X86ISelLowering.cpp revision d9f3c480a7bc0969b08ace68af7dcde40f6caff1
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43// Forward declarations.
44static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG);
45
46X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
47  : TargetLowering(TM) {
48  Subtarget = &TM.getSubtarget<X86Subtarget>();
49  X86ScalarSSEf64 = Subtarget->hasSSE2();
50  X86ScalarSSEf32 = Subtarget->hasSSE1();
51  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
52
53  bool Fast = false;
54
55  RegInfo = TM.getRegisterInfo();
56
57  // Set up the TargetLowering object.
58
59  // X86 is weird, it always uses i8 for shift amounts and setcc results.
60  setShiftAmountType(MVT::i8);
61  setSetCCResultContents(ZeroOrOneSetCCResult);
62  setSchedulingPreference(SchedulingForRegPressure);
63  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
64  setStackPointerRegisterToSaveRestore(X86StackPtr);
65
66  if (Subtarget->isTargetDarwin()) {
67    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
68    setUseUnderscoreSetJmp(false);
69    setUseUnderscoreLongJmp(false);
70  } else if (Subtarget->isTargetMingw()) {
71    // MS runtime is weird: it exports _setjmp, but longjmp!
72    setUseUnderscoreSetJmp(true);
73    setUseUnderscoreLongJmp(false);
74  } else {
75    setUseUnderscoreSetJmp(true);
76    setUseUnderscoreLongJmp(true);
77  }
78
79  // Set up the register classes.
80  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
81  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
82  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
83  if (Subtarget->is64Bit())
84    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
85
86  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
87
88  // We don't accept any truncstore of integer registers.
89  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
90  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
91  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
92  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
93  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
94  setTruncStoreAction(MVT::i16, MVT::i8, Expand);
95
96  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
97  // operation.
98  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
99  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
100  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
101
102  if (Subtarget->is64Bit()) {
103    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
104    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
105  } else {
106    if (X86ScalarSSEf64)
107      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
108      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
109    else
110      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
111  }
112
113  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
114  // this operation.
115  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
116  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
117  // SSE has no i16 to fp conversion, only i32
118  if (X86ScalarSSEf32) {
119    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
120    // f32 and f64 cases are Legal, f80 case is not
121    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
122  } else {
123    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
124    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
125  }
126
127  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
128  // are Legal, f80 is custom lowered.
129  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
130  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
131
132  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
133  // this operation.
134  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
135  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
136
137  if (X86ScalarSSEf32) {
138    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
139    // f32 and f64 cases are Legal, f80 case is not
140    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
141  } else {
142    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
143    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
144  }
145
146  // Handle FP_TO_UINT by promoting the destination to a larger signed
147  // conversion.
148  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
149  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
150  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
151
152  if (Subtarget->is64Bit()) {
153    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
154    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
155  } else {
156    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
157      // Expand FP_TO_UINT into a select.
158      // FIXME: We would like to use a Custom expander here eventually to do
159      // the optimal thing for SSE vs. the default expansion in the legalizer.
160      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
161    else
162      // With SSE3 we can use fisttpll to convert to a signed i64.
163      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
164  }
165
166  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
167  if (!X86ScalarSSEf64) {
168    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
169    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
170  }
171
172  // Scalar integer divide and remainder are lowered to use operations that
173  // produce two results, to match the available instructions. This exposes
174  // the two-result form to trivial CSE, which is able to combine x/y and x%y
175  // into a single instruction.
176  //
177  // Scalar integer multiply-high is also lowered to use two-result
178  // operations, to match the available instructions. However, plain multiply
179  // (low) operations are left as Legal, as there are single-result
180  // instructions for this in x86. Using the two-result multiply instructions
181  // when both high and low results are needed must be arranged by dagcombine.
182  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
183  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
184  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
185  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
186  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
187  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
188  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
189  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
190  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
191  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
192  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
193  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
194  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
195  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
196  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
197  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
198  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
199  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
200  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
201  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
202  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
203  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
204  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
205  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
206
207  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
208  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
209  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
210  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
211  if (Subtarget->is64Bit())
212    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
213  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
214  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
215  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
216  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
217  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
218  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
219  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
220  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
221
222  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
223  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
224  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
225  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
226  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
227  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
228  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
229  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
230  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
231  if (Subtarget->is64Bit()) {
232    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
233    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
234    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
235  }
236
237  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
238  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
239
240  // These should be promoted to a larger select which is supported.
241  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
242  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
243  // X86 wants to expand cmov itself.
244  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
245  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
246  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
247  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
248  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
249  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
250  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
251  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
252  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
253  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
254  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
255  if (Subtarget->is64Bit()) {
256    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
257    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
258  }
259  // X86 ret instruction may pop stack.
260  setOperationAction(ISD::RET             , MVT::Other, Custom);
261  if (!Subtarget->is64Bit())
262    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
263
264  // Darwin ABI issue.
265  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
266  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
267  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
268  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
269  if (Subtarget->is64Bit())
270    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
271  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
272  if (Subtarget->is64Bit()) {
273    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
274    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
275    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
276    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
277  }
278  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
279  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
280  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
281  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
282  if (Subtarget->is64Bit()) {
283    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
284    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
285    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
286  }
287
288  if (Subtarget->hasSSE1())
289    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
290
291  if (!Subtarget->hasSSE2())
292    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
293
294  // Expand certain atomics
295  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i8, Custom);
296  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i16, Custom);
297  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i32, Custom);
298  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i64, Custom);
299  setOperationAction(ISD::ATOMIC_LOAD_SUB , MVT::i8, Expand);
300  setOperationAction(ISD::ATOMIC_LOAD_SUB , MVT::i16, Expand);
301  setOperationAction(ISD::ATOMIC_LOAD_SUB , MVT::i32, Expand);
302
303  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
304  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
305  // FIXME - use subtarget debug flags
306  if (!Subtarget->isTargetDarwin() &&
307      !Subtarget->isTargetELF() &&
308      !Subtarget->isTargetCygMing()) {
309    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
310    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
311  }
312
313  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
314  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
315  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
316  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
317  if (Subtarget->is64Bit()) {
318    // FIXME: Verify
319    setExceptionPointerRegister(X86::RAX);
320    setExceptionSelectorRegister(X86::RDX);
321  } else {
322    setExceptionPointerRegister(X86::EAX);
323    setExceptionSelectorRegister(X86::EDX);
324  }
325  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
326
327  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
328
329  setOperationAction(ISD::TRAP, MVT::Other, Legal);
330
331  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
332  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
333  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
334  if (Subtarget->is64Bit()) {
335    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
336    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
337  } else {
338    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
339    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
340  }
341
342  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
343  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
344  if (Subtarget->is64Bit())
345    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
346  if (Subtarget->isTargetCygMing())
347    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
348  else
349    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
350
351  if (X86ScalarSSEf64) {
352    // f32 and f64 use SSE.
353    // Set up the FP register classes.
354    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
355    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
356
357    // Use ANDPD to simulate FABS.
358    setOperationAction(ISD::FABS , MVT::f64, Custom);
359    setOperationAction(ISD::FABS , MVT::f32, Custom);
360
361    // Use XORP to simulate FNEG.
362    setOperationAction(ISD::FNEG , MVT::f64, Custom);
363    setOperationAction(ISD::FNEG , MVT::f32, Custom);
364
365    // Use ANDPD and ORPD to simulate FCOPYSIGN.
366    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
367    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
368
369    // We don't support sin/cos/fmod
370    setOperationAction(ISD::FSIN , MVT::f64, Expand);
371    setOperationAction(ISD::FCOS , MVT::f64, Expand);
372    setOperationAction(ISD::FSIN , MVT::f32, Expand);
373    setOperationAction(ISD::FCOS , MVT::f32, Expand);
374
375    // Expand FP immediates into loads from the stack, except for the special
376    // cases we handle.
377    addLegalFPImmediate(APFloat(+0.0)); // xorpd
378    addLegalFPImmediate(APFloat(+0.0f)); // xorps
379
380    // Floating truncations from f80 and extensions to f80 go through memory.
381    // If optimizing, we lie about this though and handle it in
382    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
383    if (Fast) {
384      setConvertAction(MVT::f32, MVT::f80, Expand);
385      setConvertAction(MVT::f64, MVT::f80, Expand);
386      setConvertAction(MVT::f80, MVT::f32, Expand);
387      setConvertAction(MVT::f80, MVT::f64, Expand);
388    }
389  } else if (X86ScalarSSEf32) {
390    // Use SSE for f32, x87 for f64.
391    // Set up the FP register classes.
392    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
393    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
394
395    // Use ANDPS to simulate FABS.
396    setOperationAction(ISD::FABS , MVT::f32, Custom);
397
398    // Use XORP to simulate FNEG.
399    setOperationAction(ISD::FNEG , MVT::f32, Custom);
400
401    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
402
403    // Use ANDPS and ORPS to simulate FCOPYSIGN.
404    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
405    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
406
407    // We don't support sin/cos/fmod
408    setOperationAction(ISD::FSIN , MVT::f32, Expand);
409    setOperationAction(ISD::FCOS , MVT::f32, Expand);
410
411    // Special cases we handle for FP constants.
412    addLegalFPImmediate(APFloat(+0.0f)); // xorps
413    addLegalFPImmediate(APFloat(+0.0)); // FLD0
414    addLegalFPImmediate(APFloat(+1.0)); // FLD1
415    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
416    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
417
418    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
419    // this though and handle it in InstructionSelectPreprocess so that
420    // dagcombine2 can hack on these.
421    if (Fast) {
422      setConvertAction(MVT::f32, MVT::f64, Expand);
423      setConvertAction(MVT::f32, MVT::f80, Expand);
424      setConvertAction(MVT::f80, MVT::f32, Expand);
425      setConvertAction(MVT::f64, MVT::f32, Expand);
426      // And x87->x87 truncations also.
427      setConvertAction(MVT::f80, MVT::f64, Expand);
428    }
429
430    if (!UnsafeFPMath) {
431      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
432      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
433    }
434  } else {
435    // f32 and f64 in x87.
436    // Set up the FP register classes.
437    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
438    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
439
440    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
441    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
442    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
443    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
444
445    // Floating truncations go through memory.  If optimizing, we lie about
446    // this though and handle it in InstructionSelectPreprocess so that
447    // dagcombine2 can hack on these.
448    if (Fast) {
449      setConvertAction(MVT::f80, MVT::f32, Expand);
450      setConvertAction(MVT::f64, MVT::f32, Expand);
451      setConvertAction(MVT::f80, MVT::f64, Expand);
452    }
453
454    if (!UnsafeFPMath) {
455      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
456      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
457    }
458    addLegalFPImmediate(APFloat(+0.0)); // FLD0
459    addLegalFPImmediate(APFloat(+1.0)); // FLD1
460    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
461    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
462    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
463    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
464    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
465    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
466  }
467
468  // Long double always uses X87.
469  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
470  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
471  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
472  {
473    APFloat TmpFlt(+0.0);
474    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
475    addLegalFPImmediate(TmpFlt);  // FLD0
476    TmpFlt.changeSign();
477    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
478    APFloat TmpFlt2(+1.0);
479    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
480    addLegalFPImmediate(TmpFlt2);  // FLD1
481    TmpFlt2.changeSign();
482    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
483  }
484
485  if (!UnsafeFPMath) {
486    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
487    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
488  }
489
490  // Always use a library call for pow.
491  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
492  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
493  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
494
495  // First set operation action for all vector types to expand. Then we
496  // will selectively turn on ones that can be effectively codegen'd.
497  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
498       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
499    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
500    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
501    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
502    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
503    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
504    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
505    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
506    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
507    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
508    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
509    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
510    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
511    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
512    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::SimpleValueType)VT, Expand);
513    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::SimpleValueType)VT, Expand);
514    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::SimpleValueType)VT, Expand);
515    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
516    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
517    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
518    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
519    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
520    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
521    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
522    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
523    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
524    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
525    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
526    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
527    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
528    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
529    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
530    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
531    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
532    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
533    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
534    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
535    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
537  }
538
539  if (Subtarget->hasMMX()) {
540    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
541    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
542    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
543    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
544    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
545
546    // FIXME: add MMX packed arithmetics
547
548    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
549    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
550    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
551    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
552
553    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
554    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
555    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
556    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
557
558    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
559    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
560
561    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
562    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
563    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
564    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
565    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
566    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
567    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
568
569    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
570    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
571    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
572    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
573    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
574    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
575    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
576
577    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
578    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
579    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
580    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
581    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
582    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
583    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
584
585    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
586    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
587    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
588    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
589    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
590    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
591    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
592    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
593    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
594
595    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
596    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
597    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
598    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
599    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
600
601    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
602    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
603    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
604    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
605
606    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
607    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
608    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
609    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
610
611    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
612  }
613
614  if (Subtarget->hasSSE1()) {
615    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
616
617    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
618    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
619    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
620    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
621    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
622    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
623    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
624    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
625    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
626    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
627    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
628    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
629  }
630
631  if (Subtarget->hasSSE2()) {
632    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
633    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
634    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
635    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
636    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
637
638    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
639    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
640    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
641    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
642    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
643    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
644    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
645    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
646    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
647    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
648    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
649    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
650    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
651    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
652    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
653
654    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
655    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
656    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
657    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
658
659    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
660    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
661    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
662    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
663    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
664
665    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
666    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
667      MVT VT = (MVT::SimpleValueType)i;
668      // Do not attempt to custom lower non-power-of-2 vectors
669      if (!isPowerOf2_32(VT.getVectorNumElements()))
670        continue;
671      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
672      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
673      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
674    }
675    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
676    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
677    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
678    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
679    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
680    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
681    if (Subtarget->is64Bit()) {
682      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
683      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
684    }
685
686    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
687    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
688      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
689      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
690      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
691      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
692      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
693      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
694      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
695      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
696      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
697      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
698    }
699
700    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
701
702    // Custom lower v2i64 and v2f64 selects.
703    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
704    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
705    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
706    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
707
708  }
709
710  if (Subtarget->hasSSE41()) {
711    // FIXME: Do we need to handle scalar-to-vector here?
712    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
713    setOperationAction(ISD::MUL,                MVT::v2i64, Legal);
714
715    // i8 and i16 vectors are custom , because the source register and source
716    // source memory operand types are not the same width.  f32 vectors are
717    // custom since the immediate controlling the insert encodes additional
718    // information.
719    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
720    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
721    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
722    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
723
724    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
725    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
726    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
727    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
728
729    if (Subtarget->is64Bit()) {
730      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
731      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
732    }
733  }
734
735  if (Subtarget->hasSSE42()) {
736    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
737  }
738
739  // We want to custom lower some of our intrinsics.
740  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
741
742  // We have target-specific dag combine patterns for the following nodes:
743  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
744  setTargetDAGCombine(ISD::BUILD_VECTOR);
745  setTargetDAGCombine(ISD::SELECT);
746  setTargetDAGCombine(ISD::STORE);
747
748  computeRegisterProperties();
749
750  // FIXME: These should be based on subtarget info. Plus, the values should
751  // be smaller when we are in optimizing for size mode.
752  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
753  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
754  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
755  allowUnalignedMemoryAccesses = true; // x86 supports it!
756  setPrefLoopAlignment(16);
757}
758
759
760MVT X86TargetLowering::getSetCCResultType(const SDValue &) const {
761  return MVT::i8;
762}
763
764
765/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
766/// the desired ByVal argument alignment.
767static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
768  if (MaxAlign == 16)
769    return;
770  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
771    if (VTy->getBitWidth() == 128)
772      MaxAlign = 16;
773  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
774    unsigned EltAlign = 0;
775    getMaxByValAlign(ATy->getElementType(), EltAlign);
776    if (EltAlign > MaxAlign)
777      MaxAlign = EltAlign;
778  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
779    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
780      unsigned EltAlign = 0;
781      getMaxByValAlign(STy->getElementType(i), EltAlign);
782      if (EltAlign > MaxAlign)
783        MaxAlign = EltAlign;
784      if (MaxAlign == 16)
785        break;
786    }
787  }
788  return;
789}
790
791/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
792/// function arguments in the caller parameter area. For X86, aggregates
793/// that contain SSE vectors are placed at 16-byte boundaries while the rest
794/// are at 4-byte boundaries.
795unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
796  if (Subtarget->is64Bit())
797    return getTargetData()->getABITypeAlignment(Ty);
798  unsigned Align = 4;
799  if (Subtarget->hasSSE1())
800    getMaxByValAlign(Ty, Align);
801  return Align;
802}
803
804/// getOptimalMemOpType - Returns the target specific optimal type for load
805/// and store operations as a result of memset, memcpy, and memmove
806/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
807/// determining it.
808MVT
809X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
810                                       bool isSrcConst, bool isSrcStr) const {
811  if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
812    return MVT::v4i32;
813  if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
814    return MVT::v4f32;
815  if (Subtarget->is64Bit() && Size >= 8)
816    return MVT::i64;
817  return MVT::i32;
818}
819
820
821/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
822/// jumptable.
823SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
824                                                      SelectionDAG &DAG) const {
825  if (usesGlobalOffsetTable())
826    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
827  if (!Subtarget->isPICStyleRIPRel())
828    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
829  return Table;
830}
831
832//===----------------------------------------------------------------------===//
833//               Return Value Calling Convention Implementation
834//===----------------------------------------------------------------------===//
835
836#include "X86GenCallingConv.inc"
837
838/// LowerRET - Lower an ISD::RET node.
839SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
840  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
841
842  SmallVector<CCValAssign, 16> RVLocs;
843  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
844  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
845  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
846  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
847
848  // If this is the first return lowered for this function, add the regs to the
849  // liveout set for the function.
850  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
851    for (unsigned i = 0; i != RVLocs.size(); ++i)
852      if (RVLocs[i].isRegLoc())
853        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
854  }
855  SDValue Chain = Op.getOperand(0);
856
857  // Handle tail call return.
858  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
859  if (Chain.getOpcode() == X86ISD::TAILCALL) {
860    SDValue TailCall = Chain;
861    SDValue TargetAddress = TailCall.getOperand(1);
862    SDValue StackAdjustment = TailCall.getOperand(2);
863    assert(((TargetAddress.getOpcode() == ISD::Register &&
864               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
865                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
866              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
867              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
868             "Expecting an global address, external symbol, or register");
869    assert(StackAdjustment.getOpcode() == ISD::Constant &&
870           "Expecting a const value");
871
872    SmallVector<SDValue,8> Operands;
873    Operands.push_back(Chain.getOperand(0));
874    Operands.push_back(TargetAddress);
875    Operands.push_back(StackAdjustment);
876    // Copy registers used by the call. Last operand is a flag so it is not
877    // copied.
878    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
879      Operands.push_back(Chain.getOperand(i));
880    }
881    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
882                       Operands.size());
883  }
884
885  // Regular return.
886  SDValue Flag;
887
888  SmallVector<SDValue, 6> RetOps;
889  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
890  // Operand #1 = Bytes To Pop
891  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
892
893  // Copy the result values into the output registers.
894  for (unsigned i = 0; i != RVLocs.size(); ++i) {
895    CCValAssign &VA = RVLocs[i];
896    assert(VA.isRegLoc() && "Can only return in registers!");
897    SDValue ValToCopy = Op.getOperand(i*2+1);
898
899    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
900    // the RET instruction and handled by the FP Stackifier.
901    if (RVLocs[i].getLocReg() == X86::ST0 ||
902        RVLocs[i].getLocReg() == X86::ST1) {
903      // If this is a copy from an xmm register to ST(0), use an FPExtend to
904      // change the value to the FP stack register class.
905      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
906        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
907      RetOps.push_back(ValToCopy);
908      // Don't emit a copytoreg.
909      continue;
910    }
911
912    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
913    Flag = Chain.getValue(1);
914  }
915
916  // The x86-64 ABI for returning structs by value requires that we copy
917  // the sret argument into %rax for the return. We saved the argument into
918  // a virtual register in the entry block, so now we copy the value out
919  // and into %rax.
920  if (Subtarget->is64Bit() &&
921      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
922    MachineFunction &MF = DAG.getMachineFunction();
923    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
924    unsigned Reg = FuncInfo->getSRetReturnReg();
925    if (!Reg) {
926      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
927      FuncInfo->setSRetReturnReg(Reg);
928    }
929    SDValue Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());
930
931    Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
932    Flag = Chain.getValue(1);
933  }
934
935  RetOps[0] = Chain;  // Update chain.
936
937  // Add the flag if we have it.
938  if (Flag.Val)
939    RetOps.push_back(Flag);
940
941  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
942}
943
944
945/// LowerCallResult - Lower the result values of an ISD::CALL into the
946/// appropriate copies out of appropriate physical registers.  This assumes that
947/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
948/// being lowered.  The returns a SDNode with the same number of values as the
949/// ISD::CALL.
950SDNode *X86TargetLowering::
951LowerCallResult(SDValue Chain, SDValue InFlag, SDNode *TheCall,
952                unsigned CallingConv, SelectionDAG &DAG) {
953
954  // Assign locations to each value returned by this call.
955  SmallVector<CCValAssign, 16> RVLocs;
956  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
957  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
958  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
959
960  SmallVector<SDValue, 8> ResultVals;
961
962  // Copy all of the result registers out of their specified physreg.
963  for (unsigned i = 0; i != RVLocs.size(); ++i) {
964    MVT CopyVT = RVLocs[i].getValVT();
965
966    // If this is a call to a function that returns an fp value on the floating
967    // point stack, but where we prefer to use the value in xmm registers, copy
968    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
969    if (RVLocs[i].getLocReg() == X86::ST0 &&
970        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
971      CopyVT = MVT::f80;
972    }
973
974    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
975                               CopyVT, InFlag).getValue(1);
976    SDValue Val = Chain.getValue(0);
977    InFlag = Chain.getValue(2);
978
979    if (CopyVT != RVLocs[i].getValVT()) {
980      // Round the F80 the right size, which also moves to the appropriate xmm
981      // register.
982      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
983                        // This truncation won't change the value.
984                        DAG.getIntPtrConstant(1));
985    }
986
987    ResultVals.push_back(Val);
988  }
989
990  // Merge everything together with a MERGE_VALUES node.
991  ResultVals.push_back(Chain);
992  return DAG.getMergeValues(TheCall->getVTList(), &ResultVals[0],
993                            ResultVals.size()).Val;
994}
995
996
997//===----------------------------------------------------------------------===//
998//                C & StdCall & Fast Calling Convention implementation
999//===----------------------------------------------------------------------===//
1000//  StdCall calling convention seems to be standard for many Windows' API
1001//  routines and around. It differs from C calling convention just a little:
1002//  callee should clean up the stack, not caller. Symbols should be also
1003//  decorated in some fancy way :) It doesn't support any vector arguments.
1004//  For info on fast calling convention see Fast Calling Convention (tail call)
1005//  implementation LowerX86_32FastCCCallTo.
1006
1007/// AddLiveIn - This helper function adds the specified physical register to the
1008/// MachineFunction as a live in value.  It also creates a corresponding virtual
1009/// register for it.
1010static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
1011                          const TargetRegisterClass *RC) {
1012  assert(RC->contains(PReg) && "Not the correct regclass!");
1013  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1014  MF.getRegInfo().addLiveIn(PReg, VReg);
1015  return VReg;
1016}
1017
1018/// CallIsStructReturn - Determines whether a CALL node uses struct return
1019/// semantics.
1020static bool CallIsStructReturn(SDValue Op) {
1021  unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1022  if (!NumOps)
1023    return false;
1024
1025  return cast<ARG_FLAGSSDNode>(Op.getOperand(6))->getArgFlags().isSRet();
1026}
1027
1028/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1029/// return semantics.
1030static bool ArgsAreStructReturn(SDValue Op) {
1031  unsigned NumArgs = Op.Val->getNumValues() - 1;
1032  if (!NumArgs)
1033    return false;
1034
1035  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1036}
1037
1038/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1039/// the callee to pop its own arguments. Callee pop is necessary to support tail
1040/// calls.
1041bool X86TargetLowering::IsCalleePop(SDValue Op) {
1042  bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1043  if (IsVarArg)
1044    return false;
1045
1046  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1047  default:
1048    return false;
1049  case CallingConv::X86_StdCall:
1050    return !Subtarget->is64Bit();
1051  case CallingConv::X86_FastCall:
1052    return !Subtarget->is64Bit();
1053  case CallingConv::Fast:
1054    return PerformTailCallOpt;
1055  }
1056}
1057
1058/// CCAssignFnForNode - Selects the correct CCAssignFn for a CALL or
1059/// FORMAL_ARGUMENTS node.
1060CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDValue Op) const {
1061  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1062
1063  if (Subtarget->is64Bit()) {
1064    if (Subtarget->isTargetWin64())
1065      return CC_X86_Win64_C;
1066    else {
1067      if (CC == CallingConv::Fast && PerformTailCallOpt)
1068        return CC_X86_64_TailCall;
1069      else
1070        return CC_X86_64_C;
1071    }
1072  }
1073
1074  if (CC == CallingConv::X86_FastCall)
1075    return CC_X86_32_FastCall;
1076  else if (CC == CallingConv::Fast && PerformTailCallOpt)
1077    return CC_X86_32_TailCall;
1078  else
1079    return CC_X86_32_C;
1080}
1081
1082/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1083/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1084NameDecorationStyle
1085X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1086  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1087  if (CC == CallingConv::X86_FastCall)
1088    return FastCall;
1089  else if (CC == CallingConv::X86_StdCall)
1090    return StdCall;
1091  return None;
1092}
1093
1094
1095/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1096/// in a register before calling.
1097bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1098  return !IsTailCall && !Is64Bit &&
1099    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1100    Subtarget->isPICStyleGOT();
1101}
1102
1103/// CallRequiresFnAddressInReg - Check whether the call requires the function
1104/// address to be loaded in a register.
1105bool
1106X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1107  return !Is64Bit && IsTailCall &&
1108    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1109    Subtarget->isPICStyleGOT();
1110}
1111
1112/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1113/// by "Src" to address "Dst" with size and alignment information specified by
1114/// the specific parameter attribute. The copy will be passed as a byval
1115/// function parameter.
1116static SDValue
1117CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1118                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
1119  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1120  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
1121                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1122}
1123
1124SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1125                                              const CCValAssign &VA,
1126                                              MachineFrameInfo *MFI,
1127                                              unsigned CC,
1128                                              SDValue Root, unsigned i) {
1129  // Create the nodes corresponding to a load from this parameter slot.
1130  ISD::ArgFlagsTy Flags =
1131    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1132  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1133  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1134
1135  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1136  // changed with more analysis.
1137  // In case of tail call optimization mark all arguments mutable. Since they
1138  // could be overwritten by lowering of arguments in case of a tail call.
1139  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1140                                  VA.getLocMemOffset(), isImmutable);
1141  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1142  if (Flags.isByVal())
1143    return FIN;
1144  return DAG.getLoad(VA.getValVT(), Root, FIN,
1145                     PseudoSourceValue::getFixedStack(FI), 0);
1146}
1147
1148SDValue
1149X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1150  MachineFunction &MF = DAG.getMachineFunction();
1151  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1152
1153  const Function* Fn = MF.getFunction();
1154  if (Fn->hasExternalLinkage() &&
1155      Subtarget->isTargetCygMing() &&
1156      Fn->getName() == "main")
1157    FuncInfo->setForceFramePointer(true);
1158
1159  // Decorate the function name.
1160  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1161
1162  MachineFrameInfo *MFI = MF.getFrameInfo();
1163  SDValue Root = Op.getOperand(0);
1164  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1165  unsigned CC = MF.getFunction()->getCallingConv();
1166  bool Is64Bit = Subtarget->is64Bit();
1167  bool IsWin64 = Subtarget->isTargetWin64();
1168
1169  assert(!(isVarArg && CC == CallingConv::Fast) &&
1170         "Var args not supported with calling convention fastcc");
1171
1172  // Assign locations to all of the incoming arguments.
1173  SmallVector<CCValAssign, 16> ArgLocs;
1174  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1175  CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op));
1176
1177  SmallVector<SDValue, 8> ArgValues;
1178  unsigned LastVal = ~0U;
1179  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1180    CCValAssign &VA = ArgLocs[i];
1181    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1182    // places.
1183    assert(VA.getValNo() != LastVal &&
1184           "Don't support value assigned to multiple locs yet");
1185    LastVal = VA.getValNo();
1186
1187    if (VA.isRegLoc()) {
1188      MVT RegVT = VA.getLocVT();
1189      TargetRegisterClass *RC;
1190      if (RegVT == MVT::i32)
1191        RC = X86::GR32RegisterClass;
1192      else if (Is64Bit && RegVT == MVT::i64)
1193        RC = X86::GR64RegisterClass;
1194      else if (RegVT == MVT::f32)
1195        RC = X86::FR32RegisterClass;
1196      else if (RegVT == MVT::f64)
1197        RC = X86::FR64RegisterClass;
1198      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1199        RC = X86::VR128RegisterClass;
1200      else if (RegVT.isVector()) {
1201        assert(RegVT.getSizeInBits() == 64);
1202        if (!Is64Bit)
1203          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1204        else {
1205          // Darwin calling convention passes MMX values in either GPRs or
1206          // XMMs in x86-64. Other targets pass them in memory.
1207          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1208            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1209            RegVT = MVT::v2i64;
1210          } else {
1211            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1212            RegVT = MVT::i64;
1213          }
1214        }
1215      } else {
1216        assert(0 && "Unknown argument type!");
1217      }
1218
1219      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1220      SDValue ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1221
1222      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1223      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1224      // right size.
1225      if (VA.getLocInfo() == CCValAssign::SExt)
1226        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1227                               DAG.getValueType(VA.getValVT()));
1228      else if (VA.getLocInfo() == CCValAssign::ZExt)
1229        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1230                               DAG.getValueType(VA.getValVT()));
1231
1232      if (VA.getLocInfo() != CCValAssign::Full)
1233        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1234
1235      // Handle MMX values passed in GPRs.
1236      if (Is64Bit && RegVT != VA.getLocVT()) {
1237        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1238          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1239        else if (RC == X86::VR128RegisterClass) {
1240          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
1241                                 DAG.getConstant(0, MVT::i64));
1242          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1243        }
1244      }
1245
1246      ArgValues.push_back(ArgValue);
1247    } else {
1248      assert(VA.isMemLoc());
1249      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1250    }
1251  }
1252
1253  // The x86-64 ABI for returning structs by value requires that we copy
1254  // the sret argument into %rax for the return. Save the argument into
1255  // a virtual register so that we can access it from the return points.
1256  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1257    MachineFunction &MF = DAG.getMachineFunction();
1258    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1259    unsigned Reg = FuncInfo->getSRetReturnReg();
1260    if (!Reg) {
1261      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1262      FuncInfo->setSRetReturnReg(Reg);
1263    }
1264    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
1265    Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
1266  }
1267
1268  unsigned StackSize = CCInfo.getNextStackOffset();
1269  // align stack specially for tail calls
1270  if (CC == CallingConv::Fast)
1271    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1272
1273  // If the function takes variable number of arguments, make a frame index for
1274  // the start of the first vararg value... for expansion of llvm.va_start.
1275  if (isVarArg) {
1276    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1277      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1278    }
1279    if (Is64Bit) {
1280      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1281
1282      // FIXME: We should really autogenerate these arrays
1283      static const unsigned GPR64ArgRegsWin64[] = {
1284        X86::RCX, X86::RDX, X86::R8,  X86::R9
1285      };
1286      static const unsigned XMMArgRegsWin64[] = {
1287        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1288      };
1289      static const unsigned GPR64ArgRegs64Bit[] = {
1290        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1291      };
1292      static const unsigned XMMArgRegs64Bit[] = {
1293        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1294        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1295      };
1296      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1297
1298      if (IsWin64) {
1299        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1300        GPR64ArgRegs = GPR64ArgRegsWin64;
1301        XMMArgRegs = XMMArgRegsWin64;
1302      } else {
1303        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1304        GPR64ArgRegs = GPR64ArgRegs64Bit;
1305        XMMArgRegs = XMMArgRegs64Bit;
1306      }
1307      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1308                                                       TotalNumIntRegs);
1309      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1310                                                       TotalNumXMMRegs);
1311
1312      // For X86-64, if there are vararg parameters that are passed via
1313      // registers, then we must store them to their spots on the stack so they
1314      // may be loaded by deferencing the result of va_next.
1315      VarArgsGPOffset = NumIntRegs * 8;
1316      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1317      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1318                                                 TotalNumXMMRegs * 16, 16);
1319
1320      // Store the integer parameter registers.
1321      SmallVector<SDValue, 8> MemOps;
1322      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1323      SDValue FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1324                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1325      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1326        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1327                                  X86::GR64RegisterClass);
1328        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1329        SDValue Store =
1330          DAG.getStore(Val.getValue(1), Val, FIN,
1331                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1332        MemOps.push_back(Store);
1333        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1334                          DAG.getIntPtrConstant(8));
1335      }
1336
1337      // Now store the XMM (fp + vector) parameter registers.
1338      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1339                        DAG.getIntPtrConstant(VarArgsFPOffset));
1340      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1341        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1342                                  X86::VR128RegisterClass);
1343        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1344        SDValue Store =
1345          DAG.getStore(Val.getValue(1), Val, FIN,
1346                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1347        MemOps.push_back(Store);
1348        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1349                          DAG.getIntPtrConstant(16));
1350      }
1351      if (!MemOps.empty())
1352          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1353                             &MemOps[0], MemOps.size());
1354    }
1355  }
1356
1357  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1358  // arguments and the arguments after the retaddr has been pushed are
1359  // aligned.
1360  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1361      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1362      (StackSize & 7) == 0)
1363    StackSize += 4;
1364
1365  ArgValues.push_back(Root);
1366
1367  // Some CCs need callee pop.
1368  if (IsCalleePop(Op)) {
1369    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1370    BytesCallerReserves = 0;
1371  } else {
1372    BytesToPopOnReturn  = 0; // Callee pops nothing.
1373    // If this is an sret function, the return should pop the hidden pointer.
1374    if (!Is64Bit && ArgsAreStructReturn(Op))
1375      BytesToPopOnReturn = 4;
1376    BytesCallerReserves = StackSize;
1377  }
1378
1379  if (!Is64Bit) {
1380    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1381    if (CC == CallingConv::X86_FastCall)
1382      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1383  }
1384
1385  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1386
1387  // Return the new list of results.
1388  return DAG.getMergeValues(Op.Val->getVTList(), &ArgValues[0],
1389                            ArgValues.size()).getValue(Op.ResNo);
1390}
1391
1392SDValue
1393X86TargetLowering::LowerMemOpCallTo(SDValue Op, SelectionDAG &DAG,
1394                                    const SDValue &StackPtr,
1395                                    const CCValAssign &VA,
1396                                    SDValue Chain,
1397                                    SDValue Arg) {
1398  unsigned LocMemOffset = VA.getLocMemOffset();
1399  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1400  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1401  ISD::ArgFlagsTy Flags =
1402    cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->getArgFlags();
1403  if (Flags.isByVal()) {
1404    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1405  }
1406  return DAG.getStore(Chain, Arg, PtrOff,
1407                      PseudoSourceValue::getStack(), LocMemOffset);
1408}
1409
1410/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call
1411/// optimization is performed and it is required.
1412SDValue
1413X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1414                                           SDValue &OutRetAddr,
1415                                           SDValue Chain,
1416                                           bool IsTailCall,
1417                                           bool Is64Bit,
1418                                           int FPDiff) {
1419  if (!IsTailCall || FPDiff==0) return Chain;
1420
1421  // Adjust the Return address stack slot.
1422  MVT VT = getPointerTy();
1423  OutRetAddr = getReturnAddressFrameIndex(DAG);
1424  // Load the "old" Return address.
1425  OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0);
1426  return SDValue(OutRetAddr.Val, 1);
1427}
1428
1429/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1430/// optimization is performed and it is required (FPDiff!=0).
1431static SDValue
1432EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1433                         SDValue Chain, SDValue RetAddrFrIdx,
1434                         bool Is64Bit, int FPDiff) {
1435  // Store the return address to the appropriate stack slot.
1436  if (!FPDiff) return Chain;
1437  // Calculate the new stack slot for the return address.
1438  int SlotSize = Is64Bit ? 8 : 4;
1439  int NewReturnAddrFI =
1440    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1441  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1442  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1443  Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1444                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1445  return Chain;
1446}
1447
1448SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1449  MachineFunction &MF = DAG.getMachineFunction();
1450  SDValue Chain     = Op.getOperand(0);
1451  unsigned CC         = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1452  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1453  bool IsTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0
1454                        && CC == CallingConv::Fast && PerformTailCallOpt;
1455  SDValue Callee    = Op.getOperand(4);
1456  bool Is64Bit        = Subtarget->is64Bit();
1457  bool IsStructRet    = CallIsStructReturn(Op);
1458
1459  assert(!(isVarArg && CC == CallingConv::Fast) &&
1460         "Var args not supported with calling convention fastcc");
1461
1462  // Analyze operands of the call, assigning locations to each operand.
1463  SmallVector<CCValAssign, 16> ArgLocs;
1464  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1465  CCInfo.AnalyzeCallOperands(Op.Val, CCAssignFnForNode(Op));
1466
1467  // Get a count of how many bytes are to be pushed on the stack.
1468  unsigned NumBytes = CCInfo.getNextStackOffset();
1469  if (CC == CallingConv::Fast)
1470    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1471
1472  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1473  // arguments and the arguments after the retaddr has been pushed are aligned.
1474  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1475      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1476      (NumBytes & 7) == 0)
1477    NumBytes += 4;
1478
1479  int FPDiff = 0;
1480  if (IsTailCall) {
1481    // Lower arguments at fp - stackoffset + fpdiff.
1482    unsigned NumBytesCallerPushed =
1483      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1484    FPDiff = NumBytesCallerPushed - NumBytes;
1485
1486    // Set the delta of movement of the returnaddr stackslot.
1487    // But only set if delta is greater than previous delta.
1488    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1489      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1490  }
1491
1492  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes));
1493
1494  SDValue RetAddrFrIdx;
1495  // Load return adress for tail calls.
1496  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1497                                  FPDiff);
1498
1499  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1500  SmallVector<SDValue, 8> MemOpChains;
1501  SDValue StackPtr;
1502
1503  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1504  // of tail call optimization arguments are handle later.
1505  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1506    CCValAssign &VA = ArgLocs[i];
1507    SDValue Arg = Op.getOperand(5+2*VA.getValNo());
1508    bool isByVal = cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->
1509      getArgFlags().isByVal();
1510
1511    // Promote the value if needed.
1512    switch (VA.getLocInfo()) {
1513    default: assert(0 && "Unknown loc info!");
1514    case CCValAssign::Full: break;
1515    case CCValAssign::SExt:
1516      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1517      break;
1518    case CCValAssign::ZExt:
1519      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1520      break;
1521    case CCValAssign::AExt:
1522      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1523      break;
1524    }
1525
1526    if (VA.isRegLoc()) {
1527      if (Is64Bit) {
1528        MVT RegVT = VA.getLocVT();
1529        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1530          switch (VA.getLocReg()) {
1531          default:
1532            break;
1533          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1534          case X86::R8: {
1535            // Special case: passing MMX values in GPR registers.
1536            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1537            break;
1538          }
1539          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1540          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1541            // Special case: passing MMX values in XMM registers.
1542            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1543            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
1544            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
1545                              DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
1546                              getMOVLMask(2, DAG));
1547            break;
1548          }
1549          }
1550      }
1551      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1552    } else {
1553      if (!IsTailCall || (IsTailCall && isByVal)) {
1554        assert(VA.isMemLoc());
1555        if (StackPtr.Val == 0)
1556          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1557
1558        MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1559                                               Arg));
1560      }
1561    }
1562  }
1563
1564  if (!MemOpChains.empty())
1565    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1566                        &MemOpChains[0], MemOpChains.size());
1567
1568  // Build a sequence of copy-to-reg nodes chained together with token chain
1569  // and flag operands which copy the outgoing args into registers.
1570  SDValue InFlag;
1571  // Tail call byval lowering might overwrite argument registers so in case of
1572  // tail call optimization the copies to registers are lowered later.
1573  if (!IsTailCall)
1574    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1575      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1576                               InFlag);
1577      InFlag = Chain.getValue(1);
1578    }
1579
1580  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1581  // GOT pointer.
1582  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1583    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1584                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1585                             InFlag);
1586    InFlag = Chain.getValue(1);
1587  }
1588  // If we are tail calling and generating PIC/GOT style code load the address
1589  // of the callee into ecx. The value in ecx is used as target of the tail
1590  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1591  // calls on PIC/GOT architectures. Normally we would just put the address of
1592  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1593  // restored (since ebx is callee saved) before jumping to the target@PLT.
1594  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1595    // Note: The actual moving to ecx is done further down.
1596    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1597    if (G &&  !G->getGlobal()->hasHiddenVisibility() &&
1598        !G->getGlobal()->hasProtectedVisibility())
1599      Callee =  LowerGlobalAddress(Callee, DAG);
1600    else if (isa<ExternalSymbolSDNode>(Callee))
1601      Callee = LowerExternalSymbol(Callee,DAG);
1602  }
1603
1604  if (Is64Bit && isVarArg) {
1605    // From AMD64 ABI document:
1606    // For calls that may call functions that use varargs or stdargs
1607    // (prototype-less calls or calls to functions containing ellipsis (...) in
1608    // the declaration) %al is used as hidden argument to specify the number
1609    // of SSE registers used. The contents of %al do not need to match exactly
1610    // the number of registers, but must be an ubound on the number of SSE
1611    // registers used and is in the range 0 - 8 inclusive.
1612
1613    // FIXME: Verify this on Win64
1614    // Count the number of XMM registers allocated.
1615    static const unsigned XMMArgRegs[] = {
1616      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1617      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1618    };
1619    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1620
1621    Chain = DAG.getCopyToReg(Chain, X86::AL,
1622                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1623    InFlag = Chain.getValue(1);
1624  }
1625
1626
1627  // For tail calls lower the arguments to the 'real' stack slot.
1628  if (IsTailCall) {
1629    SmallVector<SDValue, 8> MemOpChains2;
1630    SDValue FIN;
1631    int FI = 0;
1632    // Do not flag preceeding copytoreg stuff together with the following stuff.
1633    InFlag = SDValue();
1634    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1635      CCValAssign &VA = ArgLocs[i];
1636      if (!VA.isRegLoc()) {
1637        assert(VA.isMemLoc());
1638        SDValue Arg = Op.getOperand(5+2*VA.getValNo());
1639        SDValue FlagsOp = Op.getOperand(6+2*VA.getValNo());
1640        ISD::ArgFlagsTy Flags =
1641          cast<ARG_FLAGSSDNode>(FlagsOp)->getArgFlags();
1642        // Create frame index.
1643        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1644        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1645        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1646        FIN = DAG.getFrameIndex(FI, getPointerTy());
1647
1648        if (Flags.isByVal()) {
1649          // Copy relative to framepointer.
1650          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1651          if (StackPtr.Val == 0)
1652            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1653          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1654
1655          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1656                                                           Flags, DAG));
1657        } else {
1658          // Store relative to framepointer.
1659          MemOpChains2.push_back(
1660            DAG.getStore(Chain, Arg, FIN,
1661                         PseudoSourceValue::getFixedStack(FI), 0));
1662        }
1663      }
1664    }
1665
1666    if (!MemOpChains2.empty())
1667      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1668                          &MemOpChains2[0], MemOpChains2.size());
1669
1670    // Copy arguments to their registers.
1671    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1672      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1673                               InFlag);
1674      InFlag = Chain.getValue(1);
1675    }
1676    InFlag =SDValue();
1677
1678    // Store the return address to the appropriate stack slot.
1679    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1680                                     FPDiff);
1681  }
1682
1683  // If the callee is a GlobalAddress node (quite common, every direct call is)
1684  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1685  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1686    // We should use extra load for direct calls to dllimported functions in
1687    // non-JIT mode.
1688    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1689                                        getTargetMachine(), true))
1690      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1691  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1692    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1693  } else if (IsTailCall) {
1694    unsigned Opc = Is64Bit ? X86::R9 : X86::ECX;
1695
1696    Chain = DAG.getCopyToReg(Chain,
1697                             DAG.getRegister(Opc, getPointerTy()),
1698                             Callee,InFlag);
1699    Callee = DAG.getRegister(Opc, getPointerTy());
1700    // Add register as live out.
1701    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1702  }
1703
1704  // Returns a chain & a flag for retval copy to use.
1705  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1706  SmallVector<SDValue, 8> Ops;
1707
1708  if (IsTailCall) {
1709    Ops.push_back(Chain);
1710    Ops.push_back(DAG.getIntPtrConstant(NumBytes));
1711    Ops.push_back(DAG.getIntPtrConstant(0));
1712    if (InFlag.Val)
1713      Ops.push_back(InFlag);
1714    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1715    InFlag = Chain.getValue(1);
1716
1717    // Returns a chain & a flag for retval copy to use.
1718    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1719    Ops.clear();
1720  }
1721
1722  Ops.push_back(Chain);
1723  Ops.push_back(Callee);
1724
1725  if (IsTailCall)
1726    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1727
1728  // Add argument registers to the end of the list so that they are known live
1729  // into the call.
1730  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1731    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1732                                  RegsToPass[i].second.getValueType()));
1733
1734  // Add an implicit use GOT pointer in EBX.
1735  if (!IsTailCall && !Is64Bit &&
1736      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1737      Subtarget->isPICStyleGOT())
1738    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1739
1740  // Add an implicit use of AL for x86 vararg functions.
1741  if (Is64Bit && isVarArg)
1742    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1743
1744  if (InFlag.Val)
1745    Ops.push_back(InFlag);
1746
1747  if (IsTailCall) {
1748    assert(InFlag.Val &&
1749           "Flag must be set. Depend on flag being set in LowerRET");
1750    Chain = DAG.getNode(X86ISD::TAILCALL,
1751                        Op.Val->getVTList(), &Ops[0], Ops.size());
1752
1753    return SDValue(Chain.Val, Op.ResNo);
1754  }
1755
1756  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1757  InFlag = Chain.getValue(1);
1758
1759  // Create the CALLSEQ_END node.
1760  unsigned NumBytesForCalleeToPush;
1761  if (IsCalleePop(Op))
1762    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1763  else if (!Is64Bit && IsStructRet)
1764    // If this is is a call to a struct-return function, the callee
1765    // pops the hidden struct pointer, so we have to push it back.
1766    // This is common for Darwin/X86, Linux & Mingw32 targets.
1767    NumBytesForCalleeToPush = 4;
1768  else
1769    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1770
1771  // Returns a flag for retval copy to use.
1772  Chain = DAG.getCALLSEQ_END(Chain,
1773                             DAG.getIntPtrConstant(NumBytes),
1774                             DAG.getIntPtrConstant(NumBytesForCalleeToPush),
1775                             InFlag);
1776  InFlag = Chain.getValue(1);
1777
1778  // Handle result values, copying them out of physregs into vregs that we
1779  // return.
1780  return SDValue(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1781}
1782
1783
1784//===----------------------------------------------------------------------===//
1785//                Fast Calling Convention (tail call) implementation
1786//===----------------------------------------------------------------------===//
1787
1788//  Like std call, callee cleans arguments, convention except that ECX is
1789//  reserved for storing the tail called function address. Only 2 registers are
1790//  free for argument passing (inreg). Tail call optimization is performed
1791//  provided:
1792//                * tailcallopt is enabled
1793//                * caller/callee are fastcc
1794//  On X86_64 architecture with GOT-style position independent code only local
1795//  (within module) calls are supported at the moment.
1796//  To keep the stack aligned according to platform abi the function
1797//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1798//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1799//  If a tail called function callee has more arguments than the caller the
1800//  caller needs to make sure that there is room to move the RETADDR to. This is
1801//  achieved by reserving an area the size of the argument delta right after the
1802//  original REtADDR, but before the saved framepointer or the spilled registers
1803//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1804//  stack layout:
1805//    arg1
1806//    arg2
1807//    RETADDR
1808//    [ new RETADDR
1809//      move area ]
1810//    (possible EBP)
1811//    ESI
1812//    EDI
1813//    local1 ..
1814
1815/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1816/// for a 16 byte align requirement.
1817unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1818                                                        SelectionDAG& DAG) {
1819  if (PerformTailCallOpt) {
1820    MachineFunction &MF = DAG.getMachineFunction();
1821    const TargetMachine &TM = MF.getTarget();
1822    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1823    unsigned StackAlignment = TFI.getStackAlignment();
1824    uint64_t AlignMask = StackAlignment - 1;
1825    int64_t Offset = StackSize;
1826    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1827    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1828      // Number smaller than 12 so just add the difference.
1829      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1830    } else {
1831      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1832      Offset = ((~AlignMask) & Offset) + StackAlignment +
1833        (StackAlignment-SlotSize);
1834    }
1835    StackSize = Offset;
1836  }
1837  return StackSize;
1838}
1839
1840/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1841/// following the call is a return. A function is eligible if caller/callee
1842/// calling conventions match, currently only fastcc supports tail calls, and
1843/// the function CALL is immediatly followed by a RET.
1844bool X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Call,
1845                                                      SDValue Ret,
1846                                                      SelectionDAG& DAG) const {
1847  if (!PerformTailCallOpt)
1848    return false;
1849
1850  if (CheckTailCallReturnConstraints(Call, Ret)) {
1851    MachineFunction &MF = DAG.getMachineFunction();
1852    unsigned CallerCC = MF.getFunction()->getCallingConv();
1853    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1854    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1855      SDValue Callee = Call.getOperand(4);
1856      // On x86/32Bit PIC/GOT  tail calls are supported.
1857      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1858          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1859        return true;
1860
1861      // Can only do local tail calls (in same module, hidden or protected) on
1862      // x86_64 PIC/GOT at the moment.
1863      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1864        return G->getGlobal()->hasHiddenVisibility()
1865            || G->getGlobal()->hasProtectedVisibility();
1866    }
1867  }
1868
1869  return false;
1870}
1871
1872FastISel *X86TargetLowering::createFastISel(MachineBasicBlock *mbb,
1873                                            MachineFunction *mf,
1874                                            const TargetInstrInfo *tii) {
1875  // FastISel isn't yet supported.
1876  return 0;
1877}
1878
1879
1880//===----------------------------------------------------------------------===//
1881//                           Other Lowering Hooks
1882//===----------------------------------------------------------------------===//
1883
1884
1885SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1886  MachineFunction &MF = DAG.getMachineFunction();
1887  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1888  int ReturnAddrIndex = FuncInfo->getRAIndex();
1889
1890  if (ReturnAddrIndex == 0) {
1891    // Set up a frame object for the return address.
1892    if (Subtarget->is64Bit())
1893      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1894    else
1895      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1896
1897    FuncInfo->setRAIndex(ReturnAddrIndex);
1898  }
1899
1900  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1901}
1902
1903
1904
1905/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1906/// specific condition code. It returns a false if it cannot do a direct
1907/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1908/// needed.
1909static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1910                           unsigned &X86CC, SDValue &LHS, SDValue &RHS,
1911                           SelectionDAG &DAG) {
1912  X86CC = X86::COND_INVALID;
1913  if (!isFP) {
1914    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1915      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1916        // X > -1   -> X == 0, jump !sign.
1917        RHS = DAG.getConstant(0, RHS.getValueType());
1918        X86CC = X86::COND_NS;
1919        return true;
1920      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1921        // X < 0   -> X == 0, jump on sign.
1922        X86CC = X86::COND_S;
1923        return true;
1924      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1925        // X < 1   -> X <= 0
1926        RHS = DAG.getConstant(0, RHS.getValueType());
1927        X86CC = X86::COND_LE;
1928        return true;
1929      }
1930    }
1931
1932    switch (SetCCOpcode) {
1933    default: break;
1934    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1935    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1936    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1937    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1938    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1939    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1940    case ISD::SETULT: X86CC = X86::COND_B;  break;
1941    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1942    case ISD::SETULE: X86CC = X86::COND_BE; break;
1943    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1944    }
1945  } else {
1946    // On a floating point condition, the flags are set as follows:
1947    // ZF  PF  CF   op
1948    //  0 | 0 | 0 | X > Y
1949    //  0 | 0 | 1 | X < Y
1950    //  1 | 0 | 0 | X == Y
1951    //  1 | 1 | 1 | unordered
1952    bool Flip = false;
1953    switch (SetCCOpcode) {
1954    default: break;
1955    case ISD::SETUEQ:
1956    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1957    case ISD::SETOLT: Flip = true; // Fallthrough
1958    case ISD::SETOGT:
1959    case ISD::SETGT: X86CC = X86::COND_A;  break;
1960    case ISD::SETOLE: Flip = true; // Fallthrough
1961    case ISD::SETOGE:
1962    case ISD::SETGE: X86CC = X86::COND_AE; break;
1963    case ISD::SETUGT: Flip = true; // Fallthrough
1964    case ISD::SETULT:
1965    case ISD::SETLT: X86CC = X86::COND_B;  break;
1966    case ISD::SETUGE: Flip = true; // Fallthrough
1967    case ISD::SETULE:
1968    case ISD::SETLE: X86CC = X86::COND_BE; break;
1969    case ISD::SETONE:
1970    case ISD::SETNE: X86CC = X86::COND_NE; break;
1971    case ISD::SETUO: X86CC = X86::COND_P;  break;
1972    case ISD::SETO:  X86CC = X86::COND_NP; break;
1973    }
1974    if (Flip)
1975      std::swap(LHS, RHS);
1976  }
1977
1978  return X86CC != X86::COND_INVALID;
1979}
1980
1981/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1982/// code. Current x86 isa includes the following FP cmov instructions:
1983/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1984static bool hasFPCMov(unsigned X86CC) {
1985  switch (X86CC) {
1986  default:
1987    return false;
1988  case X86::COND_B:
1989  case X86::COND_BE:
1990  case X86::COND_E:
1991  case X86::COND_P:
1992  case X86::COND_A:
1993  case X86::COND_AE:
1994  case X86::COND_NE:
1995  case X86::COND_NP:
1996    return true;
1997  }
1998}
1999
2000/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2001/// true if Op is undef or if its value falls within the specified range (L, H].
2002static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) {
2003  if (Op.getOpcode() == ISD::UNDEF)
2004    return true;
2005
2006  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2007  return (Val >= Low && Val < Hi);
2008}
2009
2010/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2011/// true if Op is undef or if its value equal to the specified value.
2012static bool isUndefOrEqual(SDValue Op, unsigned Val) {
2013  if (Op.getOpcode() == ISD::UNDEF)
2014    return true;
2015  return cast<ConstantSDNode>(Op)->getValue() == Val;
2016}
2017
2018/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2019/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2020bool X86::isPSHUFDMask(SDNode *N) {
2021  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2022
2023  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2024    return false;
2025
2026  // Check if the value doesn't reference the second vector.
2027  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2028    SDValue Arg = N->getOperand(i);
2029    if (Arg.getOpcode() == ISD::UNDEF) continue;
2030    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2031    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
2032      return false;
2033  }
2034
2035  return true;
2036}
2037
2038/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2039/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2040bool X86::isPSHUFHWMask(SDNode *N) {
2041  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2042
2043  if (N->getNumOperands() != 8)
2044    return false;
2045
2046  // Lower quadword copied in order.
2047  for (unsigned i = 0; i != 4; ++i) {
2048    SDValue Arg = N->getOperand(i);
2049    if (Arg.getOpcode() == ISD::UNDEF) continue;
2050    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2051    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2052      return false;
2053  }
2054
2055  // Upper quadword shuffled.
2056  for (unsigned i = 4; i != 8; ++i) {
2057    SDValue Arg = N->getOperand(i);
2058    if (Arg.getOpcode() == ISD::UNDEF) continue;
2059    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2060    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2061    if (Val < 4 || Val > 7)
2062      return false;
2063  }
2064
2065  return true;
2066}
2067
2068/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2069/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2070bool X86::isPSHUFLWMask(SDNode *N) {
2071  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2072
2073  if (N->getNumOperands() != 8)
2074    return false;
2075
2076  // Upper quadword copied in order.
2077  for (unsigned i = 4; i != 8; ++i)
2078    if (!isUndefOrEqual(N->getOperand(i), i))
2079      return false;
2080
2081  // Lower quadword shuffled.
2082  for (unsigned i = 0; i != 4; ++i)
2083    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2084      return false;
2085
2086  return true;
2087}
2088
2089/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2090/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2091static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) {
2092  if (NumElems != 2 && NumElems != 4) return false;
2093
2094  unsigned Half = NumElems / 2;
2095  for (unsigned i = 0; i < Half; ++i)
2096    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2097      return false;
2098  for (unsigned i = Half; i < NumElems; ++i)
2099    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2100      return false;
2101
2102  return true;
2103}
2104
2105bool X86::isSHUFPMask(SDNode *N) {
2106  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2107  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2108}
2109
2110/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2111/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2112/// half elements to come from vector 1 (which would equal the dest.) and
2113/// the upper half to come from vector 2.
2114static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) {
2115  if (NumOps != 2 && NumOps != 4) return false;
2116
2117  unsigned Half = NumOps / 2;
2118  for (unsigned i = 0; i < Half; ++i)
2119    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2120      return false;
2121  for (unsigned i = Half; i < NumOps; ++i)
2122    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2123      return false;
2124  return true;
2125}
2126
2127static bool isCommutedSHUFP(SDNode *N) {
2128  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2129  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2130}
2131
2132/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2133/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2134bool X86::isMOVHLPSMask(SDNode *N) {
2135  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2136
2137  if (N->getNumOperands() != 4)
2138    return false;
2139
2140  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2141  return isUndefOrEqual(N->getOperand(0), 6) &&
2142         isUndefOrEqual(N->getOperand(1), 7) &&
2143         isUndefOrEqual(N->getOperand(2), 2) &&
2144         isUndefOrEqual(N->getOperand(3), 3);
2145}
2146
2147/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2148/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2149/// <2, 3, 2, 3>
2150bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2151  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2152
2153  if (N->getNumOperands() != 4)
2154    return false;
2155
2156  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2157  return isUndefOrEqual(N->getOperand(0), 2) &&
2158         isUndefOrEqual(N->getOperand(1), 3) &&
2159         isUndefOrEqual(N->getOperand(2), 2) &&
2160         isUndefOrEqual(N->getOperand(3), 3);
2161}
2162
2163/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2164/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2165bool X86::isMOVLPMask(SDNode *N) {
2166  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2167
2168  unsigned NumElems = N->getNumOperands();
2169  if (NumElems != 2 && NumElems != 4)
2170    return false;
2171
2172  for (unsigned i = 0; i < NumElems/2; ++i)
2173    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2174      return false;
2175
2176  for (unsigned i = NumElems/2; i < NumElems; ++i)
2177    if (!isUndefOrEqual(N->getOperand(i), i))
2178      return false;
2179
2180  return true;
2181}
2182
2183/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2184/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2185/// and MOVLHPS.
2186bool X86::isMOVHPMask(SDNode *N) {
2187  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2188
2189  unsigned NumElems = N->getNumOperands();
2190  if (NumElems != 2 && NumElems != 4)
2191    return false;
2192
2193  for (unsigned i = 0; i < NumElems/2; ++i)
2194    if (!isUndefOrEqual(N->getOperand(i), i))
2195      return false;
2196
2197  for (unsigned i = 0; i < NumElems/2; ++i) {
2198    SDValue Arg = N->getOperand(i + NumElems/2);
2199    if (!isUndefOrEqual(Arg, i + NumElems))
2200      return false;
2201  }
2202
2203  return true;
2204}
2205
2206/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2207/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2208bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts,
2209                         bool V2IsSplat = false) {
2210  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2211    return false;
2212
2213  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2214    SDValue BitI  = Elts[i];
2215    SDValue BitI1 = Elts[i+1];
2216    if (!isUndefOrEqual(BitI, j))
2217      return false;
2218    if (V2IsSplat) {
2219      if (isUndefOrEqual(BitI1, NumElts))
2220        return false;
2221    } else {
2222      if (!isUndefOrEqual(BitI1, j + NumElts))
2223        return false;
2224    }
2225  }
2226
2227  return true;
2228}
2229
2230bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2231  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2232  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2233}
2234
2235/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2236/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2237bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts,
2238                         bool V2IsSplat = false) {
2239  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2240    return false;
2241
2242  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2243    SDValue BitI  = Elts[i];
2244    SDValue BitI1 = Elts[i+1];
2245    if (!isUndefOrEqual(BitI, j + NumElts/2))
2246      return false;
2247    if (V2IsSplat) {
2248      if (isUndefOrEqual(BitI1, NumElts))
2249        return false;
2250    } else {
2251      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2252        return false;
2253    }
2254  }
2255
2256  return true;
2257}
2258
2259bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2260  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2261  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2262}
2263
2264/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2265/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2266/// <0, 0, 1, 1>
2267bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2268  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2269
2270  unsigned NumElems = N->getNumOperands();
2271  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2272    return false;
2273
2274  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2275    SDValue BitI  = N->getOperand(i);
2276    SDValue BitI1 = N->getOperand(i+1);
2277
2278    if (!isUndefOrEqual(BitI, j))
2279      return false;
2280    if (!isUndefOrEqual(BitI1, j))
2281      return false;
2282  }
2283
2284  return true;
2285}
2286
2287/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2288/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2289/// <2, 2, 3, 3>
2290bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2291  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2292
2293  unsigned NumElems = N->getNumOperands();
2294  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2295    return false;
2296
2297  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2298    SDValue BitI  = N->getOperand(i);
2299    SDValue BitI1 = N->getOperand(i + 1);
2300
2301    if (!isUndefOrEqual(BitI, j))
2302      return false;
2303    if (!isUndefOrEqual(BitI1, j))
2304      return false;
2305  }
2306
2307  return true;
2308}
2309
2310/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2311/// specifies a shuffle of elements that is suitable for input to MOVSS,
2312/// MOVSD, and MOVD, i.e. setting the lowest element.
2313static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) {
2314  if (NumElts != 2 && NumElts != 4)
2315    return false;
2316
2317  if (!isUndefOrEqual(Elts[0], NumElts))
2318    return false;
2319
2320  for (unsigned i = 1; i < NumElts; ++i) {
2321    if (!isUndefOrEqual(Elts[i], i))
2322      return false;
2323  }
2324
2325  return true;
2326}
2327
2328bool X86::isMOVLMask(SDNode *N) {
2329  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2330  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2331}
2332
2333/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2334/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2335/// element of vector 2 and the other elements to come from vector 1 in order.
2336static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps,
2337                           bool V2IsSplat = false,
2338                           bool V2IsUndef = false) {
2339  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2340    return false;
2341
2342  if (!isUndefOrEqual(Ops[0], 0))
2343    return false;
2344
2345  for (unsigned i = 1; i < NumOps; ++i) {
2346    SDValue Arg = Ops[i];
2347    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2348          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2349          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2350      return false;
2351  }
2352
2353  return true;
2354}
2355
2356static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2357                           bool V2IsUndef = false) {
2358  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2359  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2360                        V2IsSplat, V2IsUndef);
2361}
2362
2363/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2364/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2365bool X86::isMOVSHDUPMask(SDNode *N) {
2366  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2367
2368  if (N->getNumOperands() != 4)
2369    return false;
2370
2371  // Expect 1, 1, 3, 3
2372  for (unsigned i = 0; i < 2; ++i) {
2373    SDValue Arg = N->getOperand(i);
2374    if (Arg.getOpcode() == ISD::UNDEF) continue;
2375    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2376    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2377    if (Val != 1) return false;
2378  }
2379
2380  bool HasHi = false;
2381  for (unsigned i = 2; i < 4; ++i) {
2382    SDValue Arg = N->getOperand(i);
2383    if (Arg.getOpcode() == ISD::UNDEF) continue;
2384    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2385    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2386    if (Val != 3) return false;
2387    HasHi = true;
2388  }
2389
2390  // Don't use movshdup if it can be done with a shufps.
2391  return HasHi;
2392}
2393
2394/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2395/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2396bool X86::isMOVSLDUPMask(SDNode *N) {
2397  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2398
2399  if (N->getNumOperands() != 4)
2400    return false;
2401
2402  // Expect 0, 0, 2, 2
2403  for (unsigned i = 0; i < 2; ++i) {
2404    SDValue Arg = N->getOperand(i);
2405    if (Arg.getOpcode() == ISD::UNDEF) continue;
2406    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2407    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2408    if (Val != 0) return false;
2409  }
2410
2411  bool HasHi = false;
2412  for (unsigned i = 2; i < 4; ++i) {
2413    SDValue Arg = N->getOperand(i);
2414    if (Arg.getOpcode() == ISD::UNDEF) continue;
2415    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2416    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2417    if (Val != 2) return false;
2418    HasHi = true;
2419  }
2420
2421  // Don't use movshdup if it can be done with a shufps.
2422  return HasHi;
2423}
2424
2425/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2426/// specifies a identity operation on the LHS or RHS.
2427static bool isIdentityMask(SDNode *N, bool RHS = false) {
2428  unsigned NumElems = N->getNumOperands();
2429  for (unsigned i = 0; i < NumElems; ++i)
2430    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2431      return false;
2432  return true;
2433}
2434
2435/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2436/// a splat of a single element.
2437static bool isSplatMask(SDNode *N) {
2438  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2439
2440  // This is a splat operation if each element of the permute is the same, and
2441  // if the value doesn't reference the second vector.
2442  unsigned NumElems = N->getNumOperands();
2443  SDValue ElementBase;
2444  unsigned i = 0;
2445  for (; i != NumElems; ++i) {
2446    SDValue Elt = N->getOperand(i);
2447    if (isa<ConstantSDNode>(Elt)) {
2448      ElementBase = Elt;
2449      break;
2450    }
2451  }
2452
2453  if (!ElementBase.Val)
2454    return false;
2455
2456  for (; i != NumElems; ++i) {
2457    SDValue Arg = N->getOperand(i);
2458    if (Arg.getOpcode() == ISD::UNDEF) continue;
2459    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2460    if (Arg != ElementBase) return false;
2461  }
2462
2463  // Make sure it is a splat of the first vector operand.
2464  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2465}
2466
2467/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2468/// a splat of a single element and it's a 2 or 4 element mask.
2469bool X86::isSplatMask(SDNode *N) {
2470  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2471
2472  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2473  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2474    return false;
2475  return ::isSplatMask(N);
2476}
2477
2478/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2479/// specifies a splat of zero element.
2480bool X86::isSplatLoMask(SDNode *N) {
2481  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2482
2483  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2484    if (!isUndefOrEqual(N->getOperand(i), 0))
2485      return false;
2486  return true;
2487}
2488
2489/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2490/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2491/// instructions.
2492unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2493  unsigned NumOperands = N->getNumOperands();
2494  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2495  unsigned Mask = 0;
2496  for (unsigned i = 0; i < NumOperands; ++i) {
2497    unsigned Val = 0;
2498    SDValue Arg = N->getOperand(NumOperands-i-1);
2499    if (Arg.getOpcode() != ISD::UNDEF)
2500      Val = cast<ConstantSDNode>(Arg)->getValue();
2501    if (Val >= NumOperands) Val -= NumOperands;
2502    Mask |= Val;
2503    if (i != NumOperands - 1)
2504      Mask <<= Shift;
2505  }
2506
2507  return Mask;
2508}
2509
2510/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2511/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2512/// instructions.
2513unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2514  unsigned Mask = 0;
2515  // 8 nodes, but we only care about the last 4.
2516  for (unsigned i = 7; i >= 4; --i) {
2517    unsigned Val = 0;
2518    SDValue Arg = N->getOperand(i);
2519    if (Arg.getOpcode() != ISD::UNDEF)
2520      Val = cast<ConstantSDNode>(Arg)->getValue();
2521    Mask |= (Val - 4);
2522    if (i != 4)
2523      Mask <<= 2;
2524  }
2525
2526  return Mask;
2527}
2528
2529/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2530/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2531/// instructions.
2532unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2533  unsigned Mask = 0;
2534  // 8 nodes, but we only care about the first 4.
2535  for (int i = 3; i >= 0; --i) {
2536    unsigned Val = 0;
2537    SDValue Arg = N->getOperand(i);
2538    if (Arg.getOpcode() != ISD::UNDEF)
2539      Val = cast<ConstantSDNode>(Arg)->getValue();
2540    Mask |= Val;
2541    if (i != 0)
2542      Mask <<= 2;
2543  }
2544
2545  return Mask;
2546}
2547
2548/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2549/// specifies a 8 element shuffle that can be broken into a pair of
2550/// PSHUFHW and PSHUFLW.
2551static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2552  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2553
2554  if (N->getNumOperands() != 8)
2555    return false;
2556
2557  // Lower quadword shuffled.
2558  for (unsigned i = 0; i != 4; ++i) {
2559    SDValue Arg = N->getOperand(i);
2560    if (Arg.getOpcode() == ISD::UNDEF) continue;
2561    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2562    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2563    if (Val >= 4)
2564      return false;
2565  }
2566
2567  // Upper quadword shuffled.
2568  for (unsigned i = 4; i != 8; ++i) {
2569    SDValue Arg = N->getOperand(i);
2570    if (Arg.getOpcode() == ISD::UNDEF) continue;
2571    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2572    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2573    if (Val < 4 || Val > 7)
2574      return false;
2575  }
2576
2577  return true;
2578}
2579
2580/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2581/// values in ther permute mask.
2582static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1,
2583                                      SDValue &V2, SDValue &Mask,
2584                                      SelectionDAG &DAG) {
2585  MVT VT = Op.getValueType();
2586  MVT MaskVT = Mask.getValueType();
2587  MVT EltVT = MaskVT.getVectorElementType();
2588  unsigned NumElems = Mask.getNumOperands();
2589  SmallVector<SDValue, 8> MaskVec;
2590
2591  for (unsigned i = 0; i != NumElems; ++i) {
2592    SDValue Arg = Mask.getOperand(i);
2593    if (Arg.getOpcode() == ISD::UNDEF) {
2594      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2595      continue;
2596    }
2597    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2598    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2599    if (Val < NumElems)
2600      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2601    else
2602      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2603  }
2604
2605  std::swap(V1, V2);
2606  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2607  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2608}
2609
2610/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2611/// the two vector operands have swapped position.
2612static
2613SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG) {
2614  MVT MaskVT = Mask.getValueType();
2615  MVT EltVT = MaskVT.getVectorElementType();
2616  unsigned NumElems = Mask.getNumOperands();
2617  SmallVector<SDValue, 8> MaskVec;
2618  for (unsigned i = 0; i != NumElems; ++i) {
2619    SDValue Arg = Mask.getOperand(i);
2620    if (Arg.getOpcode() == ISD::UNDEF) {
2621      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2622      continue;
2623    }
2624    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2625    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2626    if (Val < NumElems)
2627      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2628    else
2629      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2630  }
2631  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2632}
2633
2634
2635/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2636/// match movhlps. The lower half elements should come from upper half of
2637/// V1 (and in order), and the upper half elements should come from the upper
2638/// half of V2 (and in order).
2639static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2640  unsigned NumElems = Mask->getNumOperands();
2641  if (NumElems != 4)
2642    return false;
2643  for (unsigned i = 0, e = 2; i != e; ++i)
2644    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2645      return false;
2646  for (unsigned i = 2; i != 4; ++i)
2647    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2648      return false;
2649  return true;
2650}
2651
2652/// isScalarLoadToVector - Returns true if the node is a scalar load that
2653/// is promoted to a vector. It also returns the LoadSDNode by reference if
2654/// required.
2655static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2656  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2657    N = N->getOperand(0).Val;
2658    if (ISD::isNON_EXTLoad(N)) {
2659      if (LD)
2660        *LD = cast<LoadSDNode>(N);
2661      return true;
2662    }
2663  }
2664  return false;
2665}
2666
2667/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2668/// match movlp{s|d}. The lower half elements should come from lower half of
2669/// V1 (and in order), and the upper half elements should come from the upper
2670/// half of V2 (and in order). And since V1 will become the source of the
2671/// MOVLP, it must be either a vector load or a scalar load to vector.
2672static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2673  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2674    return false;
2675  // Is V2 is a vector load, don't do this transformation. We will try to use
2676  // load folding shufps op.
2677  if (ISD::isNON_EXTLoad(V2))
2678    return false;
2679
2680  unsigned NumElems = Mask->getNumOperands();
2681  if (NumElems != 2 && NumElems != 4)
2682    return false;
2683  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2684    if (!isUndefOrEqual(Mask->getOperand(i), i))
2685      return false;
2686  for (unsigned i = NumElems/2; i != NumElems; ++i)
2687    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2688      return false;
2689  return true;
2690}
2691
2692/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2693/// all the same.
2694static bool isSplatVector(SDNode *N) {
2695  if (N->getOpcode() != ISD::BUILD_VECTOR)
2696    return false;
2697
2698  SDValue SplatValue = N->getOperand(0);
2699  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2700    if (N->getOperand(i) != SplatValue)
2701      return false;
2702  return true;
2703}
2704
2705/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2706/// to an undef.
2707static bool isUndefShuffle(SDNode *N) {
2708  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2709    return false;
2710
2711  SDValue V1 = N->getOperand(0);
2712  SDValue V2 = N->getOperand(1);
2713  SDValue Mask = N->getOperand(2);
2714  unsigned NumElems = Mask.getNumOperands();
2715  for (unsigned i = 0; i != NumElems; ++i) {
2716    SDValue Arg = Mask.getOperand(i);
2717    if (Arg.getOpcode() != ISD::UNDEF) {
2718      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2719      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2720        return false;
2721      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2722        return false;
2723    }
2724  }
2725  return true;
2726}
2727
2728/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2729/// constant +0.0.
2730static inline bool isZeroNode(SDValue Elt) {
2731  return ((isa<ConstantSDNode>(Elt) &&
2732           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2733          (isa<ConstantFPSDNode>(Elt) &&
2734           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2735}
2736
2737/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2738/// to an zero vector.
2739static bool isZeroShuffle(SDNode *N) {
2740  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2741    return false;
2742
2743  SDValue V1 = N->getOperand(0);
2744  SDValue V2 = N->getOperand(1);
2745  SDValue Mask = N->getOperand(2);
2746  unsigned NumElems = Mask.getNumOperands();
2747  for (unsigned i = 0; i != NumElems; ++i) {
2748    SDValue Arg = Mask.getOperand(i);
2749    if (Arg.getOpcode() == ISD::UNDEF)
2750      continue;
2751
2752    unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2753    if (Idx < NumElems) {
2754      unsigned Opc = V1.Val->getOpcode();
2755      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2756        continue;
2757      if (Opc != ISD::BUILD_VECTOR ||
2758          !isZeroNode(V1.Val->getOperand(Idx)))
2759        return false;
2760    } else if (Idx >= NumElems) {
2761      unsigned Opc = V2.Val->getOpcode();
2762      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2763        continue;
2764      if (Opc != ISD::BUILD_VECTOR ||
2765          !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2766        return false;
2767    }
2768  }
2769  return true;
2770}
2771
2772/// getZeroVector - Returns a vector of specified type with all zero elements.
2773///
2774static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) {
2775  assert(VT.isVector() && "Expected a vector type");
2776
2777  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2778  // type.  This ensures they get CSE'd.
2779  SDValue Vec;
2780  if (VT.getSizeInBits() == 64) { // MMX
2781    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2782    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2783  } else if (HasSSE2) {  // SSE2
2784    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2785    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2786  } else { // SSE1
2787    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2788    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
2789  }
2790  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2791}
2792
2793/// getOnesVector - Returns a vector of specified type with all bits set.
2794///
2795static SDValue getOnesVector(MVT VT, SelectionDAG &DAG) {
2796  assert(VT.isVector() && "Expected a vector type");
2797
2798  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2799  // type.  This ensures they get CSE'd.
2800  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2801  SDValue Vec;
2802  if (VT.getSizeInBits() == 64)  // MMX
2803    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2804  else                                              // SSE
2805    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2806  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2807}
2808
2809
2810/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2811/// that point to V2 points to its first element.
2812static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) {
2813  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2814
2815  bool Changed = false;
2816  SmallVector<SDValue, 8> MaskVec;
2817  unsigned NumElems = Mask.getNumOperands();
2818  for (unsigned i = 0; i != NumElems; ++i) {
2819    SDValue Arg = Mask.getOperand(i);
2820    if (Arg.getOpcode() != ISD::UNDEF) {
2821      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2822      if (Val > NumElems) {
2823        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2824        Changed = true;
2825      }
2826    }
2827    MaskVec.push_back(Arg);
2828  }
2829
2830  if (Changed)
2831    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2832                       &MaskVec[0], MaskVec.size());
2833  return Mask;
2834}
2835
2836/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2837/// operation of specified width.
2838static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2839  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2840  MVT BaseVT = MaskVT.getVectorElementType();
2841
2842  SmallVector<SDValue, 8> MaskVec;
2843  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2844  for (unsigned i = 1; i != NumElems; ++i)
2845    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2846  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2847}
2848
2849/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2850/// of specified width.
2851static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2852  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2853  MVT BaseVT = MaskVT.getVectorElementType();
2854  SmallVector<SDValue, 8> MaskVec;
2855  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2856    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2857    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2858  }
2859  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2860}
2861
2862/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2863/// of specified width.
2864static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2865  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2866  MVT BaseVT = MaskVT.getVectorElementType();
2867  unsigned Half = NumElems/2;
2868  SmallVector<SDValue, 8> MaskVec;
2869  for (unsigned i = 0; i != Half; ++i) {
2870    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2871    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2872  }
2873  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2874}
2875
2876/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2877/// element #0 of a vector with the specified index, leaving the rest of the
2878/// elements in place.
2879static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2880                                   SelectionDAG &DAG) {
2881  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2882  MVT BaseVT = MaskVT.getVectorElementType();
2883  SmallVector<SDValue, 8> MaskVec;
2884  // Element #0 of the result gets the elt we are replacing.
2885  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2886  for (unsigned i = 1; i != NumElems; ++i)
2887    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2888  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2889}
2890
2891/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2892static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) {
2893  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
2894  MVT VT = Op.getValueType();
2895  if (PVT == VT)
2896    return Op;
2897  SDValue V1 = Op.getOperand(0);
2898  SDValue Mask = Op.getOperand(2);
2899  unsigned NumElems = Mask.getNumOperands();
2900  // Special handling of v4f32 -> v4i32.
2901  if (VT != MVT::v4f32) {
2902    Mask = getUnpacklMask(NumElems, DAG);
2903    while (NumElems > 4) {
2904      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2905      NumElems >>= 1;
2906    }
2907    Mask = getZeroVector(MVT::v4i32, true, DAG);
2908  }
2909
2910  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
2911  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
2912                                  DAG.getNode(ISD::UNDEF, PVT), Mask);
2913  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2914}
2915
2916/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2917/// vector of zero or undef vector.  This produces a shuffle where the low
2918/// element of V2 is swizzled into the zero/undef vector, landing at element
2919/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2920static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
2921                                             bool isZero, bool HasSSE2,
2922                                             SelectionDAG &DAG) {
2923  MVT VT = V2.getValueType();
2924  SDValue V1 = isZero
2925    ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
2926  unsigned NumElems = V2.getValueType().getVectorNumElements();
2927  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2928  MVT EVT = MaskVT.getVectorElementType();
2929  SmallVector<SDValue, 16> MaskVec;
2930  for (unsigned i = 0; i != NumElems; ++i)
2931    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
2932      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
2933    else
2934      MaskVec.push_back(DAG.getConstant(i, EVT));
2935  SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2936                               &MaskVec[0], MaskVec.size());
2937  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2938}
2939
2940/// getNumOfConsecutiveZeros - Return the number of elements in a result of
2941/// a shuffle that is zero.
2942static
2943unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask,
2944                                  unsigned NumElems, bool Low,
2945                                  SelectionDAG &DAG) {
2946  unsigned NumZeros = 0;
2947  for (unsigned i = 0; i < NumElems; ++i) {
2948    unsigned Index = Low ? i : NumElems-i-1;
2949    SDValue Idx = Mask.getOperand(Index);
2950    if (Idx.getOpcode() == ISD::UNDEF) {
2951      ++NumZeros;
2952      continue;
2953    }
2954    SDValue Elt = DAG.getShuffleScalarElt(Op.Val, Index);
2955    if (Elt.Val && isZeroNode(Elt))
2956      ++NumZeros;
2957    else
2958      break;
2959  }
2960  return NumZeros;
2961}
2962
2963/// isVectorShift - Returns true if the shuffle can be implemented as a
2964/// logical left or right shift of a vector.
2965static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG,
2966                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
2967  unsigned NumElems = Mask.getNumOperands();
2968
2969  isLeft = true;
2970  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
2971  if (!NumZeros) {
2972    isLeft = false;
2973    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
2974    if (!NumZeros)
2975      return false;
2976  }
2977
2978  bool SeenV1 = false;
2979  bool SeenV2 = false;
2980  for (unsigned i = NumZeros; i < NumElems; ++i) {
2981    unsigned Val = isLeft ? (i - NumZeros) : i;
2982    SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
2983    if (Idx.getOpcode() == ISD::UNDEF)
2984      continue;
2985    unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
2986    if (Index < NumElems)
2987      SeenV1 = true;
2988    else {
2989      Index -= NumElems;
2990      SeenV2 = true;
2991    }
2992    if (Index != Val)
2993      return false;
2994  }
2995  if (SeenV1 && SeenV2)
2996    return false;
2997
2998  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
2999  ShAmt = NumZeros;
3000  return true;
3001}
3002
3003
3004/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3005///
3006static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3007                                       unsigned NumNonZero, unsigned NumZero,
3008                                       SelectionDAG &DAG, TargetLowering &TLI) {
3009  if (NumNonZero > 8)
3010    return SDValue();
3011
3012  SDValue V(0, 0);
3013  bool First = true;
3014  for (unsigned i = 0; i < 16; ++i) {
3015    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3016    if (ThisIsNonZero && First) {
3017      if (NumZero)
3018        V = getZeroVector(MVT::v8i16, true, DAG);
3019      else
3020        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3021      First = false;
3022    }
3023
3024    if ((i & 1) != 0) {
3025      SDValue ThisElt(0, 0), LastElt(0, 0);
3026      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3027      if (LastIsNonZero) {
3028        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3029      }
3030      if (ThisIsNonZero) {
3031        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3032        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3033                              ThisElt, DAG.getConstant(8, MVT::i8));
3034        if (LastIsNonZero)
3035          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3036      } else
3037        ThisElt = LastElt;
3038
3039      if (ThisElt.Val)
3040        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3041                        DAG.getIntPtrConstant(i/2));
3042    }
3043  }
3044
3045  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3046}
3047
3048/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3049///
3050static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3051                                       unsigned NumNonZero, unsigned NumZero,
3052                                       SelectionDAG &DAG, TargetLowering &TLI) {
3053  if (NumNonZero > 4)
3054    return SDValue();
3055
3056  SDValue V(0, 0);
3057  bool First = true;
3058  for (unsigned i = 0; i < 8; ++i) {
3059    bool isNonZero = (NonZeros & (1 << i)) != 0;
3060    if (isNonZero) {
3061      if (First) {
3062        if (NumZero)
3063          V = getZeroVector(MVT::v8i16, true, DAG);
3064        else
3065          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3066        First = false;
3067      }
3068      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3069                      DAG.getIntPtrConstant(i));
3070    }
3071  }
3072
3073  return V;
3074}
3075
3076/// getVShift - Return a vector logical shift node.
3077///
3078static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3079                           unsigned NumBits, SelectionDAG &DAG,
3080                           const TargetLowering &TLI) {
3081  bool isMMX = VT.getSizeInBits() == 64;
3082  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3083  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3084  SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp);
3085  return DAG.getNode(ISD::BIT_CONVERT, VT,
3086                     DAG.getNode(Opc, ShVT, SrcOp,
3087                              DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3088}
3089
3090SDValue
3091X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3092  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3093  if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
3094    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3095    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3096    // eliminated on x86-32 hosts.
3097    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3098      return Op;
3099
3100    if (ISD::isBuildVectorAllOnes(Op.Val))
3101      return getOnesVector(Op.getValueType(), DAG);
3102    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
3103  }
3104
3105  MVT VT = Op.getValueType();
3106  MVT EVT = VT.getVectorElementType();
3107  unsigned EVTBits = EVT.getSizeInBits();
3108
3109  unsigned NumElems = Op.getNumOperands();
3110  unsigned NumZero  = 0;
3111  unsigned NumNonZero = 0;
3112  unsigned NonZeros = 0;
3113  bool IsAllConstants = true;
3114  SmallSet<SDValue, 8> Values;
3115  for (unsigned i = 0; i < NumElems; ++i) {
3116    SDValue Elt = Op.getOperand(i);
3117    if (Elt.getOpcode() == ISD::UNDEF)
3118      continue;
3119    Values.insert(Elt);
3120    if (Elt.getOpcode() != ISD::Constant &&
3121        Elt.getOpcode() != ISD::ConstantFP)
3122      IsAllConstants = false;
3123    if (isZeroNode(Elt))
3124      NumZero++;
3125    else {
3126      NonZeros |= (1 << i);
3127      NumNonZero++;
3128    }
3129  }
3130
3131  if (NumNonZero == 0) {
3132    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3133    return DAG.getNode(ISD::UNDEF, VT);
3134  }
3135
3136  // Special case for single non-zero, non-undef, element.
3137  if (NumNonZero == 1 && NumElems <= 4) {
3138    unsigned Idx = CountTrailingZeros_32(NonZeros);
3139    SDValue Item = Op.getOperand(Idx);
3140
3141    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3142    // the value are obviously zero, truncate the value to i32 and do the
3143    // insertion that way.  Only do this if the value is non-constant or if the
3144    // value is a constant being inserted into element 0.  It is cheaper to do
3145    // a constant pool load than it is to do a movd + shuffle.
3146    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3147        (!IsAllConstants || Idx == 0)) {
3148      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3149        // Handle MMX and SSE both.
3150        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3151        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3152
3153        // Truncate the value (which may itself be a constant) to i32, and
3154        // convert it to a vector with movd (S2V+shuffle to zero extend).
3155        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3156        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3157        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3158                                           Subtarget->hasSSE2(), DAG);
3159
3160        // Now we have our 32-bit value zero extended in the low element of
3161        // a vector.  If Idx != 0, swizzle it into place.
3162        if (Idx != 0) {
3163          SDValue Ops[] = {
3164            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3165            getSwapEltZeroMask(VecElts, Idx, DAG)
3166          };
3167          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3168        }
3169        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3170      }
3171    }
3172
3173    // If we have a constant or non-constant insertion into the low element of
3174    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3175    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3176    // depending on what the source datatype is.  Because we can only get here
3177    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3178    if (Idx == 0 &&
3179        // Don't do this for i64 values on x86-32.
3180        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3181      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3182      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3183      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3184                                         Subtarget->hasSSE2(), DAG);
3185    }
3186
3187    // Is it a vector logical left shift?
3188    if (NumElems == 2 && Idx == 1 &&
3189        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3190      unsigned NumBits = VT.getSizeInBits();
3191      return getVShift(true, VT,
3192                       DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)),
3193                       NumBits/2, DAG, *this);
3194    }
3195
3196    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3197      return SDValue();
3198
3199    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3200    // is a non-constant being inserted into an element other than the low one,
3201    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3202    // movd/movss) to move this into the low element, then shuffle it into
3203    // place.
3204    if (EVTBits == 32) {
3205      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3206
3207      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3208      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3209                                         Subtarget->hasSSE2(), DAG);
3210      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3211      MVT MaskEVT = MaskVT.getVectorElementType();
3212      SmallVector<SDValue, 8> MaskVec;
3213      for (unsigned i = 0; i < NumElems; i++)
3214        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3215      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3216                                   &MaskVec[0], MaskVec.size());
3217      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3218                         DAG.getNode(ISD::UNDEF, VT), Mask);
3219    }
3220  }
3221
3222  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3223  if (Values.size() == 1)
3224    return SDValue();
3225
3226  // A vector full of immediates; various special cases are already
3227  // handled, so this is best done with a single constant-pool load.
3228  if (IsAllConstants)
3229    return SDValue();
3230
3231  // Let legalizer expand 2-wide build_vectors.
3232  if (EVTBits == 64) {
3233    if (NumNonZero == 1) {
3234      // One half is zero or undef.
3235      unsigned Idx = CountTrailingZeros_32(NonZeros);
3236      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
3237                                 Op.getOperand(Idx));
3238      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3239                                         Subtarget->hasSSE2(), DAG);
3240    }
3241    return SDValue();
3242  }
3243
3244  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3245  if (EVTBits == 8 && NumElems == 16) {
3246    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3247                                        *this);
3248    if (V.Val) return V;
3249  }
3250
3251  if (EVTBits == 16 && NumElems == 8) {
3252    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3253                                        *this);
3254    if (V.Val) return V;
3255  }
3256
3257  // If element VT is == 32 bits, turn it into a number of shuffles.
3258  SmallVector<SDValue, 8> V;
3259  V.resize(NumElems);
3260  if (NumElems == 4 && NumZero > 0) {
3261    for (unsigned i = 0; i < 4; ++i) {
3262      bool isZero = !(NonZeros & (1 << i));
3263      if (isZero)
3264        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3265      else
3266        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3267    }
3268
3269    for (unsigned i = 0; i < 2; ++i) {
3270      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3271        default: break;
3272        case 0:
3273          V[i] = V[i*2];  // Must be a zero vector.
3274          break;
3275        case 1:
3276          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3277                             getMOVLMask(NumElems, DAG));
3278          break;
3279        case 2:
3280          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3281                             getMOVLMask(NumElems, DAG));
3282          break;
3283        case 3:
3284          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3285                             getUnpacklMask(NumElems, DAG));
3286          break;
3287      }
3288    }
3289
3290    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3291    MVT EVT = MaskVT.getVectorElementType();
3292    SmallVector<SDValue, 8> MaskVec;
3293    bool Reverse = (NonZeros & 0x3) == 2;
3294    for (unsigned i = 0; i < 2; ++i)
3295      if (Reverse)
3296        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3297      else
3298        MaskVec.push_back(DAG.getConstant(i, EVT));
3299    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3300    for (unsigned i = 0; i < 2; ++i)
3301      if (Reverse)
3302        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3303      else
3304        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3305    SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3306                                     &MaskVec[0], MaskVec.size());
3307    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3308  }
3309
3310  if (Values.size() > 2) {
3311    // Expand into a number of unpckl*.
3312    // e.g. for v4f32
3313    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3314    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3315    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3316    SDValue UnpckMask = getUnpacklMask(NumElems, DAG);
3317    for (unsigned i = 0; i < NumElems; ++i)
3318      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3319    NumElems >>= 1;
3320    while (NumElems != 0) {
3321      for (unsigned i = 0; i < NumElems; ++i)
3322        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3323                           UnpckMask);
3324      NumElems >>= 1;
3325    }
3326    return V[0];
3327  }
3328
3329  return SDValue();
3330}
3331
3332static
3333SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2,
3334                                   SDValue PermMask, SelectionDAG &DAG,
3335                                   TargetLowering &TLI) {
3336  SDValue NewV;
3337  MVT MaskVT = MVT::getIntVectorWithNumElements(8);
3338  MVT MaskEVT = MaskVT.getVectorElementType();
3339  MVT PtrVT = TLI.getPointerTy();
3340  SmallVector<SDValue, 8> MaskElts(PermMask.Val->op_begin(),
3341                                     PermMask.Val->op_end());
3342
3343  // First record which half of which vector the low elements come from.
3344  SmallVector<unsigned, 4> LowQuad(4);
3345  for (unsigned i = 0; i < 4; ++i) {
3346    SDValue Elt = MaskElts[i];
3347    if (Elt.getOpcode() == ISD::UNDEF)
3348      continue;
3349    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3350    int QuadIdx = EltIdx / 4;
3351    ++LowQuad[QuadIdx];
3352  }
3353  int BestLowQuad = -1;
3354  unsigned MaxQuad = 1;
3355  for (unsigned i = 0; i < 4; ++i) {
3356    if (LowQuad[i] > MaxQuad) {
3357      BestLowQuad = i;
3358      MaxQuad = LowQuad[i];
3359    }
3360  }
3361
3362  // Record which half of which vector the high elements come from.
3363  SmallVector<unsigned, 4> HighQuad(4);
3364  for (unsigned i = 4; i < 8; ++i) {
3365    SDValue Elt = MaskElts[i];
3366    if (Elt.getOpcode() == ISD::UNDEF)
3367      continue;
3368    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3369    int QuadIdx = EltIdx / 4;
3370    ++HighQuad[QuadIdx];
3371  }
3372  int BestHighQuad = -1;
3373  MaxQuad = 1;
3374  for (unsigned i = 0; i < 4; ++i) {
3375    if (HighQuad[i] > MaxQuad) {
3376      BestHighQuad = i;
3377      MaxQuad = HighQuad[i];
3378    }
3379  }
3380
3381  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3382  if (BestLowQuad != -1 || BestHighQuad != -1) {
3383    // First sort the 4 chunks in order using shufpd.
3384    SmallVector<SDValue, 8> MaskVec;
3385    if (BestLowQuad != -1)
3386      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3387    else
3388      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3389    if (BestHighQuad != -1)
3390      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3391    else
3392      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3393    SDValue Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3394    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3395                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3396                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3397    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3398
3399    // Now sort high and low parts separately.
3400    BitVector InOrder(8);
3401    if (BestLowQuad != -1) {
3402      // Sort lower half in order using PSHUFLW.
3403      MaskVec.clear();
3404      bool AnyOutOrder = false;
3405      for (unsigned i = 0; i != 4; ++i) {
3406        SDValue Elt = MaskElts[i];
3407        if (Elt.getOpcode() == ISD::UNDEF) {
3408          MaskVec.push_back(Elt);
3409          InOrder.set(i);
3410        } else {
3411          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3412          if (EltIdx != i)
3413            AnyOutOrder = true;
3414          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3415          // If this element is in the right place after this shuffle, then
3416          // remember it.
3417          if ((int)(EltIdx / 4) == BestLowQuad)
3418            InOrder.set(i);
3419        }
3420      }
3421      if (AnyOutOrder) {
3422        for (unsigned i = 4; i != 8; ++i)
3423          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3424        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3425        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3426      }
3427    }
3428
3429    if (BestHighQuad != -1) {
3430      // Sort high half in order using PSHUFHW if possible.
3431      MaskVec.clear();
3432      for (unsigned i = 0; i != 4; ++i)
3433        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3434      bool AnyOutOrder = false;
3435      for (unsigned i = 4; i != 8; ++i) {
3436        SDValue Elt = MaskElts[i];
3437        if (Elt.getOpcode() == ISD::UNDEF) {
3438          MaskVec.push_back(Elt);
3439          InOrder.set(i);
3440        } else {
3441          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3442          if (EltIdx != i)
3443            AnyOutOrder = true;
3444          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3445          // If this element is in the right place after this shuffle, then
3446          // remember it.
3447          if ((int)(EltIdx / 4) == BestHighQuad)
3448            InOrder.set(i);
3449        }
3450      }
3451      if (AnyOutOrder) {
3452        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3453        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3454      }
3455    }
3456
3457    // The other elements are put in the right place using pextrw and pinsrw.
3458    for (unsigned i = 0; i != 8; ++i) {
3459      if (InOrder[i])
3460        continue;
3461      SDValue Elt = MaskElts[i];
3462      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3463      SDValue ExtOp = (EltIdx < 8)
3464        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3465                      DAG.getConstant(EltIdx, PtrVT))
3466        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3467                      DAG.getConstant(EltIdx - 8, PtrVT));
3468      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3469                         DAG.getConstant(i, PtrVT));
3470    }
3471    return NewV;
3472  }
3473
3474  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
3475  ///as few as possible.
3476  // First, let's find out how many elements are already in the right order.
3477  unsigned V1InOrder = 0;
3478  unsigned V1FromV1 = 0;
3479  unsigned V2InOrder = 0;
3480  unsigned V2FromV2 = 0;
3481  SmallVector<SDValue, 8> V1Elts;
3482  SmallVector<SDValue, 8> V2Elts;
3483  for (unsigned i = 0; i < 8; ++i) {
3484    SDValue Elt = MaskElts[i];
3485    if (Elt.getOpcode() == ISD::UNDEF) {
3486      V1Elts.push_back(Elt);
3487      V2Elts.push_back(Elt);
3488      ++V1InOrder;
3489      ++V2InOrder;
3490      continue;
3491    }
3492    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3493    if (EltIdx == i) {
3494      V1Elts.push_back(Elt);
3495      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3496      ++V1InOrder;
3497    } else if (EltIdx == i+8) {
3498      V1Elts.push_back(Elt);
3499      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3500      ++V2InOrder;
3501    } else if (EltIdx < 8) {
3502      V1Elts.push_back(Elt);
3503      ++V1FromV1;
3504    } else {
3505      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3506      ++V2FromV2;
3507    }
3508  }
3509
3510  if (V2InOrder > V1InOrder) {
3511    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3512    std::swap(V1, V2);
3513    std::swap(V1Elts, V2Elts);
3514    std::swap(V1FromV1, V2FromV2);
3515  }
3516
3517  if ((V1FromV1 + V1InOrder) != 8) {
3518    // Some elements are from V2.
3519    if (V1FromV1) {
3520      // If there are elements that are from V1 but out of place,
3521      // then first sort them in place
3522      SmallVector<SDValue, 8> MaskVec;
3523      for (unsigned i = 0; i < 8; ++i) {
3524        SDValue Elt = V1Elts[i];
3525        if (Elt.getOpcode() == ISD::UNDEF) {
3526          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3527          continue;
3528        }
3529        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3530        if (EltIdx >= 8)
3531          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3532        else
3533          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3534      }
3535      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3536      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3537    }
3538
3539    NewV = V1;
3540    for (unsigned i = 0; i < 8; ++i) {
3541      SDValue Elt = V1Elts[i];
3542      if (Elt.getOpcode() == ISD::UNDEF)
3543        continue;
3544      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3545      if (EltIdx < 8)
3546        continue;
3547      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3548                                    DAG.getConstant(EltIdx - 8, PtrVT));
3549      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3550                         DAG.getConstant(i, PtrVT));
3551    }
3552    return NewV;
3553  } else {
3554    // All elements are from V1.
3555    NewV = V1;
3556    for (unsigned i = 0; i < 8; ++i) {
3557      SDValue Elt = V1Elts[i];
3558      if (Elt.getOpcode() == ISD::UNDEF)
3559        continue;
3560      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3561      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3562                                    DAG.getConstant(EltIdx, PtrVT));
3563      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3564                         DAG.getConstant(i, PtrVT));
3565    }
3566    return NewV;
3567  }
3568}
3569
3570/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3571/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3572/// done when every pair / quad of shuffle mask elements point to elements in
3573/// the right sequence. e.g.
3574/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3575static
3576SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2,
3577                                MVT VT,
3578                                SDValue PermMask, SelectionDAG &DAG,
3579                                TargetLowering &TLI) {
3580  unsigned NumElems = PermMask.getNumOperands();
3581  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3582  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3583  MVT MaskEltVT = MaskVT.getVectorElementType();
3584  MVT NewVT = MaskVT;
3585  switch (VT.getSimpleVT()) {
3586  default: assert(false && "Unexpected!");
3587  case MVT::v4f32: NewVT = MVT::v2f64; break;
3588  case MVT::v4i32: NewVT = MVT::v2i64; break;
3589  case MVT::v8i16: NewVT = MVT::v4i32; break;
3590  case MVT::v16i8: NewVT = MVT::v4i32; break;
3591  }
3592
3593  if (NewWidth == 2) {
3594    if (VT.isInteger())
3595      NewVT = MVT::v2i64;
3596    else
3597      NewVT = MVT::v2f64;
3598  }
3599  unsigned Scale = NumElems / NewWidth;
3600  SmallVector<SDValue, 8> MaskVec;
3601  for (unsigned i = 0; i < NumElems; i += Scale) {
3602    unsigned StartIdx = ~0U;
3603    for (unsigned j = 0; j < Scale; ++j) {
3604      SDValue Elt = PermMask.getOperand(i+j);
3605      if (Elt.getOpcode() == ISD::UNDEF)
3606        continue;
3607      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3608      if (StartIdx == ~0U)
3609        StartIdx = EltIdx - (EltIdx % Scale);
3610      if (EltIdx != StartIdx + j)
3611        return SDValue();
3612    }
3613    if (StartIdx == ~0U)
3614      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEltVT));
3615    else
3616      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT));
3617  }
3618
3619  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3620  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3621  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3622                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3623                                 &MaskVec[0], MaskVec.size()));
3624}
3625
3626/// getVZextMovL - Return a zero-extending vector move low node.
3627///
3628static SDValue getVZextMovL(MVT VT, MVT OpVT,
3629                              SDValue SrcOp, SelectionDAG &DAG,
3630                              const X86Subtarget *Subtarget) {
3631  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3632    LoadSDNode *LD = NULL;
3633    if (!isScalarLoadToVector(SrcOp.Val, &LD))
3634      LD = dyn_cast<LoadSDNode>(SrcOp);
3635    if (!LD) {
3636      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3637      // instead.
3638      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3639      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3640          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3641          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3642          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3643        // PR2108
3644        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3645        return DAG.getNode(ISD::BIT_CONVERT, VT,
3646                           DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3647                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
3648                                                   SrcOp.getOperand(0).getOperand(0))));
3649      }
3650    }
3651  }
3652
3653  return DAG.getNode(ISD::BIT_CONVERT, VT,
3654                     DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3655                                 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
3656}
3657
3658/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3659/// shuffles.
3660static SDValue
3661LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2,
3662                          SDValue PermMask, MVT VT, SelectionDAG &DAG) {
3663  MVT MaskVT = PermMask.getValueType();
3664  MVT MaskEVT = MaskVT.getVectorElementType();
3665  SmallVector<std::pair<int, int>, 8> Locs;
3666  Locs.reserve(4);
3667  SmallVector<SDValue, 8> Mask1(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3668  unsigned NumHi = 0;
3669  unsigned NumLo = 0;
3670  for (unsigned i = 0; i != 4; ++i) {
3671    SDValue Elt = PermMask.getOperand(i);
3672    if (Elt.getOpcode() == ISD::UNDEF) {
3673      Locs[i] = std::make_pair(-1, -1);
3674    } else {
3675      unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3676      assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!");
3677      if (Val < 4) {
3678        Locs[i] = std::make_pair(0, NumLo);
3679        Mask1[NumLo] = Elt;
3680        NumLo++;
3681      } else {
3682        Locs[i] = std::make_pair(1, NumHi);
3683        if (2+NumHi < 4)
3684          Mask1[2+NumHi] = Elt;
3685        NumHi++;
3686      }
3687    }
3688  }
3689
3690  if (NumLo <= 2 && NumHi <= 2) {
3691    // If no more than two elements come from either vector. This can be
3692    // implemented with two shuffles. First shuffle gather the elements.
3693    // The second shuffle, which takes the first shuffle as both of its
3694    // vector operands, put the elements into the right order.
3695    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3696                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3697                                 &Mask1[0], Mask1.size()));
3698
3699    SmallVector<SDValue, 8> Mask2(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3700    for (unsigned i = 0; i != 4; ++i) {
3701      if (Locs[i].first == -1)
3702        continue;
3703      else {
3704        unsigned Idx = (i < 2) ? 0 : 4;
3705        Idx += Locs[i].first * 2 + Locs[i].second;
3706        Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3707      }
3708    }
3709
3710    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3711                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3712                                   &Mask2[0], Mask2.size()));
3713  } else if (NumLo == 3 || NumHi == 3) {
3714    // Otherwise, we must have three elements from one vector, call it X, and
3715    // one element from the other, call it Y.  First, use a shufps to build an
3716    // intermediate vector with the one element from Y and the element from X
3717    // that will be in the same half in the final destination (the indexes don't
3718    // matter). Then, use a shufps to build the final vector, taking the half
3719    // containing the element from Y from the intermediate, and the other half
3720    // from X.
3721    if (NumHi == 3) {
3722      // Normalize it so the 3 elements come from V1.
3723      PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3724      std::swap(V1, V2);
3725    }
3726
3727    // Find the element from V2.
3728    unsigned HiIndex;
3729    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3730      SDValue Elt = PermMask.getOperand(HiIndex);
3731      if (Elt.getOpcode() == ISD::UNDEF)
3732        continue;
3733      unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3734      if (Val >= 4)
3735        break;
3736    }
3737
3738    Mask1[0] = PermMask.getOperand(HiIndex);
3739    Mask1[1] = DAG.getNode(ISD::UNDEF, MaskEVT);
3740    Mask1[2] = PermMask.getOperand(HiIndex^1);
3741    Mask1[3] = DAG.getNode(ISD::UNDEF, MaskEVT);
3742    V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3743                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3744
3745    if (HiIndex >= 2) {
3746      Mask1[0] = PermMask.getOperand(0);
3747      Mask1[1] = PermMask.getOperand(1);
3748      Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
3749      Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
3750      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3751                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3752    } else {
3753      Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
3754      Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT);
3755      Mask1[2] = PermMask.getOperand(2);
3756      Mask1[3] = PermMask.getOperand(3);
3757      if (Mask1[2].getOpcode() != ISD::UNDEF)
3758        Mask1[2] = DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getValue()+4,
3759                                   MaskEVT);
3760      if (Mask1[3].getOpcode() != ISD::UNDEF)
3761        Mask1[3] = DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getValue()+4,
3762                                   MaskEVT);
3763      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1,
3764                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3765    }
3766  }
3767
3768  // Break it into (shuffle shuffle_hi, shuffle_lo).
3769  Locs.clear();
3770  SmallVector<SDValue,8> LoMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3771  SmallVector<SDValue,8> HiMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3772  SmallVector<SDValue,8> *MaskPtr = &LoMask;
3773  unsigned MaskIdx = 0;
3774  unsigned LoIdx = 0;
3775  unsigned HiIdx = 2;
3776  for (unsigned i = 0; i != 4; ++i) {
3777    if (i == 2) {
3778      MaskPtr = &HiMask;
3779      MaskIdx = 1;
3780      LoIdx = 0;
3781      HiIdx = 2;
3782    }
3783    SDValue Elt = PermMask.getOperand(i);
3784    if (Elt.getOpcode() == ISD::UNDEF) {
3785      Locs[i] = std::make_pair(-1, -1);
3786    } else if (cast<ConstantSDNode>(Elt)->getValue() < 4) {
3787      Locs[i] = std::make_pair(MaskIdx, LoIdx);
3788      (*MaskPtr)[LoIdx] = Elt;
3789      LoIdx++;
3790    } else {
3791      Locs[i] = std::make_pair(MaskIdx, HiIdx);
3792      (*MaskPtr)[HiIdx] = Elt;
3793      HiIdx++;
3794    }
3795  }
3796
3797  SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3798                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3799                                                &LoMask[0], LoMask.size()));
3800  SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3801                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3802                                                &HiMask[0], HiMask.size()));
3803  SmallVector<SDValue, 8> MaskOps;
3804  for (unsigned i = 0; i != 4; ++i) {
3805    if (Locs[i].first == -1) {
3806      MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3807    } else {
3808      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
3809      MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3810    }
3811  }
3812  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3813                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3814                                 &MaskOps[0], MaskOps.size()));
3815}
3816
3817SDValue
3818X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3819  SDValue V1 = Op.getOperand(0);
3820  SDValue V2 = Op.getOperand(1);
3821  SDValue PermMask = Op.getOperand(2);
3822  MVT VT = Op.getValueType();
3823  unsigned NumElems = PermMask.getNumOperands();
3824  bool isMMX = VT.getSizeInBits() == 64;
3825  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3826  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3827  bool V1IsSplat = false;
3828  bool V2IsSplat = false;
3829
3830  if (isUndefShuffle(Op.Val))
3831    return DAG.getNode(ISD::UNDEF, VT);
3832
3833  if (isZeroShuffle(Op.Val))
3834    return getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3835
3836  if (isIdentityMask(PermMask.Val))
3837    return V1;
3838  else if (isIdentityMask(PermMask.Val, true))
3839    return V2;
3840
3841  if (isSplatMask(PermMask.Val)) {
3842    if (isMMX || NumElems < 4) return Op;
3843    // Promote it to a v4{if}32 splat.
3844    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
3845  }
3846
3847  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3848  // do it!
3849  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3850    SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3851    if (NewOp.Val)
3852      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3853  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3854    // FIXME: Figure out a cleaner way to do this.
3855    // Try to make use of movq to zero out the top part.
3856    if (ISD::isBuildVectorAllZeros(V2.Val)) {
3857      SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
3858                                                 DAG, *this);
3859      if (NewOp.Val) {
3860        SDValue NewV1 = NewOp.getOperand(0);
3861        SDValue NewV2 = NewOp.getOperand(1);
3862        SDValue NewMask = NewOp.getOperand(2);
3863        if (isCommutedMOVL(NewMask.Val, true, false)) {
3864          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3865          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
3866        }
3867      }
3868    } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
3869      SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
3870                                                DAG, *this);
3871      if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
3872        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
3873                             DAG, Subtarget);
3874    }
3875  }
3876
3877  // Check if this can be converted into a logical shift.
3878  bool isLeft = false;
3879  unsigned ShAmt = 0;
3880  SDValue ShVal;
3881  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
3882  if (isShift && ShVal.hasOneUse()) {
3883    // If the shifted value has multiple uses, it may be cheaper to use
3884    // v_set0 + movlhps or movhlps, etc.
3885    MVT EVT = VT.getVectorElementType();
3886    ShAmt *= EVT.getSizeInBits();
3887    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
3888  }
3889
3890  if (X86::isMOVLMask(PermMask.Val)) {
3891    if (V1IsUndef)
3892      return V2;
3893    if (ISD::isBuildVectorAllZeros(V1.Val))
3894      return getVZextMovL(VT, VT, V2, DAG, Subtarget);
3895    if (!isMMX)
3896      return Op;
3897  }
3898
3899  if (!isMMX && (X86::isMOVSHDUPMask(PermMask.Val) ||
3900                 X86::isMOVSLDUPMask(PermMask.Val) ||
3901                 X86::isMOVHLPSMask(PermMask.Val) ||
3902                 X86::isMOVHPMask(PermMask.Val) ||
3903                 X86::isMOVLPMask(PermMask.Val)))
3904    return Op;
3905
3906  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3907      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3908    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3909
3910  if (isShift) {
3911    // No better options. Use a vshl / vsrl.
3912    MVT EVT = VT.getVectorElementType();
3913    ShAmt *= EVT.getSizeInBits();
3914    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
3915  }
3916
3917  bool Commuted = false;
3918  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3919  // 1,1,1,1 -> v8i16 though.
3920  V1IsSplat = isSplatVector(V1.Val);
3921  V2IsSplat = isSplatVector(V2.Val);
3922
3923  // Canonicalize the splat or undef, if present, to be on the RHS.
3924  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3925    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3926    std::swap(V1IsSplat, V2IsSplat);
3927    std::swap(V1IsUndef, V2IsUndef);
3928    Commuted = true;
3929  }
3930
3931  // FIXME: Figure out a cleaner way to do this.
3932  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3933    if (V2IsUndef) return V1;
3934    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3935    if (V2IsSplat) {
3936      // V2 is a splat, so the mask may be malformed. That is, it may point
3937      // to any V2 element. The instruction selectior won't like this. Get
3938      // a corrected mask and commute to form a proper MOVS{S|D}.
3939      SDValue NewMask = getMOVLMask(NumElems, DAG);
3940      if (NewMask.Val != PermMask.Val)
3941        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3942    }
3943    return Op;
3944  }
3945
3946  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3947      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3948      X86::isUNPCKLMask(PermMask.Val) ||
3949      X86::isUNPCKHMask(PermMask.Val))
3950    return Op;
3951
3952  if (V2IsSplat) {
3953    // Normalize mask so all entries that point to V2 points to its first
3954    // element then try to match unpck{h|l} again. If match, return a
3955    // new vector_shuffle with the corrected mask.
3956    SDValue NewMask = NormalizeMask(PermMask, DAG);
3957    if (NewMask.Val != PermMask.Val) {
3958      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3959        SDValue NewMask = getUnpacklMask(NumElems, DAG);
3960        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3961      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3962        SDValue NewMask = getUnpackhMask(NumElems, DAG);
3963        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3964      }
3965    }
3966  }
3967
3968  // Normalize the node to match x86 shuffle ops if needed
3969  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3970      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3971
3972  if (Commuted) {
3973    // Commute is back and try unpck* again.
3974    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3975    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3976        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3977        X86::isUNPCKLMask(PermMask.Val) ||
3978        X86::isUNPCKHMask(PermMask.Val))
3979      return Op;
3980  }
3981
3982  // Try PSHUF* first, then SHUFP*.
3983  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
3984  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3985  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.Val)) {
3986    if (V2.getOpcode() != ISD::UNDEF)
3987      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3988                         DAG.getNode(ISD::UNDEF, VT), PermMask);
3989    return Op;
3990  }
3991
3992  if (!isMMX) {
3993    if (Subtarget->hasSSE2() &&
3994        (X86::isPSHUFDMask(PermMask.Val) ||
3995         X86::isPSHUFHWMask(PermMask.Val) ||
3996         X86::isPSHUFLWMask(PermMask.Val))) {
3997      MVT RVT = VT;
3998      if (VT == MVT::v4f32) {
3999        RVT = MVT::v4i32;
4000        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
4001                         DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
4002                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4003      } else if (V2.getOpcode() != ISD::UNDEF)
4004        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
4005                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4006      if (RVT != VT)
4007        Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
4008      return Op;
4009    }
4010
4011    // Binary or unary shufps.
4012    if (X86::isSHUFPMask(PermMask.Val) ||
4013        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.Val)))
4014      return Op;
4015  }
4016
4017  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4018  if (VT == MVT::v8i16) {
4019    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
4020    if (NewOp.Val)
4021      return NewOp;
4022  }
4023
4024  // Handle all 4 wide cases with a number of shuffles except for MMX.
4025  if (NumElems == 4 && !isMMX)
4026    return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG);
4027
4028  return SDValue();
4029}
4030
4031SDValue
4032X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4033                                                SelectionDAG &DAG) {
4034  MVT VT = Op.getValueType();
4035  if (VT.getSizeInBits() == 8) {
4036    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
4037                                    Op.getOperand(0), Op.getOperand(1));
4038    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4039                                    DAG.getValueType(VT));
4040    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4041  } else if (VT.getSizeInBits() == 16) {
4042    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
4043                                    Op.getOperand(0), Op.getOperand(1));
4044    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4045                                    DAG.getValueType(VT));
4046    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4047  } else if (VT == MVT::f32) {
4048    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4049    // the result back to FR32 register. It's only worth matching if the
4050    // result has a single use which is a store or a bitcast to i32.
4051    if (!Op.hasOneUse())
4052      return SDValue();
4053    SDNode *User = *Op.Val->use_begin();
4054    if (User->getOpcode() != ISD::STORE &&
4055        (User->getOpcode() != ISD::BIT_CONVERT ||
4056         User->getValueType(0) != MVT::i32))
4057      return SDValue();
4058    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4059                    DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
4060                                    Op.getOperand(1));
4061    return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
4062  }
4063  return SDValue();
4064}
4065
4066
4067SDValue
4068X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4069  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4070    return SDValue();
4071
4072  if (Subtarget->hasSSE41()) {
4073    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4074    if (Res.Val)
4075      return Res;
4076  }
4077
4078  MVT VT = Op.getValueType();
4079  // TODO: handle v16i8.
4080  if (VT.getSizeInBits() == 16) {
4081    SDValue Vec = Op.getOperand(0);
4082    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4083    if (Idx == 0)
4084      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
4085                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4086                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
4087                                     Op.getOperand(1)));
4088    // Transform it so it match pextrw which produces a 32-bit result.
4089    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4090    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
4091                                    Op.getOperand(0), Op.getOperand(1));
4092    SDValue Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
4093                                    DAG.getValueType(VT));
4094    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4095  } else if (VT.getSizeInBits() == 32) {
4096    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4097    if (Idx == 0)
4098      return Op;
4099    // SHUFPS the element to the lowest double word, then movss.
4100    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4101    SmallVector<SDValue, 8> IdxVec;
4102    IdxVec.
4103      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
4104    IdxVec.
4105      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4106    IdxVec.
4107      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4108    IdxVec.
4109      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4110    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4111                                 &IdxVec[0], IdxVec.size());
4112    SDValue Vec = Op.getOperand(0);
4113    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4114                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4115    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4116                       DAG.getIntPtrConstant(0));
4117  } else if (VT.getSizeInBits() == 64) {
4118    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4119    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4120    //        to match extract_elt for f64.
4121    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4122    if (Idx == 0)
4123      return Op;
4124
4125    // UNPCKHPD the element to the lowest double word, then movsd.
4126    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4127    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4128    MVT MaskVT = MVT::getIntVectorWithNumElements(2);
4129    SmallVector<SDValue, 8> IdxVec;
4130    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
4131    IdxVec.
4132      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4133    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4134                                 &IdxVec[0], IdxVec.size());
4135    SDValue Vec = Op.getOperand(0);
4136    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4137                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4138    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4139                       DAG.getIntPtrConstant(0));
4140  }
4141
4142  return SDValue();
4143}
4144
4145SDValue
4146X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4147  MVT VT = Op.getValueType();
4148  MVT EVT = VT.getVectorElementType();
4149
4150  SDValue N0 = Op.getOperand(0);
4151  SDValue N1 = Op.getOperand(1);
4152  SDValue N2 = Op.getOperand(2);
4153
4154  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4155      isa<ConstantSDNode>(N2)) {
4156    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4157                                                  : X86ISD::PINSRW;
4158    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4159    // argument.
4160    if (N1.getValueType() != MVT::i32)
4161      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4162    if (N2.getValueType() != MVT::i32)
4163      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
4164    return DAG.getNode(Opc, VT, N0, N1, N2);
4165  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4166    // Bits [7:6] of the constant are the source select.  This will always be
4167    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4168    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4169    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4170    // Bits [5:4] of the constant are the destination select.  This is the
4171    //  value of the incoming immediate.
4172    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4173    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4174    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue() << 4);
4175    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
4176  }
4177  return SDValue();
4178}
4179
4180SDValue
4181X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4182  MVT VT = Op.getValueType();
4183  MVT EVT = VT.getVectorElementType();
4184
4185  if (Subtarget->hasSSE41())
4186    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4187
4188  if (EVT == MVT::i8)
4189    return SDValue();
4190
4191  SDValue N0 = Op.getOperand(0);
4192  SDValue N1 = Op.getOperand(1);
4193  SDValue N2 = Op.getOperand(2);
4194
4195  if (EVT.getSizeInBits() == 16) {
4196    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4197    // as its second argument.
4198    if (N1.getValueType() != MVT::i32)
4199      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4200    if (N2.getValueType() != MVT::i32)
4201      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
4202    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
4203  }
4204  return SDValue();
4205}
4206
4207SDValue
4208X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4209  if (Op.getValueType() == MVT::v2f32)
4210    return DAG.getNode(ISD::BIT_CONVERT, MVT::v2f32,
4211                       DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i32,
4212                                   DAG.getNode(ISD::BIT_CONVERT, MVT::i32,
4213                                               Op.getOperand(0))));
4214
4215  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
4216  MVT VT = MVT::v2i32;
4217  switch (Op.getValueType().getSimpleVT()) {
4218  default: break;
4219  case MVT::v16i8:
4220  case MVT::v8i16:
4221    VT = MVT::v4i32;
4222    break;
4223  }
4224  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
4225                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
4226}
4227
4228// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4229// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4230// one of the above mentioned nodes. It has to be wrapped because otherwise
4231// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4232// be used to form addressing mode. These wrapped nodes will be selected
4233// into MOV32ri.
4234SDValue
4235X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4236  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4237  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(),
4238                                               getPointerTy(),
4239                                               CP->getAlignment());
4240  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4241  // With PIC, the address is actually $g + Offset.
4242  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4243      !Subtarget->isPICStyleRIPRel()) {
4244    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4245                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4246                         Result);
4247  }
4248
4249  return Result;
4250}
4251
4252SDValue
4253X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4254  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4255  SDValue Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
4256  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4257  // With PIC, the address is actually $g + Offset.
4258  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4259      !Subtarget->isPICStyleRIPRel()) {
4260    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4261                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4262                         Result);
4263  }
4264
4265  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4266  // load the value at address GV, not the value of GV itself. This means that
4267  // the GlobalAddress must be in the base or index register of the address, not
4268  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4269  // The same applies for external symbols during PIC codegen
4270  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
4271    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4272                         PseudoSourceValue::getGOT(), 0);
4273
4274  return Result;
4275}
4276
4277// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4278static SDValue
4279LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4280                                const MVT PtrVT) {
4281  SDValue InFlag;
4282  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4283                                     DAG.getNode(X86ISD::GlobalBaseReg,
4284                                                 PtrVT), InFlag);
4285  InFlag = Chain.getValue(1);
4286
4287  // emit leal symbol@TLSGD(,%ebx,1), %eax
4288  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4289  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4290                                             GA->getValueType(0),
4291                                             GA->getOffset());
4292  SDValue Ops[] = { Chain,  TGA, InFlag };
4293  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4294  InFlag = Result.getValue(2);
4295  Chain = Result.getValue(1);
4296
4297  // call ___tls_get_addr. This function receives its argument in
4298  // the register EAX.
4299  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4300  InFlag = Chain.getValue(1);
4301
4302  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4303  SDValue Ops1[] = { Chain,
4304                      DAG.getTargetExternalSymbol("___tls_get_addr",
4305                                                  PtrVT),
4306                      DAG.getRegister(X86::EAX, PtrVT),
4307                      DAG.getRegister(X86::EBX, PtrVT),
4308                      InFlag };
4309  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4310  InFlag = Chain.getValue(1);
4311
4312  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4313}
4314
4315// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4316static SDValue
4317LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4318                                const MVT PtrVT) {
4319  SDValue InFlag, Chain;
4320
4321  // emit leaq symbol@TLSGD(%rip), %rdi
4322  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4323  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4324                                             GA->getValueType(0),
4325                                             GA->getOffset());
4326  SDValue Ops[]  = { DAG.getEntryNode(), TGA};
4327  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
4328  Chain  = Result.getValue(1);
4329  InFlag = Result.getValue(2);
4330
4331  // call __tls_get_addr. This function receives its argument in
4332  // the register RDI.
4333  Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
4334  InFlag = Chain.getValue(1);
4335
4336  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4337  SDValue Ops1[] = { Chain,
4338                      DAG.getTargetExternalSymbol("__tls_get_addr",
4339                                                  PtrVT),
4340                      DAG.getRegister(X86::RDI, PtrVT),
4341                      InFlag };
4342  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
4343  InFlag = Chain.getValue(1);
4344
4345  return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
4346}
4347
4348// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4349// "local exec" model.
4350static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4351                                     const MVT PtrVT) {
4352  // Get the Thread Pointer
4353  SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4354  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4355  // exec)
4356  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4357                                             GA->getValueType(0),
4358                                             GA->getOffset());
4359  SDValue Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4360
4361  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4362    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4363                         PseudoSourceValue::getGOT(), 0);
4364
4365  // The address of the thread local variable is the add of the thread
4366  // pointer with the offset of the variable.
4367  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4368}
4369
4370SDValue
4371X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4372  // TODO: implement the "local dynamic" model
4373  // TODO: implement the "initial exec"model for pic executables
4374  assert(Subtarget->isTargetELF() &&
4375         "TLS not implemented for non-ELF targets");
4376  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4377  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4378  // otherwise use the "Local Exec"TLS Model
4379  if (Subtarget->is64Bit()) {
4380    return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4381  } else {
4382    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4383      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4384    else
4385      return LowerToTLSExecModel(GA, DAG, getPointerTy());
4386  }
4387}
4388
4389SDValue
4390X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4391  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4392  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4393  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4394  // With PIC, the address is actually $g + Offset.
4395  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4396      !Subtarget->isPICStyleRIPRel()) {
4397    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4398                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4399                         Result);
4400  }
4401
4402  return Result;
4403}
4404
4405SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4406  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4407  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4408  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4409  // With PIC, the address is actually $g + Offset.
4410  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4411      !Subtarget->isPICStyleRIPRel()) {
4412    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4413                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4414                         Result);
4415  }
4416
4417  return Result;
4418}
4419
4420/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4421/// take a 2 x i32 value to shift plus a shift amount.
4422SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4423  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4424  MVT VT = Op.getValueType();
4425  unsigned VTBits = VT.getSizeInBits();
4426  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4427  SDValue ShOpLo = Op.getOperand(0);
4428  SDValue ShOpHi = Op.getOperand(1);
4429  SDValue ShAmt  = Op.getOperand(2);
4430  SDValue Tmp1 = isSRA ?
4431    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4432    DAG.getConstant(0, VT);
4433
4434  SDValue Tmp2, Tmp3;
4435  if (Op.getOpcode() == ISD::SHL_PARTS) {
4436    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4437    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4438  } else {
4439    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4440    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4441  }
4442
4443  SDValue AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4444                                  DAG.getConstant(VTBits, MVT::i8));
4445  SDValue Cond = DAG.getNode(X86ISD::CMP, VT,
4446                               AndNode, DAG.getConstant(0, MVT::i8));
4447
4448  SDValue Hi, Lo;
4449  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4450  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4451  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4452
4453  if (Op.getOpcode() == ISD::SHL_PARTS) {
4454    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4455    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4456  } else {
4457    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4458    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4459  }
4460
4461  SDValue Ops[2] = { Lo, Hi };
4462  return DAG.getMergeValues(Ops, 2);
4463}
4464
4465SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4466  MVT SrcVT = Op.getOperand(0).getValueType();
4467  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4468         "Unknown SINT_TO_FP to lower!");
4469
4470  // These are really Legal; caller falls through into that case.
4471  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4472    return SDValue();
4473  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4474      Subtarget->is64Bit())
4475    return SDValue();
4476
4477  unsigned Size = SrcVT.getSizeInBits()/8;
4478  MachineFunction &MF = DAG.getMachineFunction();
4479  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4480  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4481  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4482                                 StackSlot,
4483                                 PseudoSourceValue::getFixedStack(SSFI), 0);
4484
4485  // Build the FILD
4486  SDVTList Tys;
4487  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4488  if (useSSE)
4489    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4490  else
4491    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4492  SmallVector<SDValue, 8> Ops;
4493  Ops.push_back(Chain);
4494  Ops.push_back(StackSlot);
4495  Ops.push_back(DAG.getValueType(SrcVT));
4496  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4497                                 Tys, &Ops[0], Ops.size());
4498
4499  if (useSSE) {
4500    Chain = Result.getValue(1);
4501    SDValue InFlag = Result.getValue(2);
4502
4503    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4504    // shouldn't be necessary except that RFP cannot be live across
4505    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4506    MachineFunction &MF = DAG.getMachineFunction();
4507    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4508    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4509    Tys = DAG.getVTList(MVT::Other);
4510    SmallVector<SDValue, 8> Ops;
4511    Ops.push_back(Chain);
4512    Ops.push_back(Result);
4513    Ops.push_back(StackSlot);
4514    Ops.push_back(DAG.getValueType(Op.getValueType()));
4515    Ops.push_back(InFlag);
4516    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4517    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4518                         PseudoSourceValue::getFixedStack(SSFI), 0);
4519  }
4520
4521  return Result;
4522}
4523
4524std::pair<SDValue,SDValue> X86TargetLowering::
4525FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) {
4526  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
4527         Op.getValueType().getSimpleVT() >= MVT::i16 &&
4528         "Unknown FP_TO_SINT to lower!");
4529
4530  // These are really Legal.
4531  if (Op.getValueType() == MVT::i32 &&
4532      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4533    return std::make_pair(SDValue(), SDValue());
4534  if (Subtarget->is64Bit() &&
4535      Op.getValueType() == MVT::i64 &&
4536      Op.getOperand(0).getValueType() != MVT::f80)
4537    return std::make_pair(SDValue(), SDValue());
4538
4539  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4540  // stack slot.
4541  MachineFunction &MF = DAG.getMachineFunction();
4542  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
4543  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4544  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4545  unsigned Opc;
4546  switch (Op.getValueType().getSimpleVT()) {
4547  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4548  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4549  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4550  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4551  }
4552
4553  SDValue Chain = DAG.getEntryNode();
4554  SDValue Value = Op.getOperand(0);
4555  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4556    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4557    Chain = DAG.getStore(Chain, Value, StackSlot,
4558                         PseudoSourceValue::getFixedStack(SSFI), 0);
4559    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4560    SDValue Ops[] = {
4561      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4562    };
4563    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4564    Chain = Value.getValue(1);
4565    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4566    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4567  }
4568
4569  // Build the FP_TO_INT*_IN_MEM
4570  SDValue Ops[] = { Chain, Value, StackSlot };
4571  SDValue FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4572
4573  return std::make_pair(FIST, StackSlot);
4574}
4575
4576SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
4577  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG);
4578  SDValue FIST = Vals.first, StackSlot = Vals.second;
4579  if (FIST.Val == 0) return SDValue();
4580
4581  // Load the result.
4582  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4583}
4584
4585SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4586  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG);
4587  SDValue FIST = Vals.first, StackSlot = Vals.second;
4588  if (FIST.Val == 0) return 0;
4589
4590  MVT VT = N->getValueType(0);
4591
4592  // Return a load from the stack slot.
4593  SDValue Res = DAG.getLoad(VT, FIST, StackSlot, NULL, 0);
4594
4595  // Use MERGE_VALUES to drop the chain result value and get a node with one
4596  // result.  This requires turning off getMergeValues simplification, since
4597  // otherwise it will give us Res back.
4598  return DAG.getMergeValues(&Res, 1, false).Val;
4599}
4600
4601SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
4602  MVT VT = Op.getValueType();
4603  MVT EltVT = VT;
4604  if (VT.isVector())
4605    EltVT = VT.getVectorElementType();
4606  std::vector<Constant*> CV;
4607  if (EltVT == MVT::f64) {
4608    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4609    CV.push_back(C);
4610    CV.push_back(C);
4611  } else {
4612    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4613    CV.push_back(C);
4614    CV.push_back(C);
4615    CV.push_back(C);
4616    CV.push_back(C);
4617  }
4618  Constant *C = ConstantVector::get(CV);
4619  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4620  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4621                               PseudoSourceValue::getConstantPool(), 0,
4622                               false, 16);
4623  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4624}
4625
4626SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
4627  MVT VT = Op.getValueType();
4628  MVT EltVT = VT;
4629  unsigned EltNum = 1;
4630  if (VT.isVector()) {
4631    EltVT = VT.getVectorElementType();
4632    EltNum = VT.getVectorNumElements();
4633  }
4634  std::vector<Constant*> CV;
4635  if (EltVT == MVT::f64) {
4636    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4637    CV.push_back(C);
4638    CV.push_back(C);
4639  } else {
4640    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4641    CV.push_back(C);
4642    CV.push_back(C);
4643    CV.push_back(C);
4644    CV.push_back(C);
4645  }
4646  Constant *C = ConstantVector::get(CV);
4647  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4648  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4649                               PseudoSourceValue::getConstantPool(), 0,
4650                               false, 16);
4651  if (VT.isVector()) {
4652    return DAG.getNode(ISD::BIT_CONVERT, VT,
4653                       DAG.getNode(ISD::XOR, MVT::v2i64,
4654                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4655                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4656  } else {
4657    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4658  }
4659}
4660
4661SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
4662  SDValue Op0 = Op.getOperand(0);
4663  SDValue Op1 = Op.getOperand(1);
4664  MVT VT = Op.getValueType();
4665  MVT SrcVT = Op1.getValueType();
4666
4667  // If second operand is smaller, extend it first.
4668  if (SrcVT.bitsLT(VT)) {
4669    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4670    SrcVT = VT;
4671  }
4672  // And if it is bigger, shrink it first.
4673  if (SrcVT.bitsGT(VT)) {
4674    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4675    SrcVT = VT;
4676  }
4677
4678  // At this point the operands and the result should have the same
4679  // type, and that won't be f80 since that is not custom lowered.
4680
4681  // First get the sign bit of second operand.
4682  std::vector<Constant*> CV;
4683  if (SrcVT == MVT::f64) {
4684    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4685    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4686  } else {
4687    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4688    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4689    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4690    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4691  }
4692  Constant *C = ConstantVector::get(CV);
4693  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4694  SDValue Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4695                                PseudoSourceValue::getConstantPool(), 0,
4696                                false, 16);
4697  SDValue SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4698
4699  // Shift sign bit right or left if the two operands have different types.
4700  if (SrcVT.bitsGT(VT)) {
4701    // Op0 is MVT::f32, Op1 is MVT::f64.
4702    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4703    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4704                          DAG.getConstant(32, MVT::i32));
4705    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4706    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4707                          DAG.getIntPtrConstant(0));
4708  }
4709
4710  // Clear first operand sign bit.
4711  CV.clear();
4712  if (VT == MVT::f64) {
4713    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
4714    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4715  } else {
4716    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
4717    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4718    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4719    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4720  }
4721  C = ConstantVector::get(CV);
4722  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4723  SDValue Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4724                                PseudoSourceValue::getConstantPool(), 0,
4725                                false, 16);
4726  SDValue Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4727
4728  // Or the value with the sign bit.
4729  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4730}
4731
4732SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
4733  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4734  SDValue Cond;
4735  SDValue Op0 = Op.getOperand(0);
4736  SDValue Op1 = Op.getOperand(1);
4737  SDValue CC = Op.getOperand(2);
4738  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4739  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
4740  unsigned X86CC;
4741
4742  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4743                     Op0, Op1, DAG)) {
4744    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4745    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4746                       DAG.getConstant(X86CC, MVT::i8), Cond);
4747  }
4748
4749  assert(isFP && "Illegal integer SetCC!");
4750
4751  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4752  switch (SetCCOpcode) {
4753  default: assert(false && "Illegal floating point SetCC!");
4754  case ISD::SETOEQ: {  // !PF & ZF
4755    SDValue Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4756                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4757    SDValue Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4758                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4759    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4760  }
4761  case ISD::SETUNE: {  // PF | !ZF
4762    SDValue Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4763                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4764    SDValue Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4765                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4766    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4767  }
4768  }
4769}
4770
4771SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
4772  SDValue Cond;
4773  SDValue Op0 = Op.getOperand(0);
4774  SDValue Op1 = Op.getOperand(1);
4775  SDValue CC = Op.getOperand(2);
4776  MVT VT = Op.getValueType();
4777  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4778  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
4779
4780  if (isFP) {
4781    unsigned SSECC = 8;
4782    MVT VT0 = Op0.getValueType();
4783    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
4784    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
4785    bool Swap = false;
4786
4787    switch (SetCCOpcode) {
4788    default: break;
4789    case ISD::SETOEQ:
4790    case ISD::SETEQ:  SSECC = 0; break;
4791    case ISD::SETOGT:
4792    case ISD::SETGT: Swap = true; // Fallthrough
4793    case ISD::SETLT:
4794    case ISD::SETOLT: SSECC = 1; break;
4795    case ISD::SETOGE:
4796    case ISD::SETGE: Swap = true; // Fallthrough
4797    case ISD::SETLE:
4798    case ISD::SETOLE: SSECC = 2; break;
4799    case ISD::SETUO:  SSECC = 3; break;
4800    case ISD::SETUNE:
4801    case ISD::SETNE:  SSECC = 4; break;
4802    case ISD::SETULE: Swap = true;
4803    case ISD::SETUGE: SSECC = 5; break;
4804    case ISD::SETULT: Swap = true;
4805    case ISD::SETUGT: SSECC = 6; break;
4806    case ISD::SETO:   SSECC = 7; break;
4807    }
4808    if (Swap)
4809      std::swap(Op0, Op1);
4810
4811    // In the two special cases we can't handle, emit two comparisons.
4812    if (SSECC == 8) {
4813      if (SetCCOpcode == ISD::SETUEQ) {
4814        SDValue UNORD, EQ;
4815        UNORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
4816        EQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
4817        return DAG.getNode(ISD::OR, VT, UNORD, EQ);
4818      }
4819      else if (SetCCOpcode == ISD::SETONE) {
4820        SDValue ORD, NEQ;
4821        ORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
4822        NEQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
4823        return DAG.getNode(ISD::AND, VT, ORD, NEQ);
4824      }
4825      assert(0 && "Illegal FP comparison");
4826    }
4827    // Handle all other FP comparisons here.
4828    return DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
4829  }
4830
4831  // We are handling one of the integer comparisons here.  Since SSE only has
4832  // GT and EQ comparisons for integer, swapping operands and multiple
4833  // operations may be required for some comparisons.
4834  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
4835  bool Swap = false, Invert = false, FlipSigns = false;
4836
4837  switch (VT.getSimpleVT()) {
4838  default: break;
4839  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
4840  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
4841  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
4842  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
4843  }
4844
4845  switch (SetCCOpcode) {
4846  default: break;
4847  case ISD::SETNE:  Invert = true;
4848  case ISD::SETEQ:  Opc = EQOpc; break;
4849  case ISD::SETLT:  Swap = true;
4850  case ISD::SETGT:  Opc = GTOpc; break;
4851  case ISD::SETGE:  Swap = true;
4852  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
4853  case ISD::SETULT: Swap = true;
4854  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
4855  case ISD::SETUGE: Swap = true;
4856  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
4857  }
4858  if (Swap)
4859    std::swap(Op0, Op1);
4860
4861  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
4862  // bits of the inputs before performing those operations.
4863  if (FlipSigns) {
4864    MVT EltVT = VT.getVectorElementType();
4865    SDValue SignBit = DAG.getConstant(EltVT.getIntegerVTSignBit(), EltVT);
4866    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
4867    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, VT, &SignBits[0],
4868                                    SignBits.size());
4869    Op0 = DAG.getNode(ISD::XOR, VT, Op0, SignVec);
4870    Op1 = DAG.getNode(ISD::XOR, VT, Op1, SignVec);
4871  }
4872
4873  SDValue Result = DAG.getNode(Opc, VT, Op0, Op1);
4874
4875  // If the logical-not of the result is required, perform that now.
4876  if (Invert) {
4877    MVT EltVT = VT.getVectorElementType();
4878    SDValue NegOne = DAG.getConstant(EltVT.getIntegerVTBitMask(), EltVT);
4879    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOne);
4880    SDValue NegOneV = DAG.getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0],
4881                                    NegOnes.size());
4882    Result = DAG.getNode(ISD::XOR, VT, Result, NegOneV);
4883  }
4884  return Result;
4885}
4886
4887SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
4888  bool addTest = true;
4889  SDValue Cond  = Op.getOperand(0);
4890  SDValue CC;
4891
4892  if (Cond.getOpcode() == ISD::SETCC)
4893    Cond = LowerSETCC(Cond, DAG);
4894
4895  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4896  // setting operand in place of the X86ISD::SETCC.
4897  if (Cond.getOpcode() == X86ISD::SETCC) {
4898    CC = Cond.getOperand(0);
4899
4900    SDValue Cmp = Cond.getOperand(1);
4901    unsigned Opc = Cmp.getOpcode();
4902    MVT VT = Op.getValueType();
4903
4904    bool IllegalFPCMov = false;
4905    if (VT.isFloatingPoint() && !VT.isVector() &&
4906        !isScalarFPTypeInSSEReg(VT))  // FPStack?
4907      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4908
4909    if ((Opc == X86ISD::CMP ||
4910         Opc == X86ISD::COMI ||
4911         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4912      Cond = Cmp;
4913      addTest = false;
4914    }
4915  }
4916
4917  if (addTest) {
4918    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4919    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4920  }
4921
4922  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4923                                                    MVT::Flag);
4924  SmallVector<SDValue, 4> Ops;
4925  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4926  // condition is true.
4927  Ops.push_back(Op.getOperand(2));
4928  Ops.push_back(Op.getOperand(1));
4929  Ops.push_back(CC);
4930  Ops.push_back(Cond);
4931  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4932}
4933
4934SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
4935  bool addTest = true;
4936  SDValue Chain = Op.getOperand(0);
4937  SDValue Cond  = Op.getOperand(1);
4938  SDValue Dest  = Op.getOperand(2);
4939  SDValue CC;
4940
4941  if (Cond.getOpcode() == ISD::SETCC)
4942    Cond = LowerSETCC(Cond, DAG);
4943
4944  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4945  // setting operand in place of the X86ISD::SETCC.
4946  if (Cond.getOpcode() == X86ISD::SETCC) {
4947    CC = Cond.getOperand(0);
4948
4949    SDValue Cmp = Cond.getOperand(1);
4950    unsigned Opc = Cmp.getOpcode();
4951    if (Opc == X86ISD::CMP ||
4952        Opc == X86ISD::COMI ||
4953        Opc == X86ISD::UCOMI) {
4954      Cond = Cmp;
4955      addTest = false;
4956    }
4957  }
4958
4959  if (addTest) {
4960    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4961    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4962  }
4963  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4964                     Chain, Op.getOperand(2), CC, Cond);
4965}
4966
4967
4968// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4969// Calls to _alloca is needed to probe the stack when allocating more than 4k
4970// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4971// that the guard pages used by the OS virtual memory manager are allocated in
4972// correct sequence.
4973SDValue
4974X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4975                                           SelectionDAG &DAG) {
4976  assert(Subtarget->isTargetCygMing() &&
4977         "This should be used only on Cygwin/Mingw targets");
4978
4979  // Get the inputs.
4980  SDValue Chain = Op.getOperand(0);
4981  SDValue Size  = Op.getOperand(1);
4982  // FIXME: Ensure alignment here
4983
4984  SDValue Flag;
4985
4986  MVT IntPtr = getPointerTy();
4987  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
4988
4989  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0));
4990
4991  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4992  Flag = Chain.getValue(1);
4993
4994  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4995  SDValue Ops[] = { Chain,
4996                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4997                      DAG.getRegister(X86::EAX, IntPtr),
4998                      DAG.getRegister(X86StackPtr, SPTy),
4999                      Flag };
5000  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5);
5001  Flag = Chain.getValue(1);
5002
5003  Chain = DAG.getCALLSEQ_END(Chain,
5004                             DAG.getIntPtrConstant(0),
5005                             DAG.getIntPtrConstant(0),
5006                             Flag);
5007
5008  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
5009
5010  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5011  return DAG.getMergeValues(Ops1, 2);
5012}
5013
5014SDValue
5015X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
5016                                           SDValue Chain,
5017                                           SDValue Dst, SDValue Src,
5018                                           SDValue Size, unsigned Align,
5019                                        const Value *DstSV, uint64_t DstSVOff) {
5020  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5021
5022  /// If not DWORD aligned or size is more than the threshold, call the library.
5023  /// The libc version is likely to be faster for these cases. It can use the
5024  /// address value and run time information about the CPU.
5025  if ((Align & 3) == 0 ||
5026      !ConstantSize ||
5027      ConstantSize->getValue() > getSubtarget()->getMaxInlineSizeThreshold()) {
5028    SDValue InFlag(0, 0);
5029
5030    // Check to see if there is a specialized entry-point for memory zeroing.
5031    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5032    if (const char *bzeroEntry =
5033          V && V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5034      MVT IntPtr = getPointerTy();
5035      const Type *IntPtrTy = getTargetData()->getIntPtrType();
5036      TargetLowering::ArgListTy Args;
5037      TargetLowering::ArgListEntry Entry;
5038      Entry.Node = Dst;
5039      Entry.Ty = IntPtrTy;
5040      Args.push_back(Entry);
5041      Entry.Node = Size;
5042      Args.push_back(Entry);
5043      std::pair<SDValue,SDValue> CallResult =
5044        LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C,
5045                    false, DAG.getExternalSymbol(bzeroEntry, IntPtr),
5046                    Args, DAG);
5047      return CallResult.second;
5048    }
5049
5050    // Otherwise have the target-independent code call memset.
5051    return SDValue();
5052  }
5053
5054  uint64_t SizeVal = ConstantSize->getValue();
5055  SDValue InFlag(0, 0);
5056  MVT AVT;
5057  SDValue Count;
5058  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5059  unsigned BytesLeft = 0;
5060  bool TwoRepStos = false;
5061  if (ValC) {
5062    unsigned ValReg;
5063    uint64_t Val = ValC->getValue() & 255;
5064
5065    // If the value is a constant, then we can potentially use larger sets.
5066    switch (Align & 3) {
5067      case 2:   // WORD aligned
5068        AVT = MVT::i16;
5069        ValReg = X86::AX;
5070        Val = (Val << 8) | Val;
5071        break;
5072      case 0:  // DWORD aligned
5073        AVT = MVT::i32;
5074        ValReg = X86::EAX;
5075        Val = (Val << 8)  | Val;
5076        Val = (Val << 16) | Val;
5077        if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5078          AVT = MVT::i64;
5079          ValReg = X86::RAX;
5080          Val = (Val << 32) | Val;
5081        }
5082        break;
5083      default:  // Byte aligned
5084        AVT = MVT::i8;
5085        ValReg = X86::AL;
5086        Count = DAG.getIntPtrConstant(SizeVal);
5087        break;
5088    }
5089
5090    if (AVT.bitsGT(MVT::i8)) {
5091      unsigned UBytes = AVT.getSizeInBits() / 8;
5092      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5093      BytesLeft = SizeVal % UBytes;
5094    }
5095
5096    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
5097                              InFlag);
5098    InFlag = Chain.getValue(1);
5099  } else {
5100    AVT = MVT::i8;
5101    Count  = DAG.getIntPtrConstant(SizeVal);
5102    Chain  = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
5103    InFlag = Chain.getValue(1);
5104  }
5105
5106  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5107                            Count, InFlag);
5108  InFlag = Chain.getValue(1);
5109  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5110                            Dst, InFlag);
5111  InFlag = Chain.getValue(1);
5112
5113  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5114  SmallVector<SDValue, 8> Ops;
5115  Ops.push_back(Chain);
5116  Ops.push_back(DAG.getValueType(AVT));
5117  Ops.push_back(InFlag);
5118  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5119
5120  if (TwoRepStos) {
5121    InFlag = Chain.getValue(1);
5122    Count  = Size;
5123    MVT CVT = Count.getValueType();
5124    SDValue Left = DAG.getNode(ISD::AND, CVT, Count,
5125                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5126    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
5127                              Left, InFlag);
5128    InFlag = Chain.getValue(1);
5129    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5130    Ops.clear();
5131    Ops.push_back(Chain);
5132    Ops.push_back(DAG.getValueType(MVT::i8));
5133    Ops.push_back(InFlag);
5134    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5135  } else if (BytesLeft) {
5136    // Handle the last 1 - 7 bytes.
5137    unsigned Offset = SizeVal - BytesLeft;
5138    MVT AddrVT = Dst.getValueType();
5139    MVT SizeVT = Size.getValueType();
5140
5141    Chain = DAG.getMemset(Chain,
5142                          DAG.getNode(ISD::ADD, AddrVT, Dst,
5143                                      DAG.getConstant(Offset, AddrVT)),
5144                          Src,
5145                          DAG.getConstant(BytesLeft, SizeVT),
5146                          Align, DstSV, DstSVOff + Offset);
5147  }
5148
5149  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5150  return Chain;
5151}
5152
5153SDValue
5154X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
5155                                           SDValue Chain,
5156                                           SDValue Dst, SDValue Src,
5157                                           SDValue Size, unsigned Align,
5158                                           bool AlwaysInline,
5159                                           const Value *DstSV, uint64_t DstSVOff,
5160                                           const Value *SrcSV, uint64_t SrcSVOff){
5161
5162  // This requires the copy size to be a constant, preferrably
5163  // within a subtarget-specific limit.
5164  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5165  if (!ConstantSize)
5166    return SDValue();
5167  uint64_t SizeVal = ConstantSize->getValue();
5168  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5169    return SDValue();
5170
5171  MVT AVT;
5172  unsigned BytesLeft = 0;
5173  if (Align >= 8 && Subtarget->is64Bit())
5174    AVT = MVT::i64;
5175  else if (Align >= 4)
5176    AVT = MVT::i32;
5177  else if (Align >= 2)
5178    AVT = MVT::i16;
5179  else
5180    AVT = MVT::i8;
5181
5182  unsigned UBytes = AVT.getSizeInBits() / 8;
5183  unsigned CountVal = SizeVal / UBytes;
5184  SDValue Count = DAG.getIntPtrConstant(CountVal);
5185  BytesLeft = SizeVal % UBytes;
5186
5187  SDValue InFlag(0, 0);
5188  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5189                            Count, InFlag);
5190  InFlag = Chain.getValue(1);
5191  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5192                            Dst, InFlag);
5193  InFlag = Chain.getValue(1);
5194  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
5195                            Src, InFlag);
5196  InFlag = Chain.getValue(1);
5197
5198  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5199  SmallVector<SDValue, 8> Ops;
5200  Ops.push_back(Chain);
5201  Ops.push_back(DAG.getValueType(AVT));
5202  Ops.push_back(InFlag);
5203  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
5204
5205  SmallVector<SDValue, 4> Results;
5206  Results.push_back(RepMovs);
5207  if (BytesLeft) {
5208    // Handle the last 1 - 7 bytes.
5209    unsigned Offset = SizeVal - BytesLeft;
5210    MVT DstVT = Dst.getValueType();
5211    MVT SrcVT = Src.getValueType();
5212    MVT SizeVT = Size.getValueType();
5213    Results.push_back(DAG.getMemcpy(Chain,
5214                                    DAG.getNode(ISD::ADD, DstVT, Dst,
5215                                                DAG.getConstant(Offset, DstVT)),
5216                                    DAG.getNode(ISD::ADD, SrcVT, Src,
5217                                                DAG.getConstant(Offset, SrcVT)),
5218                                    DAG.getConstant(BytesLeft, SizeVT),
5219                                    Align, AlwaysInline,
5220                                    DstSV, DstSVOff + Offset,
5221                                    SrcSV, SrcSVOff + Offset));
5222  }
5223
5224  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
5225}
5226
5227/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
5228SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
5229  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5230  SDValue TheChain = N->getOperand(0);
5231  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
5232  if (Subtarget->is64Bit()) {
5233    SDValue rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
5234    SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
5235                                       MVT::i64, rax.getValue(2));
5236    SDValue Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
5237                                DAG.getConstant(32, MVT::i8));
5238    SDValue Ops[] = {
5239      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
5240    };
5241
5242    return DAG.getMergeValues(Ops, 2).Val;
5243  }
5244
5245  SDValue eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
5246  SDValue edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
5247                                       MVT::i32, eax.getValue(2));
5248  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
5249  SDValue Ops[] = { eax, edx };
5250  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
5251
5252  // Use a MERGE_VALUES to return the value and chain.
5253  Ops[1] = edx.getValue(1);
5254  return DAG.getMergeValues(Ops, 2).Val;
5255}
5256
5257SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
5258  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5259
5260  if (!Subtarget->is64Bit()) {
5261    // vastart just stores the address of the VarArgsFrameIndex slot into the
5262    // memory location argument.
5263    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5264    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
5265  }
5266
5267  // __va_list_tag:
5268  //   gp_offset         (0 - 6 * 8)
5269  //   fp_offset         (48 - 48 + 8 * 16)
5270  //   overflow_arg_area (point to parameters coming in memory).
5271  //   reg_save_area
5272  SmallVector<SDValue, 8> MemOps;
5273  SDValue FIN = Op.getOperand(1);
5274  // Store gp_offset
5275  SDValue Store = DAG.getStore(Op.getOperand(0),
5276                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5277                                 FIN, SV, 0);
5278  MemOps.push_back(Store);
5279
5280  // Store fp_offset
5281  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5282  Store = DAG.getStore(Op.getOperand(0),
5283                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5284                       FIN, SV, 0);
5285  MemOps.push_back(Store);
5286
5287  // Store ptr to overflow_arg_area
5288  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5289  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5290  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
5291  MemOps.push_back(Store);
5292
5293  // Store ptr to reg_save_area.
5294  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
5295  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5296  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
5297  MemOps.push_back(Store);
5298  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
5299}
5300
5301SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
5302  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5303  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5304  SDValue Chain = Op.getOperand(0);
5305  SDValue SrcPtr = Op.getOperand(1);
5306  SDValue SrcSV = Op.getOperand(2);
5307
5308  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5309  abort();
5310  return SDValue();
5311}
5312
5313SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
5314  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5315  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5316  SDValue Chain = Op.getOperand(0);
5317  SDValue DstPtr = Op.getOperand(1);
5318  SDValue SrcPtr = Op.getOperand(2);
5319  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5320  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5321
5322  return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
5323                       DAG.getIntPtrConstant(24), 8, false,
5324                       DstSV, 0, SrcSV, 0);
5325}
5326
5327SDValue
5328X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
5329  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
5330  switch (IntNo) {
5331  default: return SDValue();    // Don't custom lower most intrinsics.
5332  // Comparison intrinsics.
5333  case Intrinsic::x86_sse_comieq_ss:
5334  case Intrinsic::x86_sse_comilt_ss:
5335  case Intrinsic::x86_sse_comile_ss:
5336  case Intrinsic::x86_sse_comigt_ss:
5337  case Intrinsic::x86_sse_comige_ss:
5338  case Intrinsic::x86_sse_comineq_ss:
5339  case Intrinsic::x86_sse_ucomieq_ss:
5340  case Intrinsic::x86_sse_ucomilt_ss:
5341  case Intrinsic::x86_sse_ucomile_ss:
5342  case Intrinsic::x86_sse_ucomigt_ss:
5343  case Intrinsic::x86_sse_ucomige_ss:
5344  case Intrinsic::x86_sse_ucomineq_ss:
5345  case Intrinsic::x86_sse2_comieq_sd:
5346  case Intrinsic::x86_sse2_comilt_sd:
5347  case Intrinsic::x86_sse2_comile_sd:
5348  case Intrinsic::x86_sse2_comigt_sd:
5349  case Intrinsic::x86_sse2_comige_sd:
5350  case Intrinsic::x86_sse2_comineq_sd:
5351  case Intrinsic::x86_sse2_ucomieq_sd:
5352  case Intrinsic::x86_sse2_ucomilt_sd:
5353  case Intrinsic::x86_sse2_ucomile_sd:
5354  case Intrinsic::x86_sse2_ucomigt_sd:
5355  case Intrinsic::x86_sse2_ucomige_sd:
5356  case Intrinsic::x86_sse2_ucomineq_sd: {
5357    unsigned Opc = 0;
5358    ISD::CondCode CC = ISD::SETCC_INVALID;
5359    switch (IntNo) {
5360    default: break;
5361    case Intrinsic::x86_sse_comieq_ss:
5362    case Intrinsic::x86_sse2_comieq_sd:
5363      Opc = X86ISD::COMI;
5364      CC = ISD::SETEQ;
5365      break;
5366    case Intrinsic::x86_sse_comilt_ss:
5367    case Intrinsic::x86_sse2_comilt_sd:
5368      Opc = X86ISD::COMI;
5369      CC = ISD::SETLT;
5370      break;
5371    case Intrinsic::x86_sse_comile_ss:
5372    case Intrinsic::x86_sse2_comile_sd:
5373      Opc = X86ISD::COMI;
5374      CC = ISD::SETLE;
5375      break;
5376    case Intrinsic::x86_sse_comigt_ss:
5377    case Intrinsic::x86_sse2_comigt_sd:
5378      Opc = X86ISD::COMI;
5379      CC = ISD::SETGT;
5380      break;
5381    case Intrinsic::x86_sse_comige_ss:
5382    case Intrinsic::x86_sse2_comige_sd:
5383      Opc = X86ISD::COMI;
5384      CC = ISD::SETGE;
5385      break;
5386    case Intrinsic::x86_sse_comineq_ss:
5387    case Intrinsic::x86_sse2_comineq_sd:
5388      Opc = X86ISD::COMI;
5389      CC = ISD::SETNE;
5390      break;
5391    case Intrinsic::x86_sse_ucomieq_ss:
5392    case Intrinsic::x86_sse2_ucomieq_sd:
5393      Opc = X86ISD::UCOMI;
5394      CC = ISD::SETEQ;
5395      break;
5396    case Intrinsic::x86_sse_ucomilt_ss:
5397    case Intrinsic::x86_sse2_ucomilt_sd:
5398      Opc = X86ISD::UCOMI;
5399      CC = ISD::SETLT;
5400      break;
5401    case Intrinsic::x86_sse_ucomile_ss:
5402    case Intrinsic::x86_sse2_ucomile_sd:
5403      Opc = X86ISD::UCOMI;
5404      CC = ISD::SETLE;
5405      break;
5406    case Intrinsic::x86_sse_ucomigt_ss:
5407    case Intrinsic::x86_sse2_ucomigt_sd:
5408      Opc = X86ISD::UCOMI;
5409      CC = ISD::SETGT;
5410      break;
5411    case Intrinsic::x86_sse_ucomige_ss:
5412    case Intrinsic::x86_sse2_ucomige_sd:
5413      Opc = X86ISD::UCOMI;
5414      CC = ISD::SETGE;
5415      break;
5416    case Intrinsic::x86_sse_ucomineq_ss:
5417    case Intrinsic::x86_sse2_ucomineq_sd:
5418      Opc = X86ISD::UCOMI;
5419      CC = ISD::SETNE;
5420      break;
5421    }
5422
5423    unsigned X86CC;
5424    SDValue LHS = Op.getOperand(1);
5425    SDValue RHS = Op.getOperand(2);
5426    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5427
5428    SDValue Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5429    SDValue SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5430                                DAG.getConstant(X86CC, MVT::i8), Cond);
5431    return DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, SetCC);
5432  }
5433
5434  // Fix vector shift instructions where the last operand is a non-immediate
5435  // i32 value.
5436  case Intrinsic::x86_sse2_pslli_w:
5437  case Intrinsic::x86_sse2_pslli_d:
5438  case Intrinsic::x86_sse2_pslli_q:
5439  case Intrinsic::x86_sse2_psrli_w:
5440  case Intrinsic::x86_sse2_psrli_d:
5441  case Intrinsic::x86_sse2_psrli_q:
5442  case Intrinsic::x86_sse2_psrai_w:
5443  case Intrinsic::x86_sse2_psrai_d:
5444  case Intrinsic::x86_mmx_pslli_w:
5445  case Intrinsic::x86_mmx_pslli_d:
5446  case Intrinsic::x86_mmx_pslli_q:
5447  case Intrinsic::x86_mmx_psrli_w:
5448  case Intrinsic::x86_mmx_psrli_d:
5449  case Intrinsic::x86_mmx_psrli_q:
5450  case Intrinsic::x86_mmx_psrai_w:
5451  case Intrinsic::x86_mmx_psrai_d: {
5452    SDValue ShAmt = Op.getOperand(2);
5453    if (isa<ConstantSDNode>(ShAmt))
5454      return SDValue();
5455
5456    unsigned NewIntNo = 0;
5457    MVT ShAmtVT = MVT::v4i32;
5458    switch (IntNo) {
5459    case Intrinsic::x86_sse2_pslli_w:
5460      NewIntNo = Intrinsic::x86_sse2_psll_w;
5461      break;
5462    case Intrinsic::x86_sse2_pslli_d:
5463      NewIntNo = Intrinsic::x86_sse2_psll_d;
5464      break;
5465    case Intrinsic::x86_sse2_pslli_q:
5466      NewIntNo = Intrinsic::x86_sse2_psll_q;
5467      break;
5468    case Intrinsic::x86_sse2_psrli_w:
5469      NewIntNo = Intrinsic::x86_sse2_psrl_w;
5470      break;
5471    case Intrinsic::x86_sse2_psrli_d:
5472      NewIntNo = Intrinsic::x86_sse2_psrl_d;
5473      break;
5474    case Intrinsic::x86_sse2_psrli_q:
5475      NewIntNo = Intrinsic::x86_sse2_psrl_q;
5476      break;
5477    case Intrinsic::x86_sse2_psrai_w:
5478      NewIntNo = Intrinsic::x86_sse2_psra_w;
5479      break;
5480    case Intrinsic::x86_sse2_psrai_d:
5481      NewIntNo = Intrinsic::x86_sse2_psra_d;
5482      break;
5483    default: {
5484      ShAmtVT = MVT::v2i32;
5485      switch (IntNo) {
5486      case Intrinsic::x86_mmx_pslli_w:
5487        NewIntNo = Intrinsic::x86_mmx_psll_w;
5488        break;
5489      case Intrinsic::x86_mmx_pslli_d:
5490        NewIntNo = Intrinsic::x86_mmx_psll_d;
5491        break;
5492      case Intrinsic::x86_mmx_pslli_q:
5493        NewIntNo = Intrinsic::x86_mmx_psll_q;
5494        break;
5495      case Intrinsic::x86_mmx_psrli_w:
5496        NewIntNo = Intrinsic::x86_mmx_psrl_w;
5497        break;
5498      case Intrinsic::x86_mmx_psrli_d:
5499        NewIntNo = Intrinsic::x86_mmx_psrl_d;
5500        break;
5501      case Intrinsic::x86_mmx_psrli_q:
5502        NewIntNo = Intrinsic::x86_mmx_psrl_q;
5503        break;
5504      case Intrinsic::x86_mmx_psrai_w:
5505        NewIntNo = Intrinsic::x86_mmx_psra_w;
5506        break;
5507      case Intrinsic::x86_mmx_psrai_d:
5508        NewIntNo = Intrinsic::x86_mmx_psra_d;
5509        break;
5510      default: abort();  // Can't reach here.
5511      }
5512      break;
5513    }
5514    }
5515    MVT VT = Op.getValueType();
5516    ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
5517                        DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
5518    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
5519                       DAG.getConstant(NewIntNo, MVT::i32),
5520                       Op.getOperand(1), ShAmt);
5521  }
5522  }
5523}
5524
5525SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5526  // Depths > 0 not supported yet!
5527  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5528    return SDValue();
5529
5530  // Just load the return address
5531  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
5532  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5533}
5534
5535SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5536  // Depths > 0 not supported yet!
5537  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5538    return SDValue();
5539
5540  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
5541  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
5542                     DAG.getIntPtrConstant(!Subtarget->is64Bit() ? 4 : 8));
5543}
5544
5545SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
5546                                                       SelectionDAG &DAG) {
5547  // Is not yet supported on x86-64
5548  if (Subtarget->is64Bit())
5549    return SDValue();
5550
5551  return DAG.getIntPtrConstant(8);
5552}
5553
5554SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
5555{
5556  assert(!Subtarget->is64Bit() &&
5557         "Lowering of eh_return builtin is not supported yet on x86-64");
5558
5559  MachineFunction &MF = DAG.getMachineFunction();
5560  SDValue Chain     = Op.getOperand(0);
5561  SDValue Offset    = Op.getOperand(1);
5562  SDValue Handler   = Op.getOperand(2);
5563
5564  SDValue Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
5565                                    getPointerTy());
5566
5567  SDValue StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5568                                    DAG.getIntPtrConstant(-4UL));
5569  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5570  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5571  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
5572  MF.getRegInfo().addLiveOut(X86::ECX);
5573
5574  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
5575                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
5576}
5577
5578SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
5579                                             SelectionDAG &DAG) {
5580  SDValue Root = Op.getOperand(0);
5581  SDValue Trmp = Op.getOperand(1); // trampoline
5582  SDValue FPtr = Op.getOperand(2); // nested function
5583  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
5584
5585  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5586
5587  const X86InstrInfo *TII =
5588    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5589
5590  if (Subtarget->is64Bit()) {
5591    SDValue OutChains[6];
5592
5593    // Large code-model.
5594
5595    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5596    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5597
5598    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
5599    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
5600
5601    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5602
5603    // Load the pointer to the nested function into R11.
5604    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5605    SDValue Addr = Trmp;
5606    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5607                                TrmpAddr, 0);
5608
5609    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5610    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5611
5612    // Load the 'nest' parameter value into R10.
5613    // R10 is specified in X86CallingConv.td
5614    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5615    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5616    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5617                                TrmpAddr, 10);
5618
5619    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5620    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5621
5622    // Jump to the nested function.
5623    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5624    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5625    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5626                                TrmpAddr, 20);
5627
5628    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5629    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5630    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5631                                TrmpAddr, 22);
5632
5633    SDValue Ops[] =
5634      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5635    return DAG.getMergeValues(Ops, 2);
5636  } else {
5637    const Function *Func =
5638      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5639    unsigned CC = Func->getCallingConv();
5640    unsigned NestReg;
5641
5642    switch (CC) {
5643    default:
5644      assert(0 && "Unsupported calling convention");
5645    case CallingConv::C:
5646    case CallingConv::X86_StdCall: {
5647      // Pass 'nest' parameter in ECX.
5648      // Must be kept in sync with X86CallingConv.td
5649      NestReg = X86::ECX;
5650
5651      // Check that ECX wasn't needed by an 'inreg' parameter.
5652      const FunctionType *FTy = Func->getFunctionType();
5653      const PAListPtr &Attrs = Func->getParamAttrs();
5654
5655      if (!Attrs.isEmpty() && !Func->isVarArg()) {
5656        unsigned InRegCount = 0;
5657        unsigned Idx = 1;
5658
5659        for (FunctionType::param_iterator I = FTy->param_begin(),
5660             E = FTy->param_end(); I != E; ++I, ++Idx)
5661          if (Attrs.paramHasAttr(Idx, ParamAttr::InReg))
5662            // FIXME: should only count parameters that are lowered to integers.
5663            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
5664
5665        if (InRegCount > 2) {
5666          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5667          abort();
5668        }
5669      }
5670      break;
5671    }
5672    case CallingConv::X86_FastCall:
5673      // Pass 'nest' parameter in EAX.
5674      // Must be kept in sync with X86CallingConv.td
5675      NestReg = X86::EAX;
5676      break;
5677    }
5678
5679    SDValue OutChains[4];
5680    SDValue Addr, Disp;
5681
5682    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5683    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5684
5685    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5686    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
5687    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5688                                Trmp, TrmpAddr, 0);
5689
5690    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5691    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
5692
5693    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
5694    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5695    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5696                                TrmpAddr, 5, false, 1);
5697
5698    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5699    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
5700
5701    SDValue Ops[] =
5702      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5703    return DAG.getMergeValues(Ops, 2);
5704  }
5705}
5706
5707SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
5708  /*
5709   The rounding mode is in bits 11:10 of FPSR, and has the following
5710   settings:
5711     00 Round to nearest
5712     01 Round to -inf
5713     10 Round to +inf
5714     11 Round to 0
5715
5716  FLT_ROUNDS, on the other hand, expects the following:
5717    -1 Undefined
5718     0 Round to 0
5719     1 Round to nearest
5720     2 Round to +inf
5721     3 Round to -inf
5722
5723  To perform the conversion, we do:
5724    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5725  */
5726
5727  MachineFunction &MF = DAG.getMachineFunction();
5728  const TargetMachine &TM = MF.getTarget();
5729  const TargetFrameInfo &TFI = *TM.getFrameInfo();
5730  unsigned StackAlignment = TFI.getStackAlignment();
5731  MVT VT = Op.getValueType();
5732
5733  // Save FP Control Word to stack slot
5734  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5735  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5736
5737  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5738                                DAG.getEntryNode(), StackSlot);
5739
5740  // Load FP Control Word from stack slot
5741  SDValue CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5742
5743  // Transform as necessary
5744  SDValue CWD1 =
5745    DAG.getNode(ISD::SRL, MVT::i16,
5746                DAG.getNode(ISD::AND, MVT::i16,
5747                            CWD, DAG.getConstant(0x800, MVT::i16)),
5748                DAG.getConstant(11, MVT::i8));
5749  SDValue CWD2 =
5750    DAG.getNode(ISD::SRL, MVT::i16,
5751                DAG.getNode(ISD::AND, MVT::i16,
5752                            CWD, DAG.getConstant(0x400, MVT::i16)),
5753                DAG.getConstant(9, MVT::i8));
5754
5755  SDValue RetVal =
5756    DAG.getNode(ISD::AND, MVT::i16,
5757                DAG.getNode(ISD::ADD, MVT::i16,
5758                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5759                            DAG.getConstant(1, MVT::i16)),
5760                DAG.getConstant(3, MVT::i16));
5761
5762
5763  return DAG.getNode((VT.getSizeInBits() < 16 ?
5764                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5765}
5766
5767SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
5768  MVT VT = Op.getValueType();
5769  MVT OpVT = VT;
5770  unsigned NumBits = VT.getSizeInBits();
5771
5772  Op = Op.getOperand(0);
5773  if (VT == MVT::i8) {
5774    // Zero extend to i32 since there is not an i8 bsr.
5775    OpVT = MVT::i32;
5776    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5777  }
5778
5779  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
5780  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5781  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
5782
5783  // If src is zero (i.e. bsr sets ZF), returns NumBits.
5784  SmallVector<SDValue, 4> Ops;
5785  Ops.push_back(Op);
5786  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
5787  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5788  Ops.push_back(Op.getValue(1));
5789  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5790
5791  // Finally xor with NumBits-1.
5792  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
5793
5794  if (VT == MVT::i8)
5795    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5796  return Op;
5797}
5798
5799SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
5800  MVT VT = Op.getValueType();
5801  MVT OpVT = VT;
5802  unsigned NumBits = VT.getSizeInBits();
5803
5804  Op = Op.getOperand(0);
5805  if (VT == MVT::i8) {
5806    OpVT = MVT::i32;
5807    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5808  }
5809
5810  // Issue a bsf (scan bits forward) which also sets EFLAGS.
5811  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5812  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
5813
5814  // If src is zero (i.e. bsf sets ZF), returns NumBits.
5815  SmallVector<SDValue, 4> Ops;
5816  Ops.push_back(Op);
5817  Ops.push_back(DAG.getConstant(NumBits, OpVT));
5818  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5819  Ops.push_back(Op.getValue(1));
5820  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5821
5822  if (VT == MVT::i8)
5823    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5824  return Op;
5825}
5826
5827SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
5828  MVT T = Op.getValueType();
5829  unsigned Reg = 0;
5830  unsigned size = 0;
5831  switch(T.getSimpleVT()) {
5832  default:
5833    assert(false && "Invalid value type!");
5834  case MVT::i8:  Reg = X86::AL;  size = 1; break;
5835  case MVT::i16: Reg = X86::AX;  size = 2; break;
5836  case MVT::i32: Reg = X86::EAX; size = 4; break;
5837  case MVT::i64:
5838    if (Subtarget->is64Bit()) {
5839      Reg = X86::RAX; size = 8;
5840    } else //Should go away when LowerType stuff lands
5841      return SDValue(ExpandATOMIC_CMP_SWAP(Op.Val, DAG), 0);
5842    break;
5843  };
5844  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
5845                                    Op.getOperand(3), SDValue());
5846  SDValue Ops[] = { cpIn.getValue(0),
5847                      Op.getOperand(1),
5848                      Op.getOperand(2),
5849                      DAG.getTargetConstant(size, MVT::i8),
5850                      cpIn.getValue(1) };
5851  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5852  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
5853  SDValue cpOut =
5854    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
5855  return cpOut;
5856}
5857
5858SDNode* X86TargetLowering::ExpandATOMIC_CMP_SWAP(SDNode* Op, SelectionDAG &DAG) {
5859  MVT T = Op->getValueType(0);
5860  assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
5861  SDValue cpInL, cpInH;
5862  cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5863                      DAG.getConstant(0, MVT::i32));
5864  cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5865                      DAG.getConstant(1, MVT::i32));
5866  cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX,
5867                           cpInL, SDValue());
5868  cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX,
5869                           cpInH, cpInL.getValue(1));
5870  SDValue swapInL, swapInH;
5871  swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5872                        DAG.getConstant(0, MVT::i32));
5873  swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5874                        DAG.getConstant(1, MVT::i32));
5875  swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX,
5876                             swapInL, cpInH.getValue(1));
5877  swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX,
5878                             swapInH, swapInL.getValue(1));
5879  SDValue Ops[] = { swapInH.getValue(0),
5880                      Op->getOperand(1),
5881                      swapInH.getValue(1)};
5882  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5883  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
5884  SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
5885                                        Result.getValue(1));
5886  SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
5887                                        cpOutL.getValue(2));
5888  SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
5889  SDValue ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
5890  SDValue Vals[2] = { ResultVal, cpOutH.getValue(1) };
5891  return DAG.getMergeValues(Vals, 2).Val;
5892}
5893
5894SDNode* X86TargetLowering::ExpandATOMIC_LOAD_SUB(SDNode* Op, SelectionDAG &DAG) {
5895  MVT T = Op->getValueType(0);
5896  SDValue negOp = DAG.getNode(ISD::SUB, T,
5897                                DAG.getConstant(0, T), Op->getOperand(2));
5898  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, Op->getOperand(0),
5899                       Op->getOperand(1), negOp,
5900                       cast<AtomicSDNode>(Op)->getSrcValue(),
5901                       cast<AtomicSDNode>(Op)->getAlignment()).Val;
5902}
5903
5904/// LowerOperation - Provide custom lowering hooks for some operations.
5905///
5906SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5907  switch (Op.getOpcode()) {
5908  default: assert(0 && "Should not custom lower this!");
5909  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
5910  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5911  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5912  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5913  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
5914  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5915  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5916  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5917  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5918  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
5919  case ISD::SHL_PARTS:
5920  case ISD::SRA_PARTS:
5921  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
5922  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5923  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5924  case ISD::FABS:               return LowerFABS(Op, DAG);
5925  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5926  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5927  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5928  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
5929  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5930  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5931  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5932  case ISD::CALL:               return LowerCALL(Op, DAG);
5933  case ISD::RET:                return LowerRET(Op, DAG);
5934  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5935  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5936  case ISD::VAARG:              return LowerVAARG(Op, DAG);
5937  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
5938  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5939  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5940  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5941  case ISD::FRAME_TO_ARGS_OFFSET:
5942                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5943  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5944  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
5945  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
5946  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5947  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
5948  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
5949
5950  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5951  case ISD::READCYCLECOUNTER:
5952    return SDValue(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
5953  }
5954}
5955
5956/// ReplaceNodeResults - Replace a node with an illegal result type
5957/// with a new node built out of custom code.
5958SDNode *X86TargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
5959  switch (N->getOpcode()) {
5960  default: assert(0 && "Should not custom lower this!");
5961  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
5962  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
5963  case ISD::ATOMIC_CMP_SWAP:    return ExpandATOMIC_CMP_SWAP(N, DAG);
5964  case ISD::ATOMIC_LOAD_SUB:    return ExpandATOMIC_LOAD_SUB(N,DAG);
5965  }
5966}
5967
5968const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5969  switch (Opcode) {
5970  default: return NULL;
5971  case X86ISD::BSF:                return "X86ISD::BSF";
5972  case X86ISD::BSR:                return "X86ISD::BSR";
5973  case X86ISD::SHLD:               return "X86ISD::SHLD";
5974  case X86ISD::SHRD:               return "X86ISD::SHRD";
5975  case X86ISD::FAND:               return "X86ISD::FAND";
5976  case X86ISD::FOR:                return "X86ISD::FOR";
5977  case X86ISD::FXOR:               return "X86ISD::FXOR";
5978  case X86ISD::FSRL:               return "X86ISD::FSRL";
5979  case X86ISD::FILD:               return "X86ISD::FILD";
5980  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5981  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5982  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5983  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5984  case X86ISD::FLD:                return "X86ISD::FLD";
5985  case X86ISD::FST:                return "X86ISD::FST";
5986  case X86ISD::CALL:               return "X86ISD::CALL";
5987  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5988  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5989  case X86ISD::CMP:                return "X86ISD::CMP";
5990  case X86ISD::COMI:               return "X86ISD::COMI";
5991  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5992  case X86ISD::SETCC:              return "X86ISD::SETCC";
5993  case X86ISD::CMOV:               return "X86ISD::CMOV";
5994  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5995  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5996  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5997  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5998  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5999  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
6000  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
6001  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
6002  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
6003  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
6004  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
6005  case X86ISD::FMAX:               return "X86ISD::FMAX";
6006  case X86ISD::FMIN:               return "X86ISD::FMIN";
6007  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
6008  case X86ISD::FRCP:               return "X86ISD::FRCP";
6009  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
6010  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
6011  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6012  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6013  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6014  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6015  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6016  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6017  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6018  case X86ISD::VSHL:               return "X86ISD::VSHL";
6019  case X86ISD::VSRL:               return "X86ISD::VSRL";
6020  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
6021  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
6022  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
6023  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
6024  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
6025  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
6026  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
6027  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
6028  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
6029  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
6030  }
6031}
6032
6033// isLegalAddressingMode - Return true if the addressing mode represented
6034// by AM is legal for this target, for a load/store of the specified type.
6035bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6036                                              const Type *Ty) const {
6037  // X86 supports extremely general addressing modes.
6038
6039  // X86 allows a sign-extended 32-bit immediate field as a displacement.
6040  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
6041    return false;
6042
6043  if (AM.BaseGV) {
6044    // We can only fold this if we don't need an extra load.
6045    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
6046      return false;
6047
6048    // X86-64 only supports addr of globals in small code model.
6049    if (Subtarget->is64Bit()) {
6050      if (getTargetMachine().getCodeModel() != CodeModel::Small)
6051        return false;
6052      // If lower 4G is not available, then we must use rip-relative addressing.
6053      if (AM.BaseOffs || AM.Scale > 1)
6054        return false;
6055    }
6056  }
6057
6058  switch (AM.Scale) {
6059  case 0:
6060  case 1:
6061  case 2:
6062  case 4:
6063  case 8:
6064    // These scales always work.
6065    break;
6066  case 3:
6067  case 5:
6068  case 9:
6069    // These scales are formed with basereg+scalereg.  Only accept if there is
6070    // no basereg yet.
6071    if (AM.HasBaseReg)
6072      return false;
6073    break;
6074  default:  // Other stuff never works.
6075    return false;
6076  }
6077
6078  return true;
6079}
6080
6081
6082bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
6083  if (!Ty1->isInteger() || !Ty2->isInteger())
6084    return false;
6085  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6086  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6087  if (NumBits1 <= NumBits2)
6088    return false;
6089  return Subtarget->is64Bit() || NumBits1 < 64;
6090}
6091
6092bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
6093  if (!VT1.isInteger() || !VT2.isInteger())
6094    return false;
6095  unsigned NumBits1 = VT1.getSizeInBits();
6096  unsigned NumBits2 = VT2.getSizeInBits();
6097  if (NumBits1 <= NumBits2)
6098    return false;
6099  return Subtarget->is64Bit() || NumBits1 < 64;
6100}
6101
6102/// isShuffleMaskLegal - Targets can use this to indicate that they only
6103/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6104/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6105/// are assumed to be legal.
6106bool
6107X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const {
6108  // Only do shuffles on 128-bit vector types for now.
6109  if (VT.getSizeInBits() == 64) return false;
6110  return (Mask.Val->getNumOperands() <= 4 ||
6111          isIdentityMask(Mask.Val) ||
6112          isIdentityMask(Mask.Val, true) ||
6113          isSplatMask(Mask.Val)  ||
6114          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
6115          X86::isUNPCKLMask(Mask.Val) ||
6116          X86::isUNPCKHMask(Mask.Val) ||
6117          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
6118          X86::isUNPCKH_v_undef_Mask(Mask.Val));
6119}
6120
6121bool
6122X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
6123                                          MVT EVT, SelectionDAG &DAG) const {
6124  unsigned NumElts = BVOps.size();
6125  // Only do shuffles on 128-bit vector types for now.
6126  if (EVT.getSizeInBits() * NumElts == 64) return false;
6127  if (NumElts == 2) return true;
6128  if (NumElts == 4) {
6129    return (isMOVLMask(&BVOps[0], 4)  ||
6130            isCommutedMOVL(&BVOps[0], 4, true) ||
6131            isSHUFPMask(&BVOps[0], 4) ||
6132            isCommutedSHUFP(&BVOps[0], 4));
6133  }
6134  return false;
6135}
6136
6137//===----------------------------------------------------------------------===//
6138//                           X86 Scheduler Hooks
6139//===----------------------------------------------------------------------===//
6140
6141// private utility function
6142MachineBasicBlock *
6143X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
6144                                                       MachineBasicBlock *MBB,
6145                                                       unsigned regOpc,
6146                                                       unsigned immOpc,
6147                                                       unsigned LoadOpc,
6148                                                       unsigned CXchgOpc,
6149                                                       unsigned copyOpc,
6150                                                       unsigned notOpc,
6151                                                       unsigned EAXreg,
6152                                                       TargetRegisterClass *RC,
6153                                                       bool invSrc) {
6154  // For the atomic bitwise operator, we generate
6155  //   thisMBB:
6156  //   newMBB:
6157  //     ld  t1 = [bitinstr.addr]
6158  //     op  t2 = t1, [bitinstr.val]
6159  //     mov EAX = t1
6160  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6161  //     bz  newMBB
6162  //     fallthrough -->nextMBB
6163  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6164  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6165  MachineFunction::iterator MBBIter = MBB;
6166  ++MBBIter;
6167
6168  /// First build the CFG
6169  MachineFunction *F = MBB->getParent();
6170  MachineBasicBlock *thisMBB = MBB;
6171  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6172  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6173  F->insert(MBBIter, newMBB);
6174  F->insert(MBBIter, nextMBB);
6175
6176  // Move all successors to thisMBB to nextMBB
6177  nextMBB->transferSuccessors(thisMBB);
6178
6179  // Update thisMBB to fall through to newMBB
6180  thisMBB->addSuccessor(newMBB);
6181
6182  // newMBB jumps to itself and fall through to nextMBB
6183  newMBB->addSuccessor(nextMBB);
6184  newMBB->addSuccessor(newMBB);
6185
6186  // Insert instructions into newMBB based on incoming instruction
6187  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
6188  MachineOperand& destOper = bInstr->getOperand(0);
6189  MachineOperand* argOpers[6];
6190  int numArgs = bInstr->getNumOperands() - 1;
6191  for (int i=0; i < numArgs; ++i)
6192    argOpers[i] = &bInstr->getOperand(i+1);
6193
6194  // x86 address has 4 operands: base, index, scale, and displacement
6195  int lastAddrIndx = 3; // [0,3]
6196  int valArgIndx = 4;
6197
6198  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6199  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(LoadOpc), t1);
6200  for (int i=0; i <= lastAddrIndx; ++i)
6201    (*MIB).addOperand(*argOpers[i]);
6202
6203  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
6204  if (invSrc) {
6205    MIB = BuildMI(newMBB, TII->get(notOpc), tt).addReg(t1);
6206  }
6207  else
6208    tt = t1;
6209
6210  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6211  assert(   (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm())
6212         && "invalid operand");
6213  if (argOpers[valArgIndx]->isReg())
6214    MIB = BuildMI(newMBB, TII->get(regOpc), t2);
6215  else
6216    MIB = BuildMI(newMBB, TII->get(immOpc), t2);
6217  MIB.addReg(tt);
6218  (*MIB).addOperand(*argOpers[valArgIndx]);
6219
6220  MIB = BuildMI(newMBB, TII->get(copyOpc), EAXreg);
6221  MIB.addReg(t1);
6222
6223  MIB = BuildMI(newMBB, TII->get(CXchgOpc));
6224  for (int i=0; i <= lastAddrIndx; ++i)
6225    (*MIB).addOperand(*argOpers[i]);
6226  MIB.addReg(t2);
6227  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6228  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6229
6230  MIB = BuildMI(newMBB, TII->get(copyOpc), destOper.getReg());
6231  MIB.addReg(EAXreg);
6232
6233  // insert branch
6234  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6235
6236  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6237  return nextMBB;
6238}
6239
6240// private utility function
6241MachineBasicBlock *
6242X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
6243                                                      MachineBasicBlock *MBB,
6244                                                      unsigned cmovOpc) {
6245  // For the atomic min/max operator, we generate
6246  //   thisMBB:
6247  //   newMBB:
6248  //     ld t1 = [min/max.addr]
6249  //     mov t2 = [min/max.val]
6250  //     cmp  t1, t2
6251  //     cmov[cond] t2 = t1
6252  //     mov EAX = t1
6253  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6254  //     bz   newMBB
6255  //     fallthrough -->nextMBB
6256  //
6257  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6258  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6259  MachineFunction::iterator MBBIter = MBB;
6260  ++MBBIter;
6261
6262  /// First build the CFG
6263  MachineFunction *F = MBB->getParent();
6264  MachineBasicBlock *thisMBB = MBB;
6265  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6266  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6267  F->insert(MBBIter, newMBB);
6268  F->insert(MBBIter, nextMBB);
6269
6270  // Move all successors to thisMBB to nextMBB
6271  nextMBB->transferSuccessors(thisMBB);
6272
6273  // Update thisMBB to fall through to newMBB
6274  thisMBB->addSuccessor(newMBB);
6275
6276  // newMBB jumps to newMBB and fall through to nextMBB
6277  newMBB->addSuccessor(nextMBB);
6278  newMBB->addSuccessor(newMBB);
6279
6280  // Insert instructions into newMBB based on incoming instruction
6281  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
6282  MachineOperand& destOper = mInstr->getOperand(0);
6283  MachineOperand* argOpers[6];
6284  int numArgs = mInstr->getNumOperands() - 1;
6285  for (int i=0; i < numArgs; ++i)
6286    argOpers[i] = &mInstr->getOperand(i+1);
6287
6288  // x86 address has 4 operands: base, index, scale, and displacement
6289  int lastAddrIndx = 3; // [0,3]
6290  int valArgIndx = 4;
6291
6292  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6293  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
6294  for (int i=0; i <= lastAddrIndx; ++i)
6295    (*MIB).addOperand(*argOpers[i]);
6296
6297  // We only support register and immediate values
6298  assert(   (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm())
6299         && "invalid operand");
6300
6301  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6302  if (argOpers[valArgIndx]->isReg())
6303    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6304  else
6305    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6306  (*MIB).addOperand(*argOpers[valArgIndx]);
6307
6308  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
6309  MIB.addReg(t1);
6310
6311  MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
6312  MIB.addReg(t1);
6313  MIB.addReg(t2);
6314
6315  // Generate movc
6316  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6317  MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
6318  MIB.addReg(t2);
6319  MIB.addReg(t1);
6320
6321  // Cmp and exchange if none has modified the memory location
6322  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
6323  for (int i=0; i <= lastAddrIndx; ++i)
6324    (*MIB).addOperand(*argOpers[i]);
6325  MIB.addReg(t3);
6326  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6327  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
6328
6329  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
6330  MIB.addReg(X86::EAX);
6331
6332  // insert branch
6333  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6334
6335  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
6336  return nextMBB;
6337}
6338
6339
6340MachineBasicBlock *
6341X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6342                                               MachineBasicBlock *BB) {
6343  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6344  switch (MI->getOpcode()) {
6345  default: assert(false && "Unexpected instr type to insert");
6346  case X86::CMOV_FR32:
6347  case X86::CMOV_FR64:
6348  case X86::CMOV_V4F32:
6349  case X86::CMOV_V2F64:
6350  case X86::CMOV_V2I64: {
6351    // To "insert" a SELECT_CC instruction, we actually have to insert the
6352    // diamond control-flow pattern.  The incoming instruction knows the
6353    // destination vreg to set, the condition code register to branch on, the
6354    // true/false values to select between, and a branch opcode to use.
6355    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6356    MachineFunction::iterator It = BB;
6357    ++It;
6358
6359    //  thisMBB:
6360    //  ...
6361    //   TrueVal = ...
6362    //   cmpTY ccX, r1, r2
6363    //   bCC copy1MBB
6364    //   fallthrough --> copy0MBB
6365    MachineBasicBlock *thisMBB = BB;
6366    MachineFunction *F = BB->getParent();
6367    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6368    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6369    unsigned Opc =
6370      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
6371    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
6372    F->insert(It, copy0MBB);
6373    F->insert(It, sinkMBB);
6374    // Update machine-CFG edges by transferring all successors of the current
6375    // block to the new block which will contain the Phi node for the select.
6376    sinkMBB->transferSuccessors(BB);
6377
6378    // Add the true and fallthrough blocks as its successors.
6379    BB->addSuccessor(copy0MBB);
6380    BB->addSuccessor(sinkMBB);
6381
6382    //  copy0MBB:
6383    //   %FalseValue = ...
6384    //   # fallthrough to sinkMBB
6385    BB = copy0MBB;
6386
6387    // Update machine-CFG edges
6388    BB->addSuccessor(sinkMBB);
6389
6390    //  sinkMBB:
6391    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6392    //  ...
6393    BB = sinkMBB;
6394    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
6395      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6396      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6397
6398    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
6399    return BB;
6400  }
6401
6402  case X86::FP32_TO_INT16_IN_MEM:
6403  case X86::FP32_TO_INT32_IN_MEM:
6404  case X86::FP32_TO_INT64_IN_MEM:
6405  case X86::FP64_TO_INT16_IN_MEM:
6406  case X86::FP64_TO_INT32_IN_MEM:
6407  case X86::FP64_TO_INT64_IN_MEM:
6408  case X86::FP80_TO_INT16_IN_MEM:
6409  case X86::FP80_TO_INT32_IN_MEM:
6410  case X86::FP80_TO_INT64_IN_MEM: {
6411    // Change the floating point control register to use "round towards zero"
6412    // mode when truncating to an integer value.
6413    MachineFunction *F = BB->getParent();
6414    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
6415    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
6416
6417    // Load the old value of the high byte of the control word...
6418    unsigned OldCW =
6419      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
6420    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
6421
6422    // Set the high part to be round to zero...
6423    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
6424      .addImm(0xC7F);
6425
6426    // Reload the modified control word now...
6427    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6428
6429    // Restore the memory image of control word to original value
6430    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
6431      .addReg(OldCW);
6432
6433    // Get the X86 opcode to use.
6434    unsigned Opc;
6435    switch (MI->getOpcode()) {
6436    default: assert(0 && "illegal opcode!");
6437    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
6438    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
6439    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
6440    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
6441    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
6442    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
6443    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
6444    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
6445    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
6446    }
6447
6448    X86AddressMode AM;
6449    MachineOperand &Op = MI->getOperand(0);
6450    if (Op.isRegister()) {
6451      AM.BaseType = X86AddressMode::RegBase;
6452      AM.Base.Reg = Op.getReg();
6453    } else {
6454      AM.BaseType = X86AddressMode::FrameIndexBase;
6455      AM.Base.FrameIndex = Op.getIndex();
6456    }
6457    Op = MI->getOperand(1);
6458    if (Op.isImmediate())
6459      AM.Scale = Op.getImm();
6460    Op = MI->getOperand(2);
6461    if (Op.isImmediate())
6462      AM.IndexReg = Op.getImm();
6463    Op = MI->getOperand(3);
6464    if (Op.isGlobalAddress()) {
6465      AM.GV = Op.getGlobal();
6466    } else {
6467      AM.Disp = Op.getImm();
6468    }
6469    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
6470                      .addReg(MI->getOperand(4).getReg());
6471
6472    // Reload the original control word now.
6473    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6474
6475    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
6476    return BB;
6477  }
6478  case X86::ATOMAND32:
6479    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
6480                                               X86::AND32ri, X86::MOV32rm,
6481                                               X86::LCMPXCHG32, X86::MOV32rr,
6482                                               X86::NOT32r, X86::EAX,
6483                                               X86::GR32RegisterClass);
6484  case X86::ATOMOR32:
6485    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
6486                                               X86::OR32ri, X86::MOV32rm,
6487                                               X86::LCMPXCHG32, X86::MOV32rr,
6488                                               X86::NOT32r, X86::EAX,
6489                                               X86::GR32RegisterClass);
6490  case X86::ATOMXOR32:
6491    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
6492                                               X86::XOR32ri, X86::MOV32rm,
6493                                               X86::LCMPXCHG32, X86::MOV32rr,
6494                                               X86::NOT32r, X86::EAX,
6495                                               X86::GR32RegisterClass);
6496  case X86::ATOMNAND32:
6497    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
6498                                               X86::AND32ri, X86::MOV32rm,
6499                                               X86::LCMPXCHG32, X86::MOV32rr,
6500                                               X86::NOT32r, X86::EAX,
6501                                               X86::GR32RegisterClass, true);
6502  case X86::ATOMMIN32:
6503    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
6504  case X86::ATOMMAX32:
6505    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
6506  case X86::ATOMUMIN32:
6507    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
6508  case X86::ATOMUMAX32:
6509    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
6510
6511  case X86::ATOMAND16:
6512    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
6513                                               X86::AND16ri, X86::MOV16rm,
6514                                               X86::LCMPXCHG16, X86::MOV16rr,
6515                                               X86::NOT16r, X86::AX,
6516                                               X86::GR16RegisterClass);
6517  case X86::ATOMOR16:
6518    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
6519                                               X86::OR16ri, X86::MOV16rm,
6520                                               X86::LCMPXCHG16, X86::MOV16rr,
6521                                               X86::NOT16r, X86::AX,
6522                                               X86::GR16RegisterClass);
6523  case X86::ATOMXOR16:
6524    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
6525                                               X86::XOR16ri, X86::MOV16rm,
6526                                               X86::LCMPXCHG16, X86::MOV16rr,
6527                                               X86::NOT16r, X86::AX,
6528                                               X86::GR16RegisterClass);
6529  case X86::ATOMNAND16:
6530    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
6531                                               X86::AND16ri, X86::MOV16rm,
6532                                               X86::LCMPXCHG16, X86::MOV16rr,
6533                                               X86::NOT16r, X86::AX,
6534                                               X86::GR16RegisterClass, true);
6535  case X86::ATOMMIN16:
6536    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
6537  case X86::ATOMMAX16:
6538    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
6539  case X86::ATOMUMIN16:
6540    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
6541  case X86::ATOMUMAX16:
6542    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
6543
6544  case X86::ATOMAND8:
6545    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
6546                                               X86::AND8ri, X86::MOV8rm,
6547                                               X86::LCMPXCHG8, X86::MOV8rr,
6548                                               X86::NOT8r, X86::AL,
6549                                               X86::GR8RegisterClass);
6550  case X86::ATOMOR8:
6551    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
6552                                               X86::OR8ri, X86::MOV8rm,
6553                                               X86::LCMPXCHG8, X86::MOV8rr,
6554                                               X86::NOT8r, X86::AL,
6555                                               X86::GR8RegisterClass);
6556  case X86::ATOMXOR8:
6557    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
6558                                               X86::XOR8ri, X86::MOV8rm,
6559                                               X86::LCMPXCHG8, X86::MOV8rr,
6560                                               X86::NOT8r, X86::AL,
6561                                               X86::GR8RegisterClass);
6562  case X86::ATOMNAND8:
6563    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
6564                                               X86::AND8ri, X86::MOV8rm,
6565                                               X86::LCMPXCHG8, X86::MOV8rr,
6566                                               X86::NOT8r, X86::AL,
6567                                               X86::GR8RegisterClass, true);
6568  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
6569  }
6570}
6571
6572//===----------------------------------------------------------------------===//
6573//                           X86 Optimization Hooks
6574//===----------------------------------------------------------------------===//
6575
6576void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
6577                                                       const APInt &Mask,
6578                                                       APInt &KnownZero,
6579                                                       APInt &KnownOne,
6580                                                       const SelectionDAG &DAG,
6581                                                       unsigned Depth) const {
6582  unsigned Opc = Op.getOpcode();
6583  assert((Opc >= ISD::BUILTIN_OP_END ||
6584          Opc == ISD::INTRINSIC_WO_CHAIN ||
6585          Opc == ISD::INTRINSIC_W_CHAIN ||
6586          Opc == ISD::INTRINSIC_VOID) &&
6587         "Should use MaskedValueIsZero if you don't know whether Op"
6588         " is a target node!");
6589
6590  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
6591  switch (Opc) {
6592  default: break;
6593  case X86ISD::SETCC:
6594    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
6595                                       Mask.getBitWidth() - 1);
6596    break;
6597  }
6598}
6599
6600/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
6601/// node is a GlobalAddress + offset.
6602bool X86TargetLowering::isGAPlusOffset(SDNode *N,
6603                                       GlobalValue* &GA, int64_t &Offset) const{
6604  if (N->getOpcode() == X86ISD::Wrapper) {
6605    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
6606      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
6607      return true;
6608    }
6609  }
6610  return TargetLowering::isGAPlusOffset(N, GA, Offset);
6611}
6612
6613static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
6614                               const TargetLowering &TLI) {
6615  GlobalValue *GV;
6616  int64_t Offset = 0;
6617  if (TLI.isGAPlusOffset(Base, GV, Offset))
6618    return (GV->getAlignment() >= N && (Offset % N) == 0);
6619  // DAG combine handles the stack object case.
6620  return false;
6621}
6622
6623static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask,
6624                                     unsigned NumElems, MVT EVT,
6625                                     SDNode *&Base,
6626                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
6627                                     const TargetLowering &TLI) {
6628  Base = NULL;
6629  for (unsigned i = 0; i < NumElems; ++i) {
6630    SDValue Idx = PermMask.getOperand(i);
6631    if (Idx.getOpcode() == ISD::UNDEF) {
6632      if (!Base)
6633        return false;
6634      continue;
6635    }
6636
6637    SDValue Elt = DAG.getShuffleScalarElt(N, i);
6638    if (!Elt.Val ||
6639        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.Val)))
6640      return false;
6641    if (!Base) {
6642      Base = Elt.Val;
6643      if (Base->getOpcode() == ISD::UNDEF)
6644        return false;
6645      continue;
6646    }
6647    if (Elt.getOpcode() == ISD::UNDEF)
6648      continue;
6649
6650    if (!TLI.isConsecutiveLoad(Elt.Val, Base,
6651                               EVT.getSizeInBits()/8, i, MFI))
6652      return false;
6653  }
6654  return true;
6655}
6656
6657/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
6658/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
6659/// if the load addresses are consecutive, non-overlapping, and in the right
6660/// order.
6661static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
6662                                       const TargetLowering &TLI) {
6663  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6664  MVT VT = N->getValueType(0);
6665  MVT EVT = VT.getVectorElementType();
6666  SDValue PermMask = N->getOperand(2);
6667  unsigned NumElems = PermMask.getNumOperands();
6668  SDNode *Base = NULL;
6669  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
6670                                DAG, MFI, TLI))
6671    return SDValue();
6672
6673  LoadSDNode *LD = cast<LoadSDNode>(Base);
6674  if (isBaseAlignmentOfN(16, Base->getOperand(1).Val, TLI))
6675    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6676                       LD->getSrcValueOffset(), LD->isVolatile());
6677  return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6678                     LD->getSrcValueOffset(), LD->isVolatile(),
6679                     LD->getAlignment());
6680}
6681
6682/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
6683static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
6684                                           const X86Subtarget *Subtarget,
6685                                           const TargetLowering &TLI) {
6686  unsigned NumOps = N->getNumOperands();
6687
6688  // Ignore single operand BUILD_VECTOR.
6689  if (NumOps == 1)
6690    return SDValue();
6691
6692  MVT VT = N->getValueType(0);
6693  MVT EVT = VT.getVectorElementType();
6694  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
6695    // We are looking for load i64 and zero extend. We want to transform
6696    // it before legalizer has a chance to expand it. Also look for i64
6697    // BUILD_PAIR bit casted to f64.
6698    return SDValue();
6699  // This must be an insertion into a zero vector.
6700  SDValue HighElt = N->getOperand(1);
6701  if (!isZeroNode(HighElt))
6702    return SDValue();
6703
6704  // Value must be a load.
6705  SDNode *Base = N->getOperand(0).Val;
6706  if (!isa<LoadSDNode>(Base)) {
6707    if (Base->getOpcode() != ISD::BIT_CONVERT)
6708      return SDValue();
6709    Base = Base->getOperand(0).Val;
6710    if (!isa<LoadSDNode>(Base))
6711      return SDValue();
6712  }
6713
6714  // Transform it into VZEXT_LOAD addr.
6715  LoadSDNode *LD = cast<LoadSDNode>(Base);
6716
6717  // Load must not be an extload.
6718  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
6719    return SDValue();
6720
6721  return DAG.getNode(X86ISD::VZEXT_LOAD, VT, LD->getChain(), LD->getBasePtr());
6722}
6723
6724/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
6725static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
6726                                      const X86Subtarget *Subtarget) {
6727  SDValue Cond = N->getOperand(0);
6728
6729  // If we have SSE[12] support, try to form min/max nodes.
6730  if (Subtarget->hasSSE2() &&
6731      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
6732    if (Cond.getOpcode() == ISD::SETCC) {
6733      // Get the LHS/RHS of the select.
6734      SDValue LHS = N->getOperand(1);
6735      SDValue RHS = N->getOperand(2);
6736      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
6737
6738      unsigned Opcode = 0;
6739      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
6740        switch (CC) {
6741        default: break;
6742        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
6743        case ISD::SETULE:
6744        case ISD::SETLE:
6745          if (!UnsafeFPMath) break;
6746          // FALL THROUGH.
6747        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
6748        case ISD::SETLT:
6749          Opcode = X86ISD::FMIN;
6750          break;
6751
6752        case ISD::SETOGT: // (X > Y) ? X : Y -> max
6753        case ISD::SETUGT:
6754        case ISD::SETGT:
6755          if (!UnsafeFPMath) break;
6756          // FALL THROUGH.
6757        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
6758        case ISD::SETGE:
6759          Opcode = X86ISD::FMAX;
6760          break;
6761        }
6762      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
6763        switch (CC) {
6764        default: break;
6765        case ISD::SETOGT: // (X > Y) ? Y : X -> min
6766        case ISD::SETUGT:
6767        case ISD::SETGT:
6768          if (!UnsafeFPMath) break;
6769          // FALL THROUGH.
6770        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
6771        case ISD::SETGE:
6772          Opcode = X86ISD::FMIN;
6773          break;
6774
6775        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
6776        case ISD::SETULE:
6777        case ISD::SETLE:
6778          if (!UnsafeFPMath) break;
6779          // FALL THROUGH.
6780        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
6781        case ISD::SETLT:
6782          Opcode = X86ISD::FMAX;
6783          break;
6784        }
6785      }
6786
6787      if (Opcode)
6788        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
6789    }
6790
6791  }
6792
6793  return SDValue();
6794}
6795
6796/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
6797static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
6798                                     const X86Subtarget *Subtarget) {
6799  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
6800  // the FP state in cases where an emms may be missing.
6801  // A preferable solution to the general problem is to figure out the right
6802  // places to insert EMMS.  This qualifies as a quick hack.
6803  StoreSDNode *St = cast<StoreSDNode>(N);
6804  if (St->getValue().getValueType().isVector() &&
6805      St->getValue().getValueType().getSizeInBits() == 64 &&
6806      isa<LoadSDNode>(St->getValue()) &&
6807      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
6808      St->getChain().hasOneUse() && !St->isVolatile()) {
6809    SDNode* LdVal = St->getValue().Val;
6810    LoadSDNode *Ld = 0;
6811    int TokenFactorIndex = -1;
6812    SmallVector<SDValue, 8> Ops;
6813    SDNode* ChainVal = St->getChain().Val;
6814    // Must be a store of a load.  We currently handle two cases:  the load
6815    // is a direct child, and it's under an intervening TokenFactor.  It is
6816    // possible to dig deeper under nested TokenFactors.
6817    if (ChainVal == LdVal)
6818      Ld = cast<LoadSDNode>(St->getChain());
6819    else if (St->getValue().hasOneUse() &&
6820             ChainVal->getOpcode() == ISD::TokenFactor) {
6821      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
6822        if (ChainVal->getOperand(i).Val == LdVal) {
6823          TokenFactorIndex = i;
6824          Ld = cast<LoadSDNode>(St->getValue());
6825        } else
6826          Ops.push_back(ChainVal->getOperand(i));
6827      }
6828    }
6829    if (Ld) {
6830      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
6831      if (Subtarget->is64Bit()) {
6832        SDValue NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
6833                                      Ld->getBasePtr(), Ld->getSrcValue(),
6834                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
6835                                      Ld->getAlignment());
6836        SDValue NewChain = NewLd.getValue(1);
6837        if (TokenFactorIndex != -1) {
6838          Ops.push_back(NewChain);
6839          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6840                                 Ops.size());
6841        }
6842        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
6843                            St->getSrcValue(), St->getSrcValueOffset(),
6844                            St->isVolatile(), St->getAlignment());
6845      }
6846
6847      // Otherwise, lower to two 32-bit copies.
6848      SDValue LoAddr = Ld->getBasePtr();
6849      SDValue HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6850                                     DAG.getConstant(4, MVT::i32));
6851
6852      SDValue LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
6853                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
6854                                   Ld->isVolatile(), Ld->getAlignment());
6855      SDValue HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
6856                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
6857                                   Ld->isVolatile(),
6858                                   MinAlign(Ld->getAlignment(), 4));
6859
6860      SDValue NewChain = LoLd.getValue(1);
6861      if (TokenFactorIndex != -1) {
6862        Ops.push_back(LoLd);
6863        Ops.push_back(HiLd);
6864        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6865                               Ops.size());
6866      }
6867
6868      LoAddr = St->getBasePtr();
6869      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6870                           DAG.getConstant(4, MVT::i32));
6871
6872      SDValue LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
6873                          St->getSrcValue(), St->getSrcValueOffset(),
6874                          St->isVolatile(), St->getAlignment());
6875      SDValue HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
6876                                    St->getSrcValue(), St->getSrcValueOffset()+4,
6877                                    St->isVolatile(),
6878                                    MinAlign(St->getAlignment(), 4));
6879      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
6880    }
6881  }
6882  return SDValue();
6883}
6884
6885/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
6886/// X86ISD::FXOR nodes.
6887static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
6888  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
6889  // F[X]OR(0.0, x) -> x
6890  // F[X]OR(x, 0.0) -> x
6891  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6892    if (C->getValueAPF().isPosZero())
6893      return N->getOperand(1);
6894  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6895    if (C->getValueAPF().isPosZero())
6896      return N->getOperand(0);
6897  return SDValue();
6898}
6899
6900/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
6901static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
6902  // FAND(0.0, x) -> 0.0
6903  // FAND(x, 0.0) -> 0.0
6904  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6905    if (C->getValueAPF().isPosZero())
6906      return N->getOperand(0);
6907  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6908    if (C->getValueAPF().isPosZero())
6909      return N->getOperand(1);
6910  return SDValue();
6911}
6912
6913
6914SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
6915                                               DAGCombinerInfo &DCI) const {
6916  SelectionDAG &DAG = DCI.DAG;
6917  switch (N->getOpcode()) {
6918  default: break;
6919  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
6920  case ISD::BUILD_VECTOR:
6921    return PerformBuildVectorCombine(N, DAG, Subtarget, *this);
6922  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
6923  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
6924  case X86ISD::FXOR:
6925  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
6926  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
6927  }
6928
6929  return SDValue();
6930}
6931
6932//===----------------------------------------------------------------------===//
6933//                           X86 Inline Assembly Support
6934//===----------------------------------------------------------------------===//
6935
6936/// getConstraintType - Given a constraint letter, return the type of
6937/// constraint it is for this target.
6938X86TargetLowering::ConstraintType
6939X86TargetLowering::getConstraintType(const std::string &Constraint) const {
6940  if (Constraint.size() == 1) {
6941    switch (Constraint[0]) {
6942    case 'A':
6943    case 'f':
6944    case 'r':
6945    case 'R':
6946    case 'l':
6947    case 'q':
6948    case 'Q':
6949    case 'x':
6950    case 'y':
6951    case 'Y':
6952      return C_RegisterClass;
6953    default:
6954      break;
6955    }
6956  }
6957  return TargetLowering::getConstraintType(Constraint);
6958}
6959
6960/// LowerXConstraint - try to replace an X constraint, which matches anything,
6961/// with another that has more specific requirements based on the type of the
6962/// corresponding operand.
6963const char *X86TargetLowering::
6964LowerXConstraint(MVT ConstraintVT) const {
6965  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
6966  // 'f' like normal targets.
6967  if (ConstraintVT.isFloatingPoint()) {
6968    if (Subtarget->hasSSE2())
6969      return "Y";
6970    if (Subtarget->hasSSE1())
6971      return "x";
6972  }
6973
6974  return TargetLowering::LowerXConstraint(ConstraintVT);
6975}
6976
6977/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6978/// vector.  If it is invalid, don't add anything to Ops.
6979void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
6980                                                     char Constraint,
6981                                                     std::vector<SDValue>&Ops,
6982                                                     SelectionDAG &DAG) const {
6983  SDValue Result(0, 0);
6984
6985  switch (Constraint) {
6986  default: break;
6987  case 'I':
6988    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6989      if (C->getValue() <= 31) {
6990        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6991        break;
6992      }
6993    }
6994    return;
6995  case 'N':
6996    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6997      if (C->getValue() <= 255) {
6998        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6999        break;
7000      }
7001    }
7002    return;
7003  case 'i': {
7004    // Literal immediates are always ok.
7005    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
7006      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
7007      break;
7008    }
7009
7010    // If we are in non-pic codegen mode, we allow the address of a global (with
7011    // an optional displacement) to be used with 'i'.
7012    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
7013    int64_t Offset = 0;
7014
7015    // Match either (GA) or (GA+C)
7016    if (GA) {
7017      Offset = GA->getOffset();
7018    } else if (Op.getOpcode() == ISD::ADD) {
7019      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7020      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7021      if (C && GA) {
7022        Offset = GA->getOffset()+C->getValue();
7023      } else {
7024        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7025        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7026        if (C && GA)
7027          Offset = GA->getOffset()+C->getValue();
7028        else
7029          C = 0, GA = 0;
7030      }
7031    }
7032
7033    if (GA) {
7034      // If addressing this global requires a load (e.g. in PIC mode), we can't
7035      // match.
7036      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
7037                                         false))
7038        return;
7039
7040      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
7041                                      Offset);
7042      Result = Op;
7043      break;
7044    }
7045
7046    // Otherwise, not valid for this mode.
7047    return;
7048  }
7049  }
7050
7051  if (Result.Val) {
7052    Ops.push_back(Result);
7053    return;
7054  }
7055  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7056}
7057
7058std::vector<unsigned> X86TargetLowering::
7059getRegClassForInlineAsmConstraint(const std::string &Constraint,
7060                                  MVT VT) const {
7061  if (Constraint.size() == 1) {
7062    // FIXME: not handling fp-stack yet!
7063    switch (Constraint[0]) {      // GCC X86 Constraint Letters
7064    default: break;  // Unknown constraint letter
7065    case 'A':   // EAX/EDX
7066      if (VT == MVT::i32 || VT == MVT::i64)
7067        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
7068      break;
7069    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
7070    case 'Q':   // Q_REGS
7071      if (VT == MVT::i32)
7072        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
7073      else if (VT == MVT::i16)
7074        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
7075      else if (VT == MVT::i8)
7076        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
7077      else if (VT == MVT::i64)
7078        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
7079      break;
7080    }
7081  }
7082
7083  return std::vector<unsigned>();
7084}
7085
7086std::pair<unsigned, const TargetRegisterClass*>
7087X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7088                                                MVT VT) const {
7089  // First, see if this is a constraint that directly corresponds to an LLVM
7090  // register class.
7091  if (Constraint.size() == 1) {
7092    // GCC Constraint Letters
7093    switch (Constraint[0]) {
7094    default: break;
7095    case 'r':   // GENERAL_REGS
7096    case 'R':   // LEGACY_REGS
7097    case 'l':   // INDEX_REGS
7098      if (VT == MVT::i64 && Subtarget->is64Bit())
7099        return std::make_pair(0U, X86::GR64RegisterClass);
7100      if (VT == MVT::i32)
7101        return std::make_pair(0U, X86::GR32RegisterClass);
7102      else if (VT == MVT::i16)
7103        return std::make_pair(0U, X86::GR16RegisterClass);
7104      else if (VT == MVT::i8)
7105        return std::make_pair(0U, X86::GR8RegisterClass);
7106      break;
7107    case 'f':  // FP Stack registers.
7108      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
7109      // value to the correct fpstack register class.
7110      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
7111        return std::make_pair(0U, X86::RFP32RegisterClass);
7112      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
7113        return std::make_pair(0U, X86::RFP64RegisterClass);
7114      return std::make_pair(0U, X86::RFP80RegisterClass);
7115    case 'y':   // MMX_REGS if MMX allowed.
7116      if (!Subtarget->hasMMX()) break;
7117      return std::make_pair(0U, X86::VR64RegisterClass);
7118      break;
7119    case 'Y':   // SSE_REGS if SSE2 allowed
7120      if (!Subtarget->hasSSE2()) break;
7121      // FALL THROUGH.
7122    case 'x':   // SSE_REGS if SSE1 allowed
7123      if (!Subtarget->hasSSE1()) break;
7124
7125      switch (VT.getSimpleVT()) {
7126      default: break;
7127      // Scalar SSE types.
7128      case MVT::f32:
7129      case MVT::i32:
7130        return std::make_pair(0U, X86::FR32RegisterClass);
7131      case MVT::f64:
7132      case MVT::i64:
7133        return std::make_pair(0U, X86::FR64RegisterClass);
7134      // Vector types.
7135      case MVT::v16i8:
7136      case MVT::v8i16:
7137      case MVT::v4i32:
7138      case MVT::v2i64:
7139      case MVT::v4f32:
7140      case MVT::v2f64:
7141        return std::make_pair(0U, X86::VR128RegisterClass);
7142      }
7143      break;
7144    }
7145  }
7146
7147  // Use the default implementation in TargetLowering to convert the register
7148  // constraint into a member of a register class.
7149  std::pair<unsigned, const TargetRegisterClass*> Res;
7150  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7151
7152  // Not found as a standard register?
7153  if (Res.second == 0) {
7154    // GCC calls "st(0)" just plain "st".
7155    if (StringsEqualNoCase("{st}", Constraint)) {
7156      Res.first = X86::ST0;
7157      Res.second = X86::RFP80RegisterClass;
7158    }
7159
7160    return Res;
7161  }
7162
7163  // Otherwise, check to see if this is a register class of the wrong value
7164  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
7165  // turn into {ax},{dx}.
7166  if (Res.second->hasType(VT))
7167    return Res;   // Correct type already, nothing to do.
7168
7169  // All of the single-register GCC register classes map their values onto
7170  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
7171  // really want an 8-bit or 32-bit register, map to the appropriate register
7172  // class and return the appropriate register.
7173  if (Res.second != X86::GR16RegisterClass)
7174    return Res;
7175
7176  if (VT == MVT::i8) {
7177    unsigned DestReg = 0;
7178    switch (Res.first) {
7179    default: break;
7180    case X86::AX: DestReg = X86::AL; break;
7181    case X86::DX: DestReg = X86::DL; break;
7182    case X86::CX: DestReg = X86::CL; break;
7183    case X86::BX: DestReg = X86::BL; break;
7184    }
7185    if (DestReg) {
7186      Res.first = DestReg;
7187      Res.second = Res.second = X86::GR8RegisterClass;
7188    }
7189  } else if (VT == MVT::i32) {
7190    unsigned DestReg = 0;
7191    switch (Res.first) {
7192    default: break;
7193    case X86::AX: DestReg = X86::EAX; break;
7194    case X86::DX: DestReg = X86::EDX; break;
7195    case X86::CX: DestReg = X86::ECX; break;
7196    case X86::BX: DestReg = X86::EBX; break;
7197    case X86::SI: DestReg = X86::ESI; break;
7198    case X86::DI: DestReg = X86::EDI; break;
7199    case X86::BP: DestReg = X86::EBP; break;
7200    case X86::SP: DestReg = X86::ESP; break;
7201    }
7202    if (DestReg) {
7203      Res.first = DestReg;
7204      Res.second = Res.second = X86::GR32RegisterClass;
7205    }
7206  } else if (VT == MVT::i64) {
7207    unsigned DestReg = 0;
7208    switch (Res.first) {
7209    default: break;
7210    case X86::AX: DestReg = X86::RAX; break;
7211    case X86::DX: DestReg = X86::RDX; break;
7212    case X86::CX: DestReg = X86::RCX; break;
7213    case X86::BX: DestReg = X86::RBX; break;
7214    case X86::SI: DestReg = X86::RSI; break;
7215    case X86::DI: DestReg = X86::RDI; break;
7216    case X86::BP: DestReg = X86::RBP; break;
7217    case X86::SP: DestReg = X86::RSP; break;
7218    }
7219    if (DestReg) {
7220      Res.first = DestReg;
7221      Res.second = Res.second = X86::GR64RegisterClass;
7222    }
7223  }
7224
7225  return Res;
7226}
7227