242    if (!isUndefOrInRange(Mask[i], 0, 4))
3243      return false;
3244
3245  if (VT == MVT::v16i16) {
3246    // Upper quadword copied in order.
3247    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3248      return false;
3249
3250    // Lower quadword shuffled.
3251    for (unsigned i = 8; i != 12; ++i)
3252      if (!isUndefOrInRange(Mask[i], 8, 12))
3253        return false;
3254  }
3255
3256  return true;
3257}
3258
3259/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3260/// is suitable for input to PALIGNR.
3261static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3262                          const X86Subtarget *Subtarget) {
3263  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3264      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3265    return false;
3266
3267  unsigned NumElts = VT.getVectorNumElements();
3268  unsigned NumLanes = VT.getSizeInBits()/128;
3269  unsigned NumLaneElts = NumElts/NumLanes;
3270
3271  // Do not handle 64-bit element shuffles with palignr.
3272  if (NumLaneElts == 2)
3273    return false;
3274
3275  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3276    unsigned i;
3277    for (i = 0; i != NumLaneElts; ++i) {
3278      if (Mask[i+l] >= 0)
3279        break;
3280    }
3281
3282    // Lane is all undef, go to next lane
3283    if (i == NumLaneElts)
3284      continue;
3285
3286    int Start = Mask[i+l];
3287
3288    // Make sure its in this lane in one of the sources
3289    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3290        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3291      return false;
3292
3293    // If not lane 0, then we must match lane 0
3294    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3295      return false;
3296
3297    // Correct second source to be contiguous with first source
3298    if (Start >= (int)NumElts)
3299      Start -= NumElts - NumLaneElts;
3300
3301    // Make sure we're shifting in the right direction.
3302    if (Start <= (int)(i+l))
3303      return false;
3304
3305    Start -= i;
3306
3307    // Check the rest of the elements to see if they are consecutive.
3308    for (++i; i != NumLaneElts; ++i) {
3309      int Idx = Mask[i+l];
3310
3311      // Make sure its in this lane
3312      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3313          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3314        return false;
3315
3316      // If not lane 0, then we must match lane 0
3317      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3318        return false;
3319
3320      if (Idx >= (int)NumElts)
3321        Idx -= NumElts - NumLaneElts;
3322
3323      if (!isUndefOrEqual(Idx, Start+i))
3324        return false;
3325
3326    }
3327  }
3328
3329  return true;
3330}
3331
3332/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3333/// the two vector operands have swapped position.
3334static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3335                                     unsigned NumElems) {
3336  for (unsigned i = 0; i != NumElems; ++i) {
3337    int idx = Mask[i];
3338    if (idx < 0)
3339      continue;
3340    else if (idx < (int)NumElems)
3341      Mask[i] = idx + NumElems;
3342    else
3343      Mask[i] = idx - NumElems;
3344  }
3345}
3346
3347/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3348/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3349/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3350/// reverse of what x86 shuffles want.
3351static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3352                        bool Commuted = false) {
3353  if (!HasAVX && VT.getSizeInBits() == 256)
3354    return false;
3355
3356  unsigned NumElems = VT.getVectorNumElements();
3357  unsigned NumLanes = VT.getSizeInBits()/128;
3358  unsigned NumLaneElems = NumElems/NumLanes;
3359
3360  if (NumLaneElems != 2 && NumLaneElems != 4)
3361    return false;
3362
3363  // VSHUFPSY divides the resulting vector into 4 chunks.
3364  // The sources are also splitted into 4 chunks, and each destination
3365  // chunk must come from a different source chunk.
3366  //
3367  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3368  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3369  //
3370  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3371  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3372  //
3373  // VSHUFPDY divides the resulting vector into 4 chunks.
3374  // The sources are also splitted into 4 chunks, and each destination
3375  // chunk must come from a different source chunk.
3376  //
3377  //  SRC1 =>      X3       X2       X1       X0
3378  //  SRC2 =>      Y3       Y2       Y1       Y0
3379  //
3380  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3381  //
3382  unsigned HalfLaneElems = NumLaneElems/2;
3383  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3384    for (unsigned i = 0; i != NumLaneElems; ++i) {
3385      int Idx = Mask[i+l];
3386      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3387      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3388        return false;
3389      // For VSHUFPSY, the mask of the second half must be the same as the
3390      // first but with the appropriate offsets. This works in the same way as
3391      // VPERMILPS works with masks.
3392      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3393        continue;
3394      if (!isUndefOrEqual(Idx, Mask[i]+l))
3395        return false;
3396    }
3397  }
3398
3399  return true;
3400}
3401
3402/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3403/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3404static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3405  unsigned NumElems = VT.getVectorNumElements();
3406
3407  if (VT.getSizeInBits() != 128)
3408    return false;
3409
3410  if (NumElems != 4)
3411    return false;
3412
3413  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3414  return isUndefOrEqual(Mask[0], 6) &&
3415         isUndefOrEqual(Mask[1], 7) &&
3416         isUndefOrEqual(Mask[2], 2) &&
3417         isUndefOrEqual(Mask[3], 3);
3418}
3419
3420/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3421/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3422/// <2, 3, 2, 3>
3423static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3424  unsigned NumElems = VT.getVectorNumElements();
3425
3426  if (VT.getSizeInBits() != 128)
3427    return false;
3428
3429  if (NumElems != 4)
3430    return false;
3431
3432  return isUndefOrEqual(Mask[0], 2) &&
3433         isUndefOrEqual(Mask[1], 3) &&
3434         isUndefOrEqual(Mask[2], 2) &&
3435         isUndefOrEqual(Mask[3], 3);
3436}
3437
3438/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3439/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3440static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3441  if (VT.getSizeInBits() != 128)
3442    return false;
3443
3444  unsigned NumElems = VT.getVectorNumElements();
3445
3446  if (NumElems != 2 && NumElems != 4)
3447    return false;
3448
3449  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3450    if (!isUndefOrEqual(Mask[i], i + NumElems))
3451      return false;
3452
3453  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3454    if (!isUndefOrEqual(Mask[i], i))
3455      return false;
3456
3457  return true;
3458}
3459
3460/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3461/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3462static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3463  unsigned NumElems = VT.getVectorNumElements();
3464
3465  if ((NumElems != 2 && NumElems != 4)
3466      || VT.getSizeInBits() > 128)
3467    return false;
3468
3469  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3470    if (!isUndefOrEqual(Mask[i], i))
3471      return false;
3472
3473  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3474    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3475      return false;
3476
3477  return true;
3478}
3479
3480/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3481/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3482static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3483                         bool HasAVX2, bool V2IsSplat = false) {
3484  unsigned NumElts = VT.getVectorNumElements();
3485
3486  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3487         "Unsupported vector type for unpckh");
3488
3489  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3490      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3491    return false;
3492
3493  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3494  // independently on 128-bit lanes.
3495  unsigned NumLanes = VT.getSizeInBits()/128;
3496  unsigned NumLaneElts = NumElts/NumLanes;
3497
3498  for (unsigned l = 0; l != NumLanes; ++l) {
3499    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3500         i != (l+1)*NumLaneElts;
3501         i += 2, ++j) {
3502      int BitI  = Mask[i];
3503      int BitI1 = Mask[i+1];
3504      if (!isUndefOrEqual(BitI, j))
3505        return false;
3506      if (V2IsSplat) {
3507        if (!isUndefOrEqual(BitI1, NumElts))
3508          return false;
3509      } else {
3510        if (!isUndefOrEqual(BitI1, j + NumElts))
3511          return false;
3512      }
3513    }
3514  }
3515
3516  return true;
3517}
3518
3519/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3520/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3521static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3522                         bool HasAVX2, bool V2IsSplat = false) {
3523  unsigned NumElts = VT.getVectorNumElements();
3524
3525  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3526         "Unsupported vector type for unpckh");
3527
3528  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3529      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3530    return false;
3531
3532  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3533  // independently on 128-bit lanes.
3534  unsigned NumLanes = VT.getSizeInBits()/128;
3535  unsigned NumLaneElts = NumElts/NumLanes;
3536
3537  for (unsigned l = 0; l != NumLanes; ++l) {
3538    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3539         i != (l+1)*NumLaneElts; i += 2, ++j) {
3540      int BitI  = Mask[i];
3541      int BitI1 = Mask[i+1];
3542      if (!isUndefOrEqual(BitI, j))
3543        return false;
3544      if (V2IsSplat) {
3545        if (isUndefOrEqual(BitI1, NumElts))
3546          return false;
3547      } else {
3548        if (!isUndefOrEqual(BitI1, j+NumElts))
3549          return false;
3550      }
3551    }
3552  }
3553  return true;
3554}
3555
3556/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3557/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3558/// <0, 0, 1, 1>
3559static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3560                                  bool HasAVX2) {
3561  unsigned NumElts = VT.getVectorNumElements();
3562
3563  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3564         "Unsupported vector type for unpckh");
3565
3566  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3567      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3568    return false;
3569
3570  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3571  // FIXME: Need a better way to get rid of this, there's no latency difference
3572  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3573  // the former later. We should also remove the "_undef" special mask.
3574  if (NumElts == 4 && VT.getSizeInBits() == 256)
3575    return false;
3576
3577  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3578  // independently on 128-bit lanes.
3579  unsigned NumLanes = VT.getSizeInBits()/128;
3580  unsigned NumLaneElts = NumElts/NumLanes;
3581
3582  for (unsigned l = 0; l != NumLanes; ++l) {
3583    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3584         i != (l+1)*NumLaneElts;
3585         i += 2, ++j) {
3586      int BitI  = Mask[i];
3587      int BitI1 = Mask[i+1];
3588
3589      if (!isUndefOrEqual(BitI, j))
3590        return false;
3591      if (!isUndefOrEqual(BitI1, j))
3592        return false;
3593    }
3594  }
3595
3596  return true;
3597}
3598
3599/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3600/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3601/// <2, 2, 3, 3>
3602static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3603  unsigned NumElts = VT.getVectorNumElements();
3604
3605  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3606         "Unsupported vector type for unpckh");
3607
3608  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3609      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3610    return false;
3611
3612  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3613  // independently on 128-bit lanes.
3614  unsigned NumLanes = VT.getSizeInBits()/128;
3615  unsigned NumLaneElts = NumElts/NumLanes;
3616
3617  for (unsigned l = 0; l != NumLanes; ++l) {
3618    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3619         i != (l+1)*NumLaneElts; i += 2, ++j) {
3620      int BitI  = Mask[i];
3621      int BitI1 = Mask[i+1];
3622      if (!isUndefOrEqual(BitI, j))
3623        return false;
3624      if (!isUndefOrEqual(BitI1, j))
3625        return false;
3626    }
3627  }
3628  return true;
3629}
3630
3631/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3632/// specifies a shuffle of elements that is suitable for input to MOVSS,
3633/// MOVSD, and MOVD, i.e. setting the lowest element.
3634static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3635  if (VT.getVectorElementType().getSizeInBits() < 32)
3636    return false;
3637  if (VT.getSizeInBits() == 256)
3638    return false;
3639
3640  unsigned NumElts = VT.getVectorNumElements();
3641
3642  if (!isUndefOrEqual(Mask[0], NumElts))
3643    return false;
3644
3645  for (unsigned i = 1; i != NumElts; ++i)
3646    if (!isUndefOrEqual(Mask[i], i))
3647      return false;
3648
3649  return true;
3650}
3651
3652/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3653/// as permutations between 128-bit chunks or halves. As an example: this
3654/// shuffle bellow:
3655///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3656/// The first half comes from the second half of V1 and the second half from the
3657/// the second half of V2.
3658static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3659  if (!HasAVX || VT.getSizeInBits() != 256)
3660    return false;
3661
3662  // The shuffle result is divided into half A and half B. In total the two
3663  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3664  // B must come from C, D, E or F.
3665  unsigned HalfSize = VT.getVectorNumElements()/2;
3666  bool MatchA = false, MatchB = false;
3667
3668  // Check if A comes from one of C, D, E, F.
3669  for (unsigned Half = 0; Half != 4; ++Half) {
3670    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3671      MatchA = true;
3672      break;
3673    }
3674  }
3675
3676  // Check if B comes from one of C, D, E, F.
3677  for (unsigned Half = 0; Half != 4; ++Half) {
3678    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3679      MatchB = true;
3680      break;
3681    }
3682  }
3683
3684  return MatchA && MatchB;
3685}
3686
3687/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3688/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3689static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3690  EVT VT = SVOp->getValueType(0);
3691
3692  unsigned HalfSize = VT.getVectorNumElements()/2;
3693
3694  unsigned FstHalf = 0, SndHalf = 0;
3695  for (unsigned i = 0; i < HalfSize; ++i) {
3696    if (SVOp->getMaskElt(i) > 0) {
3697      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3698      break;
3699    }
3700  }
3701  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3702    if (SVOp->getMaskElt(i) > 0) {
3703      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3704      break;
3705    }
3706  }
3707
3708  return (FstHalf | (SndHalf << 4));
3709}
3710
3711/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3712/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3713/// Note that VPERMIL mask matching is different depending whether theunderlying
3714/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3715/// to the same elements of the low, but to the higher half of the source.
3716/// In VPERMILPD the two lanes could be shuffled independently of each other
3717/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3718static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3719  if (!HasAVX)
3720    return false;
3721
3722  unsigned NumElts = VT.getVectorNumElements();
3723  // Only match 256-bit with 32/64-bit types
3724  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3725    return false;
3726
3727  unsigned NumLanes = VT.getSizeInBits()/128;
3728  unsigned LaneSize = NumElts/NumLanes;
3729  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3730    for (unsigned i = 0; i != LaneSize; ++i) {
3731      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3732        return false;
3733      if (NumElts != 8 || l == 0)
3734        continue;
3735      // VPERMILPS handling
3736      if (Mask[i] < 0)
3737        continue;
3738      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3739        return false;
3740    }
3741  }
3742
3743  return true;
3744}
3745
3746/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3747/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3748/// element of vector 2 and the other elements to come from vector 1 in order.
3749static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3750                               bool V2IsSplat = false, bool V2IsUndef = false) {
3751  unsigned NumOps = VT.getVectorNumElements();
3752  if (VT.getSizeInBits() == 256)
3753    return false;
3754  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3755    return false;
3756
3757  if (!isUndefOrEqual(Mask[0], 0))
3758    return false;
3759
3760  for (unsigned i = 1; i != NumOps; ++i)
3761    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3762          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3763          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3764      return false;
3765
3766  return true;
3767}
3768
3769/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3770/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3771/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3772static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3773                           const X86Subtarget *Subtarget) {
3774  if (!Subtarget->hasSSE3())
3775    return false;
3776
3777  unsigned NumElems = VT.getVectorNumElements();
3778
3779  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3780      (VT.getSizeInBits() == 256 && NumElems != 8))
3781    return false;
3782
3783  // "i+1" is the value the indexed mask element must have
3784  for (unsigned i = 0; i != NumElems; i += 2)
3785    if (!isUndefOrEqual(Mask[i], i+1) ||
3786        !isUndefOrEqual(Mask[i+1], i+1))
3787      return false;
3788
3789  return true;
3790}
3791
3792/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3793/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3794/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3795static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3796                           const X86Subtarget *Subtarget) {
3797  if (!Subtarget->hasSSE3())
3798    return false;
3799
3800  unsigned NumElems = VT.getVectorNumElements();
3801
3802  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3803      (VT.getSizeInBits() == 256 && NumElems != 8))
3804    return false;
3805
3806  // "i" is the value the indexed mask element must have
3807  for (unsigned i = 0; i != NumElems; i += 2)
3808    if (!isUndefOrEqual(Mask[i], i) ||
3809        !isUndefOrEqual(Mask[i+1], i))
3810      return false;
3811
3812  return true;
3813}
3814
3815/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3816/// specifies a shuffle of elements that is suitable for input to 256-bit
3817/// version of MOVDDUP.
3818static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3819  unsigned NumElts = VT.getVectorNumElements();
3820
3821  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3822    return false;
3823
3824  for (unsigned i = 0; i != NumElts/2; ++i)
3825    if (!isUndefOrEqual(Mask[i], 0))
3826      return false;
3827  for (unsigned i = NumElts/2; i != NumElts; ++i)
3828    if (!isUndefOrEqual(Mask[i], NumElts/2))
3829      return false;
3830  return true;
3831}
3832
3833/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3834/// specifies a shuffle of elements that is suitable for input to 128-bit
3835/// version of MOVDDUP.
3836static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3837  if (VT.getSizeInBits() != 128)
3838    return false;
3839
3840  unsigned e = VT.getVectorNumElements() / 2;
3841  for (unsigned i = 0; i != e; ++i)
3842    if (!isUndefOrEqual(Mask[i], i))
3843      return false;
3844  for (unsigned i = 0; i != e; ++i)
3845    if (!isUndefOrEqual(Mask[e+i], i))
3846      return false;
3847  return true;
3848}
3849
3850/// isVEXTRACTF128Index - Return true if the specified
3851/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3852/// suitable for input to VEXTRACTF128.
3853bool X86::isVEXTRACTF128Index(SDNode *N) {
3854  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3855    return false;
3856
3857  // The index should be aligned on a 128-bit boundary.
3858  uint64_t Index =
3859    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3860
3861  unsigned VL = N->getValueType(0).getVectorNumElements();
3862  unsigned VBits = N->getValueType(0).getSizeInBits();
3863  unsigned ElSize = VBits / VL;
3864  bool Result = (Index * ElSize) % 128 == 0;
3865
3866  return Result;
3867}
3868
3869/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3870/// operand specifies a subvector insert that is suitable for input to
3871/// VINSERTF128.
3872bool X86::isVINSERTF128Index(SDNode *N) {
3873  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3874    return false;
3875
3876  // The index should be aligned on a 128-bit boundary.
3877  uint64_t Index =
3878    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3879
3880  unsigned VL = N->getValueType(0).getVectorNumElements();
3881  unsigned VBits = N->getValueType(0).getSizeInBits();
3882  unsigned ElSize = VBits / VL;
3883  bool Result = (Index * ElSize) % 128 == 0;
3884
3885  return Result;
3886}
3887
3888/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3889/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3890/// Handles 128-bit and 256-bit.
3891static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3892  EVT VT = N->getValueType(0);
3893
3894  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3895         "Unsupported vector type for PSHUF/SHUFP");
3896
3897  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3898  // independently on 128-bit lanes.
3899  unsigned NumElts = VT.getVectorNumElements();
3900  unsigned NumLanes = VT.getSizeInBits()/128;
3901  unsigned NumLaneElts = NumElts/NumLanes;
3902
3903  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3904         "Only supports 2 or 4 elements per lane");
3905
3906  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3907  unsigned Mask = 0;
3908  for (unsigned i = 0; i != NumElts; ++i) {
3909    int Elt = N->getMaskElt(i);
3910    if (Elt < 0) continue;
3911    Elt &= NumLaneElts - 1;
3912    unsigned ShAmt = (i << Shift) % 8;
3913    Mask |= Elt << ShAmt;
3914  }
3915
3916  return Mask;
3917}
3918
3919/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3920/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3921static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3922  EVT VT = N->getValueType(0);
3923
3924  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
3925         "Unsupported vector type for PSHUFHW");
3926
3927  unsigned NumElts = VT.getVectorNumElements();
3928
3929  unsigned Mask = 0;
3930  for (unsigned l = 0; l != NumElts; l += 8) {
3931    // 8 nodes per lane, but we only care about the last 4.
3932    for (unsigned i = 0; i < 4; ++i) {
3933      int Elt = N->getMaskElt(l+i+4);
3934      if (Elt < 0) continue;
3935      Elt &= 0x3; // only 2-bits.
3936      Mask |= Elt << (i * 2);
3937    }
3938  }
3939
3940  return Mask;
3941}
3942
3943/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3944/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3945static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
3946  EVT VT = N->getValueType(0);
3947
3948  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
3949         "Unsupported vector type for PSHUFHW");
3950
3951  unsigned NumElts = VT.getVectorNumElements();
3952
3953  unsigned Mask = 0;
3954  for (unsigned l = 0; l != NumElts; l += 8) {
3955    // 8 nodes per lane, but we only care about the first 4.
3956    for (unsigned i = 0; i < 4; ++i) {
3957      int Elt = N->getMaskElt(l+i);
3958      if (Elt < 0) continue;
3959      Elt &= 0x3; // only 2-bits
3960      Mask |= Elt << (i * 2);
3961    }
3962  }
3963
3964  return Mask;
3965}
3966
3967/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3968/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3969static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3970  EVT VT = SVOp->getValueType(0);
3971  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3972
3973  unsigned NumElts = VT.getVectorNumElements();
3974  unsigned NumLanes = VT.getSizeInBits()/128;
3975  unsigned NumLaneElts = NumElts/NumLanes;
3976
3977  int Val = 0;
3978  unsigned i;
3979  for (i = 0; i != NumElts; ++i) {
3980    Val = SVOp->getMaskElt(i);
3981    if (Val >= 0)
3982      break;
3983  }
3984  if (Val >= (int)NumElts)
3985    Val -= NumElts - NumLaneElts;
3986
3987  assert(Val - i > 0 && "PALIGNR imm should be positive");
3988  return (Val - i) * EltSize;
3989}
3990
3991/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3992/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3993/// instructions.
3994unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3995  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3996    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3997
3998  uint64_t Index =
3999    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4000
4001  EVT VecVT = N->getOperand(0).getValueType();
4002  EVT ElVT = VecVT.getVectorElementType();
4003
4004  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4005  return Index / NumElemsPerChunk;
4006}
4007
4008/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4009/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4010/// instructions.
4011unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4012  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4013    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4014
4015  uint64_t Index =
4016    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4017
4018  EVT VecVT = N->getValueType(0);
4019  EVT ElVT = VecVT.getVectorElementType();
4020
4021  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4022  return Index / NumElemsPerChunk;
4023}
4024
4025/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4026/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4027/// Handles 256-bit.
4028static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4029  EVT VT = N->getValueType(0);
4030
4031  unsigned NumElts = VT.getVectorNumElements();
4032
4033  assert((VT.is256BitVector() && NumElts == 4) &&
4034         "Unsupported vector type for VPERMQ/VPERMPD");
4035
4036  unsigned Mask = 0;
4037  for (unsigned i = 0; i != NumElts; ++i) {
4038    int Elt = N->getMaskElt(i);
4039    if (Elt < 0)
4040      continue;
4041    Mask |= Elt << (i*2);
4042  }
4043
4044  return Mask;
4045}
4046/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4047/// constant +0.0.
4048bool X86::isZeroNode(SDValue Elt) {
4049  return ((isa<ConstantSDNode>(Elt) &&
4050           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4051          (isa<ConstantFPSDNode>(Elt) &&
4052           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4053}
4054
4055/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4056/// their permute mask.
4057static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4058                                    SelectionDAG &DAG) {
4059  EVT VT = SVOp->getValueType(0);
4060  unsigned NumElems = VT.getVectorNumElements();
4061  SmallVector<int, 8> MaskVec;
4062
4063  for (unsigned i = 0; i != NumElems; ++i) {
4064    int idx = SVOp->getMaskElt(i);
4065    if (idx < 0)
4066      MaskVec.push_back(idx);
4067    else if (idx < (int)NumElems)
4068      MaskVec.push_back(idx + NumElems);
4069    else
4070      MaskVec.push_back(idx - NumElems);
4071  }
4072  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4073                              SVOp->getOperand(0), &MaskVec[0]);
4074}
4075
4076/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4077/// match movhlps. The lower half elements should come from upper half of
4078/// V1 (and in order), and the upper half elements should come from the upper
4079/// half of V2 (and in order).
4080static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4081  if (VT.getSizeInBits() != 128)
4082    return false;
4083  if (VT.getVectorNumElements() != 4)
4084    return false;
4085  for (unsigned i = 0, e = 2; i != e; ++i)
4086    if (!isUndefOrEqual(Mask[i], i+2))
4087      return false;
4088  for (unsigned i = 2; i != 4; ++i)
4089    if (!isUndefOrEqual(Mask[i], i+4))
4090      return false;
4091  return true;
4092}
4093
4094/// isScalarLoadToVector - Returns true if the node is a scalar load that
4095/// is promoted to a vector. It also returns the LoadSDNode by reference if
4096/// required.
4097static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4098  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4099    return false;
4100  N = N->getOperand(0).getNode();
4101  if (!ISD::isNON_EXTLoad(N))
4102    return false;
4103  if (LD)
4104    *LD = cast<LoadSDNode>(N);
4105  return true;
4106}
4107
4108// Test whether the given value is a vector value which will be legalized
4109// into a load.
4110static bool WillBeConstantPoolLoad(SDNode *N) {
4111  if (N->getOpcode() != ISD::BUILD_VECTOR)
4112    return false;
4113
4114  // Check for any non-constant elements.
4115  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4116    switch (N->getOperand(i).getNode()->getOpcode()) {
4117    case ISD::UNDEF:
4118    case ISD::ConstantFP:
4119    case ISD::Constant:
4120      break;
4121    default:
4122      return false;
4123    }
4124
4125  // Vectors of all-zeros and all-ones are materialized with special
4126  // instructions rather than being loaded.
4127  return !ISD::isBuildVectorAllZeros(N) &&
4128         !ISD::isBuildVectorAllOnes(N);
4129}
4130
4131/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4132/// match movlp{s|d}. The lower half elements should come from lower half of
4133/// V1 (and in order), and the upper half elements should come from the upper
4134/// half of V2 (and in order). And since V1 will become the source of the
4135/// MOVLP, it must be either a vector load or a scalar load to vector.
4136static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4137                               ArrayRef<int> Mask, EVT VT) {
4138  if (VT.getSizeInBits() != 128)
4139    return false;
4140
4141  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4142    return false;
4143  // Is V2 is a vector load, don't do this transformation. We will try to use
4144  // load folding shufps op.
4145  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4146    return false;
4147
4148  unsigned NumElems = VT.getVectorNumElements();
4149
4150  if (NumElems != 2 && NumElems != 4)
4151    return false;
4152  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4153    if (!isUndefOrEqual(Mask[i], i))
4154      return false;
4155  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4156    if (!isUndefOrEqual(Mask[i], i+NumElems))
4157      return false;
4158  return true;
4159}
4160
4161/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4162/// all the same.
4163static bool isSplatVector(SDNode *N) {
4164  if (N->getOpcode() != ISD::BUILD_VECTOR)
4165    return false;
4166
4167  SDValue SplatValue = N->getOperand(0);
4168  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4169    if (N->getOperand(i) != SplatValue)
4170      return false;
4171  return true;
4172}
4173
4174/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4175/// to an zero vector.
4176/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4177static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4178  SDValue V1 = N->getOperand(0);
4179  SDValue V2 = N->getOperand(1);
4180  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4181  for (unsigned i = 0; i != NumElems; ++i) {
4182    int Idx = N->getMaskElt(i);
4183    if (Idx >= (int)NumElems) {
4184      unsigned Opc = V2.getOpcode();
4185      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4186        continue;
4187      if (Opc != ISD::BUILD_VECTOR ||
4188          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4189        return false;
4190    } else if (Idx >= 0) {
4191      unsigned Opc = V1.getOpcode();
4192      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4193        continue;
4194      if (Opc != ISD::BUILD_VECTOR ||
4195          !X86::isZeroNode(V1.getOperand(Idx)))
4196        return false;
4197    }
4198  }
4199  return true;
4200}
4201
4202/// getZeroVector - Returns a vector of specified type with all zero elements.
4203///
4204static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4205                             SelectionDAG &DAG, DebugLoc dl) {
4206  assert(VT.isVector() && "Expected a vector type");
4207  unsigned Size = VT.getSizeInBits();
4208
4209  // Always build SSE zero vectors as <4 x i32> bitcasted
4210  // to their dest type. This ensures they get CSE'd.
4211  SDValue Vec;
4212  if (Size == 128) {  // SSE
4213    if (Subtarget->hasSSE2()) {  // SSE2
4214      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4215      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4216    } else { // SSE1
4217      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4218      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4219    }
4220  } else if (Size == 256) { // AVX
4221    if (Subtarget->hasAVX2()) { // AVX2
4222      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4223      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4224      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4225    } else {
4226      // 256-bit logic and arithmetic instructions in AVX are all
4227      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4228      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4229      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4230      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4231    }
4232  } else
4233    llvm_unreachable("Unexpected vector type");
4234
4235  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4236}
4237
4238/// getOnesVector - Returns a vector of specified type with all bits set.
4239/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4240/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4241/// Then bitcast to their original type, ensuring they get CSE'd.
4242static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4243                             DebugLoc dl) {
4244  assert(VT.isVector() && "Expected a vector type");
4245  unsigned Size = VT.getSizeInBits();
4246
4247  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4248  SDValue Vec;
4249  if (Size == 256) {
4250    if (HasAVX2) { // AVX2
4251      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4252      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4253    } else { // AVX
4254      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4255      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4256    }
4257  } else if (Size == 128) {
4258    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4259  } else
4260    llvm_unreachable("Unexpected vector type");
4261
4262  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4263}
4264
4265/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4266/// that point to V2 points to its first element.
4267static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4268  for (unsigned i = 0; i != NumElems; ++i) {
4269    if (Mask[i] > (int)NumElems) {
4270      Mask[i] = NumElems;
4271    }
4272  }
4273}
4274
4275/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4276/// operation of specified width.
4277static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4278                       SDValue V2) {
4279  unsigned NumElems = VT.getVectorNumElements();
4280  SmallVector<int, 8> Mask;
4281  Mask.push_back(NumElems);
4282  for (unsigned i = 1; i != NumElems; ++i)
4283    Mask.push_back(i);
4284  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4285}
4286
4287/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4288static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4289                          SDValue V2) {
4290  unsigned NumElems = VT.getVectorNumElements();
4291  SmallVector<int, 8> Mask;
4292  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4293    Mask.push_back(i);
4294    Mask.push_back(i + NumElems);
4295  }
4296  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4297}
4298
4299/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4300static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4301                          SDValue V2) {
4302  unsigned NumElems = VT.getVectorNumElements();
4303  SmallVector<int, 8> Mask;
4304  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4305    Mask.push_back(i + Half);
4306    Mask.push_back(i + NumElems + Half);
4307  }
4308  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4309}
4310
4311// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4312// a generic shuffle instruction because the target has no such instructions.
4313// Generate shuffles which repeat i16 and i8 several times until they can be
4314// represented by v4f32 and then be manipulated by target suported shuffles.
4315static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4316  EVT VT = V.getValueType();
4317  int NumElems = VT.getVectorNumElements();
4318  DebugLoc dl = V.getDebugLoc();
4319
4320  while (NumElems > 4) {
4321    if (EltNo < NumElems/2) {
4322      V = getUnpackl(DAG, dl, VT, V, V);
4323    } else {
4324      V = getUnpackh(DAG, dl, VT, V, V);
4325      EltNo -= NumElems/2;
4326    }
4327    NumElems >>= 1;
4328  }
4329  return V;
4330}
4331
4332/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4333static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4334  EVT VT = V.getValueType();
4335  DebugLoc dl = V.getDebugLoc();
4336  unsigned Size = VT.getSizeInBits();
4337
4338  if (Size == 128) {
4339    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4340    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4341    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4342                             &SplatMask[0]);
4343  } else if (Size == 256) {
4344    // To use VPERMILPS to splat scalars, the second half of indicies must
4345    // refer to the higher part, which is a duplication of the lower one,
4346    // because VPERMILPS can only handle in-lane permutations.
4347    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4348                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4349
4350    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4351    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4352                             &SplatMask[0]);
4353  } else
4354    llvm_unreachable("Vector size not supported");
4355
4356  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4357}
4358
4359/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4360static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4361  EVT SrcVT = SV->getValueType(0);
4362  SDValue V1 = SV->getOperand(0);
4363  DebugLoc dl = SV->getDebugLoc();
4364
4365  int EltNo = SV->getSplatIndex();
4366  int NumElems = SrcVT.getVectorNumElements();
4367  unsigned Size = SrcVT.getSizeInBits();
4368
4369  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4370          "Unknown how to promote splat for type");
4371
4372  // Extract the 128-bit part containing the splat element and update
4373  // the splat element index when it refers to the higher register.
4374  if (Size == 256) {
4375    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4376    if (EltNo >= NumElems/2)
4377      EltNo -= NumElems/2;
4378  }
4379
4380  // All i16 and i8 vector types can't be used directly by a generic shuffle
4381  // instruction because the target has no such instruction. Generate shuffles
4382  // which repeat i16 and i8 several times until they fit in i32, and then can
4383  // be manipulated by target suported shuffles.
4384  EVT EltVT = SrcVT.getVectorElementType();
4385  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4386    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4387
4388  // Recreate the 256-bit vector and place the same 128-bit vector
4389  // into the low and high part. This is necessary because we want
4390  // to use VPERM* to shuffle the vectors
4391  if (Size == 256) {
4392    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4393  }
4394
4395  return getLegalSplat(DAG, V1, EltNo);
4396}
4397
4398/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4399/// vector of zero or undef vector.  This produces a shuffle where the low
4400/// element of V2 is swizzled into the zero/undef vector, landing at element
4401/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4402static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4403                                           bool IsZero,
4404                                           const X86Subtarget *Subtarget,
4405                                           SelectionDAG &DAG) {
4406  EVT VT = V2.getValueType();
4407  SDValue V1 = IsZero
4408    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4409  unsigned NumElems = VT.getVectorNumElements();
4410  SmallVector<int, 16> MaskVec;
4411  for (unsigned i = 0; i != NumElems; ++i)
4412    // If this is the insertion idx, put the low elt of V2 here.
4413    MaskVec.push_back(i == Idx ? NumElems : i);
4414  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4415}
4416
4417/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4418/// target specific opcode. Returns true if the Mask could be calculated.
4419/// Sets IsUnary to true if only uses one source.
4420static bool getTargetShuffleMask(SDNode *N, MVT VT,
4421                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4422  unsigned NumElems = VT.getVectorNumElements();
4423  SDValue ImmN;
4424
4425  IsUnary = false;
4426  switch(N->getOpcode()) {
4427  case X86ISD::SHUFP:
4428    ImmN = N->getOperand(N->getNumOperands()-1);
4429    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4430    break;
4431  case X86ISD::UNPCKH:
4432    DecodeUNPCKHMask(VT, Mask);
4433    break;
4434  case X86ISD::UNPCKL:
4435    DecodeUNPCKLMask(VT, Mask);
4436    break;
4437  case X86ISD::MOVHLPS:
4438    DecodeMOVHLPSMask(NumElems, Mask);
4439    break;
4440  case X86ISD::MOVLHPS:
4441    DecodeMOVLHPSMask(NumElems, Mask);
4442    break;
4443  case X86ISD::PSHUFD:
4444  case X86ISD::VPERMILP:
4445    ImmN = N->getOperand(N->getNumOperands()-1);
4446    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4447    IsUnary = true;
4448    break;
4449  case X86ISD::PSHUFHW:
4450    ImmN = N->getOperand(N->getNumOperands()-1);
4451    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4452    IsUnary = true;
4453    break;
4454  case X86ISD::PSHUFLW:
4455    ImmN = N->getOperand(N->getNumOperands()-1);
4456    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4457    IsUnary = true;
4458    break;
4459  case X86ISD::VPERMI:
4460    ImmN = N->getOperand(N->getNumOperands()-1);
4461    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4462    IsUnary = true;
4463    break;
4464  case X86ISD::MOVSS:
4465  case X86ISD::MOVSD: {
4466    // The index 0 always comes from the first element of the second source,
4467    // this is why MOVSS and MOVSD are used in the first place. The other
4468    // elements come from the other positions of the first source vector
4469    Mask.push_back(NumElems);
4470    for (unsigned i = 1; i != NumElems; ++i) {
4471      Mask.push_back(i);
4472    }
4473    break;
4474  }
4475  case X86ISD::VPERM2X128:
4476    ImmN = N->getOperand(N->getNumOperands()-1);
4477    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4478    if (Mask.empty()) return false;
4479    break;
4480  case X86ISD::MOVDDUP:
4481  case X86ISD::MOVLHPD:
4482  case X86ISD::MOVLPD:
4483  case X86ISD::MOVLPS:
4484  case X86ISD::MOVSHDUP:
4485  case X86ISD::MOVSLDUP:
4486  case X86ISD::PALIGN:
4487    // Not yet implemented
4488    return false;
4489  default: llvm_unreachable("unknown target shuffle node");
4490  }
4491
4492  return true;
4493}
4494
4495/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4496/// element of the result of the vector shuffle.
4497static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4498                                   unsigned Depth) {
4499  if (Depth == 6)
4500    return SDValue();  // Limit search depth.
4501
4502  SDValue V = SDValue(N, 0);
4503  EVT VT = V.getValueType();
4504  unsigned Opcode = V.getOpcode();
4505
4506  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4507  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4508    int Elt = SV->getMaskElt(Index);
4509
4510    if (Elt < 0)
4511      return DAG.getUNDEF(VT.getVectorElementType());
4512
4513    unsigned NumElems = VT.getVectorNumElements();
4514    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4515                                         : SV->getOperand(1);
4516    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4517  }
4518
4519  // Recurse into target specific vector shuffles to find scalars.
4520  if (isTargetShuffle(Opcode)) {
4521    MVT ShufVT = V.getValueType().getSimpleVT();
4522    unsigned NumElems = ShufVT.getVectorNumElements();
4523    SmallVector<int, 16> ShuffleMask;
4524    SDValue ImmN;
4525    bool IsUnary;
4526
4527    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4528      return SDValue();
4529
4530    int Elt = ShuffleMask[Index];
4531    if (Elt < 0)
4532      return DAG.getUNDEF(ShufVT.getVectorElementType());
4533
4534    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4535                                         : N->getOperand(1);
4536    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4537                               Depth+1);
4538  }
4539
4540  // Actual nodes that may contain scalar elements
4541  if (Opcode == ISD::BITCAST) {
4542    V = V.getOperand(0);
4543    EVT SrcVT = V.getValueType();
4544    unsigned NumElems = VT.getVectorNumElements();
4545
4546    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4547      return SDValue();
4548  }
4549
4550  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4551    return (Index == 0) ? V.getOperand(0)
4552                        : DAG.getUNDEF(VT.getVectorElementType());
4553
4554  if (V.getOpcode() == ISD::BUILD_VECTOR)
4555    return V.getOperand(Index);
4556
4557  return SDValue();
4558}
4559
4560/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4561/// shuffle operation which come from a consecutively from a zero. The
4562/// search can start in two different directions, from left or right.
4563static
4564unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4565                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4566  unsigned i;
4567  for (i = 0; i != NumElems; ++i) {
4568    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4569    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4570    if (!(Elt.getNode() &&
4571         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4572      break;
4573  }
4574
4575  return i;
4576}
4577
4578/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4579/// correspond consecutively to elements from one of the vector operands,
4580/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4581static
4582bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4583                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4584                              unsigned NumElems, unsigned &OpNum) {
4585  bool SeenV1 = false;
4586  bool SeenV2 = false;
4587
4588  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4589    int Idx = SVOp->getMaskElt(i);
4590    // Ignore undef indicies
4591    if (Idx < 0)
4592      continue;
4593
4594    if (Idx < (int)NumElems)
4595      SeenV1 = true;
4596    else
4597      SeenV2 = true;
4598
4599    // Only accept consecutive elements from the same vector
4600    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4601      return false;
4602  }
4603
4604  OpNum = SeenV1 ? 0 : 1;
4605  return true;
4606}
4607
4608/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4609/// logical left shift of a vector.
4610static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4611                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4612  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4613  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4614              false /* check zeros from right */, DAG);
4615  unsigned OpSrc;
4616
4617  if (!NumZeros)
4618    return false;
4619
4620  // Considering the elements in the mask that are not consecutive zeros,
4621  // check if they consecutively come from only one of the source vectors.
4622  //
4623  //               V1 = {X, A, B, C}     0
4624  //                         \  \  \    /
4625  //   vector_shuffle V1, V2 <1, 2, 3, X>
4626  //
4627  if (!isShuffleMaskConsecutive(SVOp,
4628            0,                   // Mask Start Index
4629            NumElems-NumZeros,   // Mask End Index(exclusive)
4630            NumZeros,            // Where to start looking in the src vector
4631            NumElems,            // Number of elements in vector
4632            OpSrc))              // Which source operand ?
4633    return false;
4634
4635  isLeft = false;
4636  ShAmt = NumZeros;
4637  ShVal = SVOp->getOperand(OpSrc);
4638  return true;
4639}
4640
4641/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4642/// logical left shift of a vector.
4643static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4644                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4645  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4646  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4647              true /* check zeros from left */, DAG);
4648  unsigned OpSrc;
4649
4650  if (!NumZeros)
4651    return false;
4652
4653  // Considering the elements in the mask that are not consecutive zeros,
4654  // check if they consecutively come from only one of the source vectors.
4655  //
4656  //                           0    { A, B, X, X } = V2
4657  //                          / \    /  /
4658  //   vector_shuffle V1, V2 <X, X, 4, 5>
4659  //
4660  if (!isShuffleMaskConsecutive(SVOp,
4661            NumZeros,     // Mask Start Index
4662            NumElems,     // Mask End Index(exclusive)
4663            0,            // Where to start looking in the src vector
4664            NumElems,     // Number of elements in vector
4665            OpSrc))       // Which source operand ?
4666    return false;
4667
4668  isLeft = true;
4669  ShAmt = NumZeros;
4670  ShVal = SVOp->getOperand(OpSrc);
4671  return true;
4672}
4673
4674/// isVectorShift - Returns true if the shuffle can be implemented as a
4675/// logical left or right shift of a vector.
4676static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4677                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4678  // Although the logic below support any bitwidth size, there are no
4679  // shift instructions which handle more than 128-bit vectors.
4680  if (SVOp->getValueType(0).getSizeInBits() > 128)
4681    return false;
4682
4683  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4684      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4685    return true;
4686
4687  return false;
4688}
4689
4690/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4691///
4692static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4693                                       unsigned NumNonZero, unsigned NumZero,
4694                                       SelectionDAG &DAG,
4695                                       const X86Subtarget* Subtarget,
4696                                       const TargetLowering &TLI) {
4697  if (NumNonZero > 8)
4698    return SDValue();
4699
4700  DebugLoc dl = Op.getDebugLoc();
4701  SDValue V(0, 0);
4702  bool First = true;
4703  for (unsigned i = 0; i < 16; ++i) {
4704    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4705    if (ThisIsNonZero && First) {
4706      if (NumZero)
4707        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4708      else
4709        V = DAG.getUNDEF(MVT::v8i16);
4710      First = false;
4711    }
4712
4713    if ((i & 1) != 0) {
4714      SDValue ThisElt(0, 0), LastElt(0, 0);
4715      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4716      if (LastIsNonZero) {
4717        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4718                              MVT::i16, Op.getOperand(i-1));
4719      }
4720      if (ThisIsNonZero) {
4721        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4722        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4723                              ThisElt, DAG.getConstant(8, MVT::i8));
4724        if (LastIsNonZero)
4725          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4726      } else
4727        ThisElt = LastElt;
4728
4729      if (ThisElt.getNode())
4730        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4731                        DAG.getIntPtrConstant(i/2));
4732    }
4733  }
4734
4735  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4736}
4737
4738/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4739///
4740static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4741                                     unsigned NumNonZero, unsigned NumZero,
4742                                     SelectionDAG &DAG,
4743                                     const X86Subtarget* Subtarget,
4744                                     const TargetLowering &TLI) {
4745  if (NumNonZero > 4)
4746    return SDValue();
4747
4748  DebugLoc dl = Op.getDebugLoc();
4749  SDValue V(0, 0);
4750  bool First = true;
4751  for (unsigned i = 0; i < 8; ++i) {
4752    bool isNonZero = (NonZeros & (1 << i)) != 0;
4753    if (isNonZero) {
4754      if (First) {
4755        if (NumZero)
4756          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4757        else
4758          V = DAG.getUNDEF(MVT::v8i16);
4759        First = false;
4760      }
4761      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4762                      MVT::v8i16, V, Op.getOperand(i),
4763                      DAG.getIntPtrConstant(i));
4764    }
4765  }
4766
4767  return V;
4768}
4769
4770/// getVShift - Return a vector logical shift node.
4771///
4772static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4773                         unsigned NumBits, SelectionDAG &DAG,
4774                         const TargetLowering &TLI, DebugLoc dl) {
4775  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4776  EVT ShVT = MVT::v2i64;
4777  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4778  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4779  return DAG.getNode(ISD::BITCAST, dl, VT,
4780                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4781                             DAG.getConstant(NumBits,
4782                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4783}
4784
4785SDValue
4786X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4787                                          SelectionDAG &DAG) const {
4788
4789  // Check if the scalar load can be widened into a vector load. And if
4790  // the address is "base + cst" see if the cst can be "absorbed" into
4791  // the shuffle mask.
4792  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4793    SDValue Ptr = LD->getBasePtr();
4794    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4795      return SDValue();
4796    EVT PVT = LD->getValueType(0);
4797    if (PVT != MVT::i32 && PVT != MVT::f32)
4798      return SDValue();
4799
4800    int FI = -1;
4801    int64_t Offset = 0;
4802    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4803      FI = FINode->getIndex();
4804      Offset = 0;
4805    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4806               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4807      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4808      Offset = Ptr.getConstantOperandVal(1);
4809      Ptr = Ptr.getOperand(0);
4810    } else {
4811      return SDValue();
4812    }
4813
4814    // FIXME: 256-bit vector instructions don't require a strict alignment,
4815    // improve this code to support it better.
4816    unsigned RequiredAlign = VT.getSizeInBits()/8;
4817    SDValue Chain = LD->getChain();
4818    // Make sure the stack object alignment is at least 16 or 32.
4819    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4820    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4821      if (MFI->isFixedObjectIndex(FI)) {
4822        // Can't change the alignment. FIXME: It's possible to compute
4823        // the exact stack offset and reference FI + adjust offset instead.
4824        // If someone *really* cares about this. That's the way to implement it.
4825        return SDValue();
4826      } else {
4827        MFI->setObjectAlignment(FI, RequiredAlign);
4828      }
4829    }
4830
4831    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4832    // Ptr + (Offset & ~15).
4833    if (Offset < 0)
4834      return SDValue();
4835    if ((Offset % RequiredAlign) & 3)
4836      return SDValue();
4837    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4838    if (StartOffset)
4839      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4840                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4841
4842    int EltNo = (Offset - StartOffset) >> 2;
4843    unsigned NumElems = VT.getVectorNumElements();
4844
4845    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4846    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4847                             LD->getPointerInfo().getWithOffset(StartOffset),
4848                             false, false, false, 0);
4849
4850    SmallVector<int, 8> Mask;
4851    for (unsigned i = 0; i != NumElems; ++i)
4852      Mask.push_back(EltNo);
4853
4854    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4855  }
4856
4857  return SDValue();
4858}
4859
4860/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4861/// vector of type 'VT', see if the elements can be replaced by a single large
4862/// load which has the same value as a build_vector whose operands are 'elts'.
4863///
4864/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4865///
4866/// FIXME: we'd also like to handle the case where the last elements are zero
4867/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4868/// There's even a handy isZeroNode for that purpose.
4869static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4870                                        DebugLoc &DL, SelectionDAG &DAG) {
4871  EVT EltVT = VT.getVectorElementType();
4872  unsigned NumElems = Elts.size();
4873
4874  LoadSDNode *LDBase = NULL;
4875  unsigned LastLoadedElt = -1U;
4876
4877  // For each element in the initializer, see if we've found a load or an undef.
4878  // If we don't find an initial load element, or later load elements are
4879  // non-consecutive, bail out.
4880  for (unsigned i = 0; i < NumElems; ++i) {
4881    SDValue Elt = Elts[i];
4882
4883    if (!Elt.getNode() ||
4884        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4885      return SDValue();
4886    if (!LDBase) {
4887      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4888        return SDValue();
4889      LDBase = cast<LoadSDNode>(Elt.getNode());
4890      LastLoadedElt = i;
4891      continue;
4892    }
4893    if (Elt.getOpcode() == ISD::UNDEF)
4894      continue;
4895
4896    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4897    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4898      return SDValue();
4899    LastLoadedElt = i;
4900  }
4901
4902  // If we have found an entire vector of loads and undefs, then return a large
4903  // load of the entire vector width starting at the base pointer.  If we found
4904  // consecutive loads for the low half, generate a vzext_load node.
4905  if (LastLoadedElt == NumElems - 1) {
4906    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4907      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4908                         LDBase->getPointerInfo(),
4909                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4910                         LDBase->isInvariant(), 0);
4911    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4912                       LDBase->getPointerInfo(),
4913                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4914                       LDBase->isInvariant(), LDBase->getAlignment());
4915  }
4916  if (NumElems == 4 && LastLoadedElt == 1 &&
4917      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4918    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4919    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4920    SDValue ResNode =
4921        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4922                                LDBase->getPointerInfo(),
4923                                LDBase->getAlignment(),
4924                                false/*isVolatile*/, true/*ReadMem*/,
4925                                false/*WriteMem*/);
4926    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4927  }
4928  return SDValue();
4929}
4930
4931/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4932/// to generate a splat value for the following cases:
4933/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
4934/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4935/// a scalar load, or a constant.
4936/// The VBROADCAST node is returned when a pattern is found,
4937/// or SDValue() otherwise.
4938SDValue
4939X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
4940  if (!Subtarget->hasAVX())
4941    return SDValue();
4942
4943  EVT VT = Op.getValueType();
4944  DebugLoc dl = Op.getDebugLoc();
4945
4946  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4947         "Unsupported vector type for broadcast.");
4948
4949  SDValue Ld;
4950  bool ConstSplatVal;
4951
4952  switch (Op.getOpcode()) {
4953    default:
4954      // Unknown pattern found.
4955      return SDValue();
4956
4957    case ISD::BUILD_VECTOR: {
4958      // The BUILD_VECTOR node must be a splat.
4959      if (!isSplatVector(Op.getNode()))
4960        return SDValue();
4961
4962      Ld = Op.getOperand(0);
4963      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4964                     Ld.getOpcode() == ISD::ConstantFP);
4965
4966      // The suspected load node has several users. Make sure that all
4967      // of its users are from the BUILD_VECTOR node.
4968      // Constants may have multiple users.
4969      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4970        return SDValue();
4971      break;
4972    }
4973
4974    case ISD::VECTOR_SHUFFLE: {
4975      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4976
4977      // Shuffles must have a splat mask where the first element is
4978      // broadcasted.
4979      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4980        return SDValue();
4981
4982      SDValue Sc = Op.getOperand(0);
4983      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4984        return SDValue();
4985
4986      Ld = Sc.getOperand(0);
4987      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4988                       Ld.getOpcode() == ISD::ConstantFP);
4989
4990      // The scalar_to_vector node and the suspected
4991      // load node must have exactly one user.
4992      // Constants may have multiple users.
4993      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
4994        return SDValue();
4995      break;
4996    }
4997  }
4998
4999  bool Is256 = VT.getSizeInBits() == 256;
5000
5001  // Handle the broadcasting a single constant scalar from the constant pool
5002  // into a vector. On Sandybridge it is still better to load a constant vector
5003  // from the constant pool and not to broadcast it from a scalar.
5004  if (ConstSplatVal && Subtarget->hasAVX2()) {
5005    EVT CVT = Ld.getValueType();
5006    assert(!CVT.isVector() && "Must not broadcast a vector type");
5007    unsigned ScalarSize = CVT.getSizeInBits();
5008
5009    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5010      const Constant *C = 0;
5011      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5012        C = CI->getConstantIntValue();
5013      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5014        C = CF->getConstantFPValue();
5015
5016      assert(C && "Invalid constant type");
5017
5018      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5019      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5020      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5021                       MachinePointerInfo::getConstantPool(),
5022                       false, false, false, Alignment);
5023
5024      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5025    }
5026  }
5027
5028  // The scalar source must be a normal load.
5029  if (!ISD::isNormalLoad(Ld.getNode()))
5030    return SDValue();
5031
5032  // Reject loads that have uses of the chain result
5033  if (Ld->hasAnyUseOfValue(1))
5034    return SDValue();
5035
5036  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5037
5038  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5039    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5040
5041  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5042  // double since there is no vbroadcastsd xmm
5043  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5044    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5045      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5046  }
5047
5048  // Unsupported broadcast.
5049  return SDValue();
5050}
5051
5052SDValue
5053X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5054  DebugLoc dl = Op.getDebugLoc();
5055
5056  EVT VT = Op.getValueType();
5057  EVT ExtVT = VT.getVectorElementType();
5058  unsigned NumElems = Op.getNumOperands();
5059
5060  // Vectors containing all zeros can be matched by pxor and xorps later
5061  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5062    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5063    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5064    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5065      return Op;
5066
5067    return getZeroVector(VT, Subtarget, DAG, dl);
5068  }
5069
5070  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5071  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5072  // vpcmpeqd on 256-bit vectors.
5073  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5074    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5075      return Op;
5076
5077    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5078  }
5079
5080  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5081  if (Broadcast.getNode())
5082    return Broadcast;
5083
5084  unsigned EVTBits = ExtVT.getSizeInBits();
5085
5086  unsigned NumZero  = 0;
5087  unsigned NumNonZero = 0;
5088  unsigned NonZeros = 0;
5089  bool IsAllConstants = true;
5090  SmallSet<SDValue, 8> Values;
5091  for (unsigned i = 0; i < NumElems; ++i) {
5092    SDValue Elt = Op.getOperand(i);
5093    if (Elt.getOpcode() == ISD::UNDEF)
5094      continue;
5095    Values.insert(Elt);
5096    if (Elt.getOpcode() != ISD::Constant &&
5097        Elt.getOpcode() != ISD::ConstantFP)
5098      IsAllConstants = false;
5099    if (X86::isZeroNode(Elt))
5100      NumZero++;
5101    else {
5102      NonZeros |= (1 << i);
5103      NumNonZero++;
5104    }
5105  }
5106
5107  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5108  if (NumNonZero == 0)
5109    return DAG.getUNDEF(VT);
5110
5111  // Special case for single non-zero, non-undef, element.
5112  if (NumNonZero == 1) {
5113    unsigned Idx = CountTrailingZeros_32(NonZeros);
5114    SDValue Item = Op.getOperand(Idx);
5115
5116    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5117    // the value are obviously zero, truncate the value to i32 and do the
5118    // insertion that way.  Only do this if the value is non-constant or if the
5119    // value is a constant being inserted into element 0.  It is cheaper to do
5120    // a constant pool load than it is to do a movd + shuffle.
5121    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5122        (!IsAllConstants || Idx == 0)) {
5123      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5124        // Handle SSE only.
5125        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5126        EVT VecVT = MVT::v4i32;
5127        unsigned VecElts = 4;
5128
5129        // Truncate the value (which may itself be a constant) to i32, and
5130        // convert it to a vector with movd (S2V+shuffle to zero extend).
5131        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5132        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5133        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5134
5135        // Now we have our 32-bit value zero extended in the low element of
5136        // a vector.  If Idx != 0, swizzle it into place.
5137        if (Idx != 0) {
5138          SmallVector<int, 4> Mask;
5139          Mask.push_back(Idx);
5140          for (unsigned i = 1; i != VecElts; ++i)
5141            Mask.push_back(i);
5142          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5143                                      &Mask[0]);
5144        }
5145        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5146      }
5147    }
5148
5149    // If we have a constant or non-constant insertion into the low element of
5150    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5151    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5152    // depending on what the source datatype is.
5153    if (Idx == 0) {
5154      if (NumZero == 0)
5155        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5156
5157      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5158          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5159        if (VT.getSizeInBits() == 256) {
5160          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5161          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5162                             Item, DAG.getIntPtrConstant(0));
5163        }
5164        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5165        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5166        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5167        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5168      }
5169
5170      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5171        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5172        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5173        if (VT.getSizeInBits() == 256) {
5174          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5175          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5176        } else {
5177          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5178          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5179        }
5180        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5181      }
5182    }
5183
5184    // Is it a vector logical left shift?
5185    if (NumElems == 2 && Idx == 1 &&
5186        X86::isZeroNode(Op.getOperand(0)) &&
5187        !X86::isZeroNode(Op.getOperand(1))) {
5188      unsigned NumBits = VT.getSizeInBits();
5189      return getVShift(true, VT,
5190                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5191                                   VT, Op.getOperand(1)),
5192                       NumBits/2, DAG, *this, dl);
5193    }
5194
5195    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5196      return SDValue();
5197
5198    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5199    // is a non-constant being inserted into an element other than the low one,
5200    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5201    // movd/movss) to move this into the low element, then shuffle it into
5202    // place.
5203    if (EVTBits == 32) {
5204      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5205
5206      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5207      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5208      SmallVector<int, 8> MaskVec;
5209      for (unsigned i = 0; i != NumElems; ++i)
5210        MaskVec.push_back(i == Idx ? 0 : 1);
5211      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5212    }
5213  }
5214
5215  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5216  if (Values.size() == 1) {
5217    if (EVTBits == 32) {
5218      // Instead of a shuffle like this:
5219      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5220      // Check if it's possible to issue this instead.
5221      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5222      unsigned Idx = CountTrailingZeros_32(NonZeros);
5223      SDValue Item = Op.getOperand(Idx);
5224      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5225        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5226    }
5227    return SDValue();
5228  }
5229
5230  // A vector full of immediates; various special cases are already
5231  // handled, so this is best done with a single constant-pool load.
5232  if (IsAllConstants)
5233    return SDValue();
5234
5235  // For AVX-length vectors, build the individual 128-bit pieces and use
5236  // shuffles to put them in place.
5237  if (VT.getSizeInBits() == 256) {
5238    SmallVector<SDValue, 32> V;
5239    for (unsigned i = 0; i != NumElems; ++i)
5240      V.push_back(Op.getOperand(i));
5241
5242    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5243
5244    // Build both the lower and upper subvector.
5245    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5246    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5247                                NumElems/2);
5248
5249    // Recreate the wider vector with the lower and upper part.
5250    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5251  }
5252
5253  // Let legalizer expand 2-wide build_vectors.
5254  if (EVTBits == 64) {
5255    if (NumNonZero == 1) {
5256      // One half is zero or undef.
5257      unsigned Idx = CountTrailingZeros_32(NonZeros);
5258      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5259                                 Op.getOperand(Idx));
5260      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5261    }
5262    return SDValue();
5263  }
5264
5265  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5266  if (EVTBits == 8 && NumElems == 16) {
5267    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5268                                        Subtarget, *this);
5269    if (V.getNode()) return V;
5270  }
5271
5272  if (EVTBits == 16 && NumElems == 8) {
5273    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5274                                      Subtarget, *this);
5275    if (V.getNode()) return V;
5276  }
5277
5278  // If element VT is == 32 bits, turn it into a number of shuffles.
5279  SmallVector<SDValue, 8> V(NumElems);
5280  if (NumElems == 4 && NumZero > 0) {
5281    for (unsigned i = 0; i < 4; ++i) {
5282      bool isZero = !(NonZeros & (1 << i));
5283      if (isZero)
5284        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5285      else
5286        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5287    }
5288
5289    for (unsigned i = 0; i < 2; ++i) {
5290      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5291        default: break;
5292        case 0:
5293          V[i] = V[i*2];  // Must be a zero vector.
5294          break;
5295        case 1:
5296          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5297          break;
5298        case 2:
5299          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5300          break;
5301        case 3:
5302          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5303          break;
5304      }
5305    }
5306
5307    bool Reverse1 = (NonZeros & 0x3) == 2;
5308    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5309    int MaskVec[] = {
5310      Reverse1 ? 1 : 0,
5311      Reverse1 ? 0 : 1,
5312      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5313      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5314    };
5315    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5316  }
5317
5318  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5319    // Check for a build vector of consecutive loads.
5320    for (unsigned i = 0; i < NumElems; ++i)
5321      V[i] = Op.getOperand(i);
5322
5323    // Check for elements which are consecutive loads.
5324    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5325    if (LD.getNode())
5326      return LD;
5327
5328    // For SSE 4.1, use insertps to put the high elements into the low element.
5329    if (getSubtarget()->hasSSE41()) {
5330      SDValue Result;
5331      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5332        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5333      else
5334        Result = DAG.getUNDEF(VT);
5335
5336      for (unsigned i = 1; i < NumElems; ++i) {
5337        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5338        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5339                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5340      }
5341      return Result;
5342    }
5343
5344    // Otherwise, expand into a number of unpckl*, start by extending each of
5345    // our (non-undef) elements to the full vector width with the element in the
5346    // bottom slot of the vector (which generates no code for SSE).
5347    for (unsigned i = 0; i < NumElems; ++i) {
5348      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5349        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5350      else
5351        V[i] = DAG.getUNDEF(VT);
5352    }
5353
5354    // Next, we iteratively mix elements, e.g. for v4f32:
5355    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5356    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5357    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5358    unsigned EltStride = NumElems >> 1;
5359    while (EltStride != 0) {
5360      for (unsigned i = 0; i < EltStride; ++i) {
5361        // If V[i+EltStride] is undef and this is the first round of mixing,
5362        // then it is safe to just drop this shuffle: V[i] is already in the
5363        // right place, the one element (since it's the first round) being
5364        // inserted as undef can be dropped.  This isn't safe for successive
5365        // rounds because they will permute elements within both vectors.
5366        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5367            EltStride == NumElems/2)
5368          continue;
5369
5370        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5371      }
5372      EltStride >>= 1;
5373    }
5374    return V[0];
5375  }
5376  return SDValue();
5377}
5378
5379// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5380// them in a MMX register.  This is better than doing a stack convert.
5381static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5382  DebugLoc dl = Op.getDebugLoc();
5383  EVT ResVT = Op.getValueType();
5384
5385  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5386         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5387  int Mask[2];
5388  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5389  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5390  InVec = Op.getOperand(1);
5391  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5392    unsigned NumElts = ResVT.getVectorNumElements();
5393    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5394    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5395                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5396  } else {
5397    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5398    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5399    Mask[0] = 0; Mask[1] = 2;
5400    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5401  }
5402  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5403}
5404
5405// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5406// to create 256-bit vectors from two other 128-bit ones.
5407static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5408  DebugLoc dl = Op.getDebugLoc();
5409  EVT ResVT = Op.getValueType();
5410
5411  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5412
5413  SDValue V1 = Op.getOperand(0);
5414  SDValue V2 = Op.getOperand(1);
5415  unsigned NumElems = ResVT.getVectorNumElements();
5416
5417  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5418}
5419
5420SDValue
5421X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5422  EVT ResVT = Op.getValueType();
5423
5424  assert(Op.getNumOperands() == 2);
5425  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5426         "Unsupported CONCAT_VECTORS for value type");
5427
5428  // We support concatenate two MMX registers and place them in a MMX register.
5429  // This is better than doing a stack convert.
5430  if (ResVT.is128BitVector())
5431    return LowerMMXCONCAT_VECTORS(Op, DAG);
5432
5433  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5434  // from two other 128-bit ones.
5435  return LowerAVXCONCAT_VECTORS(Op, DAG);
5436}
5437
5438// Try to lower a shuffle node into a simple blend instruction.
5439static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5440                                          const X86Subtarget *Subtarget,
5441                                          SelectionDAG &DAG) {
5442  SDValue V1 = SVOp->getOperand(0);
5443  SDValue V2 = SVOp->getOperand(1);
5444  DebugLoc dl = SVOp->getDebugLoc();
5445  MVT VT = SVOp->getValueType(0).getSimpleVT();
5446  unsigned NumElems = VT.getVectorNumElements();
5447
5448  if (!Subtarget->hasSSE41())
5449    return SDValue();
5450
5451  unsigned ISDNo = 0;
5452  MVT OpTy;
5453
5454  switch (VT.SimpleTy) {
5455  default: return SDValue();
5456  case MVT::v8i16:
5457    ISDNo = X86ISD::BLENDPW;
5458    OpTy = MVT::v8i16;
5459    break;
5460  case MVT::v4i32:
5461  case MVT::v4f32:
5462    ISDNo = X86ISD::BLENDPS;
5463    OpTy = MVT::v4f32;
5464    break;
5465  case MVT::v2i64:
5466  case MVT::v2f64:
5467    ISDNo = X86ISD::BLENDPD;
5468    OpTy = MVT::v2f64;
5469    break;
5470  case MVT::v8i32:
5471  case MVT::v8f32:
5472    if (!Subtarget->hasAVX())
5473      return SDValue();
5474    ISDNo = X86ISD::BLENDPS;
5475    OpTy = MVT::v8f32;
5476    break;
5477  case MVT::v4i64:
5478  case MVT::v4f64:
5479    if (!Subtarget->hasAVX())
5480      return SDValue();
5481    ISDNo = X86ISD::BLENDPD;
5482    OpTy = MVT::v4f64;
5483    break;
5484  }
5485  assert(ISDNo && "Invalid Op Number");
5486
5487  unsigned MaskVals = 0;
5488
5489  for (unsigned i = 0; i != NumElems; ++i) {
5490    int EltIdx = SVOp->getMaskElt(i);
5491    if (EltIdx == (int)i || EltIdx < 0)
5492      MaskVals |= (1<<i);
5493    else if (EltIdx == (int)(i + NumElems))
5494      continue; // Bit is set to zero;
5495    else
5496      return SDValue();
5497  }
5498
5499  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5500  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5501  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5502                             DAG.getConstant(MaskVals, MVT::i32));
5503  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5504}
5505
5506// v8i16 shuffles - Prefer shuffles in the following order:
5507// 1. [all]   pshuflw, pshufhw, optional move
5508// 2. [ssse3] 1 x pshufb
5509// 3. [ssse3] 2 x pshufb + 1 x por
5510// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5511SDValue
5512X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5513                                            SelectionDAG &DAG) const {
5514  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5515  SDValue V1 = SVOp->getOperand(0);
5516  SDValue V2 = SVOp->getOperand(1);
5517  DebugLoc dl = SVOp->getDebugLoc();
5518  SmallVector<int, 8> MaskVals;
5519
5520  // Determine if more than 1 of the words in each of the low and high quadwords
5521  // of the result come from the same quadword of one of the two inputs.  Undef
5522  // mask values count as coming from any quadword, for better codegen.
5523  unsigned LoQuad[] = { 0, 0, 0, 0 };
5524  unsigned HiQuad[] = { 0, 0, 0, 0 };
5525  std::bitset<4> InputQuads;
5526  for (unsigned i = 0; i < 8; ++i) {
5527    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5528    int EltIdx = SVOp->getMaskElt(i);
5529    MaskVals.push_back(EltIdx);
5530    if (EltIdx < 0) {
5531      ++Quad[0];
5532      ++Quad[1];
5533      ++Quad[2];
5534      ++Quad[3];
5535      continue;
5536    }
5537    ++Quad[EltIdx / 4];
5538    InputQuads.set(EltIdx / 4);
5539  }
5540
5541  int BestLoQuad = -1;
5542  unsigned MaxQuad = 1;
5543  for (unsigned i = 0; i < 4; ++i) {
5544    if (LoQuad[i] > MaxQuad) {
5545      BestLoQuad = i;
5546      MaxQuad = LoQuad[i];
5547    }
5548  }
5549
5550  int BestHiQuad = -1;
5551  MaxQuad = 1;
5552  for (unsigned i = 0; i < 4; ++i) {
5553    if (HiQuad[i] > MaxQuad) {
5554      BestHiQuad = i;
5555      MaxQuad = HiQuad[i];
5556    }
5557  }
5558
5559  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5560  // of the two input vectors, shuffle them into one input vector so only a
5561  // single pshufb instruction is necessary. If There are more than 2 input
5562  // quads, disable the next transformation since it does not help SSSE3.
5563  bool V1Used = InputQuads[0] || InputQuads[1];
5564  bool V2Used = InputQuads[2] || InputQuads[3];
5565  if (Subtarget->hasSSSE3()) {
5566    if (InputQuads.count() == 2 && V1Used && V2Used) {
5567      BestLoQuad = InputQuads[0] ? 0 : 1;
5568      BestHiQuad = InputQuads[2] ? 2 : 3;
5569    }
5570    if (InputQuads.count() > 2) {
5571      BestLoQuad = -1;
5572      BestHiQuad = -1;
5573    }
5574  }
5575
5576  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5577  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5578  // words from all 4 input quadwords.
5579  SDValue NewV;
5580  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5581    int MaskV[] = {
5582      BestLoQuad < 0 ? 0 : BestLoQuad,
5583      BestHiQuad < 0 ? 1 : BestHiQuad
5584    };
5585    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5586                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5587                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5588    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5589
5590    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5591    // source words for the shuffle, to aid later transformations.
5592    bool AllWordsInNewV = true;
5593    bool InOrder[2] = { true, true };
5594    for (unsigned i = 0; i != 8; ++i) {
5595      int idx = MaskVals[i];
5596      if (idx != (int)i)
5597        InOrder[i/4] = false;
5598      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5599        continue;
5600      AllWordsInNewV = false;
5601      break;
5602    }
5603
5604    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5605    if (AllWordsInNewV) {
5606      for (int i = 0; i != 8; ++i) {
5607        int idx = MaskVals[i];
5608        if (idx < 0)
5609          continue;
5610        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5611        if ((idx != i) && idx < 4)
5612          pshufhw = false;
5613        if ((idx != i) && idx > 3)
5614          pshuflw = false;
5615      }
5616      V1 = NewV;
5617      V2Used = false;
5618      BestLoQuad = 0;
5619      BestHiQuad = 1;
5620    }
5621
5622    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5623    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5624    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5625      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5626      unsigned TargetMask = 0;
5627      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5628                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5629      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5630      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5631                             getShufflePSHUFLWImmediate(SVOp);
5632      V1 = NewV.getOperand(0);
5633      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5634    }
5635  }
5636
5637  // If we have SSSE3, and all words of the result are from 1 input vector,
5638  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5639  // is present, fall back to case 4.
5640  if (Subtarget->hasSSSE3()) {
5641    SmallVector<SDValue,16> pshufbMask;
5642
5643    // If we have elements from both input vectors, set the high bit of the
5644    // shuffle mask element to zero out elements that come from V2 in the V1
5645    // mask, and elements that come from V1 in the V2 mask, so that the two
5646    // results can be OR'd together.
5647    bool TwoInputs = V1Used && V2Used;
5648    for (unsigned i = 0; i != 8; ++i) {
5649      int EltIdx = MaskVals[i] * 2;
5650      if (TwoInputs && (EltIdx >= 16)) {
5651        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5652        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5653        continue;
5654      }
5655      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5656      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5657    }
5658    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5659    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5660                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5661                                 MVT::v16i8, &pshufbMask[0], 16));
5662    if (!TwoInputs)
5663      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5664
5665    // Calculate the shuffle mask for the second input, shuffle it, and
5666    // OR it with the first shuffled input.
5667    pshufbMask.clear();
5668    for (unsigned i = 0; i != 8; ++i) {
5669      int EltIdx = MaskVals[i] * 2;
5670      if (EltIdx < 16) {
5671        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5672        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5673        continue;
5674      }
5675      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5676      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5677    }
5678    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5679    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5680                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5681                                 MVT::v16i8, &pshufbMask[0], 16));
5682    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5683    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5684  }
5685
5686  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5687  // and update MaskVals with new element order.
5688  std::bitset<8> InOrder;
5689  if (BestLoQuad >= 0) {
5690    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5691    for (int i = 0; i != 4; ++i) {
5692      int idx = MaskVals[i];
5693      if (idx < 0) {
5694        InOrder.set(i);
5695      } else if ((idx / 4) == BestLoQuad) {
5696        MaskV[i] = idx & 3;
5697        InOrder.set(i);
5698      }
5699    }
5700    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5701                                &MaskV[0]);
5702
5703    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5704      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5705      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5706                                  NewV.getOperand(0),
5707                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5708    }
5709  }
5710
5711  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5712  // and update MaskVals with the new element order.
5713  if (BestHiQuad >= 0) {
5714    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5715    for (unsigned i = 4; i != 8; ++i) {
5716      int idx = MaskVals[i];
5717      if (idx < 0) {
5718        InOrder.set(i);
5719      } else if ((idx / 4) == BestHiQuad) {
5720        MaskV[i] = (idx & 3) + 4;
5721        InOrder.set(i);
5722      }
5723    }
5724    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5725                                &MaskV[0]);
5726
5727    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5728      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5729      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5730                                  NewV.getOperand(0),
5731                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5732    }
5733  }
5734
5735  // In case BestHi & BestLo were both -1, which means each quadword has a word
5736  // from each of the four input quadwords, calculate the InOrder bitvector now
5737  // before falling through to the insert/extract cleanup.
5738  if (BestLoQuad == -1 && BestHiQuad == -1) {
5739    NewV = V1;
5740    for (int i = 0; i != 8; ++i)
5741      if (MaskVals[i] < 0 || MaskVals[i] == i)
5742        InOrder.set(i);
5743  }
5744
5745  // The other elements are put in the right place using pextrw and pinsrw.
5746  for (unsigned i = 0; i != 8; ++i) {
5747    if (InOrder[i])
5748      continue;
5749    int EltIdx = MaskVals[i];
5750    if (EltIdx < 0)
5751      continue;
5752    SDValue ExtOp = (EltIdx < 8) ?
5753      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5754                  DAG.getIntPtrConstant(EltIdx)) :
5755      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5756                  DAG.getIntPtrConstant(EltIdx - 8));
5757    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5758                       DAG.getIntPtrConstant(i));
5759  }
5760  return NewV;
5761}
5762
5763// v16i8 shuffles - Prefer shuffles in the following order:
5764// 1. [ssse3] 1 x pshufb
5765// 2. [ssse3] 2 x pshufb + 1 x por
5766// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5767static
5768SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5769                                 SelectionDAG &DAG,
5770                                 const X86TargetLowering &TLI) {
5771  SDValue V1 = SVOp->getOperand(0);
5772  SDValue V2 = SVOp->getOperand(1);
5773  DebugLoc dl = SVOp->getDebugLoc();
5774  ArrayRef<int> MaskVals = SVOp->getMask();
5775
5776  // If we have SSSE3, case 1 is generated when all result bytes come from
5777  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5778  // present, fall back to case 3.
5779  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5780  bool V1Only = true;
5781  bool V2Only = true;
5782  for (unsigned i = 0; i < 16; ++i) {
5783    int EltIdx = MaskVals[i];
5784    if (EltIdx < 0)
5785      continue;
5786    if (EltIdx < 16)
5787      V2Only = false;
5788    else
5789      V1Only = false;
5790  }
5791
5792  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5793  if (TLI.getSubtarget()->hasSSSE3()) {
5794    SmallVector<SDValue,16> pshufbMask;
5795
5796    // If all result elements are from one input vector, then only translate
5797    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5798    //
5799    // Otherwise, we have elements from both input vectors, and must zero out
5800    // elements that come from V2 in the first mask, and V1 in the second mask
5801    // so that we can OR them together.
5802    bool TwoInputs = !(V1Only || V2Only);
5803    for (unsigned i = 0; i != 16; ++i) {
5804      int EltIdx = MaskVals[i];
5805      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5806        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5807        continue;
5808      }
5809      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5810    }
5811    // If all the elements are from V2, assign it to V1 and return after
5812    // building the first pshufb.
5813    if (V2Only)
5814      V1 = V2;
5815    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5816                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5817                                 MVT::v16i8, &pshufbMask[0], 16));
5818    if (!TwoInputs)
5819      return V1;
5820
5821    // Calculate the shuffle mask for the second input, shuffle it, and
5822    // OR it with the first shuffled input.
5823    pshufbMask.clear();
5824    for (unsigned i = 0; i != 16; ++i) {
5825      int EltIdx = MaskVals[i];
5826      if (EltIdx < 16) {
5827        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5828        continue;
5829      }
5830      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5831    }
5832    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5833                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5834                                 MVT::v16i8, &pshufbMask[0], 16));
5835    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5836  }
5837
5838  // No SSSE3 - Calculate in place words and then fix all out of place words
5839  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5840  // the 16 different words that comprise the two doublequadword input vectors.
5841  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5842  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5843  SDValue NewV = V2Only ? V2 : V1;
5844  for (int i = 0; i != 8; ++i) {
5845    int Elt0 = MaskVals[i*2];
5846    int Elt1 = MaskVals[i*2+1];
5847
5848    // This word of the result is all undef, skip it.
5849    if (Elt0 < 0 && Elt1 < 0)
5850      continue;
5851
5852    // This word of the result is already in the correct place, skip it.
5853    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5854      continue;
5855    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5856      continue;
5857
5858    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5859    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5860    SDValue InsElt;
5861
5862    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5863    // using a single extract together, load it and store it.
5864    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5865      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5866                           DAG.getIntPtrConstant(Elt1 / 2));
5867      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5868                        DAG.getIntPtrConstant(i));
5869      continue;
5870    }
5871
5872    // If Elt1 is defined, extract it from the appropriate source.  If the
5873    // source byte is not also odd, shift the extracted word left 8 bits
5874    // otherwise clear the bottom 8 bits if we need to do an or.
5875    if (Elt1 >= 0) {
5876      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5877                           DAG.getIntPtrConstant(Elt1 / 2));
5878      if ((Elt1 & 1) == 0)
5879        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5880                             DAG.getConstant(8,
5881                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5882      else if (Elt0 >= 0)
5883        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5884                             DAG.getConstant(0xFF00, MVT::i16));
5885    }
5886    // If Elt0 is defined, extract it from the appropriate source.  If the
5887    // source byte is not also even, shift the extracted word right 8 bits. If
5888    // Elt1 was also defined, OR the extracted values together before
5889    // inserting them in the result.
5890    if (Elt0 >= 0) {
5891      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5892                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5893      if ((Elt0 & 1) != 0)
5894        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5895                              DAG.getConstant(8,
5896                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5897      else if (Elt1 >= 0)
5898        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5899                             DAG.getConstant(0x00FF, MVT::i16));
5900      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5901                         : InsElt0;
5902    }
5903    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5904                       DAG.getIntPtrConstant(i));
5905  }
5906  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5907}
5908
5909/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5910/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5911/// done when every pair / quad of shuffle mask elements point to elements in
5912/// the right sequence. e.g.
5913/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5914static
5915SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5916                                 SelectionDAG &DAG, DebugLoc dl) {
5917  MVT VT = SVOp->getValueType(0).getSimpleVT();
5918  unsigned NumElems = VT.getVectorNumElements();
5919  MVT NewVT;
5920  unsigned Scale;
5921  switch (VT.SimpleTy) {
5922  default: llvm_unreachable("Unexpected!");
5923  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
5924  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
5925  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
5926  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
5927  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
5928  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
5929  }
5930
5931  SmallVector<int, 8> MaskVec;
5932  for (unsigned i = 0; i != NumElems; i += Scale) {
5933    int StartIdx = -1;
5934    for (unsigned j = 0; j != Scale; ++j) {
5935      int EltIdx = SVOp->getMaskElt(i+j);
5936      if (EltIdx < 0)
5937        continue;
5938      if (StartIdx < 0)
5939        StartIdx = (EltIdx / Scale);
5940      if (EltIdx != (int)(StartIdx*Scale + j))
5941        return SDValue();
5942    }
5943    MaskVec.push_back(StartIdx);
5944  }
5945
5946  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
5947  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
5948  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5949}
5950
5951/// getVZextMovL - Return a zero-extending vector move low node.
5952///
5953static SDValue getVZextMovL(EVT VT, EVT OpVT,
5954                            SDValue SrcOp, SelectionDAG &DAG,
5955                            const X86Subtarget *Subtarget, DebugLoc dl) {
5956  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5957    LoadSDNode *LD = NULL;
5958    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5959      LD = dyn_cast<LoadSDNode>(SrcOp);
5960    if (!LD) {
5961      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5962      // instead.
5963      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5964      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5965          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5966          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5967          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5968        // PR2108
5969        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5970        return DAG.getNode(ISD::BITCAST, dl, VT,
5971                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5972                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5973                                                   OpVT,
5974                                                   SrcOp.getOperand(0)
5975                                                          .getOperand(0))));
5976      }
5977    }
5978  }
5979
5980  return DAG.getNode(ISD::BITCAST, dl, VT,
5981                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5982                                 DAG.getNode(ISD::BITCAST, dl,
5983                                             OpVT, SrcOp)));
5984}
5985
5986/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5987/// which could not be matched by any known target speficic shuffle
5988static SDValue
5989LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5990  EVT VT = SVOp->getValueType(0);
5991
5992  unsigned NumElems = VT.getVectorNumElements();
5993  unsigned NumLaneElems = NumElems / 2;
5994
5995  DebugLoc dl = SVOp->getDebugLoc();
5996  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5997  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
5998  SDValue Shufs[2];
5999
6000  SmallVector<int, 16> Mask;
6001  for (unsigned l = 0; l < 2; ++l) {
6002    // Build a shuffle mask for the output, discovering on the fly which
6003    // input vectors to use as shuffle operands (recorded in InputUsed).
6004    // If building a suitable shuffle vector proves too hard, then bail
6005    // out with useBuildVector set.
6006    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6007    unsigned LaneStart = l * NumLaneElems;
6008    for (unsigned i = 0; i != NumLaneElems; ++i) {
6009      // The mask element.  This indexes into the input.
6010      int Idx = SVOp->getMaskElt(i+LaneStart);
6011      if (Idx < 0) {
6012        // the mask element does not index into any input vector.
6013        Mask.push_back(-1);
6014        continue;
6015      }
6016
6017      // The input vector this mask element indexes into.
6018      int Input = Idx / NumLaneElems;
6019
6020      // Turn the index into an offset from the start of the input vector.
6021      Idx -= Input * NumLaneElems;
6022
6023      // Find or create a shuffle vector operand to hold this input.
6024      unsigned OpNo;
6025      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6026        if (InputUsed[OpNo] == Input)
6027          // This input vector is already an operand.
6028          break;
6029        if (InputUsed[OpNo] < 0) {
6030          // Create a new operand for this input vector.
6031          InputUsed[OpNo] = Input;
6032          break;
6033        }
6034      }
6035
6036      if (OpNo >= array_lengthof(InputUsed)) {
6037        // More than two input vectors used! Give up.
6038        return SDValue();
6039      }
6040
6041      // Add the mask index for the new shuffle vector.
6042      Mask.push_back(Idx + OpNo * NumLaneElems);
6043    }
6044
6045    if (InputUsed[0] < 0) {
6046      // No input vectors were used! The result is undefined.
6047      Shufs[l] = DAG.getUNDEF(NVT);
6048    } else {
6049      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6050                                        (InputUsed[0] % 2) * NumLaneElems,
6051                                        DAG, dl);
6052      // If only one input was used, use an undefined vector for the other.
6053      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6054        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6055                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6056      // At least one input vector was used. Create a new shuffle vector.
6057      Shufs[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6058    }
6059
6060    Mask.clear();
6061  }
6062
6063  // Concatenate the result back
6064  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Shufs[0], Shufs[1]);
6065}
6066
6067/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6068/// 4 elements, and match them with several different shuffle types.
6069static SDValue
6070LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6071  SDValue V1 = SVOp->getOperand(0);
6072  SDValue V2 = SVOp->getOperand(1);
6073  DebugLoc dl = SVOp->getDebugLoc();
6074  EVT VT = SVOp->getValueType(0);
6075
6076  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6077
6078  std::pair<int, int> Locs[4];
6079  int Mask1[] = { -1, -1, -1, -1 };
6080  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6081
6082  unsigned NumHi = 0;
6083  unsigned NumLo = 0;
6084  for (unsigned i = 0; i != 4; ++i) {
6085    int Idx = PermMask[i];
6086    if (Idx < 0) {
6087      Locs[i] = std::make_pair(-1, -1);
6088    } else {
6089      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6090      if (Idx < 4) {
6091        Locs[i] = std::make_pair(0, NumLo);
6092        Mask1[NumLo] = Idx;
6093        NumLo++;
6094      } else {
6095        Locs[i] = std::make_pair(1, NumHi);
6096        if (2+NumHi < 4)
6097          Mask1[2+NumHi] = Idx;
6098        NumHi++;
6099      }
6100    }
6101  }
6102
6103  if (NumLo <= 2 && NumHi <= 2) {
6104    // If no more than two elements come from either vector. This can be
6105    // implemented with two shuffles. First shuffle gather the elements.
6106    // The second shuffle, which takes the first shuffle as both of its
6107    // vector operands, put the elements into the right order.
6108    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6109
6110    int Mask2[] = { -1, -1, -1, -1 };
6111
6112    for (unsigned i = 0; i != 4; ++i)
6113      if (Locs[i].first != -1) {
6114        unsigned Idx = (i < 2) ? 0 : 4;
6115        Idx += Locs[i].first * 2 + Locs[i].second;
6116        Mask2[i] = Idx;
6117      }
6118
6119    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6120  }
6121
6122  if (NumLo == 3 || NumHi == 3) {
6123    // Otherwise, we must have three elements from one vector, call it X, and
6124    // one element from the other, call it Y.  First, use a shufps to build an
6125    // intermediate vector with the one element from Y and the element from X
6126    // that will be in the same half in the final destination (the indexes don't
6127    // matter). Then, use a shufps to build the final vector, taking the half
6128    // containing the element from Y from the intermediate, and the other half
6129    // from X.
6130    if (NumHi == 3) {
6131      // Normalize it so the 3 elements come from V1.
6132      CommuteVectorShuffleMask(PermMask, 4);
6133      std::swap(V1, V2);
6134    }
6135
6136    // Find the element from V2.
6137    unsigned HiIndex;
6138    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6139      int Val = PermMask[HiIndex];
6140      if (Val < 0)
6141        continue;
6142      if (Val >= 4)
6143        break;
6144    }
6145
6146    Mask1[0] = PermMask[HiIndex];
6147    Mask1[1] = -1;
6148    Mask1[2] = PermMask[HiIndex^1];
6149    Mask1[3] = -1;
6150    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6151
6152    if (HiIndex >= 2) {
6153      Mask1[0] = PermMask[0];
6154      Mask1[1] = PermMask[1];
6155      Mask1[2] = HiIndex & 1 ? 6 : 4;
6156      Mask1[3] = HiIndex & 1 ? 4 : 6;
6157      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6158    }
6159
6160    Mask1[0] = HiIndex & 1 ? 2 : 0;
6161    Mask1[1] = HiIndex & 1 ? 0 : 2;
6162    Mask1[2] = PermMask[2];
6163    Mask1[3] = PermMask[3];
6164    if (Mask1[2] >= 0)
6165      Mask1[2] += 4;
6166    if (Mask1[3] >= 0)
6167      Mask1[3] += 4;
6168    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6169  }
6170
6171  // Break it into (shuffle shuffle_hi, shuffle_lo).
6172  int LoMask[] = { -1, -1, -1, -1 };
6173  int HiMask[] = { -1, -1, -1, -1 };
6174
6175  int *MaskPtr = LoMask;
6176  unsigned MaskIdx = 0;
6177  unsigned LoIdx = 0;
6178  unsigned HiIdx = 2;
6179  for (unsigned i = 0; i != 4; ++i) {
6180    if (i == 2) {
6181      MaskPtr = HiMask;
6182      MaskIdx = 1;
6183      LoIdx = 0;
6184      HiIdx = 2;
6185    }
6186    int Idx = PermMask[i];
6187    if (Idx < 0) {
6188      Locs[i] = std::make_pair(-1, -1);
6189    } else if (Idx < 4) {
6190      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6191      MaskPtr[LoIdx] = Idx;
6192      LoIdx++;
6193    } else {
6194      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6195      MaskPtr[HiIdx] = Idx;
6196      HiIdx++;
6197    }
6198  }
6199
6200  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6201  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6202  int MaskOps[] = { -1, -1, -1, -1 };
6203  for (unsigned i = 0; i != 4; ++i)
6204    if (Locs[i].first != -1)
6205      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6206  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6207}
6208
6209static bool MayFoldVectorLoad(SDValue V) {
6210  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6211    V = V.getOperand(0);
6212  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6213    V = V.getOperand(0);
6214  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6215      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6216    // BUILD_VECTOR (load), undef
6217    V = V.getOperand(0);
6218  if (MayFoldLoad(V))
6219    return true;
6220  return false;
6221}
6222
6223// FIXME: the version above should always be used. Since there's
6224// a bug where several vector shuffles can't be folded because the
6225// DAG is not updated during lowering and a node claims to have two
6226// uses while it only has one, use this version, and let isel match
6227// another instruction if the load really happens to have more than
6228// one use. Remove this version after this bug get fixed.
6229// rdar://8434668, PR8156
6230static bool RelaxedMayFoldVectorLoad(SDValue V) {
6231  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6232    V = V.getOperand(0);
6233  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6234    V = V.getOperand(0);
6235  if (ISD::isNormalLoad(V.getNode()))
6236    return true;
6237  return false;
6238}
6239
6240static
6241SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6242  EVT VT = Op.getValueType();
6243
6244  // Canonizalize to v2f64.
6245  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6246  return DAG.getNode(ISD::BITCAST, dl, VT,
6247                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6248                                          V1, DAG));
6249}
6250
6251static
6252SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6253                        bool HasSSE2) {
6254  SDValue V1 = Op.getOperand(0);
6255  SDValue V2 = Op.getOperand(1);
6256  EVT VT = Op.getValueType();
6257
6258  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6259
6260  if (HasSSE2 && VT == MVT::v2f64)
6261    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6262
6263  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6264  return DAG.getNode(ISD::BITCAST, dl, VT,
6265                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6266                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6267                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6268}
6269
6270static
6271SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6272  SDValue V1 = Op.getOperand(0);
6273  SDValue V2 = Op.getOperand(1);
6274  EVT VT = Op.getValueType();
6275
6276  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6277         "unsupported shuffle type");
6278
6279  if (V2.getOpcode() == ISD::UNDEF)
6280    V2 = V1;
6281
6282  // v4i32 or v4f32
6283  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6284}
6285
6286static
6287SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6288  SDValue V1 = Op.getOperand(0);
6289  SDValue V2 = Op.getOperand(1);
6290  EVT VT = Op.getValueType();
6291  unsigned NumElems = VT.getVectorNumElements();
6292
6293  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6294  // operand of these instructions is only memory, so check if there's a
6295  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6296  // same masks.
6297  bool CanFoldLoad = false;
6298
6299  // Trivial case, when V2 comes from a load.
6300  if (MayFoldVectorLoad(V2))
6301    CanFoldLoad = true;
6302
6303  // When V1 is a load, it can be folded later into a store in isel, example:
6304  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6305  //    turns into:
6306  //  (MOVLPSmr addr:$src1, VR128:$src2)
6307  // So, recognize this potential and also use MOVLPS or MOVLPD
6308  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6309    CanFoldLoad = true;
6310
6311  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6312  if (CanFoldLoad) {
6313    if (HasSSE2 && NumElems == 2)
6314      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6315
6316    if (NumElems == 4)
6317      // If we don't care about the second element, procede to use movss.
6318      if (SVOp->getMaskElt(1) != -1)
6319        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6320  }
6321
6322  // movl and movlp will both match v2i64, but v2i64 is never matched by
6323  // movl earlier because we make it strict to avoid messing with the movlp load
6324  // folding logic (see the code above getMOVLP call). Match it here then,
6325  // this is horrible, but will stay like this until we move all shuffle
6326  // matching to x86 specific nodes. Note that for the 1st condition all
6327  // types are matched with movsd.
6328  if (HasSSE2) {
6329    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6330    // as to remove this logic from here, as much as possible
6331    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6332      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6333    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6334  }
6335
6336  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6337
6338  // Invert the operand order and use SHUFPS to match it.
6339  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6340                              getShuffleSHUFImmediate(SVOp), DAG);
6341}
6342
6343SDValue
6344X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6345  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6346  EVT VT = Op.getValueType();
6347  DebugLoc dl = Op.getDebugLoc();
6348  SDValue V1 = Op.getOperand(0);
6349  SDValue V2 = Op.getOperand(1);
6350
6351  if (isZeroShuffle(SVOp))
6352    return getZeroVector(VT, Subtarget, DAG, dl);
6353
6354  // Handle splat operations
6355  if (SVOp->isSplat()) {
6356    unsigned NumElem = VT.getVectorNumElements();
6357    int Size = VT.getSizeInBits();
6358
6359    // Use vbroadcast whenever the splat comes from a foldable load
6360    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6361    if (Broadcast.getNode())
6362      return Broadcast;
6363
6364    // Handle splats by matching through known shuffle masks
6365    if ((Size == 128 && NumElem <= 4) ||
6366        (Size == 256 && NumElem < 8))
6367      return SDValue();
6368
6369    // All remaning splats are promoted to target supported vector shuffles.
6370    return PromoteSplat(SVOp, DAG);
6371  }
6372
6373  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6374  // do it!
6375  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6376      VT == MVT::v16i16 || VT == MVT::v32i8) {
6377    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6378    if (NewOp.getNode())
6379      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6380  } else if ((VT == MVT::v4i32 ||
6381             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6382    // FIXME: Figure out a cleaner way to do this.
6383    // Try to make use of movq to zero out the top part.
6384    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6385      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6386      if (NewOp.getNode()) {
6387        EVT NewVT = NewOp.getValueType();
6388        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6389                               NewVT, true, false))
6390          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6391                              DAG, Subtarget, dl);
6392      }
6393    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6394      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6395      if (NewOp.getNode()) {
6396        EVT NewVT = NewOp.getValueType();
6397        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6398          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6399                              DAG, Subtarget, dl);
6400      }
6401    }
6402  }
6403  return SDValue();
6404}
6405
6406SDValue
6407X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6408  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6409  SDValue V1 = Op.getOperand(0);
6410  SDValue V2 = Op.getOperand(1);
6411  EVT VT = Op.getValueType();
6412  DebugLoc dl = Op.getDebugLoc();
6413  unsigned NumElems = VT.getVectorNumElements();
6414  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6415  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6416  bool V1IsSplat = false;
6417  bool V2IsSplat = false;
6418  bool HasSSE2 = Subtarget->hasSSE2();
6419  bool HasAVX    = Subtarget->hasAVX();
6420  bool HasAVX2   = Subtarget->hasAVX2();
6421  MachineFunction &MF = DAG.getMachineFunction();
6422  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6423
6424  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6425
6426  if (V1IsUndef && V2IsUndef)
6427    return DAG.getUNDEF(VT);
6428
6429  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6430
6431  // Vector shuffle lowering takes 3 steps:
6432  //
6433  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6434  //    narrowing and commutation of operands should be handled.
6435  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6436  //    shuffle nodes.
6437  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6438  //    so the shuffle can be broken into other shuffles and the legalizer can
6439  //    try the lowering again.
6440  //
6441  // The general idea is that no vector_shuffle operation should be left to
6442  // be matched during isel, all of them must be converted to a target specific
6443  // node here.
6444
6445  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6446  // narrowing and commutation of operands should be handled. The actual code
6447  // doesn't include all of those, work in progress...
6448  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6449  if (NewOp.getNode())
6450    return NewOp;
6451
6452  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6453
6454  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6455  // unpckh_undef). Only use pshufd if speed is more important than size.
6456  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6457    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6458  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6459    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6460
6461  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6462      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6463    return getMOVDDup(Op, dl, V1, DAG);
6464
6465  if (isMOVHLPS_v_undef_Mask(M, VT))
6466    return getMOVHighToLow(Op, dl, DAG);
6467
6468  // Use to match splats
6469  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6470      (VT == MVT::v2f64 || VT == MVT::v2i64))
6471    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6472
6473  if (isPSHUFDMask(M, VT)) {
6474    // The actual implementation will match the mask in the if above and then
6475    // during isel it can match several different instructions, not only pshufd
6476    // as its name says, sad but true, emulate the behavior for now...
6477    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6478      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6479
6480    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6481
6482    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6483      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6484
6485    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6486      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6487
6488    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6489                                TargetMask, DAG);
6490  }
6491
6492  // Check if this can be converted into a logical shift.
6493  bool isLeft = false;
6494  unsigned ShAmt = 0;
6495  SDValue ShVal;
6496  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6497  if (isShift && ShVal.hasOneUse()) {
6498    // If the shifted value has multiple uses, it may be cheaper to use
6499    // v_set0 + movlhps or movhlps, etc.
6500    EVT EltVT = VT.getVectorElementType();
6501    ShAmt *= EltVT.getSizeInBits();
6502    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6503  }
6504
6505  if (isMOVLMask(M, VT)) {
6506    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6507      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6508    if (!isMOVLPMask(M, VT)) {
6509      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6510        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6511
6512      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6513        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6514    }
6515  }
6516
6517  // FIXME: fold these into legal mask.
6518  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6519    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6520
6521  if (isMOVHLPSMask(M, VT))
6522    return getMOVHighToLow(Op, dl, DAG);
6523
6524  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6525    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6526
6527  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6528    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6529
6530  if (isMOVLPMask(M, VT))
6531    return getMOVLP(Op, dl, DAG, HasSSE2);
6532
6533  if (ShouldXformToMOVHLPS(M, VT) ||
6534      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6535    return CommuteVectorShuffle(SVOp, DAG);
6536
6537  if (isShift) {
6538    // No better options. Use a vshldq / vsrldq.
6539    EVT EltVT = VT.getVectorElementType();
6540    ShAmt *= EltVT.getSizeInBits();
6541    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6542  }
6543
6544  bool Commuted = false;
6545  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6546  // 1,1,1,1 -> v8i16 though.
6547  V1IsSplat = isSplatVector(V1.getNode());
6548  V2IsSplat = isSplatVector(V2.getNode());
6549
6550  // Canonicalize the splat or undef, if present, to be on the RHS.
6551  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6552    CommuteVectorShuffleMask(M, NumElems);
6553    std::swap(V1, V2);
6554    std::swap(V1IsSplat, V2IsSplat);
6555    Commuted = true;
6556  }
6557
6558  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6559    // Shuffling low element of v1 into undef, just return v1.
6560    if (V2IsUndef)
6561      return V1;
6562    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6563    // the instruction selector will not match, so get a canonical MOVL with
6564    // swapped operands to undo the commute.
6565    return getMOVL(DAG, dl, VT, V2, V1);
6566  }
6567
6568  if (isUNPCKLMask(M, VT, HasAVX2))
6569    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6570
6571  if (isUNPCKHMask(M, VT, HasAVX2))
6572    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6573
6574  if (V2IsSplat) {
6575    // Normalize mask so all entries that point to V2 points to its first
6576    // element then try to match unpck{h|l} again. If match, return a
6577    // new vector_shuffle with the corrected mask.p
6578    SmallVector<int, 8> NewMask(M.begin(), M.end());
6579    NormalizeMask(NewMask, NumElems);
6580    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6581      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6582    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6583      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6584  }
6585
6586  if (Commuted) {
6587    // Commute is back and try unpck* again.
6588    // FIXME: this seems wrong.
6589    CommuteVectorShuffleMask(M, NumElems);
6590    std::swap(V1, V2);
6591    std::swap(V1IsSplat, V2IsSplat);
6592    Commuted = false;
6593
6594    if (isUNPCKLMask(M, VT, HasAVX2))
6595      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6596
6597    if (isUNPCKHMask(M, VT, HasAVX2))
6598      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6599  }
6600
6601  // Normalize the node to match x86 shuffle ops if needed
6602  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6603    return CommuteVectorShuffle(SVOp, DAG);
6604
6605  // The checks below are all present in isShuffleMaskLegal, but they are
6606  // inlined here right now to enable us to directly emit target specific
6607  // nodes, and remove one by one until they don't return Op anymore.
6608
6609  if (isPALIGNRMask(M, VT, Subtarget))
6610    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6611                                getShufflePALIGNRImmediate(SVOp),
6612                                DAG);
6613
6614  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6615      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6616    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6617      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6618  }
6619
6620  if (isPSHUFHWMask(M, VT, HasAVX2))
6621    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6622                                getShufflePSHUFHWImmediate(SVOp),
6623                                DAG);
6624
6625  if (isPSHUFLWMask(M, VT, HasAVX2))
6626    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6627                                getShufflePSHUFLWImmediate(SVOp),
6628                                DAG);
6629
6630  if (isSHUFPMask(M, VT, HasAVX))
6631    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6632                                getShuffleSHUFImmediate(SVOp), DAG);
6633
6634  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6635    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6636  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6637    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6638
6639  //===--------------------------------------------------------------------===//
6640  // Generate target specific nodes for 128 or 256-bit shuffles only
6641  // supported in the AVX instruction set.
6642  //
6643
6644  // Handle VMOVDDUPY permutations
6645  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6646    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6647
6648  // Handle VPERMILPS/D* permutations
6649  if (isVPERMILPMask(M, VT, HasAVX)) {
6650    if (HasAVX2 && VT == MVT::v8i32)
6651      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6652                                  getShuffleSHUFImmediate(SVOp), DAG);
6653    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6654                                getShuffleSHUFImmediate(SVOp), DAG);
6655  }
6656
6657  // Handle VPERM2F128/VPERM2I128 permutations
6658  if (isVPERM2X128Mask(M, VT, HasAVX))
6659    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6660                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6661
6662  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6663  if (BlendOp.getNode())
6664    return BlendOp;
6665
6666  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6667    SmallVector<SDValue, 8> permclMask;
6668    for (unsigned i = 0; i != 8; ++i) {
6669      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6670    }
6671    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6672                               &permclMask[0], 8);
6673    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6674    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6675                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6676  }
6677
6678  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6679    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6680                                getShuffleCLImmediate(SVOp), DAG);
6681
6682
6683  //===--------------------------------------------------------------------===//
6684  // Since no target specific shuffle was selected for this generic one,
6685  // lower it into other known shuffles. FIXME: this isn't true yet, but
6686  // this is the plan.
6687  //
6688
6689  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6690  if (VT == MVT::v8i16) {
6691    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6692    if (NewOp.getNode())
6693      return NewOp;
6694  }
6695
6696  if (VT == MVT::v16i8) {
6697    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6698    if (NewOp.getNode())
6699      return NewOp;
6700  }
6701
6702  // Handle all 128-bit wide vectors with 4 elements, and match them with
6703  // several different shuffle types.
6704  if (NumElems == 4 && VT.getSizeInBits() == 128)
6705    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6706
6707  // Handle general 256-bit shuffles
6708  if (VT.is256BitVector())
6709    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6710
6711  return SDValue();
6712}
6713
6714SDValue
6715X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6716                                                SelectionDAG &DAG) const {
6717  EVT VT = Op.getValueType();
6718  DebugLoc dl = Op.getDebugLoc();
6719
6720  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6721    return SDValue();
6722
6723  if (VT.getSizeInBits() == 8) {
6724    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6725                                    Op.getOperand(0), Op.getOperand(1));
6726    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6727                                    DAG.getValueType(VT));
6728    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6729  }
6730
6731  if (VT.getSizeInBits() == 16) {
6732    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6733    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6734    if (Idx == 0)
6735      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6736                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6737                                     DAG.getNode(ISD::BITCAST, dl,
6738                                                 MVT::v4i32,
6739                                                 Op.getOperand(0)),
6740                                     Op.getOperand(1)));
6741    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6742                                    Op.getOperand(0), Op.getOperand(1));
6743    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6744                                    DAG.getValueType(VT));
6745    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6746  }
6747
6748  if (VT == MVT::f32) {
6749    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6750    // the result back to FR32 register. It's only worth matching if the
6751    // result has a single use which is a store or a bitcast to i32.  And in
6752    // the case of a store, it's not worth it if the index is a constant 0,
6753    // because a MOVSSmr can be used instead, which is smaller and faster.
6754    if (!Op.hasOneUse())
6755      return SDValue();
6756    SDNode *User = *Op.getNode()->use_begin();
6757    if ((User->getOpcode() != ISD::STORE ||
6758         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6759          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6760        (User->getOpcode() != ISD::BITCAST ||
6761         User->getValueType(0) != MVT::i32))
6762      return SDValue();
6763    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6764                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6765                                              Op.getOperand(0)),
6766                                              Op.getOperand(1));
6767    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6768  }
6769
6770  if (VT == MVT::i32 || VT == MVT::i64) {
6771    // ExtractPS/pextrq works with constant index.
6772    if (isa<ConstantSDNode>(Op.getOperand(1)))
6773      return Op;
6774  }
6775  return SDValue();
6776}
6777
6778
6779SDValue
6780X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6781                                           SelectionDAG &DAG) const {
6782  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6783    return SDValue();
6784
6785  SDValue Vec = Op.getOperand(0);
6786  EVT VecVT = Vec.getValueType();
6787
6788  // If this is a 256-bit vector result, first extract the 128-bit vector and
6789  // then extract the element from the 128-bit vector.
6790  if (VecVT.getSizeInBits() == 256) {
6791    DebugLoc dl = Op.getNode()->getDebugLoc();
6792    unsigned NumElems = VecVT.getVectorNumElements();
6793    SDValue Idx = Op.getOperand(1);
6794    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6795
6796    // Get the 128-bit vector.
6797    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
6798
6799    if (IdxVal >= NumElems/2)
6800      IdxVal -= NumElems/2;
6801    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6802                       DAG.getConstant(IdxVal, MVT::i32));
6803  }
6804
6805  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6806
6807  if (Subtarget->hasSSE41()) {
6808    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6809    if (Res.getNode())
6810      return Res;
6811  }
6812
6813  EVT VT = Op.getValueType();
6814  DebugLoc dl = Op.getDebugLoc();
6815  // TODO: handle v16i8.
6816  if (VT.getSizeInBits() == 16) {
6817    SDValue Vec = Op.getOperand(0);
6818    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6819    if (Idx == 0)
6820      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6821                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6822                                     DAG.getNode(ISD::BITCAST, dl,
6823                                                 MVT::v4i32, Vec),
6824                                     Op.getOperand(1)));
6825    // Transform it so it match pextrw which produces a 32-bit result.
6826    EVT EltVT = MVT::i32;
6827    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6828                                    Op.getOperand(0), Op.getOperand(1));
6829    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6830                                    DAG.getValueType(VT));
6831    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6832  }
6833
6834  if (VT.getSizeInBits() == 32) {
6835    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6836    if (Idx == 0)
6837      return Op;
6838
6839    // SHUFPS the element to the lowest double word, then movss.
6840    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6841    EVT VVT = Op.getOperand(0).getValueType();
6842    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6843                                       DAG.getUNDEF(VVT), Mask);
6844    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6845                       DAG.getIntPtrConstant(0));
6846  }
6847
6848  if (VT.getSizeInBits() == 64) {
6849    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6850    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6851    //        to match extract_elt for f64.
6852    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6853    if (Idx == 0)
6854      return Op;
6855
6856    // UNPCKHPD the element to the lowest double word, then movsd.
6857    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6858    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6859    int Mask[2] = { 1, -1 };
6860    EVT VVT = Op.getOperand(0).getValueType();
6861    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6862                                       DAG.getUNDEF(VVT), Mask);
6863    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6864                       DAG.getIntPtrConstant(0));
6865  }
6866
6867  return SDValue();
6868}
6869
6870SDValue
6871X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6872                                               SelectionDAG &DAG) const {
6873  EVT VT = Op.getValueType();
6874  EVT EltVT = VT.getVectorElementType();
6875  DebugLoc dl = Op.getDebugLoc();
6876
6877  SDValue N0 = Op.getOperand(0);
6878  SDValue N1 = Op.getOperand(1);
6879  SDValue N2 = Op.getOperand(2);
6880
6881  if (VT.getSizeInBits() == 256)
6882    return SDValue();
6883
6884  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6885      isa<ConstantSDNode>(N2)) {
6886    unsigned Opc;
6887    if (VT == MVT::v8i16)
6888      Opc = X86ISD::PINSRW;
6889    else if (VT == MVT::v16i8)
6890      Opc = X86ISD::PINSRB;
6891    else
6892      Opc = X86ISD::PINSRB;
6893
6894    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6895    // argument.
6896    if (N1.getValueType() != MVT::i32)
6897      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6898    if (N2.getValueType() != MVT::i32)
6899      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6900    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6901  }
6902
6903  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6904    // Bits [7:6] of the constant are the source select.  This will always be
6905    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6906    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6907    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6908    // Bits [5:4] of the constant are the destination select.  This is the
6909    //  value of the incoming immediate.
6910    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6911    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6912    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6913    // Create this as a scalar to vector..
6914    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6915    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6916  }
6917
6918  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
6919    // PINSR* works with constant index.
6920    return Op;
6921  }
6922  return SDValue();
6923}
6924
6925SDValue
6926X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6927  EVT VT = Op.getValueType();
6928  EVT EltVT = VT.getVectorElementType();
6929
6930  DebugLoc dl = Op.getDebugLoc();
6931  SDValue N0 = Op.getOperand(0);
6932  SDValue N1 = Op.getOperand(1);
6933  SDValue N2 = Op.getOperand(2);
6934
6935  // If this is a 256-bit vector result, first extract the 128-bit vector,
6936  // insert the element into the extracted half and then place it back.
6937  if (VT.getSizeInBits() == 256) {
6938    if (!isa<ConstantSDNode>(N2))
6939      return SDValue();
6940
6941    // Get the desired 128-bit vector half.
6942    unsigned NumElems = VT.getVectorNumElements();
6943    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6944    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
6945
6946    // Insert the element into the desired half.
6947    bool Upper = IdxVal >= NumElems/2;
6948    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
6949                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
6950
6951    // Insert the changed part back to the 256-bit vector
6952    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
6953  }
6954
6955  if (Subtarget->hasSSE41())
6956    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6957
6958  if (EltVT == MVT::i8)
6959    return SDValue();
6960
6961  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6962    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6963    // as its second argument.
6964    if (N1.getValueType() != MVT::i32)
6965      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6966    if (N2.getValueType() != MVT::i32)
6967      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6968    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6969  }
6970  return SDValue();
6971}
6972
6973SDValue
6974X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6975  LLVMContext *Context = DAG.getContext();
6976  DebugLoc dl = Op.getDebugLoc();
6977  EVT OpVT = Op.getValueType();
6978
6979  // If this is a 256-bit vector result, first insert into a 128-bit
6980  // vector and then insert into the 256-bit vector.
6981  if (OpVT.getSizeInBits() > 128) {
6982    // Insert into a 128-bit vector.
6983    EVT VT128 = EVT::getVectorVT(*Context,
6984                                 OpVT.getVectorElementType(),
6985                                 OpVT.getVectorNumElements() / 2);
6986
6987    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6988
6989    // Insert the 128-bit vector.
6990    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
6991  }
6992
6993  if (OpVT == MVT::v1i64 &&
6994      Op.getOperand(0).getValueType() == MVT::i64)
6995    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6996
6997  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6998  assert(OpVT.getSizeInBits() == 128 && "Expected an SSE type!");
6999  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7000                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7001}
7002
7003// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7004// a simple subregister reference or explicit instructions to grab
7005// upper bits of a vector.
7006SDValue
7007X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7008  if (Subtarget->hasAVX()) {
7009    DebugLoc dl = Op.getNode()->getDebugLoc();
7010    SDValue Vec = Op.getNode()->getOperand(0);
7011    SDValue Idx = Op.getNode()->getOperand(1);
7012
7013    if (Op.getNode()->getValueType(0).getSizeInBits() == 128 &&
7014        Vec.getNode()->getValueType(0).getSizeInBits() == 256 &&
7015        isa<ConstantSDNode>(Idx)) {
7016      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7017      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7018    }
7019  }
7020  return SDValue();
7021}
7022
7023// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7024// simple superregister reference or explicit instructions to insert
7025// the upper bits of a vector.
7026SDValue
7027X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7028  if (Subtarget->hasAVX()) {
7029    DebugLoc dl = Op.getNode()->getDebugLoc();
7030    SDValue Vec = Op.getNode()->getOperand(0);
7031    SDValue SubVec = Op.getNode()->getOperand(1);
7032    SDValue Idx = Op.getNode()->getOperand(2);
7033
7034    if (Op.getNode()->getValueType(0).getSizeInBits() == 256 &&
7035        SubVec.getNode()->getValueType(0).getSizeInBits() == 128 &&
7036        isa<ConstantSDNode>(Idx)) {
7037      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7038      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7039    }
7040  }
7041  return SDValue();
7042}
7043
7044// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7045// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7046// one of the above mentioned nodes. It has to be wrapped because otherwise
7047// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7048// be used to form addressing mode. These wrapped nodes will be selected
7049// into MOV32ri.
7050SDValue
7051X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7052  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7053
7054  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7055  // global base reg.
7056  unsigned char OpFlag = 0;
7057  unsigned WrapperKind = X86ISD::Wrapper;
7058  CodeModel::Model M = getTargetMachine().getCodeModel();
7059
7060  if (Subtarget->isPICStyleRIPRel() &&
7061      (M == CodeModel::Small || M == CodeModel::Kernel))
7062    WrapperKind = X86ISD::WrapperRIP;
7063  else if (Subtarget->isPICStyleGOT())
7064    OpFlag = X86II::MO_GOTOFF;
7065  else if (Subtarget->isPICStyleStubPIC())
7066    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7067
7068  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7069                                             CP->getAlignment(),
7070                                             CP->getOffset(), OpFlag);
7071  DebugLoc DL = CP->getDebugLoc();
7072  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7073  // With PIC, the address is actually $g + Offset.
7074  if (OpFlag) {
7075    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7076                         DAG.getNode(X86ISD::GlobalBaseReg,
7077                                     DebugLoc(), getPointerTy()),
7078                         Result);
7079  }
7080
7081  return Result;
7082}
7083
7084SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7085  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7086
7087  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7088  // global base reg.
7089  unsigned char OpFlag = 0;
7090  unsigned WrapperKind = X86ISD::Wrapper;
7091  CodeModel::Model M = getTargetMachine().getCodeModel();
7092
7093  if (Subtarget->isPICStyleRIPRel() &&
7094      (M == CodeModel::Small || M == CodeModel::Kernel))
7095    WrapperKind = X86ISD::WrapperRIP;
7096  else if (Subtarget->isPICStyleGOT())
7097    OpFlag = X86II::MO_GOTOFF;
7098  else if (Subtarget->isPICStyleStubPIC())
7099    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7100
7101  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7102                                          OpFlag);
7103  DebugLoc DL = JT->getDebugLoc();
7104  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7105
7106  // With PIC, the address is actually $g + Offset.
7107  if (OpFlag)
7108    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7109                         DAG.getNode(X86ISD::GlobalBaseReg,
7110                                     DebugLoc(), getPointerTy()),
7111                         Result);
7112
7113  return Result;
7114}
7115
7116SDValue
7117X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7118  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7119
7120  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7121  // global base reg.
7122  unsigned char OpFlag = 0;
7123  unsigned WrapperKind = X86ISD::Wrapper;
7124  CodeModel::Model M = getTargetMachine().getCodeModel();
7125
7126  if (Subtarget->isPICStyleRIPRel() &&
7127      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7128    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7129      OpFlag = X86II::MO_GOTPCREL;
7130    WrapperKind = X86ISD::WrapperRIP;
7131  } else if (Subtarget->isPICStyleGOT()) {
7132    OpFlag = X86II::MO_GOT;
7133  } else if (Subtarget->isPICStyleStubPIC()) {
7134    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7135  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7136    OpFlag = X86II::MO_DARWIN_NONLAZY;
7137  }
7138
7139  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7140
7141  DebugLoc DL = Op.getDebugLoc();
7142  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7143
7144
7145  // With PIC, the address is actually $g + Offset.
7146  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7147      !Subtarget->is64Bit()) {
7148    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7149                         DAG.getNode(X86ISD::GlobalBaseReg,
7150                                     DebugLoc(), getPointerTy()),
7151                         Result);
7152  }
7153
7154  // For symbols that require a load from a stub to get the address, emit the
7155  // load.
7156  if (isGlobalStubReference(OpFlag))
7157    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7158                         MachinePointerInfo::getGOT(), false, false, false, 0);
7159
7160  return Result;
7161}
7162
7163SDValue
7164X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7165  // Create the TargetBlockAddressAddress node.
7166  unsigned char OpFlags =
7167    Subtarget->ClassifyBlockAddressReference();
7168  CodeModel::Model M = getTargetMachine().getCodeModel();
7169  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7170  DebugLoc dl = Op.getDebugLoc();
7171  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7172                                       /*isTarget=*/true, OpFlags);
7173
7174  if (Subtarget->isPICStyleRIPRel() &&
7175      (M == CodeModel::Small || M == CodeModel::Kernel))
7176    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7177  else
7178    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7179
7180  // With PIC, the address is actually $g + Offset.
7181  if (isGlobalRelativeToPICBase(OpFlags)) {
7182    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7183                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7184                         Result);
7185  }
7186
7187  return Result;
7188}
7189
7190SDValue
7191X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7192                                      int64_t Offset,
7193                                      SelectionDAG &DAG) const {
7194  // Create the TargetGlobalAddress node, folding in the constant
7195  // offset if it is legal.
7196  unsigned char OpFlags =
7197    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7198  CodeModel::Model M = getTargetMachine().getCodeModel();
7199  SDValue Result;
7200  if (OpFlags == X86II::MO_NO_FLAG &&
7201      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7202    // A direct static reference to a global.
7203    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7204    Offset = 0;
7205  } else {
7206    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7207  }
7208
7209  if (Subtarget->isPICStyleRIPRel() &&
7210      (M == CodeModel::Small || M == CodeModel::Kernel))
7211    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7212  else
7213    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7214
7215  // With PIC, the address is actually $g + Offset.
7216  if (isGlobalRelativeToPICBase(OpFlags)) {
7217    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7218                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7219                         Result);
7220  }
7221
7222  // For globals that require a load from a stub to get the address, emit the
7223  // load.
7224  if (isGlobalStubReference(OpFlags))
7225    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7226                         MachinePointerInfo::getGOT(), false, false, false, 0);
7227
7228  // If there was a non-zero offset that we didn't fold, create an explicit
7229  // addition for it.
7230  if (Offset != 0)
7231    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7232                         DAG.getConstant(Offset, getPointerTy()));
7233
7234  return Result;
7235}
7236
7237SDValue
7238X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7239  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7240  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7241  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7242}
7243
7244static SDValue
7245GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7246           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7247           unsigned char OperandFlags) {
7248  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7249  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7250  DebugLoc dl = GA->getDebugLoc();
7251  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7252                                           GA->getValueType(0),
7253                                           GA->getOffset(),
7254                                           OperandFlags);
7255  if (InFlag) {
7256    SDValue Ops[] = { Chain,  TGA, *InFlag };
7257    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7258  } else {
7259    SDValue Ops[]  = { Chain, TGA };
7260    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7261  }
7262
7263  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7264  MFI->setAdjustsStack(true);
7265
7266  SDValue Flag = Chain.getValue(1);
7267  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7268}
7269
7270// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7271static SDValue
7272LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7273                                const EVT PtrVT) {
7274  SDValue InFlag;
7275  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7276  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7277                                     DAG.getNode(X86ISD::GlobalBaseReg,
7278                                                 DebugLoc(), PtrVT), InFlag);
7279  InFlag = Chain.getValue(1);
7280
7281  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7282}
7283
7284// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7285static SDValue
7286LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7287                                const EVT PtrVT) {
7288  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7289                    X86::RAX, X86II::MO_TLSGD);
7290}
7291
7292// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7293// "local exec" model.
7294static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7295                                   const EVT PtrVT, TLSModel::Model model,
7296                                   bool is64Bit) {
7297  DebugLoc dl = GA->getDebugLoc();
7298
7299  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7300  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7301                                                         is64Bit ? 257 : 256));
7302
7303  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7304                                      DAG.getIntPtrConstant(0),
7305                                      MachinePointerInfo(Ptr),
7306                                      false, false, false, 0);
7307
7308  unsigned char OperandFlags = 0;
7309  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7310  // initialexec.
7311  unsigned WrapperKind = X86ISD::Wrapper;
7312  if (model == TLSModel::LocalExec) {
7313    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7314  } else if (is64Bit) {
7315    assert(model == TLSModel::InitialExec);
7316    OperandFlags = X86II::MO_GOTTPOFF;
7317    WrapperKind = X86ISD::WrapperRIP;
7318  } else {
7319    assert(model == TLSModel::InitialExec);
7320    OperandFlags = X86II::MO_INDNTPOFF;
7321  }
7322
7323  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7324  // exec)
7325  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7326                                           GA->getValueType(0),
7327                                           GA->getOffset(), OperandFlags);
7328  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7329
7330  if (model == TLSModel::InitialExec)
7331    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7332                         MachinePointerInfo::getGOT(), false, false, false, 0);
7333
7334  // The address of the thread local variable is the add of the thread
7335  // pointer with the offset of the variable.
7336  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7337}
7338
7339SDValue
7340X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7341
7342  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7343  const GlobalValue *GV = GA->getGlobal();
7344
7345  if (Subtarget->isTargetELF()) {
7346    // TODO: implement the "local dynamic" model
7347    // TODO: implement the "initial exec"model for pic executables
7348
7349    // If GV is an alias then use the aliasee for determining
7350    // thread-localness.
7351    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7352      GV = GA->resolveAliasedGlobal(false);
7353
7354    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7355
7356    switch (model) {
7357      case TLSModel::GeneralDynamic:
7358      case TLSModel::LocalDynamic: // not implemented
7359        if (Subtarget->is64Bit())
7360          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7361        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7362
7363      case TLSModel::InitialExec:
7364      case TLSModel::LocalExec:
7365        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7366                                   Subtarget->is64Bit());
7367    }
7368    llvm_unreachable("Unknown TLS model.");
7369  }
7370
7371  if (Subtarget->isTargetDarwin()) {
7372    // Darwin only has one model of TLS.  Lower to that.
7373    unsigned char OpFlag = 0;
7374    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7375                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7376
7377    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7378    // global base reg.
7379    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7380                  !Subtarget->is64Bit();
7381    if (PIC32)
7382      OpFlag = X86II::MO_TLVP_PIC_BASE;
7383    else
7384      OpFlag = X86II::MO_TLVP;
7385    DebugLoc DL = Op.getDebugLoc();
7386    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7387                                                GA->getValueType(0),
7388                                                GA->getOffset(), OpFlag);
7389    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7390
7391    // With PIC32, the address is actually $g + Offset.
7392    if (PIC32)
7393      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7394                           DAG.getNode(X86ISD::GlobalBaseReg,
7395                                       DebugLoc(), getPointerTy()),
7396                           Offset);
7397
7398    // Lowering the machine isd will make sure everything is in the right
7399    // location.
7400    SDValue Chain = DAG.getEntryNode();
7401    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7402    SDValue Args[] = { Chain, Offset };
7403    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7404
7405    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7406    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7407    MFI->setAdjustsStack(true);
7408
7409    // And our return value (tls address) is in the standard call return value
7410    // location.
7411    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7412    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7413                              Chain.getValue(1));
7414  }
7415
7416  if (Subtarget->isTargetWindows()) {
7417    // Just use the implicit TLS architecture
7418    // Need to generate someting similar to:
7419    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7420    //                                  ; from TEB
7421    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7422    //   mov     rcx, qword [rdx+rcx*8]
7423    //   mov     eax, .tls$:tlsvar
7424    //   [rax+rcx] contains the address
7425    // Windows 64bit: gs:0x58
7426    // Windows 32bit: fs:__tls_array
7427
7428    // If GV is an alias then use the aliasee for determining
7429    // thread-localness.
7430    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7431      GV = GA->resolveAliasedGlobal(false);
7432    DebugLoc dl = GA->getDebugLoc();
7433    SDValue Chain = DAG.getEntryNode();
7434
7435    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7436    // %gs:0x58 (64-bit).
7437    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7438                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7439                                                             256)
7440                                        : Type::getInt32PtrTy(*DAG.getContext(),
7441                                                              257));
7442
7443    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7444                                        Subtarget->is64Bit()
7445                                        ? DAG.getIntPtrConstant(0x58)
7446                                        : DAG.getExternalSymbol("_tls_array",
7447                                                                getPointerTy()),
7448                                        MachinePointerInfo(Ptr),
7449                                        false, false, false, 0);
7450
7451    // Load the _tls_index variable
7452    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7453    if (Subtarget->is64Bit())
7454      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7455                           IDX, MachinePointerInfo(), MVT::i32,
7456                           false, false, 0);
7457    else
7458      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7459                        false, false, false, 0);
7460
7461    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7462                                    getPointerTy());
7463    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7464
7465    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7466    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7467                      false, false, false, 0);
7468
7469    // Get the offset of start of .tls section
7470    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7471                                             GA->getValueType(0),
7472                                             GA->getOffset(), X86II::MO_SECREL);
7473    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7474
7475    // The address of the thread local variable is the add of the thread
7476    // pointer with the offset of the variable.
7477    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7478  }
7479
7480  llvm_unreachable("TLS not implemented for this target.");
7481}
7482
7483
7484/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7485/// and take a 2 x i32 value to shift plus a shift amount.
7486SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7487  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7488  EVT VT = Op.getValueType();
7489  unsigned VTBits = VT.getSizeInBits();
7490  DebugLoc dl = Op.getDebugLoc();
7491  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7492  SDValue ShOpLo = Op.getOperand(0);
7493  SDValue ShOpHi = Op.getOperand(1);
7494  SDValue ShAmt  = Op.getOperand(2);
7495  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7496                                     DAG.getConstant(VTBits - 1, MVT::i8))
7497                       : DAG.getConstant(0, VT);
7498
7499  SDValue Tmp2, Tmp3;
7500  if (Op.getOpcode() == ISD::SHL_PARTS) {
7501    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7502    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7503  } else {
7504    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7505    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7506  }
7507
7508  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7509                                DAG.getConstant(VTBits, MVT::i8));
7510  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7511                             AndNode, DAG.getConstant(0, MVT::i8));
7512
7513  SDValue Hi, Lo;
7514  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7515  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7516  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7517
7518  if (Op.getOpcode() == ISD::SHL_PARTS) {
7519    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7520    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7521  } else {
7522    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7523    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7524  }
7525
7526  SDValue Ops[2] = { Lo, Hi };
7527  return DAG.getMergeValues(Ops, 2, dl);
7528}
7529
7530SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7531                                           SelectionDAG &DAG) const {
7532  EVT SrcVT = Op.getOperand(0).getValueType();
7533
7534  if (SrcVT.isVector())
7535    return SDValue();
7536
7537  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7538         "Unknown SINT_TO_FP to lower!");
7539
7540  // These are really Legal; return the operand so the caller accepts it as
7541  // Legal.
7542  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7543    return Op;
7544  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7545      Subtarget->is64Bit()) {
7546    return Op;
7547  }
7548
7549  DebugLoc dl = Op.getDebugLoc();
7550  unsigned Size = SrcVT.getSizeInBits()/8;
7551  MachineFunction &MF = DAG.getMachineFunction();
7552  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7553  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7554  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7555                               StackSlot,
7556                               MachinePointerInfo::getFixedStack(SSFI),
7557                               false, false, 0);
7558  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7559}
7560
7561SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7562                                     SDValue StackSlot,
7563                                     SelectionDAG &DAG) const {
7564  // Build the FILD
7565  DebugLoc DL = Op.getDebugLoc();
7566  SDVTList Tys;
7567  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7568  if (useSSE)
7569    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7570  else
7571    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7572
7573  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7574
7575  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7576  MachineMemOperand *MMO;
7577  if (FI) {
7578    int SSFI = FI->getIndex();
7579    MMO =
7580      DAG.getMachineFunction()
7581      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7582                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7583  } else {
7584    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7585    StackSlot = StackSlot.getOperand(1);
7586  }
7587  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7588  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7589                                           X86ISD::FILD, DL,
7590                                           Tys, Ops, array_lengthof(Ops),
7591                                           SrcVT, MMO);
7592
7593  if (useSSE) {
7594    Chain = Result.getValue(1);
7595    SDValue InFlag = Result.getValue(2);
7596
7597    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7598    // shouldn't be necessary except that RFP cannot be live across
7599    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7600    MachineFunction &MF = DAG.getMachineFunction();
7601    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7602    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7603    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7604    Tys = DAG.getVTList(MVT::Other);
7605    SDValue Ops[] = {
7606      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7607    };
7608    MachineMemOperand *MMO =
7609      DAG.getMachineFunction()
7610      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7611                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7612
7613    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7614                                    Ops, array_lengthof(Ops),
7615                                    Op.getValueType(), MMO);
7616    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7617                         MachinePointerInfo::getFixedStack(SSFI),
7618                         false, false, false, 0);
7619  }
7620
7621  return Result;
7622}
7623
7624// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7625SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7626                                               SelectionDAG &DAG) const {
7627  // This algorithm is not obvious. Here it is what we're trying to output:
7628  /*
7629     movq       %rax,  %xmm0
7630     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7631     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7632     #ifdef __SSE3__
7633       haddpd   %xmm0, %xmm0
7634     #else
7635       pshufd   $0x4e, %xmm0, %xmm1
7636       addpd    %xmm1, %xmm0
7637     #endif
7638  */
7639
7640  DebugLoc dl = Op.getDebugLoc();
7641  LLVMContext *Context = DAG.getContext();
7642
7643  // Build some magic constants.
7644  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7645  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7646  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7647
7648  SmallVector<Constant*,2> CV1;
7649  CV1.push_back(
7650        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7651  CV1.push_back(
7652        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7653  Constant *C1 = ConstantVector::get(CV1);
7654  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7655
7656  // Load the 64-bit value into an XMM register.
7657  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7658                            Op.getOperand(0));
7659  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7660                              MachinePointerInfo::getConstantPool(),
7661                              false, false, false, 16);
7662  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7663                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7664                              CLod0);
7665
7666  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7667                              MachinePointerInfo::getConstantPool(),
7668                              false, false, false, 16);
7669  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7670  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7671  SDValue Result;
7672
7673  if (Subtarget->hasSSE3()) {
7674    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7675    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7676  } else {
7677    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7678    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7679                                           S2F, 0x4E, DAG);
7680    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7681                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7682                         Sub);
7683  }
7684
7685  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7686                     DAG.getIntPtrConstant(0));
7687}
7688
7689// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7690SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7691                                               SelectionDAG &DAG) const {
7692  DebugLoc dl = Op.getDebugLoc();
7693  // FP constant to bias correct the final result.
7694  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7695                                   MVT::f64);
7696
7697  // Load the 32-bit value into an XMM register.
7698  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7699                             Op.getOperand(0));
7700
7701  // Zero out the upper parts of the register.
7702  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7703
7704  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7705                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7706                     DAG.getIntPtrConstant(0));
7707
7708  // Or the load with the bias.
7709  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7710                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7711                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7712                                                   MVT::v2f64, Load)),
7713                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7714                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7715                                                   MVT::v2f64, Bias)));
7716  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7717                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7718                   DAG.getIntPtrConstant(0));
7719
7720  // Subtract the bias.
7721  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7722
7723  // Handle final rounding.
7724  EVT DestVT = Op.getValueType();
7725
7726  if (DestVT.bitsLT(MVT::f64))
7727    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7728                       DAG.getIntPtrConstant(0));
7729  if (DestVT.bitsGT(MVT::f64))
7730    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7731
7732  // Handle final rounding.
7733  return Sub;
7734}
7735
7736SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7737                                           SelectionDAG &DAG) const {
7738  SDValue N0 = Op.getOperand(0);
7739  DebugLoc dl = Op.getDebugLoc();
7740
7741  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7742  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7743  // the optimization here.
7744  if (DAG.SignBitIsZero(N0))
7745    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7746
7747  EVT SrcVT = N0.getValueType();
7748  EVT DstVT = Op.getValueType();
7749  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7750    return LowerUINT_TO_FP_i64(Op, DAG);
7751  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7752    return LowerUINT_TO_FP_i32(Op, DAG);
7753  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
7754    return SDValue();
7755
7756  // Make a 64-bit buffer, and use it to build an FILD.
7757  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7758  if (SrcVT == MVT::i32) {
7759    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7760    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7761                                     getPointerTy(), StackSlot, WordOff);
7762    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7763                                  StackSlot, MachinePointerInfo(),
7764                                  false, false, 0);
7765    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7766                                  OffsetSlot, MachinePointerInfo(),
7767                                  false, false, 0);
7768    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7769    return Fild;
7770  }
7771
7772  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7773  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7774                               StackSlot, MachinePointerInfo(),
7775                               false, false, 0);
7776  // For i64 source, we need to add the appropriate power of 2 if the input
7777  // was negative.  This is the same as the optimization in
7778  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7779  // we must be careful to do the computation in x87 extended precision, not
7780  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7781  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7782  MachineMemOperand *MMO =
7783    DAG.getMachineFunction()
7784    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7785                          MachineMemOperand::MOLoad, 8, 8);
7786
7787  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7788  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7789  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7790                                         MVT::i64, MMO);
7791
7792  APInt FF(32, 0x5F800000ULL);
7793
7794  // Check whether the sign bit is set.
7795  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7796                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7797                                 ISD::SETLT);
7798
7799  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7800  SDValue FudgePtr = DAG.getConstantPool(
7801                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7802                                         getPointerTy());
7803
7804  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7805  SDValue Zero = DAG.getIntPtrConstant(0);
7806  SDValue Four = DAG.getIntPtrConstant(4);
7807  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7808                               Zero, Four);
7809  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7810
7811  // Load the value out, extending it from f32 to f80.
7812  // FIXME: Avoid the extend by constructing the right constant pool?
7813  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7814                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7815                                 MVT::f32, false, false, 4);
7816  // Extend everything to 80 bits to force it to be done on x87.
7817  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7818  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7819}
7820
7821std::pair<SDValue,SDValue> X86TargetLowering::
7822FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7823  DebugLoc DL = Op.getDebugLoc();
7824
7825  EVT DstTy = Op.getValueType();
7826
7827  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7828    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7829    DstTy = MVT::i64;
7830  }
7831
7832  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7833         DstTy.getSimpleVT() >= MVT::i16 &&
7834         "Unknown FP_TO_INT to lower!");
7835
7836  // These are really Legal.
7837  if (DstTy == MVT::i32 &&
7838      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7839    return std::make_pair(SDValue(), SDValue());
7840  if (Subtarget->is64Bit() &&
7841      DstTy == MVT::i64 &&
7842      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7843    return std::make_pair(SDValue(), SDValue());
7844
7845  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7846  // stack slot, or into the FTOL runtime function.
7847  MachineFunction &MF = DAG.getMachineFunction();
7848  unsigned MemSize = DstTy.getSizeInBits()/8;
7849  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7850  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7851
7852  unsigned Opc;
7853  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7854    Opc = X86ISD::WIN_FTOL;
7855  else
7856    switch (DstTy.getSimpleVT().SimpleTy) {
7857    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7858    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7859    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7860    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7861    }
7862
7863  SDValue Chain = DAG.getEntryNode();
7864  SDValue Value = Op.getOperand(0);
7865  EVT TheVT = Op.getOperand(0).getValueType();
7866  // FIXME This causes a redundant load/store if the SSE-class value is already
7867  // in memory, such as if it is on the callstack.
7868  if (isScalarFPTypeInSSEReg(TheVT)) {
7869    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7870    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7871                         MachinePointerInfo::getFixedStack(SSFI),
7872                         false, false, 0);
7873    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7874    SDValue Ops[] = {
7875      Chain, StackSlot, DAG.getValueType(TheVT)
7876    };
7877
7878    MachineMemOperand *MMO =
7879      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7880                              MachineMemOperand::MOLoad, MemSize, MemSize);
7881    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7882                                    DstTy, MMO);
7883    Chain = Value.getValue(1);
7884    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7885    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7886  }
7887
7888  MachineMemOperand *MMO =
7889    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7890                            MachineMemOperand::MOStore, MemSize, MemSize);
7891
7892  if (Opc != X86ISD::WIN_FTOL) {
7893    // Build the FP_TO_INT*_IN_MEM
7894    SDValue Ops[] = { Chain, Value, StackSlot };
7895    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7896                                           Ops, 3, DstTy, MMO);
7897    return std::make_pair(FIST, StackSlot);
7898  } else {
7899    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
7900      DAG.getVTList(MVT::Other, MVT::Glue),
7901      Chain, Value);
7902    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
7903      MVT::i32, ftol.getValue(1));
7904    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
7905      MVT::i32, eax.getValue(2));
7906    SDValue Ops[] = { eax, edx };
7907    SDValue pair = IsReplace
7908      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
7909      : DAG.getMergeValues(Ops, 2, DL);
7910    return std::make_pair(pair, SDValue());
7911  }
7912}
7913
7914SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7915                                           SelectionDAG &DAG) const {
7916  if (Op.getValueType().isVector())
7917    return SDValue();
7918
7919  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7920    /*IsSigned=*/ true, /*IsReplace=*/ false);
7921  SDValue FIST = Vals.first, StackSlot = Vals.second;
7922  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7923  if (FIST.getNode() == 0) return Op;
7924
7925  if (StackSlot.getNode())
7926    // Load the result.
7927    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7928                       FIST, StackSlot, MachinePointerInfo(),
7929                       false, false, false, 0);
7930
7931  // The node is the result.
7932  return FIST;
7933}
7934
7935SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7936                                           SelectionDAG &DAG) const {
7937  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7938    /*IsSigned=*/ false, /*IsReplace=*/ false);
7939  SDValue FIST = Vals.first, StackSlot = Vals.second;
7940  assert(FIST.getNode() && "Unexpected failure");
7941
7942  if (StackSlot.getNode())
7943    // Load the result.
7944    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7945                       FIST, StackSlot, MachinePointerInfo(),
7946                       false, false, false, 0);
7947
7948  // The node is the result.
7949  return FIST;
7950}
7951
7952SDValue X86TargetLowering::LowerFABS(SDValue Op,
7953                                     SelectionDAG &DAG) const {
7954  LLVMContext *Context = DAG.getContext();
7955  DebugLoc dl = Op.getDebugLoc();
7956  EVT VT = Op.getValueType();
7957  EVT EltVT = VT;
7958  if (VT.isVector())
7959    EltVT = VT.getVectorElementType();
7960  Constant *C;
7961  if (EltVT == MVT::f64) {
7962    C = ConstantVector::getSplat(2,
7963                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7964  } else {
7965    C = ConstantVector::getSplat(4,
7966               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7967  }
7968  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7969  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7970                             MachinePointerInfo::getConstantPool(),
7971                             false, false, false, 16);
7972  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7973}
7974
7975SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7976  LLVMContext *Context = DAG.getContext();
7977  DebugLoc dl = Op.getDebugLoc();
7978  EVT VT = Op.getValueType();
7979  EVT EltVT = VT;
7980  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7981  if (VT.isVector()) {
7982    EltVT = VT.getVectorElementType();
7983    NumElts = VT.getVectorNumElements();
7984  }
7985  Constant *C;
7986  if (EltVT == MVT::f64)
7987    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7988  else
7989    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7990  C = ConstantVector::getSplat(NumElts, C);
7991  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7992  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7993                             MachinePointerInfo::getConstantPool(),
7994                             false, false, false, 16);
7995  if (VT.isVector()) {
7996    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7997    return DAG.getNode(ISD::BITCAST, dl, VT,
7998                       DAG.getNode(ISD::XOR, dl, XORVT,
7999                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8000                                               Op.getOperand(0)),
8001                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8002  }
8003
8004  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8005}
8006
8007SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8008  LLVMContext *Context = DAG.getContext();
8009  SDValue Op0 = Op.getOperand(0);
8010  SDValue Op1 = Op.getOperand(1);
8011  DebugLoc dl = Op.getDebugLoc();
8012  EVT VT = Op.getValueType();
8013  EVT SrcVT = Op1.getValueType();
8014
8015  // If second operand is smaller, extend it first.
8016  if (SrcVT.bitsLT(VT)) {
8017    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8018    SrcVT = VT;
8019  }
8020  // And if it is bigger, shrink it first.
8021  if (SrcVT.bitsGT(VT)) {
8022    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8023    SrcVT = VT;
8024  }
8025
8026  // At this point the operands and the result should have the same
8027  // type, and that won't be f80 since that is not custom lowered.
8028
8029  // First get the sign bit of second operand.
8030  SmallVector<Constant*,4> CV;
8031  if (SrcVT == MVT::f64) {
8032    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8033    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8034  } else {
8035    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8036    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8037    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8038    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8039  }
8040  Constant *C = ConstantVector::get(CV);
8041  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8042  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8043                              MachinePointerInfo::getConstantPool(),
8044                              false, false, false, 16);
8045  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8046
8047  // Shift sign bit right or left if the two operands have different types.
8048  if (SrcVT.bitsGT(VT)) {
8049    // Op0 is MVT::f32, Op1 is MVT::f64.
8050    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8051    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8052                          DAG.getConstant(32, MVT::i32));
8053    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8054    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8055                          DAG.getIntPtrConstant(0));
8056  }
8057
8058  // Clear first operand sign bit.
8059  CV.clear();
8060  if (VT == MVT::f64) {
8061    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8062    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8063  } else {
8064    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8065    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8066    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8067    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8068  }
8069  C = ConstantVector::get(CV);
8070  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8071  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8072                              MachinePointerInfo::getConstantPool(),
8073                              false, false, false, 16);
8074  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8075
8076  // Or the value with the sign bit.
8077  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8078}
8079
8080SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8081  SDValue N0 = Op.getOperand(0);
8082  DebugLoc dl = Op.getDebugLoc();
8083  EVT VT = Op.getValueType();
8084
8085  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8086  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8087                                  DAG.getConstant(1, VT));
8088  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8089}
8090
8091/// Emit nodes that will be selected as "test Op0,Op0", or something
8092/// equivalent.
8093SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8094                                    SelectionDAG &DAG) const {
8095  DebugLoc dl = Op.getDebugLoc();
8096
8097  // CF and OF aren't always set the way we want. Determine which
8098  // of these we need.
8099  bool NeedCF = false;
8100  bool NeedOF = false;
8101  switch (X86CC) {
8102  default: break;
8103  case X86::COND_A: case X86::COND_AE:
8104  case X86::COND_B: case X86::COND_BE:
8105    NeedCF = true;
8106    break;
8107  case X86::COND_G: case X86::COND_GE:
8108  case X86::COND_L: case X86::COND_LE:
8109  case X86::COND_O: case X86::COND_NO:
8110    NeedOF = true;
8111    break;
8112  }
8113
8114  // See if we can use the EFLAGS value from the operand instead of
8115  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8116  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8117  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8118    // Emit a CMP with 0, which is the TEST pattern.
8119    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8120                       DAG.getConstant(0, Op.getValueType()));
8121
8122  unsigned Opcode = 0;
8123  unsigned NumOperands = 0;
8124  switch (Op.getNode()->getOpcode()) {
8125  case ISD::ADD:
8126    // Due to an isel shortcoming, be conservative if this add is likely to be
8127    // selected as part of a load-modify-store instruction. When the root node
8128    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8129    // uses of other nodes in the match, such as the ADD in this case. This
8130    // leads to the ADD being left around and reselected, with the result being
8131    // two adds in the output.  Alas, even if none our users are stores, that
8132    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8133    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8134    // climbing the DAG back to the root, and it doesn't seem to be worth the
8135    // effort.
8136    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8137         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8138      if (UI->getOpcode() != ISD::CopyToReg &&
8139          UI->getOpcode() != ISD::SETCC &&
8140          UI->getOpcode() != ISD::STORE)
8141        goto default_case;
8142
8143    if (ConstantSDNode *C =
8144        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8145      // An add of one will be selected as an INC.
8146      if (C->getAPIntValue() == 1) {
8147        Opcode = X86ISD::INC;
8148        NumOperands = 1;
8149        break;
8150      }
8151
8152      // An add of negative one (subtract of one) will be selected as a DEC.
8153      if (C->getAPIntValue().isAllOnesValue()) {
8154        Opcode = X86ISD::DEC;
8155        NumOperands = 1;
8156        break;
8157      }
8158    }
8159
8160    // Otherwise use a regular EFLAGS-setting add.
8161    Opcode = X86ISD::ADD;
8162    NumOperands = 2;
8163    break;
8164  case ISD::AND: {
8165    // If the primary and result isn't used, don't bother using X86ISD::AND,
8166    // because a TEST instruction will be better.
8167    bool NonFlagUse = false;
8168    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8169           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8170      SDNode *User = *UI;
8171      unsigned UOpNo = UI.getOperandNo();
8172      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8173        // Look pass truncate.
8174        UOpNo = User->use_begin().getOperandNo();
8175        User = *User->use_begin();
8176      }
8177
8178      if (User->getOpcode() != ISD::BRCOND &&
8179          User->getOpcode() != ISD::SETCC &&
8180          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8181        NonFlagUse = true;
8182        break;
8183      }
8184    }
8185
8186    if (!NonFlagUse)
8187      break;
8188  }
8189    // FALL THROUGH
8190  case ISD::SUB:
8191  case ISD::OR:
8192  case ISD::XOR:
8193    // Due to the ISEL shortcoming noted above, be conservative if this op is
8194    // likely to be selected as part of a load-modify-store instruction.
8195    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8196           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8197      if (UI->getOpcode() == ISD::STORE)
8198        goto default_case;
8199
8200    // Otherwise use a regular EFLAGS-setting instruction.
8201    switch (Op.getNode()->getOpcode()) {
8202    default: llvm_unreachable("unexpected operator!");
8203    case ISD::SUB: Opcode = X86ISD::SUB; break;
8204    case ISD::OR:  Opcode = X86ISD::OR;  break;
8205    case ISD::XOR: Opcode = X86ISD::XOR; break;
8206    case ISD::AND: Opcode = X86ISD::AND; break;
8207    }
8208
8209    NumOperands = 2;
8210    break;
8211  case X86ISD::ADD:
8212  case X86ISD::SUB:
8213  case X86ISD::INC:
8214  case X86ISD::DEC:
8215  case X86ISD::OR:
8216  case X86ISD::XOR:
8217  case X86ISD::AND:
8218    return SDValue(Op.getNode(), 1);
8219  default:
8220  default_case:
8221    break;
8222  }
8223
8224  if (Opcode == 0)
8225    // Emit a CMP with 0, which is the TEST pattern.
8226    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8227                       DAG.getConstant(0, Op.getValueType()));
8228
8229  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8230  SmallVector<SDValue, 4> Ops;
8231  for (unsigned i = 0; i != NumOperands; ++i)
8232    Ops.push_back(Op.getOperand(i));
8233
8234  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8235  DAG.ReplaceAllUsesWith(Op, New);
8236  return SDValue(New.getNode(), 1);
8237}
8238
8239/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8240/// equivalent.
8241SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8242                                   SelectionDAG &DAG) const {
8243  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8244    if (C->getAPIntValue() == 0)
8245      return EmitTest(Op0, X86CC, DAG);
8246
8247  DebugLoc dl = Op0.getDebugLoc();
8248  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8249}
8250
8251/// Convert a comparison if required by the subtarget.
8252SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8253                                                 SelectionDAG &DAG) const {
8254  // If the subtarget does not support the FUCOMI instruction, floating-point
8255  // comparisons have to be converted.
8256  if (Subtarget->hasCMov() ||
8257      Cmp.getOpcode() != X86ISD::CMP ||
8258      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8259      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8260    return Cmp;
8261
8262  // The instruction selector will select an FUCOM instruction instead of
8263  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8264  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8265  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8266  DebugLoc dl = Cmp.getDebugLoc();
8267  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8268  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8269  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8270                            DAG.getConstant(8, MVT::i8));
8271  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8272  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8273}
8274
8275/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8276/// if it's possible.
8277SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8278                                     DebugLoc dl, SelectionDAG &DAG) const {
8279  SDValue Op0 = And.getOperand(0);
8280  SDValue Op1 = And.getOperand(1);
8281  if (Op0.getOpcode() == ISD::TRUNCATE)
8282    Op0 = Op0.getOperand(0);
8283  if (Op1.getOpcode() == ISD::TRUNCATE)
8284    Op1 = Op1.getOperand(0);
8285
8286  SDValue LHS, RHS;
8287  if (Op1.getOpcode() == ISD::SHL)
8288    std::swap(Op0, Op1);
8289  if (Op0.getOpcode() == ISD::SHL) {
8290    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8291      if (And00C->getZExtValue() == 1) {
8292        // If we looked past a truncate, check that it's only truncating away
8293        // known zeros.
8294        unsigned BitWidth = Op0.getValueSizeInBits();
8295        unsigned AndBitWidth = And.getValueSizeInBits();
8296        if (BitWidth > AndBitWidth) {
8297          APInt Zeros, Ones;
8298          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8299          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8300            return SDValue();
8301        }
8302        LHS = Op1;
8303        RHS = Op0.getOperand(1);
8304      }
8305  } else if (Op1.getOpcode() == ISD::Constant) {
8306    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8307    uint64_t AndRHSVal = AndRHS->getZExtValue();
8308    SDValue AndLHS = Op0;
8309
8310    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8311      LHS = AndLHS.getOperand(0);
8312      RHS = AndLHS.getOperand(1);
8313    }
8314
8315    // Use BT if the immediate can't be encoded in a TEST instruction.
8316    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8317      LHS = AndLHS;
8318      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8319    }
8320  }
8321
8322  if (LHS.getNode()) {
8323    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8324    // instruction.  Since the shift amount is in-range-or-undefined, we know
8325    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8326    // the encoding for the i16 version is larger than the i32 version.
8327    // Also promote i16 to i32 for performance / code size reason.
8328    if (LHS.getValueType() == MVT::i8 ||
8329        LHS.getValueType() == MVT::i16)
8330      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8331
8332    // If the operand types disagree, extend the shift amount to match.  Since
8333    // BT ignores high bits (like shifts) we can use anyextend.
8334    if (LHS.getValueType() != RHS.getValueType())
8335      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8336
8337    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8338    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8339    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8340                       DAG.getConstant(Cond, MVT::i8), BT);
8341  }
8342
8343  return SDValue();
8344}
8345
8346SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8347
8348  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8349
8350  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8351  SDValue Op0 = Op.getOperand(0);
8352  SDValue Op1 = Op.getOperand(1);
8353  DebugLoc dl = Op.getDebugLoc();
8354  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8355
8356  // Optimize to BT if possible.
8357  // Lower (X & (1 << N)) == 0 to BT(X, N).
8358  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8359  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8360  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8361      Op1.getOpcode() == ISD::Constant &&
8362      cast<ConstantSDNode>(Op1)->isNullValue() &&
8363      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8364    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8365    if (NewSetCC.getNode())
8366      return NewSetCC;
8367  }
8368
8369  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8370  // these.
8371  if (Op1.getOpcode() == ISD::Constant &&
8372      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8373       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8374      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8375
8376    // If the input is a setcc, then reuse the input setcc or use a new one with
8377    // the inverted condition.
8378    if (Op0.getOpcode() == X86ISD::SETCC) {
8379      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8380      bool Invert = (CC == ISD::SETNE) ^
8381        cast<ConstantSDNode>(Op1)->isNullValue();
8382      if (!Invert) return Op0;
8383
8384      CCode = X86::GetOppositeBranchCondition(CCode);
8385      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8386                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8387    }
8388  }
8389
8390  bool isFP = Op1.getValueType().isFloatingPoint();
8391  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8392  if (X86CC == X86::COND_INVALID)
8393    return SDValue();
8394
8395  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8396  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
8397  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8398                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8399}
8400
8401// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8402// ones, and then concatenate the result back.
8403static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8404  EVT VT = Op.getValueType();
8405
8406  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8407         "Unsupported value type for operation");
8408
8409  unsigned NumElems = VT.getVectorNumElements();
8410  DebugLoc dl = Op.getDebugLoc();
8411  SDValue CC = Op.getOperand(2);
8412
8413  // Extract the LHS vectors
8414  SDValue LHS = Op.getOperand(0);
8415  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
8416  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
8417
8418  // Extract the RHS vectors
8419  SDValue RHS = Op.getOperand(1);
8420  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
8421  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
8422
8423  // Issue the operation on the smaller types and concatenate the result back
8424  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8425  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8426  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8427                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8428                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8429}
8430
8431
8432SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8433  SDValue Cond;
8434  SDValue Op0 = Op.getOperand(0);
8435  SDValue Op1 = Op.getOperand(1);
8436  SDValue CC = Op.getOperand(2);
8437  EVT VT = Op.getValueType();
8438  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8439  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8440  DebugLoc dl = Op.getDebugLoc();
8441
8442  if (isFP) {
8443    unsigned SSECC = 8;
8444    EVT EltVT = Op0.getValueType().getVectorElementType();
8445    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8446
8447    bool Swap = false;
8448
8449    // SSE Condition code mapping:
8450    //  0 - EQ
8451    //  1 - LT
8452    //  2 - LE
8453    //  3 - UNORD
8454    //  4 - NEQ
8455    //  5 - NLT
8456    //  6 - NLE
8457    //  7 - ORD
8458    switch (SetCCOpcode) {
8459    default: break;
8460    case ISD::SETOEQ:
8461    case ISD::SETEQ:  SSECC = 0; break;
8462    case ISD::SETOGT:
8463    case ISD::SETGT: Swap = true; // Fallthrough
8464    case ISD::SETLT:
8465    case ISD::SETOLT: SSECC = 1; break;
8466    case ISD::SETOGE:
8467    case ISD::SETGE: Swap = true; // Fallthrough
8468    case ISD::SETLE:
8469    case ISD::SETOLE: SSECC = 2; break;
8470    case ISD::SETUO:  SSECC = 3; break;
8471    case ISD::SETUNE:
8472    case ISD::SETNE:  SSECC = 4; break;
8473    case ISD::SETULE: Swap = true;
8474    case ISD::SETUGE: SSECC = 5; break;
8475    case ISD::SETULT: Swap = true;
8476    case ISD::SETUGT: SSECC = 6; break;
8477    case ISD::SETO:   SSECC = 7; break;
8478    }
8479    if (Swap)
8480      std::swap(Op0, Op1);
8481
8482    // In the two special cases we can't handle, emit two comparisons.
8483    if (SSECC == 8) {
8484      if (SetCCOpcode == ISD::SETUEQ) {
8485        SDValue UNORD, EQ;
8486        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8487                            DAG.getConstant(3, MVT::i8));
8488        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8489                         DAG.getConstant(0, MVT::i8));
8490        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8491      }
8492      if (SetCCOpcode == ISD::SETONE) {
8493        SDValue ORD, NEQ;
8494        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8495                          DAG.getConstant(7, MVT::i8));
8496        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8497                          DAG.getConstant(4, MVT::i8));
8498        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8499      }
8500      llvm_unreachable("Illegal FP comparison");
8501    }
8502    // Handle all other FP comparisons here.
8503    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8504                       DAG.getConstant(SSECC, MVT::i8));
8505  }
8506
8507  // Break 256-bit integer vector compare into smaller ones.
8508  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8509    return Lower256IntVSETCC(Op, DAG);
8510
8511  // We are handling one of the integer comparisons here.  Since SSE only has
8512  // GT and EQ comparisons for integer, swapping operands and multiple
8513  // operations may be required for some comparisons.
8514  unsigned Opc = 0;
8515  bool Swap = false, Invert = false, FlipSigns = false;
8516
8517  switch (SetCCOpcode) {
8518  default: break;
8519  case ISD::SETNE:  Invert = true;
8520  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8521  case ISD::SETLT:  Swap = true;
8522  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8523  case ISD::SETGE:  Swap = true;
8524  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8525  case ISD::SETULT: Swap = true;
8526  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8527  case ISD::SETUGE: Swap = true;
8528  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8529  }
8530  if (Swap)
8531    std::swap(Op0, Op1);
8532
8533  // Check that the operation in question is available (most are plain SSE2,
8534  // but PCMPGTQ and PCMPEQQ have different requirements).
8535  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8536    return SDValue();
8537  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8538    return SDValue();
8539
8540  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8541  // bits of the inputs before performing those operations.
8542  if (FlipSigns) {
8543    EVT EltVT = VT.getVectorElementType();
8544    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8545                                      EltVT);
8546    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8547    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8548                                    SignBits.size());
8549    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8550    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8551  }
8552
8553  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8554
8555  // If the logical-not of the result is required, perform that now.
8556  if (Invert)
8557    Result = DAG.getNOT(dl, Result, VT);
8558
8559  return Result;
8560}
8561
8562// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8563static bool isX86LogicalCmp(SDValue Op) {
8564  unsigned Opc = Op.getNode()->getOpcode();
8565  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
8566      Opc == X86ISD::SAHF)
8567    return true;
8568  if (Op.getResNo() == 1 &&
8569      (Opc == X86ISD::ADD ||
8570       Opc == X86ISD::SUB ||
8571       Opc == X86ISD::ADC ||
8572       Opc == X86ISD::SBB ||
8573       Opc == X86ISD::SMUL ||
8574       Opc == X86ISD::UMUL ||
8575       Opc == X86ISD::INC ||
8576       Opc == X86ISD::DEC ||
8577       Opc == X86ISD::OR ||
8578       Opc == X86ISD::XOR ||
8579       Opc == X86ISD::AND))
8580    return true;
8581
8582  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8583    return true;
8584
8585  return false;
8586}
8587
8588static bool isZero(SDValue V) {
8589  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8590  return C && C->isNullValue();
8591}
8592
8593static bool isAllOnes(SDValue V) {
8594  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8595  return C && C->isAllOnesValue();
8596}
8597
8598SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8599  bool addTest = true;
8600  SDValue Cond  = Op.getOperand(0);
8601  SDValue Op1 = Op.getOperand(1);
8602  SDValue Op2 = Op.getOperand(2);
8603  DebugLoc DL = Op.getDebugLoc();
8604  SDValue CC;
8605
8606  if (Cond.getOpcode() == ISD::SETCC) {
8607    SDValue NewCond = LowerSETCC(Cond, DAG);
8608    if (NewCond.getNode())
8609      Cond = NewCond;
8610  }
8611
8612  // Handle the following cases related to max and min:
8613  // (a > b) ? (a-b) : 0
8614  // (a >= b) ? (a-b) : 0
8615  // (b < a) ? (a-b) : 0
8616  // (b <= a) ? (a-b) : 0
8617  // Comparison is removed to use EFLAGS from SUB.
8618  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2))
8619    if (Cond.getOpcode() == X86ISD::SETCC &&
8620        Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8621        (Op1.getOpcode() == ISD::SUB || Op1.getOpcode() == X86ISD::SUB) &&
8622        C->getAPIntValue() == 0) {
8623      SDValue Cmp = Cond.getOperand(1);
8624      unsigned CC = cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8625      if ((DAG.isEqualTo(Op1.getOperand(0), Cmp.getOperand(0)) &&
8626           DAG.isEqualTo(Op1.getOperand(1), Cmp.getOperand(1)) &&
8627           (CC == X86::COND_G || CC == X86::COND_GE ||
8628            CC == X86::COND_A || CC == X86::COND_AE)) ||
8629          (DAG.isEqualTo(Op1.getOperand(0), Cmp.getOperand(1)) &&
8630           DAG.isEqualTo(Op1.getOperand(1), Cmp.getOperand(0)) &&
8631           (CC == X86::COND_L || CC == X86::COND_LE ||
8632            CC == X86::COND_B || CC == X86::COND_BE))) {
8633
8634        if (Op1.getOpcode() == ISD::SUB) {
8635          SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i32);
8636          SDValue New = DAG.getNode(X86ISD::SUB, DL, VTs,
8637                                    Op1.getOperand(0), Op1.getOperand(1));
8638          DAG.ReplaceAllUsesWith(Op1, New);
8639          Op1 = New;
8640        }
8641
8642        SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8643        unsigned NewCC = (CC == X86::COND_G || CC == X86::COND_GE ||
8644                          CC == X86::COND_L ||
8645                          CC == X86::COND_LE) ? X86::COND_GE : X86::COND_AE;
8646        SDValue Ops[] = { Op2, Op1, DAG.getConstant(NewCC, MVT::i8),
8647                          SDValue(Op1.getNode(), 1) };
8648        return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8649      }
8650    }
8651
8652  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8653  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8654  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8655  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8656  if (Cond.getOpcode() == X86ISD::SETCC &&
8657      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8658      isZero(Cond.getOperand(1).getOperand(1))) {
8659    SDValue Cmp = Cond.getOperand(1);
8660
8661    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8662
8663    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8664        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8665      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8666
8667      SDValue CmpOp0 = Cmp.getOperand(0);
8668      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8669                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8670      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
8671
8672      SDValue Res =   // Res = 0 or -1.
8673        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8674                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8675
8676      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8677        Res = DAG.getNOT(DL, Res, Res.getValueType());
8678
8679      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8680      if (N2C == 0 || !N2C->isNullValue())
8681        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8682      return Res;
8683    }
8684  }
8685
8686  // Look past (and (setcc_carry (cmp ...)), 1).
8687  if (Cond.getOpcode() == ISD::AND &&
8688      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8689    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8690    if (C && C->getAPIntValue() == 1)
8691      Cond = Cond.getOperand(0);
8692  }
8693
8694  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8695  // setting operand in place of the X86ISD::SETCC.
8696  unsigned CondOpcode = Cond.getOpcode();
8697  if (CondOpcode == X86ISD::SETCC ||
8698      CondOpcode == X86ISD::SETCC_CARRY) {
8699    CC = Cond.getOperand(0);
8700
8701    SDValue Cmp = Cond.getOperand(1);
8702    unsigned Opc = Cmp.getOpcode();
8703    EVT VT = Op.getValueType();
8704
8705    bool IllegalFPCMov = false;
8706    if (VT.isFloatingPoint() && !VT.isVector() &&
8707        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8708      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8709
8710    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8711        Opc == X86ISD::BT) { // FIXME
8712      Cond = Cmp;
8713      addTest = false;
8714    }
8715  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8716             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8717             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8718              Cond.getOperand(0).getValueType() != MVT::i8)) {
8719    SDValue LHS = Cond.getOperand(0);
8720    SDValue RHS = Cond.getOperand(1);
8721    unsigned X86Opcode;
8722    unsigned X86Cond;
8723    SDVTList VTs;
8724    switch (CondOpcode) {
8725    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8726    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8727    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8728    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8729    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8730    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8731    default: llvm_unreachable("unexpected overflowing operator");
8732    }
8733    if (CondOpcode == ISD::UMULO)
8734      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8735                          MVT::i32);
8736    else
8737      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8738
8739    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8740
8741    if (CondOpcode == ISD::UMULO)
8742      Cond = X86Op.getValue(2);
8743    else
8744      Cond = X86Op.getValue(1);
8745
8746    CC = DAG.getConstant(X86Cond, MVT::i8);
8747    addTest = false;
8748  }
8749
8750  if (addTest) {
8751    // Look pass the truncate.
8752    if (Cond.getOpcode() == ISD::TRUNCATE)
8753      Cond = Cond.getOperand(0);
8754
8755    // We know the result of AND is compared against zero. Try to match
8756    // it to BT.
8757    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8758      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8759      if (NewSetCC.getNode()) {
8760        CC = NewSetCC.getOperand(0);
8761        Cond = NewSetCC.getOperand(1);
8762        addTest = false;
8763      }
8764    }
8765  }
8766
8767  if (addTest) {
8768    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8769    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8770  }
8771
8772  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8773  // a <  b ?  0 : -1 -> RES = setcc_carry
8774  // a >= b ? -1 :  0 -> RES = setcc_carry
8775  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8776  if (Cond.getOpcode() == X86ISD::CMP) {
8777    Cond = ConvertCmpIfNecessary(Cond, DAG);
8778    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8779
8780    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8781        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8782      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8783                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8784      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8785        return DAG.getNOT(DL, Res, Res.getValueType());
8786      return Res;
8787    }
8788  }
8789
8790  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8791  // condition is true.
8792  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8793  SDValue Ops[] = { Op2, Op1, CC, Cond };
8794  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8795}
8796
8797// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8798// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8799// from the AND / OR.
8800static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8801  Opc = Op.getOpcode();
8802  if (Opc != ISD::OR && Opc != ISD::AND)
8803    return false;
8804  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8805          Op.getOperand(0).hasOneUse() &&
8806          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8807          Op.getOperand(1).hasOneUse());
8808}
8809
8810// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8811// 1 and that the SETCC node has a single use.
8812static bool isXor1OfSetCC(SDValue Op) {
8813  if (Op.getOpcode() != ISD::XOR)
8814    return false;
8815  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8816  if (N1C && N1C->getAPIntValue() == 1) {
8817    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8818      Op.getOperand(0).hasOneUse();
8819  }
8820  return false;
8821}
8822
8823SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8824  bool addTest = true;
8825  SDValue Chain = Op.getOperand(0);
8826  SDValue Cond  = Op.getOperand(1);
8827  SDValue Dest  = Op.getOperand(2);
8828  DebugLoc dl = Op.getDebugLoc();
8829  SDValue CC;
8830  bool Inverted = false;
8831
8832  if (Cond.getOpcode() == ISD::SETCC) {
8833    // Check for setcc([su]{add,sub,mul}o == 0).
8834    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8835        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8836        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8837        Cond.getOperand(0).getResNo() == 1 &&
8838        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8839         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8840         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8841         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8842         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8843         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8844      Inverted = true;
8845      Cond = Cond.getOperand(0);
8846    } else {
8847      SDValue NewCond = LowerSETCC(Cond, DAG);
8848      if (NewCond.getNode())
8849        Cond = NewCond;
8850    }
8851  }
8852#if 0
8853  // FIXME: LowerXALUO doesn't handle these!!
8854  else if (Cond.getOpcode() == X86ISD::ADD  ||
8855           Cond.getOpcode() == X86ISD::SUB  ||
8856           Cond.getOpcode() == X86ISD::SMUL ||
8857           Cond.getOpcode() == X86ISD::UMUL)
8858    Cond = LowerXALUO(Cond, DAG);
8859#endif
8860
8861  // Look pass (and (setcc_carry (cmp ...)), 1).
8862  if (Cond.getOpcode() == ISD::AND &&
8863      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8864    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8865    if (C && C->getAPIntValue() == 1)
8866      Cond = Cond.getOperand(0);
8867  }
8868
8869  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8870  // setting operand in place of the X86ISD::SETCC.
8871  unsigned CondOpcode = Cond.getOpcode();
8872  if (CondOpcode == X86ISD::SETCC ||
8873      CondOpcode == X86ISD::SETCC_CARRY) {
8874    CC = Cond.getOperand(0);
8875
8876    SDValue Cmp = Cond.getOperand(1);
8877    unsigned Opc = Cmp.getOpcode();
8878    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8879    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8880      Cond = Cmp;
8881      addTest = false;
8882    } else {
8883      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8884      default: break;
8885      case X86::COND_O:
8886      case X86::COND_B:
8887        // These can only come from an arithmetic instruction with overflow,
8888        // e.g. SADDO, UADDO.
8889        Cond = Cond.getNode()->getOperand(1);
8890        addTest = false;
8891        break;
8892      }
8893    }
8894  }
8895  CondOpcode = Cond.getOpcode();
8896  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8897      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8898      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8899       Cond.getOperand(0).getValueType() != MVT::i8)) {
8900    SDValue LHS = Cond.getOperand(0);
8901    SDValue RHS = Cond.getOperand(1);
8902    unsigned X86Opcode;
8903    unsigned X86Cond;
8904    SDVTList VTs;
8905    switch (CondOpcode) {
8906    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8907    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8908    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8909    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8910    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8911    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8912    default: llvm_unreachable("unexpected overflowing operator");
8913    }
8914    if (Inverted)
8915      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8916    if (CondOpcode == ISD::UMULO)
8917      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8918                          MVT::i32);
8919    else
8920      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8921
8922    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8923
8924    if (CondOpcode == ISD::UMULO)
8925      Cond = X86Op.getValue(2);
8926    else
8927      Cond = X86Op.getValue(1);
8928
8929    CC = DAG.getConstant(X86Cond, MVT::i8);
8930    addTest = false;
8931  } else {
8932    unsigned CondOpc;
8933    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8934      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8935      if (CondOpc == ISD::OR) {
8936        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8937        // two branches instead of an explicit OR instruction with a
8938        // separate test.
8939        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8940            isX86LogicalCmp(Cmp)) {
8941          CC = Cond.getOperand(0).getOperand(0);
8942          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8943                              Chain, Dest, CC, Cmp);
8944          CC = Cond.getOperand(1).getOperand(0);
8945          Cond = Cmp;
8946          addTest = false;
8947        }
8948      } else { // ISD::AND
8949        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8950        // two branches instead of an explicit AND instruction with a
8951        // separate test. However, we only do this if this block doesn't
8952        // have a fall-through edge, because this requires an explicit
8953        // jmp when the condition is false.
8954        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8955            isX86LogicalCmp(Cmp) &&
8956            Op.getNode()->hasOneUse()) {
8957          X86::CondCode CCode =
8958            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8959          CCode = X86::GetOppositeBranchCondition(CCode);
8960          CC = DAG.getConstant(CCode, MVT::i8);
8961          SDNode *User = *Op.getNode()->use_begin();
8962          // Look for an unconditional branch following this conditional branch.
8963          // We need this because we need to reverse the successors in order
8964          // to implement FCMP_OEQ.
8965          if (User->getOpcode() == ISD::BR) {
8966            SDValue FalseBB = User->getOperand(1);
8967            SDNode *NewBR =
8968              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8969            assert(NewBR == User);
8970            (void)NewBR;
8971            Dest = FalseBB;
8972
8973            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8974                                Chain, Dest, CC, Cmp);
8975            X86::CondCode CCode =
8976              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8977            CCode = X86::GetOppositeBranchCondition(CCode);
8978            CC = DAG.getConstant(CCode, MVT::i8);
8979            Cond = Cmp;
8980            addTest = false;
8981          }
8982        }
8983      }
8984    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8985      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8986      // It should be transformed during dag combiner except when the condition
8987      // is set by a arithmetics with overflow node.
8988      X86::CondCode CCode =
8989        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8990      CCode = X86::GetOppositeBranchCondition(CCode);
8991      CC = DAG.getConstant(CCode, MVT::i8);
8992      Cond = Cond.getOperand(0).getOperand(1);
8993      addTest = false;
8994    } else if (Cond.getOpcode() == ISD::SETCC &&
8995               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8996      // For FCMP_OEQ, we can emit
8997      // two branches instead of an explicit AND instruction with a
8998      // separate test. However, we only do this if this block doesn't
8999      // have a fall-through edge, because this requires an explicit
9000      // jmp when the condition is false.
9001      if (Op.getNode()->hasOneUse()) {
9002        SDNode *User = *Op.getNode()->use_begin();
9003        // Look for an unconditional branch following this conditional branch.
9004        // We need this because we need to reverse the successors in order
9005        // to implement FCMP_OEQ.
9006        if (User->getOpcode() == ISD::BR) {
9007          SDValue FalseBB = User->getOperand(1);
9008          SDNode *NewBR =
9009            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9010          assert(NewBR == User);
9011          (void)NewBR;
9012          Dest = FalseBB;
9013
9014          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9015                                    Cond.getOperand(0), Cond.getOperand(1));
9016          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9017          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9018          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9019                              Chain, Dest, CC, Cmp);
9020          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9021          Cond = Cmp;
9022          addTest = false;
9023        }
9024      }
9025    } else if (Cond.getOpcode() == ISD::SETCC &&
9026               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9027      // For FCMP_UNE, we can emit
9028      // two branches instead of an explicit AND instruction with a
9029      // separate test. However, we only do this if this block doesn't
9030      // have a fall-through edge, because this requires an explicit
9031      // jmp when the condition is false.
9032      if (Op.getNode()->hasOneUse()) {
9033        SDNode *User = *Op.getNode()->use_begin();
9034        // Look for an unconditional branch following this conditional branch.
9035        // We need this because we need to reverse the successors in order
9036        // to implement FCMP_UNE.
9037        if (User->getOpcode() == ISD::BR) {
9038          SDValue FalseBB = User->getOperand(1);
9039          SDNode *NewBR =
9040            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9041          assert(NewBR == User);
9042          (void)NewBR;
9043
9044          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9045                                    Cond.getOperand(0), Cond.getOperand(1));
9046          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9047          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9048          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9049                              Chain, Dest, CC, Cmp);
9050          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9051          Cond = Cmp;
9052          addTest = false;
9053          Dest = FalseBB;
9054        }
9055      }
9056    }
9057  }
9058
9059  if (addTest) {
9060    // Look pass the truncate.
9061    if (Cond.getOpcode() == ISD::TRUNCATE)
9062      Cond = Cond.getOperand(0);
9063
9064    // We know the result of AND is compared against zero. Try to match
9065    // it to BT.
9066    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9067      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9068      if (NewSetCC.getNode()) {
9069        CC = NewSetCC.getOperand(0);
9070        Cond = NewSetCC.getOperand(1);
9071        addTest = false;
9072      }
9073    }
9074  }
9075
9076  if (addTest) {
9077    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9078    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9079  }
9080  Cond = ConvertCmpIfNecessary(Cond, DAG);
9081  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9082                     Chain, Dest, CC, Cond);
9083}
9084
9085
9086// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9087// Calls to _alloca is needed to probe the stack when allocating more than 4k
9088// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9089// that the guard pages used by the OS virtual memory manager are allocated in
9090// correct sequence.
9091SDValue
9092X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9093                                           SelectionDAG &DAG) const {
9094  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9095          getTargetMachine().Options.EnableSegmentedStacks) &&
9096         "This should be used only on Windows targets or when segmented stacks "
9097         "are being used");
9098  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9099  DebugLoc dl = Op.getDebugLoc();
9100
9101  // Get the inputs.
9102  SDValue Chain = Op.getOperand(0);
9103  SDValue Size  = Op.getOperand(1);
9104  // FIXME: Ensure alignment here
9105
9106  bool Is64Bit = Subtarget->is64Bit();
9107  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9108
9109  if (getTargetMachine().Options.EnableSegmentedStacks) {
9110    MachineFunction &MF = DAG.getMachineFunction();
9111    MachineRegisterInfo &MRI = MF.getRegInfo();
9112
9113    if (Is64Bit) {
9114      // The 64 bit implementation of segmented stacks needs to clobber both r10
9115      // r11. This makes it impossible to use it along with nested parameters.
9116      const Function *F = MF.getFunction();
9117
9118      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9119           I != E; ++I)
9120        if (I->hasNestAttr())
9121          report_fatal_error("Cannot use segmented stacks with functions that "
9122                             "have nested arguments.");
9123    }
9124
9125    const TargetRegisterClass *AddrRegClass =
9126      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9127    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9128    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9129    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9130                                DAG.getRegister(Vreg, SPTy));
9131    SDValue Ops1[2] = { Value, Chain };
9132    return DAG.getMergeValues(Ops1, 2, dl);
9133  } else {
9134    SDValue Flag;
9135    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9136
9137    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9138    Flag = Chain.getValue(1);
9139    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9140
9141    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9142    Flag = Chain.getValue(1);
9143
9144    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9145
9146    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9147    return DAG.getMergeValues(Ops1, 2, dl);
9148  }
9149}
9150
9151SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9152  MachineFunction &MF = DAG.getMachineFunction();
9153  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9154
9155  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9156  DebugLoc DL = Op.getDebugLoc();
9157
9158  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9159    // vastart just stores the address of the VarArgsFrameIndex slot into the
9160    // memory location argument.
9161    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9162                                   getPointerTy());
9163    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9164                        MachinePointerInfo(SV), false, false, 0);
9165  }
9166
9167  // __va_list_tag:
9168  //   gp_offset         (0 - 6 * 8)
9169  //   fp_offset         (48 - 48 + 8 * 16)
9170  //   overflow_arg_area (point to parameters coming in memory).
9171  //   reg_save_area
9172  SmallVector<SDValue, 8> MemOps;
9173  SDValue FIN = Op.getOperand(1);
9174  // Store gp_offset
9175  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9176                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9177                                               MVT::i32),
9178                               FIN, MachinePointerInfo(SV), false, false, 0);
9179  MemOps.push_back(Store);
9180
9181  // Store fp_offset
9182  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9183                    FIN, DAG.getIntPtrConstant(4));
9184  Store = DAG.getStore(Op.getOperand(0), DL,
9185                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9186                                       MVT::i32),
9187                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9188  MemOps.push_back(Store);
9189
9190  // Store ptr to overflow_arg_area
9191  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9192                    FIN, DAG.getIntPtrConstant(4));
9193  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9194                                    getPointerTy());
9195  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9196                       MachinePointerInfo(SV, 8),
9197                       false, false, 0);
9198  MemOps.push_back(Store);
9199
9200  // Store ptr to reg_save_area.
9201  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9202                    FIN, DAG.getIntPtrConstant(8));
9203  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9204                                    getPointerTy());
9205  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9206                       MachinePointerInfo(SV, 16), false, false, 0);
9207  MemOps.push_back(Store);
9208  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9209                     &MemOps[0], MemOps.size());
9210}
9211
9212SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9213  assert(Subtarget->is64Bit() &&
9214         "LowerVAARG only handles 64-bit va_arg!");
9215  assert((Subtarget->isTargetLinux() ||
9216          Subtarget->isTargetDarwin()) &&
9217          "Unhandled target in LowerVAARG");
9218  assert(Op.getNode()->getNumOperands() == 4);
9219  SDValue Chain = Op.getOperand(0);
9220  SDValue SrcPtr = Op.getOperand(1);
9221  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9222  unsigned Align = Op.getConstantOperandVal(3);
9223  DebugLoc dl = Op.getDebugLoc();
9224
9225  EVT ArgVT = Op.getNode()->getValueType(0);
9226  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9227  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9228  uint8_t ArgMode;
9229
9230  // Decide which area this value should be read from.
9231  // TODO: Implement the AMD64 ABI in its entirety. This simple
9232  // selection mechanism works only for the basic types.
9233  if (ArgVT == MVT::f80) {
9234    llvm_unreachable("va_arg for f80 not yet implemented");
9235  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9236    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9237  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9238    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9239  } else {
9240    llvm_unreachable("Unhandled argument type in LowerVAARG");
9241  }
9242
9243  if (ArgMode == 2) {
9244    // Sanity Check: Make sure using fp_offset makes sense.
9245    assert(!getTargetMachine().Options.UseSoftFloat &&
9246           !(DAG.getMachineFunction()
9247                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9248           Subtarget->hasSSE1());
9249  }
9250
9251  // Insert VAARG_64 node into the DAG
9252  // VAARG_64 returns two values: Variable Argument Address, Chain
9253  SmallVector<SDValue, 11> InstOps;
9254  InstOps.push_back(Chain);
9255  InstOps.push_back(SrcPtr);
9256  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9257  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9258  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9259  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9260  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9261                                          VTs, &InstOps[0], InstOps.size(),
9262                                          MVT::i64,
9263                                          MachinePointerInfo(SV),
9264                                          /*Align=*/0,
9265                                          /*Volatile=*/false,
9266                                          /*ReadMem=*/true,
9267                                          /*WriteMem=*/true);
9268  Chain = VAARG.getValue(1);
9269
9270  // Load the next argument and return it
9271  return DAG.getLoad(ArgVT, dl,
9272                     Chain,
9273                     VAARG,
9274                     MachinePointerInfo(),
9275                     false, false, false, 0);
9276}
9277
9278SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9279  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9280  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9281  SDValue Chain = Op.getOperand(0);
9282  SDValue DstPtr = Op.getOperand(1);
9283  SDValue SrcPtr = Op.getOperand(2);
9284  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9285  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9286  DebugLoc DL = Op.getDebugLoc();
9287
9288  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9289                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9290                       false,
9291                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9292}
9293
9294// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9295// may or may not be a constant. Takes immediate version of shift as input.
9296static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9297                                   SDValue SrcOp, SDValue ShAmt,
9298                                   SelectionDAG &DAG) {
9299  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9300
9301  if (isa<ConstantSDNode>(ShAmt)) {
9302    switch (Opc) {
9303      default: llvm_unreachable("Unknown target vector shift node");
9304      case X86ISD::VSHLI:
9305      case X86ISD::VSRLI:
9306      case X86ISD::VSRAI:
9307        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9308    }
9309  }
9310
9311  // Change opcode to non-immediate version
9312  switch (Opc) {
9313    default: llvm_unreachable("Unknown target vector shift node");
9314    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9315    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9316    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9317  }
9318
9319  // Need to build a vector containing shift amount
9320  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9321  SDValue ShOps[4];
9322  ShOps[0] = ShAmt;
9323  ShOps[1] = DAG.getConstant(0, MVT::i32);
9324  ShOps[2] = DAG.getUNDEF(MVT::i32);
9325  ShOps[3] = DAG.getUNDEF(MVT::i32);
9326  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9327  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9328  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9329}
9330
9331SDValue
9332X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9333  DebugLoc dl = Op.getDebugLoc();
9334  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9335  switch (IntNo) {
9336  default: return SDValue();    // Don't custom lower most intrinsics.
9337  // Comparison intrinsics.
9338  case Intrinsic::x86_sse_comieq_ss:
9339  case Intrinsic::x86_sse_comilt_ss:
9340  case Intrinsic::x86_sse_comile_ss:
9341  case Intrinsic::x86_sse_comigt_ss:
9342  case Intrinsic::x86_sse_comige_ss:
9343  case Intrinsic::x86_sse_comineq_ss:
9344  case Intrinsic::x86_sse_ucomieq_ss:
9345  case Intrinsic::x86_sse_ucomilt_ss:
9346  case Intrinsic::x86_sse_ucomile_ss:
9347  case Intrinsic::x86_sse_ucomigt_ss:
9348  case Intrinsic::x86_sse_ucomige_ss:
9349  case Intrinsic::x86_sse_ucomineq_ss:
9350  case Intrinsic::x86_sse2_comieq_sd:
9351  case Intrinsic::x86_sse2_comilt_sd:
9352  case Intrinsic::x86_sse2_comile_sd:
9353  case Intrinsic::x86_sse2_comigt_sd:
9354  case Intrinsic::x86_sse2_comige_sd:
9355  case Intrinsic::x86_sse2_comineq_sd:
9356  case Intrinsic::x86_sse2_ucomieq_sd:
9357  case Intrinsic::x86_sse2_ucomilt_sd:
9358  case Intrinsic::x86_sse2_ucomile_sd:
9359  case Intrinsic::x86_sse2_ucomigt_sd:
9360  case Intrinsic::x86_sse2_ucomige_sd:
9361  case Intrinsic::x86_sse2_ucomineq_sd: {
9362    unsigned Opc = 0;
9363    ISD::CondCode CC = ISD::SETCC_INVALID;
9364    switch (IntNo) {
9365    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9366    case Intrinsic::x86_sse_comieq_ss:
9367    case Intrinsic::x86_sse2_comieq_sd:
9368      Opc = X86ISD::COMI;
9369      CC = ISD::SETEQ;
9370      break;
9371    case Intrinsic::x86_sse_comilt_ss:
9372    case Intrinsic::x86_sse2_comilt_sd:
9373      Opc = X86ISD::COMI;
9374      CC = ISD::SETLT;
9375      break;
9376    case Intrinsic::x86_sse_comile_ss:
9377    case Intrinsic::x86_sse2_comile_sd:
9378      Opc = X86ISD::COMI;
9379      CC = ISD::SETLE;
9380      break;
9381    case Intrinsic::x86_sse_comigt_ss:
9382    case Intrinsic::x86_sse2_comigt_sd:
9383      Opc = X86ISD::COMI;
9384      CC = ISD::SETGT;
9385      break;
9386    case Intrinsic::x86_sse_comige_ss:
9387    case Intrinsic::x86_sse2_comige_sd:
9388      Opc = X86ISD::COMI;
9389      CC = ISD::SETGE;
9390      break;
9391    case Intrinsic::x86_sse_comineq_ss:
9392    case Intrinsic::x86_sse2_comineq_sd:
9393      Opc = X86ISD::COMI;
9394      CC = ISD::SETNE;
9395      break;
9396    case Intrinsic::x86_sse_ucomieq_ss:
9397    case Intrinsic::x86_sse2_ucomieq_sd:
9398      Opc = X86ISD::UCOMI;
9399      CC = ISD::SETEQ;
9400      break;
9401    case Intrinsic::x86_sse_ucomilt_ss:
9402    case Intrinsic::x86_sse2_ucomilt_sd:
9403      Opc = X86ISD::UCOMI;
9404      CC = ISD::SETLT;
9405      break;
9406    case Intrinsic::x86_sse_ucomile_ss:
9407    case Intrinsic::x86_sse2_ucomile_sd:
9408      Opc = X86ISD::UCOMI;
9409      CC = ISD::SETLE;
9410      break;
9411    case Intrinsic::x86_sse_ucomigt_ss:
9412    case Intrinsic::x86_sse2_ucomigt_sd:
9413      Opc = X86ISD::UCOMI;
9414      CC = ISD::SETGT;
9415      break;
9416    case Intrinsic::x86_sse_ucomige_ss:
9417    case Intrinsic::x86_sse2_ucomige_sd:
9418      Opc = X86ISD::UCOMI;
9419      CC = ISD::SETGE;
9420      break;
9421    case Intrinsic::x86_sse_ucomineq_ss:
9422    case Intrinsic::x86_sse2_ucomineq_sd:
9423      Opc = X86ISD::UCOMI;
9424      CC = ISD::SETNE;
9425      break;
9426    }
9427
9428    SDValue LHS = Op.getOperand(1);
9429    SDValue RHS = Op.getOperand(2);
9430    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9431    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9432    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9433    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9434                                DAG.getConstant(X86CC, MVT::i8), Cond);
9435    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9436  }
9437  // XOP comparison intrinsics
9438  case Intrinsic::x86_xop_vpcomltb:
9439  case Intrinsic::x86_xop_vpcomltw:
9440  case Intrinsic::x86_xop_vpcomltd:
9441  case Intrinsic::x86_xop_vpcomltq:
9442  case Intrinsic::x86_xop_vpcomltub:
9443  case Intrinsic::x86_xop_vpcomltuw:
9444  case Intrinsic::x86_xop_vpcomltud:
9445  case Intrinsic::x86_xop_vpcomltuq:
9446  case Intrinsic::x86_xop_vpcomleb:
9447  case Intrinsic::x86_xop_vpcomlew:
9448  case Intrinsic::x86_xop_vpcomled:
9449  case Intrinsic::x86_xop_vpcomleq:
9450  case Intrinsic::x86_xop_vpcomleub:
9451  case Intrinsic::x86_xop_vpcomleuw:
9452  case Intrinsic::x86_xop_vpcomleud:
9453  case Intrinsic::x86_xop_vpcomleuq:
9454  case Intrinsic::x86_xop_vpcomgtb:
9455  case Intrinsic::x86_xop_vpcomgtw:
9456  case Intrinsic::x86_xop_vpcomgtd:
9457  case Intrinsic::x86_xop_vpcomgtq:
9458  case Intrinsic::x86_xop_vpcomgtub:
9459  case Intrinsic::x86_xop_vpcomgtuw:
9460  case Intrinsic::x86_xop_vpcomgtud:
9461  case Intrinsic::x86_xop_vpcomgtuq:
9462  case Intrinsic::x86_xop_vpcomgeb:
9463  case Intrinsic::x86_xop_vpcomgew:
9464  case Intrinsic::x86_xop_vpcomged:
9465  case Intrinsic::x86_xop_vpcomgeq:
9466  case Intrinsic::x86_xop_vpcomgeub:
9467  case Intrinsic::x86_xop_vpcomgeuw:
9468  case Intrinsic::x86_xop_vpcomgeud:
9469  case Intrinsic::x86_xop_vpcomgeuq:
9470  case Intrinsic::x86_xop_vpcomeqb:
9471  case Intrinsic::x86_xop_vpcomeqw:
9472  case Intrinsic::x86_xop_vpcomeqd:
9473  case Intrinsic::x86_xop_vpcomeqq:
9474  case Intrinsic::x86_xop_vpcomequb:
9475  case Intrinsic::x86_xop_vpcomequw:
9476  case Intrinsic::x86_xop_vpcomequd:
9477  case Intrinsic::x86_xop_vpcomequq:
9478  case Intrinsic::x86_xop_vpcomneb:
9479  case Intrinsic::x86_xop_vpcomnew:
9480  case Intrinsic::x86_xop_vpcomned:
9481  case Intrinsic::x86_xop_vpcomneq:
9482  case Intrinsic::x86_xop_vpcomneub:
9483  case Intrinsic::x86_xop_vpcomneuw:
9484  case Intrinsic::x86_xop_vpcomneud:
9485  case Intrinsic::x86_xop_vpcomneuq:
9486  case Intrinsic::x86_xop_vpcomfalseb:
9487  case Intrinsic::x86_xop_vpcomfalsew:
9488  case Intrinsic::x86_xop_vpcomfalsed:
9489  case Intrinsic::x86_xop_vpcomfalseq:
9490  case Intrinsic::x86_xop_vpcomfalseub:
9491  case Intrinsic::x86_xop_vpcomfalseuw:
9492  case Intrinsic::x86_xop_vpcomfalseud:
9493  case Intrinsic::x86_xop_vpcomfalseuq:
9494  case Intrinsic::x86_xop_vpcomtrueb:
9495  case Intrinsic::x86_xop_vpcomtruew:
9496  case Intrinsic::x86_xop_vpcomtrued:
9497  case Intrinsic::x86_xop_vpcomtrueq:
9498  case Intrinsic::x86_xop_vpcomtrueub:
9499  case Intrinsic::x86_xop_vpcomtrueuw:
9500  case Intrinsic::x86_xop_vpcomtrueud:
9501  case Intrinsic::x86_xop_vpcomtrueuq: {
9502    unsigned CC = 0;
9503    unsigned Opc = 0;
9504
9505    switch (IntNo) {
9506    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9507    case Intrinsic::x86_xop_vpcomltb:
9508    case Intrinsic::x86_xop_vpcomltw:
9509    case Intrinsic::x86_xop_vpcomltd:
9510    case Intrinsic::x86_xop_vpcomltq:
9511      CC = 0;
9512      Opc = X86ISD::VPCOM;
9513      break;
9514    case Intrinsic::x86_xop_vpcomltub:
9515    case Intrinsic::x86_xop_vpcomltuw:
9516    case Intrinsic::x86_xop_vpcomltud:
9517    case Intrinsic::x86_xop_vpcomltuq:
9518      CC = 0;
9519      Opc = X86ISD::VPCOMU;
9520      break;
9521    case Intrinsic::x86_xop_vpcomleb:
9522    case Intrinsic::x86_xop_vpcomlew:
9523    case Intrinsic::x86_xop_vpcomled:
9524    case Intrinsic::x86_xop_vpcomleq:
9525      CC = 1;
9526      Opc = X86ISD::VPCOM;
9527      break;
9528    case Intrinsic::x86_xop_vpcomleub:
9529    case Intrinsic::x86_xop_vpcomleuw:
9530    case Intrinsic::x86_xop_vpcomleud:
9531    case Intrinsic::x86_xop_vpcomleuq:
9532      CC = 1;
9533      Opc = X86ISD::VPCOMU;
9534      break;
9535    case Intrinsic::x86_xop_vpcomgtb:
9536    case Intrinsic::x86_xop_vpcomgtw:
9537    case Intrinsic::x86_xop_vpcomgtd:
9538    case Intrinsic::x86_xop_vpcomgtq:
9539      CC = 2;
9540      Opc = X86ISD::VPCOM;
9541      break;
9542    case Intrinsic::x86_xop_vpcomgtub:
9543    case Intrinsic::x86_xop_vpcomgtuw:
9544    case Intrinsic::x86_xop_vpcomgtud:
9545    case Intrinsic::x86_xop_vpcomgtuq:
9546      CC = 2;
9547      Opc = X86ISD::VPCOMU;
9548      break;
9549    case Intrinsic::x86_xop_vpcomgeb:
9550    case Intrinsic::x86_xop_vpcomgew:
9551    case Intrinsic::x86_xop_vpcomged:
9552    case Intrinsic::x86_xop_vpcomgeq:
9553      CC = 3;
9554      Opc = X86ISD::VPCOM;
9555      break;
9556    case Intrinsic::x86_xop_vpcomgeub:
9557    case Intrinsic::x86_xop_vpcomgeuw:
9558    case Intrinsic::x86_xop_vpcomgeud:
9559    case Intrinsic::x86_xop_vpcomgeuq:
9560      CC = 3;
9561      Opc = X86ISD::VPCOMU;
9562      break;
9563    case Intrinsic::x86_xop_vpcomeqb:
9564    case Intrinsic::x86_xop_vpcomeqw:
9565    case Intrinsic::x86_xop_vpcomeqd:
9566    case Intrinsic::x86_xop_vpcomeqq:
9567      CC = 4;
9568      Opc = X86ISD::VPCOM;
9569      break;
9570    case Intrinsic::x86_xop_vpcomequb:
9571    case Intrinsic::x86_xop_vpcomequw:
9572    case Intrinsic::x86_xop_vpcomequd:
9573    case Intrinsic::x86_xop_vpcomequq:
9574      CC = 4;
9575      Opc = X86ISD::VPCOMU;
9576      break;
9577    case Intrinsic::x86_xop_vpcomneb:
9578    case Intrinsic::x86_xop_vpcomnew:
9579    case Intrinsic::x86_xop_vpcomned:
9580    case Intrinsic::x86_xop_vpcomneq:
9581      CC = 5;
9582      Opc = X86ISD::VPCOM;
9583      break;
9584    case Intrinsic::x86_xop_vpcomneub:
9585    case Intrinsic::x86_xop_vpcomneuw:
9586    case Intrinsic::x86_xop_vpcomneud:
9587    case Intrinsic::x86_xop_vpcomneuq:
9588      CC = 5;
9589      Opc = X86ISD::VPCOMU;
9590      break;
9591    case Intrinsic::x86_xop_vpcomfalseb:
9592    case Intrinsic::x86_xop_vpcomfalsew:
9593    case Intrinsic::x86_xop_vpcomfalsed:
9594    case Intrinsic::x86_xop_vpcomfalseq:
9595      CC = 6;
9596      Opc = X86ISD::VPCOM;
9597      break;
9598    case Intrinsic::x86_xop_vpcomfalseub:
9599    case Intrinsic::x86_xop_vpcomfalseuw:
9600    case Intrinsic::x86_xop_vpcomfalseud:
9601    case Intrinsic::x86_xop_vpcomfalseuq:
9602      CC = 6;
9603      Opc = X86ISD::VPCOMU;
9604      break;
9605    case Intrinsic::x86_xop_vpcomtrueb:
9606    case Intrinsic::x86_xop_vpcomtruew:
9607    case Intrinsic::x86_xop_vpcomtrued:
9608    case Intrinsic::x86_xop_vpcomtrueq:
9609      CC = 7;
9610      Opc = X86ISD::VPCOM;
9611      break;
9612    case Intrinsic::x86_xop_vpcomtrueub:
9613    case Intrinsic::x86_xop_vpcomtrueuw:
9614    case Intrinsic::x86_xop_vpcomtrueud:
9615    case Intrinsic::x86_xop_vpcomtrueuq:
9616      CC = 7;
9617      Opc = X86ISD::VPCOMU;
9618      break;
9619    }
9620
9621    SDValue LHS = Op.getOperand(1);
9622    SDValue RHS = Op.getOperand(2);
9623    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9624                       DAG.getConstant(CC, MVT::i8));
9625  }
9626
9627  // Arithmetic intrinsics.
9628  case Intrinsic::x86_sse2_pmulu_dq:
9629  case Intrinsic::x86_avx2_pmulu_dq:
9630    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9631                       Op.getOperand(1), Op.getOperand(2));
9632  case Intrinsic::x86_sse3_hadd_ps:
9633  case Intrinsic::x86_sse3_hadd_pd:
9634  case Intrinsic::x86_avx_hadd_ps_256:
9635  case Intrinsic::x86_avx_hadd_pd_256:
9636    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9637                       Op.getOperand(1), Op.getOperand(2));
9638  case Intrinsic::x86_sse3_hsub_ps:
9639  case Intrinsic::x86_sse3_hsub_pd:
9640  case Intrinsic::x86_avx_hsub_ps_256:
9641  case Intrinsic::x86_avx_hsub_pd_256:
9642    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9643                       Op.getOperand(1), Op.getOperand(2));
9644  case Intrinsic::x86_ssse3_phadd_w_128:
9645  case Intrinsic::x86_ssse3_phadd_d_128:
9646  case Intrinsic::x86_avx2_phadd_w:
9647  case Intrinsic::x86_avx2_phadd_d:
9648    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9649                       Op.getOperand(1), Op.getOperand(2));
9650  case Intrinsic::x86_ssse3_phsub_w_128:
9651  case Intrinsic::x86_ssse3_phsub_d_128:
9652  case Intrinsic::x86_avx2_phsub_w:
9653  case Intrinsic::x86_avx2_phsub_d:
9654    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9655                       Op.getOperand(1), Op.getOperand(2));
9656  case Intrinsic::x86_avx2_psllv_d:
9657  case Intrinsic::x86_avx2_psllv_q:
9658  case Intrinsic::x86_avx2_psllv_d_256:
9659  case Intrinsic::x86_avx2_psllv_q_256:
9660    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9661                      Op.getOperand(1), Op.getOperand(2));
9662  case Intrinsic::x86_avx2_psrlv_d:
9663  case Intrinsic::x86_avx2_psrlv_q:
9664  case Intrinsic::x86_avx2_psrlv_d_256:
9665  case Intrinsic::x86_avx2_psrlv_q_256:
9666    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9667                      Op.getOperand(1), Op.getOperand(2));
9668  case Intrinsic::x86_avx2_psrav_d:
9669  case Intrinsic::x86_avx2_psrav_d_256:
9670    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9671                      Op.getOperand(1), Op.getOperand(2));
9672  case Intrinsic::x86_ssse3_pshuf_b_128:
9673  case Intrinsic::x86_avx2_pshuf_b:
9674    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9675                       Op.getOperand(1), Op.getOperand(2));
9676  case Intrinsic::x86_ssse3_psign_b_128:
9677  case Intrinsic::x86_ssse3_psign_w_128:
9678  case Intrinsic::x86_ssse3_psign_d_128:
9679  case Intrinsic::x86_avx2_psign_b:
9680  case Intrinsic::x86_avx2_psign_w:
9681  case Intrinsic::x86_avx2_psign_d:
9682    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9683                       Op.getOperand(1), Op.getOperand(2));
9684  case Intrinsic::x86_sse41_insertps:
9685    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9686                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9687  case Intrinsic::x86_avx_vperm2f128_ps_256:
9688  case Intrinsic::x86_avx_vperm2f128_pd_256:
9689  case Intrinsic::x86_avx_vperm2f128_si_256:
9690  case Intrinsic::x86_avx2_vperm2i128:
9691    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9692                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9693  case Intrinsic::x86_avx2_permd:
9694  case Intrinsic::x86_avx2_permps:
9695    // Operands intentionally swapped. Mask is last operand to intrinsic,
9696    // but second operand for node/intruction.
9697    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9698                       Op.getOperand(2), Op.getOperand(1));
9699
9700  // ptest and testp intrinsics. The intrinsic these come from are designed to
9701  // return an integer value, not just an instruction so lower it to the ptest
9702  // or testp pattern and a setcc for the result.
9703  case Intrinsic::x86_sse41_ptestz:
9704  case Intrinsic::x86_sse41_ptestc:
9705  case Intrinsic::x86_sse41_ptestnzc:
9706  case Intrinsic::x86_avx_ptestz_256:
9707  case Intrinsic::x86_avx_ptestc_256:
9708  case Intrinsic::x86_avx_ptestnzc_256:
9709  case Intrinsic::x86_avx_vtestz_ps:
9710  case Intrinsic::x86_avx_vtestc_ps:
9711  case Intrinsic::x86_avx_vtestnzc_ps:
9712  case Intrinsic::x86_avx_vtestz_pd:
9713  case Intrinsic::x86_avx_vtestc_pd:
9714  case Intrinsic::x86_avx_vtestnzc_pd:
9715  case Intrinsic::x86_avx_vtestz_ps_256:
9716  case Intrinsic::x86_avx_vtestc_ps_256:
9717  case Intrinsic::x86_avx_vtestnzc_ps_256:
9718  case Intrinsic::x86_avx_vtestz_pd_256:
9719  case Intrinsic::x86_avx_vtestc_pd_256:
9720  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9721    bool IsTestPacked = false;
9722    unsigned X86CC = 0;
9723    switch (IntNo) {
9724    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9725    case Intrinsic::x86_avx_vtestz_ps:
9726    case Intrinsic::x86_avx_vtestz_pd:
9727    case Intrinsic::x86_avx_vtestz_ps_256:
9728    case Intrinsic::x86_avx_vtestz_pd_256:
9729      IsTestPacked = true; // Fallthrough
9730    case Intrinsic::x86_sse41_ptestz:
9731    case Intrinsic::x86_avx_ptestz_256:
9732      // ZF = 1
9733      X86CC = X86::COND_E;
9734      break;
9735    case Intrinsic::x86_avx_vtestc_ps:
9736    case Intrinsic::x86_avx_vtestc_pd:
9737    case Intrinsic::x86_avx_vtestc_ps_256:
9738    case Intrinsic::x86_avx_vtestc_pd_256:
9739      IsTestPacked = true; // Fallthrough
9740    case Intrinsic::x86_sse41_ptestc:
9741    case Intrinsic::x86_avx_ptestc_256:
9742      // CF = 1
9743      X86CC = X86::COND_B;
9744      break;
9745    case Intrinsic::x86_avx_vtestnzc_ps:
9746    case Intrinsic::x86_avx_vtestnzc_pd:
9747    case Intrinsic::x86_avx_vtestnzc_ps_256:
9748    case Intrinsic::x86_avx_vtestnzc_pd_256:
9749      IsTestPacked = true; // Fallthrough
9750    case Intrinsic::x86_sse41_ptestnzc:
9751    case Intrinsic::x86_avx_ptestnzc_256:
9752      // ZF and CF = 0
9753      X86CC = X86::COND_A;
9754      break;
9755    }
9756
9757    SDValue LHS = Op.getOperand(1);
9758    SDValue RHS = Op.getOperand(2);
9759    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9760    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9761    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9762    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9763    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9764  }
9765
9766  // SSE/AVX shift intrinsics
9767  case Intrinsic::x86_sse2_psll_w:
9768  case Intrinsic::x86_sse2_psll_d:
9769  case Intrinsic::x86_sse2_psll_q:
9770  case Intrinsic::x86_avx2_psll_w:
9771  case Intrinsic::x86_avx2_psll_d:
9772  case Intrinsic::x86_avx2_psll_q:
9773    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9774                       Op.getOperand(1), Op.getOperand(2));
9775  case Intrinsic::x86_sse2_psrl_w:
9776  case Intrinsic::x86_sse2_psrl_d:
9777  case Intrinsic::x86_sse2_psrl_q:
9778  case Intrinsic::x86_avx2_psrl_w:
9779  case Intrinsic::x86_avx2_psrl_d:
9780  case Intrinsic::x86_avx2_psrl_q:
9781    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9782                       Op.getOperand(1), Op.getOperand(2));
9783  case Intrinsic::x86_sse2_psra_w:
9784  case Intrinsic::x86_sse2_psra_d:
9785  case Intrinsic::x86_avx2_psra_w:
9786  case Intrinsic::x86_avx2_psra_d:
9787    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9788                       Op.getOperand(1), Op.getOperand(2));
9789  case Intrinsic::x86_sse2_pslli_w:
9790  case Intrinsic::x86_sse2_pslli_d:
9791  case Intrinsic::x86_sse2_pslli_q:
9792  case Intrinsic::x86_avx2_pslli_w:
9793  case Intrinsic::x86_avx2_pslli_d:
9794  case Intrinsic::x86_avx2_pslli_q:
9795    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9796                               Op.getOperand(1), Op.getOperand(2), DAG);
9797  case Intrinsic::x86_sse2_psrli_w:
9798  case Intrinsic::x86_sse2_psrli_d:
9799  case Intrinsic::x86_sse2_psrli_q:
9800  case Intrinsic::x86_avx2_psrli_w:
9801  case Intrinsic::x86_avx2_psrli_d:
9802  case Intrinsic::x86_avx2_psrli_q:
9803    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9804                               Op.getOperand(1), Op.getOperand(2), DAG);
9805  case Intrinsic::x86_sse2_psrai_w:
9806  case Intrinsic::x86_sse2_psrai_d:
9807  case Intrinsic::x86_avx2_psrai_w:
9808  case Intrinsic::x86_avx2_psrai_d:
9809    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9810                               Op.getOperand(1), Op.getOperand(2), DAG);
9811  // Fix vector shift instructions where the last operand is a non-immediate
9812  // i32 value.
9813  case Intrinsic::x86_mmx_pslli_w:
9814  case Intrinsic::x86_mmx_pslli_d:
9815  case Intrinsic::x86_mmx_pslli_q:
9816  case Intrinsic::x86_mmx_psrli_w:
9817  case Intrinsic::x86_mmx_psrli_d:
9818  case Intrinsic::x86_mmx_psrli_q:
9819  case Intrinsic::x86_mmx_psrai_w:
9820  case Intrinsic::x86_mmx_psrai_d: {
9821    SDValue ShAmt = Op.getOperand(2);
9822    if (isa<ConstantSDNode>(ShAmt))
9823      return SDValue();
9824
9825    unsigned NewIntNo = 0;
9826    switch (IntNo) {
9827    case Intrinsic::x86_mmx_pslli_w:
9828      NewIntNo = Intrinsic::x86_mmx_psll_w;
9829      break;
9830    case Intrinsic::x86_mmx_pslli_d:
9831      NewIntNo = Intrinsic::x86_mmx_psll_d;
9832      break;
9833    case Intrinsic::x86_mmx_pslli_q:
9834      NewIntNo = Intrinsic::x86_mmx_psll_q;
9835      break;
9836    case Intrinsic::x86_mmx_psrli_w:
9837      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9838      break;
9839    case Intrinsic::x86_mmx_psrli_d:
9840      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9841      break;
9842    case Intrinsic::x86_mmx_psrli_q:
9843      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9844      break;
9845    case Intrinsic::x86_mmx_psrai_w:
9846      NewIntNo = Intrinsic::x86_mmx_psra_w;
9847      break;
9848    case Intrinsic::x86_mmx_psrai_d:
9849      NewIntNo = Intrinsic::x86_mmx_psra_d;
9850      break;
9851    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9852    }
9853
9854    // The vector shift intrinsics with scalars uses 32b shift amounts but
9855    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9856    // to be zero.
9857    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9858                         DAG.getConstant(0, MVT::i32));
9859// FIXME this must be lowered to get rid of the invalid type.
9860
9861    EVT VT = Op.getValueType();
9862    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9863    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9864                       DAG.getConstant(NewIntNo, MVT::i32),
9865                       Op.getOperand(1), ShAmt);
9866  }
9867  }
9868}
9869
9870SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9871                                           SelectionDAG &DAG) const {
9872  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9873  MFI->setReturnAddressIsTaken(true);
9874
9875  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9876  DebugLoc dl = Op.getDebugLoc();
9877
9878  if (Depth > 0) {
9879    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9880    SDValue Offset =
9881      DAG.getConstant(TD->getPointerSize(),
9882                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9883    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9884                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9885                                   FrameAddr, Offset),
9886                       MachinePointerInfo(), false, false, false, 0);
9887  }
9888
9889  // Just load the return address.
9890  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9891  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9892                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9893}
9894
9895SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9896  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9897  MFI->setFrameAddressIsTaken(true);
9898
9899  EVT VT = Op.getValueType();
9900  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9901  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9902  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9903  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9904  while (Depth--)
9905    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9906                            MachinePointerInfo(),
9907                            false, false, false, 0);
9908  return FrameAddr;
9909}
9910
9911SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9912                                                     SelectionDAG &DAG) const {
9913  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9914}
9915
9916SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9917  MachineFunction &MF = DAG.getMachineFunction();
9918  SDValue Chain     = Op.getOperand(0);
9919  SDValue Offset    = Op.getOperand(1);
9920  SDValue Handler   = Op.getOperand(2);
9921  DebugLoc dl       = Op.getDebugLoc();
9922
9923  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9924                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9925                                     getPointerTy());
9926  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9927
9928  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9929                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9930  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9931  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9932                       false, false, 0);
9933  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9934  MF.getRegInfo().addLiveOut(StoreAddrReg);
9935
9936  return DAG.getNode(X86ISD::EH_RETURN, dl,
9937                     MVT::Other,
9938                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9939}
9940
9941SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9942                                                  SelectionDAG &DAG) const {
9943  return Op.getOperand(0);
9944}
9945
9946SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9947                                                SelectionDAG &DAG) const {
9948  SDValue Root = Op.getOperand(0);
9949  SDValue Trmp = Op.getOperand(1); // trampoline
9950  SDValue FPtr = Op.getOperand(2); // nested function
9951  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9952  DebugLoc dl  = Op.getDebugLoc();
9953
9954  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9955
9956  if (Subtarget->is64Bit()) {
9957    SDValue OutChains[6];
9958
9959    // Large code-model.
9960    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9961    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9962
9963    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9964    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9965
9966    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9967
9968    // Load the pointer to the nested function into R11.
9969    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9970    SDValue Addr = Trmp;
9971    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9972                                Addr, MachinePointerInfo(TrmpAddr),
9973                                false, false, 0);
9974
9975    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9976                       DAG.getConstant(2, MVT::i64));
9977    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9978                                MachinePointerInfo(TrmpAddr, 2),
9979                                false, false, 2);
9980
9981    // Load the 'nest' parameter value into R10.
9982    // R10 is specified in X86CallingConv.td
9983    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9984    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9985                       DAG.getConstant(10, MVT::i64));
9986    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9987                                Addr, MachinePointerInfo(TrmpAddr, 10),
9988                                false, false, 0);
9989
9990    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9991                       DAG.getConstant(12, MVT::i64));
9992    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9993                                MachinePointerInfo(TrmpAddr, 12),
9994                                false, false, 2);
9995
9996    // Jump to the nested function.
9997    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9998    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9999                       DAG.getConstant(20, MVT::i64));
10000    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10001                                Addr, MachinePointerInfo(TrmpAddr, 20),
10002                                false, false, 0);
10003
10004    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10005    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10006                       DAG.getConstant(22, MVT::i64));
10007    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10008                                MachinePointerInfo(TrmpAddr, 22),
10009                                false, false, 0);
10010
10011    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10012  } else {
10013    const Function *Func =
10014      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10015    CallingConv::ID CC = Func->getCallingConv();
10016    unsigned NestReg;
10017
10018    switch (CC) {
10019    default:
10020      llvm_unreachable("Unsupported calling convention");
10021    case CallingConv::C:
10022    case CallingConv::X86_StdCall: {
10023      // Pass 'nest' parameter in ECX.
10024      // Must be kept in sync with X86CallingConv.td
10025      NestReg = X86::ECX;
10026
10027      // Check that ECX wasn't needed by an 'inreg' parameter.
10028      FunctionType *FTy = Func->getFunctionType();
10029      const AttrListPtr &Attrs = Func->getAttributes();
10030
10031      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10032        unsigned InRegCount = 0;
10033        unsigned Idx = 1;
10034
10035        for (FunctionType::param_iterator I = FTy->param_begin(),
10036             E = FTy->param_end(); I != E; ++I, ++Idx)
10037          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
10038            // FIXME: should only count parameters that are lowered to integers.
10039            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10040
10041        if (InRegCount > 2) {
10042          report_fatal_error("Nest register in use - reduce number of inreg"
10043                             " parameters!");
10044        }
10045      }
10046      break;
10047    }
10048    case CallingConv::X86_FastCall:
10049    case CallingConv::X86_ThisCall:
10050    case CallingConv::Fast:
10051      // Pass 'nest' parameter in EAX.
10052      // Must be kept in sync with X86CallingConv.td
10053      NestReg = X86::EAX;
10054      break;
10055    }
10056
10057    SDValue OutChains[4];
10058    SDValue Addr, Disp;
10059
10060    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10061                       DAG.getConstant(10, MVT::i32));
10062    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10063
10064    // This is storing the opcode for MOV32ri.
10065    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10066    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
10067    OutChains[0] = DAG.getStore(Root, dl,
10068                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10069                                Trmp, MachinePointerInfo(TrmpAddr),
10070                                false, false, 0);
10071
10072    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10073                       DAG.getConstant(1, MVT::i32));
10074    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10075                                MachinePointerInfo(TrmpAddr, 1),
10076                                false, false, 1);
10077
10078    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10079    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10080                       DAG.getConstant(5, MVT::i32));
10081    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10082                                MachinePointerInfo(TrmpAddr, 5),
10083                                false, false, 1);
10084
10085    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10086                       DAG.getConstant(6, MVT::i32));
10087    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10088                                MachinePointerInfo(TrmpAddr, 6),
10089                                false, false, 1);
10090
10091    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10092  }
10093}
10094
10095SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10096                                            SelectionDAG &DAG) const {
10097  /*
10098   The rounding mode is in bits 11:10 of FPSR, and has the following
10099   settings:
10100     00 Round to nearest
10101     01 Round to -inf
10102     10 Round to +inf
10103     11 Round to 0
10104
10105  FLT_ROUNDS, on the other hand, expects the following:
10106    -1 Undefined
10107     0 Round to 0
10108     1 Round to nearest
10109     2 Round to +inf
10110     3 Round to -inf
10111
10112  To perform the conversion, we do:
10113    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10114  */
10115
10116  MachineFunction &MF = DAG.getMachineFunction();
10117  const TargetMachine &TM = MF.getTarget();
10118  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10119  unsigned StackAlignment = TFI.getStackAlignment();
10120  EVT VT = Op.getValueType();
10121  DebugLoc DL = Op.getDebugLoc();
10122
10123  // Save FP Control Word to stack slot
10124  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10125  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10126
10127
10128  MachineMemOperand *MMO =
10129   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10130                           MachineMemOperand::MOStore, 2, 2);
10131
10132  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10133  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10134                                          DAG.getVTList(MVT::Other),
10135                                          Ops, 2, MVT::i16, MMO);
10136
10137  // Load FP Control Word from stack slot
10138  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10139                            MachinePointerInfo(), false, false, false, 0);
10140
10141  // Transform as necessary
10142  SDValue CWD1 =
10143    DAG.getNode(ISD::SRL, DL, MVT::i16,
10144                DAG.getNode(ISD::AND, DL, MVT::i16,
10145                            CWD, DAG.getConstant(0x800, MVT::i16)),
10146                DAG.getConstant(11, MVT::i8));
10147  SDValue CWD2 =
10148    DAG.getNode(ISD::SRL, DL, MVT::i16,
10149                DAG.getNode(ISD::AND, DL, MVT::i16,
10150                            CWD, DAG.getConstant(0x400, MVT::i16)),
10151                DAG.getConstant(9, MVT::i8));
10152
10153  SDValue RetVal =
10154    DAG.getNode(ISD::AND, DL, MVT::i16,
10155                DAG.getNode(ISD::ADD, DL, MVT::i16,
10156                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10157                            DAG.getConstant(1, MVT::i16)),
10158                DAG.getConstant(3, MVT::i16));
10159
10160
10161  return DAG.getNode((VT.getSizeInBits() < 16 ?
10162                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10163}
10164
10165SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10166  EVT VT = Op.getValueType();
10167  EVT OpVT = VT;
10168  unsigned NumBits = VT.getSizeInBits();
10169  DebugLoc dl = Op.getDebugLoc();
10170
10171  Op = Op.getOperand(0);
10172  if (VT == MVT::i8) {
10173    // Zero extend to i32 since there is not an i8 bsr.
10174    OpVT = MVT::i32;
10175    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10176  }
10177
10178  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10179  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10180  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10181
10182  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10183  SDValue Ops[] = {
10184    Op,
10185    DAG.getConstant(NumBits+NumBits-1, OpVT),
10186    DAG.getConstant(X86::COND_E, MVT::i8),
10187    Op.getValue(1)
10188  };
10189  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10190
10191  // Finally xor with NumBits-1.
10192  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10193
10194  if (VT == MVT::i8)
10195    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10196  return Op;
10197}
10198
10199SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10200                                                SelectionDAG &DAG) const {
10201  EVT VT = Op.getValueType();
10202  EVT OpVT = VT;
10203  unsigned NumBits = VT.getSizeInBits();
10204  DebugLoc dl = Op.getDebugLoc();
10205
10206  Op = Op.getOperand(0);
10207  if (VT == MVT::i8) {
10208    // Zero extend to i32 since there is not an i8 bsr.
10209    OpVT = MVT::i32;
10210    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10211  }
10212
10213  // Issue a bsr (scan bits in reverse).
10214  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10215  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10216
10217  // And xor with NumBits-1.
10218  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10219
10220  if (VT == MVT::i8)
10221    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10222  return Op;
10223}
10224
10225SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10226  EVT VT = Op.getValueType();
10227  unsigned NumBits = VT.getSizeInBits();
10228  DebugLoc dl = Op.getDebugLoc();
10229  Op = Op.getOperand(0);
10230
10231  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10232  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10233  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10234
10235  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10236  SDValue Ops[] = {
10237    Op,
10238    DAG.getConstant(NumBits, VT),
10239    DAG.getConstant(X86::COND_E, MVT::i8),
10240    Op.getValue(1)
10241  };
10242  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10243}
10244
10245// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10246// ones, and then concatenate the result back.
10247static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10248  EVT VT = Op.getValueType();
10249
10250  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10251         "Unsupported value type for operation");
10252
10253  unsigned NumElems = VT.getVectorNumElements();
10254  DebugLoc dl = Op.getDebugLoc();
10255
10256  // Extract the LHS vectors
10257  SDValue LHS = Op.getOperand(0);
10258  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10259  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10260
10261  // Extract the RHS vectors
10262  SDValue RHS = Op.getOperand(1);
10263  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10264  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10265
10266  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10267  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10268
10269  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10270                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10271                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10272}
10273
10274SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10275  assert(Op.getValueType().getSizeInBits() == 256 &&
10276         Op.getValueType().isInteger() &&
10277         "Only handle AVX 256-bit vector integer operation");
10278  return Lower256IntArith(Op, DAG);
10279}
10280
10281SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10282  assert(Op.getValueType().getSizeInBits() == 256 &&
10283         Op.getValueType().isInteger() &&
10284         "Only handle AVX 256-bit vector integer operation");
10285  return Lower256IntArith(Op, DAG);
10286}
10287
10288SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10289  EVT VT = Op.getValueType();
10290
10291  // Decompose 256-bit ops into smaller 128-bit ops.
10292  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10293    return Lower256IntArith(Op, DAG);
10294
10295  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10296         "Only know how to lower V2I64/V4I64 multiply");
10297
10298  DebugLoc dl = Op.getDebugLoc();
10299
10300  //  Ahi = psrlqi(a, 32);
10301  //  Bhi = psrlqi(b, 32);
10302  //
10303  //  AloBlo = pmuludq(a, b);
10304  //  AloBhi = pmuludq(a, Bhi);
10305  //  AhiBlo = pmuludq(Ahi, b);
10306
10307  //  AloBhi = psllqi(AloBhi, 32);
10308  //  AhiBlo = psllqi(AhiBlo, 32);
10309  //  return AloBlo + AloBhi + AhiBlo;
10310
10311  SDValue A = Op.getOperand(0);
10312  SDValue B = Op.getOperand(1);
10313
10314  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10315
10316  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10317  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10318
10319  // Bit cast to 32-bit vectors for MULUDQ
10320  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10321  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10322  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10323  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10324  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10325
10326  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10327  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10328  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10329
10330  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10331  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10332
10333  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10334  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10335}
10336
10337SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10338
10339  EVT VT = Op.getValueType();
10340  DebugLoc dl = Op.getDebugLoc();
10341  SDValue R = Op.getOperand(0);
10342  SDValue Amt = Op.getOperand(1);
10343  LLVMContext *Context = DAG.getContext();
10344
10345  if (!Subtarget->hasSSE2())
10346    return SDValue();
10347
10348  // Optimize shl/srl/sra with constant shift amount.
10349  if (isSplatVector(Amt.getNode())) {
10350    SDValue SclrAmt = Amt->getOperand(0);
10351    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10352      uint64_t ShiftAmt = C->getZExtValue();
10353
10354      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10355          (Subtarget->hasAVX2() &&
10356           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10357        if (Op.getOpcode() == ISD::SHL)
10358          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10359                             DAG.getConstant(ShiftAmt, MVT::i32));
10360        if (Op.getOpcode() == ISD::SRL)
10361          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10362                             DAG.getConstant(ShiftAmt, MVT::i32));
10363        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10364          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10365                             DAG.getConstant(ShiftAmt, MVT::i32));
10366      }
10367
10368      if (VT == MVT::v16i8) {
10369        if (Op.getOpcode() == ISD::SHL) {
10370          // Make a large shift.
10371          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10372                                    DAG.getConstant(ShiftAmt, MVT::i32));
10373          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10374          // Zero out the rightmost bits.
10375          SmallVector<SDValue, 16> V(16,
10376                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10377                                                     MVT::i8));
10378          return DAG.getNode(ISD::AND, dl, VT, SHL,
10379                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10380        }
10381        if (Op.getOpcode() == ISD::SRL) {
10382          // Make a large shift.
10383          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10384                                    DAG.getConstant(ShiftAmt, MVT::i32));
10385          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10386          // Zero out the leftmost bits.
10387          SmallVector<SDValue, 16> V(16,
10388                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10389                                                     MVT::i8));
10390          return DAG.getNode(ISD::AND, dl, VT, SRL,
10391                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10392        }
10393        if (Op.getOpcode() == ISD::SRA) {
10394          if (ShiftAmt == 7) {
10395            // R s>> 7  ===  R s< 0
10396            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10397            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10398          }
10399
10400          // R s>> a === ((R u>> a) ^ m) - m
10401          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10402          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10403                                                         MVT::i8));
10404          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10405          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10406          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10407          return Res;
10408        }
10409        llvm_unreachable("Unknown shift opcode.");
10410      }
10411
10412      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10413        if (Op.getOpcode() == ISD::SHL) {
10414          // Make a large shift.
10415          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10416                                    DAG.getConstant(ShiftAmt, MVT::i32));
10417          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10418          // Zero out the rightmost bits.
10419          SmallVector<SDValue, 32> V(32,
10420                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10421                                                     MVT::i8));
10422          return DAG.getNode(ISD::AND, dl, VT, SHL,
10423                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10424        }
10425        if (Op.getOpcode() == ISD::SRL) {
10426          // Make a large shift.
10427          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10428                                    DAG.getConstant(ShiftAmt, MVT::i32));
10429          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10430          // Zero out the leftmost bits.
10431          SmallVector<SDValue, 32> V(32,
10432                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10433                                                     MVT::i8));
10434          return DAG.getNode(ISD::AND, dl, VT, SRL,
10435                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10436        }
10437        if (Op.getOpcode() == ISD::SRA) {
10438          if (ShiftAmt == 7) {
10439            // R s>> 7  ===  R s< 0
10440            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10441            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10442          }
10443
10444          // R s>> a === ((R u>> a) ^ m) - m
10445          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10446          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10447                                                         MVT::i8));
10448          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10449          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10450          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10451          return Res;
10452        }
10453        llvm_unreachable("Unknown shift opcode.");
10454      }
10455    }
10456  }
10457
10458  // Lower SHL with variable shift amount.
10459  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10460    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10461                     DAG.getConstant(23, MVT::i32));
10462
10463    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10464    Constant *C = ConstantDataVector::get(*Context, CV);
10465    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10466    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10467                                 MachinePointerInfo::getConstantPool(),
10468                                 false, false, false, 16);
10469
10470    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10471    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10472    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10473    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10474  }
10475  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10476    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10477
10478    // a = a << 5;
10479    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10480                     DAG.getConstant(5, MVT::i32));
10481    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10482
10483    // Turn 'a' into a mask suitable for VSELECT
10484    SDValue VSelM = DAG.getConstant(0x80, VT);
10485    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10486    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10487
10488    SDValue CM1 = DAG.getConstant(0x0f, VT);
10489    SDValue CM2 = DAG.getConstant(0x3f, VT);
10490
10491    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10492    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10493    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10494                            DAG.getConstant(4, MVT::i32), DAG);
10495    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10496    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10497
10498    // a += a
10499    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10500    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10501    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10502
10503    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10504    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10505    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10506                            DAG.getConstant(2, MVT::i32), DAG);
10507    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10508    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10509
10510    // a += a
10511    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10512    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10513    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10514
10515    // return VSELECT(r, r+r, a);
10516    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10517                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10518    return R;
10519  }
10520
10521  // Decompose 256-bit shifts into smaller 128-bit shifts.
10522  if (VT.getSizeInBits() == 256) {
10523    unsigned NumElems = VT.getVectorNumElements();
10524    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10525    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10526
10527    // Extract the two vectors
10528    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
10529    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
10530
10531    // Recreate the shift amount vectors
10532    SDValue Amt1, Amt2;
10533    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10534      // Constant shift amount
10535      SmallVector<SDValue, 4> Amt1Csts;
10536      SmallVector<SDValue, 4> Amt2Csts;
10537      for (unsigned i = 0; i != NumElems/2; ++i)
10538        Amt1Csts.push_back(Amt->getOperand(i));
10539      for (unsigned i = NumElems/2; i != NumElems; ++i)
10540        Amt2Csts.push_back(Amt->getOperand(i));
10541
10542      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10543                                 &Amt1Csts[0], NumElems/2);
10544      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10545                                 &Amt2Csts[0], NumElems/2);
10546    } else {
10547      // Variable shift amount
10548      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
10549      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
10550    }
10551
10552    // Issue new vector shifts for the smaller types
10553    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10554    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10555
10556    // Concatenate the result back
10557    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10558  }
10559
10560  return SDValue();
10561}
10562
10563SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10564  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10565  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10566  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10567  // has only one use.
10568  SDNode *N = Op.getNode();
10569  SDValue LHS = N->getOperand(0);
10570  SDValue RHS = N->getOperand(1);
10571  unsigned BaseOp = 0;
10572  unsigned Cond = 0;
10573  DebugLoc DL = Op.getDebugLoc();
10574  switch (Op.getOpcode()) {
10575  default: llvm_unreachable("Unknown ovf instruction!");
10576  case ISD::SADDO:
10577    // A subtract of one will be selected as a INC. Note that INC doesn't
10578    // set CF, so we can't do this for UADDO.
10579    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10580      if (C->isOne()) {
10581        BaseOp = X86ISD::INC;
10582        Cond = X86::COND_O;
10583        break;
10584      }
10585    BaseOp = X86ISD::ADD;
10586    Cond = X86::COND_O;
10587    break;
10588  case ISD::UADDO:
10589    BaseOp = X86ISD::ADD;
10590    Cond = X86::COND_B;
10591    break;
10592  case ISD::SSUBO:
10593    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10594    // set CF, so we can't do this for USUBO.
10595    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10596      if (C->isOne()) {
10597        BaseOp = X86ISD::DEC;
10598        Cond = X86::COND_O;
10599        break;
10600      }
10601    BaseOp = X86ISD::SUB;
10602    Cond = X86::COND_O;
10603    break;
10604  case ISD::USUBO:
10605    BaseOp = X86ISD::SUB;
10606    Cond = X86::COND_B;
10607    break;
10608  case ISD::SMULO:
10609    BaseOp = X86ISD::SMUL;
10610    Cond = X86::COND_O;
10611    break;
10612  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10613    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10614                                 MVT::i32);
10615    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10616
10617    SDValue SetCC =
10618      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10619                  DAG.getConstant(X86::COND_O, MVT::i32),
10620                  SDValue(Sum.getNode(), 2));
10621
10622    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10623  }
10624  }
10625
10626  // Also sets EFLAGS.
10627  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10628  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10629
10630  SDValue SetCC =
10631    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10632                DAG.getConstant(Cond, MVT::i32),
10633                SDValue(Sum.getNode(), 1));
10634
10635  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10636}
10637
10638SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10639                                                  SelectionDAG &DAG) const {
10640  DebugLoc dl = Op.getDebugLoc();
10641  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10642  EVT VT = Op.getValueType();
10643
10644  if (!Subtarget->hasSSE2() || !VT.isVector())
10645    return SDValue();
10646
10647  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10648                      ExtraVT.getScalarType().getSizeInBits();
10649  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10650
10651  switch (VT.getSimpleVT().SimpleTy) {
10652    default: return SDValue();
10653    case MVT::v8i32:
10654    case MVT::v16i16:
10655      if (!Subtarget->hasAVX())
10656        return SDValue();
10657      if (!Subtarget->hasAVX2()) {
10658        // needs to be split
10659        unsigned NumElems = VT.getVectorNumElements();
10660
10661        // Extract the LHS vectors
10662        SDValue LHS = Op.getOperand(0);
10663        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10664        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10665
10666        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10667        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10668
10669        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10670        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
10671        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10672                                   ExtraNumElems/2);
10673        SDValue Extra = DAG.getValueType(ExtraVT);
10674
10675        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10676        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10677
10678        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10679      }
10680      // fall through
10681    case MVT::v4i32:
10682    case MVT::v8i16: {
10683      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10684                                         Op.getOperand(0), ShAmt, DAG);
10685      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10686    }
10687  }
10688}
10689
10690
10691SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10692  DebugLoc dl = Op.getDebugLoc();
10693
10694  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10695  // There isn't any reason to disable it if the target processor supports it.
10696  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10697    SDValue Chain = Op.getOperand(0);
10698    SDValue Zero = DAG.getConstant(0, MVT::i32);
10699    SDValue Ops[] = {
10700      DAG.getRegister(X86::ESP, MVT::i32), // Base
10701      DAG.getTargetConstant(1, MVT::i8),   // Scale
10702      DAG.getRegister(0, MVT::i32),        // Index
10703      DAG.getTargetConstant(0, MVT::i32),  // Disp
10704      DAG.getRegister(0, MVT::i32),        // Segment.
10705      Zero,
10706      Chain
10707    };
10708    SDNode *Res =
10709      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10710                          array_lengthof(Ops));
10711    return SDValue(Res, 0);
10712  }
10713
10714  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10715  if (!isDev)
10716    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10717
10718  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10719  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10720  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10721  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10722
10723  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10724  if (!Op1 && !Op2 && !Op3 && Op4)
10725    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10726
10727  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10728  if (Op1 && !Op2 && !Op3 && !Op4)
10729    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10730
10731  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10732  //           (MFENCE)>;
10733  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10734}
10735
10736SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10737                                             SelectionDAG &DAG) const {
10738  DebugLoc dl = Op.getDebugLoc();
10739  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10740    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10741  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10742    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10743
10744  // The only fence that needs an instruction is a sequentially-consistent
10745  // cross-thread fence.
10746  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10747    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10748    // no-sse2). There isn't any reason to disable it if the target processor
10749    // supports it.
10750    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10751      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10752
10753    SDValue Chain = Op.getOperand(0);
10754    SDValue Zero = DAG.getConstant(0, MVT::i32);
10755    SDValue Ops[] = {
10756      DAG.getRegister(X86::ESP, MVT::i32), // Base
10757      DAG.getTargetConstant(1, MVT::i8),   // Scale
10758      DAG.getRegister(0, MVT::i32),        // Index
10759      DAG.getTargetConstant(0, MVT::i32),  // Disp
10760      DAG.getRegister(0, MVT::i32),        // Segment.
10761      Zero,
10762      Chain
10763    };
10764    SDNode *Res =
10765      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10766                         array_lengthof(Ops));
10767    return SDValue(Res, 0);
10768  }
10769
10770  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10771  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10772}
10773
10774
10775SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10776  EVT T = Op.getValueType();
10777  DebugLoc DL = Op.getDebugLoc();
10778  unsigned Reg = 0;
10779  unsigned size = 0;
10780  switch(T.getSimpleVT().SimpleTy) {
10781  default: llvm_unreachable("Invalid value type!");
10782  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10783  case MVT::i16: Reg = X86::AX;  size = 2; break;
10784  case MVT::i32: Reg = X86::EAX; size = 4; break;
10785  case MVT::i64:
10786    assert(Subtarget->is64Bit() && "Node not type legal!");
10787    Reg = X86::RAX; size = 8;
10788    break;
10789  }
10790  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10791                                    Op.getOperand(2), SDValue());
10792  SDValue Ops[] = { cpIn.getValue(0),
10793                    Op.getOperand(1),
10794                    Op.getOperand(3),
10795                    DAG.getTargetConstant(size, MVT::i8),
10796                    cpIn.getValue(1) };
10797  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10798  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10799  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10800                                           Ops, 5, T, MMO);
10801  SDValue cpOut =
10802    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10803  return cpOut;
10804}
10805
10806SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10807                                                 SelectionDAG &DAG) const {
10808  assert(Subtarget->is64Bit() && "Result not type legalized?");
10809  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10810  SDValue TheChain = Op.getOperand(0);
10811  DebugLoc dl = Op.getDebugLoc();
10812  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10813  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10814  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10815                                   rax.getValue(2));
10816  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10817                            DAG.getConstant(32, MVT::i8));
10818  SDValue Ops[] = {
10819    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10820    rdx.getValue(1)
10821  };
10822  return DAG.getMergeValues(Ops, 2, dl);
10823}
10824
10825SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10826                                            SelectionDAG &DAG) const {
10827  EVT SrcVT = Op.getOperand(0).getValueType();
10828  EVT DstVT = Op.getValueType();
10829  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10830         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10831  assert((DstVT == MVT::i64 ||
10832          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10833         "Unexpected custom BITCAST");
10834  // i64 <=> MMX conversions are Legal.
10835  if (SrcVT==MVT::i64 && DstVT.isVector())
10836    return Op;
10837  if (DstVT==MVT::i64 && SrcVT.isVector())
10838    return Op;
10839  // MMX <=> MMX conversions are Legal.
10840  if (SrcVT.isVector() && DstVT.isVector())
10841    return Op;
10842  // All other conversions need to be expanded.
10843  return SDValue();
10844}
10845
10846SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10847  SDNode *Node = Op.getNode();
10848  DebugLoc dl = Node->getDebugLoc();
10849  EVT T = Node->getValueType(0);
10850  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10851                              DAG.getConstant(0, T), Node->getOperand(2));
10852  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10853                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10854                       Node->getOperand(0),
10855                       Node->getOperand(1), negOp,
10856                       cast<AtomicSDNode>(Node)->getSrcValue(),
10857                       cast<AtomicSDNode>(Node)->getAlignment(),
10858                       cast<AtomicSDNode>(Node)->getOrdering(),
10859                       cast<AtomicSDNode>(Node)->getSynchScope());
10860}
10861
10862static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10863  SDNode *Node = Op.getNode();
10864  DebugLoc dl = Node->getDebugLoc();
10865  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10866
10867  // Convert seq_cst store -> xchg
10868  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10869  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10870  //        (The only way to get a 16-byte store is cmpxchg16b)
10871  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10872  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10873      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10874    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10875                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10876                                 Node->getOperand(0),
10877                                 Node->getOperand(1), Node->getOperand(2),
10878                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10879                                 cast<AtomicSDNode>(Node)->getOrdering(),
10880                                 cast<AtomicSDNode>(Node)->getSynchScope());
10881    return Swap.getValue(1);
10882  }
10883  // Other atomic stores have a simple pattern.
10884  return Op;
10885}
10886
10887static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10888  EVT VT = Op.getNode()->getValueType(0);
10889
10890  // Let legalize expand this if it isn't a legal type yet.
10891  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10892    return SDValue();
10893
10894  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10895
10896  unsigned Opc;
10897  bool ExtraOp = false;
10898  switch (Op.getOpcode()) {
10899  default: llvm_unreachable("Invalid code");
10900  case ISD::ADDC: Opc = X86ISD::ADD; break;
10901  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10902  case ISD::SUBC: Opc = X86ISD::SUB; break;
10903  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10904  }
10905
10906  if (!ExtraOp)
10907    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10908                       Op.getOperand(1));
10909  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10910                     Op.getOperand(1), Op.getOperand(2));
10911}
10912
10913/// LowerOperation - Provide custom lowering hooks for some operations.
10914///
10915SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10916  switch (Op.getOpcode()) {
10917  default: llvm_unreachable("Should not custom lower this!");
10918  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10919  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10920  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10921  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10922  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10923  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10924  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10925  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10926  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10927  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10928  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10929  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10930  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10931  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10932  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10933  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10934  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10935  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10936  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10937  case ISD::SHL_PARTS:
10938  case ISD::SRA_PARTS:
10939  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10940  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10941  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10942  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10943  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10944  case ISD::FABS:               return LowerFABS(Op, DAG);
10945  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10946  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10947  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10948  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10949  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10950  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10951  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10952  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10953  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10954  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10955  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10956  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10957  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10958  case ISD::FRAME_TO_ARGS_OFFSET:
10959                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10960  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10961  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10962  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10963  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10964  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10965  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10966  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10967  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10968  case ISD::MUL:                return LowerMUL(Op, DAG);
10969  case ISD::SRA:
10970  case ISD::SRL:
10971  case ISD::SHL:                return LowerShift(Op, DAG);
10972  case ISD::SADDO:
10973  case ISD::UADDO:
10974  case ISD::SSUBO:
10975  case ISD::USUBO:
10976  case ISD::SMULO:
10977  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10978  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10979  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10980  case ISD::ADDC:
10981  case ISD::ADDE:
10982  case ISD::SUBC:
10983  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10984  case ISD::ADD:                return LowerADD(Op, DAG);
10985  case ISD::SUB:                return LowerSUB(Op, DAG);
10986  }
10987}
10988
10989static void ReplaceATOMIC_LOAD(SDNode *Node,
10990                                  SmallVectorImpl<SDValue> &Results,
10991                                  SelectionDAG &DAG) {
10992  DebugLoc dl = Node->getDebugLoc();
10993  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10994
10995  // Convert wide load -> cmpxchg8b/cmpxchg16b
10996  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10997  //        (The only way to get a 16-byte load is cmpxchg16b)
10998  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10999  SDValue Zero = DAG.getConstant(0, VT);
11000  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11001                               Node->getOperand(0),
11002                               Node->getOperand(1), Zero, Zero,
11003                               cast<AtomicSDNode>(Node)->getMemOperand(),
11004                               cast<AtomicSDNode>(Node)->getOrdering(),
11005                               cast<AtomicSDNode>(Node)->getSynchScope());
11006  Results.push_back(Swap.getValue(0));
11007  Results.push_back(Swap.getValue(1));
11008}
11009
11010void X86TargetLowering::
11011ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11012                        SelectionDAG &DAG, unsigned NewOp) const {
11013  DebugLoc dl = Node->getDebugLoc();
11014  assert (Node->getValueType(0) == MVT::i64 &&
11015          "Only know how to expand i64 atomics");
11016
11017  SDValue Chain = Node->getOperand(0);
11018  SDValue In1 = Node->getOperand(1);
11019  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11020                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11021  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11022                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11023  SDValue Ops[] = { Chain, In1, In2L, In2H };
11024  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11025  SDValue Result =
11026    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11027                            cast<MemSDNode>(Node)->getMemOperand());
11028  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11029  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11030  Results.push_back(Result.getValue(2));
11031}
11032
11033/// ReplaceNodeResults - Replace a node with an illegal result type
11034/// with a new node built out of custom code.
11035void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11036                                           SmallVectorImpl<SDValue>&Results,
11037                                           SelectionDAG &DAG) const {
11038  DebugLoc dl = N->getDebugLoc();
11039  switch (N->getOpcode()) {
11040  default:
11041    llvm_unreachable("Do not know how to custom type legalize this operation!");
11042  case ISD::SIGN_EXTEND_INREG:
11043  case ISD::ADDC:
11044  case ISD::ADDE:
11045  case ISD::SUBC:
11046  case ISD::SUBE:
11047    // We don't want to expand or promote these.
11048    return;
11049  case ISD::FP_TO_SINT:
11050  case ISD::FP_TO_UINT: {
11051    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11052
11053    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11054      return;
11055
11056    std::pair<SDValue,SDValue> Vals =
11057        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11058    SDValue FIST = Vals.first, StackSlot = Vals.second;
11059    if (FIST.getNode() != 0) {
11060      EVT VT = N->getValueType(0);
11061      // Return a load from the stack slot.
11062      if (StackSlot.getNode() != 0)
11063        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11064                                      MachinePointerInfo(),
11065                                      false, false, false, 0));
11066      else
11067        Results.push_back(FIST);
11068    }
11069    return;
11070  }
11071  case ISD::READCYCLECOUNTER: {
11072    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11073    SDValue TheChain = N->getOperand(0);
11074    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11075    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11076                                     rd.getValue(1));
11077    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11078                                     eax.getValue(2));
11079    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11080    SDValue Ops[] = { eax, edx };
11081    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11082    Results.push_back(edx.getValue(1));
11083    return;
11084  }
11085  case ISD::ATOMIC_CMP_SWAP: {
11086    EVT T = N->getValueType(0);
11087    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11088    bool Regs64bit = T == MVT::i128;
11089    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11090    SDValue cpInL, cpInH;
11091    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11092                        DAG.getConstant(0, HalfT));
11093    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11094                        DAG.getConstant(1, HalfT));
11095    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11096                             Regs64bit ? X86::RAX : X86::EAX,
11097                             cpInL, SDValue());
11098    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11099                             Regs64bit ? X86::RDX : X86::EDX,
11100                             cpInH, cpInL.getValue(1));
11101    SDValue swapInL, swapInH;
11102    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11103                          DAG.getConstant(0, HalfT));
11104    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11105                          DAG.getConstant(1, HalfT));
11106    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11107                               Regs64bit ? X86::RBX : X86::EBX,
11108                               swapInL, cpInH.getValue(1));
11109    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11110                               Regs64bit ? X86::RCX : X86::ECX,
11111                               swapInH, swapInL.getValue(1));
11112    SDValue Ops[] = { swapInH.getValue(0),
11113                      N->getOperand(1),
11114                      swapInH.getValue(1) };
11115    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11116    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11117    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11118                                  X86ISD::LCMPXCHG8_DAG;
11119    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11120                                             Ops, 3, T, MMO);
11121    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11122                                        Regs64bit ? X86::RAX : X86::EAX,
11123                                        HalfT, Result.getValue(1));
11124    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11125                                        Regs64bit ? X86::RDX : X86::EDX,
11126                                        HalfT, cpOutL.getValue(2));
11127    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11128    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11129    Results.push_back(cpOutH.getValue(1));
11130    return;
11131  }
11132  case ISD::ATOMIC_LOAD_ADD:
11133    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
11134    return;
11135  case ISD::ATOMIC_LOAD_AND:
11136    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
11137    return;
11138  case ISD::ATOMIC_LOAD_NAND:
11139    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11140    return;
11141  case ISD::ATOMIC_LOAD_OR:
11142    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11143    return;
11144  case ISD::ATOMIC_LOAD_SUB:
11145    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11146    return;
11147  case ISD::ATOMIC_LOAD_XOR:
11148    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11149    return;
11150  case ISD::ATOMIC_SWAP:
11151    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11152    return;
11153  case ISD::ATOMIC_LOAD:
11154    ReplaceATOMIC_LOAD(N, Results, DAG);
11155  }
11156}
11157
11158const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11159  switch (Opcode) {
11160  default: return NULL;
11161  case X86ISD::BSF:                return "X86ISD::BSF";
11162  case X86ISD::BSR:                return "X86ISD::BSR";
11163  case X86ISD::SHLD:               return "X86ISD::SHLD";
11164  case X86ISD::SHRD:               return "X86ISD::SHRD";
11165  case X86ISD::FAND:               return "X86ISD::FAND";
11166  case X86ISD::FOR:                return "X86ISD::FOR";
11167  case X86ISD::FXOR:               return "X86ISD::FXOR";
11168  case X86ISD::FSRL:               return "X86ISD::FSRL";
11169  case X86ISD::FILD:               return "X86ISD::FILD";
11170  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11171  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11172  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11173  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11174  case X86ISD::FLD:                return "X86ISD::FLD";
11175  case X86ISD::FST:                return "X86ISD::FST";
11176  case X86ISD::CALL:               return "X86ISD::CALL";
11177  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11178  case X86ISD::BT:                 return "X86ISD::BT";
11179  case X86ISD::CMP:                return "X86ISD::CMP";
11180  case X86ISD::COMI:               return "X86ISD::COMI";
11181  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11182  case X86ISD::SETCC:              return "X86ISD::SETCC";
11183  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11184  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11185  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11186  case X86ISD::CMOV:               return "X86ISD::CMOV";
11187  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11188  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11189  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11190  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11191  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11192  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11193  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11194  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11195  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11196  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11197  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11198  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11199  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11200  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11201  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11202  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11203  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11204  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11205  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11206  case X86ISD::HADD:               return "X86ISD::HADD";
11207  case X86ISD::HSUB:               return "X86ISD::HSUB";
11208  case X86ISD::FHADD:              return "X86ISD::FHADD";
11209  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11210  case X86ISD::FMAX:               return "X86ISD::FMAX";
11211  case X86ISD::FMIN:               return "X86ISD::FMIN";
11212  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11213  case X86ISD::FRCP:               return "X86ISD::FRCP";
11214  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11215  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11216  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11217  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11218  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11219  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11220  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11221  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11222  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11223  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11224  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11225  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11226  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11227  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11228  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11229  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11230  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11231  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11232  case X86ISD::VSHL:               return "X86ISD::VSHL";
11233  case X86ISD::VSRL:               return "X86ISD::VSRL";
11234  case X86ISD::VSRA:               return "X86ISD::VSRA";
11235  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11236  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11237  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11238  case X86ISD::CMPP:               return "X86ISD::CMPP";
11239  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11240  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11241  case X86ISD::ADD:                return "X86ISD::ADD";
11242  case X86ISD::SUB:                return "X86ISD::SUB";
11243  case X86ISD::ADC:                return "X86ISD::ADC";
11244  case X86ISD::SBB:                return "X86ISD::SBB";
11245  case X86ISD::SMUL:               return "X86ISD::SMUL";
11246  case X86ISD::UMUL:               return "X86ISD::UMUL";
11247  case X86ISD::INC:                return "X86ISD::INC";
11248  case X86ISD::DEC:                return "X86ISD::DEC";
11249  case X86ISD::OR:                 return "X86ISD::OR";
11250  case X86ISD::XOR:                return "X86ISD::XOR";
11251  case X86ISD::AND:                return "X86ISD::AND";
11252  case X86ISD::ANDN:               return "X86ISD::ANDN";
11253  case X86ISD::BLSI:               return "X86ISD::BLSI";
11254  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11255  case X86ISD::BLSR:               return "X86ISD::BLSR";
11256  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11257  case X86ISD::PTEST:              return "X86ISD::PTEST";
11258  case X86ISD::TESTP:              return "X86ISD::TESTP";
11259  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11260  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11261  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11262  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11263  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11264  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11265  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11266  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11267  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11268  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11269  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11270  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11271  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11272  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11273  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11274  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11275  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11276  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11277  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11278  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11279  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11280  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11281  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11282  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11283  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11284  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11285  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11286  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11287  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11288  case X86ISD::SAHF:               return "X86ISD::SAHF";
11289  }
11290}
11291
11292// isLegalAddressingMode - Return true if the addressing mode represented
11293// by AM is legal for this target, for a load/store of the specified type.
11294bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11295                                              Type *Ty) const {
11296  // X86 supports extremely general addressing modes.
11297  CodeModel::Model M = getTargetMachine().getCodeModel();
11298  Reloc::Model R = getTargetMachine().getRelocationModel();
11299
11300  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11301  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11302    return false;
11303
11304  if (AM.BaseGV) {
11305    unsigned GVFlags =
11306      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11307
11308    // If a reference to this global requires an extra load, we can't fold it.
11309    if (isGlobalStubReference(GVFlags))
11310      return false;
11311
11312    // If BaseGV requires a register for the PIC base, we cannot also have a
11313    // BaseReg specified.
11314    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11315      return false;
11316
11317    // If lower 4G is not available, then we must use rip-relative addressing.
11318    if ((M != CodeModel::Small || R != Reloc::Static) &&
11319        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11320      return false;
11321  }
11322
11323  switch (AM.Scale) {
11324  case 0:
11325  case 1:
11326  case 2:
11327  case 4:
11328  case 8:
11329    // These scales always work.
11330    break;
11331  case 3:
11332  case 5:
11333  case 9:
11334    // These scales are formed with basereg+scalereg.  Only accept if there is
11335    // no basereg yet.
11336    if (AM.HasBaseReg)
11337      return false;
11338    break;
11339  default:  // Other stuff never works.
11340    return false;
11341  }
11342
11343  return true;
11344}
11345
11346
11347bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11348  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11349    return false;
11350  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11351  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11352  if (NumBits1 <= NumBits2)
11353    return false;
11354  return true;
11355}
11356
11357bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11358  if (!VT1.isInteger() || !VT2.isInteger())
11359    return false;
11360  unsigned NumBits1 = VT1.getSizeInBits();
11361  unsigned NumBits2 = VT2.getSizeInBits();
11362  if (NumBits1 <= NumBits2)
11363    return false;
11364  return true;
11365}
11366
11367bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11368  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11369  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11370}
11371
11372bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11373  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11374  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11375}
11376
11377bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11378  // i16 instructions are longer (0x66 prefix) and potentially slower.
11379  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11380}
11381
11382/// isShuffleMaskLegal - Targets can use this to indicate that they only
11383/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11384/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11385/// are assumed to be legal.
11386bool
11387X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11388                                      EVT VT) const {
11389  // Very little shuffling can be done for 64-bit vectors right now.
11390  if (VT.getSizeInBits() == 64)
11391    return false;
11392
11393  // FIXME: pshufb, blends, shifts.
11394  return (VT.getVectorNumElements() == 2 ||
11395          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11396          isMOVLMask(M, VT) ||
11397          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11398          isPSHUFDMask(M, VT) ||
11399          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
11400          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
11401          isPALIGNRMask(M, VT, Subtarget) ||
11402          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11403          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11404          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11405          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11406}
11407
11408bool
11409X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11410                                          EVT VT) const {
11411  unsigned NumElts = VT.getVectorNumElements();
11412  // FIXME: This collection of masks seems suspect.
11413  if (NumElts == 2)
11414    return true;
11415  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11416    return (isMOVLMask(Mask, VT)  ||
11417            isCommutedMOVLMask(Mask, VT, true) ||
11418            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11419            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11420  }
11421  return false;
11422}
11423
11424//===----------------------------------------------------------------------===//
11425//                           X86 Scheduler Hooks
11426//===----------------------------------------------------------------------===//
11427
11428// private utility function
11429MachineBasicBlock *
11430X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11431                                                       MachineBasicBlock *MBB,
11432                                                       unsigned regOpc,
11433                                                       unsigned immOpc,
11434                                                       unsigned LoadOpc,
11435                                                       unsigned CXchgOpc,
11436                                                       unsigned notOpc,
11437                                                       unsigned EAXreg,
11438                                                 const TargetRegisterClass *RC,
11439                                                       bool Invert) const {
11440  // For the atomic bitwise operator, we generate
11441  //   thisMBB:
11442  //   newMBB:
11443  //     ld  t1 = [bitinstr.addr]
11444  //     op  t2 = t1, [bitinstr.val]
11445  //     not t3 = t2  (if Invert)
11446  //     mov EAX = t1
11447  //     lcs dest = [bitinstr.addr], t3  [EAX is implicit]
11448  //     bz  newMBB
11449  //     fallthrough -->nextMBB
11450  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11451  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11452  MachineFunction::iterator MBBIter = MBB;
11453  ++MBBIter;
11454
11455  /// First build the CFG
11456  MachineFunction *F = MBB->getParent();
11457  MachineBasicBlock *thisMBB = MBB;
11458  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11459  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11460  F->insert(MBBIter, newMBB);
11461  F->insert(MBBIter, nextMBB);
11462
11463  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11464  nextMBB->splice(nextMBB->begin(), thisMBB,
11465                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11466                  thisMBB->end());
11467  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11468
11469  // Update thisMBB to fall through to newMBB
11470  thisMBB->addSuccessor(newMBB);
11471
11472  // newMBB jumps to itself and fall through to nextMBB
11473  newMBB->addSuccessor(nextMBB);
11474  newMBB->addSuccessor(newMBB);
11475
11476  // Insert instructions into newMBB based on incoming instruction
11477  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11478         "unexpected number of operands");
11479  DebugLoc dl = bInstr->getDebugLoc();
11480  MachineOperand& destOper = bInstr->getOperand(0);
11481  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11482  int numArgs = bInstr->getNumOperands() - 1;
11483  for (int i=0; i < numArgs; ++i)
11484    argOpers[i] = &bInstr->getOperand(i+1);
11485
11486  // x86 address has 4 operands: base, index, scale, and displacement
11487  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11488  int valArgIndx = lastAddrIndx + 1;
11489
11490  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11491  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11492  for (int i=0; i <= lastAddrIndx; ++i)
11493    (*MIB).addOperand(*argOpers[i]);
11494
11495  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11496  assert((argOpers[valArgIndx]->isReg() ||
11497          argOpers[valArgIndx]->isImm()) &&
11498         "invalid operand");
11499  if (argOpers[valArgIndx]->isReg())
11500    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11501  else
11502    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11503  MIB.addReg(t1);
11504  (*MIB).addOperand(*argOpers[valArgIndx]);
11505
11506  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11507  if (Invert) {
11508    MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2);
11509  }
11510  else
11511    t3 = t2;
11512
11513  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11514  MIB.addReg(t1);
11515
11516  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11517  for (int i=0; i <= lastAddrIndx; ++i)
11518    (*MIB).addOperand(*argOpers[i]);
11519  MIB.addReg(t3);
11520  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11521  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11522                    bInstr->memoperands_end());
11523
11524  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11525  MIB.addReg(EAXreg);
11526
11527  // insert branch
11528  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11529
11530  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11531  return nextMBB;
11532}
11533
11534// private utility function:  64 bit atomics on 32 bit host.
11535MachineBasicBlock *
11536X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11537                                                       MachineBasicBlock *MBB,
11538                                                       unsigned regOpcL,
11539                                                       unsigned regOpcH,
11540                                                       unsigned immOpcL,
11541                                                       unsigned immOpcH,
11542                                                       bool Invert) const {
11543  // For the atomic bitwise operator, we generate
11544  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11545  //     ld t1,t2 = [bitinstr.addr]
11546  //   newMBB:
11547  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11548  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11549  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11550  //     neg t7, t8 < t5, t6  (if Invert)
11551  //     mov ECX, EBX <- t5, t6
11552  //     mov EAX, EDX <- t1, t2
11553  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11554  //     mov t3, t4 <- EAX, EDX
11555  //     bz  newMBB
11556  //     result in out1, out2
11557  //     fallthrough -->nextMBB
11558
11559  const TargetRegisterClass *RC = &X86::GR32RegClass;
11560  const unsigned LoadOpc = X86::MOV32rm;
11561  const unsigned NotOpc = X86::NOT32r;
11562  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11563  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11564  MachineFunction::iterator MBBIter = MBB;
11565  ++MBBIter;
11566
11567  /// First build the CFG
11568  MachineFunction *F = MBB->getParent();
11569  MachineBasicBlock *thisMBB = MBB;
11570  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11571  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11572  F->insert(MBBIter, newMBB);
11573  F->insert(MBBIter, nextMBB);
11574
11575  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11576  nextMBB->splice(nextMBB->begin(), thisMBB,
11577                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11578                  thisMBB->end());
11579  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11580
11581  // Update thisMBB to fall through to newMBB
11582  thisMBB->addSuccessor(newMBB);
11583
11584  // newMBB jumps to itself and fall through to nextMBB
11585  newMBB->addSuccessor(nextMBB);
11586  newMBB->addSuccessor(newMBB);
11587
11588  DebugLoc dl = bInstr->getDebugLoc();
11589  // Insert instructions into newMBB based on incoming instruction
11590  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11591  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11592         "unexpected number of operands");
11593  MachineOperand& dest1Oper = bInstr->getOperand(0);
11594  MachineOperand& dest2Oper = bInstr->getOperand(1);
11595  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11596  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11597    argOpers[i] = &bInstr->getOperand(i+2);
11598
11599    // We use some of the operands multiple times, so conservatively just
11600    // clear any kill flags that might be present.
11601    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11602      argOpers[i]->setIsKill(false);
11603  }
11604
11605  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11606  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11607
11608  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11609  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11610  for (int i=0; i <= lastAddrIndx; ++i)
11611    (*MIB).addOperand(*argOpers[i]);
11612  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11613  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11614  // add 4 to displacement.
11615  for (int i=0; i <= lastAddrIndx-2; ++i)
11616    (*MIB).addOperand(*argOpers[i]);
11617  MachineOperand newOp3 = *(argOpers[3]);
11618  if (newOp3.isImm())
11619    newOp3.setImm(newOp3.getImm()+4);
11620  else
11621    newOp3.setOffset(newOp3.getOffset()+4);
11622  (*MIB).addOperand(newOp3);
11623  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11624
11625  // t3/4 are defined later, at the bottom of the loop
11626  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11627  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11628  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11629    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11630  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11631    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11632
11633  // The subsequent operations should be using the destination registers of
11634  // the PHI instructions.
11635  t1 = dest1Oper.getReg();
11636  t2 = dest2Oper.getReg();
11637
11638  int valArgIndx = lastAddrIndx + 1;
11639  assert((argOpers[valArgIndx]->isReg() ||
11640          argOpers[valArgIndx]->isImm()) &&
11641         "invalid operand");
11642  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11643  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11644  if (argOpers[valArgIndx]->isReg())
11645    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11646  else
11647    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11648  if (regOpcL != X86::MOV32rr)
11649    MIB.addReg(t1);
11650  (*MIB).addOperand(*argOpers[valArgIndx]);
11651  assert(argOpers[valArgIndx + 1]->isReg() ==
11652         argOpers[valArgIndx]->isReg());
11653  assert(argOpers[valArgIndx + 1]->isImm() ==
11654         argOpers[valArgIndx]->isImm());
11655  if (argOpers[valArgIndx + 1]->isReg())
11656    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11657  else
11658    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11659  if (regOpcH != X86::MOV32rr)
11660    MIB.addReg(t2);
11661  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11662
11663  unsigned t7, t8;
11664  if (Invert) {
11665    t7 = F->getRegInfo().createVirtualRegister(RC);
11666    t8 = F->getRegInfo().createVirtualRegister(RC);
11667    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5);
11668    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6);
11669  } else {
11670    t7 = t5;
11671    t8 = t6;
11672  }
11673
11674  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11675  MIB.addReg(t1);
11676  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11677  MIB.addReg(t2);
11678
11679  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11680  MIB.addReg(t7);
11681  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11682  MIB.addReg(t8);
11683
11684  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11685  for (int i=0; i <= lastAddrIndx; ++i)
11686    (*MIB).addOperand(*argOpers[i]);
11687
11688  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11689  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11690                    bInstr->memoperands_end());
11691
11692  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11693  MIB.addReg(X86::EAX);
11694  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11695  MIB.addReg(X86::EDX);
11696
11697  // insert branch
11698  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11699
11700  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11701  return nextMBB;
11702}
11703
11704// private utility function
11705MachineBasicBlock *
11706X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11707                                                      MachineBasicBlock *MBB,
11708                                                      unsigned cmovOpc) const {
11709  // For the atomic min/max operator, we generate
11710  //   thisMBB:
11711  //   newMBB:
11712  //     ld t1 = [min/max.addr]
11713  //     mov t2 = [min/max.val]
11714  //     cmp  t1, t2
11715  //     cmov[cond] t2 = t1
11716  //     mov EAX = t1
11717  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11718  //     bz   newMBB
11719  //     fallthrough -->nextMBB
11720  //
11721  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11722  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11723  MachineFunction::iterator MBBIter = MBB;
11724  ++MBBIter;
11725
11726  /// First build the CFG
11727  MachineFunction *F = MBB->getParent();
11728  MachineBasicBlock *thisMBB = MBB;
11729  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11730  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11731  F->insert(MBBIter, newMBB);
11732  F->insert(MBBIter, nextMBB);
11733
11734  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11735  nextMBB->splice(nextMBB->begin(), thisMBB,
11736                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11737                  thisMBB->end());
11738  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11739
11740  // Update thisMBB to fall through to newMBB
11741  thisMBB->addSuccessor(newMBB);
11742
11743  // newMBB jumps to newMBB and fall through to nextMBB
11744  newMBB->addSuccessor(nextMBB);
11745  newMBB->addSuccessor(newMBB);
11746
11747  DebugLoc dl = mInstr->getDebugLoc();
11748  // Insert instructions into newMBB based on incoming instruction
11749  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11750         "unexpected number of operands");
11751  MachineOperand& destOper = mInstr->getOperand(0);
11752  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11753  int numArgs = mInstr->getNumOperands() - 1;
11754  for (int i=0; i < numArgs; ++i)
11755    argOpers[i] = &mInstr->getOperand(i+1);
11756
11757  // x86 address has 4 operands: base, index, scale, and displacement
11758  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11759  int valArgIndx = lastAddrIndx + 1;
11760
11761  unsigned t1 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11762  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11763  for (int i=0; i <= lastAddrIndx; ++i)
11764    (*MIB).addOperand(*argOpers[i]);
11765
11766  // We only support register and immediate values
11767  assert((argOpers[valArgIndx]->isReg() ||
11768          argOpers[valArgIndx]->isImm()) &&
11769         "invalid operand");
11770
11771  unsigned t2 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11772  if (argOpers[valArgIndx]->isReg())
11773    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11774  else
11775    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11776  (*MIB).addOperand(*argOpers[valArgIndx]);
11777
11778  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11779  MIB.addReg(t1);
11780
11781  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11782  MIB.addReg(t1);
11783  MIB.addReg(t2);
11784
11785  // Generate movc
11786  unsigned t3 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11787  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11788  MIB.addReg(t2);
11789  MIB.addReg(t1);
11790
11791  // Cmp and exchange if none has modified the memory location
11792  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11793  for (int i=0; i <= lastAddrIndx; ++i)
11794    (*MIB).addOperand(*argOpers[i]);
11795  MIB.addReg(t3);
11796  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11797  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11798                    mInstr->memoperands_end());
11799
11800  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11801  MIB.addReg(X86::EAX);
11802
11803  // insert branch
11804  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11805
11806  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11807  return nextMBB;
11808}
11809
11810// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11811// or XMM0_V32I8 in AVX all of this code can be replaced with that
11812// in the .td file.
11813MachineBasicBlock *
11814X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11815                            unsigned numArgs, bool memArg) const {
11816  assert(Subtarget->hasSSE42() &&
11817         "Target must have SSE4.2 or AVX features enabled");
11818
11819  DebugLoc dl = MI->getDebugLoc();
11820  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11821  unsigned Opc;
11822  if (!Subtarget->hasAVX()) {
11823    if (memArg)
11824      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11825    else
11826      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11827  } else {
11828    if (memArg)
11829      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11830    else
11831      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11832  }
11833
11834  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11835  for (unsigned i = 0; i < numArgs; ++i) {
11836    MachineOperand &Op = MI->getOperand(i+1);
11837    if (!(Op.isReg() && Op.isImplicit()))
11838      MIB.addOperand(Op);
11839  }
11840  BuildMI(*BB, MI, dl,
11841    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11842             MI->getOperand(0).getReg())
11843    .addReg(X86::XMM0);
11844
11845  MI->eraseFromParent();
11846  return BB;
11847}
11848
11849MachineBasicBlock *
11850X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11851  DebugLoc dl = MI->getDebugLoc();
11852  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11853
11854  // Address into RAX/EAX, other two args into ECX, EDX.
11855  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11856  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11857  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11858  for (int i = 0; i < X86::AddrNumOperands; ++i)
11859    MIB.addOperand(MI->getOperand(i));
11860
11861  unsigned ValOps = X86::AddrNumOperands;
11862  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11863    .addReg(MI->getOperand(ValOps).getReg());
11864  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11865    .addReg(MI->getOperand(ValOps+1).getReg());
11866
11867  // The instruction doesn't actually take any operands though.
11868  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11869
11870  MI->eraseFromParent(); // The pseudo is gone now.
11871  return BB;
11872}
11873
11874MachineBasicBlock *
11875X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11876  DebugLoc dl = MI->getDebugLoc();
11877  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11878
11879  // First arg in ECX, the second in EAX.
11880  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11881    .addReg(MI->getOperand(0).getReg());
11882  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11883    .addReg(MI->getOperand(1).getReg());
11884
11885  // The instruction doesn't actually take any operands though.
11886  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11887
11888  MI->eraseFromParent(); // The pseudo is gone now.
11889  return BB;
11890}
11891
11892MachineBasicBlock *
11893X86TargetLowering::EmitVAARG64WithCustomInserter(
11894                   MachineInstr *MI,
11895                   MachineBasicBlock *MBB) const {
11896  // Emit va_arg instruction on X86-64.
11897
11898  // Operands to this pseudo-instruction:
11899  // 0  ) Output        : destination address (reg)
11900  // 1-5) Input         : va_list address (addr, i64mem)
11901  // 6  ) ArgSize       : Size (in bytes) of vararg type
11902  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11903  // 8  ) Align         : Alignment of type
11904  // 9  ) EFLAGS (implicit-def)
11905
11906  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11907  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11908
11909  unsigned DestReg = MI->getOperand(0).getReg();
11910  MachineOperand &Base = MI->getOperand(1);
11911  MachineOperand &Scale = MI->getOperand(2);
11912  MachineOperand &Index = MI->getOperand(3);
11913  MachineOperand &Disp = MI->getOperand(4);
11914  MachineOperand &Segment = MI->getOperand(5);
11915  unsigned ArgSize = MI->getOperand(6).getImm();
11916  unsigned ArgMode = MI->getOperand(7).getImm();
11917  unsigned Align = MI->getOperand(8).getImm();
11918
11919  // Memory Reference
11920  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11921  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11922  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11923
11924  // Machine Information
11925  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11926  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11927  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11928  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11929  DebugLoc DL = MI->getDebugLoc();
11930
11931  // struct va_list {
11932  //   i32   gp_offset
11933  //   i32   fp_offset
11934  //   i64   overflow_area (address)
11935  //   i64   reg_save_area (address)
11936  // }
11937  // sizeof(va_list) = 24
11938  // alignment(va_list) = 8
11939
11940  unsigned TotalNumIntRegs = 6;
11941  unsigned TotalNumXMMRegs = 8;
11942  bool UseGPOffset = (ArgMode == 1);
11943  bool UseFPOffset = (ArgMode == 2);
11944  unsigned MaxOffset = TotalNumIntRegs * 8 +
11945                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11946
11947  /* Align ArgSize to a multiple of 8 */
11948  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11949  bool NeedsAlign = (Align > 8);
11950
11951  MachineBasicBlock *thisMBB = MBB;
11952  MachineBasicBlock *overflowMBB;
11953  MachineBasicBlock *offsetMBB;
11954  MachineBasicBlock *endMBB;
11955
11956  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11957  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11958  unsigned OffsetReg = 0;
11959
11960  if (!UseGPOffset && !UseFPOffset) {
11961    // If we only pull from the overflow region, we don't create a branch.
11962    // We don't need to alter control flow.
11963    OffsetDestReg = 0; // unused
11964    OverflowDestReg = DestReg;
11965
11966    offsetMBB = NULL;
11967    overflowMBB = thisMBB;
11968    endMBB = thisMBB;
11969  } else {
11970    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11971    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11972    // If not, pull from overflow_area. (branch to overflowMBB)
11973    //
11974    //       thisMBB
11975    //         |     .
11976    //         |        .
11977    //     offsetMBB   overflowMBB
11978    //         |        .
11979    //         |     .
11980    //        endMBB
11981
11982    // Registers for the PHI in endMBB
11983    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11984    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11985
11986    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11987    MachineFunction *MF = MBB->getParent();
11988    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11989    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11990    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11991
11992    MachineFunction::iterator MBBIter = MBB;
11993    ++MBBIter;
11994
11995    // Insert the new basic blocks
11996    MF->insert(MBBIter, offsetMBB);
11997    MF->insert(MBBIter, overflowMBB);
11998    MF->insert(MBBIter, endMBB);
11999
12000    // Transfer the remainder of MBB and its successor edges to endMBB.
12001    endMBB->splice(endMBB->begin(), thisMBB,
12002                    llvm::next(MachineBasicBlock::iterator(MI)),
12003                    thisMBB->end());
12004    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12005
12006    // Make offsetMBB and overflowMBB successors of thisMBB
12007    thisMBB->addSuccessor(offsetMBB);
12008    thisMBB->addSuccessor(overflowMBB);
12009
12010    // endMBB is a successor of both offsetMBB and overflowMBB
12011    offsetMBB->addSuccessor(endMBB);
12012    overflowMBB->addSuccessor(endMBB);
12013
12014    // Load the offset value into a register
12015    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12016    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12017      .addOperand(Base)
12018      .addOperand(Scale)
12019      .addOperand(Index)
12020      .addDisp(Disp, UseFPOffset ? 4 : 0)
12021      .addOperand(Segment)
12022      .setMemRefs(MMOBegin, MMOEnd);
12023
12024    // Check if there is enough room left to pull this argument.
12025    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12026      .addReg(OffsetReg)
12027      .addImm(MaxOffset + 8 - ArgSizeA8);
12028
12029    // Branch to "overflowMBB" if offset >= max
12030    // Fall through to "offsetMBB" otherwise
12031    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12032      .addMBB(overflowMBB);
12033  }
12034
12035  // In offsetMBB, emit code to use the reg_save_area.
12036  if (offsetMBB) {
12037    assert(OffsetReg != 0);
12038
12039    // Read the reg_save_area address.
12040    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12041    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12042      .addOperand(Base)
12043      .addOperand(Scale)
12044      .addOperand(Index)
12045      .addDisp(Disp, 16)
12046      .addOperand(Segment)
12047      .setMemRefs(MMOBegin, MMOEnd);
12048
12049    // Zero-extend the offset
12050    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
12051      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
12052        .addImm(0)
12053        .addReg(OffsetReg)
12054        .addImm(X86::sub_32bit);
12055
12056    // Add the offset to the reg_save_area to get the final address.
12057    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
12058      .addReg(OffsetReg64)
12059      .addReg(RegSaveReg);
12060
12061    // Compute the offset for the next argument
12062    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12063    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
12064      .addReg(OffsetReg)
12065      .addImm(UseFPOffset ? 16 : 8);
12066
12067    // Store it back into the va_list.
12068    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
12069      .addOperand(Base)
12070      .addOperand(Scale)
12071      .addOperand(Index)
12072      .addDisp(Disp, UseFPOffset ? 4 : 0)
12073      .addOperand(Segment)
12074      .addReg(NextOffsetReg)
12075      .setMemRefs(MMOBegin, MMOEnd);
12076
12077    // Jump to endMBB
12078    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12079      .addMBB(endMBB);
12080  }
12081
12082  //
12083  // Emit code to use overflow area
12084  //
12085
12086  // Load the overflow_area address into a register.
12087  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12088  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12089    .addOperand(Base)
12090    .addOperand(Scale)
12091    .addOperand(Index)
12092    .addDisp(Disp, 8)
12093    .addOperand(Segment)
12094    .setMemRefs(MMOBegin, MMOEnd);
12095
12096  // If we need to align it, do so. Otherwise, just copy the address
12097  // to OverflowDestReg.
12098  if (NeedsAlign) {
12099    // Align the overflow address
12100    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12101    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12102
12103    // aligned_addr = (addr + (align-1)) & ~(align-1)
12104    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12105      .addReg(OverflowAddrReg)
12106      .addImm(Align-1);
12107
12108    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12109      .addReg(TmpReg)
12110      .addImm(~(uint64_t)(Align-1));
12111  } else {
12112    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12113      .addReg(OverflowAddrReg);
12114  }
12115
12116  // Compute the next overflow address after this argument.
12117  // (the overflow address should be kept 8-byte aligned)
12118  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12119  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12120    .addReg(OverflowDestReg)
12121    .addImm(ArgSizeA8);
12122
12123  // Store the new overflow address.
12124  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12125    .addOperand(Base)
12126    .addOperand(Scale)
12127    .addOperand(Index)
12128    .addDisp(Disp, 8)
12129    .addOperand(Segment)
12130    .addReg(NextAddrReg)
12131    .setMemRefs(MMOBegin, MMOEnd);
12132
12133  // If we branched, emit the PHI to the front of endMBB.
12134  if (offsetMBB) {
12135    BuildMI(*endMBB, endMBB->begin(), DL,
12136            TII->get(X86::PHI), DestReg)
12137      .addReg(OffsetDestReg).addMBB(offsetMBB)
12138      .addReg(OverflowDestReg).addMBB(overflowMBB);
12139  }
12140
12141  // Erase the pseudo instruction
12142  MI->eraseFromParent();
12143
12144  return endMBB;
12145}
12146
12147MachineBasicBlock *
12148X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12149                                                 MachineInstr *MI,
12150                                                 MachineBasicBlock *MBB) const {
12151  // Emit code to save XMM registers to the stack. The ABI says that the
12152  // number of registers to save is given in %al, so it's theoretically
12153  // possible to do an indirect jump trick to avoid saving all of them,
12154  // however this code takes a simpler approach and just executes all
12155  // of the stores if %al is non-zero. It's less code, and it's probably
12156  // easier on the hardware branch predictor, and stores aren't all that
12157  // expensive anyway.
12158
12159  // Create the new basic blocks. One block contains all the XMM stores,
12160  // and one block is the final destination regardless of whether any
12161  // stores were performed.
12162  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12163  MachineFunction *F = MBB->getParent();
12164  MachineFunction::iterator MBBIter = MBB;
12165  ++MBBIter;
12166  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12167  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12168  F->insert(MBBIter, XMMSaveMBB);
12169  F->insert(MBBIter, EndMBB);
12170
12171  // Transfer the remainder of MBB and its successor edges to EndMBB.
12172  EndMBB->splice(EndMBB->begin(), MBB,
12173                 llvm::next(MachineBasicBlock::iterator(MI)),
12174                 MBB->end());
12175  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12176
12177  // The original block will now fall through to the XMM save block.
12178  MBB->addSuccessor(XMMSaveMBB);
12179  // The XMMSaveMBB will fall through to the end block.
12180  XMMSaveMBB->addSuccessor(EndMBB);
12181
12182  // Now add the instructions.
12183  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12184  DebugLoc DL = MI->getDebugLoc();
12185
12186  unsigned CountReg = MI->getOperand(0).getReg();
12187  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12188  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12189
12190  if (!Subtarget->isTargetWin64()) {
12191    // If %al is 0, branch around the XMM save block.
12192    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12193    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12194    MBB->addSuccessor(EndMBB);
12195  }
12196
12197  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12198  // In the XMM save block, save all the XMM argument registers.
12199  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12200    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12201    MachineMemOperand *MMO =
12202      F->getMachineMemOperand(
12203          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12204        MachineMemOperand::MOStore,
12205        /*Size=*/16, /*Align=*/16);
12206    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12207      .addFrameIndex(RegSaveFrameIndex)
12208      .addImm(/*Scale=*/1)
12209      .addReg(/*IndexReg=*/0)
12210      .addImm(/*Disp=*/Offset)
12211      .addReg(/*Segment=*/0)
12212      .addReg(MI->getOperand(i).getReg())
12213      .addMemOperand(MMO);
12214  }
12215
12216  MI->eraseFromParent();   // The pseudo instruction is gone now.
12217
12218  return EndMBB;
12219}
12220
12221// The EFLAGS operand of SelectItr might be missing a kill marker
12222// because there were multiple uses of EFLAGS, and ISel didn't know
12223// which to mark. Figure out whether SelectItr should have had a
12224// kill marker, and set it if it should. Returns the correct kill
12225// marker value.
12226static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12227                                     MachineBasicBlock* BB,
12228                                     const TargetRegisterInfo* TRI) {
12229  // Scan forward through BB for a use/def of EFLAGS.
12230  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12231  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12232    const MachineInstr& mi = *miI;
12233    if (mi.readsRegister(X86::EFLAGS))
12234      return false;
12235    if (mi.definesRegister(X86::EFLAGS))
12236      break; // Should have kill-flag - update below.
12237  }
12238
12239  // If we hit the end of the block, check whether EFLAGS is live into a
12240  // successor.
12241  if (miI == BB->end()) {
12242    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12243                                          sEnd = BB->succ_end();
12244         sItr != sEnd; ++sItr) {
12245      MachineBasicBlock* succ = *sItr;
12246      if (succ->isLiveIn(X86::EFLAGS))
12247        return false;
12248    }
12249  }
12250
12251  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12252  // out. SelectMI should have a kill flag on EFLAGS.
12253  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12254  return true;
12255}
12256
12257MachineBasicBlock *
12258X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12259                                     MachineBasicBlock *BB) const {
12260  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12261  DebugLoc DL = MI->getDebugLoc();
12262
12263  // To "insert" a SELECT_CC instruction, we actually have to insert the
12264  // diamond control-flow pattern.  The incoming instruction knows the
12265  // destination vreg to set, the condition code register to branch on, the
12266  // true/false values to select between, and a branch opcode to use.
12267  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12268  MachineFunction::iterator It = BB;
12269  ++It;
12270
12271  //  thisMBB:
12272  //  ...
12273  //   TrueVal = ...
12274  //   cmpTY ccX, r1, r2
12275  //   bCC copy1MBB
12276  //   fallthrough --> copy0MBB
12277  MachineBasicBlock *thisMBB = BB;
12278  MachineFunction *F = BB->getParent();
12279  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12280  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12281  F->insert(It, copy0MBB);
12282  F->insert(It, sinkMBB);
12283
12284  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12285  // live into the sink and copy blocks.
12286  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12287  if (!MI->killsRegister(X86::EFLAGS) &&
12288      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12289    copy0MBB->addLiveIn(X86::EFLAGS);
12290    sinkMBB->addLiveIn(X86::EFLAGS);
12291  }
12292
12293  // Transfer the remainder of BB and its successor edges to sinkMBB.
12294  sinkMBB->splice(sinkMBB->begin(), BB,
12295                  llvm::next(MachineBasicBlock::iterator(MI)),
12296                  BB->end());
12297  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12298
12299  // Add the true and fallthrough blocks as its successors.
12300  BB->addSuccessor(copy0MBB);
12301  BB->addSuccessor(sinkMBB);
12302
12303  // Create the conditional branch instruction.
12304  unsigned Opc =
12305    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12306  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12307
12308  //  copy0MBB:
12309  //   %FalseValue = ...
12310  //   # fallthrough to sinkMBB
12311  copy0MBB->addSuccessor(sinkMBB);
12312
12313  //  sinkMBB:
12314  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12315  //  ...
12316  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12317          TII->get(X86::PHI), MI->getOperand(0).getReg())
12318    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12319    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12320
12321  MI->eraseFromParent();   // The pseudo instruction is gone now.
12322  return sinkMBB;
12323}
12324
12325MachineBasicBlock *
12326X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12327                                        bool Is64Bit) const {
12328  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12329  DebugLoc DL = MI->getDebugLoc();
12330  MachineFunction *MF = BB->getParent();
12331  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12332
12333  assert(getTargetMachine().Options.EnableSegmentedStacks);
12334
12335  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12336  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12337
12338  // BB:
12339  //  ... [Till the alloca]
12340  // If stacklet is not large enough, jump to mallocMBB
12341  //
12342  // bumpMBB:
12343  //  Allocate by subtracting from RSP
12344  //  Jump to continueMBB
12345  //
12346  // mallocMBB:
12347  //  Allocate by call to runtime
12348  //
12349  // continueMBB:
12350  //  ...
12351  //  [rest of original BB]
12352  //
12353
12354  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12355  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12356  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12357
12358  MachineRegisterInfo &MRI = MF->getRegInfo();
12359  const TargetRegisterClass *AddrRegClass =
12360    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12361
12362  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12363    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12364    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12365    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12366    sizeVReg = MI->getOperand(1).getReg(),
12367    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12368
12369  MachineFunction::iterator MBBIter = BB;
12370  ++MBBIter;
12371
12372  MF->insert(MBBIter, bumpMBB);
12373  MF->insert(MBBIter, mallocMBB);
12374  MF->insert(MBBIter, continueMBB);
12375
12376  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12377                      (MachineBasicBlock::iterator(MI)), BB->end());
12378  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12379
12380  // Add code to the main basic block to check if the stack limit has been hit,
12381  // and if so, jump to mallocMBB otherwise to bumpMBB.
12382  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12383  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12384    .addReg(tmpSPVReg).addReg(sizeVReg);
12385  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12386    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12387    .addReg(SPLimitVReg);
12388  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12389
12390  // bumpMBB simply decreases the stack pointer, since we know the current
12391  // stacklet has enough space.
12392  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12393    .addReg(SPLimitVReg);
12394  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12395    .addReg(SPLimitVReg);
12396  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12397
12398  // Calls into a routine in libgcc to allocate more space from the heap.
12399  const uint32_t *RegMask =
12400    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12401  if (Is64Bit) {
12402    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12403      .addReg(sizeVReg);
12404    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12405      .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12406      .addRegMask(RegMask)
12407      .addReg(X86::RAX, RegState::ImplicitDefine);
12408  } else {
12409    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12410      .addImm(12);
12411    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12412    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12413      .addExternalSymbol("__morestack_allocate_stack_space")
12414      .addRegMask(RegMask)
12415      .addReg(X86::EAX, RegState::ImplicitDefine);
12416  }
12417
12418  if (!Is64Bit)
12419    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12420      .addImm(16);
12421
12422  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12423    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12424  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12425
12426  // Set up the CFG correctly.
12427  BB->addSuccessor(bumpMBB);
12428  BB->addSuccessor(mallocMBB);
12429  mallocMBB->addSuccessor(continueMBB);
12430  bumpMBB->addSuccessor(continueMBB);
12431
12432  // Take care of the PHI nodes.
12433  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12434          MI->getOperand(0).getReg())
12435    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12436    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12437
12438  // Delete the original pseudo instruction.
12439  MI->eraseFromParent();
12440
12441  // And we're done.
12442  return continueMBB;
12443}
12444
12445MachineBasicBlock *
12446X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12447                                          MachineBasicBlock *BB) const {
12448  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12449  DebugLoc DL = MI->getDebugLoc();
12450
12451  assert(!Subtarget->isTargetEnvMacho());
12452
12453  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12454  // non-trivial part is impdef of ESP.
12455
12456  if (Subtarget->isTargetWin64()) {
12457    if (Subtarget->isTargetCygMing()) {
12458      // ___chkstk(Mingw64):
12459      // Clobbers R10, R11, RAX and EFLAGS.
12460      // Updates RSP.
12461      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12462        .addExternalSymbol("___chkstk")
12463        .addReg(X86::RAX, RegState::Implicit)
12464        .addReg(X86::RSP, RegState::Implicit)
12465        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12466        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12467        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12468    } else {
12469      // __chkstk(MSVCRT): does not update stack pointer.
12470      // Clobbers R10, R11 and EFLAGS.
12471      // FIXME: RAX(allocated size) might be reused and not killed.
12472      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12473        .addExternalSymbol("__chkstk")
12474        .addReg(X86::RAX, RegState::Implicit)
12475        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12476      // RAX has the offset to subtracted from RSP.
12477      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12478        .addReg(X86::RSP)
12479        .addReg(X86::RAX);
12480    }
12481  } else {
12482    const char *StackProbeSymbol =
12483      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12484
12485    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12486      .addExternalSymbol(StackProbeSymbol)
12487      .addReg(X86::EAX, RegState::Implicit)
12488      .addReg(X86::ESP, RegState::Implicit)
12489      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12490      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12491      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12492  }
12493
12494  MI->eraseFromParent();   // The pseudo instruction is gone now.
12495  return BB;
12496}
12497
12498MachineBasicBlock *
12499X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12500                                      MachineBasicBlock *BB) const {
12501  // This is pretty easy.  We're taking the value that we received from
12502  // our load from the relocation, sticking it in either RDI (x86-64)
12503  // or EAX and doing an indirect call.  The return value will then
12504  // be in the normal return register.
12505  const X86InstrInfo *TII
12506    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12507  DebugLoc DL = MI->getDebugLoc();
12508  MachineFunction *F = BB->getParent();
12509
12510  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12511  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12512
12513  // Get a register mask for the lowered call.
12514  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12515  // proper register mask.
12516  const uint32_t *RegMask =
12517    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12518  if (Subtarget->is64Bit()) {
12519    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12520                                      TII->get(X86::MOV64rm), X86::RDI)
12521    .addReg(X86::RIP)
12522    .addImm(0).addReg(0)
12523    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12524                      MI->getOperand(3).getTargetFlags())
12525    .addReg(0);
12526    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12527    addDirectMem(MIB, X86::RDI);
12528    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12529  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12530    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12531                                      TII->get(X86::MOV32rm), X86::EAX)
12532    .addReg(0)
12533    .addImm(0).addReg(0)
12534    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12535                      MI->getOperand(3).getTargetFlags())
12536    .addReg(0);
12537    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12538    addDirectMem(MIB, X86::EAX);
12539    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12540  } else {
12541    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12542                                      TII->get(X86::MOV32rm), X86::EAX)
12543    .addReg(TII->getGlobalBaseReg(F))
12544    .addImm(0).addReg(0)
12545    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12546                      MI->getOperand(3).getTargetFlags())
12547    .addReg(0);
12548    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12549    addDirectMem(MIB, X86::EAX);
12550    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12551  }
12552
12553  MI->eraseFromParent(); // The pseudo instruction is gone now.
12554  return BB;
12555}
12556
12557MachineBasicBlock *
12558X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12559                                               MachineBasicBlock *BB) const {
12560  switch (MI->getOpcode()) {
12561  default: llvm_unreachable("Unexpected instr type to insert");
12562  case X86::TAILJMPd64:
12563  case X86::TAILJMPr64:
12564  case X86::TAILJMPm64:
12565    llvm_unreachable("TAILJMP64 would not be touched here.");
12566  case X86::TCRETURNdi64:
12567  case X86::TCRETURNri64:
12568  case X86::TCRETURNmi64:
12569    return BB;
12570  case X86::WIN_ALLOCA:
12571    return EmitLoweredWinAlloca(MI, BB);
12572  case X86::SEG_ALLOCA_32:
12573    return EmitLoweredSegAlloca(MI, BB, false);
12574  case X86::SEG_ALLOCA_64:
12575    return EmitLoweredSegAlloca(MI, BB, true);
12576  case X86::TLSCall_32:
12577  case X86::TLSCall_64:
12578    return EmitLoweredTLSCall(MI, BB);
12579  case X86::CMOV_GR8:
12580  case X86::CMOV_FR32:
12581  case X86::CMOV_FR64:
12582  case X86::CMOV_V4F32:
12583  case X86::CMOV_V2F64:
12584  case X86::CMOV_V2I64:
12585  case X86::CMOV_V8F32:
12586  case X86::CMOV_V4F64:
12587  case X86::CMOV_V4I64:
12588  case X86::CMOV_GR16:
12589  case X86::CMOV_GR32:
12590  case X86::CMOV_RFP32:
12591  case X86::CMOV_RFP64:
12592  case X86::CMOV_RFP80:
12593    return EmitLoweredSelect(MI, BB);
12594
12595  case X86::FP32_TO_INT16_IN_MEM:
12596  case X86::FP32_TO_INT32_IN_MEM:
12597  case X86::FP32_TO_INT64_IN_MEM:
12598  case X86::FP64_TO_INT16_IN_MEM:
12599  case X86::FP64_TO_INT32_IN_MEM:
12600  case X86::FP64_TO_INT64_IN_MEM:
12601  case X86::FP80_TO_INT16_IN_MEM:
12602  case X86::FP80_TO_INT32_IN_MEM:
12603  case X86::FP80_TO_INT64_IN_MEM: {
12604    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12605    DebugLoc DL = MI->getDebugLoc();
12606
12607    // Change the floating point control register to use "round towards zero"
12608    // mode when truncating to an integer value.
12609    MachineFunction *F = BB->getParent();
12610    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12611    addFrameReference(BuildMI(*BB, MI, DL,
12612                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12613
12614    // Load the old value of the high byte of the control word...
12615    unsigned OldCW =
12616      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
12617    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12618                      CWFrameIdx);
12619
12620    // Set the high part to be round to zero...
12621    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12622      .addImm(0xC7F);
12623
12624    // Reload the modified control word now...
12625    addFrameReference(BuildMI(*BB, MI, DL,
12626                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12627
12628    // Restore the memory image of control word to original value
12629    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12630      .addReg(OldCW);
12631
12632    // Get the X86 opcode to use.
12633    unsigned Opc;
12634    switch (MI->getOpcode()) {
12635    default: llvm_unreachable("illegal opcode!");
12636    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12637    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12638    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12639    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12640    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12641    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12642    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12643    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12644    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12645    }
12646
12647    X86AddressMode AM;
12648    MachineOperand &Op = MI->getOperand(0);
12649    if (Op.isReg()) {
12650      AM.BaseType = X86AddressMode::RegBase;
12651      AM.Base.Reg = Op.getReg();
12652    } else {
12653      AM.BaseType = X86AddressMode::FrameIndexBase;
12654      AM.Base.FrameIndex = Op.getIndex();
12655    }
12656    Op = MI->getOperand(1);
12657    if (Op.isImm())
12658      AM.Scale = Op.getImm();
12659    Op = MI->getOperand(2);
12660    if (Op.isImm())
12661      AM.IndexReg = Op.getImm();
12662    Op = MI->getOperand(3);
12663    if (Op.isGlobal()) {
12664      AM.GV = Op.getGlobal();
12665    } else {
12666      AM.Disp = Op.getImm();
12667    }
12668    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12669                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12670
12671    // Reload the original control word now.
12672    addFrameReference(BuildMI(*BB, MI, DL,
12673                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12674
12675    MI->eraseFromParent();   // The pseudo instruction is gone now.
12676    return BB;
12677  }
12678    // String/text processing lowering.
12679  case X86::PCMPISTRM128REG:
12680  case X86::VPCMPISTRM128REG:
12681    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12682  case X86::PCMPISTRM128MEM:
12683  case X86::VPCMPISTRM128MEM:
12684    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12685  case X86::PCMPESTRM128REG:
12686  case X86::VPCMPESTRM128REG:
12687    return EmitPCMP(MI, BB, 5, false /* in mem */);
12688  case X86::PCMPESTRM128MEM:
12689  case X86::VPCMPESTRM128MEM:
12690    return EmitPCMP(MI, BB, 5, true /* in mem */);
12691
12692    // Thread synchronization.
12693  case X86::MONITOR:
12694    return EmitMonitor(MI, BB);
12695  case X86::MWAIT:
12696    return EmitMwait(MI, BB);
12697
12698    // Atomic Lowering.
12699  case X86::ATOMAND32:
12700    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12701                                               X86::AND32ri, X86::MOV32rm,
12702                                               X86::LCMPXCHG32,
12703                                               X86::NOT32r, X86::EAX,
12704                                               &X86::GR32RegClass);
12705  case X86::ATOMOR32:
12706    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12707                                               X86::OR32ri, X86::MOV32rm,
12708                                               X86::LCMPXCHG32,
12709                                               X86::NOT32r, X86::EAX,
12710                                               &X86::GR32RegClass);
12711  case X86::ATOMXOR32:
12712    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12713                                               X86::XOR32ri, X86::MOV32rm,
12714                                               X86::LCMPXCHG32,
12715                                               X86::NOT32r, X86::EAX,
12716                                               &X86::GR32RegClass);
12717  case X86::ATOMNAND32:
12718    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12719                                               X86::AND32ri, X86::MOV32rm,
12720                                               X86::LCMPXCHG32,
12721                                               X86::NOT32r, X86::EAX,
12722                                               &X86::GR32RegClass, true);
12723  case X86::ATOMMIN32:
12724    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12725  case X86::ATOMMAX32:
12726    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12727  case X86::ATOMUMIN32:
12728    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12729  case X86::ATOMUMAX32:
12730    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12731
12732  case X86::ATOMAND16:
12733    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12734                                               X86::AND16ri, X86::MOV16rm,
12735                                               X86::LCMPXCHG16,
12736                                               X86::NOT16r, X86::AX,
12737                                               &X86::GR16RegClass);
12738  case X86::ATOMOR16:
12739    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12740                                               X86::OR16ri, X86::MOV16rm,
12741                                               X86::LCMPXCHG16,
12742                                               X86::NOT16r, X86::AX,
12743                                               &X86::GR16RegClass);
12744  case X86::ATOMXOR16:
12745    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12746                                               X86::XOR16ri, X86::MOV16rm,
12747                                               X86::LCMPXCHG16,
12748                                               X86::NOT16r, X86::AX,
12749                                               &X86::GR16RegClass);
12750  case X86::ATOMNAND16:
12751    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12752                                               X86::AND16ri, X86::MOV16rm,
12753                                               X86::LCMPXCHG16,
12754                                               X86::NOT16r, X86::AX,
12755                                               &X86::GR16RegClass, true);
12756  case X86::ATOMMIN16:
12757    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12758  case X86::ATOMMAX16:
12759    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12760  case X86::ATOMUMIN16:
12761    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12762  case X86::ATOMUMAX16:
12763    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12764
12765  case X86::ATOMAND8:
12766    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12767                                               X86::AND8ri, X86::MOV8rm,
12768                                               X86::LCMPXCHG8,
12769                                               X86::NOT8r, X86::AL,
12770                                               &X86::GR8RegClass);
12771  case X86::ATOMOR8:
12772    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12773                                               X86::OR8ri, X86::MOV8rm,
12774                                               X86::LCMPXCHG8,
12775                                               X86::NOT8r, X86::AL,
12776                                               &X86::GR8RegClass);
12777  case X86::ATOMXOR8:
12778    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12779                                               X86::XOR8ri, X86::MOV8rm,
12780                                               X86::LCMPXCHG8,
12781                                               X86::NOT8r, X86::AL,
12782                                               &X86::GR8RegClass);
12783  case X86::ATOMNAND8:
12784    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12785                                               X86::AND8ri, X86::MOV8rm,
12786                                               X86::LCMPXCHG8,
12787                                               X86::NOT8r, X86::AL,
12788                                               &X86::GR8RegClass, true);
12789  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12790  // This group is for 64-bit host.
12791  case X86::ATOMAND64:
12792    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12793                                               X86::AND64ri32, X86::MOV64rm,
12794                                               X86::LCMPXCHG64,
12795                                               X86::NOT64r, X86::RAX,
12796                                               &X86::GR64RegClass);
12797  case X86::ATOMOR64:
12798    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12799                                               X86::OR64ri32, X86::MOV64rm,
12800                                               X86::LCMPXCHG64,
12801                                               X86::NOT64r, X86::RAX,
12802                                               &X86::GR64RegClass);
12803  case X86::ATOMXOR64:
12804    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12805                                               X86::XOR64ri32, X86::MOV64rm,
12806                                               X86::LCMPXCHG64,
12807                                               X86::NOT64r, X86::RAX,
12808                                               &X86::GR64RegClass);
12809  case X86::ATOMNAND64:
12810    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12811                                               X86::AND64ri32, X86::MOV64rm,
12812                                               X86::LCMPXCHG64,
12813                                               X86::NOT64r, X86::RAX,
12814                                               &X86::GR64RegClass, true);
12815  case X86::ATOMMIN64:
12816    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12817  case X86::ATOMMAX64:
12818    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12819  case X86::ATOMUMIN64:
12820    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12821  case X86::ATOMUMAX64:
12822    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12823
12824  // This group does 64-bit operations on a 32-bit host.
12825  case X86::ATOMAND6432:
12826    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12827                                               X86::AND32rr, X86::AND32rr,
12828                                               X86::AND32ri, X86::AND32ri,
12829                                               false);
12830  case X86::ATOMOR6432:
12831    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12832                                               X86::OR32rr, X86::OR32rr,
12833                                               X86::OR32ri, X86::OR32ri,
12834                                               false);
12835  case X86::ATOMXOR6432:
12836    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12837                                               X86::XOR32rr, X86::XOR32rr,
12838                                               X86::XOR32ri, X86::XOR32ri,
12839                                               false);
12840  case X86::ATOMNAND6432:
12841    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12842                                               X86::AND32rr, X86::AND32rr,
12843                                               X86::AND32ri, X86::AND32ri,
12844                                               true);
12845  case X86::ATOMADD6432:
12846    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12847                                               X86::ADD32rr, X86::ADC32rr,
12848                                               X86::ADD32ri, X86::ADC32ri,
12849                                               false);
12850  case X86::ATOMSUB6432:
12851    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12852                                               X86::SUB32rr, X86::SBB32rr,
12853                                               X86::SUB32ri, X86::SBB32ri,
12854                                               false);
12855  case X86::ATOMSWAP6432:
12856    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12857                                               X86::MOV32rr, X86::MOV32rr,
12858                                               X86::MOV32ri, X86::MOV32ri,
12859                                               false);
12860  case X86::VASTART_SAVE_XMM_REGS:
12861    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12862
12863  case X86::VAARG_64:
12864    return EmitVAARG64WithCustomInserter(MI, BB);
12865  }
12866}
12867
12868//===----------------------------------------------------------------------===//
12869//                           X86 Optimization Hooks
12870//===----------------------------------------------------------------------===//
12871
12872void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12873                                                       APInt &KnownZero,
12874                                                       APInt &KnownOne,
12875                                                       const SelectionDAG &DAG,
12876                                                       unsigned Depth) const {
12877  unsigned BitWidth = KnownZero.getBitWidth();
12878  unsigned Opc = Op.getOpcode();
12879  assert((Opc >= ISD::BUILTIN_OP_END ||
12880          Opc == ISD::INTRINSIC_WO_CHAIN ||
12881          Opc == ISD::INTRINSIC_W_CHAIN ||
12882          Opc == ISD::INTRINSIC_VOID) &&
12883         "Should use MaskedValueIsZero if you don't know whether Op"
12884         " is a target node!");
12885
12886  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
12887  switch (Opc) {
12888  default: break;
12889  case X86ISD::ADD:
12890  case X86ISD::SUB:
12891  case X86ISD::ADC:
12892  case X86ISD::SBB:
12893  case X86ISD::SMUL:
12894  case X86ISD::UMUL:
12895  case X86ISD::INC:
12896  case X86ISD::DEC:
12897  case X86ISD::OR:
12898  case X86ISD::XOR:
12899  case X86ISD::AND:
12900    // These nodes' second result is a boolean.
12901    if (Op.getResNo() == 0)
12902      break;
12903    // Fallthrough
12904  case X86ISD::SETCC:
12905    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12906    break;
12907  case ISD::INTRINSIC_WO_CHAIN: {
12908    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12909    unsigned NumLoBits = 0;
12910    switch (IntId) {
12911    default: break;
12912    case Intrinsic::x86_sse_movmsk_ps:
12913    case Intrinsic::x86_avx_movmsk_ps_256:
12914    case Intrinsic::x86_sse2_movmsk_pd:
12915    case Intrinsic::x86_avx_movmsk_pd_256:
12916    case Intrinsic::x86_mmx_pmovmskb:
12917    case Intrinsic::x86_sse2_pmovmskb_128:
12918    case Intrinsic::x86_avx2_pmovmskb: {
12919      // High bits of movmskp{s|d}, pmovmskb are known zero.
12920      switch (IntId) {
12921        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12922        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12923        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12924        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12925        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12926        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12927        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12928        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12929      }
12930      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12931      break;
12932    }
12933    }
12934    break;
12935  }
12936  }
12937}
12938
12939unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12940                                                         unsigned Depth) const {
12941  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12942  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12943    return Op.getValueType().getScalarType().getSizeInBits();
12944
12945  // Fallback case.
12946  return 1;
12947}
12948
12949/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12950/// node is a GlobalAddress + offset.
12951bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12952                                       const GlobalValue* &GA,
12953                                       int64_t &Offset) const {
12954  if (N->getOpcode() == X86ISD::Wrapper) {
12955    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12956      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12957      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12958      return true;
12959    }
12960  }
12961  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12962}
12963
12964/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12965/// same as extracting the high 128-bit part of 256-bit vector and then
12966/// inserting the result into the low part of a new 256-bit vector
12967static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12968  EVT VT = SVOp->getValueType(0);
12969  unsigned NumElems = VT.getVectorNumElements();
12970
12971  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12972  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
12973    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12974        SVOp->getMaskElt(j) >= 0)
12975      return false;
12976
12977  return true;
12978}
12979
12980/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12981/// same as extracting the low 128-bit part of 256-bit vector and then
12982/// inserting the result into the high part of a new 256-bit vector
12983static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12984  EVT VT = SVOp->getValueType(0);
12985  unsigned NumElems = VT.getVectorNumElements();
12986
12987  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12988  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
12989    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12990        SVOp->getMaskElt(j) >= 0)
12991      return false;
12992
12993  return true;
12994}
12995
12996/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12997static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12998                                        TargetLowering::DAGCombinerInfo &DCI,
12999                                        const X86Subtarget* Subtarget) {
13000  DebugLoc dl = N->getDebugLoc();
13001  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
13002  SDValue V1 = SVOp->getOperand(0);
13003  SDValue V2 = SVOp->getOperand(1);
13004  EVT VT = SVOp->getValueType(0);
13005  unsigned NumElems = VT.getVectorNumElements();
13006
13007  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
13008      V2.getOpcode() == ISD::CONCAT_VECTORS) {
13009    //
13010    //                   0,0,0,...
13011    //                      |
13012    //    V      UNDEF    BUILD_VECTOR    UNDEF
13013    //     \      /           \           /
13014    //  CONCAT_VECTOR         CONCAT_VECTOR
13015    //         \                  /
13016    //          \                /
13017    //          RESULT: V + zero extended
13018    //
13019    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
13020        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
13021        V1.getOperand(1).getOpcode() != ISD::UNDEF)
13022      return SDValue();
13023
13024    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
13025      return SDValue();
13026
13027    // To match the shuffle mask, the first half of the mask should
13028    // be exactly the first vector, and all the rest a splat with the
13029    // first element of the second one.
13030    for (unsigned i = 0; i != NumElems/2; ++i)
13031      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
13032          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
13033        return SDValue();
13034
13035    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
13036    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
13037      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
13038      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
13039      SDValue ResNode =
13040        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
13041                                Ld->getMemoryVT(),
13042                                Ld->getPointerInfo(),
13043                                Ld->getAlignment(),
13044                                false/*isVolatile*/, true/*ReadMem*/,
13045                                false/*WriteMem*/);
13046      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
13047    }
13048
13049    // Emit a zeroed vector and insert the desired subvector on its
13050    // first half.
13051    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13052    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
13053    return DCI.CombineTo(N, InsV);
13054  }
13055
13056  //===--------------------------------------------------------------------===//
13057  // Combine some shuffles into subvector extracts and inserts:
13058  //
13059
13060  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13061  if (isShuffleHigh128VectorInsertLow(SVOp)) {
13062    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
13063    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
13064    return DCI.CombineTo(N, InsV);
13065  }
13066
13067  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13068  if (isShuffleLow128VectorInsertHigh(SVOp)) {
13069    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
13070    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
13071    return DCI.CombineTo(N, InsV);
13072  }
13073
13074  return SDValue();
13075}
13076
13077/// PerformShuffleCombine - Performs several different shuffle combines.
13078static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13079                                     TargetLowering::DAGCombinerInfo &DCI,
13080                                     const X86Subtarget *Subtarget) {
13081  DebugLoc dl = N->getDebugLoc();
13082  EVT VT = N->getValueType(0);
13083
13084  // Don't create instructions with illegal types after legalize types has run.
13085  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13086  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13087    return SDValue();
13088
13089  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13090  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
13091      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13092    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13093
13094  // Only handle 128 wide vector from here on.
13095  if (VT.getSizeInBits() != 128)
13096    return SDValue();
13097
13098  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13099  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13100  // consecutive, non-overlapping, and in the right order.
13101  SmallVector<SDValue, 16> Elts;
13102  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13103    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13104
13105  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13106}
13107
13108
13109/// DCI, PerformTruncateCombine - Converts truncate operation to
13110/// a sequence of vector shuffle operations.
13111/// It is possible when we truncate 256-bit vector to 128-bit vector
13112
13113SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13114                                                  DAGCombinerInfo &DCI) const {
13115  if (!DCI.isBeforeLegalizeOps())
13116    return SDValue();
13117
13118  if (!Subtarget->hasAVX())
13119    return SDValue();
13120
13121  EVT VT = N->getValueType(0);
13122  SDValue Op = N->getOperand(0);
13123  EVT OpVT = Op.getValueType();
13124  DebugLoc dl = N->getDebugLoc();
13125
13126  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13127
13128    if (Subtarget->hasAVX2()) {
13129      // AVX2: v4i64 -> v4i32
13130
13131      // VPERMD
13132      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13133
13134      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
13135      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
13136                                ShufMask);
13137
13138      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
13139                         DAG.getIntPtrConstant(0));
13140    }
13141
13142    // AVX: v4i64 -> v4i32
13143    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13144                               DAG.getIntPtrConstant(0));
13145
13146    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13147                               DAG.getIntPtrConstant(2));
13148
13149    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13150    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13151
13152    // PSHUFD
13153    static const int ShufMask1[] = {0, 2, 0, 0};
13154
13155    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT), ShufMask1);
13156    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT), ShufMask1);
13157
13158    // MOVLHPS
13159    static const int ShufMask2[] = {0, 1, 4, 5};
13160
13161    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13162  }
13163
13164  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13165
13166    if (Subtarget->hasAVX2()) {
13167      // AVX2: v8i32 -> v8i16
13168
13169      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
13170
13171      // PSHUFB
13172      SmallVector<SDValue,32> pshufbMask;
13173      for (unsigned i = 0; i < 2; ++i) {
13174        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13175        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13176        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13177        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13178        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13179        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13180        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13181        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13182        for (unsigned j = 0; j < 8; ++j)
13183          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13184      }
13185      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
13186                               &pshufbMask[0], 32);
13187      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
13188
13189      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
13190
13191      static const int ShufMask[] = {0,  2,  -1,  -1};
13192      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
13193                                &ShufMask[0]);
13194
13195      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13196                       DAG.getIntPtrConstant(0));
13197
13198      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
13199    }
13200
13201    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13202                               DAG.getIntPtrConstant(0));
13203
13204    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13205                               DAG.getIntPtrConstant(4));
13206
13207    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13208    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13209
13210    // PSHUFB
13211    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13212                                   -1, -1, -1, -1, -1, -1, -1, -1};
13213
13214    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, DAG.getUNDEF(MVT::v16i8),
13215                                ShufMask1);
13216    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, DAG.getUNDEF(MVT::v16i8),
13217                                ShufMask1);
13218
13219    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13220    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13221
13222    // MOVLHPS
13223    static const int ShufMask2[] = {0, 1, 4, 5};
13224
13225    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13226    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13227  }
13228
13229  return SDValue();
13230}
13231
13232/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13233/// specific shuffle of a load can be folded into a single element load.
13234/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13235/// shuffles have been customed lowered so we need to handle those here.
13236static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13237                                         TargetLowering::DAGCombinerInfo &DCI) {
13238  if (DCI.isBeforeLegalizeOps())
13239    return SDValue();
13240
13241  SDValue InVec = N->getOperand(0);
13242  SDValue EltNo = N->getOperand(1);
13243
13244  if (!isa<ConstantSDNode>(EltNo))
13245    return SDValue();
13246
13247  EVT VT = InVec.getValueType();
13248
13249  bool HasShuffleIntoBitcast = false;
13250  if (InVec.getOpcode() == ISD::BITCAST) {
13251    // Don't duplicate a load with other uses.
13252    if (!InVec.hasOneUse())
13253      return SDValue();
13254    EVT BCVT = InVec.getOperand(0).getValueType();
13255    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13256      return SDValue();
13257    InVec = InVec.getOperand(0);
13258    HasShuffleIntoBitcast = true;
13259  }
13260
13261  if (!isTargetShuffle(InVec.getOpcode()))
13262    return SDValue();
13263
13264  // Don't duplicate a load with other uses.
13265  if (!InVec.hasOneUse())
13266    return SDValue();
13267
13268  SmallVector<int, 16> ShuffleMask;
13269  bool UnaryShuffle;
13270  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
13271                            UnaryShuffle))
13272    return SDValue();
13273
13274  // Select the input vector, guarding against out of range extract vector.
13275  unsigned NumElems = VT.getVectorNumElements();
13276  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13277  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13278  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13279                                         : InVec.getOperand(1);
13280
13281  // If inputs to shuffle are the same for both ops, then allow 2 uses
13282  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13283
13284  if (LdNode.getOpcode() == ISD::BITCAST) {
13285    // Don't duplicate a load with other uses.
13286    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13287      return SDValue();
13288
13289    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13290    LdNode = LdNode.getOperand(0);
13291  }
13292
13293  if (!ISD::isNormalLoad(LdNode.getNode()))
13294    return SDValue();
13295
13296  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13297
13298  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13299    return SDValue();
13300
13301  if (HasShuffleIntoBitcast) {
13302    // If there's a bitcast before the shuffle, check if the load type and
13303    // alignment is valid.
13304    unsigned Align = LN0->getAlignment();
13305    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13306    unsigned NewAlign = TLI.getTargetData()->
13307      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13308
13309    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13310      return SDValue();
13311  }
13312
13313  // All checks match so transform back to vector_shuffle so that DAG combiner
13314  // can finish the job
13315  DebugLoc dl = N->getDebugLoc();
13316
13317  // Create shuffle node taking into account the case that its a unary shuffle
13318  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13319  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13320                                 InVec.getOperand(0), Shuffle,
13321                                 &ShuffleMask[0]);
13322  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13323  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13324                     EltNo);
13325}
13326
13327/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13328/// generation and convert it from being a bunch of shuffles and extracts
13329/// to a simple store and scalar loads to extract the elements.
13330static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13331                                         TargetLowering::DAGCombinerInfo &DCI) {
13332  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13333  if (NewOp.getNode())
13334    return NewOp;
13335
13336  SDValue InputVector = N->getOperand(0);
13337
13338  // Only operate on vectors of 4 elements, where the alternative shuffling
13339  // gets to be more expensive.
13340  if (InputVector.getValueType() != MVT::v4i32)
13341    return SDValue();
13342
13343  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13344  // single use which is a sign-extend or zero-extend, and all elements are
13345  // used.
13346  SmallVector<SDNode *, 4> Uses;
13347  unsigned ExtractedElements = 0;
13348  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13349       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13350    if (UI.getUse().getResNo() != InputVector.getResNo())
13351      return SDValue();
13352
13353    SDNode *Extract = *UI;
13354    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13355      return SDValue();
13356
13357    if (Extract->getValueType(0) != MVT::i32)
13358      return SDValue();
13359    if (!Extract->hasOneUse())
13360      return SDValue();
13361    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13362        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13363      return SDValue();
13364    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13365      return SDValue();
13366
13367    // Record which element was extracted.
13368    ExtractedElements |=
13369      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13370
13371    Uses.push_back(Extract);
13372  }
13373
13374  // If not all the elements were used, this may not be worthwhile.
13375  if (ExtractedElements != 15)
13376    return SDValue();
13377
13378  // Ok, we've now decided to do the transformation.
13379  DebugLoc dl = InputVector.getDebugLoc();
13380
13381  // Store the value to a temporary stack slot.
13382  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13383  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13384                            MachinePointerInfo(), false, false, 0);
13385
13386  // Replace each use (extract) with a load of the appropriate element.
13387  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13388       UE = Uses.end(); UI != UE; ++UI) {
13389    SDNode *Extract = *UI;
13390
13391    // cOMpute the element's address.
13392    SDValue Idx = Extract->getOperand(1);
13393    unsigned EltSize =
13394        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13395    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13396    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13397    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13398
13399    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13400                                     StackPtr, OffsetVal);
13401
13402    // Load the scalar.
13403    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13404                                     ScalarAddr, MachinePointerInfo(),
13405                                     false, false, false, 0);
13406
13407    // Replace the exact with the load.
13408    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13409  }
13410
13411  // The replacement was made in place; don't return anything.
13412  return SDValue();
13413}
13414
13415/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13416/// nodes.
13417static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13418                                    TargetLowering::DAGCombinerInfo &DCI,
13419                                    const X86Subtarget *Subtarget) {
13420
13421
13422  DebugLoc DL = N->getDebugLoc();
13423  SDValue Cond = N->getOperand(0);
13424  // Get the LHS/RHS of the select.
13425  SDValue LHS = N->getOperand(1);
13426  SDValue RHS = N->getOperand(2);
13427  EVT VT = LHS.getValueType();
13428
13429  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13430  // instructions match the semantics of the common C idiom x<y?x:y but not
13431  // x<=y?x:y, because of how they handle negative zero (which can be
13432  // ignored in unsafe-math mode).
13433  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13434      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13435      (Subtarget->hasSSE2() ||
13436       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13437    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13438
13439    unsigned Opcode = 0;
13440    // Check for x CC y ? x : y.
13441    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13442        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13443      switch (CC) {
13444      default: break;
13445      case ISD::SETULT:
13446        // Converting this to a min would handle NaNs incorrectly, and swapping
13447        // the operands would cause it to handle comparisons between positive
13448        // and negative zero incorrectly.
13449        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13450          if (!DAG.getTarget().Options.UnsafeFPMath &&
13451              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13452            break;
13453          std::swap(LHS, RHS);
13454        }
13455        Opcode = X86ISD::FMIN;
13456        break;
13457      case ISD::SETOLE:
13458        // Converting this to a min would handle comparisons between positive
13459        // and negative zero incorrectly.
13460        if (!DAG.getTarget().Options.UnsafeFPMath &&
13461            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13462          break;
13463        Opcode = X86ISD::FMIN;
13464        break;
13465      case ISD::SETULE:
13466        // Converting this to a min would handle both negative zeros and NaNs
13467        // incorrectly, but we can swap the operands to fix both.
13468        std::swap(LHS, RHS);
13469      case ISD::SETOLT:
13470      case ISD::SETLT:
13471      case ISD::SETLE:
13472        Opcode = X86ISD::FMIN;
13473        break;
13474
13475      case ISD::SETOGE:
13476        // Converting this to a max would handle comparisons between positive
13477        // and negative zero incorrectly.
13478        if (!DAG.getTarget().Options.UnsafeFPMath &&
13479            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13480          break;
13481        Opcode = X86ISD::FMAX;
13482        break;
13483      case ISD::SETUGT:
13484        // Converting this to a max would handle NaNs incorrectly, and swapping
13485        // the operands would cause it to handle comparisons between positive
13486        // and negative zero incorrectly.
13487        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13488          if (!DAG.getTarget().Options.UnsafeFPMath &&
13489              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13490            break;
13491          std::swap(LHS, RHS);
13492        }
13493        Opcode = X86ISD::FMAX;
13494        break;
13495      case ISD::SETUGE:
13496        // Converting this to a max would handle both negative zeros and NaNs
13497        // incorrectly, but we can swap the operands to fix both.
13498        std::swap(LHS, RHS);
13499      case ISD::SETOGT:
13500      case ISD::SETGT:
13501      case ISD::SETGE:
13502        Opcode = X86ISD::FMAX;
13503        break;
13504      }
13505    // Check for x CC y ? y : x -- a min/max with reversed arms.
13506    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13507               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13508      switch (CC) {
13509      default: break;
13510      case ISD::SETOGE:
13511        // Converting this to a min would handle comparisons between positive
13512        // and negative zero incorrectly, and swapping the operands would
13513        // cause it to handle NaNs incorrectly.
13514        if (!DAG.getTarget().Options.UnsafeFPMath &&
13515            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13516          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13517            break;
13518          std::swap(LHS, RHS);
13519        }
13520        Opcode = X86ISD::FMIN;
13521        break;
13522      case ISD::SETUGT:
13523        // Converting this to a min would handle NaNs incorrectly.
13524        if (!DAG.getTarget().Options.UnsafeFPMath &&
13525            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13526          break;
13527        Opcode = X86ISD::FMIN;
13528        break;
13529      case ISD::SETUGE:
13530        // Converting this to a min would handle both negative zeros and NaNs
13531        // incorrectly, but we can swap the operands to fix both.
13532        std::swap(LHS, RHS);
13533      case ISD::SETOGT:
13534      case ISD::SETGT:
13535      case ISD::SETGE:
13536        Opcode = X86ISD::FMIN;
13537        break;
13538
13539      case ISD::SETULT:
13540        // Converting this to a max would handle NaNs incorrectly.
13541        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13542          break;
13543        Opcode = X86ISD::FMAX;
13544        break;
13545      case ISD::SETOLE:
13546        // Converting this to a max would handle comparisons between positive
13547        // and negative zero incorrectly, and swapping the operands would
13548        // cause it to handle NaNs incorrectly.
13549        if (!DAG.getTarget().Options.UnsafeFPMath &&
13550            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13551          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13552            break;
13553          std::swap(LHS, RHS);
13554        }
13555        Opcode = X86ISD::FMAX;
13556        break;
13557      case ISD::SETULE:
13558        // Converting this to a max would handle both negative zeros and NaNs
13559        // incorrectly, but we can swap the operands to fix both.
13560        std::swap(LHS, RHS);
13561      case ISD::SETOLT:
13562      case ISD::SETLT:
13563      case ISD::SETLE:
13564        Opcode = X86ISD::FMAX;
13565        break;
13566      }
13567    }
13568
13569    if (Opcode)
13570      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13571  }
13572
13573  // If this is a select between two integer constants, try to do some
13574  // optimizations.
13575  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13576    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13577      // Don't do this for crazy integer types.
13578      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13579        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13580        // so that TrueC (the true value) is larger than FalseC.
13581        bool NeedsCondInvert = false;
13582
13583        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13584            // Efficiently invertible.
13585            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13586             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13587              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13588          NeedsCondInvert = true;
13589          std::swap(TrueC, FalseC);
13590        }
13591
13592        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13593        if (FalseC->getAPIntValue() == 0 &&
13594            TrueC->getAPIntValue().isPowerOf2()) {
13595          if (NeedsCondInvert) // Invert the condition if needed.
13596            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13597                               DAG.getConstant(1, Cond.getValueType()));
13598
13599          // Zero extend the condition if needed.
13600          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13601
13602          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13603          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13604                             DAG.getConstant(ShAmt, MVT::i8));
13605        }
13606
13607        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13608        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13609          if (NeedsCondInvert) // Invert the condition if needed.
13610            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13611                               DAG.getConstant(1, Cond.getValueType()));
13612
13613          // Zero extend the condition if needed.
13614          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13615                             FalseC->getValueType(0), Cond);
13616          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13617                             SDValue(FalseC, 0));
13618        }
13619
13620        // Optimize cases that will turn into an LEA instruction.  This requires
13621        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13622        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13623          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13624          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13625
13626          bool isFastMultiplier = false;
13627          if (Diff < 10) {
13628            switch ((unsigned char)Diff) {
13629              default: break;
13630              case 1:  // result = add base, cond
13631              case 2:  // result = lea base(    , cond*2)
13632              case 3:  // result = lea base(cond, cond*2)
13633              case 4:  // result = lea base(    , cond*4)
13634              case 5:  // result = lea base(cond, cond*4)
13635              case 8:  // result = lea base(    , cond*8)
13636              case 9:  // result = lea base(cond, cond*8)
13637                isFastMultiplier = true;
13638                break;
13639            }
13640          }
13641
13642          if (isFastMultiplier) {
13643            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13644            if (NeedsCondInvert) // Invert the condition if needed.
13645              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13646                                 DAG.getConstant(1, Cond.getValueType()));
13647
13648            // Zero extend the condition if needed.
13649            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13650                               Cond);
13651            // Scale the condition by the difference.
13652            if (Diff != 1)
13653              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13654                                 DAG.getConstant(Diff, Cond.getValueType()));
13655
13656            // Add the base if non-zero.
13657            if (FalseC->getAPIntValue() != 0)
13658              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13659                                 SDValue(FalseC, 0));
13660            return Cond;
13661          }
13662        }
13663      }
13664  }
13665
13666  // Canonicalize max and min:
13667  // (x > y) ? x : y -> (x >= y) ? x : y
13668  // (x < y) ? x : y -> (x <= y) ? x : y
13669  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13670  // the need for an extra compare
13671  // against zero. e.g.
13672  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13673  // subl   %esi, %edi
13674  // testl  %edi, %edi
13675  // movl   $0, %eax
13676  // cmovgl %edi, %eax
13677  // =>
13678  // xorl   %eax, %eax
13679  // subl   %esi, $edi
13680  // cmovsl %eax, %edi
13681  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13682      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13683      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13684    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13685    switch (CC) {
13686    default: break;
13687    case ISD::SETLT:
13688    case ISD::SETGT: {
13689      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13690      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13691                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13692      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13693    }
13694    }
13695  }
13696
13697  // If we know that this node is legal then we know that it is going to be
13698  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13699  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13700  // to simplify previous instructions.
13701  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13702  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13703      !DCI.isBeforeLegalize() &&
13704      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13705    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13706    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13707    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13708
13709    APInt KnownZero, KnownOne;
13710    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13711                                          DCI.isBeforeLegalizeOps());
13712    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13713        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13714      DCI.CommitTargetLoweringOpt(TLO);
13715  }
13716
13717  return SDValue();
13718}
13719
13720/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13721static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13722                                  TargetLowering::DAGCombinerInfo &DCI) {
13723  DebugLoc DL = N->getDebugLoc();
13724
13725  // If the flag operand isn't dead, don't touch this CMOV.
13726  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13727    return SDValue();
13728
13729  SDValue FalseOp = N->getOperand(0);
13730  SDValue TrueOp = N->getOperand(1);
13731  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13732  SDValue Cond = N->getOperand(3);
13733  if (CC == X86::COND_E || CC == X86::COND_NE) {
13734    switch (Cond.getOpcode()) {
13735    default: break;
13736    case X86ISD::BSR:
13737    case X86ISD::BSF:
13738      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13739      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13740        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13741    }
13742  }
13743
13744  // If this is a select between two integer constants, try to do some
13745  // optimizations.  Note that the operands are ordered the opposite of SELECT
13746  // operands.
13747  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13748    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13749      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13750      // larger than FalseC (the false value).
13751      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13752        CC = X86::GetOppositeBranchCondition(CC);
13753        std::swap(TrueC, FalseC);
13754      }
13755
13756      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13757      // This is efficient for any integer data type (including i8/i16) and
13758      // shift amount.
13759      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13760        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13761                           DAG.getConstant(CC, MVT::i8), Cond);
13762
13763        // Zero extend the condition if needed.
13764        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13765
13766        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13767        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13768                           DAG.getConstant(ShAmt, MVT::i8));
13769        if (N->getNumValues() == 2)  // Dead flag value?
13770          return DCI.CombineTo(N, Cond, SDValue());
13771        return Cond;
13772      }
13773
13774      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13775      // for any integer data type, including i8/i16.
13776      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13777        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13778                           DAG.getConstant(CC, MVT::i8), Cond);
13779
13780        // Zero extend the condition if needed.
13781        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13782                           FalseC->getValueType(0), Cond);
13783        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13784                           SDValue(FalseC, 0));
13785
13786        if (N->getNumValues() == 2)  // Dead flag value?
13787          return DCI.CombineTo(N, Cond, SDValue());
13788        return Cond;
13789      }
13790
13791      // Optimize cases that will turn into an LEA instruction.  This requires
13792      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13793      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13794        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13795        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13796
13797        bool isFastMultiplier = false;
13798        if (Diff < 10) {
13799          switch ((unsigned char)Diff) {
13800          default: break;
13801          case 1:  // result = add base, cond
13802          case 2:  // result = lea base(    , cond*2)
13803          case 3:  // result = lea base(cond, cond*2)
13804          case 4:  // result = lea base(    , cond*4)
13805          case 5:  // result = lea base(cond, cond*4)
13806          case 8:  // result = lea base(    , cond*8)
13807          case 9:  // result = lea base(cond, cond*8)
13808            isFastMultiplier = true;
13809            break;
13810          }
13811        }
13812
13813        if (isFastMultiplier) {
13814          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13815          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13816                             DAG.getConstant(CC, MVT::i8), Cond);
13817          // Zero extend the condition if needed.
13818          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13819                             Cond);
13820          // Scale the condition by the difference.
13821          if (Diff != 1)
13822            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13823                               DAG.getConstant(Diff, Cond.getValueType()));
13824
13825          // Add the base if non-zero.
13826          if (FalseC->getAPIntValue() != 0)
13827            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13828                               SDValue(FalseC, 0));
13829          if (N->getNumValues() == 2)  // Dead flag value?
13830            return DCI.CombineTo(N, Cond, SDValue());
13831          return Cond;
13832        }
13833      }
13834    }
13835  }
13836  return SDValue();
13837}
13838
13839
13840/// PerformMulCombine - Optimize a single multiply with constant into two
13841/// in order to implement it with two cheaper instructions, e.g.
13842/// LEA + SHL, LEA + LEA.
13843static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13844                                 TargetLowering::DAGCombinerInfo &DCI) {
13845  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13846    return SDValue();
13847
13848  EVT VT = N->getValueType(0);
13849  if (VT != MVT::i64)
13850    return SDValue();
13851
13852  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13853  if (!C)
13854    return SDValue();
13855  uint64_t MulAmt = C->getZExtValue();
13856  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13857    return SDValue();
13858
13859  uint64_t MulAmt1 = 0;
13860  uint64_t MulAmt2 = 0;
13861  if ((MulAmt % 9) == 0) {
13862    MulAmt1 = 9;
13863    MulAmt2 = MulAmt / 9;
13864  } else if ((MulAmt % 5) == 0) {
13865    MulAmt1 = 5;
13866    MulAmt2 = MulAmt / 5;
13867  } else if ((MulAmt % 3) == 0) {
13868    MulAmt1 = 3;
13869    MulAmt2 = MulAmt / 3;
13870  }
13871  if (MulAmt2 &&
13872      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13873    DebugLoc DL = N->getDebugLoc();
13874
13875    if (isPowerOf2_64(MulAmt2) &&
13876        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13877      // If second multiplifer is pow2, issue it first. We want the multiply by
13878      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13879      // is an add.
13880      std::swap(MulAmt1, MulAmt2);
13881
13882    SDValue NewMul;
13883    if (isPowerOf2_64(MulAmt1))
13884      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13885                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13886    else
13887      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13888                           DAG.getConstant(MulAmt1, VT));
13889
13890    if (isPowerOf2_64(MulAmt2))
13891      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13892                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13893    else
13894      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13895                           DAG.getConstant(MulAmt2, VT));
13896
13897    // Do not add new nodes to DAG combiner worklist.
13898    DCI.CombineTo(N, NewMul, false);
13899  }
13900  return SDValue();
13901}
13902
13903static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13904  SDValue N0 = N->getOperand(0);
13905  SDValue N1 = N->getOperand(1);
13906  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13907  EVT VT = N0.getValueType();
13908
13909  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13910  // since the result of setcc_c is all zero's or all ones.
13911  if (VT.isInteger() && !VT.isVector() &&
13912      N1C && N0.getOpcode() == ISD::AND &&
13913      N0.getOperand(1).getOpcode() == ISD::Constant) {
13914    SDValue N00 = N0.getOperand(0);
13915    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13916        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13917          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13918         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13919      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13920      APInt ShAmt = N1C->getAPIntValue();
13921      Mask = Mask.shl(ShAmt);
13922      if (Mask != 0)
13923        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13924                           N00, DAG.getConstant(Mask, VT));
13925    }
13926  }
13927
13928
13929  // Hardware support for vector shifts is sparse which makes us scalarize the
13930  // vector operations in many cases. Also, on sandybridge ADD is faster than
13931  // shl.
13932  // (shl V, 1) -> add V,V
13933  if (isSplatVector(N1.getNode())) {
13934    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13935    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13936    // We shift all of the values by one. In many cases we do not have
13937    // hardware support for this operation. This is better expressed as an ADD
13938    // of two values.
13939    if (N1C && (1 == N1C->getZExtValue())) {
13940      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13941    }
13942  }
13943
13944  return SDValue();
13945}
13946
13947/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13948///                       when possible.
13949static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13950                                   TargetLowering::DAGCombinerInfo &DCI,
13951                                   const X86Subtarget *Subtarget) {
13952  EVT VT = N->getValueType(0);
13953  if (N->getOpcode() == ISD::SHL) {
13954    SDValue V = PerformSHLCombine(N, DAG);
13955    if (V.getNode()) return V;
13956  }
13957
13958  // On X86 with SSE2 support, we can transform this to a vector shift if
13959  // all elements are shifted by the same amount.  We can't do this in legalize
13960  // because the a constant vector is typically transformed to a constant pool
13961  // so we have no knowledge of the shift amount.
13962  if (!Subtarget->hasSSE2())
13963    return SDValue();
13964
13965  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13966      (!Subtarget->hasAVX2() ||
13967       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13968    return SDValue();
13969
13970  SDValue ShAmtOp = N->getOperand(1);
13971  EVT EltVT = VT.getVectorElementType();
13972  DebugLoc DL = N->getDebugLoc();
13973  SDValue BaseShAmt = SDValue();
13974  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13975    unsigned NumElts = VT.getVectorNumElements();
13976    unsigned i = 0;
13977    for (; i != NumElts; ++i) {
13978      SDValue Arg = ShAmtOp.getOperand(i);
13979      if (Arg.getOpcode() == ISD::UNDEF) continue;
13980      BaseShAmt = Arg;
13981      break;
13982    }
13983    // Handle the case where the build_vector is all undef
13984    // FIXME: Should DAG allow this?
13985    if (i == NumElts)
13986      return SDValue();
13987
13988    for (; i != NumElts; ++i) {
13989      SDValue Arg = ShAmtOp.getOperand(i);
13990      if (Arg.getOpcode() == ISD::UNDEF) continue;
13991      if (Arg != BaseShAmt) {
13992        return SDValue();
13993      }
13994    }
13995  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13996             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13997    SDValue InVec = ShAmtOp.getOperand(0);
13998    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13999      unsigned NumElts = InVec.getValueType().getVectorNumElements();
14000      unsigned i = 0;
14001      for (; i != NumElts; ++i) {
14002        SDValue Arg = InVec.getOperand(i);
14003        if (Arg.getOpcode() == ISD::UNDEF) continue;
14004        BaseShAmt = Arg;
14005        break;
14006      }
14007    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14008       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
14009         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
14010         if (C->getZExtValue() == SplatIdx)
14011           BaseShAmt = InVec.getOperand(1);
14012       }
14013    }
14014    if (BaseShAmt.getNode() == 0) {
14015      // Don't create instructions with illegal types after legalize
14016      // types has run.
14017      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
14018          !DCI.isBeforeLegalize())
14019        return SDValue();
14020
14021      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
14022                              DAG.getIntPtrConstant(0));
14023    }
14024  } else
14025    return SDValue();
14026
14027  // The shift amount is an i32.
14028  if (EltVT.bitsGT(MVT::i32))
14029    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
14030  else if (EltVT.bitsLT(MVT::i32))
14031    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
14032
14033  // The shift amount is identical so we can do a vector shift.
14034  SDValue  ValOp = N->getOperand(0);
14035  switch (N->getOpcode()) {
14036  default:
14037    llvm_unreachable("Unknown shift opcode!");
14038  case ISD::SHL:
14039    switch (VT.getSimpleVT().SimpleTy) {
14040    default: return SDValue();
14041    case MVT::v2i64:
14042    case MVT::v4i32:
14043    case MVT::v8i16:
14044    case MVT::v4i64:
14045    case MVT::v8i32:
14046    case MVT::v16i16:
14047      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
14048    }
14049  case ISD::SRA:
14050    switch (VT.getSimpleVT().SimpleTy) {
14051    default: return SDValue();
14052    case MVT::v4i32:
14053    case MVT::v8i16:
14054    case MVT::v8i32:
14055    case MVT::v16i16:
14056      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
14057    }
14058  case ISD::SRL:
14059    switch (VT.getSimpleVT().SimpleTy) {
14060    default: return SDValue();
14061    case MVT::v2i64:
14062    case MVT::v4i32:
14063    case MVT::v8i16:
14064    case MVT::v4i64:
14065    case MVT::v8i32:
14066    case MVT::v16i16:
14067      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
14068    }
14069  }
14070}
14071
14072
14073// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
14074// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
14075// and friends.  Likewise for OR -> CMPNEQSS.
14076static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
14077                            TargetLowering::DAGCombinerInfo &DCI,
14078                            const X86Subtarget *Subtarget) {
14079  unsigned opcode;
14080
14081  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
14082  // we're requiring SSE2 for both.
14083  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
14084    SDValue N0 = N->getOperand(0);
14085    SDValue N1 = N->getOperand(1);
14086    SDValue CMP0 = N0->getOperand(1);
14087    SDValue CMP1 = N1->getOperand(1);
14088    DebugLoc DL = N->getDebugLoc();
14089
14090    // The SETCCs should both refer to the same CMP.
14091    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
14092      return SDValue();
14093
14094    SDValue CMP00 = CMP0->getOperand(0);
14095    SDValue CMP01 = CMP0->getOperand(1);
14096    EVT     VT    = CMP00.getValueType();
14097
14098    if (VT == MVT::f32 || VT == MVT::f64) {
14099      bool ExpectingFlags = false;
14100      // Check for any users that want flags:
14101      for (SDNode::use_iterator UI = N->use_begin(),
14102             UE = N->use_end();
14103           !ExpectingFlags && UI != UE; ++UI)
14104        switch (UI->getOpcode()) {
14105        default:
14106        case ISD::BR_CC:
14107        case ISD::BRCOND:
14108        case ISD::SELECT:
14109          ExpectingFlags = true;
14110          break;
14111        case ISD::CopyToReg:
14112        case ISD::SIGN_EXTEND:
14113        case ISD::ZERO_EXTEND:
14114        case ISD::ANY_EXTEND:
14115          break;
14116        }
14117
14118      if (!ExpectingFlags) {
14119        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
14120        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
14121
14122        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
14123          X86::CondCode tmp = cc0;
14124          cc0 = cc1;
14125          cc1 = tmp;
14126        }
14127
14128        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
14129            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
14130          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
14131          X86ISD::NodeType NTOperator = is64BitFP ?
14132            X86ISD::FSETCCsd : X86ISD::FSETCCss;
14133          // FIXME: need symbolic constants for these magic numbers.
14134          // See X86ATTInstPrinter.cpp:printSSECC().
14135          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
14136          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
14137                                              DAG.getConstant(x86cc, MVT::i8));
14138          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
14139                                              OnesOrZeroesF);
14140          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14141                                      DAG.getConstant(1, MVT::i32));
14142          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14143          return OneBitOfTruth;
14144        }
14145      }
14146    }
14147  }
14148  return SDValue();
14149}
14150
14151/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14152/// so it can be folded inside ANDNP.
14153static bool CanFoldXORWithAllOnes(const SDNode *N) {
14154  EVT VT = N->getValueType(0);
14155
14156  // Match direct AllOnes for 128 and 256-bit vectors
14157  if (ISD::isBuildVectorAllOnes(N))
14158    return true;
14159
14160  // Look through a bit convert.
14161  if (N->getOpcode() == ISD::BITCAST)
14162    N = N->getOperand(0).getNode();
14163
14164  // Sometimes the operand may come from a insert_subvector building a 256-bit
14165  // allones vector
14166  if (VT.getSizeInBits() == 256 &&
14167      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14168    SDValue V1 = N->getOperand(0);
14169    SDValue V2 = N->getOperand(1);
14170
14171    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14172        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14173        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14174        ISD::isBuildVectorAllOnes(V2.getNode()))
14175      return true;
14176  }
14177
14178  return false;
14179}
14180
14181static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14182                                 TargetLowering::DAGCombinerInfo &DCI,
14183                                 const X86Subtarget *Subtarget) {
14184  if (DCI.isBeforeLegalizeOps())
14185    return SDValue();
14186
14187  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14188  if (R.getNode())
14189    return R;
14190
14191  EVT VT = N->getValueType(0);
14192
14193  // Create ANDN, BLSI, and BLSR instructions
14194  // BLSI is X & (-X)
14195  // BLSR is X & (X-1)
14196  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14197    SDValue N0 = N->getOperand(0);
14198    SDValue N1 = N->getOperand(1);
14199    DebugLoc DL = N->getDebugLoc();
14200
14201    // Check LHS for not
14202    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14203      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14204    // Check RHS for not
14205    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14206      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14207
14208    // Check LHS for neg
14209    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14210        isZero(N0.getOperand(0)))
14211      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14212
14213    // Check RHS for neg
14214    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14215        isZero(N1.getOperand(0)))
14216      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14217
14218    // Check LHS for X-1
14219    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14220        isAllOnes(N0.getOperand(1)))
14221      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14222
14223    // Check RHS for X-1
14224    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14225        isAllOnes(N1.getOperand(1)))
14226      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14227
14228    return SDValue();
14229  }
14230
14231  // Want to form ANDNP nodes:
14232  // 1) In the hopes of then easily combining them with OR and AND nodes
14233  //    to form PBLEND/PSIGN.
14234  // 2) To match ANDN packed intrinsics
14235  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14236    return SDValue();
14237
14238  SDValue N0 = N->getOperand(0);
14239  SDValue N1 = N->getOperand(1);
14240  DebugLoc DL = N->getDebugLoc();
14241
14242  // Check LHS for vnot
14243  if (N0.getOpcode() == ISD::XOR &&
14244      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14245      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14246    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14247
14248  // Check RHS for vnot
14249  if (N1.getOpcode() == ISD::XOR &&
14250      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14251      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14252    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14253
14254  return SDValue();
14255}
14256
14257static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14258                                TargetLowering::DAGCombinerInfo &DCI,
14259                                const X86Subtarget *Subtarget) {
14260  if (DCI.isBeforeLegalizeOps())
14261    return SDValue();
14262
14263  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14264  if (R.getNode())
14265    return R;
14266
14267  EVT VT = N->getValueType(0);
14268
14269  SDValue N0 = N->getOperand(0);
14270  SDValue N1 = N->getOperand(1);
14271
14272  // look for psign/blend
14273  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14274    if (!Subtarget->hasSSSE3() ||
14275        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14276      return SDValue();
14277
14278    // Canonicalize pandn to RHS
14279    if (N0.getOpcode() == X86ISD::ANDNP)
14280      std::swap(N0, N1);
14281    // or (and (m, y), (pandn m, x))
14282    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14283      SDValue Mask = N1.getOperand(0);
14284      SDValue X    = N1.getOperand(1);
14285      SDValue Y;
14286      if (N0.getOperand(0) == Mask)
14287        Y = N0.getOperand(1);
14288      if (N0.getOperand(1) == Mask)
14289        Y = N0.getOperand(0);
14290
14291      // Check to see if the mask appeared in both the AND and ANDNP and
14292      if (!Y.getNode())
14293        return SDValue();
14294
14295      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14296      // Look through mask bitcast.
14297      if (Mask.getOpcode() == ISD::BITCAST)
14298        Mask = Mask.getOperand(0);
14299      if (X.getOpcode() == ISD::BITCAST)
14300        X = X.getOperand(0);
14301      if (Y.getOpcode() == ISD::BITCAST)
14302        Y = Y.getOperand(0);
14303
14304      EVT MaskVT = Mask.getValueType();
14305
14306      // Validate that the Mask operand is a vector sra node.
14307      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14308      // there is no psrai.b
14309      if (Mask.getOpcode() != X86ISD::VSRAI)
14310        return SDValue();
14311
14312      // Check that the SRA is all signbits.
14313      SDValue SraC = Mask.getOperand(1);
14314      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14315      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14316      if ((SraAmt + 1) != EltBits)
14317        return SDValue();
14318
14319      DebugLoc DL = N->getDebugLoc();
14320
14321      // Now we know we at least have a plendvb with the mask val.  See if
14322      // we can form a psignb/w/d.
14323      // psign = x.type == y.type == mask.type && y = sub(0, x);
14324      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14325          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14326          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14327        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14328               "Unsupported VT for PSIGN");
14329        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14330        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14331      }
14332      // PBLENDVB only available on SSE 4.1
14333      if (!Subtarget->hasSSE41())
14334        return SDValue();
14335
14336      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14337
14338      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14339      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14340      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14341      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14342      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14343    }
14344  }
14345
14346  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14347    return SDValue();
14348
14349  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14350  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14351    std::swap(N0, N1);
14352  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14353    return SDValue();
14354  if (!N0.hasOneUse() || !N1.hasOneUse())
14355    return SDValue();
14356
14357  SDValue ShAmt0 = N0.getOperand(1);
14358  if (ShAmt0.getValueType() != MVT::i8)
14359    return SDValue();
14360  SDValue ShAmt1 = N1.getOperand(1);
14361  if (ShAmt1.getValueType() != MVT::i8)
14362    return SDValue();
14363  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14364    ShAmt0 = ShAmt0.getOperand(0);
14365  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14366    ShAmt1 = ShAmt1.getOperand(0);
14367
14368  DebugLoc DL = N->getDebugLoc();
14369  unsigned Opc = X86ISD::SHLD;
14370  SDValue Op0 = N0.getOperand(0);
14371  SDValue Op1 = N1.getOperand(0);
14372  if (ShAmt0.getOpcode() == ISD::SUB) {
14373    Opc = X86ISD::SHRD;
14374    std::swap(Op0, Op1);
14375    std::swap(ShAmt0, ShAmt1);
14376  }
14377
14378  unsigned Bits = VT.getSizeInBits();
14379  if (ShAmt1.getOpcode() == ISD::SUB) {
14380    SDValue Sum = ShAmt1.getOperand(0);
14381    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14382      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14383      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14384        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14385      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14386        return DAG.getNode(Opc, DL, VT,
14387                           Op0, Op1,
14388                           DAG.getNode(ISD::TRUNCATE, DL,
14389                                       MVT::i8, ShAmt0));
14390    }
14391  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14392    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14393    if (ShAmt0C &&
14394        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14395      return DAG.getNode(Opc, DL, VT,
14396                         N0.getOperand(0), N1.getOperand(0),
14397                         DAG.getNode(ISD::TRUNCATE, DL,
14398                                       MVT::i8, ShAmt0));
14399  }
14400
14401  return SDValue();
14402}
14403
14404// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14405static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14406                                 TargetLowering::DAGCombinerInfo &DCI,
14407                                 const X86Subtarget *Subtarget) {
14408  if (DCI.isBeforeLegalizeOps())
14409    return SDValue();
14410
14411  EVT VT = N->getValueType(0);
14412
14413  if (VT != MVT::i32 && VT != MVT::i64)
14414    return SDValue();
14415
14416  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14417
14418  // Create BLSMSK instructions by finding X ^ (X-1)
14419  SDValue N0 = N->getOperand(0);
14420  SDValue N1 = N->getOperand(1);
14421  DebugLoc DL = N->getDebugLoc();
14422
14423  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14424      isAllOnes(N0.getOperand(1)))
14425    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14426
14427  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14428      isAllOnes(N1.getOperand(1)))
14429    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14430
14431  return SDValue();
14432}
14433
14434/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14435static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14436                                   const X86Subtarget *Subtarget) {
14437  LoadSDNode *Ld = cast<LoadSDNode>(N);
14438  EVT RegVT = Ld->getValueType(0);
14439  EVT MemVT = Ld->getMemoryVT();
14440  DebugLoc dl = Ld->getDebugLoc();
14441  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14442
14443  ISD::LoadExtType Ext = Ld->getExtensionType();
14444
14445  // If this is a vector EXT Load then attempt to optimize it using a
14446  // shuffle. We need SSE4 for the shuffles.
14447  // TODO: It is possible to support ZExt by zeroing the undef values
14448  // during the shuffle phase or after the shuffle.
14449  if (RegVT.isVector() && RegVT.isInteger() &&
14450      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14451    assert(MemVT != RegVT && "Cannot extend to the same type");
14452    assert(MemVT.isVector() && "Must load a vector from memory");
14453
14454    unsigned NumElems = RegVT.getVectorNumElements();
14455    unsigned RegSz = RegVT.getSizeInBits();
14456    unsigned MemSz = MemVT.getSizeInBits();
14457    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14458    // All sizes must be a power of two
14459    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14460
14461    // Attempt to load the original value using a single load op.
14462    // Find a scalar type which is equal to the loaded word size.
14463    MVT SclrLoadTy = MVT::i8;
14464    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14465         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14466      MVT Tp = (MVT::SimpleValueType)tp;
14467      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14468        SclrLoadTy = Tp;
14469        break;
14470      }
14471    }
14472
14473    // Proceed if a load word is found.
14474    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14475
14476    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14477      RegSz/SclrLoadTy.getSizeInBits());
14478
14479    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14480                                  RegSz/MemVT.getScalarType().getSizeInBits());
14481    // Can't shuffle using an illegal type.
14482    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14483
14484    // Perform a single load.
14485    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14486                                  Ld->getBasePtr(),
14487                                  Ld->getPointerInfo(), Ld->isVolatile(),
14488                                  Ld->isNonTemporal(), Ld->isInvariant(),
14489                                  Ld->getAlignment());
14490
14491    // Insert the word loaded into a vector.
14492    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14493      LoadUnitVecVT, ScalarLoad);
14494
14495    // Bitcast the loaded value to a vector of the original element type, in
14496    // the size of the target vector type.
14497    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14498                                    ScalarInVector);
14499    unsigned SizeRatio = RegSz/MemSz;
14500
14501    // Redistribute the loaded elements into the different locations.
14502    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14503    for (unsigned i = 0; i != NumElems; ++i)
14504      ShuffleVec[i*SizeRatio] = i;
14505
14506    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14507                                         DAG.getUNDEF(WideVecVT),
14508                                         &ShuffleVec[0]);
14509
14510    // Bitcast to the requested type.
14511    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14512    // Replace the original load with the new sequence
14513    // and return the new chain.
14514    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14515    return SDValue(ScalarLoad.getNode(), 1);
14516  }
14517
14518  return SDValue();
14519}
14520
14521/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14522static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14523                                   const X86Subtarget *Subtarget) {
14524  StoreSDNode *St = cast<StoreSDNode>(N);
14525  EVT VT = St->getValue().getValueType();
14526  EVT StVT = St->getMemoryVT();
14527  DebugLoc dl = St->getDebugLoc();
14528  SDValue StoredVal = St->getOperand(1);
14529  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14530
14531  // If we are saving a concatenation of two XMM registers, perform two stores.
14532  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14533  // 128-bit ones. If in the future the cost becomes only one memory access the
14534  // first version would be better.
14535  if (VT.getSizeInBits() == 256 &&
14536      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14537      StoredVal.getNumOperands() == 2) {
14538
14539    SDValue Value0 = StoredVal.getOperand(0);
14540    SDValue Value1 = StoredVal.getOperand(1);
14541
14542    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14543    SDValue Ptr0 = St->getBasePtr();
14544    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14545
14546    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14547                                St->getPointerInfo(), St->isVolatile(),
14548                                St->isNonTemporal(), St->getAlignment());
14549    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14550                                St->getPointerInfo(), St->isVolatile(),
14551                                St->isNonTemporal(), St->getAlignment());
14552    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14553  }
14554
14555  // Optimize trunc store (of multiple scalars) to shuffle and store.
14556  // First, pack all of the elements in one place. Next, store to memory
14557  // in fewer chunks.
14558  if (St->isTruncatingStore() && VT.isVector()) {
14559    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14560    unsigned NumElems = VT.getVectorNumElements();
14561    assert(StVT != VT && "Cannot truncate to the same type");
14562    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14563    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14564
14565    // From, To sizes and ElemCount must be pow of two
14566    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14567    // We are going to use the original vector elt for storing.
14568    // Accumulated smaller vector elements must be a multiple of the store size.
14569    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14570
14571    unsigned SizeRatio  = FromSz / ToSz;
14572
14573    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14574
14575    // Create a type on which we perform the shuffle
14576    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14577            StVT.getScalarType(), NumElems*SizeRatio);
14578
14579    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14580
14581    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14582    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14583    for (unsigned i = 0; i != NumElems; ++i)
14584      ShuffleVec[i] = i * SizeRatio;
14585
14586    // Can't shuffle using an illegal type
14587    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14588
14589    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14590                                         DAG.getUNDEF(WideVecVT),
14591                                         &ShuffleVec[0]);
14592    // At this point all of the data is stored at the bottom of the
14593    // register. We now need to save it to mem.
14594
14595    // Find the largest store unit
14596    MVT StoreType = MVT::i8;
14597    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14598         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14599      MVT Tp = (MVT::SimpleValueType)tp;
14600      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14601        StoreType = Tp;
14602    }
14603
14604    // Bitcast the original vector into a vector of store-size units
14605    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14606            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14607    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14608    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14609    SmallVector<SDValue, 8> Chains;
14610    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14611                                        TLI.getPointerTy());
14612    SDValue Ptr = St->getBasePtr();
14613
14614    // Perform one or more big stores into memory.
14615    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
14616      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14617                                   StoreType, ShuffWide,
14618                                   DAG.getIntPtrConstant(i));
14619      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14620                                St->getPointerInfo(), St->isVolatile(),
14621                                St->isNonTemporal(), St->getAlignment());
14622      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14623      Chains.push_back(Ch);
14624    }
14625
14626    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14627                               Chains.size());
14628  }
14629
14630
14631  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14632  // the FP state in cases where an emms may be missing.
14633  // A preferable solution to the general problem is to figure out the right
14634  // places to insert EMMS.  This qualifies as a quick hack.
14635
14636  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14637  if (VT.getSizeInBits() != 64)
14638    return SDValue();
14639
14640  const Function *F = DAG.getMachineFunction().getFunction();
14641  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14642  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14643                     && Subtarget->hasSSE2();
14644  if ((VT.isVector() ||
14645       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14646      isa<LoadSDNode>(St->getValue()) &&
14647      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14648      St->getChain().hasOneUse() && !St->isVolatile()) {
14649    SDNode* LdVal = St->getValue().getNode();
14650    LoadSDNode *Ld = 0;
14651    int TokenFactorIndex = -1;
14652    SmallVector<SDValue, 8> Ops;
14653    SDNode* ChainVal = St->getChain().getNode();
14654    // Must be a store of a load.  We currently handle two cases:  the load
14655    // is a direct child, and it's under an intervening TokenFactor.  It is
14656    // possible to dig deeper under nested TokenFactors.
14657    if (ChainVal == LdVal)
14658      Ld = cast<LoadSDNode>(St->getChain());
14659    else if (St->getValue().hasOneUse() &&
14660             ChainVal->getOpcode() == ISD::TokenFactor) {
14661      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14662        if (ChainVal->getOperand(i).getNode() == LdVal) {
14663          TokenFactorIndex = i;
14664          Ld = cast<LoadSDNode>(St->getValue());
14665        } else
14666          Ops.push_back(ChainVal->getOperand(i));
14667      }
14668    }
14669
14670    if (!Ld || !ISD::isNormalLoad(Ld))
14671      return SDValue();
14672
14673    // If this is not the MMX case, i.e. we are just turning i64 load/store
14674    // into f64 load/store, avoid the transformation if there are multiple
14675    // uses of the loaded value.
14676    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14677      return SDValue();
14678
14679    DebugLoc LdDL = Ld->getDebugLoc();
14680    DebugLoc StDL = N->getDebugLoc();
14681    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14682    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14683    // pair instead.
14684    if (Subtarget->is64Bit() || F64IsLegal) {
14685      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14686      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14687                                  Ld->getPointerInfo(), Ld->isVolatile(),
14688                                  Ld->isNonTemporal(), Ld->isInvariant(),
14689                                  Ld->getAlignment());
14690      SDValue NewChain = NewLd.getValue(1);
14691      if (TokenFactorIndex != -1) {
14692        Ops.push_back(NewChain);
14693        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14694                               Ops.size());
14695      }
14696      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14697                          St->getPointerInfo(),
14698                          St->isVolatile(), St->isNonTemporal(),
14699                          St->getAlignment());
14700    }
14701
14702    // Otherwise, lower to two pairs of 32-bit loads / stores.
14703    SDValue LoAddr = Ld->getBasePtr();
14704    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14705                                 DAG.getConstant(4, MVT::i32));
14706
14707    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14708                               Ld->getPointerInfo(),
14709                               Ld->isVolatile(), Ld->isNonTemporal(),
14710                               Ld->isInvariant(), Ld->getAlignment());
14711    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14712                               Ld->getPointerInfo().getWithOffset(4),
14713                               Ld->isVolatile(), Ld->isNonTemporal(),
14714                               Ld->isInvariant(),
14715                               MinAlign(Ld->getAlignment(), 4));
14716
14717    SDValue NewChain = LoLd.getValue(1);
14718    if (TokenFactorIndex != -1) {
14719      Ops.push_back(LoLd);
14720      Ops.push_back(HiLd);
14721      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14722                             Ops.size());
14723    }
14724
14725    LoAddr = St->getBasePtr();
14726    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14727                         DAG.getConstant(4, MVT::i32));
14728
14729    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14730                                St->getPointerInfo(),
14731                                St->isVolatile(), St->isNonTemporal(),
14732                                St->getAlignment());
14733    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14734                                St->getPointerInfo().getWithOffset(4),
14735                                St->isVolatile(),
14736                                St->isNonTemporal(),
14737                                MinAlign(St->getAlignment(), 4));
14738    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14739  }
14740  return SDValue();
14741}
14742
14743/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14744/// and return the operands for the horizontal operation in LHS and RHS.  A
14745/// horizontal operation performs the binary operation on successive elements
14746/// of its first operand, then on successive elements of its second operand,
14747/// returning the resulting values in a vector.  For example, if
14748///   A = < float a0, float a1, float a2, float a3 >
14749/// and
14750///   B = < float b0, float b1, float b2, float b3 >
14751/// then the result of doing a horizontal operation on A and B is
14752///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14753/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14754/// A horizontal-op B, for some already available A and B, and if so then LHS is
14755/// set to A, RHS to B, and the routine returns 'true'.
14756/// Note that the binary operation should have the property that if one of the
14757/// operands is UNDEF then the result is UNDEF.
14758static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14759  // Look for the following pattern: if
14760  //   A = < float a0, float a1, float a2, float a3 >
14761  //   B = < float b0, float b1, float b2, float b3 >
14762  // and
14763  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14764  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14765  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14766  // which is A horizontal-op B.
14767
14768  // At least one of the operands should be a vector shuffle.
14769  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14770      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14771    return false;
14772
14773  EVT VT = LHS.getValueType();
14774
14775  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14776         "Unsupported vector type for horizontal add/sub");
14777
14778  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14779  // operate independently on 128-bit lanes.
14780  unsigned NumElts = VT.getVectorNumElements();
14781  unsigned NumLanes = VT.getSizeInBits()/128;
14782  unsigned NumLaneElts = NumElts / NumLanes;
14783  assert((NumLaneElts % 2 == 0) &&
14784         "Vector type should have an even number of elements in each lane");
14785  unsigned HalfLaneElts = NumLaneElts/2;
14786
14787  // View LHS in the form
14788  //   LHS = VECTOR_SHUFFLE A, B, LMask
14789  // If LHS is not a shuffle then pretend it is the shuffle
14790  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14791  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14792  // type VT.
14793  SDValue A, B;
14794  SmallVector<int, 16> LMask(NumElts);
14795  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14796    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14797      A = LHS.getOperand(0);
14798    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14799      B = LHS.getOperand(1);
14800    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14801    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14802  } else {
14803    if (LHS.getOpcode() != ISD::UNDEF)
14804      A = LHS;
14805    for (unsigned i = 0; i != NumElts; ++i)
14806      LMask[i] = i;
14807  }
14808
14809  // Likewise, view RHS in the form
14810  //   RHS = VECTOR_SHUFFLE C, D, RMask
14811  SDValue C, D;
14812  SmallVector<int, 16> RMask(NumElts);
14813  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14814    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14815      C = RHS.getOperand(0);
14816    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14817      D = RHS.getOperand(1);
14818    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14819    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14820  } else {
14821    if (RHS.getOpcode() != ISD::UNDEF)
14822      C = RHS;
14823    for (unsigned i = 0; i != NumElts; ++i)
14824      RMask[i] = i;
14825  }
14826
14827  // Check that the shuffles are both shuffling the same vectors.
14828  if (!(A == C && B == D) && !(A == D && B == C))
14829    return false;
14830
14831  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14832  if (!A.getNode() && !B.getNode())
14833    return false;
14834
14835  // If A and B occur in reverse order in RHS, then "swap" them (which means
14836  // rewriting the mask).
14837  if (A != C)
14838    CommuteVectorShuffleMask(RMask, NumElts);
14839
14840  // At this point LHS and RHS are equivalent to
14841  //   LHS = VECTOR_SHUFFLE A, B, LMask
14842  //   RHS = VECTOR_SHUFFLE A, B, RMask
14843  // Check that the masks correspond to performing a horizontal operation.
14844  for (unsigned i = 0; i != NumElts; ++i) {
14845    int LIdx = LMask[i], RIdx = RMask[i];
14846
14847    // Ignore any UNDEF components.
14848    if (LIdx < 0 || RIdx < 0 ||
14849        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14850        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14851      continue;
14852
14853    // Check that successive elements are being operated on.  If not, this is
14854    // not a horizontal operation.
14855    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14856    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14857    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14858    if (!(LIdx == Index && RIdx == Index + 1) &&
14859        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14860      return false;
14861  }
14862
14863  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14864  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14865  return true;
14866}
14867
14868/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14869static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14870                                  const X86Subtarget *Subtarget) {
14871  EVT VT = N->getValueType(0);
14872  SDValue LHS = N->getOperand(0);
14873  SDValue RHS = N->getOperand(1);
14874
14875  // Try to synthesize horizontal adds from adds of shuffles.
14876  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14877       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14878      isHorizontalBinOp(LHS, RHS, true))
14879    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14880  return SDValue();
14881}
14882
14883/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14884static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14885                                  const X86Subtarget *Subtarget) {
14886  EVT VT = N->getValueType(0);
14887  SDValue LHS = N->getOperand(0);
14888  SDValue RHS = N->getOperand(1);
14889
14890  // Try to synthesize horizontal subs from subs of shuffles.
14891  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14892       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14893      isHorizontalBinOp(LHS, RHS, false))
14894    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14895  return SDValue();
14896}
14897
14898/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14899/// X86ISD::FXOR nodes.
14900static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14901  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14902  // F[X]OR(0.0, x) -> x
14903  // F[X]OR(x, 0.0) -> x
14904  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14905    if (C->getValueAPF().isPosZero())
14906      return N->getOperand(1);
14907  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14908    if (C->getValueAPF().isPosZero())
14909      return N->getOperand(0);
14910  return SDValue();
14911}
14912
14913/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14914static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14915  // FAND(0.0, x) -> 0.0
14916  // FAND(x, 0.0) -> 0.0
14917  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14918    if (C->getValueAPF().isPosZero())
14919      return N->getOperand(0);
14920  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14921    if (C->getValueAPF().isPosZero())
14922      return N->getOperand(1);
14923  return SDValue();
14924}
14925
14926static SDValue PerformBTCombine(SDNode *N,
14927                                SelectionDAG &DAG,
14928                                TargetLowering::DAGCombinerInfo &DCI) {
14929  // BT ignores high bits in the bit index operand.
14930  SDValue Op1 = N->getOperand(1);
14931  if (Op1.hasOneUse()) {
14932    unsigned BitWidth = Op1.getValueSizeInBits();
14933    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14934    APInt KnownZero, KnownOne;
14935    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14936                                          !DCI.isBeforeLegalizeOps());
14937    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14938    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14939        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14940      DCI.CommitTargetLoweringOpt(TLO);
14941  }
14942  return SDValue();
14943}
14944
14945static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14946  SDValue Op = N->getOperand(0);
14947  if (Op.getOpcode() == ISD::BITCAST)
14948    Op = Op.getOperand(0);
14949  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14950  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14951      VT.getVectorElementType().getSizeInBits() ==
14952      OpVT.getVectorElementType().getSizeInBits()) {
14953    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14954  }
14955  return SDValue();
14956}
14957
14958static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14959                                  TargetLowering::DAGCombinerInfo &DCI,
14960                                  const X86Subtarget *Subtarget) {
14961  if (!DCI.isBeforeLegalizeOps())
14962    return SDValue();
14963
14964  if (!Subtarget->hasAVX())
14965    return SDValue();
14966
14967  EVT VT = N->getValueType(0);
14968  SDValue Op = N->getOperand(0);
14969  EVT OpVT = Op.getValueType();
14970  DebugLoc dl = N->getDebugLoc();
14971
14972  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14973      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14974
14975    if (Subtarget->hasAVX2())
14976      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
14977
14978    // Optimize vectors in AVX mode
14979    // Sign extend  v8i16 to v8i32 and
14980    //              v4i32 to v4i64
14981    //
14982    // Divide input vector into two parts
14983    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14984    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14985    // concat the vectors to original VT
14986
14987    unsigned NumElems = OpVT.getVectorNumElements();
14988    SmallVector<int,8> ShufMask1(NumElems, -1);
14989    for (unsigned i = 0; i != NumElems/2; ++i)
14990      ShufMask1[i] = i;
14991
14992    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14993                                        &ShufMask1[0]);
14994
14995    SmallVector<int,8> ShufMask2(NumElems, -1);
14996    for (unsigned i = 0; i != NumElems/2; ++i)
14997      ShufMask2[i] = i + NumElems/2;
14998
14999    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
15000                                        &ShufMask2[0]);
15001
15002    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
15003                                  VT.getVectorNumElements()/2);
15004
15005    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
15006    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
15007
15008    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15009  }
15010  return SDValue();
15011}
15012
15013static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
15014                                  TargetLowering::DAGCombinerInfo &DCI,
15015                                  const X86Subtarget *Subtarget) {
15016  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
15017  //           (and (i32 x86isd::setcc_carry), 1)
15018  // This eliminates the zext. This transformation is necessary because
15019  // ISD::SETCC is always legalized to i8.
15020  DebugLoc dl = N->getDebugLoc();
15021  SDValue N0 = N->getOperand(0);
15022  EVT VT = N->getValueType(0);
15023  EVT OpVT = N0.getValueType();
15024
15025  if (N0.getOpcode() == ISD::AND &&
15026      N0.hasOneUse() &&
15027      N0.getOperand(0).hasOneUse()) {
15028    SDValue N00 = N0.getOperand(0);
15029    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
15030      return SDValue();
15031    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
15032    if (!C || C->getZExtValue() != 1)
15033      return SDValue();
15034    return DAG.getNode(ISD::AND, dl, VT,
15035                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
15036                                   N00.getOperand(0), N00.getOperand(1)),
15037                       DAG.getConstant(1, VT));
15038  }
15039
15040  // Optimize vectors in AVX mode:
15041  //
15042  //   v8i16 -> v8i32
15043  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
15044  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
15045  //   Concat upper and lower parts.
15046  //
15047  //   v4i32 -> v4i64
15048  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
15049  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
15050  //   Concat upper and lower parts.
15051  //
15052  if (!DCI.isBeforeLegalizeOps())
15053    return SDValue();
15054
15055  if (!Subtarget->hasAVX())
15056    return SDValue();
15057
15058  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
15059      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
15060
15061    if (Subtarget->hasAVX2())
15062      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
15063
15064    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
15065    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
15066    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
15067
15068    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
15069                               VT.getVectorNumElements()/2);
15070
15071    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
15072    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
15073
15074    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15075  }
15076
15077  return SDValue();
15078}
15079
15080// Optimize x == -y --> x+y == 0
15081//          x != -y --> x+y != 0
15082static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15083  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
15084  SDValue LHS = N->getOperand(0);
15085  SDValue RHS = N->getOperand(1);
15086
15087  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
15088    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
15089      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
15090        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15091                                   LHS.getValueType(), RHS, LHS.getOperand(1));
15092        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15093                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15094      }
15095  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
15096    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
15097      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
15098        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15099                                   RHS.getValueType(), LHS, RHS.getOperand(1));
15100        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15101                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15102      }
15103  return SDValue();
15104}
15105
15106// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
15107static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15108  unsigned X86CC = N->getConstantOperandVal(0);
15109  SDValue EFLAG = N->getOperand(1);
15110  DebugLoc DL = N->getDebugLoc();
15111
15112  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
15113  // a zext and produces an all-ones bit which is more useful than 0/1 in some
15114  // cases.
15115  if (X86CC == X86::COND_B)
15116    return DAG.getNode(ISD::AND, DL, MVT::i8,
15117                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
15118                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
15119                       DAG.getConstant(1, MVT::i8));
15120
15121  return SDValue();
15122}
15123
15124static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
15125  SDValue Op0 = N->getOperand(0);
15126  EVT InVT = Op0->getValueType(0);
15127
15128  // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
15129  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15130    DebugLoc dl = N->getDebugLoc();
15131    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15132    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
15133    // Notice that we use SINT_TO_FP because we know that the high bits
15134    // are zero and SINT_TO_FP is better supported by the hardware.
15135    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15136  }
15137
15138  return SDValue();
15139}
15140
15141static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
15142                                        const X86TargetLowering *XTLI) {
15143  SDValue Op0 = N->getOperand(0);
15144  EVT InVT = Op0->getValueType(0);
15145
15146  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
15147  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15148    DebugLoc dl = N->getDebugLoc();
15149    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15150    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
15151    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15152  }
15153
15154  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
15155  // a 32-bit target where SSE doesn't support i64->FP operations.
15156  if (Op0.getOpcode() == ISD::LOAD) {
15157    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
15158    EVT VT = Ld->getValueType(0);
15159    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
15160        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
15161        !XTLI->getSubtarget()->is64Bit() &&
15162        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
15163      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
15164                                          Ld->getChain(), Op0, DAG);
15165      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
15166      return FILDChain;
15167    }
15168  }
15169  return SDValue();
15170}
15171
15172static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) {
15173  EVT VT = N->getValueType(0);
15174
15175  // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT()
15176  if (VT == MVT::v8i8 || VT == MVT::v4i8) {
15177    DebugLoc dl = N->getDebugLoc();
15178    MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15179    SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0));
15180    return DAG.getNode(ISD::TRUNCATE, dl, VT, I);
15181  }
15182
15183  return SDValue();
15184}
15185
15186// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
15187static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
15188                                 X86TargetLowering::DAGCombinerInfo &DCI) {
15189  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
15190  // the result is either zero or one (depending on the input carry bit).
15191  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
15192  if (X86::isZeroNode(N->getOperand(0)) &&
15193      X86::isZeroNode(N->getOperand(1)) &&
15194      // We don't have a good way to replace an EFLAGS use, so only do this when
15195      // dead right now.
15196      SDValue(N, 1).use_empty()) {
15197    DebugLoc DL = N->getDebugLoc();
15198    EVT VT = N->getValueType(0);
15199    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
15200    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
15201                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
15202                                           DAG.getConstant(X86::COND_B,MVT::i8),
15203                                           N->getOperand(2)),
15204                               DAG.getConstant(1, VT));
15205    return DCI.CombineTo(N, Res1, CarryOut);
15206  }
15207
15208  return SDValue();
15209}
15210
15211// fold (add Y, (sete  X, 0)) -> adc  0, Y
15212//      (add Y, (setne X, 0)) -> sbb -1, Y
15213//      (sub (sete  X, 0), Y) -> sbb  0, Y
15214//      (sub (setne X, 0), Y) -> adc -1, Y
15215static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
15216  DebugLoc DL = N->getDebugLoc();
15217
15218  // Look through ZExts.
15219  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
15220  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
15221    return SDValue();
15222
15223  SDValue SetCC = Ext.getOperand(0);
15224  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
15225    return SDValue();
15226
15227  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
15228  if (CC != X86::COND_E && CC != X86::COND_NE)
15229    return SDValue();
15230
15231  SDValue Cmp = SetCC.getOperand(1);
15232  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
15233      !X86::isZeroNode(Cmp.getOperand(1)) ||
15234      !Cmp.getOperand(0).getValueType().isInteger())
15235    return SDValue();
15236
15237  SDValue CmpOp0 = Cmp.getOperand(0);
15238  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
15239                               DAG.getConstant(1, CmpOp0.getValueType()));
15240
15241  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
15242  if (CC == X86::COND_NE)
15243    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
15244                       DL, OtherVal.getValueType(), OtherVal,
15245                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
15246  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
15247                     DL, OtherVal.getValueType(), OtherVal,
15248                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
15249}
15250
15251/// PerformADDCombine - Do target-specific dag combines on integer adds.
15252static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
15253                                 const X86Subtarget *Subtarget) {
15254  EVT VT = N->getValueType(0);
15255  SDValue Op0 = N->getOperand(0);
15256  SDValue Op1 = N->getOperand(1);
15257
15258  // Try to synthesize horizontal adds from adds of shuffles.
15259  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15260       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15261      isHorizontalBinOp(Op0, Op1, true))
15262    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
15263
15264  return OptimizeConditionalInDecrement(N, DAG);
15265}
15266
15267static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
15268                                 const X86Subtarget *Subtarget) {
15269  SDValue Op0 = N->getOperand(0);
15270  SDValue Op1 = N->getOperand(1);
15271
15272  // X86 can't encode an immediate LHS of a sub. See if we can push the
15273  // negation into a preceding instruction.
15274  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
15275    // If the RHS of the sub is a XOR with one use and a constant, invert the
15276    // immediate. Then add one to the LHS of the sub so we can turn
15277    // X-Y -> X+~Y+1, saving one register.
15278    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
15279        isa<ConstantSDNode>(Op1.getOperand(1))) {
15280      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
15281      EVT VT = Op0.getValueType();
15282      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
15283                                   Op1.getOperand(0),
15284                                   DAG.getConstant(~XorC, VT));
15285      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
15286                         DAG.getConstant(C->getAPIntValue()+1, VT));
15287    }
15288  }
15289
15290  // Try to synthesize horizontal adds from adds of shuffles.
15291  EVT VT = N->getValueType(0);
15292  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15293       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15294      isHorizontalBinOp(Op0, Op1, true))
15295    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15296
15297  return OptimizeConditionalInDecrement(N, DAG);
15298}
15299
15300SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15301                                             DAGCombinerInfo &DCI) const {
15302  SelectionDAG &DAG = DCI.DAG;
15303  switch (N->getOpcode()) {
15304  default: break;
15305  case ISD::EXTRACT_VECTOR_ELT:
15306    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15307  case ISD::VSELECT:
15308  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15309  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
15310  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15311  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15312  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15313  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15314  case ISD::SHL:
15315  case ISD::SRA:
15316  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15317  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15318  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15319  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15320  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
15321  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15322  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
15323  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15324  case ISD::FP_TO_SINT:     return PerformFP_TO_SINTCombine(N, DAG);
15325  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15326  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15327  case X86ISD::FXOR:
15328  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15329  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15330  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15331  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
15332  case ISD::ANY_EXTEND:
15333  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
15334  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
15335  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
15336  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
15337  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
15338  case X86ISD::SHUFP:       // Handle all target specific shuffles
15339  case X86ISD::PALIGN:
15340  case X86ISD::UNPCKH:
15341  case X86ISD::UNPCKL:
15342  case X86ISD::MOVHLPS:
15343  case X86ISD::MOVLHPS:
15344  case X86ISD::PSHUFD:
15345  case X86ISD::PSHUFHW:
15346  case X86ISD::PSHUFLW:
15347  case X86ISD::MOVSS:
15348  case X86ISD::MOVSD:
15349  case X86ISD::VPERMILP:
15350  case X86ISD::VPERM2X128:
15351  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
15352  }
15353
15354  return SDValue();
15355}
15356
15357/// isTypeDesirableForOp - Return true if the target has native support for
15358/// the specified value type and it is 'desirable' to use the type for the
15359/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
15360/// instruction encodings are longer and some i16 instructions are slow.
15361bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
15362  if (!isTypeLegal(VT))
15363    return false;
15364  if (VT != MVT::i16)
15365    return true;
15366
15367  switch (Opc) {
15368  default:
15369    return true;
15370  case ISD::LOAD:
15371  case ISD::SIGN_EXTEND:
15372  case ISD::ZERO_EXTEND:
15373  case ISD::ANY_EXTEND:
15374  case ISD::SHL:
15375  case ISD::SRL:
15376  case ISD::SUB:
15377  case ISD::ADD:
15378  case ISD::MUL:
15379  case ISD::AND:
15380  case ISD::OR:
15381  case ISD::XOR:
15382    return false;
15383  }
15384}
15385
15386/// IsDesirableToPromoteOp - This method query the target whether it is
15387/// beneficial for dag combiner to promote the specified node. If true, it
15388/// should return the desired promotion type by reference.
15389bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15390  EVT VT = Op.getValueType();
15391  if (VT != MVT::i16)
15392    return false;
15393
15394  bool Promote = false;
15395  bool Commute = false;
15396  switch (Op.getOpcode()) {
15397  default: break;
15398  case ISD::LOAD: {
15399    LoadSDNode *LD = cast<LoadSDNode>(Op);
15400    // If the non-extending load has a single use and it's not live out, then it
15401    // might be folded.
15402    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15403                                                     Op.hasOneUse()*/) {
15404      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15405             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15406        // The only case where we'd want to promote LOAD (rather then it being
15407        // promoted as an operand is when it's only use is liveout.
15408        if (UI->getOpcode() != ISD::CopyToReg)
15409          return false;
15410      }
15411    }
15412    Promote = true;
15413    break;
15414  }
15415  case ISD::SIGN_EXTEND:
15416  case ISD::ZERO_EXTEND:
15417  case ISD::ANY_EXTEND:
15418    Promote = true;
15419    break;
15420  case ISD::SHL:
15421  case ISD::SRL: {
15422    SDValue N0 = Op.getOperand(0);
15423    // Look out for (store (shl (load), x)).
15424    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15425      return false;
15426    Promote = true;
15427    break;
15428  }
15429  case ISD::ADD:
15430  case ISD::MUL:
15431  case ISD::AND:
15432  case ISD::OR:
15433  case ISD::XOR:
15434    Commute = true;
15435    // fallthrough
15436  case ISD::SUB: {
15437    SDValue N0 = Op.getOperand(0);
15438    SDValue N1 = Op.getOperand(1);
15439    if (!Commute && MayFoldLoad(N1))
15440      return false;
15441    // Avoid disabling potential load folding opportunities.
15442    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15443      return false;
15444    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15445      return false;
15446    Promote = true;
15447  }
15448  }
15449
15450  PVT = MVT::i32;
15451  return Promote;
15452}
15453
15454//===----------------------------------------------------------------------===//
15455//                           X86 Inline Assembly Support
15456//===----------------------------------------------------------------------===//
15457
15458namespace {
15459  // Helper to match a string separated by whitespace.
15460  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15461    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15462
15463    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15464      StringRef piece(*args[i]);
15465      if (!s.startswith(piece)) // Check if the piece matches.
15466        return false;
15467
15468      s = s.substr(piece.size());
15469      StringRef::size_type pos = s.find_first_not_of(" \t");
15470      if (pos == 0) // We matched a prefix.
15471        return false;
15472
15473      s = s.substr(pos);
15474    }
15475
15476    return s.empty();
15477  }
15478  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15479}
15480
15481bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15482  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15483
15484  std::string AsmStr = IA->getAsmString();
15485
15486  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15487  if (!Ty || Ty->getBitWidth() % 16 != 0)
15488    return false;
15489
15490  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15491  SmallVector<StringRef, 4> AsmPieces;
15492  SplitString(AsmStr, AsmPieces, ";\n");
15493
15494  switch (AsmPieces.size()) {
15495  default: return false;
15496  case 1:
15497    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15498    // we will turn this bswap into something that will be lowered to logical
15499    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15500    // lower so don't worry about this.
15501    // bswap $0
15502    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15503        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15504        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15505        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15506        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15507        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15508      // No need to check constraints, nothing other than the equivalent of
15509      // "=r,0" would be valid here.
15510      return IntrinsicLowering::LowerToByteSwap(CI);
15511    }
15512
15513    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15514    if (CI->getType()->isIntegerTy(16) &&
15515        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15516        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15517         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15518      AsmPieces.clear();
15519      const std::string &ConstraintsStr = IA->getConstraintString();
15520      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15521      std::sort(AsmPieces.begin(), AsmPieces.end());
15522      if (AsmPieces.size() == 4 &&
15523          AsmPieces[0] == "~{cc}" &&
15524          AsmPieces[1] == "~{dirflag}" &&
15525          AsmPieces[2] == "~{flags}" &&
15526          AsmPieces[3] == "~{fpsr}")
15527      return IntrinsicLowering::LowerToByteSwap(CI);
15528    }
15529    break;
15530  case 3:
15531    if (CI->getType()->isIntegerTy(32) &&
15532        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15533        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15534        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15535        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15536      AsmPieces.clear();
15537      const std::string &ConstraintsStr = IA->getConstraintString();
15538      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15539      std::sort(AsmPieces.begin(), AsmPieces.end());
15540      if (AsmPieces.size() == 4 &&
15541          AsmPieces[0] == "~{cc}" &&
15542          AsmPieces[1] == "~{dirflag}" &&
15543          AsmPieces[2] == "~{flags}" &&
15544          AsmPieces[3] == "~{fpsr}")
15545        return IntrinsicLowering::LowerToByteSwap(CI);
15546    }
15547
15548    if (CI->getType()->isIntegerTy(64)) {
15549      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15550      if (Constraints.size() >= 2 &&
15551          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15552          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15553        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15554        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15555            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15556            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15557          return IntrinsicLowering::LowerToByteSwap(CI);
15558      }
15559    }
15560    break;
15561  }
15562  return false;
15563}
15564
15565
15566
15567/// getConstraintType - Given a constraint letter, return the type of
15568/// constraint it is for this target.
15569X86TargetLowering::ConstraintType
15570X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15571  if (Constraint.size() == 1) {
15572    switch (Constraint[0]) {
15573    case 'R':
15574    case 'q':
15575    case 'Q':
15576    case 'f':
15577    case 't':
15578    case 'u':
15579    case 'y':
15580    case 'x':
15581    case 'Y':
15582    case 'l':
15583      return C_RegisterClass;
15584    case 'a':
15585    case 'b':
15586    case 'c':
15587    case 'd':
15588    case 'S':
15589    case 'D':
15590    case 'A':
15591      return C_Register;
15592    case 'I':
15593    case 'J':
15594    case 'K':
15595    case 'L':
15596    case 'M':
15597    case 'N':
15598    case 'G':
15599    case 'C':
15600    case 'e':
15601    case 'Z':
15602      return C_Other;
15603    default:
15604      break;
15605    }
15606  }
15607  return TargetLowering::getConstraintType(Constraint);
15608}
15609
15610/// Examine constraint type and operand type and determine a weight value.
15611/// This object must already have been set up with the operand type
15612/// and the current alternative constraint selected.
15613TargetLowering::ConstraintWeight
15614  X86TargetLowering::getSingleConstraintMatchWeight(
15615    AsmOperandInfo &info, const char *constraint) const {
15616  ConstraintWeight weight = CW_Invalid;
15617  Value *CallOperandVal = info.CallOperandVal;
15618    // If we don't have a value, we can't do a match,
15619    // but allow it at the lowest weight.
15620  if (CallOperandVal == NULL)
15621    return CW_Default;
15622  Type *type = CallOperandVal->getType();
15623  // Look at the constraint type.
15624  switch (*constraint) {
15625  default:
15626    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15627  case 'R':
15628  case 'q':
15629  case 'Q':
15630  case 'a':
15631  case 'b':
15632  case 'c':
15633  case 'd':
15634  case 'S':
15635  case 'D':
15636  case 'A':
15637    if (CallOperandVal->getType()->isIntegerTy())
15638      weight = CW_SpecificReg;
15639    break;
15640  case 'f':
15641  case 't':
15642  case 'u':
15643      if (type->isFloatingPointTy())
15644        weight = CW_SpecificReg;
15645      break;
15646  case 'y':
15647      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15648        weight = CW_SpecificReg;
15649      break;
15650  case 'x':
15651  case 'Y':
15652    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15653        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15654      weight = CW_Register;
15655    break;
15656  case 'I':
15657    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15658      if (C->getZExtValue() <= 31)
15659        weight = CW_Constant;
15660    }
15661    break;
15662  case 'J':
15663    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15664      if (C->getZExtValue() <= 63)
15665        weight = CW_Constant;
15666    }
15667    break;
15668  case 'K':
15669    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15670      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15671        weight = CW_Constant;
15672    }
15673    break;
15674  case 'L':
15675    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15676      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15677        weight = CW_Constant;
15678    }
15679    break;
15680  case 'M':
15681    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15682      if (C->getZExtValue() <= 3)
15683        weight = CW_Constant;
15684    }
15685    break;
15686  case 'N':
15687    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15688      if (C->getZExtValue() <= 0xff)
15689        weight = CW_Constant;
15690    }
15691    break;
15692  case 'G':
15693  case 'C':
15694    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15695      weight = CW_Constant;
15696    }
15697    break;
15698  case 'e':
15699    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15700      if ((C->getSExtValue() >= -0x80000000LL) &&
15701          (C->getSExtValue() <= 0x7fffffffLL))
15702        weight = CW_Constant;
15703    }
15704    break;
15705  case 'Z':
15706    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15707      if (C->getZExtValue() <= 0xffffffff)
15708        weight = CW_Constant;
15709    }
15710    break;
15711  }
15712  return weight;
15713}
15714
15715/// LowerXConstraint - try to replace an X constraint, which matches anything,
15716/// with another that has more specific requirements based on the type of the
15717/// corresponding operand.
15718const char *X86TargetLowering::
15719LowerXConstraint(EVT ConstraintVT) const {
15720  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15721  // 'f' like normal targets.
15722  if (ConstraintVT.isFloatingPoint()) {
15723    if (Subtarget->hasSSE2())
15724      return "Y";
15725    if (Subtarget->hasSSE1())
15726      return "x";
15727  }
15728
15729  return TargetLowering::LowerXConstraint(ConstraintVT);
15730}
15731
15732/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15733/// vector.  If it is invalid, don't add anything to Ops.
15734void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15735                                                     std::string &Constraint,
15736                                                     std::vector<SDValue>&Ops,
15737                                                     SelectionDAG &DAG) const {
15738  SDValue Result(0, 0);
15739
15740  // Only support length 1 constraints for now.
15741  if (Constraint.length() > 1) return;
15742
15743  char ConstraintLetter = Constraint[0];
15744  switch (ConstraintLetter) {
15745  default: break;
15746  case 'I':
15747    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15748      if (C->getZExtValue() <= 31) {
15749        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15750        break;
15751      }
15752    }
15753    return;
15754  case 'J':
15755    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15756      if (C->getZExtValue() <= 63) {
15757        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15758        break;
15759      }
15760    }
15761    return;
15762  case 'K':
15763    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15764      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15765        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15766        break;
15767      }
15768    }
15769    return;
15770  case 'N':
15771    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15772      if (C->getZExtValue() <= 255) {
15773        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15774        break;
15775      }
15776    }
15777    return;
15778  case 'e': {
15779    // 32-bit signed value
15780    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15781      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15782                                           C->getSExtValue())) {
15783        // Widen to 64 bits here to get it sign extended.
15784        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15785        break;
15786      }
15787    // FIXME gcc accepts some relocatable values here too, but only in certain
15788    // memory models; it's complicated.
15789    }
15790    return;
15791  }
15792  case 'Z': {
15793    // 32-bit unsigned value
15794    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15795      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15796                                           C->getZExtValue())) {
15797        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15798        break;
15799      }
15800    }
15801    // FIXME gcc accepts some relocatable values here too, but only in certain
15802    // memory models; it's complicated.
15803    return;
15804  }
15805  case 'i': {
15806    // Literal immediates are always ok.
15807    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15808      // Widen to 64 bits here to get it sign extended.
15809      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15810      break;
15811    }
15812
15813    // In any sort of PIC mode addresses need to be computed at runtime by
15814    // adding in a register or some sort of table lookup.  These can't
15815    // be used as immediates.
15816    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15817      return;
15818
15819    // If we are in non-pic codegen mode, we allow the address of a global (with
15820    // an optional displacement) to be used with 'i'.
15821    GlobalAddressSDNode *GA = 0;
15822    int64_t Offset = 0;
15823
15824    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15825    while (1) {
15826      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15827        Offset += GA->getOffset();
15828        break;
15829      } else if (Op.getOpcode() == ISD::ADD) {
15830        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15831          Offset += C->getZExtValue();
15832          Op = Op.getOperand(0);
15833          continue;
15834        }
15835      } else if (Op.getOpcode() == ISD::SUB) {
15836        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15837          Offset += -C->getZExtValue();
15838          Op = Op.getOperand(0);
15839          continue;
15840        }
15841      }
15842
15843      // Otherwise, this isn't something we can handle, reject it.
15844      return;
15845    }
15846
15847    const GlobalValue *GV = GA->getGlobal();
15848    // If we require an extra load to get this address, as in PIC mode, we
15849    // can't accept it.
15850    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15851                                                        getTargetMachine())))
15852      return;
15853
15854    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15855                                        GA->getValueType(0), Offset);
15856    break;
15857  }
15858  }
15859
15860  if (Result.getNode()) {
15861    Ops.push_back(Result);
15862    return;
15863  }
15864  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15865}
15866
15867std::pair<unsigned, const TargetRegisterClass*>
15868X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15869                                                EVT VT) const {
15870  // First, see if this is a constraint that directly corresponds to an LLVM
15871  // register class.
15872  if (Constraint.size() == 1) {
15873    // GCC Constraint Letters
15874    switch (Constraint[0]) {
15875    default: break;
15876      // TODO: Slight differences here in allocation order and leaving
15877      // RIP in the class. Do they matter any more here than they do
15878      // in the normal allocation?
15879    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15880      if (Subtarget->is64Bit()) {
15881        if (VT == MVT::i32 || VT == MVT::f32)
15882          return std::make_pair(0U, &X86::GR32RegClass);
15883        if (VT == MVT::i16)
15884          return std::make_pair(0U, &X86::GR16RegClass);
15885        if (VT == MVT::i8 || VT == MVT::i1)
15886          return std::make_pair(0U, &X86::GR8RegClass);
15887        if (VT == MVT::i64 || VT == MVT::f64)
15888          return std::make_pair(0U, &X86::GR64RegClass);
15889        break;
15890      }
15891      // 32-bit fallthrough
15892    case 'Q':   // Q_REGS
15893      if (VT == MVT::i32 || VT == MVT::f32)
15894        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
15895      if (VT == MVT::i16)
15896        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
15897      if (VT == MVT::i8 || VT == MVT::i1)
15898        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
15899      if (VT == MVT::i64)
15900        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
15901      break;
15902    case 'r':   // GENERAL_REGS
15903    case 'l':   // INDEX_REGS
15904      if (VT == MVT::i8 || VT == MVT::i1)
15905        return std::make_pair(0U, &X86::GR8RegClass);
15906      if (VT == MVT::i16)
15907        return std::make_pair(0U, &X86::GR16RegClass);
15908      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15909        return std::make_pair(0U, &X86::GR32RegClass);
15910      return std::make_pair(0U, &X86::GR64RegClass);
15911    case 'R':   // LEGACY_REGS
15912      if (VT == MVT::i8 || VT == MVT::i1)
15913        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
15914      if (VT == MVT::i16)
15915        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
15916      if (VT == MVT::i32 || !Subtarget->is64Bit())
15917        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
15918      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
15919    case 'f':  // FP Stack registers.
15920      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15921      // value to the correct fpstack register class.
15922      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15923        return std::make_pair(0U, &X86::RFP32RegClass);
15924      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15925        return std::make_pair(0U, &X86::RFP64RegClass);
15926      return std::make_pair(0U, &X86::RFP80RegClass);
15927    case 'y':   // MMX_REGS if MMX allowed.
15928      if (!Subtarget->hasMMX()) break;
15929      return std::make_pair(0U, &X86::VR64RegClass);
15930    case 'Y':   // SSE_REGS if SSE2 allowed
15931      if (!Subtarget->hasSSE2()) break;
15932      // FALL THROUGH.
15933    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15934      if (!Subtarget->hasSSE1()) break;
15935
15936      switch (VT.getSimpleVT().SimpleTy) {
15937      default: break;
15938      // Scalar SSE types.
15939      case MVT::f32:
15940      case MVT::i32:
15941        return std::make_pair(0U, &X86::FR32RegClass);
15942      case MVT::f64:
15943      case MVT::i64:
15944        return std::make_pair(0U, &X86::FR64RegClass);
15945      // Vector types.
15946      case MVT::v16i8:
15947      case MVT::v8i16:
15948      case MVT::v4i32:
15949      case MVT::v2i64:
15950      case MVT::v4f32:
15951      case MVT::v2f64:
15952        return std::make_pair(0U, &X86::VR128RegClass);
15953      // AVX types.
15954      case MVT::v32i8:
15955      case MVT::v16i16:
15956      case MVT::v8i32:
15957      case MVT::v4i64:
15958      case MVT::v8f32:
15959      case MVT::v4f64:
15960        return std::make_pair(0U, &X86::VR256RegClass);
15961      }
15962      break;
15963    }
15964  }
15965
15966  // Use the default implementation in TargetLowering to convert the register
15967  // constraint into a member of a register class.
15968  std::pair<unsigned, const TargetRegisterClass*> Res;
15969  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15970
15971  // Not found as a standard register?
15972  if (Res.second == 0) {
15973    // Map st(0) -> st(7) -> ST0
15974    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15975        tolower(Constraint[1]) == 's' &&
15976        tolower(Constraint[2]) == 't' &&
15977        Constraint[3] == '(' &&
15978        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15979        Constraint[5] == ')' &&
15980        Constraint[6] == '}') {
15981
15982      Res.first = X86::ST0+Constraint[4]-'0';
15983      Res.second = &X86::RFP80RegClass;
15984      return Res;
15985    }
15986
15987    // GCC allows "st(0)" to be called just plain "st".
15988    if (StringRef("{st}").equals_lower(Constraint)) {
15989      Res.first = X86::ST0;
15990      Res.second = &X86::RFP80RegClass;
15991      return Res;
15992    }
15993
15994    // flags -> EFLAGS
15995    if (StringRef("{flags}").equals_lower(Constraint)) {
15996      Res.first = X86::EFLAGS;
15997      Res.second = &X86::CCRRegClass;
15998      return Res;
15999    }
16000
16001    // 'A' means EAX + EDX.
16002    if (Constraint == "A") {
16003      Res.first = X86::EAX;
16004      Res.second = &X86::GR32_ADRegClass;
16005      return Res;
16006    }
16007    return Res;
16008  }
16009
16010  // Otherwise, check to see if this is a register class of the wrong value
16011  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
16012  // turn into {ax},{dx}.
16013  if (Res.second->hasType(VT))
16014    return Res;   // Correct type already, nothing to do.
16015
16016  // All of the single-register GCC register classes map their values onto
16017  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
16018  // really want an 8-bit or 32-bit register, map to the appropriate register
16019  // class and return the appropriate register.
16020  if (Res.second == &X86::GR16RegClass) {
16021    if (VT == MVT::i8) {
16022      unsigned DestReg = 0;
16023      switch (Res.first) {
16024      default: break;
16025      case X86::AX: DestReg = X86::AL; break;
16026      case X86::DX: DestReg = X86::DL; break;
16027      case X86::CX: DestReg = X86::CL; break;
16028      case X86::BX: DestReg = X86::BL; break;
16029      }
16030      if (DestReg) {
16031        Res.first = DestReg;
16032        Res.second = &X86::GR8RegClass;
16033      }
16034    } else if (VT == MVT::i32) {
16035      unsigned DestReg = 0;
16036      switch (Res.first) {
16037      default: break;
16038      case X86::AX: DestReg = X86::EAX; break;
16039      case X86::DX: DestReg = X86::EDX; break;
16040      case X86::CX: DestReg = X86::ECX; break;
16041      case X86::BX: DestReg = X86::EBX; break;
16042      case X86::SI: DestReg = X86::ESI; break;
16043      case X86::DI: DestReg = X86::EDI; break;
16044      case X86::BP: DestReg = X86::EBP; break;
16045      case X86::SP: DestReg = X86::ESP; break;
16046      }
16047      if (DestReg) {
16048        Res.first = DestReg;
16049        Res.second = &X86::GR32RegClass;
16050      }
16051    } else if (VT == MVT::i64) {
16052      unsigned DestReg = 0;
16053      switch (Res.first) {
16054      default: break;
16055      case X86::AX: DestReg = X86::RAX; break;
16056      case X86::DX: DestReg = X86::RDX; break;
16057      case X86::CX: DestReg = X86::RCX; break;
16058      case X86::BX: DestReg = X86::RBX; break;
16059      case X86::SI: DestReg = X86::RSI; break;
16060      case X86::DI: DestReg = X86::RDI; break;
16061      case X86::BP: DestReg = X86::RBP; break;
16062      case X86::SP: DestReg = X86::RSP; break;
16063      }
16064      if (DestReg) {
16065        Res.first = DestReg;
16066        Res.second = &X86::GR64RegClass;
16067      }
16068    }
16069  } else if (Res.second == &X86::FR32RegClass ||
16070             Res.second == &X86::FR64RegClass ||
16071             Res.second == &X86::VR128RegClass) {
16072    // Handle references to XMM physical registers that got mapped into the
16073    // wrong class.  This can happen with constraints like {xmm0} where the
16074    // target independent register mapper will just pick the first match it can
16075    // find, ignoring the required type.
16076    if (VT == MVT::f32)
16077      Res.second = &X86::FR32RegClass;
16078    else if (VT == MVT::f64)
16079      Res.second = &X86::FR64RegClass;
16080    else if (X86::VR128RegClass.hasType(VT))
16081      Res.second = &X86::VR128RegClass;
16082  }
16083
16084  return Res;
16085}
16086