X86ISelLowering.cpp revision dca62d53b74164364b3eaa58df3a284cf86fa016
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55using namespace llvm;
56using namespace dwarf;
57
58STATISTIC(NumTailCalls, "Number of tail calls");
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static SDValue Insert128BitVector(SDValue Result,
65                                  SDValue Vec,
66                                  SDValue Idx,
67                                  SelectionDAG &DAG,
68                                  DebugLoc dl);
69
70static SDValue Extract128BitVector(SDValue Vec,
71                                   SDValue Idx,
72                                   SelectionDAG &DAG,
73                                   DebugLoc dl);
74
75/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
76/// sets things up to match to an AVX VEXTRACTF128 instruction or a
77/// simple subregister reference.  Idx is an index in the 128 bits we
78/// want.  It need not be aligned to a 128-bit bounday.  That makes
79/// lowering EXTRACT_VECTOR_ELT operations easier.
80static SDValue Extract128BitVector(SDValue Vec,
81                                   SDValue Idx,
82                                   SelectionDAG &DAG,
83                                   DebugLoc dl) {
84  EVT VT = Vec.getValueType();
85  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
86  EVT ElVT = VT.getVectorElementType();
87  int Factor = VT.getSizeInBits()/128;
88  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
89                                  VT.getVectorNumElements()/Factor);
90
91  // Extract from UNDEF is UNDEF.
92  if (Vec.getOpcode() == ISD::UNDEF)
93    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
94
95  if (isa<ConstantSDNode>(Idx)) {
96    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
97
98    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
99    // we can match to VEXTRACTF128.
100    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
101
102    // This is the index of the first element of the 128-bit chunk
103    // we want.
104    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
105                                 * ElemsPerChunk);
106
107    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
108    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
109                                 VecIdx);
110
111    return Result;
112  }
113
114  return SDValue();
115}
116
117/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
118/// sets things up to match to an AVX VINSERTF128 instruction or a
119/// simple superregister reference.  Idx is an index in the 128 bits
120/// we want.  It need not be aligned to a 128-bit bounday.  That makes
121/// lowering INSERT_VECTOR_ELT operations easier.
122static SDValue Insert128BitVector(SDValue Result,
123                                  SDValue Vec,
124                                  SDValue Idx,
125                                  SelectionDAG &DAG,
126                                  DebugLoc dl) {
127  if (isa<ConstantSDNode>(Idx)) {
128    EVT VT = Vec.getValueType();
129    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
130
131    EVT ElVT = VT.getVectorElementType();
132    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
133    EVT ResultVT = Result.getValueType();
134
135    // Insert the relevant 128 bits.
136    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
137
138    // This is the index of the first element of the 128-bit chunk
139    // we want.
140    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
141                                 * ElemsPerChunk);
142
143    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
144    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
145                         VecIdx);
146    return Result;
147  }
148
149  return SDValue();
150}
151
152static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
153  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
154  bool is64Bit = Subtarget->is64Bit();
155
156  if (Subtarget->isTargetEnvMacho()) {
157    if (is64Bit)
158      return new X8664_MachoTargetObjectFile();
159    return new TargetLoweringObjectFileMachO();
160  }
161
162  if (Subtarget->isTargetELF())
163    return new TargetLoweringObjectFileELF();
164  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
165    return new TargetLoweringObjectFileCOFF();
166  llvm_unreachable("unknown subtarget type");
167}
168
169X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
170  : TargetLowering(TM, createTLOF(TM)) {
171  Subtarget = &TM.getSubtarget<X86Subtarget>();
172  X86ScalarSSEf64 = Subtarget->hasXMMInt();
173  X86ScalarSSEf32 = Subtarget->hasXMM();
174  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
175
176  RegInfo = TM.getRegisterInfo();
177  TD = getTargetData();
178
179  // Set up the TargetLowering object.
180  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
181
182  // X86 is weird, it always uses i8 for shift amounts and setcc results.
183  setBooleanContents(ZeroOrOneBooleanContent);
184  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
185  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
186
187  // For 64-bit since we have so many registers use the ILP scheduler, for
188  // 32-bit code use the register pressure specific scheduling.
189  if (Subtarget->is64Bit())
190    setSchedulingPreference(Sched::ILP);
191  else
192    setSchedulingPreference(Sched::RegPressure);
193  setStackPointerRegisterToSaveRestore(X86StackPtr);
194
195  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
196    // Setup Windows compiler runtime calls.
197    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
198    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
199    setLibcallName(RTLIB::SREM_I64, "_allrem");
200    setLibcallName(RTLIB::UREM_I64, "_aullrem");
201    setLibcallName(RTLIB::MUL_I64, "_allmul");
202    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
203    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
204    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
210    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
211  }
212
213  if (Subtarget->isTargetDarwin()) {
214    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
215    setUseUnderscoreSetJmp(false);
216    setUseUnderscoreLongJmp(false);
217  } else if (Subtarget->isTargetMingw()) {
218    // MS runtime is weird: it exports _setjmp, but longjmp!
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(false);
221  } else {
222    setUseUnderscoreSetJmp(true);
223    setUseUnderscoreLongJmp(true);
224  }
225
226  // Set up the register classes.
227  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
228  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
229  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
230  if (Subtarget->is64Bit())
231    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
232
233  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
234
235  // We don't accept any truncstore of integer registers.
236  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
238  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
239  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
240  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
241  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
242
243  // SETOEQ and SETUNE require checking two conditions.
244  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
249  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
250
251  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
252  // operation.
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
255  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
256
257  if (Subtarget->is64Bit()) {
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
260  } else if (!UseSoftFloat) {
261    // We have an algorithm for SSE2->double, and we turn this into a
262    // 64-bit FILD followed by conditional FADD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
264    // We have an algorithm for SSE2, and we turn this into a 64-bit
265    // FILD for other targets.
266    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
267  }
268
269  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
270  // this operation.
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
272  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
273
274  if (!UseSoftFloat) {
275    // SSE has no i16 to fp conversion, only i32
276    if (X86ScalarSSEf32) {
277      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
278      // f32 and f64 cases are Legal, f80 case is not
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    } else {
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
282      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
283    }
284  } else {
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
286    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
287  }
288
289  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
290  // are Legal, f80 is custom lowered.
291  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
292  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
293
294  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
295  // this operation.
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
297  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
298
299  if (X86ScalarSSEf32) {
300    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
301    // f32 and f64 cases are Legal, f80 case is not
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  } else {
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
305    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
306  }
307
308  // Handle FP_TO_UINT by promoting the destination to a larger signed
309  // conversion.
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
312  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
313
314  if (Subtarget->is64Bit()) {
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
316    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
317  } else if (!UseSoftFloat) {
318    // Since AVX is a superset of SSE3, only check for SSE here.
319    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
320      // Expand FP_TO_UINT into a select.
321      // FIXME: We would like to use a Custom expander here eventually to do
322      // the optimal thing for SSE vs. the default expansion in the legalizer.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
324    else
325      // With SSE3 we can use fisttpll to convert to a signed i64; without
326      // SSE, we're stuck with a fistpll.
327      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
328  }
329
330  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
331  if (!X86ScalarSSEf64) {
332    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
333    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
334    if (Subtarget->is64Bit()) {
335      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
336      // Without SSE, i64->f64 goes through memory.
337      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
338    }
339  }
340
341  // Scalar integer divide and remainder are lowered to use operations that
342  // produce two results, to match the available instructions. This exposes
343  // the two-result form to trivial CSE, which is able to combine x/y and x%y
344  // into a single instruction.
345  //
346  // Scalar integer multiply-high is also lowered to use two-result
347  // operations, to match the available instructions. However, plain multiply
348  // (low) operations are left as Legal, as there are single-result
349  // instructions for this in x86. Using the two-result multiply instructions
350  // when both high and low results are needed must be arranged by dagcombine.
351  for (unsigned i = 0, e = 4; i != e; ++i) {
352    MVT VT = IntVTs[i];
353    setOperationAction(ISD::MULHS, VT, Expand);
354    setOperationAction(ISD::MULHU, VT, Expand);
355    setOperationAction(ISD::SDIV, VT, Expand);
356    setOperationAction(ISD::UDIV, VT, Expand);
357    setOperationAction(ISD::SREM, VT, Expand);
358    setOperationAction(ISD::UREM, VT, Expand);
359
360    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
361    setOperationAction(ISD::ADDC, VT, Custom);
362    setOperationAction(ISD::ADDE, VT, Custom);
363    setOperationAction(ISD::SUBC, VT, Custom);
364    setOperationAction(ISD::SUBE, VT, Custom);
365  }
366
367  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
368  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
369  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
370  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
371  if (Subtarget->is64Bit())
372    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
375  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
376  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
379  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
380  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
381
382  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
383  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
384  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
385  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
386  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
387  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
388  if (Subtarget->is64Bit()) {
389    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
390    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
391  }
392
393  if (Subtarget->hasPOPCNT()) {
394    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
395  } else {
396    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
397    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
398    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
399    if (Subtarget->is64Bit())
400      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
401  }
402
403  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
404  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
405
406  // These should be promoted to a larger select which is supported.
407  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
408  // X86 wants to expand cmov itself.
409  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
410  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
411  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
412  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
413  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
414  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
415  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
416  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
417  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
418  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
419  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
420  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
421  if (Subtarget->is64Bit()) {
422    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
423    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
424  }
425  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
426
427  // Darwin ABI issue.
428  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
429  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
430  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
431  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
432  if (Subtarget->is64Bit())
433    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
434  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
435  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
436  if (Subtarget->is64Bit()) {
437    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
438    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
439    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
440    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
441    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
442  }
443  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
444  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
445  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
446  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
447  if (Subtarget->is64Bit()) {
448    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
449    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
450    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
451  }
452
453  if (Subtarget->hasXMM())
454    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
455
456  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
457  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
458
459  // On X86 and X86-64, atomic operations are lowered to locked instructions.
460  // Locked instructions, in turn, have implicit fence semantics (all memory
461  // operations are flushed before issuing the locked instruction, and they
462  // are not buffered), so we can fold away the common pattern of
463  // fence-atomic-fence.
464  setShouldFoldAtomicFences(true);
465
466  // Expand certain atomics
467  for (unsigned i = 0, e = 4; i != e; ++i) {
468    MVT VT = IntVTs[i];
469    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
470    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
471    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
472  }
473
474  if (!Subtarget->is64Bit()) {
475    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
476    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
477    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
478    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
479    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
480    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
481    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
482    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
483  }
484
485  if (Subtarget->hasCmpxchg16b()) {
486    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
487  }
488
489  // FIXME - use subtarget debug flags
490  if (!Subtarget->isTargetDarwin() &&
491      !Subtarget->isTargetELF() &&
492      !Subtarget->isTargetCygMing()) {
493    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
494  }
495
496  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
497  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
498  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
499  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
500  if (Subtarget->is64Bit()) {
501    setExceptionPointerRegister(X86::RAX);
502    setExceptionSelectorRegister(X86::RDX);
503  } else {
504    setExceptionPointerRegister(X86::EAX);
505    setExceptionSelectorRegister(X86::EDX);
506  }
507  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
508  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
509
510  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
511  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
512
513  setOperationAction(ISD::TRAP, MVT::Other, Legal);
514
515  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
516  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
517  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
518  if (Subtarget->is64Bit()) {
519    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
520    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
521  } else {
522    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
523    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
524  }
525
526  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
527  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
528
529  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
530    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
531                       MVT::i64 : MVT::i32, Custom);
532  else if (EnableSegmentedStacks)
533    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
534                       MVT::i64 : MVT::i32, Custom);
535  else
536    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
537                       MVT::i64 : MVT::i32, Expand);
538
539  if (!UseSoftFloat && X86ScalarSSEf64) {
540    // f32 and f64 use SSE.
541    // Set up the FP register classes.
542    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
543    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
544
545    // Use ANDPD to simulate FABS.
546    setOperationAction(ISD::FABS , MVT::f64, Custom);
547    setOperationAction(ISD::FABS , MVT::f32, Custom);
548
549    // Use XORP to simulate FNEG.
550    setOperationAction(ISD::FNEG , MVT::f64, Custom);
551    setOperationAction(ISD::FNEG , MVT::f32, Custom);
552
553    // Use ANDPD and ORPD to simulate FCOPYSIGN.
554    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
555    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
556
557    // Lower this to FGETSIGNx86 plus an AND.
558    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
559    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
560
561    // We don't support sin/cos/fmod
562    setOperationAction(ISD::FSIN , MVT::f64, Expand);
563    setOperationAction(ISD::FCOS , MVT::f64, Expand);
564    setOperationAction(ISD::FSIN , MVT::f32, Expand);
565    setOperationAction(ISD::FCOS , MVT::f32, Expand);
566
567    // Expand FP immediates into loads from the stack, except for the special
568    // cases we handle.
569    addLegalFPImmediate(APFloat(+0.0)); // xorpd
570    addLegalFPImmediate(APFloat(+0.0f)); // xorps
571  } else if (!UseSoftFloat && X86ScalarSSEf32) {
572    // Use SSE for f32, x87 for f64.
573    // Set up the FP register classes.
574    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
575    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
576
577    // Use ANDPS to simulate FABS.
578    setOperationAction(ISD::FABS , MVT::f32, Custom);
579
580    // Use XORP to simulate FNEG.
581    setOperationAction(ISD::FNEG , MVT::f32, Custom);
582
583    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
584
585    // Use ANDPS and ORPS to simulate FCOPYSIGN.
586    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
587    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
588
589    // We don't support sin/cos/fmod
590    setOperationAction(ISD::FSIN , MVT::f32, Expand);
591    setOperationAction(ISD::FCOS , MVT::f32, Expand);
592
593    // Special cases we handle for FP constants.
594    addLegalFPImmediate(APFloat(+0.0f)); // xorps
595    addLegalFPImmediate(APFloat(+0.0)); // FLD0
596    addLegalFPImmediate(APFloat(+1.0)); // FLD1
597    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
598    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
599
600    if (!UnsafeFPMath) {
601      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
602      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
603    }
604  } else if (!UseSoftFloat) {
605    // f32 and f64 in x87.
606    // Set up the FP register classes.
607    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
608    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
609
610    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
611    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
612    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
613    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
614
615    if (!UnsafeFPMath) {
616      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
617      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
618    }
619    addLegalFPImmediate(APFloat(+0.0)); // FLD0
620    addLegalFPImmediate(APFloat(+1.0)); // FLD1
621    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
622    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
623    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
624    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
625    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
626    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
627  }
628
629  // We don't support FMA.
630  setOperationAction(ISD::FMA, MVT::f64, Expand);
631  setOperationAction(ISD::FMA, MVT::f32, Expand);
632
633  // Long double always uses X87.
634  if (!UseSoftFloat) {
635    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
636    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
637    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
638    {
639      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
640      addLegalFPImmediate(TmpFlt);  // FLD0
641      TmpFlt.changeSign();
642      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
643
644      bool ignored;
645      APFloat TmpFlt2(+1.0);
646      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
647                      &ignored);
648      addLegalFPImmediate(TmpFlt2);  // FLD1
649      TmpFlt2.changeSign();
650      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
651    }
652
653    if (!UnsafeFPMath) {
654      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
655      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
656    }
657
658    setOperationAction(ISD::FMA, MVT::f80, Expand);
659  }
660
661  // Always use a library call for pow.
662  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
663  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
664  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
665
666  setOperationAction(ISD::FLOG, MVT::f80, Expand);
667  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
668  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
669  setOperationAction(ISD::FEXP, MVT::f80, Expand);
670  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
671
672  // First set operation action for all vector types to either promote
673  // (for widening) or expand (for scalarization). Then we will selectively
674  // turn on ones that can be effectively codegen'd.
675  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
676       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
677    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
678    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
679    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
680    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
681    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
692    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
694    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
695    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
732    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
733         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
734      setTruncStoreAction((MVT::SimpleValueType)VT,
735                          (MVT::SimpleValueType)InnerVT, Expand);
736    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
737    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
738    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
739  }
740
741  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
742  // with -msoft-float, disable use of MMX as well.
743  if (!UseSoftFloat && Subtarget->hasMMX()) {
744    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
745    // No operations on x86mmx supported, everything uses intrinsics.
746  }
747
748  // MMX-sized vectors (other than x86mmx) are expected to be expanded
749  // into smaller operations.
750  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
751  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
752  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
753  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
754  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
755  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
756  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
757  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
758  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
759  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
760  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
761  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
762  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
763  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
764  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
765  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
766  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
767  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
768  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
769  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
770  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
771  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
772  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
773  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
774  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
775  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
776  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
777  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
778  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
779
780  if (!UseSoftFloat && Subtarget->hasXMM()) {
781    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
782
783    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
784    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
785    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
786    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
787    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
788    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
789    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
790    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
791    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
792    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
793    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
794    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
795  }
796
797  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
798    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
799
800    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
801    // registers cannot be used even for integer operations.
802    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
803    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
804    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
805    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
806
807    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
808    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
809    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
810    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
811    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
812    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
813    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
814    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
815    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
816    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
817    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
818    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
819    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
820    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
821    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
822    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
823
824    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
825    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
826    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
827    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
828
829    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
830    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
831    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
832    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
833    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
834
835    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
836    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
837    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
838    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
839    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
840
841    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
842    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
843      EVT VT = (MVT::SimpleValueType)i;
844      // Do not attempt to custom lower non-power-of-2 vectors
845      if (!isPowerOf2_32(VT.getVectorNumElements()))
846        continue;
847      // Do not attempt to custom lower non-128-bit vectors
848      if (!VT.is128BitVector())
849        continue;
850      setOperationAction(ISD::BUILD_VECTOR,
851                         VT.getSimpleVT().SimpleTy, Custom);
852      setOperationAction(ISD::VECTOR_SHUFFLE,
853                         VT.getSimpleVT().SimpleTy, Custom);
854      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
855                         VT.getSimpleVT().SimpleTy, Custom);
856    }
857
858    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
859    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
860    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
861    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
862    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
863    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
864
865    if (Subtarget->is64Bit()) {
866      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
867      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
868    }
869
870    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
871    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
872      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
873      EVT VT = SVT;
874
875      // Do not attempt to promote non-128-bit vectors
876      if (!VT.is128BitVector())
877        continue;
878
879      setOperationAction(ISD::AND,    SVT, Promote);
880      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
881      setOperationAction(ISD::OR,     SVT, Promote);
882      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
883      setOperationAction(ISD::XOR,    SVT, Promote);
884      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
885      setOperationAction(ISD::LOAD,   SVT, Promote);
886      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
887      setOperationAction(ISD::SELECT, SVT, Promote);
888      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
889    }
890
891    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
892
893    // Custom lower v2i64 and v2f64 selects.
894    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
895    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
896    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
897    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
898
899    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
900    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
901  }
902
903  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
904    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
905    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
906    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
907    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
908    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
909    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
910    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
911    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
912    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
913    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
914
915    // FIXME: Do we need to handle scalar-to-vector here?
916    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
917
918    // Can turn SHL into an integer multiply.
919    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
920    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
921
922    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
923    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
924    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
925    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
926    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
927
928    // i8 and i16 vectors are custom , because the source register and source
929    // source memory operand types are not the same width.  f32 vectors are
930    // custom since the immediate controlling the insert encodes additional
931    // information.
932    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
933    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
934    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
935    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
936
937    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
938    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
939    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
940    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
941
942    if (Subtarget->is64Bit()) {
943      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
944      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
945    }
946  }
947
948  if (Subtarget->hasXMMInt()) {
949    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
950    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
951    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
952    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
953
954    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
955    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
956    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
957
958    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
959    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
960  }
961
962  if (Subtarget->hasSSE42() || Subtarget->hasAVX())
963    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
964
965  if (!UseSoftFloat && Subtarget->hasAVX()) {
966    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
967    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
968    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
969    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
970    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
971    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
972
973    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
974    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
975    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
976
977    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
978    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
979    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
980    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
981    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
982    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
983
984    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
985    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
986    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
987    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
988    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
989    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
990
991    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
992    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
993    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
994
995    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
996    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
997    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
998    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
999    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1000    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1001
1002    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1003    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1004    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1005    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1006
1007    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1008    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1009    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1010    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1011
1012    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1013    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1014
1015    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1016    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1017    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1018    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1019
1020    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1021    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1022    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1023
1024    setOperationAction(ISD::VSELECT,            MVT::v4f64, Legal);
1025    setOperationAction(ISD::VSELECT,            MVT::v4i64, Legal);
1026    setOperationAction(ISD::VSELECT,            MVT::v8i32, Legal);
1027    setOperationAction(ISD::VSELECT,            MVT::v8f32, Legal);
1028
1029    setOperationAction(ISD::ADD,               MVT::v4i64, Custom);
1030    setOperationAction(ISD::ADD,               MVT::v8i32, Custom);
1031    setOperationAction(ISD::ADD,               MVT::v16i16, Custom);
1032    setOperationAction(ISD::ADD,               MVT::v32i8, Custom);
1033
1034    setOperationAction(ISD::SUB,               MVT::v4i64, Custom);
1035    setOperationAction(ISD::SUB,               MVT::v8i32, Custom);
1036    setOperationAction(ISD::SUB,               MVT::v16i16, Custom);
1037    setOperationAction(ISD::SUB,               MVT::v32i8, Custom);
1038
1039    setOperationAction(ISD::MUL,               MVT::v4i64, Custom);
1040    setOperationAction(ISD::MUL,               MVT::v8i32, Custom);
1041    setOperationAction(ISD::MUL,               MVT::v16i16, Custom);
1042    // Don't lower v32i8 because there is no 128-bit byte mul
1043
1044    // Custom lower several nodes for 256-bit types.
1045    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1046                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1047      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1048      EVT VT = SVT;
1049
1050      // Extract subvector is special because the value type
1051      // (result) is 128-bit but the source is 256-bit wide.
1052      if (VT.is128BitVector())
1053        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1054
1055      // Do not attempt to custom lower other non-256-bit vectors
1056      if (!VT.is256BitVector())
1057        continue;
1058
1059      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1060      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1061      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1062      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1063      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1064      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1065    }
1066
1067    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1068    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1069      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1070      EVT VT = SVT;
1071
1072      // Do not attempt to promote non-256-bit vectors
1073      if (!VT.is256BitVector())
1074        continue;
1075
1076      setOperationAction(ISD::AND,    SVT, Promote);
1077      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1078      setOperationAction(ISD::OR,     SVT, Promote);
1079      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1080      setOperationAction(ISD::XOR,    SVT, Promote);
1081      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1082      setOperationAction(ISD::LOAD,   SVT, Promote);
1083      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1084      setOperationAction(ISD::SELECT, SVT, Promote);
1085      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1086    }
1087  }
1088
1089  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1090  // of this type with custom code.
1091  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1092         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1093    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1094  }
1095
1096  // We want to custom lower some of our intrinsics.
1097  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1098
1099
1100  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1101  // handle type legalization for these operations here.
1102  //
1103  // FIXME: We really should do custom legalization for addition and
1104  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1105  // than generic legalization for 64-bit multiplication-with-overflow, though.
1106  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1107    // Add/Sub/Mul with overflow operations are custom lowered.
1108    MVT VT = IntVTs[i];
1109    setOperationAction(ISD::SADDO, VT, Custom);
1110    setOperationAction(ISD::UADDO, VT, Custom);
1111    setOperationAction(ISD::SSUBO, VT, Custom);
1112    setOperationAction(ISD::USUBO, VT, Custom);
1113    setOperationAction(ISD::SMULO, VT, Custom);
1114    setOperationAction(ISD::UMULO, VT, Custom);
1115  }
1116
1117  // There are no 8-bit 3-address imul/mul instructions
1118  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1119  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1120
1121  if (!Subtarget->is64Bit()) {
1122    // These libcalls are not available in 32-bit.
1123    setLibcallName(RTLIB::SHL_I128, 0);
1124    setLibcallName(RTLIB::SRL_I128, 0);
1125    setLibcallName(RTLIB::SRA_I128, 0);
1126  }
1127
1128  // We have target-specific dag combine patterns for the following nodes:
1129  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1130  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1131  setTargetDAGCombine(ISD::BUILD_VECTOR);
1132  setTargetDAGCombine(ISD::VSELECT);
1133  setTargetDAGCombine(ISD::SELECT);
1134  setTargetDAGCombine(ISD::SHL);
1135  setTargetDAGCombine(ISD::SRA);
1136  setTargetDAGCombine(ISD::SRL);
1137  setTargetDAGCombine(ISD::OR);
1138  setTargetDAGCombine(ISD::AND);
1139  setTargetDAGCombine(ISD::ADD);
1140  setTargetDAGCombine(ISD::FADD);
1141  setTargetDAGCombine(ISD::FSUB);
1142  setTargetDAGCombine(ISD::SUB);
1143  setTargetDAGCombine(ISD::LOAD);
1144  setTargetDAGCombine(ISD::STORE);
1145  setTargetDAGCombine(ISD::ZERO_EXTEND);
1146  setTargetDAGCombine(ISD::SINT_TO_FP);
1147  if (Subtarget->is64Bit())
1148    setTargetDAGCombine(ISD::MUL);
1149
1150  computeRegisterProperties();
1151
1152  // On Darwin, -Os means optimize for size without hurting performance,
1153  // do not reduce the limit.
1154  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1155  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1156  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1157  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1158  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1159  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1160  setPrefLoopAlignment(16);
1161  benefitFromCodePlacementOpt = true;
1162
1163  setPrefFunctionAlignment(4);
1164}
1165
1166
1167EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1168  if (!VT.isVector()) return MVT::i8;
1169  return VT.changeVectorElementTypeToInteger();
1170}
1171
1172
1173/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1174/// the desired ByVal argument alignment.
1175static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1176  if (MaxAlign == 16)
1177    return;
1178  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1179    if (VTy->getBitWidth() == 128)
1180      MaxAlign = 16;
1181  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1182    unsigned EltAlign = 0;
1183    getMaxByValAlign(ATy->getElementType(), EltAlign);
1184    if (EltAlign > MaxAlign)
1185      MaxAlign = EltAlign;
1186  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1187    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1188      unsigned EltAlign = 0;
1189      getMaxByValAlign(STy->getElementType(i), EltAlign);
1190      if (EltAlign > MaxAlign)
1191        MaxAlign = EltAlign;
1192      if (MaxAlign == 16)
1193        break;
1194    }
1195  }
1196  return;
1197}
1198
1199/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1200/// function arguments in the caller parameter area. For X86, aggregates
1201/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1202/// are at 4-byte boundaries.
1203unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1204  if (Subtarget->is64Bit()) {
1205    // Max of 8 and alignment of type.
1206    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1207    if (TyAlign > 8)
1208      return TyAlign;
1209    return 8;
1210  }
1211
1212  unsigned Align = 4;
1213  if (Subtarget->hasXMM())
1214    getMaxByValAlign(Ty, Align);
1215  return Align;
1216}
1217
1218/// getOptimalMemOpType - Returns the target specific optimal type for load
1219/// and store operations as a result of memset, memcpy, and memmove
1220/// lowering. If DstAlign is zero that means it's safe to destination
1221/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1222/// means there isn't a need to check it against alignment requirement,
1223/// probably because the source does not need to be loaded. If
1224/// 'NonScalarIntSafe' is true, that means it's safe to return a
1225/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1226/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1227/// constant so it does not need to be loaded.
1228/// It returns EVT::Other if the type should be determined using generic
1229/// target-independent logic.
1230EVT
1231X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1232                                       unsigned DstAlign, unsigned SrcAlign,
1233                                       bool NonScalarIntSafe,
1234                                       bool MemcpyStrSrc,
1235                                       MachineFunction &MF) const {
1236  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1237  // linux.  This is because the stack realignment code can't handle certain
1238  // cases like PR2962.  This should be removed when PR2962 is fixed.
1239  const Function *F = MF.getFunction();
1240  if (NonScalarIntSafe &&
1241      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1242    if (Size >= 16 &&
1243        (Subtarget->isUnalignedMemAccessFast() ||
1244         ((DstAlign == 0 || DstAlign >= 16) &&
1245          (SrcAlign == 0 || SrcAlign >= 16))) &&
1246        Subtarget->getStackAlignment() >= 16) {
1247      if (Subtarget->hasAVX() &&
1248          Subtarget->getStackAlignment() >= 32)
1249        return MVT::v8f32;
1250      if (Subtarget->hasXMMInt())
1251        return MVT::v4i32;
1252      if (Subtarget->hasXMM())
1253        return MVT::v4f32;
1254    } else if (!MemcpyStrSrc && Size >= 8 &&
1255               !Subtarget->is64Bit() &&
1256               Subtarget->getStackAlignment() >= 8 &&
1257               Subtarget->hasXMMInt()) {
1258      // Do not use f64 to lower memcpy if source is string constant. It's
1259      // better to use i32 to avoid the loads.
1260      return MVT::f64;
1261    }
1262  }
1263  if (Subtarget->is64Bit() && Size >= 8)
1264    return MVT::i64;
1265  return MVT::i32;
1266}
1267
1268/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1269/// current function.  The returned value is a member of the
1270/// MachineJumpTableInfo::JTEntryKind enum.
1271unsigned X86TargetLowering::getJumpTableEncoding() const {
1272  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1273  // symbol.
1274  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1275      Subtarget->isPICStyleGOT())
1276    return MachineJumpTableInfo::EK_Custom32;
1277
1278  // Otherwise, use the normal jump table encoding heuristics.
1279  return TargetLowering::getJumpTableEncoding();
1280}
1281
1282const MCExpr *
1283X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1284                                             const MachineBasicBlock *MBB,
1285                                             unsigned uid,MCContext &Ctx) const{
1286  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1287         Subtarget->isPICStyleGOT());
1288  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1289  // entries.
1290  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1291                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1292}
1293
1294/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1295/// jumptable.
1296SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1297                                                    SelectionDAG &DAG) const {
1298  if (!Subtarget->is64Bit())
1299    // This doesn't have DebugLoc associated with it, but is not really the
1300    // same as a Register.
1301    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1302  return Table;
1303}
1304
1305/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1306/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1307/// MCExpr.
1308const MCExpr *X86TargetLowering::
1309getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1310                             MCContext &Ctx) const {
1311  // X86-64 uses RIP relative addressing based on the jump table label.
1312  if (Subtarget->isPICStyleRIPRel())
1313    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1314
1315  // Otherwise, the reference is relative to the PIC base.
1316  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1317}
1318
1319// FIXME: Why this routine is here? Move to RegInfo!
1320std::pair<const TargetRegisterClass*, uint8_t>
1321X86TargetLowering::findRepresentativeClass(EVT VT) const{
1322  const TargetRegisterClass *RRC = 0;
1323  uint8_t Cost = 1;
1324  switch (VT.getSimpleVT().SimpleTy) {
1325  default:
1326    return TargetLowering::findRepresentativeClass(VT);
1327  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1328    RRC = (Subtarget->is64Bit()
1329           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1330    break;
1331  case MVT::x86mmx:
1332    RRC = X86::VR64RegisterClass;
1333    break;
1334  case MVT::f32: case MVT::f64:
1335  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1336  case MVT::v4f32: case MVT::v2f64:
1337  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1338  case MVT::v4f64:
1339    RRC = X86::VR128RegisterClass;
1340    break;
1341  }
1342  return std::make_pair(RRC, Cost);
1343}
1344
1345bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1346                                               unsigned &Offset) const {
1347  if (!Subtarget->isTargetLinux())
1348    return false;
1349
1350  if (Subtarget->is64Bit()) {
1351    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1352    Offset = 0x28;
1353    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1354      AddressSpace = 256;
1355    else
1356      AddressSpace = 257;
1357  } else {
1358    // %gs:0x14 on i386
1359    Offset = 0x14;
1360    AddressSpace = 256;
1361  }
1362  return true;
1363}
1364
1365
1366//===----------------------------------------------------------------------===//
1367//               Return Value Calling Convention Implementation
1368//===----------------------------------------------------------------------===//
1369
1370#include "X86GenCallingConv.inc"
1371
1372bool
1373X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1374				  MachineFunction &MF, bool isVarArg,
1375                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1376                        LLVMContext &Context) const {
1377  SmallVector<CCValAssign, 16> RVLocs;
1378  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1379                 RVLocs, Context);
1380  return CCInfo.CheckReturn(Outs, RetCC_X86);
1381}
1382
1383SDValue
1384X86TargetLowering::LowerReturn(SDValue Chain,
1385                               CallingConv::ID CallConv, bool isVarArg,
1386                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1387                               const SmallVectorImpl<SDValue> &OutVals,
1388                               DebugLoc dl, SelectionDAG &DAG) const {
1389  MachineFunction &MF = DAG.getMachineFunction();
1390  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1391
1392  SmallVector<CCValAssign, 16> RVLocs;
1393  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1394                 RVLocs, *DAG.getContext());
1395  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1396
1397  // Add the regs to the liveout set for the function.
1398  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1399  for (unsigned i = 0; i != RVLocs.size(); ++i)
1400    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1401      MRI.addLiveOut(RVLocs[i].getLocReg());
1402
1403  SDValue Flag;
1404
1405  SmallVector<SDValue, 6> RetOps;
1406  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1407  // Operand #1 = Bytes To Pop
1408  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1409                   MVT::i16));
1410
1411  // Copy the result values into the output registers.
1412  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1413    CCValAssign &VA = RVLocs[i];
1414    assert(VA.isRegLoc() && "Can only return in registers!");
1415    SDValue ValToCopy = OutVals[i];
1416    EVT ValVT = ValToCopy.getValueType();
1417
1418    // If this is x86-64, and we disabled SSE, we can't return FP values,
1419    // or SSE or MMX vectors.
1420    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1421         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1422          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1423      report_fatal_error("SSE register return with SSE disabled");
1424    }
1425    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1426    // llvm-gcc has never done it right and no one has noticed, so this
1427    // should be OK for now.
1428    if (ValVT == MVT::f64 &&
1429        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1430      report_fatal_error("SSE2 register return with SSE2 disabled");
1431
1432    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1433    // the RET instruction and handled by the FP Stackifier.
1434    if (VA.getLocReg() == X86::ST0 ||
1435        VA.getLocReg() == X86::ST1) {
1436      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1437      // change the value to the FP stack register class.
1438      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1439        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1440      RetOps.push_back(ValToCopy);
1441      // Don't emit a copytoreg.
1442      continue;
1443    }
1444
1445    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1446    // which is returned in RAX / RDX.
1447    if (Subtarget->is64Bit()) {
1448      if (ValVT == MVT::x86mmx) {
1449        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1450          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1451          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1452                                  ValToCopy);
1453          // If we don't have SSE2 available, convert to v4f32 so the generated
1454          // register is legal.
1455          if (!Subtarget->hasXMMInt())
1456            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1457        }
1458      }
1459    }
1460
1461    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1462    Flag = Chain.getValue(1);
1463  }
1464
1465  // The x86-64 ABI for returning structs by value requires that we copy
1466  // the sret argument into %rax for the return. We saved the argument into
1467  // a virtual register in the entry block, so now we copy the value out
1468  // and into %rax.
1469  if (Subtarget->is64Bit() &&
1470      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1471    MachineFunction &MF = DAG.getMachineFunction();
1472    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1473    unsigned Reg = FuncInfo->getSRetReturnReg();
1474    assert(Reg &&
1475           "SRetReturnReg should have been set in LowerFormalArguments().");
1476    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1477
1478    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1479    Flag = Chain.getValue(1);
1480
1481    // RAX now acts like a return value.
1482    MRI.addLiveOut(X86::RAX);
1483  }
1484
1485  RetOps[0] = Chain;  // Update chain.
1486
1487  // Add the flag if we have it.
1488  if (Flag.getNode())
1489    RetOps.push_back(Flag);
1490
1491  return DAG.getNode(X86ISD::RET_FLAG, dl,
1492                     MVT::Other, &RetOps[0], RetOps.size());
1493}
1494
1495bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1496  if (N->getNumValues() != 1)
1497    return false;
1498  if (!N->hasNUsesOfValue(1, 0))
1499    return false;
1500
1501  SDNode *Copy = *N->use_begin();
1502  if (Copy->getOpcode() != ISD::CopyToReg &&
1503      Copy->getOpcode() != ISD::FP_EXTEND)
1504    return false;
1505
1506  bool HasRet = false;
1507  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1508       UI != UE; ++UI) {
1509    if (UI->getOpcode() != X86ISD::RET_FLAG)
1510      return false;
1511    HasRet = true;
1512  }
1513
1514  return HasRet;
1515}
1516
1517EVT
1518X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1519                                            ISD::NodeType ExtendKind) const {
1520  MVT ReturnMVT;
1521  // TODO: Is this also valid on 32-bit?
1522  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1523    ReturnMVT = MVT::i8;
1524  else
1525    ReturnMVT = MVT::i32;
1526
1527  EVT MinVT = getRegisterType(Context, ReturnMVT);
1528  return VT.bitsLT(MinVT) ? MinVT : VT;
1529}
1530
1531/// LowerCallResult - Lower the result values of a call into the
1532/// appropriate copies out of appropriate physical registers.
1533///
1534SDValue
1535X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1536                                   CallingConv::ID CallConv, bool isVarArg,
1537                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1538                                   DebugLoc dl, SelectionDAG &DAG,
1539                                   SmallVectorImpl<SDValue> &InVals) const {
1540
1541  // Assign locations to each value returned by this call.
1542  SmallVector<CCValAssign, 16> RVLocs;
1543  bool Is64Bit = Subtarget->is64Bit();
1544  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1545		 getTargetMachine(), RVLocs, *DAG.getContext());
1546  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1547
1548  // Copy all of the result registers out of their specified physreg.
1549  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1550    CCValAssign &VA = RVLocs[i];
1551    EVT CopyVT = VA.getValVT();
1552
1553    // If this is x86-64, and we disabled SSE, we can't return FP values
1554    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1555        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1556      report_fatal_error("SSE register return with SSE disabled");
1557    }
1558
1559    SDValue Val;
1560
1561    // If this is a call to a function that returns an fp value on the floating
1562    // point stack, we must guarantee the the value is popped from the stack, so
1563    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1564    // if the return value is not used. We use the FpPOP_RETVAL instruction
1565    // instead.
1566    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1567      // If we prefer to use the value in xmm registers, copy it out as f80 and
1568      // use a truncate to move it from fp stack reg to xmm reg.
1569      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1570      SDValue Ops[] = { Chain, InFlag };
1571      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1572                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1573      Val = Chain.getValue(0);
1574
1575      // Round the f80 to the right size, which also moves it to the appropriate
1576      // xmm register.
1577      if (CopyVT != VA.getValVT())
1578        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1579                          // This truncation won't change the value.
1580                          DAG.getIntPtrConstant(1));
1581    } else {
1582      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1583                                 CopyVT, InFlag).getValue(1);
1584      Val = Chain.getValue(0);
1585    }
1586    InFlag = Chain.getValue(2);
1587    InVals.push_back(Val);
1588  }
1589
1590  return Chain;
1591}
1592
1593
1594//===----------------------------------------------------------------------===//
1595//                C & StdCall & Fast Calling Convention implementation
1596//===----------------------------------------------------------------------===//
1597//  StdCall calling convention seems to be standard for many Windows' API
1598//  routines and around. It differs from C calling convention just a little:
1599//  callee should clean up the stack, not caller. Symbols should be also
1600//  decorated in some fancy way :) It doesn't support any vector arguments.
1601//  For info on fast calling convention see Fast Calling Convention (tail call)
1602//  implementation LowerX86_32FastCCCallTo.
1603
1604/// CallIsStructReturn - Determines whether a call uses struct return
1605/// semantics.
1606static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1607  if (Outs.empty())
1608    return false;
1609
1610  return Outs[0].Flags.isSRet();
1611}
1612
1613/// ArgsAreStructReturn - Determines whether a function uses struct
1614/// return semantics.
1615static bool
1616ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1617  if (Ins.empty())
1618    return false;
1619
1620  return Ins[0].Flags.isSRet();
1621}
1622
1623/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1624/// by "Src" to address "Dst" with size and alignment information specified by
1625/// the specific parameter attribute. The copy will be passed as a byval
1626/// function parameter.
1627static SDValue
1628CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1629                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1630                          DebugLoc dl) {
1631  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1632
1633  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1634                       /*isVolatile*/false, /*AlwaysInline=*/true,
1635                       MachinePointerInfo(), MachinePointerInfo());
1636}
1637
1638/// IsTailCallConvention - Return true if the calling convention is one that
1639/// supports tail call optimization.
1640static bool IsTailCallConvention(CallingConv::ID CC) {
1641  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1642}
1643
1644bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1645  if (!CI->isTailCall())
1646    return false;
1647
1648  CallSite CS(CI);
1649  CallingConv::ID CalleeCC = CS.getCallingConv();
1650  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1651    return false;
1652
1653  return true;
1654}
1655
1656/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1657/// a tailcall target by changing its ABI.
1658static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1659  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1660}
1661
1662SDValue
1663X86TargetLowering::LowerMemArgument(SDValue Chain,
1664                                    CallingConv::ID CallConv,
1665                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1666                                    DebugLoc dl, SelectionDAG &DAG,
1667                                    const CCValAssign &VA,
1668                                    MachineFrameInfo *MFI,
1669                                    unsigned i) const {
1670  // Create the nodes corresponding to a load from this parameter slot.
1671  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1672  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1673  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1674  EVT ValVT;
1675
1676  // If value is passed by pointer we have address passed instead of the value
1677  // itself.
1678  if (VA.getLocInfo() == CCValAssign::Indirect)
1679    ValVT = VA.getLocVT();
1680  else
1681    ValVT = VA.getValVT();
1682
1683  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1684  // changed with more analysis.
1685  // In case of tail call optimization mark all arguments mutable. Since they
1686  // could be overwritten by lowering of arguments in case of a tail call.
1687  if (Flags.isByVal()) {
1688    unsigned Bytes = Flags.getByValSize();
1689    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1690    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1691    return DAG.getFrameIndex(FI, getPointerTy());
1692  } else {
1693    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1694                                    VA.getLocMemOffset(), isImmutable);
1695    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1696    return DAG.getLoad(ValVT, dl, Chain, FIN,
1697                       MachinePointerInfo::getFixedStack(FI),
1698                       false, false, 0);
1699  }
1700}
1701
1702SDValue
1703X86TargetLowering::LowerFormalArguments(SDValue Chain,
1704                                        CallingConv::ID CallConv,
1705                                        bool isVarArg,
1706                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1707                                        DebugLoc dl,
1708                                        SelectionDAG &DAG,
1709                                        SmallVectorImpl<SDValue> &InVals)
1710                                          const {
1711  MachineFunction &MF = DAG.getMachineFunction();
1712  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1713
1714  const Function* Fn = MF.getFunction();
1715  if (Fn->hasExternalLinkage() &&
1716      Subtarget->isTargetCygMing() &&
1717      Fn->getName() == "main")
1718    FuncInfo->setForceFramePointer(true);
1719
1720  MachineFrameInfo *MFI = MF.getFrameInfo();
1721  bool Is64Bit = Subtarget->is64Bit();
1722  bool IsWin64 = Subtarget->isTargetWin64();
1723
1724  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1725         "Var args not supported with calling convention fastcc or ghc");
1726
1727  // Assign locations to all of the incoming arguments.
1728  SmallVector<CCValAssign, 16> ArgLocs;
1729  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1730                 ArgLocs, *DAG.getContext());
1731
1732  // Allocate shadow area for Win64
1733  if (IsWin64) {
1734    CCInfo.AllocateStack(32, 8);
1735  }
1736
1737  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1738
1739  unsigned LastVal = ~0U;
1740  SDValue ArgValue;
1741  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1742    CCValAssign &VA = ArgLocs[i];
1743    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1744    // places.
1745    assert(VA.getValNo() != LastVal &&
1746           "Don't support value assigned to multiple locs yet");
1747    LastVal = VA.getValNo();
1748
1749    if (VA.isRegLoc()) {
1750      EVT RegVT = VA.getLocVT();
1751      TargetRegisterClass *RC = NULL;
1752      if (RegVT == MVT::i32)
1753        RC = X86::GR32RegisterClass;
1754      else if (Is64Bit && RegVT == MVT::i64)
1755        RC = X86::GR64RegisterClass;
1756      else if (RegVT == MVT::f32)
1757        RC = X86::FR32RegisterClass;
1758      else if (RegVT == MVT::f64)
1759        RC = X86::FR64RegisterClass;
1760      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1761        RC = X86::VR256RegisterClass;
1762      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1763        RC = X86::VR128RegisterClass;
1764      else if (RegVT == MVT::x86mmx)
1765        RC = X86::VR64RegisterClass;
1766      else
1767        llvm_unreachable("Unknown argument type!");
1768
1769      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1770      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1771
1772      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1773      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1774      // right size.
1775      if (VA.getLocInfo() == CCValAssign::SExt)
1776        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1777                               DAG.getValueType(VA.getValVT()));
1778      else if (VA.getLocInfo() == CCValAssign::ZExt)
1779        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1780                               DAG.getValueType(VA.getValVT()));
1781      else if (VA.getLocInfo() == CCValAssign::BCvt)
1782        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1783
1784      if (VA.isExtInLoc()) {
1785        // Handle MMX values passed in XMM regs.
1786        if (RegVT.isVector()) {
1787          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1788                                 ArgValue);
1789        } else
1790          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1791      }
1792    } else {
1793      assert(VA.isMemLoc());
1794      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1795    }
1796
1797    // If value is passed via pointer - do a load.
1798    if (VA.getLocInfo() == CCValAssign::Indirect)
1799      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1800                             MachinePointerInfo(), false, false, 0);
1801
1802    InVals.push_back(ArgValue);
1803  }
1804
1805  // The x86-64 ABI for returning structs by value requires that we copy
1806  // the sret argument into %rax for the return. Save the argument into
1807  // a virtual register so that we can access it from the return points.
1808  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1809    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1810    unsigned Reg = FuncInfo->getSRetReturnReg();
1811    if (!Reg) {
1812      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1813      FuncInfo->setSRetReturnReg(Reg);
1814    }
1815    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1816    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1817  }
1818
1819  unsigned StackSize = CCInfo.getNextStackOffset();
1820  // Align stack specially for tail calls.
1821  if (FuncIsMadeTailCallSafe(CallConv))
1822    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1823
1824  // If the function takes variable number of arguments, make a frame index for
1825  // the start of the first vararg value... for expansion of llvm.va_start.
1826  if (isVarArg) {
1827    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1828                    CallConv != CallingConv::X86_ThisCall)) {
1829      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1830    }
1831    if (Is64Bit) {
1832      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1833
1834      // FIXME: We should really autogenerate these arrays
1835      static const unsigned GPR64ArgRegsWin64[] = {
1836        X86::RCX, X86::RDX, X86::R8,  X86::R9
1837      };
1838      static const unsigned GPR64ArgRegs64Bit[] = {
1839        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1840      };
1841      static const unsigned XMMArgRegs64Bit[] = {
1842        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1843        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1844      };
1845      const unsigned *GPR64ArgRegs;
1846      unsigned NumXMMRegs = 0;
1847
1848      if (IsWin64) {
1849        // The XMM registers which might contain var arg parameters are shadowed
1850        // in their paired GPR.  So we only need to save the GPR to their home
1851        // slots.
1852        TotalNumIntRegs = 4;
1853        GPR64ArgRegs = GPR64ArgRegsWin64;
1854      } else {
1855        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1856        GPR64ArgRegs = GPR64ArgRegs64Bit;
1857
1858        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1859      }
1860      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1861                                                       TotalNumIntRegs);
1862
1863      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1864      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1865             "SSE register cannot be used when SSE is disabled!");
1866      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1867             "SSE register cannot be used when SSE is disabled!");
1868      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1869        // Kernel mode asks for SSE to be disabled, so don't push them
1870        // on the stack.
1871        TotalNumXMMRegs = 0;
1872
1873      if (IsWin64) {
1874        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1875        // Get to the caller-allocated home save location.  Add 8 to account
1876        // for the return address.
1877        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1878        FuncInfo->setRegSaveFrameIndex(
1879          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1880        // Fixup to set vararg frame on shadow area (4 x i64).
1881        if (NumIntRegs < 4)
1882          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1883      } else {
1884        // For X86-64, if there are vararg parameters that are passed via
1885        // registers, then we must store them to their spots on the stack so they
1886        // may be loaded by deferencing the result of va_next.
1887        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1888        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1889        FuncInfo->setRegSaveFrameIndex(
1890          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1891                               false));
1892      }
1893
1894      // Store the integer parameter registers.
1895      SmallVector<SDValue, 8> MemOps;
1896      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1897                                        getPointerTy());
1898      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1899      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1900        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1901                                  DAG.getIntPtrConstant(Offset));
1902        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1903                                     X86::GR64RegisterClass);
1904        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1905        SDValue Store =
1906          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1907                       MachinePointerInfo::getFixedStack(
1908                         FuncInfo->getRegSaveFrameIndex(), Offset),
1909                       false, false, 0);
1910        MemOps.push_back(Store);
1911        Offset += 8;
1912      }
1913
1914      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1915        // Now store the XMM (fp + vector) parameter registers.
1916        SmallVector<SDValue, 11> SaveXMMOps;
1917        SaveXMMOps.push_back(Chain);
1918
1919        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1920        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1921        SaveXMMOps.push_back(ALVal);
1922
1923        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1924                               FuncInfo->getRegSaveFrameIndex()));
1925        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1926                               FuncInfo->getVarArgsFPOffset()));
1927
1928        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1929          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1930                                       X86::VR128RegisterClass);
1931          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1932          SaveXMMOps.push_back(Val);
1933        }
1934        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1935                                     MVT::Other,
1936                                     &SaveXMMOps[0], SaveXMMOps.size()));
1937      }
1938
1939      if (!MemOps.empty())
1940        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1941                            &MemOps[0], MemOps.size());
1942    }
1943  }
1944
1945  // Some CCs need callee pop.
1946  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1947    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1948  } else {
1949    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1950    // If this is an sret function, the return should pop the hidden pointer.
1951    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1952      FuncInfo->setBytesToPopOnReturn(4);
1953  }
1954
1955  if (!Is64Bit) {
1956    // RegSaveFrameIndex is X86-64 only.
1957    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1958    if (CallConv == CallingConv::X86_FastCall ||
1959        CallConv == CallingConv::X86_ThisCall)
1960      // fastcc functions can't have varargs.
1961      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1962  }
1963
1964  FuncInfo->setArgumentStackSize(StackSize);
1965
1966  return Chain;
1967}
1968
1969SDValue
1970X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1971                                    SDValue StackPtr, SDValue Arg,
1972                                    DebugLoc dl, SelectionDAG &DAG,
1973                                    const CCValAssign &VA,
1974                                    ISD::ArgFlagsTy Flags) const {
1975  unsigned LocMemOffset = VA.getLocMemOffset();
1976  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1977  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1978  if (Flags.isByVal())
1979    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1980
1981  return DAG.getStore(Chain, dl, Arg, PtrOff,
1982                      MachinePointerInfo::getStack(LocMemOffset),
1983                      false, false, 0);
1984}
1985
1986/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1987/// optimization is performed and it is required.
1988SDValue
1989X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1990                                           SDValue &OutRetAddr, SDValue Chain,
1991                                           bool IsTailCall, bool Is64Bit,
1992                                           int FPDiff, DebugLoc dl) const {
1993  // Adjust the Return address stack slot.
1994  EVT VT = getPointerTy();
1995  OutRetAddr = getReturnAddressFrameIndex(DAG);
1996
1997  // Load the "old" Return address.
1998  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1999                           false, false, 0);
2000  return SDValue(OutRetAddr.getNode(), 1);
2001}
2002
2003/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2004/// optimization is performed and it is required (FPDiff!=0).
2005static SDValue
2006EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2007                         SDValue Chain, SDValue RetAddrFrIdx,
2008                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2009  // Store the return address to the appropriate stack slot.
2010  if (!FPDiff) return Chain;
2011  // Calculate the new stack slot for the return address.
2012  int SlotSize = Is64Bit ? 8 : 4;
2013  int NewReturnAddrFI =
2014    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2015  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2016  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2017  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2018                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2019                       false, false, 0);
2020  return Chain;
2021}
2022
2023SDValue
2024X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2025                             CallingConv::ID CallConv, bool isVarArg,
2026                             bool &isTailCall,
2027                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2028                             const SmallVectorImpl<SDValue> &OutVals,
2029                             const SmallVectorImpl<ISD::InputArg> &Ins,
2030                             DebugLoc dl, SelectionDAG &DAG,
2031                             SmallVectorImpl<SDValue> &InVals) const {
2032  MachineFunction &MF = DAG.getMachineFunction();
2033  bool Is64Bit        = Subtarget->is64Bit();
2034  bool IsWin64        = Subtarget->isTargetWin64();
2035  bool IsStructRet    = CallIsStructReturn(Outs);
2036  bool IsSibcall      = false;
2037
2038  if (isTailCall) {
2039    // Check if it's really possible to do a tail call.
2040    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2041                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2042                                                   Outs, OutVals, Ins, DAG);
2043
2044    // Sibcalls are automatically detected tailcalls which do not require
2045    // ABI changes.
2046    if (!GuaranteedTailCallOpt && isTailCall)
2047      IsSibcall = true;
2048
2049    if (isTailCall)
2050      ++NumTailCalls;
2051  }
2052
2053  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2054         "Var args not supported with calling convention fastcc or ghc");
2055
2056  // Analyze operands of the call, assigning locations to each operand.
2057  SmallVector<CCValAssign, 16> ArgLocs;
2058  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2059                 ArgLocs, *DAG.getContext());
2060
2061  // Allocate shadow area for Win64
2062  if (IsWin64) {
2063    CCInfo.AllocateStack(32, 8);
2064  }
2065
2066  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2067
2068  // Get a count of how many bytes are to be pushed on the stack.
2069  unsigned NumBytes = CCInfo.getNextStackOffset();
2070  if (IsSibcall)
2071    // This is a sibcall. The memory operands are available in caller's
2072    // own caller's stack.
2073    NumBytes = 0;
2074  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2075    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2076
2077  int FPDiff = 0;
2078  if (isTailCall && !IsSibcall) {
2079    // Lower arguments at fp - stackoffset + fpdiff.
2080    unsigned NumBytesCallerPushed =
2081      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2082    FPDiff = NumBytesCallerPushed - NumBytes;
2083
2084    // Set the delta of movement of the returnaddr stackslot.
2085    // But only set if delta is greater than previous delta.
2086    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2087      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2088  }
2089
2090  if (!IsSibcall)
2091    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2092
2093  SDValue RetAddrFrIdx;
2094  // Load return address for tail calls.
2095  if (isTailCall && FPDiff)
2096    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2097                                    Is64Bit, FPDiff, dl);
2098
2099  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2100  SmallVector<SDValue, 8> MemOpChains;
2101  SDValue StackPtr;
2102
2103  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2104  // of tail call optimization arguments are handle later.
2105  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2106    CCValAssign &VA = ArgLocs[i];
2107    EVT RegVT = VA.getLocVT();
2108    SDValue Arg = OutVals[i];
2109    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2110    bool isByVal = Flags.isByVal();
2111
2112    // Promote the value if needed.
2113    switch (VA.getLocInfo()) {
2114    default: llvm_unreachable("Unknown loc info!");
2115    case CCValAssign::Full: break;
2116    case CCValAssign::SExt:
2117      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2118      break;
2119    case CCValAssign::ZExt:
2120      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2121      break;
2122    case CCValAssign::AExt:
2123      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2124        // Special case: passing MMX values in XMM registers.
2125        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2126        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2127        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2128      } else
2129        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2130      break;
2131    case CCValAssign::BCvt:
2132      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2133      break;
2134    case CCValAssign::Indirect: {
2135      // Store the argument.
2136      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2137      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2138      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2139                           MachinePointerInfo::getFixedStack(FI),
2140                           false, false, 0);
2141      Arg = SpillSlot;
2142      break;
2143    }
2144    }
2145
2146    if (VA.isRegLoc()) {
2147      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2148      if (isVarArg && IsWin64) {
2149        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2150        // shadow reg if callee is a varargs function.
2151        unsigned ShadowReg = 0;
2152        switch (VA.getLocReg()) {
2153        case X86::XMM0: ShadowReg = X86::RCX; break;
2154        case X86::XMM1: ShadowReg = X86::RDX; break;
2155        case X86::XMM2: ShadowReg = X86::R8; break;
2156        case X86::XMM3: ShadowReg = X86::R9; break;
2157        }
2158        if (ShadowReg)
2159          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2160      }
2161    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2162      assert(VA.isMemLoc());
2163      if (StackPtr.getNode() == 0)
2164        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2165      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2166                                             dl, DAG, VA, Flags));
2167    }
2168  }
2169
2170  if (!MemOpChains.empty())
2171    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2172                        &MemOpChains[0], MemOpChains.size());
2173
2174  // Build a sequence of copy-to-reg nodes chained together with token chain
2175  // and flag operands which copy the outgoing args into registers.
2176  SDValue InFlag;
2177  // Tail call byval lowering might overwrite argument registers so in case of
2178  // tail call optimization the copies to registers are lowered later.
2179  if (!isTailCall)
2180    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2181      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2182                               RegsToPass[i].second, InFlag);
2183      InFlag = Chain.getValue(1);
2184    }
2185
2186  if (Subtarget->isPICStyleGOT()) {
2187    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2188    // GOT pointer.
2189    if (!isTailCall) {
2190      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2191                               DAG.getNode(X86ISD::GlobalBaseReg,
2192                                           DebugLoc(), getPointerTy()),
2193                               InFlag);
2194      InFlag = Chain.getValue(1);
2195    } else {
2196      // If we are tail calling and generating PIC/GOT style code load the
2197      // address of the callee into ECX. The value in ecx is used as target of
2198      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2199      // for tail calls on PIC/GOT architectures. Normally we would just put the
2200      // address of GOT into ebx and then call target@PLT. But for tail calls
2201      // ebx would be restored (since ebx is callee saved) before jumping to the
2202      // target@PLT.
2203
2204      // Note: The actual moving to ECX is done further down.
2205      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2206      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2207          !G->getGlobal()->hasProtectedVisibility())
2208        Callee = LowerGlobalAddress(Callee, DAG);
2209      else if (isa<ExternalSymbolSDNode>(Callee))
2210        Callee = LowerExternalSymbol(Callee, DAG);
2211    }
2212  }
2213
2214  if (Is64Bit && isVarArg && !IsWin64) {
2215    // From AMD64 ABI document:
2216    // For calls that may call functions that use varargs or stdargs
2217    // (prototype-less calls or calls to functions containing ellipsis (...) in
2218    // the declaration) %al is used as hidden argument to specify the number
2219    // of SSE registers used. The contents of %al do not need to match exactly
2220    // the number of registers, but must be an ubound on the number of SSE
2221    // registers used and is in the range 0 - 8 inclusive.
2222
2223    // Count the number of XMM registers allocated.
2224    static const unsigned XMMArgRegs[] = {
2225      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2226      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2227    };
2228    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2229    assert((Subtarget->hasXMM() || !NumXMMRegs)
2230           && "SSE registers cannot be used when SSE is disabled");
2231
2232    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2233                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2234    InFlag = Chain.getValue(1);
2235  }
2236
2237
2238  // For tail calls lower the arguments to the 'real' stack slot.
2239  if (isTailCall) {
2240    // Force all the incoming stack arguments to be loaded from the stack
2241    // before any new outgoing arguments are stored to the stack, because the
2242    // outgoing stack slots may alias the incoming argument stack slots, and
2243    // the alias isn't otherwise explicit. This is slightly more conservative
2244    // than necessary, because it means that each store effectively depends
2245    // on every argument instead of just those arguments it would clobber.
2246    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2247
2248    SmallVector<SDValue, 8> MemOpChains2;
2249    SDValue FIN;
2250    int FI = 0;
2251    // Do not flag preceding copytoreg stuff together with the following stuff.
2252    InFlag = SDValue();
2253    if (GuaranteedTailCallOpt) {
2254      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2255        CCValAssign &VA = ArgLocs[i];
2256        if (VA.isRegLoc())
2257          continue;
2258        assert(VA.isMemLoc());
2259        SDValue Arg = OutVals[i];
2260        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2261        // Create frame index.
2262        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2263        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2264        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2265        FIN = DAG.getFrameIndex(FI, getPointerTy());
2266
2267        if (Flags.isByVal()) {
2268          // Copy relative to framepointer.
2269          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2270          if (StackPtr.getNode() == 0)
2271            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2272                                          getPointerTy());
2273          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2274
2275          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2276                                                           ArgChain,
2277                                                           Flags, DAG, dl));
2278        } else {
2279          // Store relative to framepointer.
2280          MemOpChains2.push_back(
2281            DAG.getStore(ArgChain, dl, Arg, FIN,
2282                         MachinePointerInfo::getFixedStack(FI),
2283                         false, false, 0));
2284        }
2285      }
2286    }
2287
2288    if (!MemOpChains2.empty())
2289      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2290                          &MemOpChains2[0], MemOpChains2.size());
2291
2292    // Copy arguments to their registers.
2293    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2294      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2295                               RegsToPass[i].second, InFlag);
2296      InFlag = Chain.getValue(1);
2297    }
2298    InFlag =SDValue();
2299
2300    // Store the return address to the appropriate stack slot.
2301    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2302                                     FPDiff, dl);
2303  }
2304
2305  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2306    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2307    // In the 64-bit large code model, we have to make all calls
2308    // through a register, since the call instruction's 32-bit
2309    // pc-relative offset may not be large enough to hold the whole
2310    // address.
2311  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2312    // If the callee is a GlobalAddress node (quite common, every direct call
2313    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2314    // it.
2315
2316    // We should use extra load for direct calls to dllimported functions in
2317    // non-JIT mode.
2318    const GlobalValue *GV = G->getGlobal();
2319    if (!GV->hasDLLImportLinkage()) {
2320      unsigned char OpFlags = 0;
2321      bool ExtraLoad = false;
2322      unsigned WrapperKind = ISD::DELETED_NODE;
2323
2324      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2325      // external symbols most go through the PLT in PIC mode.  If the symbol
2326      // has hidden or protected visibility, or if it is static or local, then
2327      // we don't need to use the PLT - we can directly call it.
2328      if (Subtarget->isTargetELF() &&
2329          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2330          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2331        OpFlags = X86II::MO_PLT;
2332      } else if (Subtarget->isPICStyleStubAny() &&
2333                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2334                 (!Subtarget->getTargetTriple().isMacOSX() ||
2335                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2336        // PC-relative references to external symbols should go through $stub,
2337        // unless we're building with the leopard linker or later, which
2338        // automatically synthesizes these stubs.
2339        OpFlags = X86II::MO_DARWIN_STUB;
2340      } else if (Subtarget->isPICStyleRIPRel() &&
2341                 isa<Function>(GV) &&
2342                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2343        // If the function is marked as non-lazy, generate an indirect call
2344        // which loads from the GOT directly. This avoids runtime overhead
2345        // at the cost of eager binding (and one extra byte of encoding).
2346        OpFlags = X86II::MO_GOTPCREL;
2347        WrapperKind = X86ISD::WrapperRIP;
2348        ExtraLoad = true;
2349      }
2350
2351      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2352                                          G->getOffset(), OpFlags);
2353
2354      // Add a wrapper if needed.
2355      if (WrapperKind != ISD::DELETED_NODE)
2356        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2357      // Add extra indirection if needed.
2358      if (ExtraLoad)
2359        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2360                             MachinePointerInfo::getGOT(),
2361                             false, false, 0);
2362    }
2363  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2364    unsigned char OpFlags = 0;
2365
2366    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2367    // external symbols should go through the PLT.
2368    if (Subtarget->isTargetELF() &&
2369        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2370      OpFlags = X86II::MO_PLT;
2371    } else if (Subtarget->isPICStyleStubAny() &&
2372               (!Subtarget->getTargetTriple().isMacOSX() ||
2373                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2374      // PC-relative references to external symbols should go through $stub,
2375      // unless we're building with the leopard linker or later, which
2376      // automatically synthesizes these stubs.
2377      OpFlags = X86II::MO_DARWIN_STUB;
2378    }
2379
2380    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2381                                         OpFlags);
2382  }
2383
2384  // Returns a chain & a flag for retval copy to use.
2385  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2386  SmallVector<SDValue, 8> Ops;
2387
2388  if (!IsSibcall && isTailCall) {
2389    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2390                           DAG.getIntPtrConstant(0, true), InFlag);
2391    InFlag = Chain.getValue(1);
2392  }
2393
2394  Ops.push_back(Chain);
2395  Ops.push_back(Callee);
2396
2397  if (isTailCall)
2398    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2399
2400  // Add argument registers to the end of the list so that they are known live
2401  // into the call.
2402  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2403    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2404                                  RegsToPass[i].second.getValueType()));
2405
2406  // Add an implicit use GOT pointer in EBX.
2407  if (!isTailCall && Subtarget->isPICStyleGOT())
2408    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2409
2410  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2411  if (Is64Bit && isVarArg && !IsWin64)
2412    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2413
2414  if (InFlag.getNode())
2415    Ops.push_back(InFlag);
2416
2417  if (isTailCall) {
2418    // We used to do:
2419    //// If this is the first return lowered for this function, add the regs
2420    //// to the liveout set for the function.
2421    // This isn't right, although it's probably harmless on x86; liveouts
2422    // should be computed from returns not tail calls.  Consider a void
2423    // function making a tail call to a function returning int.
2424    return DAG.getNode(X86ISD::TC_RETURN, dl,
2425                       NodeTys, &Ops[0], Ops.size());
2426  }
2427
2428  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2429  InFlag = Chain.getValue(1);
2430
2431  // Create the CALLSEQ_END node.
2432  unsigned NumBytesForCalleeToPush;
2433  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2434    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2435  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2436    // If this is a call to a struct-return function, the callee
2437    // pops the hidden struct pointer, so we have to push it back.
2438    // This is common for Darwin/X86, Linux & Mingw32 targets.
2439    NumBytesForCalleeToPush = 4;
2440  else
2441    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2442
2443  // Returns a flag for retval copy to use.
2444  if (!IsSibcall) {
2445    Chain = DAG.getCALLSEQ_END(Chain,
2446                               DAG.getIntPtrConstant(NumBytes, true),
2447                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2448                                                     true),
2449                               InFlag);
2450    InFlag = Chain.getValue(1);
2451  }
2452
2453  // Handle result values, copying them out of physregs into vregs that we
2454  // return.
2455  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2456                         Ins, dl, DAG, InVals);
2457}
2458
2459
2460//===----------------------------------------------------------------------===//
2461//                Fast Calling Convention (tail call) implementation
2462//===----------------------------------------------------------------------===//
2463
2464//  Like std call, callee cleans arguments, convention except that ECX is
2465//  reserved for storing the tail called function address. Only 2 registers are
2466//  free for argument passing (inreg). Tail call optimization is performed
2467//  provided:
2468//                * tailcallopt is enabled
2469//                * caller/callee are fastcc
2470//  On X86_64 architecture with GOT-style position independent code only local
2471//  (within module) calls are supported at the moment.
2472//  To keep the stack aligned according to platform abi the function
2473//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2474//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2475//  If a tail called function callee has more arguments than the caller the
2476//  caller needs to make sure that there is room to move the RETADDR to. This is
2477//  achieved by reserving an area the size of the argument delta right after the
2478//  original REtADDR, but before the saved framepointer or the spilled registers
2479//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2480//  stack layout:
2481//    arg1
2482//    arg2
2483//    RETADDR
2484//    [ new RETADDR
2485//      move area ]
2486//    (possible EBP)
2487//    ESI
2488//    EDI
2489//    local1 ..
2490
2491/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2492/// for a 16 byte align requirement.
2493unsigned
2494X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2495                                               SelectionDAG& DAG) const {
2496  MachineFunction &MF = DAG.getMachineFunction();
2497  const TargetMachine &TM = MF.getTarget();
2498  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2499  unsigned StackAlignment = TFI.getStackAlignment();
2500  uint64_t AlignMask = StackAlignment - 1;
2501  int64_t Offset = StackSize;
2502  uint64_t SlotSize = TD->getPointerSize();
2503  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2504    // Number smaller than 12 so just add the difference.
2505    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2506  } else {
2507    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2508    Offset = ((~AlignMask) & Offset) + StackAlignment +
2509      (StackAlignment-SlotSize);
2510  }
2511  return Offset;
2512}
2513
2514/// MatchingStackOffset - Return true if the given stack call argument is
2515/// already available in the same position (relatively) of the caller's
2516/// incoming argument stack.
2517static
2518bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2519                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2520                         const X86InstrInfo *TII) {
2521  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2522  int FI = INT_MAX;
2523  if (Arg.getOpcode() == ISD::CopyFromReg) {
2524    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2525    if (!TargetRegisterInfo::isVirtualRegister(VR))
2526      return false;
2527    MachineInstr *Def = MRI->getVRegDef(VR);
2528    if (!Def)
2529      return false;
2530    if (!Flags.isByVal()) {
2531      if (!TII->isLoadFromStackSlot(Def, FI))
2532        return false;
2533    } else {
2534      unsigned Opcode = Def->getOpcode();
2535      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2536          Def->getOperand(1).isFI()) {
2537        FI = Def->getOperand(1).getIndex();
2538        Bytes = Flags.getByValSize();
2539      } else
2540        return false;
2541    }
2542  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2543    if (Flags.isByVal())
2544      // ByVal argument is passed in as a pointer but it's now being
2545      // dereferenced. e.g.
2546      // define @foo(%struct.X* %A) {
2547      //   tail call @bar(%struct.X* byval %A)
2548      // }
2549      return false;
2550    SDValue Ptr = Ld->getBasePtr();
2551    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2552    if (!FINode)
2553      return false;
2554    FI = FINode->getIndex();
2555  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2556    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2557    FI = FINode->getIndex();
2558    Bytes = Flags.getByValSize();
2559  } else
2560    return false;
2561
2562  assert(FI != INT_MAX);
2563  if (!MFI->isFixedObjectIndex(FI))
2564    return false;
2565  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2566}
2567
2568/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2569/// for tail call optimization. Targets which want to do tail call
2570/// optimization should implement this function.
2571bool
2572X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2573                                                     CallingConv::ID CalleeCC,
2574                                                     bool isVarArg,
2575                                                     bool isCalleeStructRet,
2576                                                     bool isCallerStructRet,
2577                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2578                                    const SmallVectorImpl<SDValue> &OutVals,
2579                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2580                                                     SelectionDAG& DAG) const {
2581  if (!IsTailCallConvention(CalleeCC) &&
2582      CalleeCC != CallingConv::C)
2583    return false;
2584
2585  // If -tailcallopt is specified, make fastcc functions tail-callable.
2586  const MachineFunction &MF = DAG.getMachineFunction();
2587  const Function *CallerF = DAG.getMachineFunction().getFunction();
2588  CallingConv::ID CallerCC = CallerF->getCallingConv();
2589  bool CCMatch = CallerCC == CalleeCC;
2590
2591  if (GuaranteedTailCallOpt) {
2592    if (IsTailCallConvention(CalleeCC) && CCMatch)
2593      return true;
2594    return false;
2595  }
2596
2597  // Look for obvious safe cases to perform tail call optimization that do not
2598  // require ABI changes. This is what gcc calls sibcall.
2599
2600  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2601  // emit a special epilogue.
2602  if (RegInfo->needsStackRealignment(MF))
2603    return false;
2604
2605  // Also avoid sibcall optimization if either caller or callee uses struct
2606  // return semantics.
2607  if (isCalleeStructRet || isCallerStructRet)
2608    return false;
2609
2610  // An stdcall caller is expected to clean up its arguments; the callee
2611  // isn't going to do that.
2612  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2613    return false;
2614
2615  // Do not sibcall optimize vararg calls unless all arguments are passed via
2616  // registers.
2617  if (isVarArg && !Outs.empty()) {
2618
2619    // Optimizing for varargs on Win64 is unlikely to be safe without
2620    // additional testing.
2621    if (Subtarget->isTargetWin64())
2622      return false;
2623
2624    SmallVector<CCValAssign, 16> ArgLocs;
2625    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2626		   getTargetMachine(), ArgLocs, *DAG.getContext());
2627
2628    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2629    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2630      if (!ArgLocs[i].isRegLoc())
2631        return false;
2632  }
2633
2634  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2635  // Therefore if it's not used by the call it is not safe to optimize this into
2636  // a sibcall.
2637  bool Unused = false;
2638  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2639    if (!Ins[i].Used) {
2640      Unused = true;
2641      break;
2642    }
2643  }
2644  if (Unused) {
2645    SmallVector<CCValAssign, 16> RVLocs;
2646    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2647		   getTargetMachine(), RVLocs, *DAG.getContext());
2648    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2649    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2650      CCValAssign &VA = RVLocs[i];
2651      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2652        return false;
2653    }
2654  }
2655
2656  // If the calling conventions do not match, then we'd better make sure the
2657  // results are returned in the same way as what the caller expects.
2658  if (!CCMatch) {
2659    SmallVector<CCValAssign, 16> RVLocs1;
2660    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2661		    getTargetMachine(), RVLocs1, *DAG.getContext());
2662    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2663
2664    SmallVector<CCValAssign, 16> RVLocs2;
2665    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2666		    getTargetMachine(), RVLocs2, *DAG.getContext());
2667    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2668
2669    if (RVLocs1.size() != RVLocs2.size())
2670      return false;
2671    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2672      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2673        return false;
2674      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2675        return false;
2676      if (RVLocs1[i].isRegLoc()) {
2677        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2678          return false;
2679      } else {
2680        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2681          return false;
2682      }
2683    }
2684  }
2685
2686  // If the callee takes no arguments then go on to check the results of the
2687  // call.
2688  if (!Outs.empty()) {
2689    // Check if stack adjustment is needed. For now, do not do this if any
2690    // argument is passed on the stack.
2691    SmallVector<CCValAssign, 16> ArgLocs;
2692    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2693		   getTargetMachine(), ArgLocs, *DAG.getContext());
2694
2695    // Allocate shadow area for Win64
2696    if (Subtarget->isTargetWin64()) {
2697      CCInfo.AllocateStack(32, 8);
2698    }
2699
2700    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2701    if (CCInfo.getNextStackOffset()) {
2702      MachineFunction &MF = DAG.getMachineFunction();
2703      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2704        return false;
2705
2706      // Check if the arguments are already laid out in the right way as
2707      // the caller's fixed stack objects.
2708      MachineFrameInfo *MFI = MF.getFrameInfo();
2709      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2710      const X86InstrInfo *TII =
2711        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2712      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2713        CCValAssign &VA = ArgLocs[i];
2714        SDValue Arg = OutVals[i];
2715        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2716        if (VA.getLocInfo() == CCValAssign::Indirect)
2717          return false;
2718        if (!VA.isRegLoc()) {
2719          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2720                                   MFI, MRI, TII))
2721            return false;
2722        }
2723      }
2724    }
2725
2726    // If the tailcall address may be in a register, then make sure it's
2727    // possible to register allocate for it. In 32-bit, the call address can
2728    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2729    // callee-saved registers are restored. These happen to be the same
2730    // registers used to pass 'inreg' arguments so watch out for those.
2731    if (!Subtarget->is64Bit() &&
2732        !isa<GlobalAddressSDNode>(Callee) &&
2733        !isa<ExternalSymbolSDNode>(Callee)) {
2734      unsigned NumInRegs = 0;
2735      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2736        CCValAssign &VA = ArgLocs[i];
2737        if (!VA.isRegLoc())
2738          continue;
2739        unsigned Reg = VA.getLocReg();
2740        switch (Reg) {
2741        default: break;
2742        case X86::EAX: case X86::EDX: case X86::ECX:
2743          if (++NumInRegs == 3)
2744            return false;
2745          break;
2746        }
2747      }
2748    }
2749  }
2750
2751  return true;
2752}
2753
2754FastISel *
2755X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2756  return X86::createFastISel(funcInfo);
2757}
2758
2759
2760//===----------------------------------------------------------------------===//
2761//                           Other Lowering Hooks
2762//===----------------------------------------------------------------------===//
2763
2764static bool MayFoldLoad(SDValue Op) {
2765  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2766}
2767
2768static bool MayFoldIntoStore(SDValue Op) {
2769  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2770}
2771
2772static bool isTargetShuffle(unsigned Opcode) {
2773  switch(Opcode) {
2774  default: return false;
2775  case X86ISD::PSHUFD:
2776  case X86ISD::PSHUFHW:
2777  case X86ISD::PSHUFLW:
2778  case X86ISD::SHUFPD:
2779  case X86ISD::PALIGN:
2780  case X86ISD::SHUFPS:
2781  case X86ISD::MOVLHPS:
2782  case X86ISD::MOVLHPD:
2783  case X86ISD::MOVHLPS:
2784  case X86ISD::MOVLPS:
2785  case X86ISD::MOVLPD:
2786  case X86ISD::MOVSHDUP:
2787  case X86ISD::MOVSLDUP:
2788  case X86ISD::MOVDDUP:
2789  case X86ISD::MOVSS:
2790  case X86ISD::MOVSD:
2791  case X86ISD::UNPCKLPS:
2792  case X86ISD::UNPCKLPD:
2793  case X86ISD::VUNPCKLPSY:
2794  case X86ISD::VUNPCKLPDY:
2795  case X86ISD::PUNPCKLWD:
2796  case X86ISD::PUNPCKLBW:
2797  case X86ISD::PUNPCKLDQ:
2798  case X86ISD::PUNPCKLQDQ:
2799  case X86ISD::UNPCKHPS:
2800  case X86ISD::UNPCKHPD:
2801  case X86ISD::VUNPCKHPSY:
2802  case X86ISD::VUNPCKHPDY:
2803  case X86ISD::PUNPCKHWD:
2804  case X86ISD::PUNPCKHBW:
2805  case X86ISD::PUNPCKHDQ:
2806  case X86ISD::PUNPCKHQDQ:
2807  case X86ISD::VPERMILPS:
2808  case X86ISD::VPERMILPSY:
2809  case X86ISD::VPERMILPD:
2810  case X86ISD::VPERMILPDY:
2811  case X86ISD::VPERM2F128:
2812    return true;
2813  }
2814  return false;
2815}
2816
2817static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2818                                               SDValue V1, SelectionDAG &DAG) {
2819  switch(Opc) {
2820  default: llvm_unreachable("Unknown x86 shuffle node");
2821  case X86ISD::MOVSHDUP:
2822  case X86ISD::MOVSLDUP:
2823  case X86ISD::MOVDDUP:
2824    return DAG.getNode(Opc, dl, VT, V1);
2825  }
2826
2827  return SDValue();
2828}
2829
2830static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2831                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2832  switch(Opc) {
2833  default: llvm_unreachable("Unknown x86 shuffle node");
2834  case X86ISD::PSHUFD:
2835  case X86ISD::PSHUFHW:
2836  case X86ISD::PSHUFLW:
2837  case X86ISD::VPERMILPS:
2838  case X86ISD::VPERMILPSY:
2839  case X86ISD::VPERMILPD:
2840  case X86ISD::VPERMILPDY:
2841    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2842  }
2843
2844  return SDValue();
2845}
2846
2847static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2848               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2849  switch(Opc) {
2850  default: llvm_unreachable("Unknown x86 shuffle node");
2851  case X86ISD::PALIGN:
2852  case X86ISD::SHUFPD:
2853  case X86ISD::SHUFPS:
2854  case X86ISD::VPERM2F128:
2855    return DAG.getNode(Opc, dl, VT, V1, V2,
2856                       DAG.getConstant(TargetMask, MVT::i8));
2857  }
2858  return SDValue();
2859}
2860
2861static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2862                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2863  switch(Opc) {
2864  default: llvm_unreachable("Unknown x86 shuffle node");
2865  case X86ISD::MOVLHPS:
2866  case X86ISD::MOVLHPD:
2867  case X86ISD::MOVHLPS:
2868  case X86ISD::MOVLPS:
2869  case X86ISD::MOVLPD:
2870  case X86ISD::MOVSS:
2871  case X86ISD::MOVSD:
2872  case X86ISD::UNPCKLPS:
2873  case X86ISD::UNPCKLPD:
2874  case X86ISD::VUNPCKLPSY:
2875  case X86ISD::VUNPCKLPDY:
2876  case X86ISD::PUNPCKLWD:
2877  case X86ISD::PUNPCKLBW:
2878  case X86ISD::PUNPCKLDQ:
2879  case X86ISD::PUNPCKLQDQ:
2880  case X86ISD::UNPCKHPS:
2881  case X86ISD::UNPCKHPD:
2882  case X86ISD::VUNPCKHPSY:
2883  case X86ISD::VUNPCKHPDY:
2884  case X86ISD::PUNPCKHWD:
2885  case X86ISD::PUNPCKHBW:
2886  case X86ISD::PUNPCKHDQ:
2887  case X86ISD::PUNPCKHQDQ:
2888    return DAG.getNode(Opc, dl, VT, V1, V2);
2889  }
2890  return SDValue();
2891}
2892
2893SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2894  MachineFunction &MF = DAG.getMachineFunction();
2895  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2896  int ReturnAddrIndex = FuncInfo->getRAIndex();
2897
2898  if (ReturnAddrIndex == 0) {
2899    // Set up a frame object for the return address.
2900    uint64_t SlotSize = TD->getPointerSize();
2901    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2902                                                           false);
2903    FuncInfo->setRAIndex(ReturnAddrIndex);
2904  }
2905
2906  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2907}
2908
2909
2910bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2911                                       bool hasSymbolicDisplacement) {
2912  // Offset should fit into 32 bit immediate field.
2913  if (!isInt<32>(Offset))
2914    return false;
2915
2916  // If we don't have a symbolic displacement - we don't have any extra
2917  // restrictions.
2918  if (!hasSymbolicDisplacement)
2919    return true;
2920
2921  // FIXME: Some tweaks might be needed for medium code model.
2922  if (M != CodeModel::Small && M != CodeModel::Kernel)
2923    return false;
2924
2925  // For small code model we assume that latest object is 16MB before end of 31
2926  // bits boundary. We may also accept pretty large negative constants knowing
2927  // that all objects are in the positive half of address space.
2928  if (M == CodeModel::Small && Offset < 16*1024*1024)
2929    return true;
2930
2931  // For kernel code model we know that all object resist in the negative half
2932  // of 32bits address space. We may not accept negative offsets, since they may
2933  // be just off and we may accept pretty large positive ones.
2934  if (M == CodeModel::Kernel && Offset > 0)
2935    return true;
2936
2937  return false;
2938}
2939
2940/// isCalleePop - Determines whether the callee is required to pop its
2941/// own arguments. Callee pop is necessary to support tail calls.
2942bool X86::isCalleePop(CallingConv::ID CallingConv,
2943                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2944  if (IsVarArg)
2945    return false;
2946
2947  switch (CallingConv) {
2948  default:
2949    return false;
2950  case CallingConv::X86_StdCall:
2951    return !is64Bit;
2952  case CallingConv::X86_FastCall:
2953    return !is64Bit;
2954  case CallingConv::X86_ThisCall:
2955    return !is64Bit;
2956  case CallingConv::Fast:
2957    return TailCallOpt;
2958  case CallingConv::GHC:
2959    return TailCallOpt;
2960  }
2961}
2962
2963/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2964/// specific condition code, returning the condition code and the LHS/RHS of the
2965/// comparison to make.
2966static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2967                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2968  if (!isFP) {
2969    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2970      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2971        // X > -1   -> X == 0, jump !sign.
2972        RHS = DAG.getConstant(0, RHS.getValueType());
2973        return X86::COND_NS;
2974      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2975        // X < 0   -> X == 0, jump on sign.
2976        return X86::COND_S;
2977      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2978        // X < 1   -> X <= 0
2979        RHS = DAG.getConstant(0, RHS.getValueType());
2980        return X86::COND_LE;
2981      }
2982    }
2983
2984    switch (SetCCOpcode) {
2985    default: llvm_unreachable("Invalid integer condition!");
2986    case ISD::SETEQ:  return X86::COND_E;
2987    case ISD::SETGT:  return X86::COND_G;
2988    case ISD::SETGE:  return X86::COND_GE;
2989    case ISD::SETLT:  return X86::COND_L;
2990    case ISD::SETLE:  return X86::COND_LE;
2991    case ISD::SETNE:  return X86::COND_NE;
2992    case ISD::SETULT: return X86::COND_B;
2993    case ISD::SETUGT: return X86::COND_A;
2994    case ISD::SETULE: return X86::COND_BE;
2995    case ISD::SETUGE: return X86::COND_AE;
2996    }
2997  }
2998
2999  // First determine if it is required or is profitable to flip the operands.
3000
3001  // If LHS is a foldable load, but RHS is not, flip the condition.
3002  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3003      !ISD::isNON_EXTLoad(RHS.getNode())) {
3004    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3005    std::swap(LHS, RHS);
3006  }
3007
3008  switch (SetCCOpcode) {
3009  default: break;
3010  case ISD::SETOLT:
3011  case ISD::SETOLE:
3012  case ISD::SETUGT:
3013  case ISD::SETUGE:
3014    std::swap(LHS, RHS);
3015    break;
3016  }
3017
3018  // On a floating point condition, the flags are set as follows:
3019  // ZF  PF  CF   op
3020  //  0 | 0 | 0 | X > Y
3021  //  0 | 0 | 1 | X < Y
3022  //  1 | 0 | 0 | X == Y
3023  //  1 | 1 | 1 | unordered
3024  switch (SetCCOpcode) {
3025  default: llvm_unreachable("Condcode should be pre-legalized away");
3026  case ISD::SETUEQ:
3027  case ISD::SETEQ:   return X86::COND_E;
3028  case ISD::SETOLT:              // flipped
3029  case ISD::SETOGT:
3030  case ISD::SETGT:   return X86::COND_A;
3031  case ISD::SETOLE:              // flipped
3032  case ISD::SETOGE:
3033  case ISD::SETGE:   return X86::COND_AE;
3034  case ISD::SETUGT:              // flipped
3035  case ISD::SETULT:
3036  case ISD::SETLT:   return X86::COND_B;
3037  case ISD::SETUGE:              // flipped
3038  case ISD::SETULE:
3039  case ISD::SETLE:   return X86::COND_BE;
3040  case ISD::SETONE:
3041  case ISD::SETNE:   return X86::COND_NE;
3042  case ISD::SETUO:   return X86::COND_P;
3043  case ISD::SETO:    return X86::COND_NP;
3044  case ISD::SETOEQ:
3045  case ISD::SETUNE:  return X86::COND_INVALID;
3046  }
3047}
3048
3049/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3050/// code. Current x86 isa includes the following FP cmov instructions:
3051/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3052static bool hasFPCMov(unsigned X86CC) {
3053  switch (X86CC) {
3054  default:
3055    return false;
3056  case X86::COND_B:
3057  case X86::COND_BE:
3058  case X86::COND_E:
3059  case X86::COND_P:
3060  case X86::COND_A:
3061  case X86::COND_AE:
3062  case X86::COND_NE:
3063  case X86::COND_NP:
3064    return true;
3065  }
3066}
3067
3068/// isFPImmLegal - Returns true if the target can instruction select the
3069/// specified FP immediate natively. If false, the legalizer will
3070/// materialize the FP immediate as a load from a constant pool.
3071bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3072  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3073    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3074      return true;
3075  }
3076  return false;
3077}
3078
3079/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3080/// the specified range (L, H].
3081static bool isUndefOrInRange(int Val, int Low, int Hi) {
3082  return (Val < 0) || (Val >= Low && Val < Hi);
3083}
3084
3085/// isUndefOrInRange - Return true if every element in Mask, begining
3086/// from position Pos and ending in Pos+Size, falls within the specified
3087/// range (L, L+Pos]. or is undef.
3088static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3089                             int Pos, int Size, int Low, int Hi) {
3090  for (int i = Pos, e = Pos+Size; i != e; ++i)
3091    if (!isUndefOrInRange(Mask[i], Low, Hi))
3092      return false;
3093  return true;
3094}
3095
3096/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3097/// specified value.
3098static bool isUndefOrEqual(int Val, int CmpVal) {
3099  if (Val < 0 || Val == CmpVal)
3100    return true;
3101  return false;
3102}
3103
3104/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3105/// from position Pos and ending in Pos+Size, falls within the specified
3106/// sequential range (L, L+Pos]. or is undef.
3107static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3108                                       int Pos, int Size, int Low) {
3109  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3110    if (!isUndefOrEqual(Mask[i], Low))
3111      return false;
3112  return true;
3113}
3114
3115/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3116/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3117/// the second operand.
3118static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3119  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3120    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3121  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3122    return (Mask[0] < 2 && Mask[1] < 2);
3123  return false;
3124}
3125
3126bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3127  SmallVector<int, 8> M;
3128  N->getMask(M);
3129  return ::isPSHUFDMask(M, N->getValueType(0));
3130}
3131
3132/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3133/// is suitable for input to PSHUFHW.
3134static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3135  if (VT != MVT::v8i16)
3136    return false;
3137
3138  // Lower quadword copied in order or undef.
3139  for (int i = 0; i != 4; ++i)
3140    if (Mask[i] >= 0 && Mask[i] != i)
3141      return false;
3142
3143  // Upper quadword shuffled.
3144  for (int i = 4; i != 8; ++i)
3145    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3146      return false;
3147
3148  return true;
3149}
3150
3151bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3152  SmallVector<int, 8> M;
3153  N->getMask(M);
3154  return ::isPSHUFHWMask(M, N->getValueType(0));
3155}
3156
3157/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3158/// is suitable for input to PSHUFLW.
3159static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3160  if (VT != MVT::v8i16)
3161    return false;
3162
3163  // Upper quadword copied in order.
3164  for (int i = 4; i != 8; ++i)
3165    if (Mask[i] >= 0 && Mask[i] != i)
3166      return false;
3167
3168  // Lower quadword shuffled.
3169  for (int i = 0; i != 4; ++i)
3170    if (Mask[i] >= 4)
3171      return false;
3172
3173  return true;
3174}
3175
3176bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3177  SmallVector<int, 8> M;
3178  N->getMask(M);
3179  return ::isPSHUFLWMask(M, N->getValueType(0));
3180}
3181
3182/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3183/// is suitable for input to PALIGNR.
3184static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3185                          bool hasSSSE3OrAVX) {
3186  int i, e = VT.getVectorNumElements();
3187  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3188    return false;
3189
3190  // Do not handle v2i64 / v2f64 shuffles with palignr.
3191  if (e < 4 || !hasSSSE3OrAVX)
3192    return false;
3193
3194  for (i = 0; i != e; ++i)
3195    if (Mask[i] >= 0)
3196      break;
3197
3198  // All undef, not a palignr.
3199  if (i == e)
3200    return false;
3201
3202  // Make sure we're shifting in the right direction.
3203  if (Mask[i] <= i)
3204    return false;
3205
3206  int s = Mask[i] - i;
3207
3208  // Check the rest of the elements to see if they are consecutive.
3209  for (++i; i != e; ++i) {
3210    int m = Mask[i];
3211    if (m >= 0 && m != s+i)
3212      return false;
3213  }
3214  return true;
3215}
3216
3217/// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
3218/// specifies a shuffle of elements that is suitable for input to 256-bit
3219/// VSHUFPSY.
3220static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3221                          const X86Subtarget *Subtarget) {
3222  int NumElems = VT.getVectorNumElements();
3223
3224  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3225    return false;
3226
3227  if (NumElems != 8)
3228    return false;
3229
3230  // VSHUFPSY divides the resulting vector into 4 chunks.
3231  // The sources are also splitted into 4 chunks, and each destination
3232  // chunk must come from a different source chunk.
3233  //
3234  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3235  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3236  //
3237  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3238  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3239  //
3240  int QuarterSize = NumElems/4;
3241  int HalfSize = QuarterSize*2;
3242  for (int i = 0; i < QuarterSize; ++i)
3243    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3244      return false;
3245  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3246    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3247      return false;
3248
3249  // The mask of the second half must be the same as the first but with
3250  // the appropriate offsets. This works in the same way as VPERMILPS
3251  // works with masks.
3252  for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3253    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3254      return false;
3255    int FstHalfIdx = i-HalfSize;
3256    if (Mask[FstHalfIdx] < 0)
3257      continue;
3258    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3259      return false;
3260  }
3261  for (int i = QuarterSize*3; i < NumElems; ++i) {
3262    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3263      return false;
3264    int FstHalfIdx = i-HalfSize;
3265    if (Mask[FstHalfIdx] < 0)
3266      continue;
3267    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3268      return false;
3269
3270  }
3271
3272  return true;
3273}
3274
3275/// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
3276/// the specified VECTOR_MASK mask with VSHUFPSY instruction.
3277static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
3278  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3279  EVT VT = SVOp->getValueType(0);
3280  int NumElems = VT.getVectorNumElements();
3281
3282  assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
3283         "Only supports v8i32 and v8f32 types");
3284
3285  int HalfSize = NumElems/2;
3286  unsigned Mask = 0;
3287  for (int i = 0; i != NumElems ; ++i) {
3288    if (SVOp->getMaskElt(i) < 0)
3289      continue;
3290    // The mask of the first half must be equal to the second one.
3291    unsigned Shamt = (i%HalfSize)*2;
3292    unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
3293    Mask |= Elt << Shamt;
3294  }
3295
3296  return Mask;
3297}
3298
3299/// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
3300/// specifies a shuffle of elements that is suitable for input to 256-bit
3301/// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
3302/// version and the mask of the second half isn't binded with the first
3303/// one.
3304static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3305                           const X86Subtarget *Subtarget) {
3306  int NumElems = VT.getVectorNumElements();
3307
3308  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3309    return false;
3310
3311  if (NumElems != 4)
3312    return false;
3313
3314  // VSHUFPSY divides the resulting vector into 4 chunks.
3315  // The sources are also splitted into 4 chunks, and each destination
3316  // chunk must come from a different source chunk.
3317  //
3318  //  SRC1 =>      X3       X2       X1       X0
3319  //  SRC2 =>      Y3       Y2       Y1       Y0
3320  //
3321  //  DST  =>  Y2..Y3,  X2..X3,  Y1..Y0,  X1..X0
3322  //
3323  int QuarterSize = NumElems/4;
3324  int HalfSize = QuarterSize*2;
3325  for (int i = 0; i < QuarterSize; ++i)
3326    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3327      return false;
3328  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3329    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3330      return false;
3331  for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
3332    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3333      return false;
3334  for (int i = QuarterSize*3; i < NumElems; ++i)
3335    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3336      return false;
3337
3338  return true;
3339}
3340
3341/// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
3342/// the specified VECTOR_MASK mask with VSHUFPDY instruction.
3343static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
3344  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3345  EVT VT = SVOp->getValueType(0);
3346  int NumElems = VT.getVectorNumElements();
3347
3348  assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
3349         "Only supports v4i64 and v4f64 types");
3350
3351  int HalfSize = NumElems/2;
3352  unsigned Mask = 0;
3353  for (int i = 0; i != NumElems ; ++i) {
3354    if (SVOp->getMaskElt(i) < 0)
3355      continue;
3356    int Elt = SVOp->getMaskElt(i) % HalfSize;
3357    Mask |= Elt << i;
3358  }
3359
3360  return Mask;
3361}
3362
3363/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3364/// specifies a shuffle of elements that is suitable for input to 128-bit
3365/// SHUFPS and SHUFPD.
3366static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3367  int NumElems = VT.getVectorNumElements();
3368
3369  if (VT.getSizeInBits() != 128)
3370    return false;
3371
3372  if (NumElems != 2 && NumElems != 4)
3373    return false;
3374
3375  int Half = NumElems / 2;
3376  for (int i = 0; i < Half; ++i)
3377    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3378      return false;
3379  for (int i = Half; i < NumElems; ++i)
3380    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3381      return false;
3382
3383  return true;
3384}
3385
3386bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3387  SmallVector<int, 8> M;
3388  N->getMask(M);
3389  return ::isSHUFPMask(M, N->getValueType(0));
3390}
3391
3392/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3393/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3394/// half elements to come from vector 1 (which would equal the dest.) and
3395/// the upper half to come from vector 2.
3396static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3397  int NumElems = VT.getVectorNumElements();
3398
3399  if (NumElems != 2 && NumElems != 4)
3400    return false;
3401
3402  int Half = NumElems / 2;
3403  for (int i = 0; i < Half; ++i)
3404    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3405      return false;
3406  for (int i = Half; i < NumElems; ++i)
3407    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3408      return false;
3409  return true;
3410}
3411
3412static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3413  SmallVector<int, 8> M;
3414  N->getMask(M);
3415  return isCommutedSHUFPMask(M, N->getValueType(0));
3416}
3417
3418/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3419/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3420bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3421  EVT VT = N->getValueType(0);
3422  unsigned NumElems = VT.getVectorNumElements();
3423
3424  if (VT.getSizeInBits() != 128)
3425    return false;
3426
3427  if (NumElems != 4)
3428    return false;
3429
3430  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3431  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3432         isUndefOrEqual(N->getMaskElt(1), 7) &&
3433         isUndefOrEqual(N->getMaskElt(2), 2) &&
3434         isUndefOrEqual(N->getMaskElt(3), 3);
3435}
3436
3437/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3438/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3439/// <2, 3, 2, 3>
3440bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3441  EVT VT = N->getValueType(0);
3442  unsigned NumElems = VT.getVectorNumElements();
3443
3444  if (VT.getSizeInBits() != 128)
3445    return false;
3446
3447  if (NumElems != 4)
3448    return false;
3449
3450  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3451         isUndefOrEqual(N->getMaskElt(1), 3) &&
3452         isUndefOrEqual(N->getMaskElt(2), 2) &&
3453         isUndefOrEqual(N->getMaskElt(3), 3);
3454}
3455
3456/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3457/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3458bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3459  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3460
3461  if (NumElems != 2 && NumElems != 4)
3462    return false;
3463
3464  for (unsigned i = 0; i < NumElems/2; ++i)
3465    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3466      return false;
3467
3468  for (unsigned i = NumElems/2; i < NumElems; ++i)
3469    if (!isUndefOrEqual(N->getMaskElt(i), i))
3470      return false;
3471
3472  return true;
3473}
3474
3475/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3476/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3477bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3478  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3479
3480  if ((NumElems != 2 && NumElems != 4)
3481      || N->getValueType(0).getSizeInBits() > 128)
3482    return false;
3483
3484  for (unsigned i = 0; i < NumElems/2; ++i)
3485    if (!isUndefOrEqual(N->getMaskElt(i), i))
3486      return false;
3487
3488  for (unsigned i = 0; i < NumElems/2; ++i)
3489    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3490      return false;
3491
3492  return true;
3493}
3494
3495/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3496/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3497static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3498                         bool V2IsSplat = false) {
3499  int NumElts = VT.getVectorNumElements();
3500
3501  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3502         "Unsupported vector type for unpckh");
3503
3504  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3505    return false;
3506
3507  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3508  // independently on 128-bit lanes.
3509  unsigned NumLanes = VT.getSizeInBits()/128;
3510  unsigned NumLaneElts = NumElts/NumLanes;
3511
3512  unsigned Start = 0;
3513  unsigned End = NumLaneElts;
3514  for (unsigned s = 0; s < NumLanes; ++s) {
3515    for (unsigned i = Start, j = s * NumLaneElts;
3516         i != End;
3517         i += 2, ++j) {
3518      int BitI  = Mask[i];
3519      int BitI1 = Mask[i+1];
3520      if (!isUndefOrEqual(BitI, j))
3521        return false;
3522      if (V2IsSplat) {
3523        if (!isUndefOrEqual(BitI1, NumElts))
3524          return false;
3525      } else {
3526        if (!isUndefOrEqual(BitI1, j + NumElts))
3527          return false;
3528      }
3529    }
3530    // Process the next 128 bits.
3531    Start += NumLaneElts;
3532    End += NumLaneElts;
3533  }
3534
3535  return true;
3536}
3537
3538bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3539  SmallVector<int, 8> M;
3540  N->getMask(M);
3541  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3542}
3543
3544/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3545/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3546static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3547                         bool V2IsSplat = false) {
3548  int NumElts = VT.getVectorNumElements();
3549
3550  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3551         "Unsupported vector type for unpckh");
3552
3553  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3554    return false;
3555
3556  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3557  // independently on 128-bit lanes.
3558  unsigned NumLanes = VT.getSizeInBits()/128;
3559  unsigned NumLaneElts = NumElts/NumLanes;
3560
3561  unsigned Start = 0;
3562  unsigned End = NumLaneElts;
3563  for (unsigned l = 0; l != NumLanes; ++l) {
3564    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3565                             i != End; i += 2, ++j) {
3566      int BitI  = Mask[i];
3567      int BitI1 = Mask[i+1];
3568      if (!isUndefOrEqual(BitI, j))
3569        return false;
3570      if (V2IsSplat) {
3571        if (isUndefOrEqual(BitI1, NumElts))
3572          return false;
3573      } else {
3574        if (!isUndefOrEqual(BitI1, j+NumElts))
3575          return false;
3576      }
3577    }
3578    // Process the next 128 bits.
3579    Start += NumLaneElts;
3580    End += NumLaneElts;
3581  }
3582  return true;
3583}
3584
3585bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3586  SmallVector<int, 8> M;
3587  N->getMask(M);
3588  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3589}
3590
3591/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3592/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3593/// <0, 0, 1, 1>
3594static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3595  int NumElems = VT.getVectorNumElements();
3596  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3597    return false;
3598
3599  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3600  // FIXME: Need a better way to get rid of this, there's no latency difference
3601  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3602  // the former later. We should also remove the "_undef" special mask.
3603  if (NumElems == 4 && VT.getSizeInBits() == 256)
3604    return false;
3605
3606  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3607  // independently on 128-bit lanes.
3608  unsigned NumLanes = VT.getSizeInBits() / 128;
3609  unsigned NumLaneElts = NumElems / NumLanes;
3610
3611  for (unsigned s = 0; s < NumLanes; ++s) {
3612    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3613         i != NumLaneElts * (s + 1);
3614         i += 2, ++j) {
3615      int BitI  = Mask[i];
3616      int BitI1 = Mask[i+1];
3617
3618      if (!isUndefOrEqual(BitI, j))
3619        return false;
3620      if (!isUndefOrEqual(BitI1, j))
3621        return false;
3622    }
3623  }
3624
3625  return true;
3626}
3627
3628bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3629  SmallVector<int, 8> M;
3630  N->getMask(M);
3631  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3632}
3633
3634/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3635/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3636/// <2, 2, 3, 3>
3637static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3638  int NumElems = VT.getVectorNumElements();
3639  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3640    return false;
3641
3642  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3643    int BitI  = Mask[i];
3644    int BitI1 = Mask[i+1];
3645    if (!isUndefOrEqual(BitI, j))
3646      return false;
3647    if (!isUndefOrEqual(BitI1, j))
3648      return false;
3649  }
3650  return true;
3651}
3652
3653bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3654  SmallVector<int, 8> M;
3655  N->getMask(M);
3656  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3657}
3658
3659/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3660/// specifies a shuffle of elements that is suitable for input to MOVSS,
3661/// MOVSD, and MOVD, i.e. setting the lowest element.
3662static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3663  if (VT.getVectorElementType().getSizeInBits() < 32)
3664    return false;
3665
3666  int NumElts = VT.getVectorNumElements();
3667
3668  if (!isUndefOrEqual(Mask[0], NumElts))
3669    return false;
3670
3671  for (int i = 1; i < NumElts; ++i)
3672    if (!isUndefOrEqual(Mask[i], i))
3673      return false;
3674
3675  return true;
3676}
3677
3678bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3679  SmallVector<int, 8> M;
3680  N->getMask(M);
3681  return ::isMOVLMask(M, N->getValueType(0));
3682}
3683
3684/// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
3685/// as permutations between 128-bit chunks or halves. As an example: this
3686/// shuffle bellow:
3687///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3688/// The first half comes from the second half of V1 and the second half from the
3689/// the second half of V2.
3690static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3691                             const X86Subtarget *Subtarget) {
3692  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3693    return false;
3694
3695  // The shuffle result is divided into half A and half B. In total the two
3696  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3697  // B must come from C, D, E or F.
3698  int HalfSize = VT.getVectorNumElements()/2;
3699  bool MatchA = false, MatchB = false;
3700
3701  // Check if A comes from one of C, D, E, F.
3702  for (int Half = 0; Half < 4; ++Half) {
3703    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3704      MatchA = true;
3705      break;
3706    }
3707  }
3708
3709  // Check if B comes from one of C, D, E, F.
3710  for (int Half = 0; Half < 4; ++Half) {
3711    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3712      MatchB = true;
3713      break;
3714    }
3715  }
3716
3717  return MatchA && MatchB;
3718}
3719
3720/// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
3721/// the specified VECTOR_MASK mask with VPERM2F128 instructions.
3722static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
3723  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3724  EVT VT = SVOp->getValueType(0);
3725
3726  int HalfSize = VT.getVectorNumElements()/2;
3727
3728  int FstHalf = 0, SndHalf = 0;
3729  for (int i = 0; i < HalfSize; ++i) {
3730    if (SVOp->getMaskElt(i) > 0) {
3731      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3732      break;
3733    }
3734  }
3735  for (int i = HalfSize; i < HalfSize*2; ++i) {
3736    if (SVOp->getMaskElt(i) > 0) {
3737      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3738      break;
3739    }
3740  }
3741
3742  return (FstHalf | (SndHalf << 4));
3743}
3744
3745/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3746/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3747/// Note that VPERMIL mask matching is different depending whether theunderlying
3748/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3749/// to the same elements of the low, but to the higher half of the source.
3750/// In VPERMILPD the two lanes could be shuffled independently of each other
3751/// with the same restriction that lanes can't be crossed.
3752static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3753                            const X86Subtarget *Subtarget) {
3754  int NumElts = VT.getVectorNumElements();
3755  int NumLanes = VT.getSizeInBits()/128;
3756
3757  if (!Subtarget->hasAVX())
3758    return false;
3759
3760  // Only match 256-bit with 64-bit types
3761  if (VT.getSizeInBits() != 256 || NumElts != 4)
3762    return false;
3763
3764  // The mask on the high lane is independent of the low. Both can match
3765  // any element in inside its own lane, but can't cross.
3766  int LaneSize = NumElts/NumLanes;
3767  for (int l = 0; l < NumLanes; ++l)
3768    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3769      int LaneStart = l*LaneSize;
3770      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3771        return false;
3772    }
3773
3774  return true;
3775}
3776
3777/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3778/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3779/// Note that VPERMIL mask matching is different depending whether theunderlying
3780/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3781/// to the same elements of the low, but to the higher half of the source.
3782/// In VPERMILPD the two lanes could be shuffled independently of each other
3783/// with the same restriction that lanes can't be crossed.
3784static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3785                            const X86Subtarget *Subtarget) {
3786  unsigned NumElts = VT.getVectorNumElements();
3787  unsigned NumLanes = VT.getSizeInBits()/128;
3788
3789  if (!Subtarget->hasAVX())
3790    return false;
3791
3792  // Only match 256-bit with 32-bit types
3793  if (VT.getSizeInBits() != 256 || NumElts != 8)
3794    return false;
3795
3796  // The mask on the high lane should be the same as the low. Actually,
3797  // they can differ if any of the corresponding index in a lane is undef
3798  // and the other stays in range.
3799  int LaneSize = NumElts/NumLanes;
3800  for (int i = 0; i < LaneSize; ++i) {
3801    int HighElt = i+LaneSize;
3802    bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3803    bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3804
3805    if (!HighValid || !LowValid)
3806      return false;
3807    if (Mask[i] < 0 || Mask[HighElt] < 0)
3808      continue;
3809    if (Mask[HighElt]-Mask[i] != LaneSize)
3810      return false;
3811  }
3812
3813  return true;
3814}
3815
3816/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3817/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3818static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3819  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3820  EVT VT = SVOp->getValueType(0);
3821
3822  int NumElts = VT.getVectorNumElements();
3823  int NumLanes = VT.getSizeInBits()/128;
3824  int LaneSize = NumElts/NumLanes;
3825
3826  // Although the mask is equal for both lanes do it twice to get the cases
3827  // where a mask will match because the same mask element is undef on the
3828  // first half but valid on the second. This would get pathological cases
3829  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3830  unsigned Mask = 0;
3831  for (int l = 0; l < NumLanes; ++l) {
3832    for (int i = 0; i < LaneSize; ++i) {
3833      int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3834      if (MaskElt < 0)
3835        continue;
3836      if (MaskElt >= LaneSize)
3837        MaskElt -= LaneSize;
3838      Mask |= MaskElt << (i*2);
3839    }
3840  }
3841
3842  return Mask;
3843}
3844
3845/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3846/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3847static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3848  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3849  EVT VT = SVOp->getValueType(0);
3850
3851  int NumElts = VT.getVectorNumElements();
3852  int NumLanes = VT.getSizeInBits()/128;
3853
3854  unsigned Mask = 0;
3855  int LaneSize = NumElts/NumLanes;
3856  for (int l = 0; l < NumLanes; ++l)
3857    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3858      int MaskElt = SVOp->getMaskElt(i);
3859      if (MaskElt < 0)
3860        continue;
3861      Mask |= (MaskElt-l*LaneSize) << i;
3862    }
3863
3864  return Mask;
3865}
3866
3867/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3868/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3869/// element of vector 2 and the other elements to come from vector 1 in order.
3870static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3871                               bool V2IsSplat = false, bool V2IsUndef = false) {
3872  int NumOps = VT.getVectorNumElements();
3873  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3874    return false;
3875
3876  if (!isUndefOrEqual(Mask[0], 0))
3877    return false;
3878
3879  for (int i = 1; i < NumOps; ++i)
3880    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3881          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3882          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3883      return false;
3884
3885  return true;
3886}
3887
3888static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3889                           bool V2IsUndef = false) {
3890  SmallVector<int, 8> M;
3891  N->getMask(M);
3892  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3893}
3894
3895/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3896/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3897/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3898bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3899                         const X86Subtarget *Subtarget) {
3900  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3901    return false;
3902
3903  // The second vector must be undef
3904  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3905    return false;
3906
3907  EVT VT = N->getValueType(0);
3908  unsigned NumElems = VT.getVectorNumElements();
3909
3910  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3911      (VT.getSizeInBits() == 256 && NumElems != 8))
3912    return false;
3913
3914  // "i+1" is the value the indexed mask element must have
3915  for (unsigned i = 0; i < NumElems; i += 2)
3916    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3917        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3918      return false;
3919
3920  return true;
3921}
3922
3923/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3924/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3925/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3926bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3927                         const X86Subtarget *Subtarget) {
3928  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3929    return false;
3930
3931  // The second vector must be undef
3932  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3933    return false;
3934
3935  EVT VT = N->getValueType(0);
3936  unsigned NumElems = VT.getVectorNumElements();
3937
3938  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3939      (VT.getSizeInBits() == 256 && NumElems != 8))
3940    return false;
3941
3942  // "i" is the value the indexed mask element must have
3943  for (unsigned i = 0; i < NumElems; i += 2)
3944    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3945        !isUndefOrEqual(N->getMaskElt(i+1), i))
3946      return false;
3947
3948  return true;
3949}
3950
3951/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3952/// specifies a shuffle of elements that is suitable for input to 256-bit
3953/// version of MOVDDUP.
3954static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
3955                           const X86Subtarget *Subtarget) {
3956  EVT VT = N->getValueType(0);
3957  int NumElts = VT.getVectorNumElements();
3958  bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
3959
3960  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
3961      !V2IsUndef || NumElts != 4)
3962    return false;
3963
3964  for (int i = 0; i != NumElts/2; ++i)
3965    if (!isUndefOrEqual(N->getMaskElt(i), 0))
3966      return false;
3967  for (int i = NumElts/2; i != NumElts; ++i)
3968    if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
3969      return false;
3970  return true;
3971}
3972
3973/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3974/// specifies a shuffle of elements that is suitable for input to 128-bit
3975/// version of MOVDDUP.
3976bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3977  EVT VT = N->getValueType(0);
3978
3979  if (VT.getSizeInBits() != 128)
3980    return false;
3981
3982  int e = VT.getVectorNumElements() / 2;
3983  for (int i = 0; i < e; ++i)
3984    if (!isUndefOrEqual(N->getMaskElt(i), i))
3985      return false;
3986  for (int i = 0; i < e; ++i)
3987    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3988      return false;
3989  return true;
3990}
3991
3992/// isVEXTRACTF128Index - Return true if the specified
3993/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3994/// suitable for input to VEXTRACTF128.
3995bool X86::isVEXTRACTF128Index(SDNode *N) {
3996  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3997    return false;
3998
3999  // The index should be aligned on a 128-bit boundary.
4000  uint64_t Index =
4001    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4002
4003  unsigned VL = N->getValueType(0).getVectorNumElements();
4004  unsigned VBits = N->getValueType(0).getSizeInBits();
4005  unsigned ElSize = VBits / VL;
4006  bool Result = (Index * ElSize) % 128 == 0;
4007
4008  return Result;
4009}
4010
4011/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4012/// operand specifies a subvector insert that is suitable for input to
4013/// VINSERTF128.
4014bool X86::isVINSERTF128Index(SDNode *N) {
4015  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4016    return false;
4017
4018  // The index should be aligned on a 128-bit boundary.
4019  uint64_t Index =
4020    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4021
4022  unsigned VL = N->getValueType(0).getVectorNumElements();
4023  unsigned VBits = N->getValueType(0).getSizeInBits();
4024  unsigned ElSize = VBits / VL;
4025  bool Result = (Index * ElSize) % 128 == 0;
4026
4027  return Result;
4028}
4029
4030/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4031/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4032unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
4033  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4034  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
4035
4036  unsigned Shift = (NumOperands == 4) ? 2 : 1;
4037  unsigned Mask = 0;
4038  for (int i = 0; i < NumOperands; ++i) {
4039    int Val = SVOp->getMaskElt(NumOperands-i-1);
4040    if (Val < 0) Val = 0;
4041    if (Val >= NumOperands) Val -= NumOperands;
4042    Mask |= Val;
4043    if (i != NumOperands - 1)
4044      Mask <<= Shift;
4045  }
4046  return Mask;
4047}
4048
4049/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4050/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4051unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4052  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4053  unsigned Mask = 0;
4054  // 8 nodes, but we only care about the last 4.
4055  for (unsigned i = 7; i >= 4; --i) {
4056    int Val = SVOp->getMaskElt(i);
4057    if (Val >= 0)
4058      Mask |= (Val - 4);
4059    if (i != 4)
4060      Mask <<= 2;
4061  }
4062  return Mask;
4063}
4064
4065/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4066/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4067unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4068  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4069  unsigned Mask = 0;
4070  // 8 nodes, but we only care about the first 4.
4071  for (int i = 3; i >= 0; --i) {
4072    int Val = SVOp->getMaskElt(i);
4073    if (Val >= 0)
4074      Mask |= Val;
4075    if (i != 0)
4076      Mask <<= 2;
4077  }
4078  return Mask;
4079}
4080
4081/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4082/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4083unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4084  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4085  EVT VVT = N->getValueType(0);
4086  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4087  int Val = 0;
4088
4089  unsigned i, e;
4090  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4091    Val = SVOp->getMaskElt(i);
4092    if (Val >= 0)
4093      break;
4094  }
4095  assert(Val - i > 0 && "PALIGNR imm should be positive");
4096  return (Val - i) * EltSize;
4097}
4098
4099/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4100/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4101/// instructions.
4102unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4103  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4104    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4105
4106  uint64_t Index =
4107    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4108
4109  EVT VecVT = N->getOperand(0).getValueType();
4110  EVT ElVT = VecVT.getVectorElementType();
4111
4112  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4113  return Index / NumElemsPerChunk;
4114}
4115
4116/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4117/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4118/// instructions.
4119unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4120  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4121    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4122
4123  uint64_t Index =
4124    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4125
4126  EVT VecVT = N->getValueType(0);
4127  EVT ElVT = VecVT.getVectorElementType();
4128
4129  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4130  return Index / NumElemsPerChunk;
4131}
4132
4133/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4134/// constant +0.0.
4135bool X86::isZeroNode(SDValue Elt) {
4136  return ((isa<ConstantSDNode>(Elt) &&
4137           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4138          (isa<ConstantFPSDNode>(Elt) &&
4139           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4140}
4141
4142/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4143/// their permute mask.
4144static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4145                                    SelectionDAG &DAG) {
4146  EVT VT = SVOp->getValueType(0);
4147  unsigned NumElems = VT.getVectorNumElements();
4148  SmallVector<int, 8> MaskVec;
4149
4150  for (unsigned i = 0; i != NumElems; ++i) {
4151    int idx = SVOp->getMaskElt(i);
4152    if (idx < 0)
4153      MaskVec.push_back(idx);
4154    else if (idx < (int)NumElems)
4155      MaskVec.push_back(idx + NumElems);
4156    else
4157      MaskVec.push_back(idx - NumElems);
4158  }
4159  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4160                              SVOp->getOperand(0), &MaskVec[0]);
4161}
4162
4163/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
4164/// the two vector operands have swapped position.
4165static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
4166  unsigned NumElems = VT.getVectorNumElements();
4167  for (unsigned i = 0; i != NumElems; ++i) {
4168    int idx = Mask[i];
4169    if (idx < 0)
4170      continue;
4171    else if (idx < (int)NumElems)
4172      Mask[i] = idx + NumElems;
4173    else
4174      Mask[i] = idx - NumElems;
4175  }
4176}
4177
4178/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4179/// match movhlps. The lower half elements should come from upper half of
4180/// V1 (and in order), and the upper half elements should come from the upper
4181/// half of V2 (and in order).
4182static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4183  EVT VT = Op->getValueType(0);
4184  if (VT.getSizeInBits() != 128)
4185    return false;
4186  if (VT.getVectorNumElements() != 4)
4187    return false;
4188  for (unsigned i = 0, e = 2; i != e; ++i)
4189    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4190      return false;
4191  for (unsigned i = 2; i != 4; ++i)
4192    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4193      return false;
4194  return true;
4195}
4196
4197/// isScalarLoadToVector - Returns true if the node is a scalar load that
4198/// is promoted to a vector. It also returns the LoadSDNode by reference if
4199/// required.
4200static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4201  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4202    return false;
4203  N = N->getOperand(0).getNode();
4204  if (!ISD::isNON_EXTLoad(N))
4205    return false;
4206  if (LD)
4207    *LD = cast<LoadSDNode>(N);
4208  return true;
4209}
4210
4211/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4212/// match movlp{s|d}. The lower half elements should come from lower half of
4213/// V1 (and in order), and the upper half elements should come from the upper
4214/// half of V2 (and in order). And since V1 will become the source of the
4215/// MOVLP, it must be either a vector load or a scalar load to vector.
4216static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4217                               ShuffleVectorSDNode *Op) {
4218  EVT VT = Op->getValueType(0);
4219  if (VT.getSizeInBits() != 128)
4220    return false;
4221
4222  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4223    return false;
4224  // Is V2 is a vector load, don't do this transformation. We will try to use
4225  // load folding shufps op.
4226  if (ISD::isNON_EXTLoad(V2))
4227    return false;
4228
4229  unsigned NumElems = VT.getVectorNumElements();
4230
4231  if (NumElems != 2 && NumElems != 4)
4232    return false;
4233  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4234    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4235      return false;
4236  for (unsigned i = NumElems/2; i != NumElems; ++i)
4237    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4238      return false;
4239  return true;
4240}
4241
4242/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4243/// all the same.
4244static bool isSplatVector(SDNode *N) {
4245  if (N->getOpcode() != ISD::BUILD_VECTOR)
4246    return false;
4247
4248  SDValue SplatValue = N->getOperand(0);
4249  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4250    if (N->getOperand(i) != SplatValue)
4251      return false;
4252  return true;
4253}
4254
4255/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4256/// to an zero vector.
4257/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4258static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4259  SDValue V1 = N->getOperand(0);
4260  SDValue V2 = N->getOperand(1);
4261  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4262  for (unsigned i = 0; i != NumElems; ++i) {
4263    int Idx = N->getMaskElt(i);
4264    if (Idx >= (int)NumElems) {
4265      unsigned Opc = V2.getOpcode();
4266      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4267        continue;
4268      if (Opc != ISD::BUILD_VECTOR ||
4269          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4270        return false;
4271    } else if (Idx >= 0) {
4272      unsigned Opc = V1.getOpcode();
4273      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4274        continue;
4275      if (Opc != ISD::BUILD_VECTOR ||
4276          !X86::isZeroNode(V1.getOperand(Idx)))
4277        return false;
4278    }
4279  }
4280  return true;
4281}
4282
4283/// getZeroVector - Returns a vector of specified type with all zero elements.
4284///
4285static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
4286                             DebugLoc dl) {
4287  assert(VT.isVector() && "Expected a vector type");
4288
4289  // Always build SSE zero vectors as <4 x i32> bitcasted
4290  // to their dest type. This ensures they get CSE'd.
4291  SDValue Vec;
4292  if (VT.getSizeInBits() == 128) {  // SSE
4293    if (HasXMMInt) {  // SSE2
4294      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4295      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4296    } else { // SSE1
4297      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4298      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4299    }
4300  } else if (VT.getSizeInBits() == 256) { // AVX
4301    // 256-bit logic and arithmetic instructions in AVX are
4302    // all floating-point, no support for integer ops. Default
4303    // to emitting fp zeroed vectors then.
4304    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4305    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4306    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4307  }
4308  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4309}
4310
4311/// getOnesVector - Returns a vector of specified type with all bits set.
4312/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
4313/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
4314/// original type, ensuring they get CSE'd.
4315static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4316  assert(VT.isVector() && "Expected a vector type");
4317  assert((VT.is128BitVector() || VT.is256BitVector())
4318         && "Expected a 128-bit or 256-bit vector type");
4319
4320  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4321  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
4322                            Cst, Cst, Cst, Cst);
4323
4324  if (VT.is256BitVector()) {
4325    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4326                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4327    Vec = Insert128BitVector(InsV, Vec,
4328                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4329  }
4330
4331  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4332}
4333
4334/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4335/// that point to V2 points to its first element.
4336static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4337  EVT VT = SVOp->getValueType(0);
4338  unsigned NumElems = VT.getVectorNumElements();
4339
4340  bool Changed = false;
4341  SmallVector<int, 8> MaskVec;
4342  SVOp->getMask(MaskVec);
4343
4344  for (unsigned i = 0; i != NumElems; ++i) {
4345    if (MaskVec[i] > (int)NumElems) {
4346      MaskVec[i] = NumElems;
4347      Changed = true;
4348    }
4349  }
4350  if (Changed)
4351    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4352                                SVOp->getOperand(1), &MaskVec[0]);
4353  return SDValue(SVOp, 0);
4354}
4355
4356/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4357/// operation of specified width.
4358static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4359                       SDValue V2) {
4360  unsigned NumElems = VT.getVectorNumElements();
4361  SmallVector<int, 8> Mask;
4362  Mask.push_back(NumElems);
4363  for (unsigned i = 1; i != NumElems; ++i)
4364    Mask.push_back(i);
4365  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4366}
4367
4368/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4369static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4370                          SDValue V2) {
4371  unsigned NumElems = VT.getVectorNumElements();
4372  SmallVector<int, 8> Mask;
4373  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4374    Mask.push_back(i);
4375    Mask.push_back(i + NumElems);
4376  }
4377  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4378}
4379
4380/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4381static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4382                          SDValue V2) {
4383  unsigned NumElems = VT.getVectorNumElements();
4384  unsigned Half = NumElems/2;
4385  SmallVector<int, 8> Mask;
4386  for (unsigned i = 0; i != Half; ++i) {
4387    Mask.push_back(i + Half);
4388    Mask.push_back(i + NumElems + Half);
4389  }
4390  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4391}
4392
4393// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4394// a generic shuffle instruction because the target has no such instructions.
4395// Generate shuffles which repeat i16 and i8 several times until they can be
4396// represented by v4f32 and then be manipulated by target suported shuffles.
4397static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4398  EVT VT = V.getValueType();
4399  int NumElems = VT.getVectorNumElements();
4400  DebugLoc dl = V.getDebugLoc();
4401
4402  while (NumElems > 4) {
4403    if (EltNo < NumElems/2) {
4404      V = getUnpackl(DAG, dl, VT, V, V);
4405    } else {
4406      V = getUnpackh(DAG, dl, VT, V, V);
4407      EltNo -= NumElems/2;
4408    }
4409    NumElems >>= 1;
4410  }
4411  return V;
4412}
4413
4414/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4415static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4416  EVT VT = V.getValueType();
4417  DebugLoc dl = V.getDebugLoc();
4418  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4419         && "Vector size not supported");
4420
4421  if (VT.getSizeInBits() == 128) {
4422    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4423    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4424    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4425                             &SplatMask[0]);
4426  } else {
4427    // To use VPERMILPS to splat scalars, the second half of indicies must
4428    // refer to the higher part, which is a duplication of the lower one,
4429    // because VPERMILPS can only handle in-lane permutations.
4430    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4431                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4432
4433    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4434    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4435                             &SplatMask[0]);
4436  }
4437
4438  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4439}
4440
4441/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4442static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4443  EVT SrcVT = SV->getValueType(0);
4444  SDValue V1 = SV->getOperand(0);
4445  DebugLoc dl = SV->getDebugLoc();
4446
4447  int EltNo = SV->getSplatIndex();
4448  int NumElems = SrcVT.getVectorNumElements();
4449  unsigned Size = SrcVT.getSizeInBits();
4450
4451  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4452          "Unknown how to promote splat for type");
4453
4454  // Extract the 128-bit part containing the splat element and update
4455  // the splat element index when it refers to the higher register.
4456  if (Size == 256) {
4457    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4458    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4459    if (Idx > 0)
4460      EltNo -= NumElems/2;
4461  }
4462
4463  // All i16 and i8 vector types can't be used directly by a generic shuffle
4464  // instruction because the target has no such instruction. Generate shuffles
4465  // which repeat i16 and i8 several times until they fit in i32, and then can
4466  // be manipulated by target suported shuffles.
4467  EVT EltVT = SrcVT.getVectorElementType();
4468  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4469    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4470
4471  // Recreate the 256-bit vector and place the same 128-bit vector
4472  // into the low and high part. This is necessary because we want
4473  // to use VPERM* to shuffle the vectors
4474  if (Size == 256) {
4475    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4476                         DAG.getConstant(0, MVT::i32), DAG, dl);
4477    V1 = Insert128BitVector(InsV, V1,
4478               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4479  }
4480
4481  return getLegalSplat(DAG, V1, EltNo);
4482}
4483
4484/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4485/// vector of zero or undef vector.  This produces a shuffle where the low
4486/// element of V2 is swizzled into the zero/undef vector, landing at element
4487/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4488static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4489                                           bool isZero, bool HasXMMInt,
4490                                           SelectionDAG &DAG) {
4491  EVT VT = V2.getValueType();
4492  SDValue V1 = isZero
4493    ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4494  unsigned NumElems = VT.getVectorNumElements();
4495  SmallVector<int, 16> MaskVec;
4496  for (unsigned i = 0; i != NumElems; ++i)
4497    // If this is the insertion idx, put the low elt of V2 here.
4498    MaskVec.push_back(i == Idx ? NumElems : i);
4499  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4500}
4501
4502/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4503/// element of the result of the vector shuffle.
4504static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4505                                   unsigned Depth) {
4506  if (Depth == 6)
4507    return SDValue();  // Limit search depth.
4508
4509  SDValue V = SDValue(N, 0);
4510  EVT VT = V.getValueType();
4511  unsigned Opcode = V.getOpcode();
4512
4513  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4514  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4515    Index = SV->getMaskElt(Index);
4516
4517    if (Index < 0)
4518      return DAG.getUNDEF(VT.getVectorElementType());
4519
4520    int NumElems = VT.getVectorNumElements();
4521    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4522    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4523  }
4524
4525  // Recurse into target specific vector shuffles to find scalars.
4526  if (isTargetShuffle(Opcode)) {
4527    int NumElems = VT.getVectorNumElements();
4528    SmallVector<unsigned, 16> ShuffleMask;
4529    SDValue ImmN;
4530
4531    switch(Opcode) {
4532    case X86ISD::SHUFPS:
4533    case X86ISD::SHUFPD:
4534      ImmN = N->getOperand(N->getNumOperands()-1);
4535      DecodeSHUFPSMask(NumElems,
4536                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4537                       ShuffleMask);
4538      break;
4539    case X86ISD::PUNPCKHBW:
4540    case X86ISD::PUNPCKHWD:
4541    case X86ISD::PUNPCKHDQ:
4542    case X86ISD::PUNPCKHQDQ:
4543      DecodePUNPCKHMask(NumElems, ShuffleMask);
4544      break;
4545    case X86ISD::UNPCKHPS:
4546    case X86ISD::UNPCKHPD:
4547    case X86ISD::VUNPCKHPSY:
4548    case X86ISD::VUNPCKHPDY:
4549      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4550      break;
4551    case X86ISD::PUNPCKLBW:
4552    case X86ISD::PUNPCKLWD:
4553    case X86ISD::PUNPCKLDQ:
4554    case X86ISD::PUNPCKLQDQ:
4555      DecodePUNPCKLMask(VT, ShuffleMask);
4556      break;
4557    case X86ISD::UNPCKLPS:
4558    case X86ISD::UNPCKLPD:
4559    case X86ISD::VUNPCKLPSY:
4560    case X86ISD::VUNPCKLPDY:
4561      DecodeUNPCKLPMask(VT, ShuffleMask);
4562      break;
4563    case X86ISD::MOVHLPS:
4564      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4565      break;
4566    case X86ISD::MOVLHPS:
4567      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4568      break;
4569    case X86ISD::PSHUFD:
4570      ImmN = N->getOperand(N->getNumOperands()-1);
4571      DecodePSHUFMask(NumElems,
4572                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4573                      ShuffleMask);
4574      break;
4575    case X86ISD::PSHUFHW:
4576      ImmN = N->getOperand(N->getNumOperands()-1);
4577      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4578                        ShuffleMask);
4579      break;
4580    case X86ISD::PSHUFLW:
4581      ImmN = N->getOperand(N->getNumOperands()-1);
4582      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4583                        ShuffleMask);
4584      break;
4585    case X86ISD::MOVSS:
4586    case X86ISD::MOVSD: {
4587      // The index 0 always comes from the first element of the second source,
4588      // this is why MOVSS and MOVSD are used in the first place. The other
4589      // elements come from the other positions of the first source vector.
4590      unsigned OpNum = (Index == 0) ? 1 : 0;
4591      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4592                                 Depth+1);
4593    }
4594    case X86ISD::VPERMILPS:
4595      ImmN = N->getOperand(N->getNumOperands()-1);
4596      DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4597                        ShuffleMask);
4598      break;
4599    case X86ISD::VPERMILPSY:
4600      ImmN = N->getOperand(N->getNumOperands()-1);
4601      DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4602                        ShuffleMask);
4603      break;
4604    case X86ISD::VPERMILPD:
4605      ImmN = N->getOperand(N->getNumOperands()-1);
4606      DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4607                        ShuffleMask);
4608      break;
4609    case X86ISD::VPERMILPDY:
4610      ImmN = N->getOperand(N->getNumOperands()-1);
4611      DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4612                        ShuffleMask);
4613      break;
4614    case X86ISD::VPERM2F128:
4615      ImmN = N->getOperand(N->getNumOperands()-1);
4616      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4617                           ShuffleMask);
4618      break;
4619    case X86ISD::MOVDDUP:
4620    case X86ISD::MOVLHPD:
4621    case X86ISD::MOVLPD:
4622    case X86ISD::MOVLPS:
4623    case X86ISD::MOVSHDUP:
4624    case X86ISD::MOVSLDUP:
4625    case X86ISD::PALIGN:
4626      return SDValue(); // Not yet implemented.
4627    default:
4628      assert(0 && "unknown target shuffle node");
4629      return SDValue();
4630    }
4631
4632    Index = ShuffleMask[Index];
4633    if (Index < 0)
4634      return DAG.getUNDEF(VT.getVectorElementType());
4635
4636    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4637    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4638                               Depth+1);
4639  }
4640
4641  // Actual nodes that may contain scalar elements
4642  if (Opcode == ISD::BITCAST) {
4643    V = V.getOperand(0);
4644    EVT SrcVT = V.getValueType();
4645    unsigned NumElems = VT.getVectorNumElements();
4646
4647    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4648      return SDValue();
4649  }
4650
4651  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4652    return (Index == 0) ? V.getOperand(0)
4653                          : DAG.getUNDEF(VT.getVectorElementType());
4654
4655  if (V.getOpcode() == ISD::BUILD_VECTOR)
4656    return V.getOperand(Index);
4657
4658  return SDValue();
4659}
4660
4661/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4662/// shuffle operation which come from a consecutively from a zero. The
4663/// search can start in two different directions, from left or right.
4664static
4665unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4666                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4667  int i = 0;
4668
4669  while (i < NumElems) {
4670    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4671    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4672    if (!(Elt.getNode() &&
4673         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4674      break;
4675    ++i;
4676  }
4677
4678  return i;
4679}
4680
4681/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4682/// MaskE correspond consecutively to elements from one of the vector operands,
4683/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4684static
4685bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4686                              int OpIdx, int NumElems, unsigned &OpNum) {
4687  bool SeenV1 = false;
4688  bool SeenV2 = false;
4689
4690  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4691    int Idx = SVOp->getMaskElt(i);
4692    // Ignore undef indicies
4693    if (Idx < 0)
4694      continue;
4695
4696    if (Idx < NumElems)
4697      SeenV1 = true;
4698    else
4699      SeenV2 = true;
4700
4701    // Only accept consecutive elements from the same vector
4702    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4703      return false;
4704  }
4705
4706  OpNum = SeenV1 ? 0 : 1;
4707  return true;
4708}
4709
4710/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4711/// logical left shift of a vector.
4712static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4713                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4714  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4715  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4716              false /* check zeros from right */, DAG);
4717  unsigned OpSrc;
4718
4719  if (!NumZeros)
4720    return false;
4721
4722  // Considering the elements in the mask that are not consecutive zeros,
4723  // check if they consecutively come from only one of the source vectors.
4724  //
4725  //               V1 = {X, A, B, C}     0
4726  //                         \  \  \    /
4727  //   vector_shuffle V1, V2 <1, 2, 3, X>
4728  //
4729  if (!isShuffleMaskConsecutive(SVOp,
4730            0,                   // Mask Start Index
4731            NumElems-NumZeros-1, // Mask End Index
4732            NumZeros,            // Where to start looking in the src vector
4733            NumElems,            // Number of elements in vector
4734            OpSrc))              // Which source operand ?
4735    return false;
4736
4737  isLeft = false;
4738  ShAmt = NumZeros;
4739  ShVal = SVOp->getOperand(OpSrc);
4740  return true;
4741}
4742
4743/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4744/// logical left shift of a vector.
4745static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4746                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4747  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4748  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4749              true /* check zeros from left */, DAG);
4750  unsigned OpSrc;
4751
4752  if (!NumZeros)
4753    return false;
4754
4755  // Considering the elements in the mask that are not consecutive zeros,
4756  // check if they consecutively come from only one of the source vectors.
4757  //
4758  //                           0    { A, B, X, X } = V2
4759  //                          / \    /  /
4760  //   vector_shuffle V1, V2 <X, X, 4, 5>
4761  //
4762  if (!isShuffleMaskConsecutive(SVOp,
4763            NumZeros,     // Mask Start Index
4764            NumElems-1,   // Mask End Index
4765            0,            // Where to start looking in the src vector
4766            NumElems,     // Number of elements in vector
4767            OpSrc))       // Which source operand ?
4768    return false;
4769
4770  isLeft = true;
4771  ShAmt = NumZeros;
4772  ShVal = SVOp->getOperand(OpSrc);
4773  return true;
4774}
4775
4776/// isVectorShift - Returns true if the shuffle can be implemented as a
4777/// logical left or right shift of a vector.
4778static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4779                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4780  // Although the logic below support any bitwidth size, there are no
4781  // shift instructions which handle more than 128-bit vectors.
4782  if (SVOp->getValueType(0).getSizeInBits() > 128)
4783    return false;
4784
4785  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4786      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4787    return true;
4788
4789  return false;
4790}
4791
4792/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4793///
4794static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4795                                       unsigned NumNonZero, unsigned NumZero,
4796                                       SelectionDAG &DAG,
4797                                       const TargetLowering &TLI) {
4798  if (NumNonZero > 8)
4799    return SDValue();
4800
4801  DebugLoc dl = Op.getDebugLoc();
4802  SDValue V(0, 0);
4803  bool First = true;
4804  for (unsigned i = 0; i < 16; ++i) {
4805    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4806    if (ThisIsNonZero && First) {
4807      if (NumZero)
4808        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4809      else
4810        V = DAG.getUNDEF(MVT::v8i16);
4811      First = false;
4812    }
4813
4814    if ((i & 1) != 0) {
4815      SDValue ThisElt(0, 0), LastElt(0, 0);
4816      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4817      if (LastIsNonZero) {
4818        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4819                              MVT::i16, Op.getOperand(i-1));
4820      }
4821      if (ThisIsNonZero) {
4822        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4823        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4824                              ThisElt, DAG.getConstant(8, MVT::i8));
4825        if (LastIsNonZero)
4826          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4827      } else
4828        ThisElt = LastElt;
4829
4830      if (ThisElt.getNode())
4831        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4832                        DAG.getIntPtrConstant(i/2));
4833    }
4834  }
4835
4836  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4837}
4838
4839/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4840///
4841static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4842                                     unsigned NumNonZero, unsigned NumZero,
4843                                     SelectionDAG &DAG,
4844                                     const TargetLowering &TLI) {
4845  if (NumNonZero > 4)
4846    return SDValue();
4847
4848  DebugLoc dl = Op.getDebugLoc();
4849  SDValue V(0, 0);
4850  bool First = true;
4851  for (unsigned i = 0; i < 8; ++i) {
4852    bool isNonZero = (NonZeros & (1 << i)) != 0;
4853    if (isNonZero) {
4854      if (First) {
4855        if (NumZero)
4856          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4857        else
4858          V = DAG.getUNDEF(MVT::v8i16);
4859        First = false;
4860      }
4861      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4862                      MVT::v8i16, V, Op.getOperand(i),
4863                      DAG.getIntPtrConstant(i));
4864    }
4865  }
4866
4867  return V;
4868}
4869
4870/// getVShift - Return a vector logical shift node.
4871///
4872static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4873                         unsigned NumBits, SelectionDAG &DAG,
4874                         const TargetLowering &TLI, DebugLoc dl) {
4875  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4876  EVT ShVT = MVT::v2i64;
4877  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4878  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4879  return DAG.getNode(ISD::BITCAST, dl, VT,
4880                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4881                             DAG.getConstant(NumBits,
4882                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4883}
4884
4885SDValue
4886X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4887                                          SelectionDAG &DAG) const {
4888
4889  // Check if the scalar load can be widened into a vector load. And if
4890  // the address is "base + cst" see if the cst can be "absorbed" into
4891  // the shuffle mask.
4892  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4893    SDValue Ptr = LD->getBasePtr();
4894    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4895      return SDValue();
4896    EVT PVT = LD->getValueType(0);
4897    if (PVT != MVT::i32 && PVT != MVT::f32)
4898      return SDValue();
4899
4900    int FI = -1;
4901    int64_t Offset = 0;
4902    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4903      FI = FINode->getIndex();
4904      Offset = 0;
4905    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4906               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4907      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4908      Offset = Ptr.getConstantOperandVal(1);
4909      Ptr = Ptr.getOperand(0);
4910    } else {
4911      return SDValue();
4912    }
4913
4914    // FIXME: 256-bit vector instructions don't require a strict alignment,
4915    // improve this code to support it better.
4916    unsigned RequiredAlign = VT.getSizeInBits()/8;
4917    SDValue Chain = LD->getChain();
4918    // Make sure the stack object alignment is at least 16 or 32.
4919    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4920    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4921      if (MFI->isFixedObjectIndex(FI)) {
4922        // Can't change the alignment. FIXME: It's possible to compute
4923        // the exact stack offset and reference FI + adjust offset instead.
4924        // If someone *really* cares about this. That's the way to implement it.
4925        return SDValue();
4926      } else {
4927        MFI->setObjectAlignment(FI, RequiredAlign);
4928      }
4929    }
4930
4931    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4932    // Ptr + (Offset & ~15).
4933    if (Offset < 0)
4934      return SDValue();
4935    if ((Offset % RequiredAlign) & 3)
4936      return SDValue();
4937    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4938    if (StartOffset)
4939      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4940                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4941
4942    int EltNo = (Offset - StartOffset) >> 2;
4943    int NumElems = VT.getVectorNumElements();
4944
4945    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4946    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4947    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4948                             LD->getPointerInfo().getWithOffset(StartOffset),
4949                             false, false, 0);
4950
4951    // Canonicalize it to a v4i32 or v8i32 shuffle.
4952    SmallVector<int, 8> Mask;
4953    for (int i = 0; i < NumElems; ++i)
4954      Mask.push_back(EltNo);
4955
4956    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4957    return DAG.getNode(ISD::BITCAST, dl, NVT,
4958                       DAG.getVectorShuffle(CanonVT, dl, V1,
4959                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4960  }
4961
4962  return SDValue();
4963}
4964
4965/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4966/// vector of type 'VT', see if the elements can be replaced by a single large
4967/// load which has the same value as a build_vector whose operands are 'elts'.
4968///
4969/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4970///
4971/// FIXME: we'd also like to handle the case where the last elements are zero
4972/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4973/// There's even a handy isZeroNode for that purpose.
4974static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4975                                        DebugLoc &DL, SelectionDAG &DAG) {
4976  EVT EltVT = VT.getVectorElementType();
4977  unsigned NumElems = Elts.size();
4978
4979  LoadSDNode *LDBase = NULL;
4980  unsigned LastLoadedElt = -1U;
4981
4982  // For each element in the initializer, see if we've found a load or an undef.
4983  // If we don't find an initial load element, or later load elements are
4984  // non-consecutive, bail out.
4985  for (unsigned i = 0; i < NumElems; ++i) {
4986    SDValue Elt = Elts[i];
4987
4988    if (!Elt.getNode() ||
4989        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4990      return SDValue();
4991    if (!LDBase) {
4992      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4993        return SDValue();
4994      LDBase = cast<LoadSDNode>(Elt.getNode());
4995      LastLoadedElt = i;
4996      continue;
4997    }
4998    if (Elt.getOpcode() == ISD::UNDEF)
4999      continue;
5000
5001    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5002    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5003      return SDValue();
5004    LastLoadedElt = i;
5005  }
5006
5007  // If we have found an entire vector of loads and undefs, then return a large
5008  // load of the entire vector width starting at the base pointer.  If we found
5009  // consecutive loads for the low half, generate a vzext_load node.
5010  if (LastLoadedElt == NumElems - 1) {
5011    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5012      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5013                         LDBase->getPointerInfo(),
5014                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
5015    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5016                       LDBase->getPointerInfo(),
5017                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5018                       LDBase->getAlignment());
5019  } else if (NumElems == 4 && LastLoadedElt == 1 &&
5020             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5021    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5022    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5023    SDValue ResNode =
5024        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5025                                LDBase->getPointerInfo(),
5026                                LDBase->getAlignment(),
5027                                false/*isVolatile*/, true/*ReadMem*/,
5028                                false/*WriteMem*/);
5029    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5030  }
5031  return SDValue();
5032}
5033
5034SDValue
5035X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5036  DebugLoc dl = Op.getDebugLoc();
5037
5038  EVT VT = Op.getValueType();
5039  EVT ExtVT = VT.getVectorElementType();
5040  unsigned NumElems = Op.getNumOperands();
5041
5042  // Vectors containing all zeros can be matched by pxor and xorps later
5043  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5044    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5045    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5046    if (Op.getValueType() == MVT::v4i32 ||
5047        Op.getValueType() == MVT::v8i32)
5048      return Op;
5049
5050    return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
5051  }
5052
5053  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5054  // vectors or broken into v4i32 operations on 256-bit vectors.
5055  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5056    if (Op.getValueType() == MVT::v4i32)
5057      return Op;
5058
5059    return getOnesVector(Op.getValueType(), DAG, dl);
5060  }
5061
5062  unsigned EVTBits = ExtVT.getSizeInBits();
5063
5064  unsigned NumZero  = 0;
5065  unsigned NumNonZero = 0;
5066  unsigned NonZeros = 0;
5067  bool IsAllConstants = true;
5068  SmallSet<SDValue, 8> Values;
5069  for (unsigned i = 0; i < NumElems; ++i) {
5070    SDValue Elt = Op.getOperand(i);
5071    if (Elt.getOpcode() == ISD::UNDEF)
5072      continue;
5073    Values.insert(Elt);
5074    if (Elt.getOpcode() != ISD::Constant &&
5075        Elt.getOpcode() != ISD::ConstantFP)
5076      IsAllConstants = false;
5077    if (X86::isZeroNode(Elt))
5078      NumZero++;
5079    else {
5080      NonZeros |= (1 << i);
5081      NumNonZero++;
5082    }
5083  }
5084
5085  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5086  if (NumNonZero == 0)
5087    return DAG.getUNDEF(VT);
5088
5089  // Special case for single non-zero, non-undef, element.
5090  if (NumNonZero == 1) {
5091    unsigned Idx = CountTrailingZeros_32(NonZeros);
5092    SDValue Item = Op.getOperand(Idx);
5093
5094    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5095    // the value are obviously zero, truncate the value to i32 and do the
5096    // insertion that way.  Only do this if the value is non-constant or if the
5097    // value is a constant being inserted into element 0.  It is cheaper to do
5098    // a constant pool load than it is to do a movd + shuffle.
5099    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5100        (!IsAllConstants || Idx == 0)) {
5101      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5102        // Handle SSE only.
5103        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5104        EVT VecVT = MVT::v4i32;
5105        unsigned VecElts = 4;
5106
5107        // Truncate the value (which may itself be a constant) to i32, and
5108        // convert it to a vector with movd (S2V+shuffle to zero extend).
5109        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5110        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5111        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5112                                           Subtarget->hasXMMInt(), DAG);
5113
5114        // Now we have our 32-bit value zero extended in the low element of
5115        // a vector.  If Idx != 0, swizzle it into place.
5116        if (Idx != 0) {
5117          SmallVector<int, 4> Mask;
5118          Mask.push_back(Idx);
5119          for (unsigned i = 1; i != VecElts; ++i)
5120            Mask.push_back(i);
5121          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5122                                      DAG.getUNDEF(Item.getValueType()),
5123                                      &Mask[0]);
5124        }
5125        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5126      }
5127    }
5128
5129    // If we have a constant or non-constant insertion into the low element of
5130    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5131    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5132    // depending on what the source datatype is.
5133    if (Idx == 0) {
5134      if (NumZero == 0) {
5135        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5136      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5137          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5138        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5139        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5140        return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
5141                                           DAG);
5142      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5143        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5144        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5145        EVT MiddleVT = MVT::v4i32;
5146        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5147        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5148                                           Subtarget->hasXMMInt(), DAG);
5149        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5150      }
5151    }
5152
5153    // Is it a vector logical left shift?
5154    if (NumElems == 2 && Idx == 1 &&
5155        X86::isZeroNode(Op.getOperand(0)) &&
5156        !X86::isZeroNode(Op.getOperand(1))) {
5157      unsigned NumBits = VT.getSizeInBits();
5158      return getVShift(true, VT,
5159                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5160                                   VT, Op.getOperand(1)),
5161                       NumBits/2, DAG, *this, dl);
5162    }
5163
5164    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5165      return SDValue();
5166
5167    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5168    // is a non-constant being inserted into an element other than the low one,
5169    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5170    // movd/movss) to move this into the low element, then shuffle it into
5171    // place.
5172    if (EVTBits == 32) {
5173      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5174
5175      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5176      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5177                                         Subtarget->hasXMMInt(), DAG);
5178      SmallVector<int, 8> MaskVec;
5179      for (unsigned i = 0; i < NumElems; i++)
5180        MaskVec.push_back(i == Idx ? 0 : 1);
5181      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5182    }
5183  }
5184
5185  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5186  if (Values.size() == 1) {
5187    if (EVTBits == 32) {
5188      // Instead of a shuffle like this:
5189      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5190      // Check if it's possible to issue this instead.
5191      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5192      unsigned Idx = CountTrailingZeros_32(NonZeros);
5193      SDValue Item = Op.getOperand(Idx);
5194      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5195        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5196    }
5197    return SDValue();
5198  }
5199
5200  // A vector full of immediates; various special cases are already
5201  // handled, so this is best done with a single constant-pool load.
5202  if (IsAllConstants)
5203    return SDValue();
5204
5205  // For AVX-length vectors, build the individual 128-bit pieces and use
5206  // shuffles to put them in place.
5207  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5208    SmallVector<SDValue, 32> V;
5209    for (unsigned i = 0; i < NumElems; ++i)
5210      V.push_back(Op.getOperand(i));
5211
5212    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5213
5214    // Build both the lower and upper subvector.
5215    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5216    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5217                                NumElems/2);
5218
5219    // Recreate the wider vector with the lower and upper part.
5220    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5221                                DAG.getConstant(0, MVT::i32), DAG, dl);
5222    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5223                              DAG, dl);
5224  }
5225
5226  // Let legalizer expand 2-wide build_vectors.
5227  if (EVTBits == 64) {
5228    if (NumNonZero == 1) {
5229      // One half is zero or undef.
5230      unsigned Idx = CountTrailingZeros_32(NonZeros);
5231      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5232                                 Op.getOperand(Idx));
5233      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5234                                         Subtarget->hasXMMInt(), DAG);
5235    }
5236    return SDValue();
5237  }
5238
5239  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5240  if (EVTBits == 8 && NumElems == 16) {
5241    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5242                                        *this);
5243    if (V.getNode()) return V;
5244  }
5245
5246  if (EVTBits == 16 && NumElems == 8) {
5247    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5248                                      *this);
5249    if (V.getNode()) return V;
5250  }
5251
5252  // If element VT is == 32 bits, turn it into a number of shuffles.
5253  SmallVector<SDValue, 8> V;
5254  V.resize(NumElems);
5255  if (NumElems == 4 && NumZero > 0) {
5256    for (unsigned i = 0; i < 4; ++i) {
5257      bool isZero = !(NonZeros & (1 << i));
5258      if (isZero)
5259        V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
5260      else
5261        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5262    }
5263
5264    for (unsigned i = 0; i < 2; ++i) {
5265      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5266        default: break;
5267        case 0:
5268          V[i] = V[i*2];  // Must be a zero vector.
5269          break;
5270        case 1:
5271          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5272          break;
5273        case 2:
5274          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5275          break;
5276        case 3:
5277          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5278          break;
5279      }
5280    }
5281
5282    SmallVector<int, 8> MaskVec;
5283    bool Reverse = (NonZeros & 0x3) == 2;
5284    for (unsigned i = 0; i < 2; ++i)
5285      MaskVec.push_back(Reverse ? 1-i : i);
5286    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5287    for (unsigned i = 0; i < 2; ++i)
5288      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5289    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5290  }
5291
5292  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5293    // Check for a build vector of consecutive loads.
5294    for (unsigned i = 0; i < NumElems; ++i)
5295      V[i] = Op.getOperand(i);
5296
5297    // Check for elements which are consecutive loads.
5298    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5299    if (LD.getNode())
5300      return LD;
5301
5302    // For SSE 4.1, use insertps to put the high elements into the low element.
5303    if (getSubtarget()->hasSSE41() || getSubtarget()->hasAVX()) {
5304      SDValue Result;
5305      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5306        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5307      else
5308        Result = DAG.getUNDEF(VT);
5309
5310      for (unsigned i = 1; i < NumElems; ++i) {
5311        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5312        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5313                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5314      }
5315      return Result;
5316    }
5317
5318    // Otherwise, expand into a number of unpckl*, start by extending each of
5319    // our (non-undef) elements to the full vector width with the element in the
5320    // bottom slot of the vector (which generates no code for SSE).
5321    for (unsigned i = 0; i < NumElems; ++i) {
5322      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5323        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5324      else
5325        V[i] = DAG.getUNDEF(VT);
5326    }
5327
5328    // Next, we iteratively mix elements, e.g. for v4f32:
5329    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5330    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5331    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5332    unsigned EltStride = NumElems >> 1;
5333    while (EltStride != 0) {
5334      for (unsigned i = 0; i < EltStride; ++i) {
5335        // If V[i+EltStride] is undef and this is the first round of mixing,
5336        // then it is safe to just drop this shuffle: V[i] is already in the
5337        // right place, the one element (since it's the first round) being
5338        // inserted as undef can be dropped.  This isn't safe for successive
5339        // rounds because they will permute elements within both vectors.
5340        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5341            EltStride == NumElems/2)
5342          continue;
5343
5344        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5345      }
5346      EltStride >>= 1;
5347    }
5348    return V[0];
5349  }
5350  return SDValue();
5351}
5352
5353// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5354// them in a MMX register.  This is better than doing a stack convert.
5355static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5356  DebugLoc dl = Op.getDebugLoc();
5357  EVT ResVT = Op.getValueType();
5358
5359  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5360         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5361  int Mask[2];
5362  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5363  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5364  InVec = Op.getOperand(1);
5365  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5366    unsigned NumElts = ResVT.getVectorNumElements();
5367    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5368    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5369                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5370  } else {
5371    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5372    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5373    Mask[0] = 0; Mask[1] = 2;
5374    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5375  }
5376  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5377}
5378
5379// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5380// to create 256-bit vectors from two other 128-bit ones.
5381static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5382  DebugLoc dl = Op.getDebugLoc();
5383  EVT ResVT = Op.getValueType();
5384
5385  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5386
5387  SDValue V1 = Op.getOperand(0);
5388  SDValue V2 = Op.getOperand(1);
5389  unsigned NumElems = ResVT.getVectorNumElements();
5390
5391  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5392                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5393  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5394                            DAG, dl);
5395}
5396
5397SDValue
5398X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5399  EVT ResVT = Op.getValueType();
5400
5401  assert(Op.getNumOperands() == 2);
5402  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5403         "Unsupported CONCAT_VECTORS for value type");
5404
5405  // We support concatenate two MMX registers and place them in a MMX register.
5406  // This is better than doing a stack convert.
5407  if (ResVT.is128BitVector())
5408    return LowerMMXCONCAT_VECTORS(Op, DAG);
5409
5410  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5411  // from two other 128-bit ones.
5412  return LowerAVXCONCAT_VECTORS(Op, DAG);
5413}
5414
5415// v8i16 shuffles - Prefer shuffles in the following order:
5416// 1. [all]   pshuflw, pshufhw, optional move
5417// 2. [ssse3] 1 x pshufb
5418// 3. [ssse3] 2 x pshufb + 1 x por
5419// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5420SDValue
5421X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5422                                            SelectionDAG &DAG) const {
5423  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5424  SDValue V1 = SVOp->getOperand(0);
5425  SDValue V2 = SVOp->getOperand(1);
5426  DebugLoc dl = SVOp->getDebugLoc();
5427  SmallVector<int, 8> MaskVals;
5428
5429  // Determine if more than 1 of the words in each of the low and high quadwords
5430  // of the result come from the same quadword of one of the two inputs.  Undef
5431  // mask values count as coming from any quadword, for better codegen.
5432  SmallVector<unsigned, 4> LoQuad(4);
5433  SmallVector<unsigned, 4> HiQuad(4);
5434  BitVector InputQuads(4);
5435  for (unsigned i = 0; i < 8; ++i) {
5436    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
5437    int EltIdx = SVOp->getMaskElt(i);
5438    MaskVals.push_back(EltIdx);
5439    if (EltIdx < 0) {
5440      ++Quad[0];
5441      ++Quad[1];
5442      ++Quad[2];
5443      ++Quad[3];
5444      continue;
5445    }
5446    ++Quad[EltIdx / 4];
5447    InputQuads.set(EltIdx / 4);
5448  }
5449
5450  int BestLoQuad = -1;
5451  unsigned MaxQuad = 1;
5452  for (unsigned i = 0; i < 4; ++i) {
5453    if (LoQuad[i] > MaxQuad) {
5454      BestLoQuad = i;
5455      MaxQuad = LoQuad[i];
5456    }
5457  }
5458
5459  int BestHiQuad = -1;
5460  MaxQuad = 1;
5461  for (unsigned i = 0; i < 4; ++i) {
5462    if (HiQuad[i] > MaxQuad) {
5463      BestHiQuad = i;
5464      MaxQuad = HiQuad[i];
5465    }
5466  }
5467
5468  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5469  // of the two input vectors, shuffle them into one input vector so only a
5470  // single pshufb instruction is necessary. If There are more than 2 input
5471  // quads, disable the next transformation since it does not help SSSE3.
5472  bool V1Used = InputQuads[0] || InputQuads[1];
5473  bool V2Used = InputQuads[2] || InputQuads[3];
5474  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5475    if (InputQuads.count() == 2 && V1Used && V2Used) {
5476      BestLoQuad = InputQuads.find_first();
5477      BestHiQuad = InputQuads.find_next(BestLoQuad);
5478    }
5479    if (InputQuads.count() > 2) {
5480      BestLoQuad = -1;
5481      BestHiQuad = -1;
5482    }
5483  }
5484
5485  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5486  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5487  // words from all 4 input quadwords.
5488  SDValue NewV;
5489  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5490    SmallVector<int, 8> MaskV;
5491    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5492    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5493    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5494                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5495                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5496    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5497
5498    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5499    // source words for the shuffle, to aid later transformations.
5500    bool AllWordsInNewV = true;
5501    bool InOrder[2] = { true, true };
5502    for (unsigned i = 0; i != 8; ++i) {
5503      int idx = MaskVals[i];
5504      if (idx != (int)i)
5505        InOrder[i/4] = false;
5506      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5507        continue;
5508      AllWordsInNewV = false;
5509      break;
5510    }
5511
5512    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5513    if (AllWordsInNewV) {
5514      for (int i = 0; i != 8; ++i) {
5515        int idx = MaskVals[i];
5516        if (idx < 0)
5517          continue;
5518        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5519        if ((idx != i) && idx < 4)
5520          pshufhw = false;
5521        if ((idx != i) && idx > 3)
5522          pshuflw = false;
5523      }
5524      V1 = NewV;
5525      V2Used = false;
5526      BestLoQuad = 0;
5527      BestHiQuad = 1;
5528    }
5529
5530    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5531    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5532    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5533      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5534      unsigned TargetMask = 0;
5535      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5536                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5537      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5538                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5539      V1 = NewV.getOperand(0);
5540      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5541    }
5542  }
5543
5544  // If we have SSSE3, and all words of the result are from 1 input vector,
5545  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5546  // is present, fall back to case 4.
5547  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5548    SmallVector<SDValue,16> pshufbMask;
5549
5550    // If we have elements from both input vectors, set the high bit of the
5551    // shuffle mask element to zero out elements that come from V2 in the V1
5552    // mask, and elements that come from V1 in the V2 mask, so that the two
5553    // results can be OR'd together.
5554    bool TwoInputs = V1Used && V2Used;
5555    for (unsigned i = 0; i != 8; ++i) {
5556      int EltIdx = MaskVals[i] * 2;
5557      if (TwoInputs && (EltIdx >= 16)) {
5558        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5559        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5560        continue;
5561      }
5562      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5563      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5564    }
5565    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5566    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5567                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5568                                 MVT::v16i8, &pshufbMask[0], 16));
5569    if (!TwoInputs)
5570      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5571
5572    // Calculate the shuffle mask for the second input, shuffle it, and
5573    // OR it with the first shuffled input.
5574    pshufbMask.clear();
5575    for (unsigned i = 0; i != 8; ++i) {
5576      int EltIdx = MaskVals[i] * 2;
5577      if (EltIdx < 16) {
5578        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5579        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5580        continue;
5581      }
5582      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5583      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5584    }
5585    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5586    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5587                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5588                                 MVT::v16i8, &pshufbMask[0], 16));
5589    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5590    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5591  }
5592
5593  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5594  // and update MaskVals with new element order.
5595  BitVector InOrder(8);
5596  if (BestLoQuad >= 0) {
5597    SmallVector<int, 8> MaskV;
5598    for (int i = 0; i != 4; ++i) {
5599      int idx = MaskVals[i];
5600      if (idx < 0) {
5601        MaskV.push_back(-1);
5602        InOrder.set(i);
5603      } else if ((idx / 4) == BestLoQuad) {
5604        MaskV.push_back(idx & 3);
5605        InOrder.set(i);
5606      } else {
5607        MaskV.push_back(-1);
5608      }
5609    }
5610    for (unsigned i = 4; i != 8; ++i)
5611      MaskV.push_back(i);
5612    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5613                                &MaskV[0]);
5614
5615    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5616        (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5617      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5618                               NewV.getOperand(0),
5619                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5620                               DAG);
5621  }
5622
5623  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5624  // and update MaskVals with the new element order.
5625  if (BestHiQuad >= 0) {
5626    SmallVector<int, 8> MaskV;
5627    for (unsigned i = 0; i != 4; ++i)
5628      MaskV.push_back(i);
5629    for (unsigned i = 4; i != 8; ++i) {
5630      int idx = MaskVals[i];
5631      if (idx < 0) {
5632        MaskV.push_back(-1);
5633        InOrder.set(i);
5634      } else if ((idx / 4) == BestHiQuad) {
5635        MaskV.push_back((idx & 3) + 4);
5636        InOrder.set(i);
5637      } else {
5638        MaskV.push_back(-1);
5639      }
5640    }
5641    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5642                                &MaskV[0]);
5643
5644    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5645        (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5646      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5647                              NewV.getOperand(0),
5648                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5649                              DAG);
5650  }
5651
5652  // In case BestHi & BestLo were both -1, which means each quadword has a word
5653  // from each of the four input quadwords, calculate the InOrder bitvector now
5654  // before falling through to the insert/extract cleanup.
5655  if (BestLoQuad == -1 && BestHiQuad == -1) {
5656    NewV = V1;
5657    for (int i = 0; i != 8; ++i)
5658      if (MaskVals[i] < 0 || MaskVals[i] == i)
5659        InOrder.set(i);
5660  }
5661
5662  // The other elements are put in the right place using pextrw and pinsrw.
5663  for (unsigned i = 0; i != 8; ++i) {
5664    if (InOrder[i])
5665      continue;
5666    int EltIdx = MaskVals[i];
5667    if (EltIdx < 0)
5668      continue;
5669    SDValue ExtOp = (EltIdx < 8)
5670    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5671                  DAG.getIntPtrConstant(EltIdx))
5672    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5673                  DAG.getIntPtrConstant(EltIdx - 8));
5674    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5675                       DAG.getIntPtrConstant(i));
5676  }
5677  return NewV;
5678}
5679
5680// v16i8 shuffles - Prefer shuffles in the following order:
5681// 1. [ssse3] 1 x pshufb
5682// 2. [ssse3] 2 x pshufb + 1 x por
5683// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5684static
5685SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5686                                 SelectionDAG &DAG,
5687                                 const X86TargetLowering &TLI) {
5688  SDValue V1 = SVOp->getOperand(0);
5689  SDValue V2 = SVOp->getOperand(1);
5690  DebugLoc dl = SVOp->getDebugLoc();
5691  SmallVector<int, 16> MaskVals;
5692  SVOp->getMask(MaskVals);
5693
5694  // If we have SSSE3, case 1 is generated when all result bytes come from
5695  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5696  // present, fall back to case 3.
5697  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5698  bool V1Only = true;
5699  bool V2Only = true;
5700  for (unsigned i = 0; i < 16; ++i) {
5701    int EltIdx = MaskVals[i];
5702    if (EltIdx < 0)
5703      continue;
5704    if (EltIdx < 16)
5705      V2Only = false;
5706    else
5707      V1Only = false;
5708  }
5709
5710  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5711  if (TLI.getSubtarget()->hasSSSE3() || TLI.getSubtarget()->hasAVX()) {
5712    SmallVector<SDValue,16> pshufbMask;
5713
5714    // If all result elements are from one input vector, then only translate
5715    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5716    //
5717    // Otherwise, we have elements from both input vectors, and must zero out
5718    // elements that come from V2 in the first mask, and V1 in the second mask
5719    // so that we can OR them together.
5720    bool TwoInputs = !(V1Only || V2Only);
5721    for (unsigned i = 0; i != 16; ++i) {
5722      int EltIdx = MaskVals[i];
5723      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5724        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5725        continue;
5726      }
5727      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5728    }
5729    // If all the elements are from V2, assign it to V1 and return after
5730    // building the first pshufb.
5731    if (V2Only)
5732      V1 = V2;
5733    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5734                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5735                                 MVT::v16i8, &pshufbMask[0], 16));
5736    if (!TwoInputs)
5737      return V1;
5738
5739    // Calculate the shuffle mask for the second input, shuffle it, and
5740    // OR it with the first shuffled input.
5741    pshufbMask.clear();
5742    for (unsigned i = 0; i != 16; ++i) {
5743      int EltIdx = MaskVals[i];
5744      if (EltIdx < 16) {
5745        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5746        continue;
5747      }
5748      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5749    }
5750    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5751                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5752                                 MVT::v16i8, &pshufbMask[0], 16));
5753    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5754  }
5755
5756  // No SSSE3 - Calculate in place words and then fix all out of place words
5757  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5758  // the 16 different words that comprise the two doublequadword input vectors.
5759  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5760  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5761  SDValue NewV = V2Only ? V2 : V1;
5762  for (int i = 0; i != 8; ++i) {
5763    int Elt0 = MaskVals[i*2];
5764    int Elt1 = MaskVals[i*2+1];
5765
5766    // This word of the result is all undef, skip it.
5767    if (Elt0 < 0 && Elt1 < 0)
5768      continue;
5769
5770    // This word of the result is already in the correct place, skip it.
5771    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5772      continue;
5773    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5774      continue;
5775
5776    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5777    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5778    SDValue InsElt;
5779
5780    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5781    // using a single extract together, load it and store it.
5782    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5783      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5784                           DAG.getIntPtrConstant(Elt1 / 2));
5785      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5786                        DAG.getIntPtrConstant(i));
5787      continue;
5788    }
5789
5790    // If Elt1 is defined, extract it from the appropriate source.  If the
5791    // source byte is not also odd, shift the extracted word left 8 bits
5792    // otherwise clear the bottom 8 bits if we need to do an or.
5793    if (Elt1 >= 0) {
5794      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5795                           DAG.getIntPtrConstant(Elt1 / 2));
5796      if ((Elt1 & 1) == 0)
5797        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5798                             DAG.getConstant(8,
5799                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5800      else if (Elt0 >= 0)
5801        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5802                             DAG.getConstant(0xFF00, MVT::i16));
5803    }
5804    // If Elt0 is defined, extract it from the appropriate source.  If the
5805    // source byte is not also even, shift the extracted word right 8 bits. If
5806    // Elt1 was also defined, OR the extracted values together before
5807    // inserting them in the result.
5808    if (Elt0 >= 0) {
5809      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5810                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5811      if ((Elt0 & 1) != 0)
5812        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5813                              DAG.getConstant(8,
5814                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5815      else if (Elt1 >= 0)
5816        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5817                             DAG.getConstant(0x00FF, MVT::i16));
5818      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5819                         : InsElt0;
5820    }
5821    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5822                       DAG.getIntPtrConstant(i));
5823  }
5824  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5825}
5826
5827/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5828/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5829/// done when every pair / quad of shuffle mask elements point to elements in
5830/// the right sequence. e.g.
5831/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5832static
5833SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5834                                 SelectionDAG &DAG, DebugLoc dl) {
5835  EVT VT = SVOp->getValueType(0);
5836  SDValue V1 = SVOp->getOperand(0);
5837  SDValue V2 = SVOp->getOperand(1);
5838  unsigned NumElems = VT.getVectorNumElements();
5839  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5840  EVT NewVT;
5841  switch (VT.getSimpleVT().SimpleTy) {
5842  default: assert(false && "Unexpected!");
5843  case MVT::v4f32: NewVT = MVT::v2f64; break;
5844  case MVT::v4i32: NewVT = MVT::v2i64; break;
5845  case MVT::v8i16: NewVT = MVT::v4i32; break;
5846  case MVT::v16i8: NewVT = MVT::v4i32; break;
5847  }
5848
5849  int Scale = NumElems / NewWidth;
5850  SmallVector<int, 8> MaskVec;
5851  for (unsigned i = 0; i < NumElems; i += Scale) {
5852    int StartIdx = -1;
5853    for (int j = 0; j < Scale; ++j) {
5854      int EltIdx = SVOp->getMaskElt(i+j);
5855      if (EltIdx < 0)
5856        continue;
5857      if (StartIdx == -1)
5858        StartIdx = EltIdx - (EltIdx % Scale);
5859      if (EltIdx != StartIdx + j)
5860        return SDValue();
5861    }
5862    if (StartIdx == -1)
5863      MaskVec.push_back(-1);
5864    else
5865      MaskVec.push_back(StartIdx / Scale);
5866  }
5867
5868  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5869  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5870  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5871}
5872
5873/// getVZextMovL - Return a zero-extending vector move low node.
5874///
5875static SDValue getVZextMovL(EVT VT, EVT OpVT,
5876                            SDValue SrcOp, SelectionDAG &DAG,
5877                            const X86Subtarget *Subtarget, DebugLoc dl) {
5878  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5879    LoadSDNode *LD = NULL;
5880    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5881      LD = dyn_cast<LoadSDNode>(SrcOp);
5882    if (!LD) {
5883      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5884      // instead.
5885      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5886      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5887          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5888          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5889          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5890        // PR2108
5891        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5892        return DAG.getNode(ISD::BITCAST, dl, VT,
5893                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5894                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5895                                                   OpVT,
5896                                                   SrcOp.getOperand(0)
5897                                                          .getOperand(0))));
5898      }
5899    }
5900  }
5901
5902  return DAG.getNode(ISD::BITCAST, dl, VT,
5903                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5904                                 DAG.getNode(ISD::BITCAST, dl,
5905                                             OpVT, SrcOp)));
5906}
5907
5908/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5909/// shuffle node referes to only one lane in the sources.
5910static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5911  EVT VT = SVOp->getValueType(0);
5912  int NumElems = VT.getVectorNumElements();
5913  int HalfSize = NumElems/2;
5914  SmallVector<int, 16> M;
5915  SVOp->getMask(M);
5916  bool MatchA = false, MatchB = false;
5917
5918  for (int l = 0; l < NumElems*2; l += HalfSize) {
5919    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5920      MatchA = true;
5921      break;
5922    }
5923  }
5924
5925  for (int l = 0; l < NumElems*2; l += HalfSize) {
5926    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5927      MatchB = true;
5928      break;
5929    }
5930  }
5931
5932  return MatchA && MatchB;
5933}
5934
5935/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5936/// which could not be matched by any known target speficic shuffle
5937static SDValue
5938LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5939  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5940    // If each half of a vector shuffle node referes to only one lane in the
5941    // source vectors, extract each used 128-bit lane and shuffle them using
5942    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5943    // the work to the legalizer.
5944    DebugLoc dl = SVOp->getDebugLoc();
5945    EVT VT = SVOp->getValueType(0);
5946    int NumElems = VT.getVectorNumElements();
5947    int HalfSize = NumElems/2;
5948
5949    // Extract the reference for each half
5950    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5951    int FstVecOpNum = 0, SndVecOpNum = 0;
5952    for (int i = 0; i < HalfSize; ++i) {
5953      int Elt = SVOp->getMaskElt(i);
5954      if (SVOp->getMaskElt(i) < 0)
5955        continue;
5956      FstVecOpNum = Elt/NumElems;
5957      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5958      break;
5959    }
5960    for (int i = HalfSize; i < NumElems; ++i) {
5961      int Elt = SVOp->getMaskElt(i);
5962      if (SVOp->getMaskElt(i) < 0)
5963        continue;
5964      SndVecOpNum = Elt/NumElems;
5965      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5966      break;
5967    }
5968
5969    // Extract the subvectors
5970    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5971                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5972    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5973                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5974
5975    // Generate 128-bit shuffles
5976    SmallVector<int, 16> MaskV1, MaskV2;
5977    for (int i = 0; i < HalfSize; ++i) {
5978      int Elt = SVOp->getMaskElt(i);
5979      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5980    }
5981    for (int i = HalfSize; i < NumElems; ++i) {
5982      int Elt = SVOp->getMaskElt(i);
5983      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5984    }
5985
5986    EVT NVT = V1.getValueType();
5987    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
5988    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
5989
5990    // Concatenate the result back
5991    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
5992                                   DAG.getConstant(0, MVT::i32), DAG, dl);
5993    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5994                              DAG, dl);
5995  }
5996
5997  return SDValue();
5998}
5999
6000/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6001/// 4 elements, and match them with several different shuffle types.
6002static SDValue
6003LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6004  SDValue V1 = SVOp->getOperand(0);
6005  SDValue V2 = SVOp->getOperand(1);
6006  DebugLoc dl = SVOp->getDebugLoc();
6007  EVT VT = SVOp->getValueType(0);
6008
6009  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6010
6011  SmallVector<std::pair<int, int>, 8> Locs;
6012  Locs.resize(4);
6013  SmallVector<int, 8> Mask1(4U, -1);
6014  SmallVector<int, 8> PermMask;
6015  SVOp->getMask(PermMask);
6016
6017  unsigned NumHi = 0;
6018  unsigned NumLo = 0;
6019  for (unsigned i = 0; i != 4; ++i) {
6020    int Idx = PermMask[i];
6021    if (Idx < 0) {
6022      Locs[i] = std::make_pair(-1, -1);
6023    } else {
6024      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6025      if (Idx < 4) {
6026        Locs[i] = std::make_pair(0, NumLo);
6027        Mask1[NumLo] = Idx;
6028        NumLo++;
6029      } else {
6030        Locs[i] = std::make_pair(1, NumHi);
6031        if (2+NumHi < 4)
6032          Mask1[2+NumHi] = Idx;
6033        NumHi++;
6034      }
6035    }
6036  }
6037
6038  if (NumLo <= 2 && NumHi <= 2) {
6039    // If no more than two elements come from either vector. This can be
6040    // implemented with two shuffles. First shuffle gather the elements.
6041    // The second shuffle, which takes the first shuffle as both of its
6042    // vector operands, put the elements into the right order.
6043    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6044
6045    SmallVector<int, 8> Mask2(4U, -1);
6046
6047    for (unsigned i = 0; i != 4; ++i) {
6048      if (Locs[i].first == -1)
6049        continue;
6050      else {
6051        unsigned Idx = (i < 2) ? 0 : 4;
6052        Idx += Locs[i].first * 2 + Locs[i].second;
6053        Mask2[i] = Idx;
6054      }
6055    }
6056
6057    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6058  } else if (NumLo == 3 || NumHi == 3) {
6059    // Otherwise, we must have three elements from one vector, call it X, and
6060    // one element from the other, call it Y.  First, use a shufps to build an
6061    // intermediate vector with the one element from Y and the element from X
6062    // that will be in the same half in the final destination (the indexes don't
6063    // matter). Then, use a shufps to build the final vector, taking the half
6064    // containing the element from Y from the intermediate, and the other half
6065    // from X.
6066    if (NumHi == 3) {
6067      // Normalize it so the 3 elements come from V1.
6068      CommuteVectorShuffleMask(PermMask, VT);
6069      std::swap(V1, V2);
6070    }
6071
6072    // Find the element from V2.
6073    unsigned HiIndex;
6074    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6075      int Val = PermMask[HiIndex];
6076      if (Val < 0)
6077        continue;
6078      if (Val >= 4)
6079        break;
6080    }
6081
6082    Mask1[0] = PermMask[HiIndex];
6083    Mask1[1] = -1;
6084    Mask1[2] = PermMask[HiIndex^1];
6085    Mask1[3] = -1;
6086    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6087
6088    if (HiIndex >= 2) {
6089      Mask1[0] = PermMask[0];
6090      Mask1[1] = PermMask[1];
6091      Mask1[2] = HiIndex & 1 ? 6 : 4;
6092      Mask1[3] = HiIndex & 1 ? 4 : 6;
6093      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6094    } else {
6095      Mask1[0] = HiIndex & 1 ? 2 : 0;
6096      Mask1[1] = HiIndex & 1 ? 0 : 2;
6097      Mask1[2] = PermMask[2];
6098      Mask1[3] = PermMask[3];
6099      if (Mask1[2] >= 0)
6100        Mask1[2] += 4;
6101      if (Mask1[3] >= 0)
6102        Mask1[3] += 4;
6103      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6104    }
6105  }
6106
6107  // Break it into (shuffle shuffle_hi, shuffle_lo).
6108  Locs.clear();
6109  Locs.resize(4);
6110  SmallVector<int,8> LoMask(4U, -1);
6111  SmallVector<int,8> HiMask(4U, -1);
6112
6113  SmallVector<int,8> *MaskPtr = &LoMask;
6114  unsigned MaskIdx = 0;
6115  unsigned LoIdx = 0;
6116  unsigned HiIdx = 2;
6117  for (unsigned i = 0; i != 4; ++i) {
6118    if (i == 2) {
6119      MaskPtr = &HiMask;
6120      MaskIdx = 1;
6121      LoIdx = 0;
6122      HiIdx = 2;
6123    }
6124    int Idx = PermMask[i];
6125    if (Idx < 0) {
6126      Locs[i] = std::make_pair(-1, -1);
6127    } else if (Idx < 4) {
6128      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6129      (*MaskPtr)[LoIdx] = Idx;
6130      LoIdx++;
6131    } else {
6132      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6133      (*MaskPtr)[HiIdx] = Idx;
6134      HiIdx++;
6135    }
6136  }
6137
6138  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6139  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6140  SmallVector<int, 8> MaskOps;
6141  for (unsigned i = 0; i != 4; ++i) {
6142    if (Locs[i].first == -1) {
6143      MaskOps.push_back(-1);
6144    } else {
6145      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6146      MaskOps.push_back(Idx);
6147    }
6148  }
6149  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6150}
6151
6152static bool MayFoldVectorLoad(SDValue V) {
6153  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6154    V = V.getOperand(0);
6155  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6156    V = V.getOperand(0);
6157  if (MayFoldLoad(V))
6158    return true;
6159  return false;
6160}
6161
6162// FIXME: the version above should always be used. Since there's
6163// a bug where several vector shuffles can't be folded because the
6164// DAG is not updated during lowering and a node claims to have two
6165// uses while it only has one, use this version, and let isel match
6166// another instruction if the load really happens to have more than
6167// one use. Remove this version after this bug get fixed.
6168// rdar://8434668, PR8156
6169static bool RelaxedMayFoldVectorLoad(SDValue V) {
6170  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6171    V = V.getOperand(0);
6172  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6173    V = V.getOperand(0);
6174  if (ISD::isNormalLoad(V.getNode()))
6175    return true;
6176  return false;
6177}
6178
6179/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6180/// a vector extract, and if both can be later optimized into a single load.
6181/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6182/// here because otherwise a target specific shuffle node is going to be
6183/// emitted for this shuffle, and the optimization not done.
6184/// FIXME: This is probably not the best approach, but fix the problem
6185/// until the right path is decided.
6186static
6187bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6188                                         const TargetLowering &TLI) {
6189  EVT VT = V.getValueType();
6190  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6191
6192  // Be sure that the vector shuffle is present in a pattern like this:
6193  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6194  if (!V.hasOneUse())
6195    return false;
6196
6197  SDNode *N = *V.getNode()->use_begin();
6198  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6199    return false;
6200
6201  SDValue EltNo = N->getOperand(1);
6202  if (!isa<ConstantSDNode>(EltNo))
6203    return false;
6204
6205  // If the bit convert changed the number of elements, it is unsafe
6206  // to examine the mask.
6207  bool HasShuffleIntoBitcast = false;
6208  if (V.getOpcode() == ISD::BITCAST) {
6209    EVT SrcVT = V.getOperand(0).getValueType();
6210    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6211      return false;
6212    V = V.getOperand(0);
6213    HasShuffleIntoBitcast = true;
6214  }
6215
6216  // Select the input vector, guarding against out of range extract vector.
6217  unsigned NumElems = VT.getVectorNumElements();
6218  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6219  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6220  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6221
6222  // Skip one more bit_convert if necessary
6223  if (V.getOpcode() == ISD::BITCAST)
6224    V = V.getOperand(0);
6225
6226  if (ISD::isNormalLoad(V.getNode())) {
6227    // Is the original load suitable?
6228    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6229
6230    // FIXME: avoid the multi-use bug that is preventing lots of
6231    // of foldings to be detected, this is still wrong of course, but
6232    // give the temporary desired behavior, and if it happens that
6233    // the load has real more uses, during isel it will not fold, and
6234    // will generate poor code.
6235    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6236      return false;
6237
6238    if (!HasShuffleIntoBitcast)
6239      return true;
6240
6241    // If there's a bitcast before the shuffle, check if the load type and
6242    // alignment is valid.
6243    unsigned Align = LN0->getAlignment();
6244    unsigned NewAlign =
6245      TLI.getTargetData()->getABITypeAlignment(
6246                                    VT.getTypeForEVT(*DAG.getContext()));
6247
6248    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6249      return false;
6250  }
6251
6252  return true;
6253}
6254
6255static
6256SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6257  EVT VT = Op.getValueType();
6258
6259  // Canonizalize to v2f64.
6260  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6261  return DAG.getNode(ISD::BITCAST, dl, VT,
6262                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6263                                          V1, DAG));
6264}
6265
6266static
6267SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6268                        bool HasXMMInt) {
6269  SDValue V1 = Op.getOperand(0);
6270  SDValue V2 = Op.getOperand(1);
6271  EVT VT = Op.getValueType();
6272
6273  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6274
6275  if (HasXMMInt && VT == MVT::v2f64)
6276    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6277
6278  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6279  return DAG.getNode(ISD::BITCAST, dl, VT,
6280                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6281                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6282                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6283}
6284
6285static
6286SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6287  SDValue V1 = Op.getOperand(0);
6288  SDValue V2 = Op.getOperand(1);
6289  EVT VT = Op.getValueType();
6290
6291  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6292         "unsupported shuffle type");
6293
6294  if (V2.getOpcode() == ISD::UNDEF)
6295    V2 = V1;
6296
6297  // v4i32 or v4f32
6298  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6299}
6300
6301static inline unsigned getSHUFPOpcode(EVT VT) {
6302  switch(VT.getSimpleVT().SimpleTy) {
6303  case MVT::v8i32: // Use fp unit for int unpack.
6304  case MVT::v8f32:
6305  case MVT::v4i32: // Use fp unit for int unpack.
6306  case MVT::v4f32: return X86ISD::SHUFPS;
6307  case MVT::v4i64: // Use fp unit for int unpack.
6308  case MVT::v4f64:
6309  case MVT::v2i64: // Use fp unit for int unpack.
6310  case MVT::v2f64: return X86ISD::SHUFPD;
6311  default:
6312    llvm_unreachable("Unknown type for shufp*");
6313  }
6314  return 0;
6315}
6316
6317static
6318SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
6319  SDValue V1 = Op.getOperand(0);
6320  SDValue V2 = Op.getOperand(1);
6321  EVT VT = Op.getValueType();
6322  unsigned NumElems = VT.getVectorNumElements();
6323
6324  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6325  // operand of these instructions is only memory, so check if there's a
6326  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6327  // same masks.
6328  bool CanFoldLoad = false;
6329
6330  // Trivial case, when V2 comes from a load.
6331  if (MayFoldVectorLoad(V2))
6332    CanFoldLoad = true;
6333
6334  // When V1 is a load, it can be folded later into a store in isel, example:
6335  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6336  //    turns into:
6337  //  (MOVLPSmr addr:$src1, VR128:$src2)
6338  // So, recognize this potential and also use MOVLPS or MOVLPD
6339  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6340    CanFoldLoad = true;
6341
6342  // Both of them can't be memory operations though.
6343  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
6344    CanFoldLoad = false;
6345
6346  if (CanFoldLoad) {
6347    if (HasXMMInt && NumElems == 2)
6348      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6349
6350    if (NumElems == 4)
6351      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6352  }
6353
6354  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6355  // movl and movlp will both match v2i64, but v2i64 is never matched by
6356  // movl earlier because we make it strict to avoid messing with the movlp load
6357  // folding logic (see the code above getMOVLP call). Match it here then,
6358  // this is horrible, but will stay like this until we move all shuffle
6359  // matching to x86 specific nodes. Note that for the 1st condition all
6360  // types are matched with movsd.
6361  if (HasXMMInt) {
6362    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6363    // as to remove this logic from here, as much as possible
6364    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6365      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6366    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6367  }
6368
6369  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6370
6371  // Invert the operand order and use SHUFPS to match it.
6372  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6373                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6374}
6375
6376static inline unsigned getUNPCKLOpcode(EVT VT) {
6377  switch(VT.getSimpleVT().SimpleTy) {
6378  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
6379  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
6380  case MVT::v4f32: return X86ISD::UNPCKLPS;
6381  case MVT::v2f64: return X86ISD::UNPCKLPD;
6382  case MVT::v8i32: // Use fp unit for int unpack.
6383  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
6384  case MVT::v4i64: // Use fp unit for int unpack.
6385  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
6386  case MVT::v16i8: return X86ISD::PUNPCKLBW;
6387  case MVT::v8i16: return X86ISD::PUNPCKLWD;
6388  default:
6389    llvm_unreachable("Unknown type for unpckl");
6390  }
6391  return 0;
6392}
6393
6394static inline unsigned getUNPCKHOpcode(EVT VT) {
6395  switch(VT.getSimpleVT().SimpleTy) {
6396  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
6397  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
6398  case MVT::v4f32: return X86ISD::UNPCKHPS;
6399  case MVT::v2f64: return X86ISD::UNPCKHPD;
6400  case MVT::v8i32: // Use fp unit for int unpack.
6401  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
6402  case MVT::v4i64: // Use fp unit for int unpack.
6403  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
6404  case MVT::v16i8: return X86ISD::PUNPCKHBW;
6405  case MVT::v8i16: return X86ISD::PUNPCKHWD;
6406  default:
6407    llvm_unreachable("Unknown type for unpckh");
6408  }
6409  return 0;
6410}
6411
6412static inline unsigned getVPERMILOpcode(EVT VT) {
6413  switch(VT.getSimpleVT().SimpleTy) {
6414  case MVT::v4i32:
6415  case MVT::v4f32: return X86ISD::VPERMILPS;
6416  case MVT::v2i64:
6417  case MVT::v2f64: return X86ISD::VPERMILPD;
6418  case MVT::v8i32:
6419  case MVT::v8f32: return X86ISD::VPERMILPSY;
6420  case MVT::v4i64:
6421  case MVT::v4f64: return X86ISD::VPERMILPDY;
6422  default:
6423    llvm_unreachable("Unknown type for vpermil");
6424  }
6425  return 0;
6426}
6427
6428/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
6429/// a vbroadcast node. The nodes are suitable whenever we can fold a load coming
6430/// from a 32 or 64 bit scalar. Update Op to the desired load to be folded.
6431static bool isVectorBroadcast(SDValue &Op) {
6432  EVT VT = Op.getValueType();
6433  bool Is256 = VT.getSizeInBits() == 256;
6434
6435  assert((VT.getSizeInBits() == 128 || Is256) &&
6436         "Unsupported type for vbroadcast node");
6437
6438  SDValue V = Op;
6439  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6440    V = V.getOperand(0);
6441
6442  if (Is256 && !(V.hasOneUse() &&
6443                 V.getOpcode() == ISD::INSERT_SUBVECTOR &&
6444                 V.getOperand(0).getOpcode() == ISD::UNDEF))
6445    return false;
6446
6447  if (Is256)
6448    V = V.getOperand(1);
6449
6450  if (!V.hasOneUse())
6451    return false;
6452
6453  // Check the source scalar_to_vector type. 256-bit broadcasts are
6454  // supported for 32/64-bit sizes, while 128-bit ones are only supported
6455  // for 32-bit scalars.
6456  if (V.getOpcode() != ISD::SCALAR_TO_VECTOR)
6457    return false;
6458
6459  unsigned ScalarSize = V.getOperand(0).getValueType().getSizeInBits();
6460  if (ScalarSize != 32 && ScalarSize != 64)
6461    return false;
6462  if (!Is256 && ScalarSize == 64)
6463    return false;
6464
6465  V = V.getOperand(0);
6466  if (!MayFoldLoad(V))
6467    return false;
6468
6469  // Return the load node
6470  Op = V;
6471  return true;
6472}
6473
6474static
6475SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6476                               const TargetLowering &TLI,
6477                               const X86Subtarget *Subtarget) {
6478  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6479  EVT VT = Op.getValueType();
6480  DebugLoc dl = Op.getDebugLoc();
6481  SDValue V1 = Op.getOperand(0);
6482  SDValue V2 = Op.getOperand(1);
6483
6484  if (isZeroShuffle(SVOp))
6485    return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
6486
6487  // Handle splat operations
6488  if (SVOp->isSplat()) {
6489    unsigned NumElem = VT.getVectorNumElements();
6490    int Size = VT.getSizeInBits();
6491    // Special case, this is the only place now where it's allowed to return
6492    // a vector_shuffle operation without using a target specific node, because
6493    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6494    // this be moved to DAGCombine instead?
6495    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6496      return Op;
6497
6498    // Use vbroadcast whenever the splat comes from a foldable load
6499    if (Subtarget->hasAVX() && isVectorBroadcast(V1))
6500      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, V1);
6501
6502    // Handle splats by matching through known shuffle masks
6503    if ((Size == 128 && NumElem <= 4) ||
6504        (Size == 256 && NumElem < 8))
6505      return SDValue();
6506
6507    // All remaning splats are promoted to target supported vector shuffles.
6508    return PromoteSplat(SVOp, DAG);
6509  }
6510
6511  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6512  // do it!
6513  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6514    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6515    if (NewOp.getNode())
6516      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6517  } else if ((VT == MVT::v4i32 ||
6518             (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
6519    // FIXME: Figure out a cleaner way to do this.
6520    // Try to make use of movq to zero out the top part.
6521    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6522      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6523      if (NewOp.getNode()) {
6524        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6525          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6526                              DAG, Subtarget, dl);
6527      }
6528    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6529      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6530      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6531        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6532                            DAG, Subtarget, dl);
6533    }
6534  }
6535  return SDValue();
6536}
6537
6538SDValue
6539X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6540  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6541  SDValue V1 = Op.getOperand(0);
6542  SDValue V2 = Op.getOperand(1);
6543  EVT VT = Op.getValueType();
6544  DebugLoc dl = Op.getDebugLoc();
6545  unsigned NumElems = VT.getVectorNumElements();
6546  bool isMMX = VT.getSizeInBits() == 64;
6547  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6548  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6549  bool V1IsSplat = false;
6550  bool V2IsSplat = false;
6551  bool HasXMMInt = Subtarget->hasXMMInt();
6552  MachineFunction &MF = DAG.getMachineFunction();
6553  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6554
6555  // Shuffle operations on MMX not supported.
6556  if (isMMX)
6557    return Op;
6558
6559  // Vector shuffle lowering takes 3 steps:
6560  //
6561  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6562  //    narrowing and commutation of operands should be handled.
6563  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6564  //    shuffle nodes.
6565  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6566  //    so the shuffle can be broken into other shuffles and the legalizer can
6567  //    try the lowering again.
6568  //
6569  // The general ideia is that no vector_shuffle operation should be left to
6570  // be matched during isel, all of them must be converted to a target specific
6571  // node here.
6572
6573  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6574  // narrowing and commutation of operands should be handled. The actual code
6575  // doesn't include all of those, work in progress...
6576  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6577  if (NewOp.getNode())
6578    return NewOp;
6579
6580  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6581  // unpckh_undef). Only use pshufd if speed is more important than size.
6582  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6583    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6584  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6585    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6586
6587  if (X86::isMOVDDUPMask(SVOp) &&
6588      (Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
6589      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6590    return getMOVDDup(Op, dl, V1, DAG);
6591
6592  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6593    return getMOVHighToLow(Op, dl, DAG);
6594
6595  // Use to match splats
6596  if (HasXMMInt && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6597      (VT == MVT::v2f64 || VT == MVT::v2i64))
6598    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6599
6600  if (X86::isPSHUFDMask(SVOp)) {
6601    // The actual implementation will match the mask in the if above and then
6602    // during isel it can match several different instructions, not only pshufd
6603    // as its name says, sad but true, emulate the behavior for now...
6604    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6605        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6606
6607    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6608
6609    if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
6610      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6611
6612    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6613                                TargetMask, DAG);
6614  }
6615
6616  // Check if this can be converted into a logical shift.
6617  bool isLeft = false;
6618  unsigned ShAmt = 0;
6619  SDValue ShVal;
6620  bool isShift = getSubtarget()->hasXMMInt() &&
6621                 isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6622  if (isShift && ShVal.hasOneUse()) {
6623    // If the shifted value has multiple uses, it may be cheaper to use
6624    // v_set0 + movlhps or movhlps, etc.
6625    EVT EltVT = VT.getVectorElementType();
6626    ShAmt *= EltVT.getSizeInBits();
6627    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6628  }
6629
6630  if (X86::isMOVLMask(SVOp)) {
6631    if (V1IsUndef)
6632      return V2;
6633    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6634      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6635    if (!X86::isMOVLPMask(SVOp)) {
6636      if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
6637        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6638
6639      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6640        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6641    }
6642  }
6643
6644  // FIXME: fold these into legal mask.
6645  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6646    return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
6647
6648  if (X86::isMOVHLPSMask(SVOp))
6649    return getMOVHighToLow(Op, dl, DAG);
6650
6651  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6652    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6653
6654  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6655    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6656
6657  if (X86::isMOVLPMask(SVOp))
6658    return getMOVLP(Op, dl, DAG, HasXMMInt);
6659
6660  if (ShouldXformToMOVHLPS(SVOp) ||
6661      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6662    return CommuteVectorShuffle(SVOp, DAG);
6663
6664  if (isShift) {
6665    // No better options. Use a vshl / vsrl.
6666    EVT EltVT = VT.getVectorElementType();
6667    ShAmt *= EltVT.getSizeInBits();
6668    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6669  }
6670
6671  bool Commuted = false;
6672  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6673  // 1,1,1,1 -> v8i16 though.
6674  V1IsSplat = isSplatVector(V1.getNode());
6675  V2IsSplat = isSplatVector(V2.getNode());
6676
6677  // Canonicalize the splat or undef, if present, to be on the RHS.
6678  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6679    Op = CommuteVectorShuffle(SVOp, DAG);
6680    SVOp = cast<ShuffleVectorSDNode>(Op);
6681    V1 = SVOp->getOperand(0);
6682    V2 = SVOp->getOperand(1);
6683    std::swap(V1IsSplat, V2IsSplat);
6684    std::swap(V1IsUndef, V2IsUndef);
6685    Commuted = true;
6686  }
6687
6688  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6689    // Shuffling low element of v1 into undef, just return v1.
6690    if (V2IsUndef)
6691      return V1;
6692    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6693    // the instruction selector will not match, so get a canonical MOVL with
6694    // swapped operands to undo the commute.
6695    return getMOVL(DAG, dl, VT, V2, V1);
6696  }
6697
6698  if (X86::isUNPCKLMask(SVOp))
6699    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6700
6701  if (X86::isUNPCKHMask(SVOp))
6702    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6703
6704  if (V2IsSplat) {
6705    // Normalize mask so all entries that point to V2 points to its first
6706    // element then try to match unpck{h|l} again. If match, return a
6707    // new vector_shuffle with the corrected mask.
6708    SDValue NewMask = NormalizeMask(SVOp, DAG);
6709    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6710    if (NSVOp != SVOp) {
6711      if (X86::isUNPCKLMask(NSVOp, true)) {
6712        return NewMask;
6713      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6714        return NewMask;
6715      }
6716    }
6717  }
6718
6719  if (Commuted) {
6720    // Commute is back and try unpck* again.
6721    // FIXME: this seems wrong.
6722    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6723    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6724
6725    if (X86::isUNPCKLMask(NewSVOp))
6726      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6727
6728    if (X86::isUNPCKHMask(NewSVOp))
6729      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6730  }
6731
6732  // Normalize the node to match x86 shuffle ops if needed
6733  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6734    return CommuteVectorShuffle(SVOp, DAG);
6735
6736  // The checks below are all present in isShuffleMaskLegal, but they are
6737  // inlined here right now to enable us to directly emit target specific
6738  // nodes, and remove one by one until they don't return Op anymore.
6739  SmallVector<int, 16> M;
6740  SVOp->getMask(M);
6741
6742  if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()))
6743    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6744                                X86::getShufflePALIGNRImmediate(SVOp),
6745                                DAG);
6746
6747  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6748      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6749    if (VT == MVT::v2f64)
6750      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6751    if (VT == MVT::v2i64)
6752      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6753  }
6754
6755  if (isPSHUFHWMask(M, VT))
6756    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6757                                X86::getShufflePSHUFHWImmediate(SVOp),
6758                                DAG);
6759
6760  if (isPSHUFLWMask(M, VT))
6761    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6762                                X86::getShufflePSHUFLWImmediate(SVOp),
6763                                DAG);
6764
6765  if (isSHUFPMask(M, VT))
6766    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6767                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6768
6769  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6770    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6771  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6772    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6773
6774  //===--------------------------------------------------------------------===//
6775  // Generate target specific nodes for 128 or 256-bit shuffles only
6776  // supported in the AVX instruction set.
6777  //
6778
6779  // Handle VMOVDDUPY permutations
6780  if (isMOVDDUPYMask(SVOp, Subtarget))
6781    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6782
6783  // Handle VPERMILPS* permutations
6784  if (isVPERMILPSMask(M, VT, Subtarget))
6785    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6786                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6787
6788  // Handle VPERMILPD* permutations
6789  if (isVPERMILPDMask(M, VT, Subtarget))
6790    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6791                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6792
6793  // Handle VPERM2F128 permutations
6794  if (isVPERM2F128Mask(M, VT, Subtarget))
6795    return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
6796                                getShuffleVPERM2F128Immediate(SVOp), DAG);
6797
6798  // Handle VSHUFPSY permutations
6799  if (isVSHUFPSYMask(M, VT, Subtarget))
6800    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6801                                getShuffleVSHUFPSYImmediate(SVOp), DAG);
6802
6803  // Handle VSHUFPDY permutations
6804  if (isVSHUFPDYMask(M, VT, Subtarget))
6805    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6806                                getShuffleVSHUFPDYImmediate(SVOp), DAG);
6807
6808  //===--------------------------------------------------------------------===//
6809  // Since no target specific shuffle was selected for this generic one,
6810  // lower it into other known shuffles. FIXME: this isn't true yet, but
6811  // this is the plan.
6812  //
6813
6814  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6815  if (VT == MVT::v8i16) {
6816    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6817    if (NewOp.getNode())
6818      return NewOp;
6819  }
6820
6821  if (VT == MVT::v16i8) {
6822    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6823    if (NewOp.getNode())
6824      return NewOp;
6825  }
6826
6827  // Handle all 128-bit wide vectors with 4 elements, and match them with
6828  // several different shuffle types.
6829  if (NumElems == 4 && VT.getSizeInBits() == 128)
6830    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6831
6832  // Handle general 256-bit shuffles
6833  if (VT.is256BitVector())
6834    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6835
6836  return SDValue();
6837}
6838
6839SDValue
6840X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6841                                                SelectionDAG &DAG) const {
6842  EVT VT = Op.getValueType();
6843  DebugLoc dl = Op.getDebugLoc();
6844
6845  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6846    return SDValue();
6847
6848  if (VT.getSizeInBits() == 8) {
6849    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6850                                    Op.getOperand(0), Op.getOperand(1));
6851    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6852                                    DAG.getValueType(VT));
6853    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6854  } else if (VT.getSizeInBits() == 16) {
6855    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6856    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6857    if (Idx == 0)
6858      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6859                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6860                                     DAG.getNode(ISD::BITCAST, dl,
6861                                                 MVT::v4i32,
6862                                                 Op.getOperand(0)),
6863                                     Op.getOperand(1)));
6864    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6865                                    Op.getOperand(0), Op.getOperand(1));
6866    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6867                                    DAG.getValueType(VT));
6868    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6869  } else if (VT == MVT::f32) {
6870    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6871    // the result back to FR32 register. It's only worth matching if the
6872    // result has a single use which is a store or a bitcast to i32.  And in
6873    // the case of a store, it's not worth it if the index is a constant 0,
6874    // because a MOVSSmr can be used instead, which is smaller and faster.
6875    if (!Op.hasOneUse())
6876      return SDValue();
6877    SDNode *User = *Op.getNode()->use_begin();
6878    if ((User->getOpcode() != ISD::STORE ||
6879         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6880          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6881        (User->getOpcode() != ISD::BITCAST ||
6882         User->getValueType(0) != MVT::i32))
6883      return SDValue();
6884    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6885                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6886                                              Op.getOperand(0)),
6887                                              Op.getOperand(1));
6888    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6889  } else if (VT == MVT::i32) {
6890    // ExtractPS works with constant index.
6891    if (isa<ConstantSDNode>(Op.getOperand(1)))
6892      return Op;
6893  }
6894  return SDValue();
6895}
6896
6897
6898SDValue
6899X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6900                                           SelectionDAG &DAG) const {
6901  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6902    return SDValue();
6903
6904  SDValue Vec = Op.getOperand(0);
6905  EVT VecVT = Vec.getValueType();
6906
6907  // If this is a 256-bit vector result, first extract the 128-bit vector and
6908  // then extract the element from the 128-bit vector.
6909  if (VecVT.getSizeInBits() == 256) {
6910    DebugLoc dl = Op.getNode()->getDebugLoc();
6911    unsigned NumElems = VecVT.getVectorNumElements();
6912    SDValue Idx = Op.getOperand(1);
6913    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6914
6915    // Get the 128-bit vector.
6916    bool Upper = IdxVal >= NumElems/2;
6917    Vec = Extract128BitVector(Vec,
6918                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6919
6920    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6921                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6922  }
6923
6924  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6925
6926  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
6927    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6928    if (Res.getNode())
6929      return Res;
6930  }
6931
6932  EVT VT = Op.getValueType();
6933  DebugLoc dl = Op.getDebugLoc();
6934  // TODO: handle v16i8.
6935  if (VT.getSizeInBits() == 16) {
6936    SDValue Vec = Op.getOperand(0);
6937    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6938    if (Idx == 0)
6939      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6940                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6941                                     DAG.getNode(ISD::BITCAST, dl,
6942                                                 MVT::v4i32, Vec),
6943                                     Op.getOperand(1)));
6944    // Transform it so it match pextrw which produces a 32-bit result.
6945    EVT EltVT = MVT::i32;
6946    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6947                                    Op.getOperand(0), Op.getOperand(1));
6948    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6949                                    DAG.getValueType(VT));
6950    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6951  } else if (VT.getSizeInBits() == 32) {
6952    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6953    if (Idx == 0)
6954      return Op;
6955
6956    // SHUFPS the element to the lowest double word, then movss.
6957    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6958    EVT VVT = Op.getOperand(0).getValueType();
6959    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6960                                       DAG.getUNDEF(VVT), Mask);
6961    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6962                       DAG.getIntPtrConstant(0));
6963  } else if (VT.getSizeInBits() == 64) {
6964    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6965    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6966    //        to match extract_elt for f64.
6967    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6968    if (Idx == 0)
6969      return Op;
6970
6971    // UNPCKHPD the element to the lowest double word, then movsd.
6972    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6973    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6974    int Mask[2] = { 1, -1 };
6975    EVT VVT = Op.getOperand(0).getValueType();
6976    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6977                                       DAG.getUNDEF(VVT), Mask);
6978    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6979                       DAG.getIntPtrConstant(0));
6980  }
6981
6982  return SDValue();
6983}
6984
6985SDValue
6986X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6987                                               SelectionDAG &DAG) const {
6988  EVT VT = Op.getValueType();
6989  EVT EltVT = VT.getVectorElementType();
6990  DebugLoc dl = Op.getDebugLoc();
6991
6992  SDValue N0 = Op.getOperand(0);
6993  SDValue N1 = Op.getOperand(1);
6994  SDValue N2 = Op.getOperand(2);
6995
6996  if (VT.getSizeInBits() == 256)
6997    return SDValue();
6998
6999  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7000      isa<ConstantSDNode>(N2)) {
7001    unsigned Opc;
7002    if (VT == MVT::v8i16)
7003      Opc = X86ISD::PINSRW;
7004    else if (VT == MVT::v16i8)
7005      Opc = X86ISD::PINSRB;
7006    else
7007      Opc = X86ISD::PINSRB;
7008
7009    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7010    // argument.
7011    if (N1.getValueType() != MVT::i32)
7012      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7013    if (N2.getValueType() != MVT::i32)
7014      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7015    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7016  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7017    // Bits [7:6] of the constant are the source select.  This will always be
7018    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7019    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7020    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7021    // Bits [5:4] of the constant are the destination select.  This is the
7022    //  value of the incoming immediate.
7023    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7024    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7025    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7026    // Create this as a scalar to vector..
7027    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7028    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7029  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
7030    // PINSR* works with constant index.
7031    return Op;
7032  }
7033  return SDValue();
7034}
7035
7036SDValue
7037X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7038  EVT VT = Op.getValueType();
7039  EVT EltVT = VT.getVectorElementType();
7040
7041  DebugLoc dl = Op.getDebugLoc();
7042  SDValue N0 = Op.getOperand(0);
7043  SDValue N1 = Op.getOperand(1);
7044  SDValue N2 = Op.getOperand(2);
7045
7046  // If this is a 256-bit vector result, first extract the 128-bit vector,
7047  // insert the element into the extracted half and then place it back.
7048  if (VT.getSizeInBits() == 256) {
7049    if (!isa<ConstantSDNode>(N2))
7050      return SDValue();
7051
7052    // Get the desired 128-bit vector half.
7053    unsigned NumElems = VT.getVectorNumElements();
7054    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7055    bool Upper = IdxVal >= NumElems/2;
7056    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
7057    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
7058
7059    // Insert the element into the desired half.
7060    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
7061                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
7062
7063    // Insert the changed part back to the 256-bit vector
7064    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7065  }
7066
7067  if (Subtarget->hasSSE41() || Subtarget->hasAVX())
7068    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7069
7070  if (EltVT == MVT::i8)
7071    return SDValue();
7072
7073  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7074    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7075    // as its second argument.
7076    if (N1.getValueType() != MVT::i32)
7077      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7078    if (N2.getValueType() != MVT::i32)
7079      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7080    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7081  }
7082  return SDValue();
7083}
7084
7085SDValue
7086X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7087  LLVMContext *Context = DAG.getContext();
7088  DebugLoc dl = Op.getDebugLoc();
7089  EVT OpVT = Op.getValueType();
7090
7091  // If this is a 256-bit vector result, first insert into a 128-bit
7092  // vector and then insert into the 256-bit vector.
7093  if (OpVT.getSizeInBits() > 128) {
7094    // Insert into a 128-bit vector.
7095    EVT VT128 = EVT::getVectorVT(*Context,
7096                                 OpVT.getVectorElementType(),
7097                                 OpVT.getVectorNumElements() / 2);
7098
7099    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7100
7101    // Insert the 128-bit vector.
7102    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7103                              DAG.getConstant(0, MVT::i32),
7104                              DAG, dl);
7105  }
7106
7107  if (Op.getValueType() == MVT::v1i64 &&
7108      Op.getOperand(0).getValueType() == MVT::i64)
7109    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7110
7111  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7112  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7113         "Expected an SSE type!");
7114  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7115                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7116}
7117
7118// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7119// a simple subregister reference or explicit instructions to grab
7120// upper bits of a vector.
7121SDValue
7122X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7123  if (Subtarget->hasAVX()) {
7124    DebugLoc dl = Op.getNode()->getDebugLoc();
7125    SDValue Vec = Op.getNode()->getOperand(0);
7126    SDValue Idx = Op.getNode()->getOperand(1);
7127
7128    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7129        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7130        return Extract128BitVector(Vec, Idx, DAG, dl);
7131    }
7132  }
7133  return SDValue();
7134}
7135
7136// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7137// simple superregister reference or explicit instructions to insert
7138// the upper bits of a vector.
7139SDValue
7140X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7141  if (Subtarget->hasAVX()) {
7142    DebugLoc dl = Op.getNode()->getDebugLoc();
7143    SDValue Vec = Op.getNode()->getOperand(0);
7144    SDValue SubVec = Op.getNode()->getOperand(1);
7145    SDValue Idx = Op.getNode()->getOperand(2);
7146
7147    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7148        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7149      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7150    }
7151  }
7152  return SDValue();
7153}
7154
7155// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7156// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7157// one of the above mentioned nodes. It has to be wrapped because otherwise
7158// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7159// be used to form addressing mode. These wrapped nodes will be selected
7160// into MOV32ri.
7161SDValue
7162X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7163  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7164
7165  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7166  // global base reg.
7167  unsigned char OpFlag = 0;
7168  unsigned WrapperKind = X86ISD::Wrapper;
7169  CodeModel::Model M = getTargetMachine().getCodeModel();
7170
7171  if (Subtarget->isPICStyleRIPRel() &&
7172      (M == CodeModel::Small || M == CodeModel::Kernel))
7173    WrapperKind = X86ISD::WrapperRIP;
7174  else if (Subtarget->isPICStyleGOT())
7175    OpFlag = X86II::MO_GOTOFF;
7176  else if (Subtarget->isPICStyleStubPIC())
7177    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7178
7179  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7180                                             CP->getAlignment(),
7181                                             CP->getOffset(), OpFlag);
7182  DebugLoc DL = CP->getDebugLoc();
7183  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7184  // With PIC, the address is actually $g + Offset.
7185  if (OpFlag) {
7186    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7187                         DAG.getNode(X86ISD::GlobalBaseReg,
7188                                     DebugLoc(), getPointerTy()),
7189                         Result);
7190  }
7191
7192  return Result;
7193}
7194
7195SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7196  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7197
7198  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7199  // global base reg.
7200  unsigned char OpFlag = 0;
7201  unsigned WrapperKind = X86ISD::Wrapper;
7202  CodeModel::Model M = getTargetMachine().getCodeModel();
7203
7204  if (Subtarget->isPICStyleRIPRel() &&
7205      (M == CodeModel::Small || M == CodeModel::Kernel))
7206    WrapperKind = X86ISD::WrapperRIP;
7207  else if (Subtarget->isPICStyleGOT())
7208    OpFlag = X86II::MO_GOTOFF;
7209  else if (Subtarget->isPICStyleStubPIC())
7210    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7211
7212  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7213                                          OpFlag);
7214  DebugLoc DL = JT->getDebugLoc();
7215  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7216
7217  // With PIC, the address is actually $g + Offset.
7218  if (OpFlag)
7219    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7220                         DAG.getNode(X86ISD::GlobalBaseReg,
7221                                     DebugLoc(), getPointerTy()),
7222                         Result);
7223
7224  return Result;
7225}
7226
7227SDValue
7228X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7229  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7230
7231  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7232  // global base reg.
7233  unsigned char OpFlag = 0;
7234  unsigned WrapperKind = X86ISD::Wrapper;
7235  CodeModel::Model M = getTargetMachine().getCodeModel();
7236
7237  if (Subtarget->isPICStyleRIPRel() &&
7238      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7239    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7240      OpFlag = X86II::MO_GOTPCREL;
7241    WrapperKind = X86ISD::WrapperRIP;
7242  } else if (Subtarget->isPICStyleGOT()) {
7243    OpFlag = X86II::MO_GOT;
7244  } else if (Subtarget->isPICStyleStubPIC()) {
7245    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7246  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7247    OpFlag = X86II::MO_DARWIN_NONLAZY;
7248  }
7249
7250  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7251
7252  DebugLoc DL = Op.getDebugLoc();
7253  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7254
7255
7256  // With PIC, the address is actually $g + Offset.
7257  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7258      !Subtarget->is64Bit()) {
7259    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7260                         DAG.getNode(X86ISD::GlobalBaseReg,
7261                                     DebugLoc(), getPointerTy()),
7262                         Result);
7263  }
7264
7265  // For symbols that require a load from a stub to get the address, emit the
7266  // load.
7267  if (isGlobalStubReference(OpFlag))
7268    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7269                         MachinePointerInfo::getGOT(), false, false, 0);
7270
7271  return Result;
7272}
7273
7274SDValue
7275X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7276  // Create the TargetBlockAddressAddress node.
7277  unsigned char OpFlags =
7278    Subtarget->ClassifyBlockAddressReference();
7279  CodeModel::Model M = getTargetMachine().getCodeModel();
7280  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7281  DebugLoc dl = Op.getDebugLoc();
7282  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7283                                       /*isTarget=*/true, OpFlags);
7284
7285  if (Subtarget->isPICStyleRIPRel() &&
7286      (M == CodeModel::Small || M == CodeModel::Kernel))
7287    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7288  else
7289    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7290
7291  // With PIC, the address is actually $g + Offset.
7292  if (isGlobalRelativeToPICBase(OpFlags)) {
7293    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7294                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7295                         Result);
7296  }
7297
7298  return Result;
7299}
7300
7301SDValue
7302X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7303                                      int64_t Offset,
7304                                      SelectionDAG &DAG) const {
7305  // Create the TargetGlobalAddress node, folding in the constant
7306  // offset if it is legal.
7307  unsigned char OpFlags =
7308    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7309  CodeModel::Model M = getTargetMachine().getCodeModel();
7310  SDValue Result;
7311  if (OpFlags == X86II::MO_NO_FLAG &&
7312      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7313    // A direct static reference to a global.
7314    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7315    Offset = 0;
7316  } else {
7317    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7318  }
7319
7320  if (Subtarget->isPICStyleRIPRel() &&
7321      (M == CodeModel::Small || M == CodeModel::Kernel))
7322    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7323  else
7324    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7325
7326  // With PIC, the address is actually $g + Offset.
7327  if (isGlobalRelativeToPICBase(OpFlags)) {
7328    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7329                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7330                         Result);
7331  }
7332
7333  // For globals that require a load from a stub to get the address, emit the
7334  // load.
7335  if (isGlobalStubReference(OpFlags))
7336    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7337                         MachinePointerInfo::getGOT(), false, false, 0);
7338
7339  // If there was a non-zero offset that we didn't fold, create an explicit
7340  // addition for it.
7341  if (Offset != 0)
7342    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7343                         DAG.getConstant(Offset, getPointerTy()));
7344
7345  return Result;
7346}
7347
7348SDValue
7349X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7350  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7351  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7352  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7353}
7354
7355static SDValue
7356GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7357           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7358           unsigned char OperandFlags) {
7359  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7360  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7361  DebugLoc dl = GA->getDebugLoc();
7362  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7363                                           GA->getValueType(0),
7364                                           GA->getOffset(),
7365                                           OperandFlags);
7366  if (InFlag) {
7367    SDValue Ops[] = { Chain,  TGA, *InFlag };
7368    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7369  } else {
7370    SDValue Ops[]  = { Chain, TGA };
7371    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7372  }
7373
7374  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7375  MFI->setAdjustsStack(true);
7376
7377  SDValue Flag = Chain.getValue(1);
7378  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7379}
7380
7381// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7382static SDValue
7383LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7384                                const EVT PtrVT) {
7385  SDValue InFlag;
7386  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7387  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7388                                     DAG.getNode(X86ISD::GlobalBaseReg,
7389                                                 DebugLoc(), PtrVT), InFlag);
7390  InFlag = Chain.getValue(1);
7391
7392  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7393}
7394
7395// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7396static SDValue
7397LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7398                                const EVT PtrVT) {
7399  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7400                    X86::RAX, X86II::MO_TLSGD);
7401}
7402
7403// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7404// "local exec" model.
7405static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7406                                   const EVT PtrVT, TLSModel::Model model,
7407                                   bool is64Bit) {
7408  DebugLoc dl = GA->getDebugLoc();
7409
7410  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7411  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7412                                                         is64Bit ? 257 : 256));
7413
7414  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7415                                      DAG.getIntPtrConstant(0),
7416                                      MachinePointerInfo(Ptr), false, false, 0);
7417
7418  unsigned char OperandFlags = 0;
7419  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7420  // initialexec.
7421  unsigned WrapperKind = X86ISD::Wrapper;
7422  if (model == TLSModel::LocalExec) {
7423    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7424  } else if (is64Bit) {
7425    assert(model == TLSModel::InitialExec);
7426    OperandFlags = X86II::MO_GOTTPOFF;
7427    WrapperKind = X86ISD::WrapperRIP;
7428  } else {
7429    assert(model == TLSModel::InitialExec);
7430    OperandFlags = X86II::MO_INDNTPOFF;
7431  }
7432
7433  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7434  // exec)
7435  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7436                                           GA->getValueType(0),
7437                                           GA->getOffset(), OperandFlags);
7438  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7439
7440  if (model == TLSModel::InitialExec)
7441    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7442                         MachinePointerInfo::getGOT(), false, false, 0);
7443
7444  // The address of the thread local variable is the add of the thread
7445  // pointer with the offset of the variable.
7446  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7447}
7448
7449SDValue
7450X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7451
7452  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7453  const GlobalValue *GV = GA->getGlobal();
7454
7455  if (Subtarget->isTargetELF()) {
7456    // TODO: implement the "local dynamic" model
7457    // TODO: implement the "initial exec"model for pic executables
7458
7459    // If GV is an alias then use the aliasee for determining
7460    // thread-localness.
7461    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7462      GV = GA->resolveAliasedGlobal(false);
7463
7464    TLSModel::Model model
7465      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7466
7467    switch (model) {
7468      case TLSModel::GeneralDynamic:
7469      case TLSModel::LocalDynamic: // not implemented
7470        if (Subtarget->is64Bit())
7471          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7472        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7473
7474      case TLSModel::InitialExec:
7475      case TLSModel::LocalExec:
7476        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7477                                   Subtarget->is64Bit());
7478    }
7479  } else if (Subtarget->isTargetDarwin()) {
7480    // Darwin only has one model of TLS.  Lower to that.
7481    unsigned char OpFlag = 0;
7482    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7483                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7484
7485    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7486    // global base reg.
7487    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7488                  !Subtarget->is64Bit();
7489    if (PIC32)
7490      OpFlag = X86II::MO_TLVP_PIC_BASE;
7491    else
7492      OpFlag = X86II::MO_TLVP;
7493    DebugLoc DL = Op.getDebugLoc();
7494    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7495                                                GA->getValueType(0),
7496                                                GA->getOffset(), OpFlag);
7497    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7498
7499    // With PIC32, the address is actually $g + Offset.
7500    if (PIC32)
7501      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7502                           DAG.getNode(X86ISD::GlobalBaseReg,
7503                                       DebugLoc(), getPointerTy()),
7504                           Offset);
7505
7506    // Lowering the machine isd will make sure everything is in the right
7507    // location.
7508    SDValue Chain = DAG.getEntryNode();
7509    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7510    SDValue Args[] = { Chain, Offset };
7511    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7512
7513    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7514    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7515    MFI->setAdjustsStack(true);
7516
7517    // And our return value (tls address) is in the standard call return value
7518    // location.
7519    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7520    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
7521  }
7522
7523  assert(false &&
7524         "TLS not implemented for this target.");
7525
7526  llvm_unreachable("Unreachable");
7527  return SDValue();
7528}
7529
7530
7531/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7532/// take a 2 x i32 value to shift plus a shift amount.
7533SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7534  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7535  EVT VT = Op.getValueType();
7536  unsigned VTBits = VT.getSizeInBits();
7537  DebugLoc dl = Op.getDebugLoc();
7538  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7539  SDValue ShOpLo = Op.getOperand(0);
7540  SDValue ShOpHi = Op.getOperand(1);
7541  SDValue ShAmt  = Op.getOperand(2);
7542  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7543                                     DAG.getConstant(VTBits - 1, MVT::i8))
7544                       : DAG.getConstant(0, VT);
7545
7546  SDValue Tmp2, Tmp3;
7547  if (Op.getOpcode() == ISD::SHL_PARTS) {
7548    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7549    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7550  } else {
7551    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7552    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7553  }
7554
7555  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7556                                DAG.getConstant(VTBits, MVT::i8));
7557  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7558                             AndNode, DAG.getConstant(0, MVT::i8));
7559
7560  SDValue Hi, Lo;
7561  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7562  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7563  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7564
7565  if (Op.getOpcode() == ISD::SHL_PARTS) {
7566    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7567    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7568  } else {
7569    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7570    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7571  }
7572
7573  SDValue Ops[2] = { Lo, Hi };
7574  return DAG.getMergeValues(Ops, 2, dl);
7575}
7576
7577SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7578                                           SelectionDAG &DAG) const {
7579  EVT SrcVT = Op.getOperand(0).getValueType();
7580
7581  if (SrcVT.isVector())
7582    return SDValue();
7583
7584  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7585         "Unknown SINT_TO_FP to lower!");
7586
7587  // These are really Legal; return the operand so the caller accepts it as
7588  // Legal.
7589  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7590    return Op;
7591  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7592      Subtarget->is64Bit()) {
7593    return Op;
7594  }
7595
7596  DebugLoc dl = Op.getDebugLoc();
7597  unsigned Size = SrcVT.getSizeInBits()/8;
7598  MachineFunction &MF = DAG.getMachineFunction();
7599  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7600  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7601  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7602                               StackSlot,
7603                               MachinePointerInfo::getFixedStack(SSFI),
7604                               false, false, 0);
7605  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7606}
7607
7608SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7609                                     SDValue StackSlot,
7610                                     SelectionDAG &DAG) const {
7611  // Build the FILD
7612  DebugLoc DL = Op.getDebugLoc();
7613  SDVTList Tys;
7614  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7615  if (useSSE)
7616    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7617  else
7618    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7619
7620  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7621
7622  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7623  MachineMemOperand *MMO;
7624  if (FI) {
7625    int SSFI = FI->getIndex();
7626    MMO =
7627      DAG.getMachineFunction()
7628      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7629                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7630  } else {
7631    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7632    StackSlot = StackSlot.getOperand(1);
7633  }
7634  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7635  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7636                                           X86ISD::FILD, DL,
7637                                           Tys, Ops, array_lengthof(Ops),
7638                                           SrcVT, MMO);
7639
7640  if (useSSE) {
7641    Chain = Result.getValue(1);
7642    SDValue InFlag = Result.getValue(2);
7643
7644    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7645    // shouldn't be necessary except that RFP cannot be live across
7646    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7647    MachineFunction &MF = DAG.getMachineFunction();
7648    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7649    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7650    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7651    Tys = DAG.getVTList(MVT::Other);
7652    SDValue Ops[] = {
7653      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7654    };
7655    MachineMemOperand *MMO =
7656      DAG.getMachineFunction()
7657      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7658                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7659
7660    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7661                                    Ops, array_lengthof(Ops),
7662                                    Op.getValueType(), MMO);
7663    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7664                         MachinePointerInfo::getFixedStack(SSFI),
7665                         false, false, 0);
7666  }
7667
7668  return Result;
7669}
7670
7671// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7672SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7673                                               SelectionDAG &DAG) const {
7674  // This algorithm is not obvious. Here it is in C code, more or less:
7675  /*
7676    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7677      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7678      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7679
7680      // Copy ints to xmm registers.
7681      __m128i xh = _mm_cvtsi32_si128( hi );
7682      __m128i xl = _mm_cvtsi32_si128( lo );
7683
7684      // Combine into low half of a single xmm register.
7685      __m128i x = _mm_unpacklo_epi32( xh, xl );
7686      __m128d d;
7687      double sd;
7688
7689      // Merge in appropriate exponents to give the integer bits the right
7690      // magnitude.
7691      x = _mm_unpacklo_epi32( x, exp );
7692
7693      // Subtract away the biases to deal with the IEEE-754 double precision
7694      // implicit 1.
7695      d = _mm_sub_pd( (__m128d) x, bias );
7696
7697      // All conversions up to here are exact. The correctly rounded result is
7698      // calculated using the current rounding mode using the following
7699      // horizontal add.
7700      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7701      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7702                                // store doesn't really need to be here (except
7703                                // maybe to zero the other double)
7704      return sd;
7705    }
7706  */
7707
7708  DebugLoc dl = Op.getDebugLoc();
7709  LLVMContext *Context = DAG.getContext();
7710
7711  // Build some magic constants.
7712  std::vector<Constant*> CV0;
7713  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7714  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7715  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7716  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7717  Constant *C0 = ConstantVector::get(CV0);
7718  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7719
7720  std::vector<Constant*> CV1;
7721  CV1.push_back(
7722    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7723  CV1.push_back(
7724    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7725  Constant *C1 = ConstantVector::get(CV1);
7726  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7727
7728  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7729                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7730                                        Op.getOperand(0),
7731                                        DAG.getIntPtrConstant(1)));
7732  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7733                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7734                                        Op.getOperand(0),
7735                                        DAG.getIntPtrConstant(0)));
7736  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7737  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7738                              MachinePointerInfo::getConstantPool(),
7739                              false, false, 16);
7740  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7741  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7742  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7743                              MachinePointerInfo::getConstantPool(),
7744                              false, false, 16);
7745  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7746
7747  // Add the halves; easiest way is to swap them into another reg first.
7748  int ShufMask[2] = { 1, -1 };
7749  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7750                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7751  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7752  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7753                     DAG.getIntPtrConstant(0));
7754}
7755
7756// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7757SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7758                                               SelectionDAG &DAG) const {
7759  DebugLoc dl = Op.getDebugLoc();
7760  // FP constant to bias correct the final result.
7761  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7762                                   MVT::f64);
7763
7764  // Load the 32-bit value into an XMM register.
7765  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7766                             Op.getOperand(0));
7767
7768  // Zero out the upper parts of the register.
7769  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
7770                                     DAG);
7771
7772  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7773                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7774                     DAG.getIntPtrConstant(0));
7775
7776  // Or the load with the bias.
7777  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7778                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7779                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7780                                                   MVT::v2f64, Load)),
7781                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7782                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7783                                                   MVT::v2f64, Bias)));
7784  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7785                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7786                   DAG.getIntPtrConstant(0));
7787
7788  // Subtract the bias.
7789  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7790
7791  // Handle final rounding.
7792  EVT DestVT = Op.getValueType();
7793
7794  if (DestVT.bitsLT(MVT::f64)) {
7795    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7796                       DAG.getIntPtrConstant(0));
7797  } else if (DestVT.bitsGT(MVT::f64)) {
7798    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7799  }
7800
7801  // Handle final rounding.
7802  return Sub;
7803}
7804
7805SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7806                                           SelectionDAG &DAG) const {
7807  SDValue N0 = Op.getOperand(0);
7808  DebugLoc dl = Op.getDebugLoc();
7809
7810  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7811  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7812  // the optimization here.
7813  if (DAG.SignBitIsZero(N0))
7814    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7815
7816  EVT SrcVT = N0.getValueType();
7817  EVT DstVT = Op.getValueType();
7818  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7819    return LowerUINT_TO_FP_i64(Op, DAG);
7820  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7821    return LowerUINT_TO_FP_i32(Op, DAG);
7822
7823  // Make a 64-bit buffer, and use it to build an FILD.
7824  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7825  if (SrcVT == MVT::i32) {
7826    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7827    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7828                                     getPointerTy(), StackSlot, WordOff);
7829    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7830                                  StackSlot, MachinePointerInfo(),
7831                                  false, false, 0);
7832    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7833                                  OffsetSlot, MachinePointerInfo(),
7834                                  false, false, 0);
7835    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7836    return Fild;
7837  }
7838
7839  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7840  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7841                                StackSlot, MachinePointerInfo(),
7842                               false, false, 0);
7843  // For i64 source, we need to add the appropriate power of 2 if the input
7844  // was negative.  This is the same as the optimization in
7845  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7846  // we must be careful to do the computation in x87 extended precision, not
7847  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7848  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7849  MachineMemOperand *MMO =
7850    DAG.getMachineFunction()
7851    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7852                          MachineMemOperand::MOLoad, 8, 8);
7853
7854  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7855  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7856  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7857                                         MVT::i64, MMO);
7858
7859  APInt FF(32, 0x5F800000ULL);
7860
7861  // Check whether the sign bit is set.
7862  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7863                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7864                                 ISD::SETLT);
7865
7866  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7867  SDValue FudgePtr = DAG.getConstantPool(
7868                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7869                                         getPointerTy());
7870
7871  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7872  SDValue Zero = DAG.getIntPtrConstant(0);
7873  SDValue Four = DAG.getIntPtrConstant(4);
7874  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7875                               Zero, Four);
7876  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7877
7878  // Load the value out, extending it from f32 to f80.
7879  // FIXME: Avoid the extend by constructing the right constant pool?
7880  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7881                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7882                                 MVT::f32, false, false, 4);
7883  // Extend everything to 80 bits to force it to be done on x87.
7884  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7885  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7886}
7887
7888std::pair<SDValue,SDValue> X86TargetLowering::
7889FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7890  DebugLoc DL = Op.getDebugLoc();
7891
7892  EVT DstTy = Op.getValueType();
7893
7894  if (!IsSigned) {
7895    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7896    DstTy = MVT::i64;
7897  }
7898
7899  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7900         DstTy.getSimpleVT() >= MVT::i16 &&
7901         "Unknown FP_TO_SINT to lower!");
7902
7903  // These are really Legal.
7904  if (DstTy == MVT::i32 &&
7905      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7906    return std::make_pair(SDValue(), SDValue());
7907  if (Subtarget->is64Bit() &&
7908      DstTy == MVT::i64 &&
7909      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7910    return std::make_pair(SDValue(), SDValue());
7911
7912  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7913  // stack slot.
7914  MachineFunction &MF = DAG.getMachineFunction();
7915  unsigned MemSize = DstTy.getSizeInBits()/8;
7916  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7917  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7918
7919
7920
7921  unsigned Opc;
7922  switch (DstTy.getSimpleVT().SimpleTy) {
7923  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7924  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7925  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7926  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7927  }
7928
7929  SDValue Chain = DAG.getEntryNode();
7930  SDValue Value = Op.getOperand(0);
7931  EVT TheVT = Op.getOperand(0).getValueType();
7932  if (isScalarFPTypeInSSEReg(TheVT)) {
7933    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7934    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7935                         MachinePointerInfo::getFixedStack(SSFI),
7936                         false, false, 0);
7937    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7938    SDValue Ops[] = {
7939      Chain, StackSlot, DAG.getValueType(TheVT)
7940    };
7941
7942    MachineMemOperand *MMO =
7943      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7944                              MachineMemOperand::MOLoad, MemSize, MemSize);
7945    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7946                                    DstTy, MMO);
7947    Chain = Value.getValue(1);
7948    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7949    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7950  }
7951
7952  MachineMemOperand *MMO =
7953    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7954                            MachineMemOperand::MOStore, MemSize, MemSize);
7955
7956  // Build the FP_TO_INT*_IN_MEM
7957  SDValue Ops[] = { Chain, Value, StackSlot };
7958  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7959                                         Ops, 3, DstTy, MMO);
7960
7961  return std::make_pair(FIST, StackSlot);
7962}
7963
7964SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7965                                           SelectionDAG &DAG) const {
7966  if (Op.getValueType().isVector())
7967    return SDValue();
7968
7969  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7970  SDValue FIST = Vals.first, StackSlot = Vals.second;
7971  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7972  if (FIST.getNode() == 0) return Op;
7973
7974  // Load the result.
7975  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7976                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7977}
7978
7979SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7980                                           SelectionDAG &DAG) const {
7981  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7982  SDValue FIST = Vals.first, StackSlot = Vals.second;
7983  assert(FIST.getNode() && "Unexpected failure");
7984
7985  // Load the result.
7986  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7987                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7988}
7989
7990SDValue X86TargetLowering::LowerFABS(SDValue Op,
7991                                     SelectionDAG &DAG) const {
7992  LLVMContext *Context = DAG.getContext();
7993  DebugLoc dl = Op.getDebugLoc();
7994  EVT VT = Op.getValueType();
7995  EVT EltVT = VT;
7996  if (VT.isVector())
7997    EltVT = VT.getVectorElementType();
7998  std::vector<Constant*> CV;
7999  if (EltVT == MVT::f64) {
8000    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8001    CV.push_back(C);
8002    CV.push_back(C);
8003  } else {
8004    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8005    CV.push_back(C);
8006    CV.push_back(C);
8007    CV.push_back(C);
8008    CV.push_back(C);
8009  }
8010  Constant *C = ConstantVector::get(CV);
8011  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8012  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8013                             MachinePointerInfo::getConstantPool(),
8014                             false, false, 16);
8015  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8016}
8017
8018SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8019  LLVMContext *Context = DAG.getContext();
8020  DebugLoc dl = Op.getDebugLoc();
8021  EVT VT = Op.getValueType();
8022  EVT EltVT = VT;
8023  if (VT.isVector())
8024    EltVT = VT.getVectorElementType();
8025  std::vector<Constant*> CV;
8026  if (EltVT == MVT::f64) {
8027    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8028    CV.push_back(C);
8029    CV.push_back(C);
8030  } else {
8031    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8032    CV.push_back(C);
8033    CV.push_back(C);
8034    CV.push_back(C);
8035    CV.push_back(C);
8036  }
8037  Constant *C = ConstantVector::get(CV);
8038  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8039  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8040                             MachinePointerInfo::getConstantPool(),
8041                             false, false, 16);
8042  if (VT.isVector()) {
8043    return DAG.getNode(ISD::BITCAST, dl, VT,
8044                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
8045                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8046                                Op.getOperand(0)),
8047                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
8048  } else {
8049    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8050  }
8051}
8052
8053SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8054  LLVMContext *Context = DAG.getContext();
8055  SDValue Op0 = Op.getOperand(0);
8056  SDValue Op1 = Op.getOperand(1);
8057  DebugLoc dl = Op.getDebugLoc();
8058  EVT VT = Op.getValueType();
8059  EVT SrcVT = Op1.getValueType();
8060
8061  // If second operand is smaller, extend it first.
8062  if (SrcVT.bitsLT(VT)) {
8063    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8064    SrcVT = VT;
8065  }
8066  // And if it is bigger, shrink it first.
8067  if (SrcVT.bitsGT(VT)) {
8068    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8069    SrcVT = VT;
8070  }
8071
8072  // At this point the operands and the result should have the same
8073  // type, and that won't be f80 since that is not custom lowered.
8074
8075  // First get the sign bit of second operand.
8076  std::vector<Constant*> CV;
8077  if (SrcVT == MVT::f64) {
8078    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8079    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8080  } else {
8081    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8082    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8083    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8084    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8085  }
8086  Constant *C = ConstantVector::get(CV);
8087  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8088  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8089                              MachinePointerInfo::getConstantPool(),
8090                              false, false, 16);
8091  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8092
8093  // Shift sign bit right or left if the two operands have different types.
8094  if (SrcVT.bitsGT(VT)) {
8095    // Op0 is MVT::f32, Op1 is MVT::f64.
8096    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8097    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8098                          DAG.getConstant(32, MVT::i32));
8099    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8100    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8101                          DAG.getIntPtrConstant(0));
8102  }
8103
8104  // Clear first operand sign bit.
8105  CV.clear();
8106  if (VT == MVT::f64) {
8107    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8108    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8109  } else {
8110    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8111    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8112    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8113    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8114  }
8115  C = ConstantVector::get(CV);
8116  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8117  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8118                              MachinePointerInfo::getConstantPool(),
8119                              false, false, 16);
8120  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8121
8122  // Or the value with the sign bit.
8123  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8124}
8125
8126SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8127  SDValue N0 = Op.getOperand(0);
8128  DebugLoc dl = Op.getDebugLoc();
8129  EVT VT = Op.getValueType();
8130
8131  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8132  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8133                                  DAG.getConstant(1, VT));
8134  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8135}
8136
8137/// Emit nodes that will be selected as "test Op0,Op0", or something
8138/// equivalent.
8139SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8140                                    SelectionDAG &DAG) const {
8141  DebugLoc dl = Op.getDebugLoc();
8142
8143  // CF and OF aren't always set the way we want. Determine which
8144  // of these we need.
8145  bool NeedCF = false;
8146  bool NeedOF = false;
8147  switch (X86CC) {
8148  default: break;
8149  case X86::COND_A: case X86::COND_AE:
8150  case X86::COND_B: case X86::COND_BE:
8151    NeedCF = true;
8152    break;
8153  case X86::COND_G: case X86::COND_GE:
8154  case X86::COND_L: case X86::COND_LE:
8155  case X86::COND_O: case X86::COND_NO:
8156    NeedOF = true;
8157    break;
8158  }
8159
8160  // See if we can use the EFLAGS value from the operand instead of
8161  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8162  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8163  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8164    // Emit a CMP with 0, which is the TEST pattern.
8165    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8166                       DAG.getConstant(0, Op.getValueType()));
8167
8168  unsigned Opcode = 0;
8169  unsigned NumOperands = 0;
8170  switch (Op.getNode()->getOpcode()) {
8171  case ISD::ADD:
8172    // Due to an isel shortcoming, be conservative if this add is likely to be
8173    // selected as part of a load-modify-store instruction. When the root node
8174    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8175    // uses of other nodes in the match, such as the ADD in this case. This
8176    // leads to the ADD being left around and reselected, with the result being
8177    // two adds in the output.  Alas, even if none our users are stores, that
8178    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8179    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8180    // climbing the DAG back to the root, and it doesn't seem to be worth the
8181    // effort.
8182    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8183           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8184      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
8185        goto default_case;
8186
8187    if (ConstantSDNode *C =
8188        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8189      // An add of one will be selected as an INC.
8190      if (C->getAPIntValue() == 1) {
8191        Opcode = X86ISD::INC;
8192        NumOperands = 1;
8193        break;
8194      }
8195
8196      // An add of negative one (subtract of one) will be selected as a DEC.
8197      if (C->getAPIntValue().isAllOnesValue()) {
8198        Opcode = X86ISD::DEC;
8199        NumOperands = 1;
8200        break;
8201      }
8202    }
8203
8204    // Otherwise use a regular EFLAGS-setting add.
8205    Opcode = X86ISD::ADD;
8206    NumOperands = 2;
8207    break;
8208  case ISD::AND: {
8209    // If the primary and result isn't used, don't bother using X86ISD::AND,
8210    // because a TEST instruction will be better.
8211    bool NonFlagUse = false;
8212    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8213           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8214      SDNode *User = *UI;
8215      unsigned UOpNo = UI.getOperandNo();
8216      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8217        // Look pass truncate.
8218        UOpNo = User->use_begin().getOperandNo();
8219        User = *User->use_begin();
8220      }
8221
8222      if (User->getOpcode() != ISD::BRCOND &&
8223          User->getOpcode() != ISD::SETCC &&
8224          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8225        NonFlagUse = true;
8226        break;
8227      }
8228    }
8229
8230    if (!NonFlagUse)
8231      break;
8232  }
8233    // FALL THROUGH
8234  case ISD::SUB:
8235  case ISD::OR:
8236  case ISD::XOR:
8237    // Due to the ISEL shortcoming noted above, be conservative if this op is
8238    // likely to be selected as part of a load-modify-store instruction.
8239    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8240           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8241      if (UI->getOpcode() == ISD::STORE)
8242        goto default_case;
8243
8244    // Otherwise use a regular EFLAGS-setting instruction.
8245    switch (Op.getNode()->getOpcode()) {
8246    default: llvm_unreachable("unexpected operator!");
8247    case ISD::SUB: Opcode = X86ISD::SUB; break;
8248    case ISD::OR:  Opcode = X86ISD::OR;  break;
8249    case ISD::XOR: Opcode = X86ISD::XOR; break;
8250    case ISD::AND: Opcode = X86ISD::AND; break;
8251    }
8252
8253    NumOperands = 2;
8254    break;
8255  case X86ISD::ADD:
8256  case X86ISD::SUB:
8257  case X86ISD::INC:
8258  case X86ISD::DEC:
8259  case X86ISD::OR:
8260  case X86ISD::XOR:
8261  case X86ISD::AND:
8262    return SDValue(Op.getNode(), 1);
8263  default:
8264  default_case:
8265    break;
8266  }
8267
8268  if (Opcode == 0)
8269    // Emit a CMP with 0, which is the TEST pattern.
8270    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8271                       DAG.getConstant(0, Op.getValueType()));
8272
8273  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8274  SmallVector<SDValue, 4> Ops;
8275  for (unsigned i = 0; i != NumOperands; ++i)
8276    Ops.push_back(Op.getOperand(i));
8277
8278  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8279  DAG.ReplaceAllUsesWith(Op, New);
8280  return SDValue(New.getNode(), 1);
8281}
8282
8283/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8284/// equivalent.
8285SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8286                                   SelectionDAG &DAG) const {
8287  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8288    if (C->getAPIntValue() == 0)
8289      return EmitTest(Op0, X86CC, DAG);
8290
8291  DebugLoc dl = Op0.getDebugLoc();
8292  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8293}
8294
8295/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8296/// if it's possible.
8297SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8298                                     DebugLoc dl, SelectionDAG &DAG) const {
8299  SDValue Op0 = And.getOperand(0);
8300  SDValue Op1 = And.getOperand(1);
8301  if (Op0.getOpcode() == ISD::TRUNCATE)
8302    Op0 = Op0.getOperand(0);
8303  if (Op1.getOpcode() == ISD::TRUNCATE)
8304    Op1 = Op1.getOperand(0);
8305
8306  SDValue LHS, RHS;
8307  if (Op1.getOpcode() == ISD::SHL)
8308    std::swap(Op0, Op1);
8309  if (Op0.getOpcode() == ISD::SHL) {
8310    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8311      if (And00C->getZExtValue() == 1) {
8312        // If we looked past a truncate, check that it's only truncating away
8313        // known zeros.
8314        unsigned BitWidth = Op0.getValueSizeInBits();
8315        unsigned AndBitWidth = And.getValueSizeInBits();
8316        if (BitWidth > AndBitWidth) {
8317          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8318          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8319          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8320            return SDValue();
8321        }
8322        LHS = Op1;
8323        RHS = Op0.getOperand(1);
8324      }
8325  } else if (Op1.getOpcode() == ISD::Constant) {
8326    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8327    SDValue AndLHS = Op0;
8328    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
8329      LHS = AndLHS.getOperand(0);
8330      RHS = AndLHS.getOperand(1);
8331    }
8332  }
8333
8334  if (LHS.getNode()) {
8335    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8336    // instruction.  Since the shift amount is in-range-or-undefined, we know
8337    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8338    // the encoding for the i16 version is larger than the i32 version.
8339    // Also promote i16 to i32 for performance / code size reason.
8340    if (LHS.getValueType() == MVT::i8 ||
8341        LHS.getValueType() == MVT::i16)
8342      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8343
8344    // If the operand types disagree, extend the shift amount to match.  Since
8345    // BT ignores high bits (like shifts) we can use anyextend.
8346    if (LHS.getValueType() != RHS.getValueType())
8347      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8348
8349    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8350    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8351    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8352                       DAG.getConstant(Cond, MVT::i8), BT);
8353  }
8354
8355  return SDValue();
8356}
8357
8358SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8359
8360  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8361
8362  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8363  SDValue Op0 = Op.getOperand(0);
8364  SDValue Op1 = Op.getOperand(1);
8365  DebugLoc dl = Op.getDebugLoc();
8366  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8367
8368  // Optimize to BT if possible.
8369  // Lower (X & (1 << N)) == 0 to BT(X, N).
8370  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8371  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8372  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8373      Op1.getOpcode() == ISD::Constant &&
8374      cast<ConstantSDNode>(Op1)->isNullValue() &&
8375      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8376    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8377    if (NewSetCC.getNode())
8378      return NewSetCC;
8379  }
8380
8381  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8382  // these.
8383  if (Op1.getOpcode() == ISD::Constant &&
8384      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8385       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8386      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8387
8388    // If the input is a setcc, then reuse the input setcc or use a new one with
8389    // the inverted condition.
8390    if (Op0.getOpcode() == X86ISD::SETCC) {
8391      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8392      bool Invert = (CC == ISD::SETNE) ^
8393        cast<ConstantSDNode>(Op1)->isNullValue();
8394      if (!Invert) return Op0;
8395
8396      CCode = X86::GetOppositeBranchCondition(CCode);
8397      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8398                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8399    }
8400  }
8401
8402  bool isFP = Op1.getValueType().isFloatingPoint();
8403  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8404  if (X86CC == X86::COND_INVALID)
8405    return SDValue();
8406
8407  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8408  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8409                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8410}
8411
8412// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8413// ones, and then concatenate the result back.
8414static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8415  EVT VT = Op.getValueType();
8416
8417  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8418         "Unsupported value type for operation");
8419
8420  int NumElems = VT.getVectorNumElements();
8421  DebugLoc dl = Op.getDebugLoc();
8422  SDValue CC = Op.getOperand(2);
8423  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8424  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8425
8426  // Extract the LHS vectors
8427  SDValue LHS = Op.getOperand(0);
8428  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8429  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8430
8431  // Extract the RHS vectors
8432  SDValue RHS = Op.getOperand(1);
8433  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8434  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8435
8436  // Issue the operation on the smaller types and concatenate the result back
8437  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8438  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8439  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8440                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8441                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8442}
8443
8444
8445SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8446  SDValue Cond;
8447  SDValue Op0 = Op.getOperand(0);
8448  SDValue Op1 = Op.getOperand(1);
8449  SDValue CC = Op.getOperand(2);
8450  EVT VT = Op.getValueType();
8451  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8452  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8453  DebugLoc dl = Op.getDebugLoc();
8454
8455  if (isFP) {
8456    unsigned SSECC = 8;
8457    EVT EltVT = Op0.getValueType().getVectorElementType();
8458    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8459
8460    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8461    bool Swap = false;
8462
8463    // SSE Condition code mapping:
8464    //  0 - EQ
8465    //  1 - LT
8466    //  2 - LE
8467    //  3 - UNORD
8468    //  4 - NEQ
8469    //  5 - NLT
8470    //  6 - NLE
8471    //  7 - ORD
8472    switch (SetCCOpcode) {
8473    default: break;
8474    case ISD::SETOEQ:
8475    case ISD::SETEQ:  SSECC = 0; break;
8476    case ISD::SETOGT:
8477    case ISD::SETGT: Swap = true; // Fallthrough
8478    case ISD::SETLT:
8479    case ISD::SETOLT: SSECC = 1; break;
8480    case ISD::SETOGE:
8481    case ISD::SETGE: Swap = true; // Fallthrough
8482    case ISD::SETLE:
8483    case ISD::SETOLE: SSECC = 2; break;
8484    case ISD::SETUO:  SSECC = 3; break;
8485    case ISD::SETUNE:
8486    case ISD::SETNE:  SSECC = 4; break;
8487    case ISD::SETULE: Swap = true;
8488    case ISD::SETUGE: SSECC = 5; break;
8489    case ISD::SETULT: Swap = true;
8490    case ISD::SETUGT: SSECC = 6; break;
8491    case ISD::SETO:   SSECC = 7; break;
8492    }
8493    if (Swap)
8494      std::swap(Op0, Op1);
8495
8496    // In the two special cases we can't handle, emit two comparisons.
8497    if (SSECC == 8) {
8498      if (SetCCOpcode == ISD::SETUEQ) {
8499        SDValue UNORD, EQ;
8500        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8501        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8502        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8503      }
8504      else if (SetCCOpcode == ISD::SETONE) {
8505        SDValue ORD, NEQ;
8506        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8507        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8508        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8509      }
8510      llvm_unreachable("Illegal FP comparison");
8511    }
8512    // Handle all other FP comparisons here.
8513    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8514  }
8515
8516  // Break 256-bit integer vector compare into smaller ones.
8517  if (!isFP && VT.getSizeInBits() == 256)
8518    return Lower256IntVSETCC(Op, DAG);
8519
8520  // We are handling one of the integer comparisons here.  Since SSE only has
8521  // GT and EQ comparisons for integer, swapping operands and multiple
8522  // operations may be required for some comparisons.
8523  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8524  bool Swap = false, Invert = false, FlipSigns = false;
8525
8526  switch (VT.getSimpleVT().SimpleTy) {
8527  default: break;
8528  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8529  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8530  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8531  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8532  }
8533
8534  switch (SetCCOpcode) {
8535  default: break;
8536  case ISD::SETNE:  Invert = true;
8537  case ISD::SETEQ:  Opc = EQOpc; break;
8538  case ISD::SETLT:  Swap = true;
8539  case ISD::SETGT:  Opc = GTOpc; break;
8540  case ISD::SETGE:  Swap = true;
8541  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8542  case ISD::SETULT: Swap = true;
8543  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8544  case ISD::SETUGE: Swap = true;
8545  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8546  }
8547  if (Swap)
8548    std::swap(Op0, Op1);
8549
8550  // Check that the operation in question is available (most are plain SSE2,
8551  // but PCMPGTQ and PCMPEQQ have different requirements).
8552  if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42() && !Subtarget->hasAVX())
8553    return SDValue();
8554  if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41() && !Subtarget->hasAVX())
8555    return SDValue();
8556
8557  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8558  // bits of the inputs before performing those operations.
8559  if (FlipSigns) {
8560    EVT EltVT = VT.getVectorElementType();
8561    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8562                                      EltVT);
8563    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8564    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8565                                    SignBits.size());
8566    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8567    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8568  }
8569
8570  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8571
8572  // If the logical-not of the result is required, perform that now.
8573  if (Invert)
8574    Result = DAG.getNOT(dl, Result, VT);
8575
8576  return Result;
8577}
8578
8579// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8580static bool isX86LogicalCmp(SDValue Op) {
8581  unsigned Opc = Op.getNode()->getOpcode();
8582  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8583    return true;
8584  if (Op.getResNo() == 1 &&
8585      (Opc == X86ISD::ADD ||
8586       Opc == X86ISD::SUB ||
8587       Opc == X86ISD::ADC ||
8588       Opc == X86ISD::SBB ||
8589       Opc == X86ISD::SMUL ||
8590       Opc == X86ISD::UMUL ||
8591       Opc == X86ISD::INC ||
8592       Opc == X86ISD::DEC ||
8593       Opc == X86ISD::OR ||
8594       Opc == X86ISD::XOR ||
8595       Opc == X86ISD::AND))
8596    return true;
8597
8598  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8599    return true;
8600
8601  return false;
8602}
8603
8604static bool isZero(SDValue V) {
8605  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8606  return C && C->isNullValue();
8607}
8608
8609static bool isAllOnes(SDValue V) {
8610  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8611  return C && C->isAllOnesValue();
8612}
8613
8614SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8615  bool addTest = true;
8616  SDValue Cond  = Op.getOperand(0);
8617  SDValue Op1 = Op.getOperand(1);
8618  SDValue Op2 = Op.getOperand(2);
8619  DebugLoc DL = Op.getDebugLoc();
8620  SDValue CC;
8621
8622  if (Cond.getOpcode() == ISD::SETCC) {
8623    SDValue NewCond = LowerSETCC(Cond, DAG);
8624    if (NewCond.getNode())
8625      Cond = NewCond;
8626  }
8627
8628  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8629  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8630  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8631  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8632  if (Cond.getOpcode() == X86ISD::SETCC &&
8633      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8634      isZero(Cond.getOperand(1).getOperand(1))) {
8635    SDValue Cmp = Cond.getOperand(1);
8636
8637    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8638
8639    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8640        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8641      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8642
8643      SDValue CmpOp0 = Cmp.getOperand(0);
8644      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8645                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8646
8647      SDValue Res =   // Res = 0 or -1.
8648        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8649                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8650
8651      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8652        Res = DAG.getNOT(DL, Res, Res.getValueType());
8653
8654      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8655      if (N2C == 0 || !N2C->isNullValue())
8656        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8657      return Res;
8658    }
8659  }
8660
8661  // Look past (and (setcc_carry (cmp ...)), 1).
8662  if (Cond.getOpcode() == ISD::AND &&
8663      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8664    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8665    if (C && C->getAPIntValue() == 1)
8666      Cond = Cond.getOperand(0);
8667  }
8668
8669  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8670  // setting operand in place of the X86ISD::SETCC.
8671  if (Cond.getOpcode() == X86ISD::SETCC ||
8672      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8673    CC = Cond.getOperand(0);
8674
8675    SDValue Cmp = Cond.getOperand(1);
8676    unsigned Opc = Cmp.getOpcode();
8677    EVT VT = Op.getValueType();
8678
8679    bool IllegalFPCMov = false;
8680    if (VT.isFloatingPoint() && !VT.isVector() &&
8681        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8682      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8683
8684    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8685        Opc == X86ISD::BT) { // FIXME
8686      Cond = Cmp;
8687      addTest = false;
8688    }
8689  }
8690
8691  if (addTest) {
8692    // Look pass the truncate.
8693    if (Cond.getOpcode() == ISD::TRUNCATE)
8694      Cond = Cond.getOperand(0);
8695
8696    // We know the result of AND is compared against zero. Try to match
8697    // it to BT.
8698    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8699      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8700      if (NewSetCC.getNode()) {
8701        CC = NewSetCC.getOperand(0);
8702        Cond = NewSetCC.getOperand(1);
8703        addTest = false;
8704      }
8705    }
8706  }
8707
8708  if (addTest) {
8709    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8710    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8711  }
8712
8713  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8714  // a <  b ?  0 : -1 -> RES = setcc_carry
8715  // a >= b ? -1 :  0 -> RES = setcc_carry
8716  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8717  if (Cond.getOpcode() == X86ISD::CMP) {
8718    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8719
8720    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8721        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8722      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8723                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8724      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8725        return DAG.getNOT(DL, Res, Res.getValueType());
8726      return Res;
8727    }
8728  }
8729
8730  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8731  // condition is true.
8732  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8733  SDValue Ops[] = { Op2, Op1, CC, Cond };
8734  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8735}
8736
8737// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8738// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8739// from the AND / OR.
8740static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8741  Opc = Op.getOpcode();
8742  if (Opc != ISD::OR && Opc != ISD::AND)
8743    return false;
8744  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8745          Op.getOperand(0).hasOneUse() &&
8746          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8747          Op.getOperand(1).hasOneUse());
8748}
8749
8750// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8751// 1 and that the SETCC node has a single use.
8752static bool isXor1OfSetCC(SDValue Op) {
8753  if (Op.getOpcode() != ISD::XOR)
8754    return false;
8755  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8756  if (N1C && N1C->getAPIntValue() == 1) {
8757    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8758      Op.getOperand(0).hasOneUse();
8759  }
8760  return false;
8761}
8762
8763SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8764  bool addTest = true;
8765  SDValue Chain = Op.getOperand(0);
8766  SDValue Cond  = Op.getOperand(1);
8767  SDValue Dest  = Op.getOperand(2);
8768  DebugLoc dl = Op.getDebugLoc();
8769  SDValue CC;
8770
8771  if (Cond.getOpcode() == ISD::SETCC) {
8772    SDValue NewCond = LowerSETCC(Cond, DAG);
8773    if (NewCond.getNode())
8774      Cond = NewCond;
8775  }
8776#if 0
8777  // FIXME: LowerXALUO doesn't handle these!!
8778  else if (Cond.getOpcode() == X86ISD::ADD  ||
8779           Cond.getOpcode() == X86ISD::SUB  ||
8780           Cond.getOpcode() == X86ISD::SMUL ||
8781           Cond.getOpcode() == X86ISD::UMUL)
8782    Cond = LowerXALUO(Cond, DAG);
8783#endif
8784
8785  // Look pass (and (setcc_carry (cmp ...)), 1).
8786  if (Cond.getOpcode() == ISD::AND &&
8787      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8788    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8789    if (C && C->getAPIntValue() == 1)
8790      Cond = Cond.getOperand(0);
8791  }
8792
8793  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8794  // setting operand in place of the X86ISD::SETCC.
8795  if (Cond.getOpcode() == X86ISD::SETCC ||
8796      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8797    CC = Cond.getOperand(0);
8798
8799    SDValue Cmp = Cond.getOperand(1);
8800    unsigned Opc = Cmp.getOpcode();
8801    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8802    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8803      Cond = Cmp;
8804      addTest = false;
8805    } else {
8806      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8807      default: break;
8808      case X86::COND_O:
8809      case X86::COND_B:
8810        // These can only come from an arithmetic instruction with overflow,
8811        // e.g. SADDO, UADDO.
8812        Cond = Cond.getNode()->getOperand(1);
8813        addTest = false;
8814        break;
8815      }
8816    }
8817  } else {
8818    unsigned CondOpc;
8819    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8820      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8821      if (CondOpc == ISD::OR) {
8822        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8823        // two branches instead of an explicit OR instruction with a
8824        // separate test.
8825        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8826            isX86LogicalCmp(Cmp)) {
8827          CC = Cond.getOperand(0).getOperand(0);
8828          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8829                              Chain, Dest, CC, Cmp);
8830          CC = Cond.getOperand(1).getOperand(0);
8831          Cond = Cmp;
8832          addTest = false;
8833        }
8834      } else { // ISD::AND
8835        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8836        // two branches instead of an explicit AND instruction with a
8837        // separate test. However, we only do this if this block doesn't
8838        // have a fall-through edge, because this requires an explicit
8839        // jmp when the condition is false.
8840        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8841            isX86LogicalCmp(Cmp) &&
8842            Op.getNode()->hasOneUse()) {
8843          X86::CondCode CCode =
8844            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8845          CCode = X86::GetOppositeBranchCondition(CCode);
8846          CC = DAG.getConstant(CCode, MVT::i8);
8847          SDNode *User = *Op.getNode()->use_begin();
8848          // Look for an unconditional branch following this conditional branch.
8849          // We need this because we need to reverse the successors in order
8850          // to implement FCMP_OEQ.
8851          if (User->getOpcode() == ISD::BR) {
8852            SDValue FalseBB = User->getOperand(1);
8853            SDNode *NewBR =
8854              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8855            assert(NewBR == User);
8856            (void)NewBR;
8857            Dest = FalseBB;
8858
8859            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8860                                Chain, Dest, CC, Cmp);
8861            X86::CondCode CCode =
8862              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8863            CCode = X86::GetOppositeBranchCondition(CCode);
8864            CC = DAG.getConstant(CCode, MVT::i8);
8865            Cond = Cmp;
8866            addTest = false;
8867          }
8868        }
8869      }
8870    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8871      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8872      // It should be transformed during dag combiner except when the condition
8873      // is set by a arithmetics with overflow node.
8874      X86::CondCode CCode =
8875        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8876      CCode = X86::GetOppositeBranchCondition(CCode);
8877      CC = DAG.getConstant(CCode, MVT::i8);
8878      Cond = Cond.getOperand(0).getOperand(1);
8879      addTest = false;
8880    }
8881  }
8882
8883  if (addTest) {
8884    // Look pass the truncate.
8885    if (Cond.getOpcode() == ISD::TRUNCATE)
8886      Cond = Cond.getOperand(0);
8887
8888    // We know the result of AND is compared against zero. Try to match
8889    // it to BT.
8890    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8891      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8892      if (NewSetCC.getNode()) {
8893        CC = NewSetCC.getOperand(0);
8894        Cond = NewSetCC.getOperand(1);
8895        addTest = false;
8896      }
8897    }
8898  }
8899
8900  if (addTest) {
8901    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8902    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8903  }
8904  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8905                     Chain, Dest, CC, Cond);
8906}
8907
8908
8909// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8910// Calls to _alloca is needed to probe the stack when allocating more than 4k
8911// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8912// that the guard pages used by the OS virtual memory manager are allocated in
8913// correct sequence.
8914SDValue
8915X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8916                                           SelectionDAG &DAG) const {
8917  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8918          EnableSegmentedStacks) &&
8919         "This should be used only on Windows targets or when segmented stacks "
8920         "are being used");
8921  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8922  DebugLoc dl = Op.getDebugLoc();
8923
8924  // Get the inputs.
8925  SDValue Chain = Op.getOperand(0);
8926  SDValue Size  = Op.getOperand(1);
8927  // FIXME: Ensure alignment here
8928
8929  bool Is64Bit = Subtarget->is64Bit();
8930  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8931
8932  if (EnableSegmentedStacks) {
8933    MachineFunction &MF = DAG.getMachineFunction();
8934    MachineRegisterInfo &MRI = MF.getRegInfo();
8935
8936    if (Is64Bit) {
8937      // The 64 bit implementation of segmented stacks needs to clobber both r10
8938      // r11. This makes it impossible to use it along with nested parameters.
8939      const Function *F = MF.getFunction();
8940
8941      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8942           I != E; I++)
8943        if (I->hasNestAttr())
8944          report_fatal_error("Cannot use segmented stacks with functions that "
8945                             "have nested arguments.");
8946    }
8947
8948    const TargetRegisterClass *AddrRegClass =
8949      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8950    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8951    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8952    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8953                                DAG.getRegister(Vreg, SPTy));
8954    SDValue Ops1[2] = { Value, Chain };
8955    return DAG.getMergeValues(Ops1, 2, dl);
8956  } else {
8957    SDValue Flag;
8958    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8959
8960    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8961    Flag = Chain.getValue(1);
8962    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8963
8964    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8965    Flag = Chain.getValue(1);
8966
8967    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8968
8969    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8970    return DAG.getMergeValues(Ops1, 2, dl);
8971  }
8972}
8973
8974SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8975  MachineFunction &MF = DAG.getMachineFunction();
8976  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8977
8978  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8979  DebugLoc DL = Op.getDebugLoc();
8980
8981  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8982    // vastart just stores the address of the VarArgsFrameIndex slot into the
8983    // memory location argument.
8984    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8985                                   getPointerTy());
8986    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8987                        MachinePointerInfo(SV), false, false, 0);
8988  }
8989
8990  // __va_list_tag:
8991  //   gp_offset         (0 - 6 * 8)
8992  //   fp_offset         (48 - 48 + 8 * 16)
8993  //   overflow_arg_area (point to parameters coming in memory).
8994  //   reg_save_area
8995  SmallVector<SDValue, 8> MemOps;
8996  SDValue FIN = Op.getOperand(1);
8997  // Store gp_offset
8998  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8999                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9000                                               MVT::i32),
9001                               FIN, MachinePointerInfo(SV), false, false, 0);
9002  MemOps.push_back(Store);
9003
9004  // Store fp_offset
9005  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9006                    FIN, DAG.getIntPtrConstant(4));
9007  Store = DAG.getStore(Op.getOperand(0), DL,
9008                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9009                                       MVT::i32),
9010                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9011  MemOps.push_back(Store);
9012
9013  // Store ptr to overflow_arg_area
9014  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9015                    FIN, DAG.getIntPtrConstant(4));
9016  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9017                                    getPointerTy());
9018  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9019                       MachinePointerInfo(SV, 8),
9020                       false, false, 0);
9021  MemOps.push_back(Store);
9022
9023  // Store ptr to reg_save_area.
9024  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9025                    FIN, DAG.getIntPtrConstant(8));
9026  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9027                                    getPointerTy());
9028  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9029                       MachinePointerInfo(SV, 16), false, false, 0);
9030  MemOps.push_back(Store);
9031  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9032                     &MemOps[0], MemOps.size());
9033}
9034
9035SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9036  assert(Subtarget->is64Bit() &&
9037         "LowerVAARG only handles 64-bit va_arg!");
9038  assert((Subtarget->isTargetLinux() ||
9039          Subtarget->isTargetDarwin()) &&
9040          "Unhandled target in LowerVAARG");
9041  assert(Op.getNode()->getNumOperands() == 4);
9042  SDValue Chain = Op.getOperand(0);
9043  SDValue SrcPtr = Op.getOperand(1);
9044  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9045  unsigned Align = Op.getConstantOperandVal(3);
9046  DebugLoc dl = Op.getDebugLoc();
9047
9048  EVT ArgVT = Op.getNode()->getValueType(0);
9049  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9050  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9051  uint8_t ArgMode;
9052
9053  // Decide which area this value should be read from.
9054  // TODO: Implement the AMD64 ABI in its entirety. This simple
9055  // selection mechanism works only for the basic types.
9056  if (ArgVT == MVT::f80) {
9057    llvm_unreachable("va_arg for f80 not yet implemented");
9058  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9059    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9060  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9061    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9062  } else {
9063    llvm_unreachable("Unhandled argument type in LowerVAARG");
9064  }
9065
9066  if (ArgMode == 2) {
9067    // Sanity Check: Make sure using fp_offset makes sense.
9068    assert(!UseSoftFloat &&
9069           !(DAG.getMachineFunction()
9070                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9071           Subtarget->hasXMM());
9072  }
9073
9074  // Insert VAARG_64 node into the DAG
9075  // VAARG_64 returns two values: Variable Argument Address, Chain
9076  SmallVector<SDValue, 11> InstOps;
9077  InstOps.push_back(Chain);
9078  InstOps.push_back(SrcPtr);
9079  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9080  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9081  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9082  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9083  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9084                                          VTs, &InstOps[0], InstOps.size(),
9085                                          MVT::i64,
9086                                          MachinePointerInfo(SV),
9087                                          /*Align=*/0,
9088                                          /*Volatile=*/false,
9089                                          /*ReadMem=*/true,
9090                                          /*WriteMem=*/true);
9091  Chain = VAARG.getValue(1);
9092
9093  // Load the next argument and return it
9094  return DAG.getLoad(ArgVT, dl,
9095                     Chain,
9096                     VAARG,
9097                     MachinePointerInfo(),
9098                     false, false, 0);
9099}
9100
9101SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9102  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9103  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9104  SDValue Chain = Op.getOperand(0);
9105  SDValue DstPtr = Op.getOperand(1);
9106  SDValue SrcPtr = Op.getOperand(2);
9107  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9108  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9109  DebugLoc DL = Op.getDebugLoc();
9110
9111  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9112                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9113                       false,
9114                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9115}
9116
9117SDValue
9118X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9119  DebugLoc dl = Op.getDebugLoc();
9120  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9121  switch (IntNo) {
9122  default: return SDValue();    // Don't custom lower most intrinsics.
9123  // Comparison intrinsics.
9124  case Intrinsic::x86_sse_comieq_ss:
9125  case Intrinsic::x86_sse_comilt_ss:
9126  case Intrinsic::x86_sse_comile_ss:
9127  case Intrinsic::x86_sse_comigt_ss:
9128  case Intrinsic::x86_sse_comige_ss:
9129  case Intrinsic::x86_sse_comineq_ss:
9130  case Intrinsic::x86_sse_ucomieq_ss:
9131  case Intrinsic::x86_sse_ucomilt_ss:
9132  case Intrinsic::x86_sse_ucomile_ss:
9133  case Intrinsic::x86_sse_ucomigt_ss:
9134  case Intrinsic::x86_sse_ucomige_ss:
9135  case Intrinsic::x86_sse_ucomineq_ss:
9136  case Intrinsic::x86_sse2_comieq_sd:
9137  case Intrinsic::x86_sse2_comilt_sd:
9138  case Intrinsic::x86_sse2_comile_sd:
9139  case Intrinsic::x86_sse2_comigt_sd:
9140  case Intrinsic::x86_sse2_comige_sd:
9141  case Intrinsic::x86_sse2_comineq_sd:
9142  case Intrinsic::x86_sse2_ucomieq_sd:
9143  case Intrinsic::x86_sse2_ucomilt_sd:
9144  case Intrinsic::x86_sse2_ucomile_sd:
9145  case Intrinsic::x86_sse2_ucomigt_sd:
9146  case Intrinsic::x86_sse2_ucomige_sd:
9147  case Intrinsic::x86_sse2_ucomineq_sd: {
9148    unsigned Opc = 0;
9149    ISD::CondCode CC = ISD::SETCC_INVALID;
9150    switch (IntNo) {
9151    default: break;
9152    case Intrinsic::x86_sse_comieq_ss:
9153    case Intrinsic::x86_sse2_comieq_sd:
9154      Opc = X86ISD::COMI;
9155      CC = ISD::SETEQ;
9156      break;
9157    case Intrinsic::x86_sse_comilt_ss:
9158    case Intrinsic::x86_sse2_comilt_sd:
9159      Opc = X86ISD::COMI;
9160      CC = ISD::SETLT;
9161      break;
9162    case Intrinsic::x86_sse_comile_ss:
9163    case Intrinsic::x86_sse2_comile_sd:
9164      Opc = X86ISD::COMI;
9165      CC = ISD::SETLE;
9166      break;
9167    case Intrinsic::x86_sse_comigt_ss:
9168    case Intrinsic::x86_sse2_comigt_sd:
9169      Opc = X86ISD::COMI;
9170      CC = ISD::SETGT;
9171      break;
9172    case Intrinsic::x86_sse_comige_ss:
9173    case Intrinsic::x86_sse2_comige_sd:
9174      Opc = X86ISD::COMI;
9175      CC = ISD::SETGE;
9176      break;
9177    case Intrinsic::x86_sse_comineq_ss:
9178    case Intrinsic::x86_sse2_comineq_sd:
9179      Opc = X86ISD::COMI;
9180      CC = ISD::SETNE;
9181      break;
9182    case Intrinsic::x86_sse_ucomieq_ss:
9183    case Intrinsic::x86_sse2_ucomieq_sd:
9184      Opc = X86ISD::UCOMI;
9185      CC = ISD::SETEQ;
9186      break;
9187    case Intrinsic::x86_sse_ucomilt_ss:
9188    case Intrinsic::x86_sse2_ucomilt_sd:
9189      Opc = X86ISD::UCOMI;
9190      CC = ISD::SETLT;
9191      break;
9192    case Intrinsic::x86_sse_ucomile_ss:
9193    case Intrinsic::x86_sse2_ucomile_sd:
9194      Opc = X86ISD::UCOMI;
9195      CC = ISD::SETLE;
9196      break;
9197    case Intrinsic::x86_sse_ucomigt_ss:
9198    case Intrinsic::x86_sse2_ucomigt_sd:
9199      Opc = X86ISD::UCOMI;
9200      CC = ISD::SETGT;
9201      break;
9202    case Intrinsic::x86_sse_ucomige_ss:
9203    case Intrinsic::x86_sse2_ucomige_sd:
9204      Opc = X86ISD::UCOMI;
9205      CC = ISD::SETGE;
9206      break;
9207    case Intrinsic::x86_sse_ucomineq_ss:
9208    case Intrinsic::x86_sse2_ucomineq_sd:
9209      Opc = X86ISD::UCOMI;
9210      CC = ISD::SETNE;
9211      break;
9212    }
9213
9214    SDValue LHS = Op.getOperand(1);
9215    SDValue RHS = Op.getOperand(2);
9216    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9217    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9218    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9219    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9220                                DAG.getConstant(X86CC, MVT::i8), Cond);
9221    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9222  }
9223  // Arithmetic intrinsics.
9224  case Intrinsic::x86_sse3_hadd_ps:
9225  case Intrinsic::x86_sse3_hadd_pd:
9226  case Intrinsic::x86_avx_hadd_ps_256:
9227  case Intrinsic::x86_avx_hadd_pd_256:
9228    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9229                       Op.getOperand(1), Op.getOperand(2));
9230  case Intrinsic::x86_sse3_hsub_ps:
9231  case Intrinsic::x86_sse3_hsub_pd:
9232  case Intrinsic::x86_avx_hsub_ps_256:
9233  case Intrinsic::x86_avx_hsub_pd_256:
9234    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9235                       Op.getOperand(1), Op.getOperand(2));
9236  // ptest and testp intrinsics. The intrinsic these come from are designed to
9237  // return an integer value, not just an instruction so lower it to the ptest
9238  // or testp pattern and a setcc for the result.
9239  case Intrinsic::x86_sse41_ptestz:
9240  case Intrinsic::x86_sse41_ptestc:
9241  case Intrinsic::x86_sse41_ptestnzc:
9242  case Intrinsic::x86_avx_ptestz_256:
9243  case Intrinsic::x86_avx_ptestc_256:
9244  case Intrinsic::x86_avx_ptestnzc_256:
9245  case Intrinsic::x86_avx_vtestz_ps:
9246  case Intrinsic::x86_avx_vtestc_ps:
9247  case Intrinsic::x86_avx_vtestnzc_ps:
9248  case Intrinsic::x86_avx_vtestz_pd:
9249  case Intrinsic::x86_avx_vtestc_pd:
9250  case Intrinsic::x86_avx_vtestnzc_pd:
9251  case Intrinsic::x86_avx_vtestz_ps_256:
9252  case Intrinsic::x86_avx_vtestc_ps_256:
9253  case Intrinsic::x86_avx_vtestnzc_ps_256:
9254  case Intrinsic::x86_avx_vtestz_pd_256:
9255  case Intrinsic::x86_avx_vtestc_pd_256:
9256  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9257    bool IsTestPacked = false;
9258    unsigned X86CC = 0;
9259    switch (IntNo) {
9260    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9261    case Intrinsic::x86_avx_vtestz_ps:
9262    case Intrinsic::x86_avx_vtestz_pd:
9263    case Intrinsic::x86_avx_vtestz_ps_256:
9264    case Intrinsic::x86_avx_vtestz_pd_256:
9265      IsTestPacked = true; // Fallthrough
9266    case Intrinsic::x86_sse41_ptestz:
9267    case Intrinsic::x86_avx_ptestz_256:
9268      // ZF = 1
9269      X86CC = X86::COND_E;
9270      break;
9271    case Intrinsic::x86_avx_vtestc_ps:
9272    case Intrinsic::x86_avx_vtestc_pd:
9273    case Intrinsic::x86_avx_vtestc_ps_256:
9274    case Intrinsic::x86_avx_vtestc_pd_256:
9275      IsTestPacked = true; // Fallthrough
9276    case Intrinsic::x86_sse41_ptestc:
9277    case Intrinsic::x86_avx_ptestc_256:
9278      // CF = 1
9279      X86CC = X86::COND_B;
9280      break;
9281    case Intrinsic::x86_avx_vtestnzc_ps:
9282    case Intrinsic::x86_avx_vtestnzc_pd:
9283    case Intrinsic::x86_avx_vtestnzc_ps_256:
9284    case Intrinsic::x86_avx_vtestnzc_pd_256:
9285      IsTestPacked = true; // Fallthrough
9286    case Intrinsic::x86_sse41_ptestnzc:
9287    case Intrinsic::x86_avx_ptestnzc_256:
9288      // ZF and CF = 0
9289      X86CC = X86::COND_A;
9290      break;
9291    }
9292
9293    SDValue LHS = Op.getOperand(1);
9294    SDValue RHS = Op.getOperand(2);
9295    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9296    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9297    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9298    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9299    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9300  }
9301
9302  // Fix vector shift instructions where the last operand is a non-immediate
9303  // i32 value.
9304  case Intrinsic::x86_sse2_pslli_w:
9305  case Intrinsic::x86_sse2_pslli_d:
9306  case Intrinsic::x86_sse2_pslli_q:
9307  case Intrinsic::x86_sse2_psrli_w:
9308  case Intrinsic::x86_sse2_psrli_d:
9309  case Intrinsic::x86_sse2_psrli_q:
9310  case Intrinsic::x86_sse2_psrai_w:
9311  case Intrinsic::x86_sse2_psrai_d:
9312  case Intrinsic::x86_mmx_pslli_w:
9313  case Intrinsic::x86_mmx_pslli_d:
9314  case Intrinsic::x86_mmx_pslli_q:
9315  case Intrinsic::x86_mmx_psrli_w:
9316  case Intrinsic::x86_mmx_psrli_d:
9317  case Intrinsic::x86_mmx_psrli_q:
9318  case Intrinsic::x86_mmx_psrai_w:
9319  case Intrinsic::x86_mmx_psrai_d: {
9320    SDValue ShAmt = Op.getOperand(2);
9321    if (isa<ConstantSDNode>(ShAmt))
9322      return SDValue();
9323
9324    unsigned NewIntNo = 0;
9325    EVT ShAmtVT = MVT::v4i32;
9326    switch (IntNo) {
9327    case Intrinsic::x86_sse2_pslli_w:
9328      NewIntNo = Intrinsic::x86_sse2_psll_w;
9329      break;
9330    case Intrinsic::x86_sse2_pslli_d:
9331      NewIntNo = Intrinsic::x86_sse2_psll_d;
9332      break;
9333    case Intrinsic::x86_sse2_pslli_q:
9334      NewIntNo = Intrinsic::x86_sse2_psll_q;
9335      break;
9336    case Intrinsic::x86_sse2_psrli_w:
9337      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9338      break;
9339    case Intrinsic::x86_sse2_psrli_d:
9340      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9341      break;
9342    case Intrinsic::x86_sse2_psrli_q:
9343      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9344      break;
9345    case Intrinsic::x86_sse2_psrai_w:
9346      NewIntNo = Intrinsic::x86_sse2_psra_w;
9347      break;
9348    case Intrinsic::x86_sse2_psrai_d:
9349      NewIntNo = Intrinsic::x86_sse2_psra_d;
9350      break;
9351    default: {
9352      ShAmtVT = MVT::v2i32;
9353      switch (IntNo) {
9354      case Intrinsic::x86_mmx_pslli_w:
9355        NewIntNo = Intrinsic::x86_mmx_psll_w;
9356        break;
9357      case Intrinsic::x86_mmx_pslli_d:
9358        NewIntNo = Intrinsic::x86_mmx_psll_d;
9359        break;
9360      case Intrinsic::x86_mmx_pslli_q:
9361        NewIntNo = Intrinsic::x86_mmx_psll_q;
9362        break;
9363      case Intrinsic::x86_mmx_psrli_w:
9364        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9365        break;
9366      case Intrinsic::x86_mmx_psrli_d:
9367        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9368        break;
9369      case Intrinsic::x86_mmx_psrli_q:
9370        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9371        break;
9372      case Intrinsic::x86_mmx_psrai_w:
9373        NewIntNo = Intrinsic::x86_mmx_psra_w;
9374        break;
9375      case Intrinsic::x86_mmx_psrai_d:
9376        NewIntNo = Intrinsic::x86_mmx_psra_d;
9377        break;
9378      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9379      }
9380      break;
9381    }
9382    }
9383
9384    // The vector shift intrinsics with scalars uses 32b shift amounts but
9385    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9386    // to be zero.
9387    SDValue ShOps[4];
9388    ShOps[0] = ShAmt;
9389    ShOps[1] = DAG.getConstant(0, MVT::i32);
9390    if (ShAmtVT == MVT::v4i32) {
9391      ShOps[2] = DAG.getUNDEF(MVT::i32);
9392      ShOps[3] = DAG.getUNDEF(MVT::i32);
9393      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9394    } else {
9395      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9396// FIXME this must be lowered to get rid of the invalid type.
9397    }
9398
9399    EVT VT = Op.getValueType();
9400    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9401    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9402                       DAG.getConstant(NewIntNo, MVT::i32),
9403                       Op.getOperand(1), ShAmt);
9404  }
9405  }
9406}
9407
9408SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9409                                           SelectionDAG &DAG) const {
9410  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9411  MFI->setReturnAddressIsTaken(true);
9412
9413  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9414  DebugLoc dl = Op.getDebugLoc();
9415
9416  if (Depth > 0) {
9417    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9418    SDValue Offset =
9419      DAG.getConstant(TD->getPointerSize(),
9420                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9421    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9422                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9423                                   FrameAddr, Offset),
9424                       MachinePointerInfo(), false, false, 0);
9425  }
9426
9427  // Just load the return address.
9428  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9429  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9430                     RetAddrFI, MachinePointerInfo(), false, false, 0);
9431}
9432
9433SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9434  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9435  MFI->setFrameAddressIsTaken(true);
9436
9437  EVT VT = Op.getValueType();
9438  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9439  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9440  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9441  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9442  while (Depth--)
9443    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9444                            MachinePointerInfo(),
9445                            false, false, 0);
9446  return FrameAddr;
9447}
9448
9449SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9450                                                     SelectionDAG &DAG) const {
9451  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9452}
9453
9454SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9455  MachineFunction &MF = DAG.getMachineFunction();
9456  SDValue Chain     = Op.getOperand(0);
9457  SDValue Offset    = Op.getOperand(1);
9458  SDValue Handler   = Op.getOperand(2);
9459  DebugLoc dl       = Op.getDebugLoc();
9460
9461  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9462                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9463                                     getPointerTy());
9464  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9465
9466  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9467                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9468  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9469  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9470                       false, false, 0);
9471  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9472  MF.getRegInfo().addLiveOut(StoreAddrReg);
9473
9474  return DAG.getNode(X86ISD::EH_RETURN, dl,
9475                     MVT::Other,
9476                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9477}
9478
9479SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9480                                                  SelectionDAG &DAG) const {
9481  return Op.getOperand(0);
9482}
9483
9484SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9485                                                SelectionDAG &DAG) const {
9486  SDValue Root = Op.getOperand(0);
9487  SDValue Trmp = Op.getOperand(1); // trampoline
9488  SDValue FPtr = Op.getOperand(2); // nested function
9489  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9490  DebugLoc dl  = Op.getDebugLoc();
9491
9492  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9493
9494  if (Subtarget->is64Bit()) {
9495    SDValue OutChains[6];
9496
9497    // Large code-model.
9498    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9499    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9500
9501    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9502    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9503
9504    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9505
9506    // Load the pointer to the nested function into R11.
9507    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9508    SDValue Addr = Trmp;
9509    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9510                                Addr, MachinePointerInfo(TrmpAddr),
9511                                false, false, 0);
9512
9513    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9514                       DAG.getConstant(2, MVT::i64));
9515    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9516                                MachinePointerInfo(TrmpAddr, 2),
9517                                false, false, 2);
9518
9519    // Load the 'nest' parameter value into R10.
9520    // R10 is specified in X86CallingConv.td
9521    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9522    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9523                       DAG.getConstant(10, MVT::i64));
9524    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9525                                Addr, MachinePointerInfo(TrmpAddr, 10),
9526                                false, false, 0);
9527
9528    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9529                       DAG.getConstant(12, MVT::i64));
9530    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9531                                MachinePointerInfo(TrmpAddr, 12),
9532                                false, false, 2);
9533
9534    // Jump to the nested function.
9535    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9536    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9537                       DAG.getConstant(20, MVT::i64));
9538    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9539                                Addr, MachinePointerInfo(TrmpAddr, 20),
9540                                false, false, 0);
9541
9542    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9543    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9544                       DAG.getConstant(22, MVT::i64));
9545    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9546                                MachinePointerInfo(TrmpAddr, 22),
9547                                false, false, 0);
9548
9549    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9550  } else {
9551    const Function *Func =
9552      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9553    CallingConv::ID CC = Func->getCallingConv();
9554    unsigned NestReg;
9555
9556    switch (CC) {
9557    default:
9558      llvm_unreachable("Unsupported calling convention");
9559    case CallingConv::C:
9560    case CallingConv::X86_StdCall: {
9561      // Pass 'nest' parameter in ECX.
9562      // Must be kept in sync with X86CallingConv.td
9563      NestReg = X86::ECX;
9564
9565      // Check that ECX wasn't needed by an 'inreg' parameter.
9566      FunctionType *FTy = Func->getFunctionType();
9567      const AttrListPtr &Attrs = Func->getAttributes();
9568
9569      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9570        unsigned InRegCount = 0;
9571        unsigned Idx = 1;
9572
9573        for (FunctionType::param_iterator I = FTy->param_begin(),
9574             E = FTy->param_end(); I != E; ++I, ++Idx)
9575          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9576            // FIXME: should only count parameters that are lowered to integers.
9577            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9578
9579        if (InRegCount > 2) {
9580          report_fatal_error("Nest register in use - reduce number of inreg"
9581                             " parameters!");
9582        }
9583      }
9584      break;
9585    }
9586    case CallingConv::X86_FastCall:
9587    case CallingConv::X86_ThisCall:
9588    case CallingConv::Fast:
9589      // Pass 'nest' parameter in EAX.
9590      // Must be kept in sync with X86CallingConv.td
9591      NestReg = X86::EAX;
9592      break;
9593    }
9594
9595    SDValue OutChains[4];
9596    SDValue Addr, Disp;
9597
9598    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9599                       DAG.getConstant(10, MVT::i32));
9600    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9601
9602    // This is storing the opcode for MOV32ri.
9603    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9604    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9605    OutChains[0] = DAG.getStore(Root, dl,
9606                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9607                                Trmp, MachinePointerInfo(TrmpAddr),
9608                                false, false, 0);
9609
9610    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9611                       DAG.getConstant(1, MVT::i32));
9612    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9613                                MachinePointerInfo(TrmpAddr, 1),
9614                                false, false, 1);
9615
9616    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9617    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9618                       DAG.getConstant(5, MVT::i32));
9619    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9620                                MachinePointerInfo(TrmpAddr, 5),
9621                                false, false, 1);
9622
9623    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9624                       DAG.getConstant(6, MVT::i32));
9625    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9626                                MachinePointerInfo(TrmpAddr, 6),
9627                                false, false, 1);
9628
9629    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9630  }
9631}
9632
9633SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9634                                            SelectionDAG &DAG) const {
9635  /*
9636   The rounding mode is in bits 11:10 of FPSR, and has the following
9637   settings:
9638     00 Round to nearest
9639     01 Round to -inf
9640     10 Round to +inf
9641     11 Round to 0
9642
9643  FLT_ROUNDS, on the other hand, expects the following:
9644    -1 Undefined
9645     0 Round to 0
9646     1 Round to nearest
9647     2 Round to +inf
9648     3 Round to -inf
9649
9650  To perform the conversion, we do:
9651    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9652  */
9653
9654  MachineFunction &MF = DAG.getMachineFunction();
9655  const TargetMachine &TM = MF.getTarget();
9656  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9657  unsigned StackAlignment = TFI.getStackAlignment();
9658  EVT VT = Op.getValueType();
9659  DebugLoc DL = Op.getDebugLoc();
9660
9661  // Save FP Control Word to stack slot
9662  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9663  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9664
9665
9666  MachineMemOperand *MMO =
9667   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9668                           MachineMemOperand::MOStore, 2, 2);
9669
9670  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9671  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9672                                          DAG.getVTList(MVT::Other),
9673                                          Ops, 2, MVT::i16, MMO);
9674
9675  // Load FP Control Word from stack slot
9676  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9677                            MachinePointerInfo(), false, false, 0);
9678
9679  // Transform as necessary
9680  SDValue CWD1 =
9681    DAG.getNode(ISD::SRL, DL, MVT::i16,
9682                DAG.getNode(ISD::AND, DL, MVT::i16,
9683                            CWD, DAG.getConstant(0x800, MVT::i16)),
9684                DAG.getConstant(11, MVT::i8));
9685  SDValue CWD2 =
9686    DAG.getNode(ISD::SRL, DL, MVT::i16,
9687                DAG.getNode(ISD::AND, DL, MVT::i16,
9688                            CWD, DAG.getConstant(0x400, MVT::i16)),
9689                DAG.getConstant(9, MVT::i8));
9690
9691  SDValue RetVal =
9692    DAG.getNode(ISD::AND, DL, MVT::i16,
9693                DAG.getNode(ISD::ADD, DL, MVT::i16,
9694                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9695                            DAG.getConstant(1, MVT::i16)),
9696                DAG.getConstant(3, MVT::i16));
9697
9698
9699  return DAG.getNode((VT.getSizeInBits() < 16 ?
9700                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9701}
9702
9703SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9704  EVT VT = Op.getValueType();
9705  EVT OpVT = VT;
9706  unsigned NumBits = VT.getSizeInBits();
9707  DebugLoc dl = Op.getDebugLoc();
9708
9709  Op = Op.getOperand(0);
9710  if (VT == MVT::i8) {
9711    // Zero extend to i32 since there is not an i8 bsr.
9712    OpVT = MVT::i32;
9713    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9714  }
9715
9716  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9717  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9718  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9719
9720  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9721  SDValue Ops[] = {
9722    Op,
9723    DAG.getConstant(NumBits+NumBits-1, OpVT),
9724    DAG.getConstant(X86::COND_E, MVT::i8),
9725    Op.getValue(1)
9726  };
9727  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9728
9729  // Finally xor with NumBits-1.
9730  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9731
9732  if (VT == MVT::i8)
9733    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9734  return Op;
9735}
9736
9737SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9738  EVT VT = Op.getValueType();
9739  EVT OpVT = VT;
9740  unsigned NumBits = VT.getSizeInBits();
9741  DebugLoc dl = Op.getDebugLoc();
9742
9743  Op = Op.getOperand(0);
9744  if (VT == MVT::i8) {
9745    OpVT = MVT::i32;
9746    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9747  }
9748
9749  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9750  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9751  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9752
9753  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9754  SDValue Ops[] = {
9755    Op,
9756    DAG.getConstant(NumBits, OpVT),
9757    DAG.getConstant(X86::COND_E, MVT::i8),
9758    Op.getValue(1)
9759  };
9760  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9761
9762  if (VT == MVT::i8)
9763    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9764  return Op;
9765}
9766
9767// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9768// ones, and then concatenate the result back.
9769static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9770  EVT VT = Op.getValueType();
9771
9772  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9773         "Unsupported value type for operation");
9774
9775  int NumElems = VT.getVectorNumElements();
9776  DebugLoc dl = Op.getDebugLoc();
9777  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9778  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9779
9780  // Extract the LHS vectors
9781  SDValue LHS = Op.getOperand(0);
9782  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9783  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9784
9785  // Extract the RHS vectors
9786  SDValue RHS = Op.getOperand(1);
9787  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9788  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9789
9790  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9791  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9792
9793  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9794                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9795                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9796}
9797
9798SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9799  assert(Op.getValueType().getSizeInBits() == 256 &&
9800         Op.getValueType().isInteger() &&
9801         "Only handle AVX 256-bit vector integer operation");
9802  return Lower256IntArith(Op, DAG);
9803}
9804
9805SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9806  assert(Op.getValueType().getSizeInBits() == 256 &&
9807         Op.getValueType().isInteger() &&
9808         "Only handle AVX 256-bit vector integer operation");
9809  return Lower256IntArith(Op, DAG);
9810}
9811
9812SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9813  EVT VT = Op.getValueType();
9814
9815  // Decompose 256-bit ops into smaller 128-bit ops.
9816  if (VT.getSizeInBits() == 256)
9817    return Lower256IntArith(Op, DAG);
9818
9819  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9820  DebugLoc dl = Op.getDebugLoc();
9821
9822  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9823  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9824  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9825  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9826  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9827  //
9828  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9829  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9830  //  return AloBlo + AloBhi + AhiBlo;
9831
9832  SDValue A = Op.getOperand(0);
9833  SDValue B = Op.getOperand(1);
9834
9835  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9836                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9837                       A, DAG.getConstant(32, MVT::i32));
9838  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9839                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9840                       B, DAG.getConstant(32, MVT::i32));
9841  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9842                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9843                       A, B);
9844  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9845                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9846                       A, Bhi);
9847  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9848                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9849                       Ahi, B);
9850  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9851                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9852                       AloBhi, DAG.getConstant(32, MVT::i32));
9853  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9854                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9855                       AhiBlo, DAG.getConstant(32, MVT::i32));
9856  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9857  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9858  return Res;
9859}
9860
9861SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9862
9863  EVT VT = Op.getValueType();
9864  DebugLoc dl = Op.getDebugLoc();
9865  SDValue R = Op.getOperand(0);
9866  SDValue Amt = Op.getOperand(1);
9867  LLVMContext *Context = DAG.getContext();
9868
9869  if (!Subtarget->hasXMMInt())
9870    return SDValue();
9871
9872  // Decompose 256-bit shifts into smaller 128-bit shifts.
9873  if (VT.getSizeInBits() == 256) {
9874    int NumElems = VT.getVectorNumElements();
9875    MVT EltVT = VT.getVectorElementType().getSimpleVT();
9876    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9877
9878    // Extract the two vectors
9879    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
9880    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
9881                                     DAG, dl);
9882
9883    // Recreate the shift amount vectors
9884    SDValue Amt1, Amt2;
9885    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
9886      // Constant shift amount
9887      SmallVector<SDValue, 4> Amt1Csts;
9888      SmallVector<SDValue, 4> Amt2Csts;
9889      for (int i = 0; i < NumElems/2; ++i)
9890        Amt1Csts.push_back(Amt->getOperand(i));
9891      for (int i = NumElems/2; i < NumElems; ++i)
9892        Amt2Csts.push_back(Amt->getOperand(i));
9893
9894      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9895                                 &Amt1Csts[0], NumElems/2);
9896      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9897                                 &Amt2Csts[0], NumElems/2);
9898    } else {
9899      // Variable shift amount
9900      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
9901      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
9902                                 DAG, dl);
9903    }
9904
9905    // Issue new vector shifts for the smaller types
9906    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
9907    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
9908
9909    // Concatenate the result back
9910    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
9911  }
9912
9913  // Optimize shl/srl/sra with constant shift amount.
9914  if (isSplatVector(Amt.getNode())) {
9915    SDValue SclrAmt = Amt->getOperand(0);
9916    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9917      uint64_t ShiftAmt = C->getZExtValue();
9918
9919      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9920       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9921                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9922                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9923
9924      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9925       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9926                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9927                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9928
9929      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9930       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9931                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9932                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9933
9934      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9935       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9936                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9937                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9938
9939      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9940       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9941                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9942                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9943
9944      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9945       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9946                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9947                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9948
9949      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9950       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9951                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9952                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9953
9954      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9955       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9956                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9957                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9958    }
9959  }
9960
9961  // Lower SHL with variable shift amount.
9962  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9963    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9964                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9965                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9966
9967    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9968
9969    std::vector<Constant*> CV(4, CI);
9970    Constant *C = ConstantVector::get(CV);
9971    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9972    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9973                                 MachinePointerInfo::getConstantPool(),
9974                                 false, false, 16);
9975
9976    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9977    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9978    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9979    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9980  }
9981  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9982    // a = a << 5;
9983    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9984                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9985                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9986
9987    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9988    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
9989
9990    std::vector<Constant*> CVM1(16, CM1);
9991    std::vector<Constant*> CVM2(16, CM2);
9992    Constant *C = ConstantVector::get(CVM1);
9993    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9994    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9995                            MachinePointerInfo::getConstantPool(),
9996                            false, false, 16);
9997
9998    // r = pblendv(r, psllw(r & (char16)15, 4), a);
9999    M = DAG.getNode(ISD::AND, dl, VT, R, M);
10000    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10001                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10002                    DAG.getConstant(4, MVT::i32));
10003    R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10004    // a += a
10005    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10006
10007    C = ConstantVector::get(CVM2);
10008    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10009    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10010                    MachinePointerInfo::getConstantPool(),
10011                    false, false, 16);
10012
10013    // r = pblendv(r, psllw(r & (char16)63, 2), a);
10014    M = DAG.getNode(ISD::AND, dl, VT, R, M);
10015    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10016                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10017                    DAG.getConstant(2, MVT::i32));
10018    R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10019    // a += a
10020    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10021
10022    // return pblendv(r, r+r, a);
10023    R = DAG.getNode(ISD::VSELECT, dl, VT, Op,
10024                    R, DAG.getNode(ISD::ADD, dl, VT, R, R));
10025    return R;
10026  }
10027  return SDValue();
10028}
10029
10030SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10031  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10032  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10033  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10034  // has only one use.
10035  SDNode *N = Op.getNode();
10036  SDValue LHS = N->getOperand(0);
10037  SDValue RHS = N->getOperand(1);
10038  unsigned BaseOp = 0;
10039  unsigned Cond = 0;
10040  DebugLoc DL = Op.getDebugLoc();
10041  switch (Op.getOpcode()) {
10042  default: llvm_unreachable("Unknown ovf instruction!");
10043  case ISD::SADDO:
10044    // A subtract of one will be selected as a INC. Note that INC doesn't
10045    // set CF, so we can't do this for UADDO.
10046    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10047      if (C->isOne()) {
10048        BaseOp = X86ISD::INC;
10049        Cond = X86::COND_O;
10050        break;
10051      }
10052    BaseOp = X86ISD::ADD;
10053    Cond = X86::COND_O;
10054    break;
10055  case ISD::UADDO:
10056    BaseOp = X86ISD::ADD;
10057    Cond = X86::COND_B;
10058    break;
10059  case ISD::SSUBO:
10060    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10061    // set CF, so we can't do this for USUBO.
10062    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10063      if (C->isOne()) {
10064        BaseOp = X86ISD::DEC;
10065        Cond = X86::COND_O;
10066        break;
10067      }
10068    BaseOp = X86ISD::SUB;
10069    Cond = X86::COND_O;
10070    break;
10071  case ISD::USUBO:
10072    BaseOp = X86ISD::SUB;
10073    Cond = X86::COND_B;
10074    break;
10075  case ISD::SMULO:
10076    BaseOp = X86ISD::SMUL;
10077    Cond = X86::COND_O;
10078    break;
10079  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10080    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10081                                 MVT::i32);
10082    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10083
10084    SDValue SetCC =
10085      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10086                  DAG.getConstant(X86::COND_O, MVT::i32),
10087                  SDValue(Sum.getNode(), 2));
10088
10089    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10090  }
10091  }
10092
10093  // Also sets EFLAGS.
10094  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10095  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10096
10097  SDValue SetCC =
10098    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10099                DAG.getConstant(Cond, MVT::i32),
10100                SDValue(Sum.getNode(), 1));
10101
10102  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10103}
10104
10105SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10106  DebugLoc dl = Op.getDebugLoc();
10107  SDNode* Node = Op.getNode();
10108  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
10109  EVT VT = Node->getValueType(0);
10110  if (Subtarget->hasXMMInt() && VT.isVector()) {
10111    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10112                        ExtraVT.getScalarType().getSizeInBits();
10113    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10114
10115    unsigned SHLIntrinsicsID = 0;
10116    unsigned SRAIntrinsicsID = 0;
10117    switch (VT.getSimpleVT().SimpleTy) {
10118      default:
10119        return SDValue();
10120      case MVT::v4i32: {
10121        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10122        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10123        break;
10124      }
10125      case MVT::v8i16: {
10126        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10127        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10128        break;
10129      }
10130    }
10131
10132    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10133                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10134                         Node->getOperand(0), ShAmt);
10135
10136    // In case of 1 bit sext, no need to shr
10137    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
10138
10139    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10140                       DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10141                       Tmp1, ShAmt);
10142  }
10143
10144  return SDValue();
10145}
10146
10147
10148SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10149  DebugLoc dl = Op.getDebugLoc();
10150
10151  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10152  // There isn't any reason to disable it if the target processor supports it.
10153  if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
10154    SDValue Chain = Op.getOperand(0);
10155    SDValue Zero = DAG.getConstant(0, MVT::i32);
10156    SDValue Ops[] = {
10157      DAG.getRegister(X86::ESP, MVT::i32), // Base
10158      DAG.getTargetConstant(1, MVT::i8),   // Scale
10159      DAG.getRegister(0, MVT::i32),        // Index
10160      DAG.getTargetConstant(0, MVT::i32),  // Disp
10161      DAG.getRegister(0, MVT::i32),        // Segment.
10162      Zero,
10163      Chain
10164    };
10165    SDNode *Res =
10166      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10167                          array_lengthof(Ops));
10168    return SDValue(Res, 0);
10169  }
10170
10171  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10172  if (!isDev)
10173    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10174
10175  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10176  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10177  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10178  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10179
10180  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10181  if (!Op1 && !Op2 && !Op3 && Op4)
10182    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10183
10184  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10185  if (Op1 && !Op2 && !Op3 && !Op4)
10186    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10187
10188  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10189  //           (MFENCE)>;
10190  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10191}
10192
10193SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10194                                             SelectionDAG &DAG) const {
10195  DebugLoc dl = Op.getDebugLoc();
10196  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10197    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10198  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10199    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10200
10201  // The only fence that needs an instruction is a sequentially-consistent
10202  // cross-thread fence.
10203  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10204    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10205    // no-sse2). There isn't any reason to disable it if the target processor
10206    // supports it.
10207    if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
10208      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10209
10210    SDValue Chain = Op.getOperand(0);
10211    SDValue Zero = DAG.getConstant(0, MVT::i32);
10212    SDValue Ops[] = {
10213      DAG.getRegister(X86::ESP, MVT::i32), // Base
10214      DAG.getTargetConstant(1, MVT::i8),   // Scale
10215      DAG.getRegister(0, MVT::i32),        // Index
10216      DAG.getTargetConstant(0, MVT::i32),  // Disp
10217      DAG.getRegister(0, MVT::i32),        // Segment.
10218      Zero,
10219      Chain
10220    };
10221    SDNode *Res =
10222      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10223                         array_lengthof(Ops));
10224    return SDValue(Res, 0);
10225  }
10226
10227  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10228  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10229}
10230
10231
10232SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10233  EVT T = Op.getValueType();
10234  DebugLoc DL = Op.getDebugLoc();
10235  unsigned Reg = 0;
10236  unsigned size = 0;
10237  switch(T.getSimpleVT().SimpleTy) {
10238  default:
10239    assert(false && "Invalid value type!");
10240  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10241  case MVT::i16: Reg = X86::AX;  size = 2; break;
10242  case MVT::i32: Reg = X86::EAX; size = 4; break;
10243  case MVT::i64:
10244    assert(Subtarget->is64Bit() && "Node not type legal!");
10245    Reg = X86::RAX; size = 8;
10246    break;
10247  }
10248  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10249                                    Op.getOperand(2), SDValue());
10250  SDValue Ops[] = { cpIn.getValue(0),
10251                    Op.getOperand(1),
10252                    Op.getOperand(3),
10253                    DAG.getTargetConstant(size, MVT::i8),
10254                    cpIn.getValue(1) };
10255  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10256  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10257  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10258                                           Ops, 5, T, MMO);
10259  SDValue cpOut =
10260    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10261  return cpOut;
10262}
10263
10264SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10265                                                 SelectionDAG &DAG) const {
10266  assert(Subtarget->is64Bit() && "Result not type legalized?");
10267  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10268  SDValue TheChain = Op.getOperand(0);
10269  DebugLoc dl = Op.getDebugLoc();
10270  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10271  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10272  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10273                                   rax.getValue(2));
10274  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10275                            DAG.getConstant(32, MVT::i8));
10276  SDValue Ops[] = {
10277    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10278    rdx.getValue(1)
10279  };
10280  return DAG.getMergeValues(Ops, 2, dl);
10281}
10282
10283SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10284                                            SelectionDAG &DAG) const {
10285  EVT SrcVT = Op.getOperand(0).getValueType();
10286  EVT DstVT = Op.getValueType();
10287  assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
10288         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10289  assert((DstVT == MVT::i64 ||
10290          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10291         "Unexpected custom BITCAST");
10292  // i64 <=> MMX conversions are Legal.
10293  if (SrcVT==MVT::i64 && DstVT.isVector())
10294    return Op;
10295  if (DstVT==MVT::i64 && SrcVT.isVector())
10296    return Op;
10297  // MMX <=> MMX conversions are Legal.
10298  if (SrcVT.isVector() && DstVT.isVector())
10299    return Op;
10300  // All other conversions need to be expanded.
10301  return SDValue();
10302}
10303
10304SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10305  SDNode *Node = Op.getNode();
10306  DebugLoc dl = Node->getDebugLoc();
10307  EVT T = Node->getValueType(0);
10308  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10309                              DAG.getConstant(0, T), Node->getOperand(2));
10310  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10311                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10312                       Node->getOperand(0),
10313                       Node->getOperand(1), negOp,
10314                       cast<AtomicSDNode>(Node)->getSrcValue(),
10315                       cast<AtomicSDNode>(Node)->getAlignment(),
10316                       cast<AtomicSDNode>(Node)->getOrdering(),
10317                       cast<AtomicSDNode>(Node)->getSynchScope());
10318}
10319
10320static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10321  SDNode *Node = Op.getNode();
10322  DebugLoc dl = Node->getDebugLoc();
10323  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10324
10325  // Convert seq_cst store -> xchg
10326  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10327  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10328  //        (The only way to get a 16-byte store is cmpxchg16b)
10329  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10330  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10331      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10332    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10333                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10334                                 Node->getOperand(0),
10335                                 Node->getOperand(1), Node->getOperand(2),
10336                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10337                                 cast<AtomicSDNode>(Node)->getOrdering(),
10338                                 cast<AtomicSDNode>(Node)->getSynchScope());
10339    return Swap.getValue(1);
10340  }
10341  // Other atomic stores have a simple pattern.
10342  return Op;
10343}
10344
10345static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10346  EVT VT = Op.getNode()->getValueType(0);
10347
10348  // Let legalize expand this if it isn't a legal type yet.
10349  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10350    return SDValue();
10351
10352  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10353
10354  unsigned Opc;
10355  bool ExtraOp = false;
10356  switch (Op.getOpcode()) {
10357  default: assert(0 && "Invalid code");
10358  case ISD::ADDC: Opc = X86ISD::ADD; break;
10359  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10360  case ISD::SUBC: Opc = X86ISD::SUB; break;
10361  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10362  }
10363
10364  if (!ExtraOp)
10365    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10366                       Op.getOperand(1));
10367  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10368                     Op.getOperand(1), Op.getOperand(2));
10369}
10370
10371/// LowerOperation - Provide custom lowering hooks for some operations.
10372///
10373SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10374  switch (Op.getOpcode()) {
10375  default: llvm_unreachable("Should not custom lower this!");
10376  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10377  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10378  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10379  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10380  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10381  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10382  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10383  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10384  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10385  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10386  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10387  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10388  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10389  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10390  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10391  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10392  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10393  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10394  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10395  case ISD::SHL_PARTS:
10396  case ISD::SRA_PARTS:
10397  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10398  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10399  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10400  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10401  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10402  case ISD::FABS:               return LowerFABS(Op, DAG);
10403  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10404  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10405  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10406  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10407  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10408  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10409  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10410  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10411  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10412  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10413  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10414  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10415  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10416  case ISD::FRAME_TO_ARGS_OFFSET:
10417                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10418  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10419  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10420  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10421  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10422  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10423  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10424  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10425  case ISD::MUL:                return LowerMUL(Op, DAG);
10426  case ISD::SRA:
10427  case ISD::SRL:
10428  case ISD::SHL:                return LowerShift(Op, DAG);
10429  case ISD::SADDO:
10430  case ISD::UADDO:
10431  case ISD::SSUBO:
10432  case ISD::USUBO:
10433  case ISD::SMULO:
10434  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10435  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10436  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10437  case ISD::ADDC:
10438  case ISD::ADDE:
10439  case ISD::SUBC:
10440  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10441  case ISD::ADD:                return LowerADD(Op, DAG);
10442  case ISD::SUB:                return LowerSUB(Op, DAG);
10443  }
10444}
10445
10446static void ReplaceATOMIC_LOAD(SDNode *Node,
10447                                  SmallVectorImpl<SDValue> &Results,
10448                                  SelectionDAG &DAG) {
10449  DebugLoc dl = Node->getDebugLoc();
10450  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10451
10452  // Convert wide load -> cmpxchg8b/cmpxchg16b
10453  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10454  //        (The only way to get a 16-byte load is cmpxchg16b)
10455  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10456  SDValue Zero = DAG.getConstant(0, VT);
10457  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10458                               Node->getOperand(0),
10459                               Node->getOperand(1), Zero, Zero,
10460                               cast<AtomicSDNode>(Node)->getMemOperand(),
10461                               cast<AtomicSDNode>(Node)->getOrdering(),
10462                               cast<AtomicSDNode>(Node)->getSynchScope());
10463  Results.push_back(Swap.getValue(0));
10464  Results.push_back(Swap.getValue(1));
10465}
10466
10467void X86TargetLowering::
10468ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10469                        SelectionDAG &DAG, unsigned NewOp) const {
10470  EVT T = Node->getValueType(0);
10471  DebugLoc dl = Node->getDebugLoc();
10472  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
10473
10474  SDValue Chain = Node->getOperand(0);
10475  SDValue In1 = Node->getOperand(1);
10476  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10477                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10478  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10479                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10480  SDValue Ops[] = { Chain, In1, In2L, In2H };
10481  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10482  SDValue Result =
10483    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10484                            cast<MemSDNode>(Node)->getMemOperand());
10485  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10486  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10487  Results.push_back(Result.getValue(2));
10488}
10489
10490/// ReplaceNodeResults - Replace a node with an illegal result type
10491/// with a new node built out of custom code.
10492void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10493                                           SmallVectorImpl<SDValue>&Results,
10494                                           SelectionDAG &DAG) const {
10495  DebugLoc dl = N->getDebugLoc();
10496  switch (N->getOpcode()) {
10497  default:
10498    assert(false && "Do not know how to custom type legalize this operation!");
10499    return;
10500  case ISD::SIGN_EXTEND_INREG:
10501  case ISD::ADDC:
10502  case ISD::ADDE:
10503  case ISD::SUBC:
10504  case ISD::SUBE:
10505    // We don't want to expand or promote these.
10506    return;
10507  case ISD::FP_TO_SINT: {
10508    std::pair<SDValue,SDValue> Vals =
10509        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10510    SDValue FIST = Vals.first, StackSlot = Vals.second;
10511    if (FIST.getNode() != 0) {
10512      EVT VT = N->getValueType(0);
10513      // Return a load from the stack slot.
10514      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10515                                    MachinePointerInfo(), false, false, 0));
10516    }
10517    return;
10518  }
10519  case ISD::READCYCLECOUNTER: {
10520    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10521    SDValue TheChain = N->getOperand(0);
10522    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10523    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10524                                     rd.getValue(1));
10525    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10526                                     eax.getValue(2));
10527    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10528    SDValue Ops[] = { eax, edx };
10529    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10530    Results.push_back(edx.getValue(1));
10531    return;
10532  }
10533  case ISD::ATOMIC_CMP_SWAP: {
10534    EVT T = N->getValueType(0);
10535    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10536    bool Regs64bit = T == MVT::i128;
10537    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10538    SDValue cpInL, cpInH;
10539    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10540                        DAG.getConstant(0, HalfT));
10541    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10542                        DAG.getConstant(1, HalfT));
10543    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10544                             Regs64bit ? X86::RAX : X86::EAX,
10545                             cpInL, SDValue());
10546    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10547                             Regs64bit ? X86::RDX : X86::EDX,
10548                             cpInH, cpInL.getValue(1));
10549    SDValue swapInL, swapInH;
10550    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10551                          DAG.getConstant(0, HalfT));
10552    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10553                          DAG.getConstant(1, HalfT));
10554    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10555                               Regs64bit ? X86::RBX : X86::EBX,
10556                               swapInL, cpInH.getValue(1));
10557    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10558                               Regs64bit ? X86::RCX : X86::ECX,
10559                               swapInH, swapInL.getValue(1));
10560    SDValue Ops[] = { swapInH.getValue(0),
10561                      N->getOperand(1),
10562                      swapInH.getValue(1) };
10563    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10564    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10565    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10566                                  X86ISD::LCMPXCHG8_DAG;
10567    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10568                                             Ops, 3, T, MMO);
10569    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10570                                        Regs64bit ? X86::RAX : X86::EAX,
10571                                        HalfT, Result.getValue(1));
10572    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10573                                        Regs64bit ? X86::RDX : X86::EDX,
10574                                        HalfT, cpOutL.getValue(2));
10575    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10576    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10577    Results.push_back(cpOutH.getValue(1));
10578    return;
10579  }
10580  case ISD::ATOMIC_LOAD_ADD:
10581    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10582    return;
10583  case ISD::ATOMIC_LOAD_AND:
10584    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10585    return;
10586  case ISD::ATOMIC_LOAD_NAND:
10587    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10588    return;
10589  case ISD::ATOMIC_LOAD_OR:
10590    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10591    return;
10592  case ISD::ATOMIC_LOAD_SUB:
10593    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10594    return;
10595  case ISD::ATOMIC_LOAD_XOR:
10596    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10597    return;
10598  case ISD::ATOMIC_SWAP:
10599    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10600    return;
10601  case ISD::ATOMIC_LOAD:
10602    ReplaceATOMIC_LOAD(N, Results, DAG);
10603  }
10604}
10605
10606const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10607  switch (Opcode) {
10608  default: return NULL;
10609  case X86ISD::BSF:                return "X86ISD::BSF";
10610  case X86ISD::BSR:                return "X86ISD::BSR";
10611  case X86ISD::SHLD:               return "X86ISD::SHLD";
10612  case X86ISD::SHRD:               return "X86ISD::SHRD";
10613  case X86ISD::FAND:               return "X86ISD::FAND";
10614  case X86ISD::FOR:                return "X86ISD::FOR";
10615  case X86ISD::FXOR:               return "X86ISD::FXOR";
10616  case X86ISD::FSRL:               return "X86ISD::FSRL";
10617  case X86ISD::FILD:               return "X86ISD::FILD";
10618  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10619  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10620  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10621  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10622  case X86ISD::FLD:                return "X86ISD::FLD";
10623  case X86ISD::FST:                return "X86ISD::FST";
10624  case X86ISD::CALL:               return "X86ISD::CALL";
10625  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10626  case X86ISD::BT:                 return "X86ISD::BT";
10627  case X86ISD::CMP:                return "X86ISD::CMP";
10628  case X86ISD::COMI:               return "X86ISD::COMI";
10629  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10630  case X86ISD::SETCC:              return "X86ISD::SETCC";
10631  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10632  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10633  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10634  case X86ISD::CMOV:               return "X86ISD::CMOV";
10635  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10636  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10637  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10638  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10639  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10640  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10641  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10642  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10643  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10644  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10645  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10646  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10647  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10648  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10649  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
10650  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
10651  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
10652  case X86ISD::FMAX:               return "X86ISD::FMAX";
10653  case X86ISD::FMIN:               return "X86ISD::FMIN";
10654  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10655  case X86ISD::FRCP:               return "X86ISD::FRCP";
10656  case X86ISD::FHADD:              return "X86ISD::FHADD";
10657  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10658  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10659  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10660  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10661  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10662  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10663  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10664  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10665  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10666  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10667  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10668  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10669  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10670  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10671  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10672  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10673  case X86ISD::VSHL:               return "X86ISD::VSHL";
10674  case X86ISD::VSRL:               return "X86ISD::VSRL";
10675  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10676  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10677  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10678  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10679  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10680  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10681  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10682  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10683  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10684  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10685  case X86ISD::ADD:                return "X86ISD::ADD";
10686  case X86ISD::SUB:                return "X86ISD::SUB";
10687  case X86ISD::ADC:                return "X86ISD::ADC";
10688  case X86ISD::SBB:                return "X86ISD::SBB";
10689  case X86ISD::SMUL:               return "X86ISD::SMUL";
10690  case X86ISD::UMUL:               return "X86ISD::UMUL";
10691  case X86ISD::INC:                return "X86ISD::INC";
10692  case X86ISD::DEC:                return "X86ISD::DEC";
10693  case X86ISD::OR:                 return "X86ISD::OR";
10694  case X86ISD::XOR:                return "X86ISD::XOR";
10695  case X86ISD::AND:                return "X86ISD::AND";
10696  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10697  case X86ISD::PTEST:              return "X86ISD::PTEST";
10698  case X86ISD::TESTP:              return "X86ISD::TESTP";
10699  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10700  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10701  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10702  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10703  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10704  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10705  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10706  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10707  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10708  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10709  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10710  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
10711  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10712  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10713  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10714  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10715  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10716  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10717  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10718  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10719  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10720  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
10721  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
10722  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
10723  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
10724  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
10725  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
10726  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
10727  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
10728  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
10729  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
10730  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
10731  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
10732  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
10733  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10734  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
10735  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
10736  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
10737  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
10738  case X86ISD::VPERM2F128:         return "X86ISD::VPERM2F128";
10739  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10740  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10741  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10742  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10743  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
10744  }
10745}
10746
10747// isLegalAddressingMode - Return true if the addressing mode represented
10748// by AM is legal for this target, for a load/store of the specified type.
10749bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10750                                              Type *Ty) const {
10751  // X86 supports extremely general addressing modes.
10752  CodeModel::Model M = getTargetMachine().getCodeModel();
10753  Reloc::Model R = getTargetMachine().getRelocationModel();
10754
10755  // X86 allows a sign-extended 32-bit immediate field as a displacement.
10756  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10757    return false;
10758
10759  if (AM.BaseGV) {
10760    unsigned GVFlags =
10761      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10762
10763    // If a reference to this global requires an extra load, we can't fold it.
10764    if (isGlobalStubReference(GVFlags))
10765      return false;
10766
10767    // If BaseGV requires a register for the PIC base, we cannot also have a
10768    // BaseReg specified.
10769    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10770      return false;
10771
10772    // If lower 4G is not available, then we must use rip-relative addressing.
10773    if ((M != CodeModel::Small || R != Reloc::Static) &&
10774        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10775      return false;
10776  }
10777
10778  switch (AM.Scale) {
10779  case 0:
10780  case 1:
10781  case 2:
10782  case 4:
10783  case 8:
10784    // These scales always work.
10785    break;
10786  case 3:
10787  case 5:
10788  case 9:
10789    // These scales are formed with basereg+scalereg.  Only accept if there is
10790    // no basereg yet.
10791    if (AM.HasBaseReg)
10792      return false;
10793    break;
10794  default:  // Other stuff never works.
10795    return false;
10796  }
10797
10798  return true;
10799}
10800
10801
10802bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10803  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10804    return false;
10805  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
10806  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
10807  if (NumBits1 <= NumBits2)
10808    return false;
10809  return true;
10810}
10811
10812bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10813  if (!VT1.isInteger() || !VT2.isInteger())
10814    return false;
10815  unsigned NumBits1 = VT1.getSizeInBits();
10816  unsigned NumBits2 = VT2.getSizeInBits();
10817  if (NumBits1 <= NumBits2)
10818    return false;
10819  return true;
10820}
10821
10822bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
10823  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10824  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
10825}
10826
10827bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
10828  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10829  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
10830}
10831
10832bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
10833  // i16 instructions are longer (0x66 prefix) and potentially slower.
10834  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
10835}
10836
10837/// isShuffleMaskLegal - Targets can use this to indicate that they only
10838/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
10839/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
10840/// are assumed to be legal.
10841bool
10842X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
10843                                      EVT VT) const {
10844  // Very little shuffling can be done for 64-bit vectors right now.
10845  if (VT.getSizeInBits() == 64)
10846    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX());
10847
10848  // FIXME: pshufb, blends, shifts.
10849  return (VT.getVectorNumElements() == 2 ||
10850          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10851          isMOVLMask(M, VT) ||
10852          isSHUFPMask(M, VT) ||
10853          isPSHUFDMask(M, VT) ||
10854          isPSHUFHWMask(M, VT) ||
10855          isPSHUFLWMask(M, VT) ||
10856          isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()) ||
10857          isUNPCKLMask(M, VT) ||
10858          isUNPCKHMask(M, VT) ||
10859          isUNPCKL_v_undef_Mask(M, VT) ||
10860          isUNPCKH_v_undef_Mask(M, VT));
10861}
10862
10863bool
10864X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10865                                          EVT VT) const {
10866  unsigned NumElts = VT.getVectorNumElements();
10867  // FIXME: This collection of masks seems suspect.
10868  if (NumElts == 2)
10869    return true;
10870  if (NumElts == 4 && VT.getSizeInBits() == 128) {
10871    return (isMOVLMask(Mask, VT)  ||
10872            isCommutedMOVLMask(Mask, VT, true) ||
10873            isSHUFPMask(Mask, VT) ||
10874            isCommutedSHUFPMask(Mask, VT));
10875  }
10876  return false;
10877}
10878
10879//===----------------------------------------------------------------------===//
10880//                           X86 Scheduler Hooks
10881//===----------------------------------------------------------------------===//
10882
10883// private utility function
10884MachineBasicBlock *
10885X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10886                                                       MachineBasicBlock *MBB,
10887                                                       unsigned regOpc,
10888                                                       unsigned immOpc,
10889                                                       unsigned LoadOpc,
10890                                                       unsigned CXchgOpc,
10891                                                       unsigned notOpc,
10892                                                       unsigned EAXreg,
10893                                                       TargetRegisterClass *RC,
10894                                                       bool invSrc) const {
10895  // For the atomic bitwise operator, we generate
10896  //   thisMBB:
10897  //   newMBB:
10898  //     ld  t1 = [bitinstr.addr]
10899  //     op  t2 = t1, [bitinstr.val]
10900  //     mov EAX = t1
10901  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10902  //     bz  newMBB
10903  //     fallthrough -->nextMBB
10904  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10905  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10906  MachineFunction::iterator MBBIter = MBB;
10907  ++MBBIter;
10908
10909  /// First build the CFG
10910  MachineFunction *F = MBB->getParent();
10911  MachineBasicBlock *thisMBB = MBB;
10912  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10913  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10914  F->insert(MBBIter, newMBB);
10915  F->insert(MBBIter, nextMBB);
10916
10917  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10918  nextMBB->splice(nextMBB->begin(), thisMBB,
10919                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10920                  thisMBB->end());
10921  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10922
10923  // Update thisMBB to fall through to newMBB
10924  thisMBB->addSuccessor(newMBB);
10925
10926  // newMBB jumps to itself and fall through to nextMBB
10927  newMBB->addSuccessor(nextMBB);
10928  newMBB->addSuccessor(newMBB);
10929
10930  // Insert instructions into newMBB based on incoming instruction
10931  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10932         "unexpected number of operands");
10933  DebugLoc dl = bInstr->getDebugLoc();
10934  MachineOperand& destOper = bInstr->getOperand(0);
10935  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10936  int numArgs = bInstr->getNumOperands() - 1;
10937  for (int i=0; i < numArgs; ++i)
10938    argOpers[i] = &bInstr->getOperand(i+1);
10939
10940  // x86 address has 4 operands: base, index, scale, and displacement
10941  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10942  int valArgIndx = lastAddrIndx + 1;
10943
10944  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10945  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10946  for (int i=0; i <= lastAddrIndx; ++i)
10947    (*MIB).addOperand(*argOpers[i]);
10948
10949  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10950  if (invSrc) {
10951    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10952  }
10953  else
10954    tt = t1;
10955
10956  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10957  assert((argOpers[valArgIndx]->isReg() ||
10958          argOpers[valArgIndx]->isImm()) &&
10959         "invalid operand");
10960  if (argOpers[valArgIndx]->isReg())
10961    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10962  else
10963    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10964  MIB.addReg(tt);
10965  (*MIB).addOperand(*argOpers[valArgIndx]);
10966
10967  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10968  MIB.addReg(t1);
10969
10970  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10971  for (int i=0; i <= lastAddrIndx; ++i)
10972    (*MIB).addOperand(*argOpers[i]);
10973  MIB.addReg(t2);
10974  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10975  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10976                    bInstr->memoperands_end());
10977
10978  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10979  MIB.addReg(EAXreg);
10980
10981  // insert branch
10982  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10983
10984  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10985  return nextMBB;
10986}
10987
10988// private utility function:  64 bit atomics on 32 bit host.
10989MachineBasicBlock *
10990X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
10991                                                       MachineBasicBlock *MBB,
10992                                                       unsigned regOpcL,
10993                                                       unsigned regOpcH,
10994                                                       unsigned immOpcL,
10995                                                       unsigned immOpcH,
10996                                                       bool invSrc) const {
10997  // For the atomic bitwise operator, we generate
10998  //   thisMBB (instructions are in pairs, except cmpxchg8b)
10999  //     ld t1,t2 = [bitinstr.addr]
11000  //   newMBB:
11001  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11002  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11003  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11004  //     mov ECX, EBX <- t5, t6
11005  //     mov EAX, EDX <- t1, t2
11006  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11007  //     mov t3, t4 <- EAX, EDX
11008  //     bz  newMBB
11009  //     result in out1, out2
11010  //     fallthrough -->nextMBB
11011
11012  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11013  const unsigned LoadOpc = X86::MOV32rm;
11014  const unsigned NotOpc = X86::NOT32r;
11015  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11016  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11017  MachineFunction::iterator MBBIter = MBB;
11018  ++MBBIter;
11019
11020  /// First build the CFG
11021  MachineFunction *F = MBB->getParent();
11022  MachineBasicBlock *thisMBB = MBB;
11023  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11024  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11025  F->insert(MBBIter, newMBB);
11026  F->insert(MBBIter, nextMBB);
11027
11028  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11029  nextMBB->splice(nextMBB->begin(), thisMBB,
11030                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11031                  thisMBB->end());
11032  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11033
11034  // Update thisMBB to fall through to newMBB
11035  thisMBB->addSuccessor(newMBB);
11036
11037  // newMBB jumps to itself and fall through to nextMBB
11038  newMBB->addSuccessor(nextMBB);
11039  newMBB->addSuccessor(newMBB);
11040
11041  DebugLoc dl = bInstr->getDebugLoc();
11042  // Insert instructions into newMBB based on incoming instruction
11043  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11044  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11045         "unexpected number of operands");
11046  MachineOperand& dest1Oper = bInstr->getOperand(0);
11047  MachineOperand& dest2Oper = bInstr->getOperand(1);
11048  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11049  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11050    argOpers[i] = &bInstr->getOperand(i+2);
11051
11052    // We use some of the operands multiple times, so conservatively just
11053    // clear any kill flags that might be present.
11054    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11055      argOpers[i]->setIsKill(false);
11056  }
11057
11058  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11059  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11060
11061  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11062  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11063  for (int i=0; i <= lastAddrIndx; ++i)
11064    (*MIB).addOperand(*argOpers[i]);
11065  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11066  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11067  // add 4 to displacement.
11068  for (int i=0; i <= lastAddrIndx-2; ++i)
11069    (*MIB).addOperand(*argOpers[i]);
11070  MachineOperand newOp3 = *(argOpers[3]);
11071  if (newOp3.isImm())
11072    newOp3.setImm(newOp3.getImm()+4);
11073  else
11074    newOp3.setOffset(newOp3.getOffset()+4);
11075  (*MIB).addOperand(newOp3);
11076  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11077
11078  // t3/4 are defined later, at the bottom of the loop
11079  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11080  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11081  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11082    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11083  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11084    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11085
11086  // The subsequent operations should be using the destination registers of
11087  //the PHI instructions.
11088  if (invSrc) {
11089    t1 = F->getRegInfo().createVirtualRegister(RC);
11090    t2 = F->getRegInfo().createVirtualRegister(RC);
11091    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11092    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11093  } else {
11094    t1 = dest1Oper.getReg();
11095    t2 = dest2Oper.getReg();
11096  }
11097
11098  int valArgIndx = lastAddrIndx + 1;
11099  assert((argOpers[valArgIndx]->isReg() ||
11100          argOpers[valArgIndx]->isImm()) &&
11101         "invalid operand");
11102  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11103  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11104  if (argOpers[valArgIndx]->isReg())
11105    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11106  else
11107    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11108  if (regOpcL != X86::MOV32rr)
11109    MIB.addReg(t1);
11110  (*MIB).addOperand(*argOpers[valArgIndx]);
11111  assert(argOpers[valArgIndx + 1]->isReg() ==
11112         argOpers[valArgIndx]->isReg());
11113  assert(argOpers[valArgIndx + 1]->isImm() ==
11114         argOpers[valArgIndx]->isImm());
11115  if (argOpers[valArgIndx + 1]->isReg())
11116    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11117  else
11118    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11119  if (regOpcH != X86::MOV32rr)
11120    MIB.addReg(t2);
11121  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11122
11123  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11124  MIB.addReg(t1);
11125  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11126  MIB.addReg(t2);
11127
11128  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11129  MIB.addReg(t5);
11130  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11131  MIB.addReg(t6);
11132
11133  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11134  for (int i=0; i <= lastAddrIndx; ++i)
11135    (*MIB).addOperand(*argOpers[i]);
11136
11137  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11138  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11139                    bInstr->memoperands_end());
11140
11141  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11142  MIB.addReg(X86::EAX);
11143  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11144  MIB.addReg(X86::EDX);
11145
11146  // insert branch
11147  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11148
11149  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11150  return nextMBB;
11151}
11152
11153// private utility function
11154MachineBasicBlock *
11155X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11156                                                      MachineBasicBlock *MBB,
11157                                                      unsigned cmovOpc) const {
11158  // For the atomic min/max operator, we generate
11159  //   thisMBB:
11160  //   newMBB:
11161  //     ld t1 = [min/max.addr]
11162  //     mov t2 = [min/max.val]
11163  //     cmp  t1, t2
11164  //     cmov[cond] t2 = t1
11165  //     mov EAX = t1
11166  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11167  //     bz   newMBB
11168  //     fallthrough -->nextMBB
11169  //
11170  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11171  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11172  MachineFunction::iterator MBBIter = MBB;
11173  ++MBBIter;
11174
11175  /// First build the CFG
11176  MachineFunction *F = MBB->getParent();
11177  MachineBasicBlock *thisMBB = MBB;
11178  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11179  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11180  F->insert(MBBIter, newMBB);
11181  F->insert(MBBIter, nextMBB);
11182
11183  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11184  nextMBB->splice(nextMBB->begin(), thisMBB,
11185                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11186                  thisMBB->end());
11187  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11188
11189  // Update thisMBB to fall through to newMBB
11190  thisMBB->addSuccessor(newMBB);
11191
11192  // newMBB jumps to newMBB and fall through to nextMBB
11193  newMBB->addSuccessor(nextMBB);
11194  newMBB->addSuccessor(newMBB);
11195
11196  DebugLoc dl = mInstr->getDebugLoc();
11197  // Insert instructions into newMBB based on incoming instruction
11198  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11199         "unexpected number of operands");
11200  MachineOperand& destOper = mInstr->getOperand(0);
11201  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11202  int numArgs = mInstr->getNumOperands() - 1;
11203  for (int i=0; i < numArgs; ++i)
11204    argOpers[i] = &mInstr->getOperand(i+1);
11205
11206  // x86 address has 4 operands: base, index, scale, and displacement
11207  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11208  int valArgIndx = lastAddrIndx + 1;
11209
11210  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11211  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11212  for (int i=0; i <= lastAddrIndx; ++i)
11213    (*MIB).addOperand(*argOpers[i]);
11214
11215  // We only support register and immediate values
11216  assert((argOpers[valArgIndx]->isReg() ||
11217          argOpers[valArgIndx]->isImm()) &&
11218         "invalid operand");
11219
11220  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11221  if (argOpers[valArgIndx]->isReg())
11222    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11223  else
11224    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11225  (*MIB).addOperand(*argOpers[valArgIndx]);
11226
11227  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11228  MIB.addReg(t1);
11229
11230  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11231  MIB.addReg(t1);
11232  MIB.addReg(t2);
11233
11234  // Generate movc
11235  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11236  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11237  MIB.addReg(t2);
11238  MIB.addReg(t1);
11239
11240  // Cmp and exchange if none has modified the memory location
11241  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11242  for (int i=0; i <= lastAddrIndx; ++i)
11243    (*MIB).addOperand(*argOpers[i]);
11244  MIB.addReg(t3);
11245  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11246  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11247                    mInstr->memoperands_end());
11248
11249  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11250  MIB.addReg(X86::EAX);
11251
11252  // insert branch
11253  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11254
11255  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11256  return nextMBB;
11257}
11258
11259// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11260// or XMM0_V32I8 in AVX all of this code can be replaced with that
11261// in the .td file.
11262MachineBasicBlock *
11263X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11264                            unsigned numArgs, bool memArg) const {
11265  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
11266         "Target must have SSE4.2 or AVX features enabled");
11267
11268  DebugLoc dl = MI->getDebugLoc();
11269  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11270  unsigned Opc;
11271  if (!Subtarget->hasAVX()) {
11272    if (memArg)
11273      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11274    else
11275      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11276  } else {
11277    if (memArg)
11278      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11279    else
11280      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11281  }
11282
11283  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11284  for (unsigned i = 0; i < numArgs; ++i) {
11285    MachineOperand &Op = MI->getOperand(i+1);
11286    if (!(Op.isReg() && Op.isImplicit()))
11287      MIB.addOperand(Op);
11288  }
11289  BuildMI(*BB, MI, dl,
11290    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11291             MI->getOperand(0).getReg())
11292    .addReg(X86::XMM0);
11293
11294  MI->eraseFromParent();
11295  return BB;
11296}
11297
11298MachineBasicBlock *
11299X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11300  DebugLoc dl = MI->getDebugLoc();
11301  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11302
11303  // Address into RAX/EAX, other two args into ECX, EDX.
11304  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11305  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11306  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11307  for (int i = 0; i < X86::AddrNumOperands; ++i)
11308    MIB.addOperand(MI->getOperand(i));
11309
11310  unsigned ValOps = X86::AddrNumOperands;
11311  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11312    .addReg(MI->getOperand(ValOps).getReg());
11313  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11314    .addReg(MI->getOperand(ValOps+1).getReg());
11315
11316  // The instruction doesn't actually take any operands though.
11317  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11318
11319  MI->eraseFromParent(); // The pseudo is gone now.
11320  return BB;
11321}
11322
11323MachineBasicBlock *
11324X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11325  DebugLoc dl = MI->getDebugLoc();
11326  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11327
11328  // First arg in ECX, the second in EAX.
11329  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11330    .addReg(MI->getOperand(0).getReg());
11331  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11332    .addReg(MI->getOperand(1).getReg());
11333
11334  // The instruction doesn't actually take any operands though.
11335  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11336
11337  MI->eraseFromParent(); // The pseudo is gone now.
11338  return BB;
11339}
11340
11341MachineBasicBlock *
11342X86TargetLowering::EmitVAARG64WithCustomInserter(
11343                   MachineInstr *MI,
11344                   MachineBasicBlock *MBB) const {
11345  // Emit va_arg instruction on X86-64.
11346
11347  // Operands to this pseudo-instruction:
11348  // 0  ) Output        : destination address (reg)
11349  // 1-5) Input         : va_list address (addr, i64mem)
11350  // 6  ) ArgSize       : Size (in bytes) of vararg type
11351  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11352  // 8  ) Align         : Alignment of type
11353  // 9  ) EFLAGS (implicit-def)
11354
11355  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11356  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11357
11358  unsigned DestReg = MI->getOperand(0).getReg();
11359  MachineOperand &Base = MI->getOperand(1);
11360  MachineOperand &Scale = MI->getOperand(2);
11361  MachineOperand &Index = MI->getOperand(3);
11362  MachineOperand &Disp = MI->getOperand(4);
11363  MachineOperand &Segment = MI->getOperand(5);
11364  unsigned ArgSize = MI->getOperand(6).getImm();
11365  unsigned ArgMode = MI->getOperand(7).getImm();
11366  unsigned Align = MI->getOperand(8).getImm();
11367
11368  // Memory Reference
11369  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11370  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11371  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11372
11373  // Machine Information
11374  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11375  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11376  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11377  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11378  DebugLoc DL = MI->getDebugLoc();
11379
11380  // struct va_list {
11381  //   i32   gp_offset
11382  //   i32   fp_offset
11383  //   i64   overflow_area (address)
11384  //   i64   reg_save_area (address)
11385  // }
11386  // sizeof(va_list) = 24
11387  // alignment(va_list) = 8
11388
11389  unsigned TotalNumIntRegs = 6;
11390  unsigned TotalNumXMMRegs = 8;
11391  bool UseGPOffset = (ArgMode == 1);
11392  bool UseFPOffset = (ArgMode == 2);
11393  unsigned MaxOffset = TotalNumIntRegs * 8 +
11394                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11395
11396  /* Align ArgSize to a multiple of 8 */
11397  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11398  bool NeedsAlign = (Align > 8);
11399
11400  MachineBasicBlock *thisMBB = MBB;
11401  MachineBasicBlock *overflowMBB;
11402  MachineBasicBlock *offsetMBB;
11403  MachineBasicBlock *endMBB;
11404
11405  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11406  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11407  unsigned OffsetReg = 0;
11408
11409  if (!UseGPOffset && !UseFPOffset) {
11410    // If we only pull from the overflow region, we don't create a branch.
11411    // We don't need to alter control flow.
11412    OffsetDestReg = 0; // unused
11413    OverflowDestReg = DestReg;
11414
11415    offsetMBB = NULL;
11416    overflowMBB = thisMBB;
11417    endMBB = thisMBB;
11418  } else {
11419    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11420    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11421    // If not, pull from overflow_area. (branch to overflowMBB)
11422    //
11423    //       thisMBB
11424    //         |     .
11425    //         |        .
11426    //     offsetMBB   overflowMBB
11427    //         |        .
11428    //         |     .
11429    //        endMBB
11430
11431    // Registers for the PHI in endMBB
11432    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11433    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11434
11435    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11436    MachineFunction *MF = MBB->getParent();
11437    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11438    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11439    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11440
11441    MachineFunction::iterator MBBIter = MBB;
11442    ++MBBIter;
11443
11444    // Insert the new basic blocks
11445    MF->insert(MBBIter, offsetMBB);
11446    MF->insert(MBBIter, overflowMBB);
11447    MF->insert(MBBIter, endMBB);
11448
11449    // Transfer the remainder of MBB and its successor edges to endMBB.
11450    endMBB->splice(endMBB->begin(), thisMBB,
11451                    llvm::next(MachineBasicBlock::iterator(MI)),
11452                    thisMBB->end());
11453    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11454
11455    // Make offsetMBB and overflowMBB successors of thisMBB
11456    thisMBB->addSuccessor(offsetMBB);
11457    thisMBB->addSuccessor(overflowMBB);
11458
11459    // endMBB is a successor of both offsetMBB and overflowMBB
11460    offsetMBB->addSuccessor(endMBB);
11461    overflowMBB->addSuccessor(endMBB);
11462
11463    // Load the offset value into a register
11464    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11465    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11466      .addOperand(Base)
11467      .addOperand(Scale)
11468      .addOperand(Index)
11469      .addDisp(Disp, UseFPOffset ? 4 : 0)
11470      .addOperand(Segment)
11471      .setMemRefs(MMOBegin, MMOEnd);
11472
11473    // Check if there is enough room left to pull this argument.
11474    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11475      .addReg(OffsetReg)
11476      .addImm(MaxOffset + 8 - ArgSizeA8);
11477
11478    // Branch to "overflowMBB" if offset >= max
11479    // Fall through to "offsetMBB" otherwise
11480    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11481      .addMBB(overflowMBB);
11482  }
11483
11484  // In offsetMBB, emit code to use the reg_save_area.
11485  if (offsetMBB) {
11486    assert(OffsetReg != 0);
11487
11488    // Read the reg_save_area address.
11489    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11490    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11491      .addOperand(Base)
11492      .addOperand(Scale)
11493      .addOperand(Index)
11494      .addDisp(Disp, 16)
11495      .addOperand(Segment)
11496      .setMemRefs(MMOBegin, MMOEnd);
11497
11498    // Zero-extend the offset
11499    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11500      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11501        .addImm(0)
11502        .addReg(OffsetReg)
11503        .addImm(X86::sub_32bit);
11504
11505    // Add the offset to the reg_save_area to get the final address.
11506    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11507      .addReg(OffsetReg64)
11508      .addReg(RegSaveReg);
11509
11510    // Compute the offset for the next argument
11511    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11512    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11513      .addReg(OffsetReg)
11514      .addImm(UseFPOffset ? 16 : 8);
11515
11516    // Store it back into the va_list.
11517    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11518      .addOperand(Base)
11519      .addOperand(Scale)
11520      .addOperand(Index)
11521      .addDisp(Disp, UseFPOffset ? 4 : 0)
11522      .addOperand(Segment)
11523      .addReg(NextOffsetReg)
11524      .setMemRefs(MMOBegin, MMOEnd);
11525
11526    // Jump to endMBB
11527    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11528      .addMBB(endMBB);
11529  }
11530
11531  //
11532  // Emit code to use overflow area
11533  //
11534
11535  // Load the overflow_area address into a register.
11536  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11537  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11538    .addOperand(Base)
11539    .addOperand(Scale)
11540    .addOperand(Index)
11541    .addDisp(Disp, 8)
11542    .addOperand(Segment)
11543    .setMemRefs(MMOBegin, MMOEnd);
11544
11545  // If we need to align it, do so. Otherwise, just copy the address
11546  // to OverflowDestReg.
11547  if (NeedsAlign) {
11548    // Align the overflow address
11549    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11550    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11551
11552    // aligned_addr = (addr + (align-1)) & ~(align-1)
11553    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11554      .addReg(OverflowAddrReg)
11555      .addImm(Align-1);
11556
11557    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11558      .addReg(TmpReg)
11559      .addImm(~(uint64_t)(Align-1));
11560  } else {
11561    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11562      .addReg(OverflowAddrReg);
11563  }
11564
11565  // Compute the next overflow address after this argument.
11566  // (the overflow address should be kept 8-byte aligned)
11567  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11568  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11569    .addReg(OverflowDestReg)
11570    .addImm(ArgSizeA8);
11571
11572  // Store the new overflow address.
11573  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11574    .addOperand(Base)
11575    .addOperand(Scale)
11576    .addOperand(Index)
11577    .addDisp(Disp, 8)
11578    .addOperand(Segment)
11579    .addReg(NextAddrReg)
11580    .setMemRefs(MMOBegin, MMOEnd);
11581
11582  // If we branched, emit the PHI to the front of endMBB.
11583  if (offsetMBB) {
11584    BuildMI(*endMBB, endMBB->begin(), DL,
11585            TII->get(X86::PHI), DestReg)
11586      .addReg(OffsetDestReg).addMBB(offsetMBB)
11587      .addReg(OverflowDestReg).addMBB(overflowMBB);
11588  }
11589
11590  // Erase the pseudo instruction
11591  MI->eraseFromParent();
11592
11593  return endMBB;
11594}
11595
11596MachineBasicBlock *
11597X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11598                                                 MachineInstr *MI,
11599                                                 MachineBasicBlock *MBB) const {
11600  // Emit code to save XMM registers to the stack. The ABI says that the
11601  // number of registers to save is given in %al, so it's theoretically
11602  // possible to do an indirect jump trick to avoid saving all of them,
11603  // however this code takes a simpler approach and just executes all
11604  // of the stores if %al is non-zero. It's less code, and it's probably
11605  // easier on the hardware branch predictor, and stores aren't all that
11606  // expensive anyway.
11607
11608  // Create the new basic blocks. One block contains all the XMM stores,
11609  // and one block is the final destination regardless of whether any
11610  // stores were performed.
11611  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11612  MachineFunction *F = MBB->getParent();
11613  MachineFunction::iterator MBBIter = MBB;
11614  ++MBBIter;
11615  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11616  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11617  F->insert(MBBIter, XMMSaveMBB);
11618  F->insert(MBBIter, EndMBB);
11619
11620  // Transfer the remainder of MBB and its successor edges to EndMBB.
11621  EndMBB->splice(EndMBB->begin(), MBB,
11622                 llvm::next(MachineBasicBlock::iterator(MI)),
11623                 MBB->end());
11624  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11625
11626  // The original block will now fall through to the XMM save block.
11627  MBB->addSuccessor(XMMSaveMBB);
11628  // The XMMSaveMBB will fall through to the end block.
11629  XMMSaveMBB->addSuccessor(EndMBB);
11630
11631  // Now add the instructions.
11632  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11633  DebugLoc DL = MI->getDebugLoc();
11634
11635  unsigned CountReg = MI->getOperand(0).getReg();
11636  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11637  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11638
11639  if (!Subtarget->isTargetWin64()) {
11640    // If %al is 0, branch around the XMM save block.
11641    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11642    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11643    MBB->addSuccessor(EndMBB);
11644  }
11645
11646  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11647  // In the XMM save block, save all the XMM argument registers.
11648  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11649    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11650    MachineMemOperand *MMO =
11651      F->getMachineMemOperand(
11652          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11653        MachineMemOperand::MOStore,
11654        /*Size=*/16, /*Align=*/16);
11655    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11656      .addFrameIndex(RegSaveFrameIndex)
11657      .addImm(/*Scale=*/1)
11658      .addReg(/*IndexReg=*/0)
11659      .addImm(/*Disp=*/Offset)
11660      .addReg(/*Segment=*/0)
11661      .addReg(MI->getOperand(i).getReg())
11662      .addMemOperand(MMO);
11663  }
11664
11665  MI->eraseFromParent();   // The pseudo instruction is gone now.
11666
11667  return EndMBB;
11668}
11669
11670MachineBasicBlock *
11671X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11672                                     MachineBasicBlock *BB) const {
11673  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11674  DebugLoc DL = MI->getDebugLoc();
11675
11676  // To "insert" a SELECT_CC instruction, we actually have to insert the
11677  // diamond control-flow pattern.  The incoming instruction knows the
11678  // destination vreg to set, the condition code register to branch on, the
11679  // true/false values to select between, and a branch opcode to use.
11680  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11681  MachineFunction::iterator It = BB;
11682  ++It;
11683
11684  //  thisMBB:
11685  //  ...
11686  //   TrueVal = ...
11687  //   cmpTY ccX, r1, r2
11688  //   bCC copy1MBB
11689  //   fallthrough --> copy0MBB
11690  MachineBasicBlock *thisMBB = BB;
11691  MachineFunction *F = BB->getParent();
11692  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11693  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11694  F->insert(It, copy0MBB);
11695  F->insert(It, sinkMBB);
11696
11697  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11698  // live into the sink and copy blocks.
11699  if (!MI->killsRegister(X86::EFLAGS)) {
11700    copy0MBB->addLiveIn(X86::EFLAGS);
11701    sinkMBB->addLiveIn(X86::EFLAGS);
11702  }
11703
11704  // Transfer the remainder of BB and its successor edges to sinkMBB.
11705  sinkMBB->splice(sinkMBB->begin(), BB,
11706                  llvm::next(MachineBasicBlock::iterator(MI)),
11707                  BB->end());
11708  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11709
11710  // Add the true and fallthrough blocks as its successors.
11711  BB->addSuccessor(copy0MBB);
11712  BB->addSuccessor(sinkMBB);
11713
11714  // Create the conditional branch instruction.
11715  unsigned Opc =
11716    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11717  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11718
11719  //  copy0MBB:
11720  //   %FalseValue = ...
11721  //   # fallthrough to sinkMBB
11722  copy0MBB->addSuccessor(sinkMBB);
11723
11724  //  sinkMBB:
11725  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11726  //  ...
11727  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11728          TII->get(X86::PHI), MI->getOperand(0).getReg())
11729    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11730    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11731
11732  MI->eraseFromParent();   // The pseudo instruction is gone now.
11733  return sinkMBB;
11734}
11735
11736MachineBasicBlock *
11737X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
11738                                        bool Is64Bit) const {
11739  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11740  DebugLoc DL = MI->getDebugLoc();
11741  MachineFunction *MF = BB->getParent();
11742  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11743
11744  assert(EnableSegmentedStacks);
11745
11746  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
11747  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
11748
11749  // BB:
11750  //  ... [Till the alloca]
11751  // If stacklet is not large enough, jump to mallocMBB
11752  //
11753  // bumpMBB:
11754  //  Allocate by subtracting from RSP
11755  //  Jump to continueMBB
11756  //
11757  // mallocMBB:
11758  //  Allocate by call to runtime
11759  //
11760  // continueMBB:
11761  //  ...
11762  //  [rest of original BB]
11763  //
11764
11765  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11766  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11767  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11768
11769  MachineRegisterInfo &MRI = MF->getRegInfo();
11770  const TargetRegisterClass *AddrRegClass =
11771    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
11772
11773  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11774    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11775    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
11776    sizeVReg = MI->getOperand(1).getReg(),
11777    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
11778
11779  MachineFunction::iterator MBBIter = BB;
11780  ++MBBIter;
11781
11782  MF->insert(MBBIter, bumpMBB);
11783  MF->insert(MBBIter, mallocMBB);
11784  MF->insert(MBBIter, continueMBB);
11785
11786  continueMBB->splice(continueMBB->begin(), BB, llvm::next
11787                      (MachineBasicBlock::iterator(MI)), BB->end());
11788  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
11789
11790  // Add code to the main basic block to check if the stack limit has been hit,
11791  // and if so, jump to mallocMBB otherwise to bumpMBB.
11792  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
11793  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), tmpSPVReg)
11794    .addReg(tmpSPVReg).addReg(sizeVReg);
11795  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
11796    .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
11797    .addReg(tmpSPVReg);
11798  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
11799
11800  // bumpMBB simply decreases the stack pointer, since we know the current
11801  // stacklet has enough space.
11802  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
11803    .addReg(tmpSPVReg);
11804  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
11805    .addReg(tmpSPVReg);
11806  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11807
11808  // Calls into a routine in libgcc to allocate more space from the heap.
11809  if (Is64Bit) {
11810    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
11811      .addReg(sizeVReg);
11812    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
11813    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
11814  } else {
11815    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
11816      .addImm(12);
11817    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
11818    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
11819      .addExternalSymbol("__morestack_allocate_stack_space");
11820  }
11821
11822  if (!Is64Bit)
11823    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
11824      .addImm(16);
11825
11826  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
11827    .addReg(Is64Bit ? X86::RAX : X86::EAX);
11828  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11829
11830  // Set up the CFG correctly.
11831  BB->addSuccessor(bumpMBB);
11832  BB->addSuccessor(mallocMBB);
11833  mallocMBB->addSuccessor(continueMBB);
11834  bumpMBB->addSuccessor(continueMBB);
11835
11836  // Take care of the PHI nodes.
11837  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
11838          MI->getOperand(0).getReg())
11839    .addReg(mallocPtrVReg).addMBB(mallocMBB)
11840    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
11841
11842  // Delete the original pseudo instruction.
11843  MI->eraseFromParent();
11844
11845  // And we're done.
11846  return continueMBB;
11847}
11848
11849MachineBasicBlock *
11850X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
11851                                          MachineBasicBlock *BB) const {
11852  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11853  DebugLoc DL = MI->getDebugLoc();
11854
11855  assert(!Subtarget->isTargetEnvMacho());
11856
11857  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
11858  // non-trivial part is impdef of ESP.
11859
11860  if (Subtarget->isTargetWin64()) {
11861    if (Subtarget->isTargetCygMing()) {
11862      // ___chkstk(Mingw64):
11863      // Clobbers R10, R11, RAX and EFLAGS.
11864      // Updates RSP.
11865      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11866        .addExternalSymbol("___chkstk")
11867        .addReg(X86::RAX, RegState::Implicit)
11868        .addReg(X86::RSP, RegState::Implicit)
11869        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
11870        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
11871        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11872    } else {
11873      // __chkstk(MSVCRT): does not update stack pointer.
11874      // Clobbers R10, R11 and EFLAGS.
11875      // FIXME: RAX(allocated size) might be reused and not killed.
11876      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11877        .addExternalSymbol("__chkstk")
11878        .addReg(X86::RAX, RegState::Implicit)
11879        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11880      // RAX has the offset to subtracted from RSP.
11881      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
11882        .addReg(X86::RSP)
11883        .addReg(X86::RAX);
11884    }
11885  } else {
11886    const char *StackProbeSymbol =
11887      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
11888
11889    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
11890      .addExternalSymbol(StackProbeSymbol)
11891      .addReg(X86::EAX, RegState::Implicit)
11892      .addReg(X86::ESP, RegState::Implicit)
11893      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
11894      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
11895      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11896  }
11897
11898  MI->eraseFromParent();   // The pseudo instruction is gone now.
11899  return BB;
11900}
11901
11902MachineBasicBlock *
11903X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
11904                                      MachineBasicBlock *BB) const {
11905  // This is pretty easy.  We're taking the value that we received from
11906  // our load from the relocation, sticking it in either RDI (x86-64)
11907  // or EAX and doing an indirect call.  The return value will then
11908  // be in the normal return register.
11909  const X86InstrInfo *TII
11910    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
11911  DebugLoc DL = MI->getDebugLoc();
11912  MachineFunction *F = BB->getParent();
11913
11914  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
11915  assert(MI->getOperand(3).isGlobal() && "This should be a global");
11916
11917  if (Subtarget->is64Bit()) {
11918    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11919                                      TII->get(X86::MOV64rm), X86::RDI)
11920    .addReg(X86::RIP)
11921    .addImm(0).addReg(0)
11922    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11923                      MI->getOperand(3).getTargetFlags())
11924    .addReg(0);
11925    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
11926    addDirectMem(MIB, X86::RDI);
11927  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
11928    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11929                                      TII->get(X86::MOV32rm), X86::EAX)
11930    .addReg(0)
11931    .addImm(0).addReg(0)
11932    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11933                      MI->getOperand(3).getTargetFlags())
11934    .addReg(0);
11935    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11936    addDirectMem(MIB, X86::EAX);
11937  } else {
11938    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11939                                      TII->get(X86::MOV32rm), X86::EAX)
11940    .addReg(TII->getGlobalBaseReg(F))
11941    .addImm(0).addReg(0)
11942    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11943                      MI->getOperand(3).getTargetFlags())
11944    .addReg(0);
11945    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11946    addDirectMem(MIB, X86::EAX);
11947  }
11948
11949  MI->eraseFromParent(); // The pseudo instruction is gone now.
11950  return BB;
11951}
11952
11953MachineBasicBlock *
11954X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
11955                                               MachineBasicBlock *BB) const {
11956  switch (MI->getOpcode()) {
11957  default: assert(0 && "Unexpected instr type to insert");
11958  case X86::TAILJMPd64:
11959  case X86::TAILJMPr64:
11960  case X86::TAILJMPm64:
11961    assert(0 && "TAILJMP64 would not be touched here.");
11962  case X86::TCRETURNdi64:
11963  case X86::TCRETURNri64:
11964  case X86::TCRETURNmi64:
11965    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11966    // On AMD64, additional defs should be added before register allocation.
11967    if (!Subtarget->isTargetWin64()) {
11968      MI->addRegisterDefined(X86::RSI);
11969      MI->addRegisterDefined(X86::RDI);
11970      MI->addRegisterDefined(X86::XMM6);
11971      MI->addRegisterDefined(X86::XMM7);
11972      MI->addRegisterDefined(X86::XMM8);
11973      MI->addRegisterDefined(X86::XMM9);
11974      MI->addRegisterDefined(X86::XMM10);
11975      MI->addRegisterDefined(X86::XMM11);
11976      MI->addRegisterDefined(X86::XMM12);
11977      MI->addRegisterDefined(X86::XMM13);
11978      MI->addRegisterDefined(X86::XMM14);
11979      MI->addRegisterDefined(X86::XMM15);
11980    }
11981    return BB;
11982  case X86::WIN_ALLOCA:
11983    return EmitLoweredWinAlloca(MI, BB);
11984  case X86::SEG_ALLOCA_32:
11985    return EmitLoweredSegAlloca(MI, BB, false);
11986  case X86::SEG_ALLOCA_64:
11987    return EmitLoweredSegAlloca(MI, BB, true);
11988  case X86::TLSCall_32:
11989  case X86::TLSCall_64:
11990    return EmitLoweredTLSCall(MI, BB);
11991  case X86::CMOV_GR8:
11992  case X86::CMOV_FR32:
11993  case X86::CMOV_FR64:
11994  case X86::CMOV_V4F32:
11995  case X86::CMOV_V2F64:
11996  case X86::CMOV_V2I64:
11997  case X86::CMOV_V8F32:
11998  case X86::CMOV_V4F64:
11999  case X86::CMOV_V4I64:
12000  case X86::CMOV_GR16:
12001  case X86::CMOV_GR32:
12002  case X86::CMOV_RFP32:
12003  case X86::CMOV_RFP64:
12004  case X86::CMOV_RFP80:
12005    return EmitLoweredSelect(MI, BB);
12006
12007  case X86::FP32_TO_INT16_IN_MEM:
12008  case X86::FP32_TO_INT32_IN_MEM:
12009  case X86::FP32_TO_INT64_IN_MEM:
12010  case X86::FP64_TO_INT16_IN_MEM:
12011  case X86::FP64_TO_INT32_IN_MEM:
12012  case X86::FP64_TO_INT64_IN_MEM:
12013  case X86::FP80_TO_INT16_IN_MEM:
12014  case X86::FP80_TO_INT32_IN_MEM:
12015  case X86::FP80_TO_INT64_IN_MEM: {
12016    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12017    DebugLoc DL = MI->getDebugLoc();
12018
12019    // Change the floating point control register to use "round towards zero"
12020    // mode when truncating to an integer value.
12021    MachineFunction *F = BB->getParent();
12022    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12023    addFrameReference(BuildMI(*BB, MI, DL,
12024                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12025
12026    // Load the old value of the high byte of the control word...
12027    unsigned OldCW =
12028      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12029    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12030                      CWFrameIdx);
12031
12032    // Set the high part to be round to zero...
12033    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12034      .addImm(0xC7F);
12035
12036    // Reload the modified control word now...
12037    addFrameReference(BuildMI(*BB, MI, DL,
12038                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12039
12040    // Restore the memory image of control word to original value
12041    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12042      .addReg(OldCW);
12043
12044    // Get the X86 opcode to use.
12045    unsigned Opc;
12046    switch (MI->getOpcode()) {
12047    default: llvm_unreachable("illegal opcode!");
12048    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12049    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12050    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12051    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12052    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12053    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12054    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12055    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12056    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12057    }
12058
12059    X86AddressMode AM;
12060    MachineOperand &Op = MI->getOperand(0);
12061    if (Op.isReg()) {
12062      AM.BaseType = X86AddressMode::RegBase;
12063      AM.Base.Reg = Op.getReg();
12064    } else {
12065      AM.BaseType = X86AddressMode::FrameIndexBase;
12066      AM.Base.FrameIndex = Op.getIndex();
12067    }
12068    Op = MI->getOperand(1);
12069    if (Op.isImm())
12070      AM.Scale = Op.getImm();
12071    Op = MI->getOperand(2);
12072    if (Op.isImm())
12073      AM.IndexReg = Op.getImm();
12074    Op = MI->getOperand(3);
12075    if (Op.isGlobal()) {
12076      AM.GV = Op.getGlobal();
12077    } else {
12078      AM.Disp = Op.getImm();
12079    }
12080    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12081                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12082
12083    // Reload the original control word now.
12084    addFrameReference(BuildMI(*BB, MI, DL,
12085                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12086
12087    MI->eraseFromParent();   // The pseudo instruction is gone now.
12088    return BB;
12089  }
12090    // String/text processing lowering.
12091  case X86::PCMPISTRM128REG:
12092  case X86::VPCMPISTRM128REG:
12093    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12094  case X86::PCMPISTRM128MEM:
12095  case X86::VPCMPISTRM128MEM:
12096    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12097  case X86::PCMPESTRM128REG:
12098  case X86::VPCMPESTRM128REG:
12099    return EmitPCMP(MI, BB, 5, false /* in mem */);
12100  case X86::PCMPESTRM128MEM:
12101  case X86::VPCMPESTRM128MEM:
12102    return EmitPCMP(MI, BB, 5, true /* in mem */);
12103
12104    // Thread synchronization.
12105  case X86::MONITOR:
12106    return EmitMonitor(MI, BB);
12107  case X86::MWAIT:
12108    return EmitMwait(MI, BB);
12109
12110    // Atomic Lowering.
12111  case X86::ATOMAND32:
12112    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12113                                               X86::AND32ri, X86::MOV32rm,
12114                                               X86::LCMPXCHG32,
12115                                               X86::NOT32r, X86::EAX,
12116                                               X86::GR32RegisterClass);
12117  case X86::ATOMOR32:
12118    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12119                                               X86::OR32ri, X86::MOV32rm,
12120                                               X86::LCMPXCHG32,
12121                                               X86::NOT32r, X86::EAX,
12122                                               X86::GR32RegisterClass);
12123  case X86::ATOMXOR32:
12124    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12125                                               X86::XOR32ri, X86::MOV32rm,
12126                                               X86::LCMPXCHG32,
12127                                               X86::NOT32r, X86::EAX,
12128                                               X86::GR32RegisterClass);
12129  case X86::ATOMNAND32:
12130    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12131                                               X86::AND32ri, X86::MOV32rm,
12132                                               X86::LCMPXCHG32,
12133                                               X86::NOT32r, X86::EAX,
12134                                               X86::GR32RegisterClass, true);
12135  case X86::ATOMMIN32:
12136    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12137  case X86::ATOMMAX32:
12138    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12139  case X86::ATOMUMIN32:
12140    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12141  case X86::ATOMUMAX32:
12142    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12143
12144  case X86::ATOMAND16:
12145    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12146                                               X86::AND16ri, X86::MOV16rm,
12147                                               X86::LCMPXCHG16,
12148                                               X86::NOT16r, X86::AX,
12149                                               X86::GR16RegisterClass);
12150  case X86::ATOMOR16:
12151    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12152                                               X86::OR16ri, X86::MOV16rm,
12153                                               X86::LCMPXCHG16,
12154                                               X86::NOT16r, X86::AX,
12155                                               X86::GR16RegisterClass);
12156  case X86::ATOMXOR16:
12157    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12158                                               X86::XOR16ri, X86::MOV16rm,
12159                                               X86::LCMPXCHG16,
12160                                               X86::NOT16r, X86::AX,
12161                                               X86::GR16RegisterClass);
12162  case X86::ATOMNAND16:
12163    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12164                                               X86::AND16ri, X86::MOV16rm,
12165                                               X86::LCMPXCHG16,
12166                                               X86::NOT16r, X86::AX,
12167                                               X86::GR16RegisterClass, true);
12168  case X86::ATOMMIN16:
12169    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12170  case X86::ATOMMAX16:
12171    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12172  case X86::ATOMUMIN16:
12173    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12174  case X86::ATOMUMAX16:
12175    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12176
12177  case X86::ATOMAND8:
12178    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12179                                               X86::AND8ri, X86::MOV8rm,
12180                                               X86::LCMPXCHG8,
12181                                               X86::NOT8r, X86::AL,
12182                                               X86::GR8RegisterClass);
12183  case X86::ATOMOR8:
12184    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12185                                               X86::OR8ri, X86::MOV8rm,
12186                                               X86::LCMPXCHG8,
12187                                               X86::NOT8r, X86::AL,
12188                                               X86::GR8RegisterClass);
12189  case X86::ATOMXOR8:
12190    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12191                                               X86::XOR8ri, X86::MOV8rm,
12192                                               X86::LCMPXCHG8,
12193                                               X86::NOT8r, X86::AL,
12194                                               X86::GR8RegisterClass);
12195  case X86::ATOMNAND8:
12196    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12197                                               X86::AND8ri, X86::MOV8rm,
12198                                               X86::LCMPXCHG8,
12199                                               X86::NOT8r, X86::AL,
12200                                               X86::GR8RegisterClass, true);
12201  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12202  // This group is for 64-bit host.
12203  case X86::ATOMAND64:
12204    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12205                                               X86::AND64ri32, X86::MOV64rm,
12206                                               X86::LCMPXCHG64,
12207                                               X86::NOT64r, X86::RAX,
12208                                               X86::GR64RegisterClass);
12209  case X86::ATOMOR64:
12210    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12211                                               X86::OR64ri32, X86::MOV64rm,
12212                                               X86::LCMPXCHG64,
12213                                               X86::NOT64r, X86::RAX,
12214                                               X86::GR64RegisterClass);
12215  case X86::ATOMXOR64:
12216    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12217                                               X86::XOR64ri32, X86::MOV64rm,
12218                                               X86::LCMPXCHG64,
12219                                               X86::NOT64r, X86::RAX,
12220                                               X86::GR64RegisterClass);
12221  case X86::ATOMNAND64:
12222    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12223                                               X86::AND64ri32, X86::MOV64rm,
12224                                               X86::LCMPXCHG64,
12225                                               X86::NOT64r, X86::RAX,
12226                                               X86::GR64RegisterClass, true);
12227  case X86::ATOMMIN64:
12228    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12229  case X86::ATOMMAX64:
12230    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12231  case X86::ATOMUMIN64:
12232    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12233  case X86::ATOMUMAX64:
12234    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12235
12236  // This group does 64-bit operations on a 32-bit host.
12237  case X86::ATOMAND6432:
12238    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12239                                               X86::AND32rr, X86::AND32rr,
12240                                               X86::AND32ri, X86::AND32ri,
12241                                               false);
12242  case X86::ATOMOR6432:
12243    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12244                                               X86::OR32rr, X86::OR32rr,
12245                                               X86::OR32ri, X86::OR32ri,
12246                                               false);
12247  case X86::ATOMXOR6432:
12248    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12249                                               X86::XOR32rr, X86::XOR32rr,
12250                                               X86::XOR32ri, X86::XOR32ri,
12251                                               false);
12252  case X86::ATOMNAND6432:
12253    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12254                                               X86::AND32rr, X86::AND32rr,
12255                                               X86::AND32ri, X86::AND32ri,
12256                                               true);
12257  case X86::ATOMADD6432:
12258    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12259                                               X86::ADD32rr, X86::ADC32rr,
12260                                               X86::ADD32ri, X86::ADC32ri,
12261                                               false);
12262  case X86::ATOMSUB6432:
12263    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12264                                               X86::SUB32rr, X86::SBB32rr,
12265                                               X86::SUB32ri, X86::SBB32ri,
12266                                               false);
12267  case X86::ATOMSWAP6432:
12268    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12269                                               X86::MOV32rr, X86::MOV32rr,
12270                                               X86::MOV32ri, X86::MOV32ri,
12271                                               false);
12272  case X86::VASTART_SAVE_XMM_REGS:
12273    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12274
12275  case X86::VAARG_64:
12276    return EmitVAARG64WithCustomInserter(MI, BB);
12277  }
12278}
12279
12280//===----------------------------------------------------------------------===//
12281//                           X86 Optimization Hooks
12282//===----------------------------------------------------------------------===//
12283
12284void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12285                                                       const APInt &Mask,
12286                                                       APInt &KnownZero,
12287                                                       APInt &KnownOne,
12288                                                       const SelectionDAG &DAG,
12289                                                       unsigned Depth) const {
12290  unsigned Opc = Op.getOpcode();
12291  assert((Opc >= ISD::BUILTIN_OP_END ||
12292          Opc == ISD::INTRINSIC_WO_CHAIN ||
12293          Opc == ISD::INTRINSIC_W_CHAIN ||
12294          Opc == ISD::INTRINSIC_VOID) &&
12295         "Should use MaskedValueIsZero if you don't know whether Op"
12296         " is a target node!");
12297
12298  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12299  switch (Opc) {
12300  default: break;
12301  case X86ISD::ADD:
12302  case X86ISD::SUB:
12303  case X86ISD::ADC:
12304  case X86ISD::SBB:
12305  case X86ISD::SMUL:
12306  case X86ISD::UMUL:
12307  case X86ISD::INC:
12308  case X86ISD::DEC:
12309  case X86ISD::OR:
12310  case X86ISD::XOR:
12311  case X86ISD::AND:
12312    // These nodes' second result is a boolean.
12313    if (Op.getResNo() == 0)
12314      break;
12315    // Fallthrough
12316  case X86ISD::SETCC:
12317    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12318                                       Mask.getBitWidth() - 1);
12319    break;
12320  case ISD::INTRINSIC_WO_CHAIN: {
12321    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12322    unsigned NumLoBits = 0;
12323    switch (IntId) {
12324    default: break;
12325    case Intrinsic::x86_sse_movmsk_ps:
12326    case Intrinsic::x86_avx_movmsk_ps_256:
12327    case Intrinsic::x86_sse2_movmsk_pd:
12328    case Intrinsic::x86_avx_movmsk_pd_256:
12329    case Intrinsic::x86_mmx_pmovmskb:
12330    case Intrinsic::x86_sse2_pmovmskb_128: {
12331      // High bits of movmskp{s|d}, pmovmskb are known zero.
12332      switch (IntId) {
12333        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12334        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12335        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12336        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12337        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12338        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12339      }
12340      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12341                                        Mask.getBitWidth() - NumLoBits);
12342      break;
12343    }
12344    }
12345    break;
12346  }
12347  }
12348}
12349
12350unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12351                                                         unsigned Depth) const {
12352  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12353  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12354    return Op.getValueType().getScalarType().getSizeInBits();
12355
12356  // Fallback case.
12357  return 1;
12358}
12359
12360/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12361/// node is a GlobalAddress + offset.
12362bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12363                                       const GlobalValue* &GA,
12364                                       int64_t &Offset) const {
12365  if (N->getOpcode() == X86ISD::Wrapper) {
12366    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12367      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12368      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12369      return true;
12370    }
12371  }
12372  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12373}
12374
12375/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12376/// same as extracting the high 128-bit part of 256-bit vector and then
12377/// inserting the result into the low part of a new 256-bit vector
12378static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12379  EVT VT = SVOp->getValueType(0);
12380  int NumElems = VT.getVectorNumElements();
12381
12382  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12383  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12384    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12385        SVOp->getMaskElt(j) >= 0)
12386      return false;
12387
12388  return true;
12389}
12390
12391/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12392/// same as extracting the low 128-bit part of 256-bit vector and then
12393/// inserting the result into the high part of a new 256-bit vector
12394static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12395  EVT VT = SVOp->getValueType(0);
12396  int NumElems = VT.getVectorNumElements();
12397
12398  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12399  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12400    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12401        SVOp->getMaskElt(j) >= 0)
12402      return false;
12403
12404  return true;
12405}
12406
12407/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12408static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12409                                        TargetLowering::DAGCombinerInfo &DCI) {
12410  DebugLoc dl = N->getDebugLoc();
12411  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12412  SDValue V1 = SVOp->getOperand(0);
12413  SDValue V2 = SVOp->getOperand(1);
12414  EVT VT = SVOp->getValueType(0);
12415  int NumElems = VT.getVectorNumElements();
12416
12417  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12418      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12419    //
12420    //                   0,0,0,...
12421    //                      |
12422    //    V      UNDEF    BUILD_VECTOR    UNDEF
12423    //     \      /           \           /
12424    //  CONCAT_VECTOR         CONCAT_VECTOR
12425    //         \                  /
12426    //          \                /
12427    //          RESULT: V + zero extended
12428    //
12429    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12430        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12431        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12432      return SDValue();
12433
12434    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12435      return SDValue();
12436
12437    // To match the shuffle mask, the first half of the mask should
12438    // be exactly the first vector, and all the rest a splat with the
12439    // first element of the second one.
12440    for (int i = 0; i < NumElems/2; ++i)
12441      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12442          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12443        return SDValue();
12444
12445    // Emit a zeroed vector and insert the desired subvector on its
12446    // first half.
12447    SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
12448    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12449                         DAG.getConstant(0, MVT::i32), DAG, dl);
12450    return DCI.CombineTo(N, InsV);
12451  }
12452
12453  //===--------------------------------------------------------------------===//
12454  // Combine some shuffles into subvector extracts and inserts:
12455  //
12456
12457  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12458  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12459    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12460                                    DAG, dl);
12461    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12462                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12463    return DCI.CombineTo(N, InsV);
12464  }
12465
12466  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12467  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12468    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12469    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12470                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12471    return DCI.CombineTo(N, InsV);
12472  }
12473
12474  return SDValue();
12475}
12476
12477/// PerformShuffleCombine - Performs several different shuffle combines.
12478static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12479                                     TargetLowering::DAGCombinerInfo &DCI,
12480                                     const X86Subtarget *Subtarget) {
12481  DebugLoc dl = N->getDebugLoc();
12482  EVT VT = N->getValueType(0);
12483
12484  // Don't create instructions with illegal types after legalize types has run.
12485  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12486  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12487    return SDValue();
12488
12489  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12490  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12491      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12492    return PerformShuffleCombine256(N, DAG, DCI);
12493
12494  // Only handle 128 wide vector from here on.
12495  if (VT.getSizeInBits() != 128)
12496    return SDValue();
12497
12498  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12499  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12500  // consecutive, non-overlapping, and in the right order.
12501  SmallVector<SDValue, 16> Elts;
12502  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12503    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12504
12505  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12506}
12507
12508/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12509/// generation and convert it from being a bunch of shuffles and extracts
12510/// to a simple store and scalar loads to extract the elements.
12511static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12512                                                const TargetLowering &TLI) {
12513  SDValue InputVector = N->getOperand(0);
12514
12515  // Only operate on vectors of 4 elements, where the alternative shuffling
12516  // gets to be more expensive.
12517  if (InputVector.getValueType() != MVT::v4i32)
12518    return SDValue();
12519
12520  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12521  // single use which is a sign-extend or zero-extend, and all elements are
12522  // used.
12523  SmallVector<SDNode *, 4> Uses;
12524  unsigned ExtractedElements = 0;
12525  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12526       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12527    if (UI.getUse().getResNo() != InputVector.getResNo())
12528      return SDValue();
12529
12530    SDNode *Extract = *UI;
12531    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12532      return SDValue();
12533
12534    if (Extract->getValueType(0) != MVT::i32)
12535      return SDValue();
12536    if (!Extract->hasOneUse())
12537      return SDValue();
12538    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12539        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12540      return SDValue();
12541    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12542      return SDValue();
12543
12544    // Record which element was extracted.
12545    ExtractedElements |=
12546      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12547
12548    Uses.push_back(Extract);
12549  }
12550
12551  // If not all the elements were used, this may not be worthwhile.
12552  if (ExtractedElements != 15)
12553    return SDValue();
12554
12555  // Ok, we've now decided to do the transformation.
12556  DebugLoc dl = InputVector.getDebugLoc();
12557
12558  // Store the value to a temporary stack slot.
12559  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12560  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12561                            MachinePointerInfo(), false, false, 0);
12562
12563  // Replace each use (extract) with a load of the appropriate element.
12564  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12565       UE = Uses.end(); UI != UE; ++UI) {
12566    SDNode *Extract = *UI;
12567
12568    // cOMpute the element's address.
12569    SDValue Idx = Extract->getOperand(1);
12570    unsigned EltSize =
12571        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12572    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12573    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12574
12575    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12576                                     StackPtr, OffsetVal);
12577
12578    // Load the scalar.
12579    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12580                                     ScalarAddr, MachinePointerInfo(),
12581                                     false, false, 0);
12582
12583    // Replace the exact with the load.
12584    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12585  }
12586
12587  // The replacement was made in place; don't return anything.
12588  return SDValue();
12589}
12590
12591/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12592/// nodes.
12593static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12594                                    const X86Subtarget *Subtarget) {
12595  DebugLoc DL = N->getDebugLoc();
12596  SDValue Cond = N->getOperand(0);
12597  // Get the LHS/RHS of the select.
12598  SDValue LHS = N->getOperand(1);
12599  SDValue RHS = N->getOperand(2);
12600  EVT VT = LHS.getValueType();
12601
12602  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12603  // instructions match the semantics of the common C idiom x<y?x:y but not
12604  // x<=y?x:y, because of how they handle negative zero (which can be
12605  // ignored in unsafe-math mode).
12606  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12607      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12608      (Subtarget->hasXMMInt() ||
12609       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12610    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12611
12612    unsigned Opcode = 0;
12613    // Check for x CC y ? x : y.
12614    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12615        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12616      switch (CC) {
12617      default: break;
12618      case ISD::SETULT:
12619        // Converting this to a min would handle NaNs incorrectly, and swapping
12620        // the operands would cause it to handle comparisons between positive
12621        // and negative zero incorrectly.
12622        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12623          if (!UnsafeFPMath &&
12624              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12625            break;
12626          std::swap(LHS, RHS);
12627        }
12628        Opcode = X86ISD::FMIN;
12629        break;
12630      case ISD::SETOLE:
12631        // Converting this to a min would handle comparisons between positive
12632        // and negative zero incorrectly.
12633        if (!UnsafeFPMath &&
12634            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12635          break;
12636        Opcode = X86ISD::FMIN;
12637        break;
12638      case ISD::SETULE:
12639        // Converting this to a min would handle both negative zeros and NaNs
12640        // incorrectly, but we can swap the operands to fix both.
12641        std::swap(LHS, RHS);
12642      case ISD::SETOLT:
12643      case ISD::SETLT:
12644      case ISD::SETLE:
12645        Opcode = X86ISD::FMIN;
12646        break;
12647
12648      case ISD::SETOGE:
12649        // Converting this to a max would handle comparisons between positive
12650        // and negative zero incorrectly.
12651        if (!UnsafeFPMath &&
12652            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12653          break;
12654        Opcode = X86ISD::FMAX;
12655        break;
12656      case ISD::SETUGT:
12657        // Converting this to a max would handle NaNs incorrectly, and swapping
12658        // the operands would cause it to handle comparisons between positive
12659        // and negative zero incorrectly.
12660        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12661          if (!UnsafeFPMath &&
12662              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12663            break;
12664          std::swap(LHS, RHS);
12665        }
12666        Opcode = X86ISD::FMAX;
12667        break;
12668      case ISD::SETUGE:
12669        // Converting this to a max would handle both negative zeros and NaNs
12670        // incorrectly, but we can swap the operands to fix both.
12671        std::swap(LHS, RHS);
12672      case ISD::SETOGT:
12673      case ISD::SETGT:
12674      case ISD::SETGE:
12675        Opcode = X86ISD::FMAX;
12676        break;
12677      }
12678    // Check for x CC y ? y : x -- a min/max with reversed arms.
12679    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12680               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12681      switch (CC) {
12682      default: break;
12683      case ISD::SETOGE:
12684        // Converting this to a min would handle comparisons between positive
12685        // and negative zero incorrectly, and swapping the operands would
12686        // cause it to handle NaNs incorrectly.
12687        if (!UnsafeFPMath &&
12688            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12689          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12690            break;
12691          std::swap(LHS, RHS);
12692        }
12693        Opcode = X86ISD::FMIN;
12694        break;
12695      case ISD::SETUGT:
12696        // Converting this to a min would handle NaNs incorrectly.
12697        if (!UnsafeFPMath &&
12698            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12699          break;
12700        Opcode = X86ISD::FMIN;
12701        break;
12702      case ISD::SETUGE:
12703        // Converting this to a min would handle both negative zeros and NaNs
12704        // incorrectly, but we can swap the operands to fix both.
12705        std::swap(LHS, RHS);
12706      case ISD::SETOGT:
12707      case ISD::SETGT:
12708      case ISD::SETGE:
12709        Opcode = X86ISD::FMIN;
12710        break;
12711
12712      case ISD::SETULT:
12713        // Converting this to a max would handle NaNs incorrectly.
12714        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12715          break;
12716        Opcode = X86ISD::FMAX;
12717        break;
12718      case ISD::SETOLE:
12719        // Converting this to a max would handle comparisons between positive
12720        // and negative zero incorrectly, and swapping the operands would
12721        // cause it to handle NaNs incorrectly.
12722        if (!UnsafeFPMath &&
12723            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12724          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12725            break;
12726          std::swap(LHS, RHS);
12727        }
12728        Opcode = X86ISD::FMAX;
12729        break;
12730      case ISD::SETULE:
12731        // Converting this to a max would handle both negative zeros and NaNs
12732        // incorrectly, but we can swap the operands to fix both.
12733        std::swap(LHS, RHS);
12734      case ISD::SETOLT:
12735      case ISD::SETLT:
12736      case ISD::SETLE:
12737        Opcode = X86ISD::FMAX;
12738        break;
12739      }
12740    }
12741
12742    if (Opcode)
12743      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
12744  }
12745
12746  // If this is a select between two integer constants, try to do some
12747  // optimizations.
12748  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
12749    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
12750      // Don't do this for crazy integer types.
12751      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
12752        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
12753        // so that TrueC (the true value) is larger than FalseC.
12754        bool NeedsCondInvert = false;
12755
12756        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
12757            // Efficiently invertible.
12758            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
12759             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
12760              isa<ConstantSDNode>(Cond.getOperand(1))))) {
12761          NeedsCondInvert = true;
12762          std::swap(TrueC, FalseC);
12763        }
12764
12765        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
12766        if (FalseC->getAPIntValue() == 0 &&
12767            TrueC->getAPIntValue().isPowerOf2()) {
12768          if (NeedsCondInvert) // Invert the condition if needed.
12769            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12770                               DAG.getConstant(1, Cond.getValueType()));
12771
12772          // Zero extend the condition if needed.
12773          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
12774
12775          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12776          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
12777                             DAG.getConstant(ShAmt, MVT::i8));
12778        }
12779
12780        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
12781        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12782          if (NeedsCondInvert) // Invert the condition if needed.
12783            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12784                               DAG.getConstant(1, Cond.getValueType()));
12785
12786          // Zero extend the condition if needed.
12787          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12788                             FalseC->getValueType(0), Cond);
12789          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12790                             SDValue(FalseC, 0));
12791        }
12792
12793        // Optimize cases that will turn into an LEA instruction.  This requires
12794        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12795        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12796          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12797          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12798
12799          bool isFastMultiplier = false;
12800          if (Diff < 10) {
12801            switch ((unsigned char)Diff) {
12802              default: break;
12803              case 1:  // result = add base, cond
12804              case 2:  // result = lea base(    , cond*2)
12805              case 3:  // result = lea base(cond, cond*2)
12806              case 4:  // result = lea base(    , cond*4)
12807              case 5:  // result = lea base(cond, cond*4)
12808              case 8:  // result = lea base(    , cond*8)
12809              case 9:  // result = lea base(cond, cond*8)
12810                isFastMultiplier = true;
12811                break;
12812            }
12813          }
12814
12815          if (isFastMultiplier) {
12816            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12817            if (NeedsCondInvert) // Invert the condition if needed.
12818              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12819                                 DAG.getConstant(1, Cond.getValueType()));
12820
12821            // Zero extend the condition if needed.
12822            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12823                               Cond);
12824            // Scale the condition by the difference.
12825            if (Diff != 1)
12826              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12827                                 DAG.getConstant(Diff, Cond.getValueType()));
12828
12829            // Add the base if non-zero.
12830            if (FalseC->getAPIntValue() != 0)
12831              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12832                                 SDValue(FalseC, 0));
12833            return Cond;
12834          }
12835        }
12836      }
12837  }
12838
12839  return SDValue();
12840}
12841
12842/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
12843static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
12844                                  TargetLowering::DAGCombinerInfo &DCI) {
12845  DebugLoc DL = N->getDebugLoc();
12846
12847  // If the flag operand isn't dead, don't touch this CMOV.
12848  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
12849    return SDValue();
12850
12851  SDValue FalseOp = N->getOperand(0);
12852  SDValue TrueOp = N->getOperand(1);
12853  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
12854  SDValue Cond = N->getOperand(3);
12855  if (CC == X86::COND_E || CC == X86::COND_NE) {
12856    switch (Cond.getOpcode()) {
12857    default: break;
12858    case X86ISD::BSR:
12859    case X86ISD::BSF:
12860      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
12861      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
12862        return (CC == X86::COND_E) ? FalseOp : TrueOp;
12863    }
12864  }
12865
12866  // If this is a select between two integer constants, try to do some
12867  // optimizations.  Note that the operands are ordered the opposite of SELECT
12868  // operands.
12869  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
12870    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
12871      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
12872      // larger than FalseC (the false value).
12873      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
12874        CC = X86::GetOppositeBranchCondition(CC);
12875        std::swap(TrueC, FalseC);
12876      }
12877
12878      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
12879      // This is efficient for any integer data type (including i8/i16) and
12880      // shift amount.
12881      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
12882        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12883                           DAG.getConstant(CC, MVT::i8), Cond);
12884
12885        // Zero extend the condition if needed.
12886        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
12887
12888        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12889        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
12890                           DAG.getConstant(ShAmt, MVT::i8));
12891        if (N->getNumValues() == 2)  // Dead flag value?
12892          return DCI.CombineTo(N, Cond, SDValue());
12893        return Cond;
12894      }
12895
12896      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
12897      // for any integer data type, including i8/i16.
12898      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12899        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12900                           DAG.getConstant(CC, MVT::i8), Cond);
12901
12902        // Zero extend the condition if needed.
12903        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12904                           FalseC->getValueType(0), Cond);
12905        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12906                           SDValue(FalseC, 0));
12907
12908        if (N->getNumValues() == 2)  // Dead flag value?
12909          return DCI.CombineTo(N, Cond, SDValue());
12910        return Cond;
12911      }
12912
12913      // Optimize cases that will turn into an LEA instruction.  This requires
12914      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12915      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12916        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12917        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12918
12919        bool isFastMultiplier = false;
12920        if (Diff < 10) {
12921          switch ((unsigned char)Diff) {
12922          default: break;
12923          case 1:  // result = add base, cond
12924          case 2:  // result = lea base(    , cond*2)
12925          case 3:  // result = lea base(cond, cond*2)
12926          case 4:  // result = lea base(    , cond*4)
12927          case 5:  // result = lea base(cond, cond*4)
12928          case 8:  // result = lea base(    , cond*8)
12929          case 9:  // result = lea base(cond, cond*8)
12930            isFastMultiplier = true;
12931            break;
12932          }
12933        }
12934
12935        if (isFastMultiplier) {
12936          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12937          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12938                             DAG.getConstant(CC, MVT::i8), Cond);
12939          // Zero extend the condition if needed.
12940          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12941                             Cond);
12942          // Scale the condition by the difference.
12943          if (Diff != 1)
12944            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12945                               DAG.getConstant(Diff, Cond.getValueType()));
12946
12947          // Add the base if non-zero.
12948          if (FalseC->getAPIntValue() != 0)
12949            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12950                               SDValue(FalseC, 0));
12951          if (N->getNumValues() == 2)  // Dead flag value?
12952            return DCI.CombineTo(N, Cond, SDValue());
12953          return Cond;
12954        }
12955      }
12956    }
12957  }
12958  return SDValue();
12959}
12960
12961
12962/// PerformMulCombine - Optimize a single multiply with constant into two
12963/// in order to implement it with two cheaper instructions, e.g.
12964/// LEA + SHL, LEA + LEA.
12965static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
12966                                 TargetLowering::DAGCombinerInfo &DCI) {
12967  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12968    return SDValue();
12969
12970  EVT VT = N->getValueType(0);
12971  if (VT != MVT::i64)
12972    return SDValue();
12973
12974  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12975  if (!C)
12976    return SDValue();
12977  uint64_t MulAmt = C->getZExtValue();
12978  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
12979    return SDValue();
12980
12981  uint64_t MulAmt1 = 0;
12982  uint64_t MulAmt2 = 0;
12983  if ((MulAmt % 9) == 0) {
12984    MulAmt1 = 9;
12985    MulAmt2 = MulAmt / 9;
12986  } else if ((MulAmt % 5) == 0) {
12987    MulAmt1 = 5;
12988    MulAmt2 = MulAmt / 5;
12989  } else if ((MulAmt % 3) == 0) {
12990    MulAmt1 = 3;
12991    MulAmt2 = MulAmt / 3;
12992  }
12993  if (MulAmt2 &&
12994      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
12995    DebugLoc DL = N->getDebugLoc();
12996
12997    if (isPowerOf2_64(MulAmt2) &&
12998        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
12999      // If second multiplifer is pow2, issue it first. We want the multiply by
13000      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13001      // is an add.
13002      std::swap(MulAmt1, MulAmt2);
13003
13004    SDValue NewMul;
13005    if (isPowerOf2_64(MulAmt1))
13006      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13007                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13008    else
13009      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13010                           DAG.getConstant(MulAmt1, VT));
13011
13012    if (isPowerOf2_64(MulAmt2))
13013      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13014                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13015    else
13016      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13017                           DAG.getConstant(MulAmt2, VT));
13018
13019    // Do not add new nodes to DAG combiner worklist.
13020    DCI.CombineTo(N, NewMul, false);
13021  }
13022  return SDValue();
13023}
13024
13025static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13026  SDValue N0 = N->getOperand(0);
13027  SDValue N1 = N->getOperand(1);
13028  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13029  EVT VT = N0.getValueType();
13030
13031  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13032  // since the result of setcc_c is all zero's or all ones.
13033  if (N1C && N0.getOpcode() == ISD::AND &&
13034      N0.getOperand(1).getOpcode() == ISD::Constant) {
13035    SDValue N00 = N0.getOperand(0);
13036    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13037        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13038          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13039         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13040      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13041      APInt ShAmt = N1C->getAPIntValue();
13042      Mask = Mask.shl(ShAmt);
13043      if (Mask != 0)
13044        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13045                           N00, DAG.getConstant(Mask, VT));
13046    }
13047  }
13048
13049  return SDValue();
13050}
13051
13052/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13053///                       when possible.
13054static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13055                                   const X86Subtarget *Subtarget) {
13056  EVT VT = N->getValueType(0);
13057  if (!VT.isVector() && VT.isInteger() &&
13058      N->getOpcode() == ISD::SHL)
13059    return PerformSHLCombine(N, DAG);
13060
13061  // On X86 with SSE2 support, we can transform this to a vector shift if
13062  // all elements are shifted by the same amount.  We can't do this in legalize
13063  // because the a constant vector is typically transformed to a constant pool
13064  // so we have no knowledge of the shift amount.
13065  if (!Subtarget->hasXMMInt())
13066    return SDValue();
13067
13068  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
13069    return SDValue();
13070
13071  SDValue ShAmtOp = N->getOperand(1);
13072  EVT EltVT = VT.getVectorElementType();
13073  DebugLoc DL = N->getDebugLoc();
13074  SDValue BaseShAmt = SDValue();
13075  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13076    unsigned NumElts = VT.getVectorNumElements();
13077    unsigned i = 0;
13078    for (; i != NumElts; ++i) {
13079      SDValue Arg = ShAmtOp.getOperand(i);
13080      if (Arg.getOpcode() == ISD::UNDEF) continue;
13081      BaseShAmt = Arg;
13082      break;
13083    }
13084    for (; i != NumElts; ++i) {
13085      SDValue Arg = ShAmtOp.getOperand(i);
13086      if (Arg.getOpcode() == ISD::UNDEF) continue;
13087      if (Arg != BaseShAmt) {
13088        return SDValue();
13089      }
13090    }
13091  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13092             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13093    SDValue InVec = ShAmtOp.getOperand(0);
13094    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13095      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13096      unsigned i = 0;
13097      for (; i != NumElts; ++i) {
13098        SDValue Arg = InVec.getOperand(i);
13099        if (Arg.getOpcode() == ISD::UNDEF) continue;
13100        BaseShAmt = Arg;
13101        break;
13102      }
13103    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13104       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13105         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13106         if (C->getZExtValue() == SplatIdx)
13107           BaseShAmt = InVec.getOperand(1);
13108       }
13109    }
13110    if (BaseShAmt.getNode() == 0)
13111      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13112                              DAG.getIntPtrConstant(0));
13113  } else
13114    return SDValue();
13115
13116  // The shift amount is an i32.
13117  if (EltVT.bitsGT(MVT::i32))
13118    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13119  else if (EltVT.bitsLT(MVT::i32))
13120    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13121
13122  // The shift amount is identical so we can do a vector shift.
13123  SDValue  ValOp = N->getOperand(0);
13124  switch (N->getOpcode()) {
13125  default:
13126    llvm_unreachable("Unknown shift opcode!");
13127    break;
13128  case ISD::SHL:
13129    if (VT == MVT::v2i64)
13130      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13131                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13132                         ValOp, BaseShAmt);
13133    if (VT == MVT::v4i32)
13134      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13135                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13136                         ValOp, BaseShAmt);
13137    if (VT == MVT::v8i16)
13138      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13139                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13140                         ValOp, BaseShAmt);
13141    break;
13142  case ISD::SRA:
13143    if (VT == MVT::v4i32)
13144      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13145                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13146                         ValOp, BaseShAmt);
13147    if (VT == MVT::v8i16)
13148      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13149                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13150                         ValOp, BaseShAmt);
13151    break;
13152  case ISD::SRL:
13153    if (VT == MVT::v2i64)
13154      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13155                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13156                         ValOp, BaseShAmt);
13157    if (VT == MVT::v4i32)
13158      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13159                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13160                         ValOp, BaseShAmt);
13161    if (VT ==  MVT::v8i16)
13162      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13163                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13164                         ValOp, BaseShAmt);
13165    break;
13166  }
13167  return SDValue();
13168}
13169
13170
13171// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13172// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13173// and friends.  Likewise for OR -> CMPNEQSS.
13174static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13175                            TargetLowering::DAGCombinerInfo &DCI,
13176                            const X86Subtarget *Subtarget) {
13177  unsigned opcode;
13178
13179  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13180  // we're requiring SSE2 for both.
13181  if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13182    SDValue N0 = N->getOperand(0);
13183    SDValue N1 = N->getOperand(1);
13184    SDValue CMP0 = N0->getOperand(1);
13185    SDValue CMP1 = N1->getOperand(1);
13186    DebugLoc DL = N->getDebugLoc();
13187
13188    // The SETCCs should both refer to the same CMP.
13189    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13190      return SDValue();
13191
13192    SDValue CMP00 = CMP0->getOperand(0);
13193    SDValue CMP01 = CMP0->getOperand(1);
13194    EVT     VT    = CMP00.getValueType();
13195
13196    if (VT == MVT::f32 || VT == MVT::f64) {
13197      bool ExpectingFlags = false;
13198      // Check for any users that want flags:
13199      for (SDNode::use_iterator UI = N->use_begin(),
13200             UE = N->use_end();
13201           !ExpectingFlags && UI != UE; ++UI)
13202        switch (UI->getOpcode()) {
13203        default:
13204        case ISD::BR_CC:
13205        case ISD::BRCOND:
13206        case ISD::SELECT:
13207          ExpectingFlags = true;
13208          break;
13209        case ISD::CopyToReg:
13210        case ISD::SIGN_EXTEND:
13211        case ISD::ZERO_EXTEND:
13212        case ISD::ANY_EXTEND:
13213          break;
13214        }
13215
13216      if (!ExpectingFlags) {
13217        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13218        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13219
13220        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13221          X86::CondCode tmp = cc0;
13222          cc0 = cc1;
13223          cc1 = tmp;
13224        }
13225
13226        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13227            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13228          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13229          X86ISD::NodeType NTOperator = is64BitFP ?
13230            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13231          // FIXME: need symbolic constants for these magic numbers.
13232          // See X86ATTInstPrinter.cpp:printSSECC().
13233          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13234          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13235                                              DAG.getConstant(x86cc, MVT::i8));
13236          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13237                                              OnesOrZeroesF);
13238          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13239                                      DAG.getConstant(1, MVT::i32));
13240          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13241          return OneBitOfTruth;
13242        }
13243      }
13244    }
13245  }
13246  return SDValue();
13247}
13248
13249/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13250/// so it can be folded inside ANDNP.
13251static bool CanFoldXORWithAllOnes(const SDNode *N) {
13252  EVT VT = N->getValueType(0);
13253
13254  // Match direct AllOnes for 128 and 256-bit vectors
13255  if (ISD::isBuildVectorAllOnes(N))
13256    return true;
13257
13258  // Look through a bit convert.
13259  if (N->getOpcode() == ISD::BITCAST)
13260    N = N->getOperand(0).getNode();
13261
13262  // Sometimes the operand may come from a insert_subvector building a 256-bit
13263  // allones vector
13264  if (VT.getSizeInBits() == 256 &&
13265      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13266    SDValue V1 = N->getOperand(0);
13267    SDValue V2 = N->getOperand(1);
13268
13269    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13270        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13271        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13272        ISD::isBuildVectorAllOnes(V2.getNode()))
13273      return true;
13274  }
13275
13276  return false;
13277}
13278
13279static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13280                                 TargetLowering::DAGCombinerInfo &DCI,
13281                                 const X86Subtarget *Subtarget) {
13282  if (DCI.isBeforeLegalizeOps())
13283    return SDValue();
13284
13285  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13286  if (R.getNode())
13287    return R;
13288
13289  // Want to form ANDNP nodes:
13290  // 1) In the hopes of then easily combining them with OR and AND nodes
13291  //    to form PBLEND/PSIGN.
13292  // 2) To match ANDN packed intrinsics
13293  EVT VT = N->getValueType(0);
13294  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13295    return SDValue();
13296
13297  SDValue N0 = N->getOperand(0);
13298  SDValue N1 = N->getOperand(1);
13299  DebugLoc DL = N->getDebugLoc();
13300
13301  // Check LHS for vnot
13302  if (N0.getOpcode() == ISD::XOR &&
13303      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13304      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13305    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13306
13307  // Check RHS for vnot
13308  if (N1.getOpcode() == ISD::XOR &&
13309      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13310      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13311    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13312
13313  return SDValue();
13314}
13315
13316static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13317                                TargetLowering::DAGCombinerInfo &DCI,
13318                                const X86Subtarget *Subtarget) {
13319  if (DCI.isBeforeLegalizeOps())
13320    return SDValue();
13321
13322  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13323  if (R.getNode())
13324    return R;
13325
13326  EVT VT = N->getValueType(0);
13327  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
13328    return SDValue();
13329
13330  SDValue N0 = N->getOperand(0);
13331  SDValue N1 = N->getOperand(1);
13332
13333  // look for psign/blend
13334  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
13335    if (VT == MVT::v2i64) {
13336      // Canonicalize pandn to RHS
13337      if (N0.getOpcode() == X86ISD::ANDNP)
13338        std::swap(N0, N1);
13339      // or (and (m, x), (pandn m, y))
13340      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13341        SDValue Mask = N1.getOperand(0);
13342        SDValue X    = N1.getOperand(1);
13343        SDValue Y;
13344        if (N0.getOperand(0) == Mask)
13345          Y = N0.getOperand(1);
13346        if (N0.getOperand(1) == Mask)
13347          Y = N0.getOperand(0);
13348
13349        // Check to see if the mask appeared in both the AND and ANDNP and
13350        if (!Y.getNode())
13351          return SDValue();
13352
13353        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13354        if (Mask.getOpcode() != ISD::BITCAST ||
13355            X.getOpcode() != ISD::BITCAST ||
13356            Y.getOpcode() != ISD::BITCAST)
13357          return SDValue();
13358
13359        // Look through mask bitcast.
13360        Mask = Mask.getOperand(0);
13361        EVT MaskVT = Mask.getValueType();
13362
13363        // Validate that the Mask operand is a vector sra node.  The sra node
13364        // will be an intrinsic.
13365        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13366          return SDValue();
13367
13368        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13369        // there is no psrai.b
13370        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13371        case Intrinsic::x86_sse2_psrai_w:
13372        case Intrinsic::x86_sse2_psrai_d:
13373          break;
13374        default: return SDValue();
13375        }
13376
13377        // Check that the SRA is all signbits.
13378        SDValue SraC = Mask.getOperand(2);
13379        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13380        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13381        if ((SraAmt + 1) != EltBits)
13382          return SDValue();
13383
13384        DebugLoc DL = N->getDebugLoc();
13385
13386        // Now we know we at least have a plendvb with the mask val.  See if
13387        // we can form a psignb/w/d.
13388        // psign = x.type == y.type == mask.type && y = sub(0, x);
13389        X = X.getOperand(0);
13390        Y = Y.getOperand(0);
13391        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13392            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13393            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
13394          unsigned Opc = 0;
13395          switch (EltBits) {
13396          case 8: Opc = X86ISD::PSIGNB; break;
13397          case 16: Opc = X86ISD::PSIGNW; break;
13398          case 32: Opc = X86ISD::PSIGND; break;
13399          default: break;
13400          }
13401          if (Opc) {
13402            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
13403            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
13404          }
13405        }
13406        // PBLENDVB only available on SSE 4.1
13407        if (!(Subtarget->hasSSE41() || Subtarget->hasAVX()))
13408          return SDValue();
13409
13410        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
13411        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
13412        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
13413        Mask = DAG.getNode(ISD::VSELECT, DL, MVT::v16i8, Mask, X, Y);
13414        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
13415      }
13416    }
13417  }
13418
13419  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13420  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13421    std::swap(N0, N1);
13422  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13423    return SDValue();
13424  if (!N0.hasOneUse() || !N1.hasOneUse())
13425    return SDValue();
13426
13427  SDValue ShAmt0 = N0.getOperand(1);
13428  if (ShAmt0.getValueType() != MVT::i8)
13429    return SDValue();
13430  SDValue ShAmt1 = N1.getOperand(1);
13431  if (ShAmt1.getValueType() != MVT::i8)
13432    return SDValue();
13433  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13434    ShAmt0 = ShAmt0.getOperand(0);
13435  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13436    ShAmt1 = ShAmt1.getOperand(0);
13437
13438  DebugLoc DL = N->getDebugLoc();
13439  unsigned Opc = X86ISD::SHLD;
13440  SDValue Op0 = N0.getOperand(0);
13441  SDValue Op1 = N1.getOperand(0);
13442  if (ShAmt0.getOpcode() == ISD::SUB) {
13443    Opc = X86ISD::SHRD;
13444    std::swap(Op0, Op1);
13445    std::swap(ShAmt0, ShAmt1);
13446  }
13447
13448  unsigned Bits = VT.getSizeInBits();
13449  if (ShAmt1.getOpcode() == ISD::SUB) {
13450    SDValue Sum = ShAmt1.getOperand(0);
13451    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13452      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13453      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13454        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13455      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13456        return DAG.getNode(Opc, DL, VT,
13457                           Op0, Op1,
13458                           DAG.getNode(ISD::TRUNCATE, DL,
13459                                       MVT::i8, ShAmt0));
13460    }
13461  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13462    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13463    if (ShAmt0C &&
13464        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13465      return DAG.getNode(Opc, DL, VT,
13466                         N0.getOperand(0), N1.getOperand(0),
13467                         DAG.getNode(ISD::TRUNCATE, DL,
13468                                       MVT::i8, ShAmt0));
13469  }
13470
13471  return SDValue();
13472}
13473
13474/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13475static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13476                                   const X86Subtarget *Subtarget) {
13477  LoadSDNode *Ld = cast<LoadSDNode>(N);
13478  EVT RegVT = Ld->getValueType(0);
13479  EVT MemVT = Ld->getMemoryVT();
13480  DebugLoc dl = Ld->getDebugLoc();
13481  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13482
13483  ISD::LoadExtType Ext = Ld->getExtensionType();
13484
13485  // If this is a vector EXT Load then attempt to optimize it using a
13486  // shuffle. We need SSE4 for the shuffles.
13487  // TODO: It is possible to support ZExt by zeroing the undef values
13488  // during the shuffle phase or after the shuffle.
13489  if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13490    assert(MemVT != RegVT && "Cannot extend to the same type");
13491    assert(MemVT.isVector() && "Must load a vector from memory");
13492
13493    unsigned NumElems = RegVT.getVectorNumElements();
13494    unsigned RegSz = RegVT.getSizeInBits();
13495    unsigned MemSz = MemVT.getSizeInBits();
13496    assert(RegSz > MemSz && "Register size must be greater than the mem size");
13497    // All sizes must be a power of two
13498    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13499
13500    // Attempt to load the original value using a single load op.
13501    // Find a scalar type which is equal to the loaded word size.
13502    MVT SclrLoadTy = MVT::i8;
13503    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13504         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13505      MVT Tp = (MVT::SimpleValueType)tp;
13506      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
13507        SclrLoadTy = Tp;
13508        break;
13509      }
13510    }
13511
13512    // Proceed if a load word is found.
13513    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13514
13515    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13516      RegSz/SclrLoadTy.getSizeInBits());
13517
13518    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13519                                  RegSz/MemVT.getScalarType().getSizeInBits());
13520    // Can't shuffle using an illegal type.
13521    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13522
13523    // Perform a single load.
13524    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13525                                  Ld->getBasePtr(),
13526                                  Ld->getPointerInfo(), Ld->isVolatile(),
13527                                  Ld->isNonTemporal(), Ld->getAlignment());
13528
13529    // Insert the word loaded into a vector.
13530    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13531      LoadUnitVecVT, ScalarLoad);
13532
13533    // Bitcast the loaded value to a vector of the original element type, in
13534    // the size of the target vector type.
13535    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
13536    unsigned SizeRatio = RegSz/MemSz;
13537
13538    // Redistribute the loaded elements into the different locations.
13539    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13540    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13541
13542    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13543                                DAG.getUNDEF(SlicedVec.getValueType()),
13544                                ShuffleVec.data());
13545
13546    // Bitcast to the requested type.
13547    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13548    // Replace the original load with the new sequence
13549    // and return the new chain.
13550    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
13551    return SDValue(ScalarLoad.getNode(), 1);
13552  }
13553
13554  return SDValue();
13555}
13556
13557/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13558static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13559                                   const X86Subtarget *Subtarget) {
13560  StoreSDNode *St = cast<StoreSDNode>(N);
13561  EVT VT = St->getValue().getValueType();
13562  EVT StVT = St->getMemoryVT();
13563  DebugLoc dl = St->getDebugLoc();
13564  SDValue StoredVal = St->getOperand(1);
13565  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13566
13567  // If we are saving a concatination of two XMM registers, perform two stores.
13568  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13569  // 128-bit ones. If in the future the cost becomes only one memory access the
13570  // first version would be better.
13571  if (VT.getSizeInBits() == 256 &&
13572    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13573    StoredVal.getNumOperands() == 2) {
13574
13575    SDValue Value0 = StoredVal.getOperand(0);
13576    SDValue Value1 = StoredVal.getOperand(1);
13577
13578    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13579    SDValue Ptr0 = St->getBasePtr();
13580    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13581
13582    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13583                                St->getPointerInfo(), St->isVolatile(),
13584                                St->isNonTemporal(), St->getAlignment());
13585    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13586                                St->getPointerInfo(), St->isVolatile(),
13587                                St->isNonTemporal(), St->getAlignment());
13588    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13589  }
13590
13591  // Optimize trunc store (of multiple scalars) to shuffle and store.
13592  // First, pack all of the elements in one place. Next, store to memory
13593  // in fewer chunks.
13594  if (St->isTruncatingStore() && VT.isVector()) {
13595    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13596    unsigned NumElems = VT.getVectorNumElements();
13597    assert(StVT != VT && "Cannot truncate to the same type");
13598    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
13599    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
13600
13601    // From, To sizes and ElemCount must be pow of two
13602    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
13603    // We are going to use the original vector elt for storing.
13604    // Accumulated smaller vector elements must be a multiple of the store size.
13605    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
13606
13607    unsigned SizeRatio  = FromSz / ToSz;
13608
13609    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
13610
13611    // Create a type on which we perform the shuffle
13612    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
13613            StVT.getScalarType(), NumElems*SizeRatio);
13614
13615    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13616
13617    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
13618    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13619    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
13620
13621    // Can't shuffle using an illegal type
13622    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13623
13624    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
13625                                DAG.getUNDEF(WideVec.getValueType()),
13626                                ShuffleVec.data());
13627    // At this point all of the data is stored at the bottom of the
13628    // register. We now need to save it to mem.
13629
13630    // Find the largest store unit
13631    MVT StoreType = MVT::i8;
13632    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13633         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13634      MVT Tp = (MVT::SimpleValueType)tp;
13635      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
13636        StoreType = Tp;
13637    }
13638
13639    // Bitcast the original vector into a vector of store-size units
13640    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
13641            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
13642    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
13643    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
13644    SmallVector<SDValue, 8> Chains;
13645    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
13646                                        TLI.getPointerTy());
13647    SDValue Ptr = St->getBasePtr();
13648
13649    // Perform one or more big stores into memory.
13650    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
13651      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
13652                                   StoreType, ShuffWide,
13653                                   DAG.getIntPtrConstant(i));
13654      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
13655                                St->getPointerInfo(), St->isVolatile(),
13656                                St->isNonTemporal(), St->getAlignment());
13657      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13658      Chains.push_back(Ch);
13659    }
13660
13661    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
13662                               Chains.size());
13663  }
13664
13665
13666  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
13667  // the FP state in cases where an emms may be missing.
13668  // A preferable solution to the general problem is to figure out the right
13669  // places to insert EMMS.  This qualifies as a quick hack.
13670
13671  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
13672  if (VT.getSizeInBits() != 64)
13673    return SDValue();
13674
13675  const Function *F = DAG.getMachineFunction().getFunction();
13676  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
13677  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
13678                     && Subtarget->hasXMMInt();
13679  if ((VT.isVector() ||
13680       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
13681      isa<LoadSDNode>(St->getValue()) &&
13682      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
13683      St->getChain().hasOneUse() && !St->isVolatile()) {
13684    SDNode* LdVal = St->getValue().getNode();
13685    LoadSDNode *Ld = 0;
13686    int TokenFactorIndex = -1;
13687    SmallVector<SDValue, 8> Ops;
13688    SDNode* ChainVal = St->getChain().getNode();
13689    // Must be a store of a load.  We currently handle two cases:  the load
13690    // is a direct child, and it's under an intervening TokenFactor.  It is
13691    // possible to dig deeper under nested TokenFactors.
13692    if (ChainVal == LdVal)
13693      Ld = cast<LoadSDNode>(St->getChain());
13694    else if (St->getValue().hasOneUse() &&
13695             ChainVal->getOpcode() == ISD::TokenFactor) {
13696      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
13697        if (ChainVal->getOperand(i).getNode() == LdVal) {
13698          TokenFactorIndex = i;
13699          Ld = cast<LoadSDNode>(St->getValue());
13700        } else
13701          Ops.push_back(ChainVal->getOperand(i));
13702      }
13703    }
13704
13705    if (!Ld || !ISD::isNormalLoad(Ld))
13706      return SDValue();
13707
13708    // If this is not the MMX case, i.e. we are just turning i64 load/store
13709    // into f64 load/store, avoid the transformation if there are multiple
13710    // uses of the loaded value.
13711    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
13712      return SDValue();
13713
13714    DebugLoc LdDL = Ld->getDebugLoc();
13715    DebugLoc StDL = N->getDebugLoc();
13716    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
13717    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
13718    // pair instead.
13719    if (Subtarget->is64Bit() || F64IsLegal) {
13720      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
13721      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
13722                                  Ld->getPointerInfo(), Ld->isVolatile(),
13723                                  Ld->isNonTemporal(), Ld->getAlignment());
13724      SDValue NewChain = NewLd.getValue(1);
13725      if (TokenFactorIndex != -1) {
13726        Ops.push_back(NewChain);
13727        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13728                               Ops.size());
13729      }
13730      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
13731                          St->getPointerInfo(),
13732                          St->isVolatile(), St->isNonTemporal(),
13733                          St->getAlignment());
13734    }
13735
13736    // Otherwise, lower to two pairs of 32-bit loads / stores.
13737    SDValue LoAddr = Ld->getBasePtr();
13738    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
13739                                 DAG.getConstant(4, MVT::i32));
13740
13741    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
13742                               Ld->getPointerInfo(),
13743                               Ld->isVolatile(), Ld->isNonTemporal(),
13744                               Ld->getAlignment());
13745    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
13746                               Ld->getPointerInfo().getWithOffset(4),
13747                               Ld->isVolatile(), Ld->isNonTemporal(),
13748                               MinAlign(Ld->getAlignment(), 4));
13749
13750    SDValue NewChain = LoLd.getValue(1);
13751    if (TokenFactorIndex != -1) {
13752      Ops.push_back(LoLd);
13753      Ops.push_back(HiLd);
13754      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13755                             Ops.size());
13756    }
13757
13758    LoAddr = St->getBasePtr();
13759    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
13760                         DAG.getConstant(4, MVT::i32));
13761
13762    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
13763                                St->getPointerInfo(),
13764                                St->isVolatile(), St->isNonTemporal(),
13765                                St->getAlignment());
13766    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
13767                                St->getPointerInfo().getWithOffset(4),
13768                                St->isVolatile(),
13769                                St->isNonTemporal(),
13770                                MinAlign(St->getAlignment(), 4));
13771    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
13772  }
13773  return SDValue();
13774}
13775
13776/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
13777/// and return the operands for the horizontal operation in LHS and RHS.  A
13778/// horizontal operation performs the binary operation on successive elements
13779/// of its first operand, then on successive elements of its second operand,
13780/// returning the resulting values in a vector.  For example, if
13781///   A = < float a0, float a1, float a2, float a3 >
13782/// and
13783///   B = < float b0, float b1, float b2, float b3 >
13784/// then the result of doing a horizontal operation on A and B is
13785///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
13786/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
13787/// A horizontal-op B, for some already available A and B, and if so then LHS is
13788/// set to A, RHS to B, and the routine returns 'true'.
13789/// Note that the binary operation should have the property that if one of the
13790/// operands is UNDEF then the result is UNDEF.
13791static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
13792  // Look for the following pattern: if
13793  //   A = < float a0, float a1, float a2, float a3 >
13794  //   B = < float b0, float b1, float b2, float b3 >
13795  // and
13796  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
13797  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
13798  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
13799  // which is A horizontal-op B.
13800
13801  // At least one of the operands should be a vector shuffle.
13802  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
13803      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
13804    return false;
13805
13806  EVT VT = LHS.getValueType();
13807  unsigned N = VT.getVectorNumElements();
13808
13809  // View LHS in the form
13810  //   LHS = VECTOR_SHUFFLE A, B, LMask
13811  // If LHS is not a shuffle then pretend it is the shuffle
13812  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
13813  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
13814  // type VT.
13815  SDValue A, B;
13816  SmallVector<int, 8> LMask(N);
13817  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
13818    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
13819      A = LHS.getOperand(0);
13820    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
13821      B = LHS.getOperand(1);
13822    cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
13823  } else {
13824    if (LHS.getOpcode() != ISD::UNDEF)
13825      A = LHS;
13826    for (unsigned i = 0; i != N; ++i)
13827      LMask[i] = i;
13828  }
13829
13830  // Likewise, view RHS in the form
13831  //   RHS = VECTOR_SHUFFLE C, D, RMask
13832  SDValue C, D;
13833  SmallVector<int, 8> RMask(N);
13834  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
13835    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
13836      C = RHS.getOperand(0);
13837    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
13838      D = RHS.getOperand(1);
13839    cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
13840  } else {
13841    if (RHS.getOpcode() != ISD::UNDEF)
13842      C = RHS;
13843    for (unsigned i = 0; i != N; ++i)
13844      RMask[i] = i;
13845  }
13846
13847  // Check that the shuffles are both shuffling the same vectors.
13848  if (!(A == C && B == D) && !(A == D && B == C))
13849    return false;
13850
13851  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
13852  if (!A.getNode() && !B.getNode())
13853    return false;
13854
13855  // If A and B occur in reverse order in RHS, then "swap" them (which means
13856  // rewriting the mask).
13857  if (A != C)
13858    for (unsigned i = 0; i != N; ++i) {
13859      unsigned Idx = RMask[i];
13860      if (Idx < N)
13861        RMask[i] += N;
13862      else if (Idx < 2*N)
13863        RMask[i] -= N;
13864    }
13865
13866  // At this point LHS and RHS are equivalent to
13867  //   LHS = VECTOR_SHUFFLE A, B, LMask
13868  //   RHS = VECTOR_SHUFFLE A, B, RMask
13869  // Check that the masks correspond to performing a horizontal operation.
13870  for (unsigned i = 0; i != N; ++i) {
13871    unsigned LIdx = LMask[i], RIdx = RMask[i];
13872
13873    // Ignore any UNDEF components.
13874    if (LIdx >= 2*N || RIdx >= 2*N || (!A.getNode() && (LIdx < N || RIdx < N))
13875        || (!B.getNode() && (LIdx >= N || RIdx >= N)))
13876      continue;
13877
13878    // Check that successive elements are being operated on.  If not, this is
13879    // not a horizontal operation.
13880    if (!(LIdx == 2*i && RIdx == 2*i + 1) &&
13881        !(isCommutative && LIdx == 2*i + 1 && RIdx == 2*i))
13882      return false;
13883  }
13884
13885  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
13886  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
13887  return true;
13888}
13889
13890/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
13891static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
13892                                  const X86Subtarget *Subtarget) {
13893  EVT VT = N->getValueType(0);
13894  SDValue LHS = N->getOperand(0);
13895  SDValue RHS = N->getOperand(1);
13896
13897  // Try to synthesize horizontal adds from adds of shuffles.
13898  if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
13899      (VT == MVT::v4f32 || VT == MVT::v2f64) &&
13900      isHorizontalBinOp(LHS, RHS, true))
13901    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
13902  return SDValue();
13903}
13904
13905/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
13906static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
13907                                  const X86Subtarget *Subtarget) {
13908  EVT VT = N->getValueType(0);
13909  SDValue LHS = N->getOperand(0);
13910  SDValue RHS = N->getOperand(1);
13911
13912  // Try to synthesize horizontal subs from subs of shuffles.
13913  if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
13914      (VT == MVT::v4f32 || VT == MVT::v2f64) &&
13915      isHorizontalBinOp(LHS, RHS, false))
13916    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
13917  return SDValue();
13918}
13919
13920/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
13921/// X86ISD::FXOR nodes.
13922static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
13923  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
13924  // F[X]OR(0.0, x) -> x
13925  // F[X]OR(x, 0.0) -> x
13926  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13927    if (C->getValueAPF().isPosZero())
13928      return N->getOperand(1);
13929  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13930    if (C->getValueAPF().isPosZero())
13931      return N->getOperand(0);
13932  return SDValue();
13933}
13934
13935/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
13936static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
13937  // FAND(0.0, x) -> 0.0
13938  // FAND(x, 0.0) -> 0.0
13939  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13940    if (C->getValueAPF().isPosZero())
13941      return N->getOperand(0);
13942  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13943    if (C->getValueAPF().isPosZero())
13944      return N->getOperand(1);
13945  return SDValue();
13946}
13947
13948static SDValue PerformBTCombine(SDNode *N,
13949                                SelectionDAG &DAG,
13950                                TargetLowering::DAGCombinerInfo &DCI) {
13951  // BT ignores high bits in the bit index operand.
13952  SDValue Op1 = N->getOperand(1);
13953  if (Op1.hasOneUse()) {
13954    unsigned BitWidth = Op1.getValueSizeInBits();
13955    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
13956    APInt KnownZero, KnownOne;
13957    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
13958                                          !DCI.isBeforeLegalizeOps());
13959    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13960    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
13961        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
13962      DCI.CommitTargetLoweringOpt(TLO);
13963  }
13964  return SDValue();
13965}
13966
13967static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
13968  SDValue Op = N->getOperand(0);
13969  if (Op.getOpcode() == ISD::BITCAST)
13970    Op = Op.getOperand(0);
13971  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
13972  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
13973      VT.getVectorElementType().getSizeInBits() ==
13974      OpVT.getVectorElementType().getSizeInBits()) {
13975    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
13976  }
13977  return SDValue();
13978}
13979
13980static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
13981  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
13982  //           (and (i32 x86isd::setcc_carry), 1)
13983  // This eliminates the zext. This transformation is necessary because
13984  // ISD::SETCC is always legalized to i8.
13985  DebugLoc dl = N->getDebugLoc();
13986  SDValue N0 = N->getOperand(0);
13987  EVT VT = N->getValueType(0);
13988  if (N0.getOpcode() == ISD::AND &&
13989      N0.hasOneUse() &&
13990      N0.getOperand(0).hasOneUse()) {
13991    SDValue N00 = N0.getOperand(0);
13992    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
13993      return SDValue();
13994    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
13995    if (!C || C->getZExtValue() != 1)
13996      return SDValue();
13997    return DAG.getNode(ISD::AND, dl, VT,
13998                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
13999                                   N00.getOperand(0), N00.getOperand(1)),
14000                       DAG.getConstant(1, VT));
14001  }
14002
14003  return SDValue();
14004}
14005
14006// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14007static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14008  unsigned X86CC = N->getConstantOperandVal(0);
14009  SDValue EFLAG = N->getOperand(1);
14010  DebugLoc DL = N->getDebugLoc();
14011
14012  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14013  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14014  // cases.
14015  if (X86CC == X86::COND_B)
14016    return DAG.getNode(ISD::AND, DL, MVT::i8,
14017                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14018                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14019                       DAG.getConstant(1, MVT::i8));
14020
14021  return SDValue();
14022}
14023
14024static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14025                                        const X86TargetLowering *XTLI) {
14026  SDValue Op0 = N->getOperand(0);
14027  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14028  // a 32-bit target where SSE doesn't support i64->FP operations.
14029  if (Op0.getOpcode() == ISD::LOAD) {
14030    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14031    EVT VT = Ld->getValueType(0);
14032    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14033        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14034        !XTLI->getSubtarget()->is64Bit() &&
14035        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14036      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14037                                          Ld->getChain(), Op0, DAG);
14038      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14039      return FILDChain;
14040    }
14041  }
14042  return SDValue();
14043}
14044
14045// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14046static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14047                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14048  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14049  // the result is either zero or one (depending on the input carry bit).
14050  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14051  if (X86::isZeroNode(N->getOperand(0)) &&
14052      X86::isZeroNode(N->getOperand(1)) &&
14053      // We don't have a good way to replace an EFLAGS use, so only do this when
14054      // dead right now.
14055      SDValue(N, 1).use_empty()) {
14056    DebugLoc DL = N->getDebugLoc();
14057    EVT VT = N->getValueType(0);
14058    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14059    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14060                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14061                                           DAG.getConstant(X86::COND_B,MVT::i8),
14062                                           N->getOperand(2)),
14063                               DAG.getConstant(1, VT));
14064    return DCI.CombineTo(N, Res1, CarryOut);
14065  }
14066
14067  return SDValue();
14068}
14069
14070// fold (add Y, (sete  X, 0)) -> adc  0, Y
14071//      (add Y, (setne X, 0)) -> sbb -1, Y
14072//      (sub (sete  X, 0), Y) -> sbb  0, Y
14073//      (sub (setne X, 0), Y) -> adc -1, Y
14074static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14075  DebugLoc DL = N->getDebugLoc();
14076
14077  // Look through ZExts.
14078  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14079  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14080    return SDValue();
14081
14082  SDValue SetCC = Ext.getOperand(0);
14083  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14084    return SDValue();
14085
14086  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14087  if (CC != X86::COND_E && CC != X86::COND_NE)
14088    return SDValue();
14089
14090  SDValue Cmp = SetCC.getOperand(1);
14091  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14092      !X86::isZeroNode(Cmp.getOperand(1)) ||
14093      !Cmp.getOperand(0).getValueType().isInteger())
14094    return SDValue();
14095
14096  SDValue CmpOp0 = Cmp.getOperand(0);
14097  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14098                               DAG.getConstant(1, CmpOp0.getValueType()));
14099
14100  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14101  if (CC == X86::COND_NE)
14102    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14103                       DL, OtherVal.getValueType(), OtherVal,
14104                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14105  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14106                     DL, OtherVal.getValueType(), OtherVal,
14107                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14108}
14109
14110static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
14111  SDValue Op0 = N->getOperand(0);
14112  SDValue Op1 = N->getOperand(1);
14113
14114  // X86 can't encode an immediate LHS of a sub. See if we can push the
14115  // negation into a preceding instruction.
14116  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14117    // If the RHS of the sub is a XOR with one use and a constant, invert the
14118    // immediate. Then add one to the LHS of the sub so we can turn
14119    // X-Y -> X+~Y+1, saving one register.
14120    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14121        isa<ConstantSDNode>(Op1.getOperand(1))) {
14122      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14123      EVT VT = Op0.getValueType();
14124      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14125                                   Op1.getOperand(0),
14126                                   DAG.getConstant(~XorC, VT));
14127      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14128                         DAG.getConstant(C->getAPIntValue()+1, VT));
14129    }
14130  }
14131
14132  return OptimizeConditionalInDecrement(N, DAG);
14133}
14134
14135SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14136                                             DAGCombinerInfo &DCI) const {
14137  SelectionDAG &DAG = DCI.DAG;
14138  switch (N->getOpcode()) {
14139  default: break;
14140  case ISD::EXTRACT_VECTOR_ELT:
14141    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14142  case ISD::VSELECT:
14143  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
14144  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14145  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
14146  case ISD::SUB:            return PerformSubCombine(N, DAG);
14147  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14148  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14149  case ISD::SHL:
14150  case ISD::SRA:
14151  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14152  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14153  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14154  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14155  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14156  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14157  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14158  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14159  case X86ISD::FXOR:
14160  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14161  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14162  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14163  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14164  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14165  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14166  case X86ISD::SHUFPS:      // Handle all target specific shuffles
14167  case X86ISD::SHUFPD:
14168  case X86ISD::PALIGN:
14169  case X86ISD::PUNPCKHBW:
14170  case X86ISD::PUNPCKHWD:
14171  case X86ISD::PUNPCKHDQ:
14172  case X86ISD::PUNPCKHQDQ:
14173  case X86ISD::UNPCKHPS:
14174  case X86ISD::UNPCKHPD:
14175  case X86ISD::VUNPCKHPSY:
14176  case X86ISD::VUNPCKHPDY:
14177  case X86ISD::PUNPCKLBW:
14178  case X86ISD::PUNPCKLWD:
14179  case X86ISD::PUNPCKLDQ:
14180  case X86ISD::PUNPCKLQDQ:
14181  case X86ISD::UNPCKLPS:
14182  case X86ISD::UNPCKLPD:
14183  case X86ISD::VUNPCKLPSY:
14184  case X86ISD::VUNPCKLPDY:
14185  case X86ISD::MOVHLPS:
14186  case X86ISD::MOVLHPS:
14187  case X86ISD::PSHUFD:
14188  case X86ISD::PSHUFHW:
14189  case X86ISD::PSHUFLW:
14190  case X86ISD::MOVSS:
14191  case X86ISD::MOVSD:
14192  case X86ISD::VPERMILPS:
14193  case X86ISD::VPERMILPSY:
14194  case X86ISD::VPERMILPD:
14195  case X86ISD::VPERMILPDY:
14196  case X86ISD::VPERM2F128:
14197  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14198  }
14199
14200  return SDValue();
14201}
14202
14203/// isTypeDesirableForOp - Return true if the target has native support for
14204/// the specified value type and it is 'desirable' to use the type for the
14205/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14206/// instruction encodings are longer and some i16 instructions are slow.
14207bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14208  if (!isTypeLegal(VT))
14209    return false;
14210  if (VT != MVT::i16)
14211    return true;
14212
14213  switch (Opc) {
14214  default:
14215    return true;
14216  case ISD::LOAD:
14217  case ISD::SIGN_EXTEND:
14218  case ISD::ZERO_EXTEND:
14219  case ISD::ANY_EXTEND:
14220  case ISD::SHL:
14221  case ISD::SRL:
14222  case ISD::SUB:
14223  case ISD::ADD:
14224  case ISD::MUL:
14225  case ISD::AND:
14226  case ISD::OR:
14227  case ISD::XOR:
14228    return false;
14229  }
14230}
14231
14232/// IsDesirableToPromoteOp - This method query the target whether it is
14233/// beneficial for dag combiner to promote the specified node. If true, it
14234/// should return the desired promotion type by reference.
14235bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14236  EVT VT = Op.getValueType();
14237  if (VT != MVT::i16)
14238    return false;
14239
14240  bool Promote = false;
14241  bool Commute = false;
14242  switch (Op.getOpcode()) {
14243  default: break;
14244  case ISD::LOAD: {
14245    LoadSDNode *LD = cast<LoadSDNode>(Op);
14246    // If the non-extending load has a single use and it's not live out, then it
14247    // might be folded.
14248    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14249                                                     Op.hasOneUse()*/) {
14250      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14251             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14252        // The only case where we'd want to promote LOAD (rather then it being
14253        // promoted as an operand is when it's only use is liveout.
14254        if (UI->getOpcode() != ISD::CopyToReg)
14255          return false;
14256      }
14257    }
14258    Promote = true;
14259    break;
14260  }
14261  case ISD::SIGN_EXTEND:
14262  case ISD::ZERO_EXTEND:
14263  case ISD::ANY_EXTEND:
14264    Promote = true;
14265    break;
14266  case ISD::SHL:
14267  case ISD::SRL: {
14268    SDValue N0 = Op.getOperand(0);
14269    // Look out for (store (shl (load), x)).
14270    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14271      return false;
14272    Promote = true;
14273    break;
14274  }
14275  case ISD::ADD:
14276  case ISD::MUL:
14277  case ISD::AND:
14278  case ISD::OR:
14279  case ISD::XOR:
14280    Commute = true;
14281    // fallthrough
14282  case ISD::SUB: {
14283    SDValue N0 = Op.getOperand(0);
14284    SDValue N1 = Op.getOperand(1);
14285    if (!Commute && MayFoldLoad(N1))
14286      return false;
14287    // Avoid disabling potential load folding opportunities.
14288    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14289      return false;
14290    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14291      return false;
14292    Promote = true;
14293  }
14294  }
14295
14296  PVT = MVT::i32;
14297  return Promote;
14298}
14299
14300//===----------------------------------------------------------------------===//
14301//                           X86 Inline Assembly Support
14302//===----------------------------------------------------------------------===//
14303
14304bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14305  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14306
14307  std::string AsmStr = IA->getAsmString();
14308
14309  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14310  SmallVector<StringRef, 4> AsmPieces;
14311  SplitString(AsmStr, AsmPieces, ";\n");
14312
14313  switch (AsmPieces.size()) {
14314  default: return false;
14315  case 1:
14316    AsmStr = AsmPieces[0];
14317    AsmPieces.clear();
14318    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
14319
14320    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14321    // we will turn this bswap into something that will be lowered to logical ops
14322    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
14323    // so don't worry about this.
14324    // bswap $0
14325    if (AsmPieces.size() == 2 &&
14326        (AsmPieces[0] == "bswap" ||
14327         AsmPieces[0] == "bswapq" ||
14328         AsmPieces[0] == "bswapl") &&
14329        (AsmPieces[1] == "$0" ||
14330         AsmPieces[1] == "${0:q}")) {
14331      // No need to check constraints, nothing other than the equivalent of
14332      // "=r,0" would be valid here.
14333      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14334      if (!Ty || Ty->getBitWidth() % 16 != 0)
14335        return false;
14336      return IntrinsicLowering::LowerToByteSwap(CI);
14337    }
14338    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14339    if (CI->getType()->isIntegerTy(16) &&
14340        AsmPieces.size() == 3 &&
14341        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
14342        AsmPieces[1] == "$$8," &&
14343        AsmPieces[2] == "${0:w}" &&
14344        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14345      AsmPieces.clear();
14346      const std::string &ConstraintsStr = IA->getConstraintString();
14347      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14348      std::sort(AsmPieces.begin(), AsmPieces.end());
14349      if (AsmPieces.size() == 4 &&
14350          AsmPieces[0] == "~{cc}" &&
14351          AsmPieces[1] == "~{dirflag}" &&
14352          AsmPieces[2] == "~{flags}" &&
14353          AsmPieces[3] == "~{fpsr}") {
14354        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14355        if (!Ty || Ty->getBitWidth() % 16 != 0)
14356          return false;
14357        return IntrinsicLowering::LowerToByteSwap(CI);
14358      }
14359    }
14360    break;
14361  case 3:
14362    if (CI->getType()->isIntegerTy(32) &&
14363        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14364      SmallVector<StringRef, 4> Words;
14365      SplitString(AsmPieces[0], Words, " \t,");
14366      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14367          Words[2] == "${0:w}") {
14368        Words.clear();
14369        SplitString(AsmPieces[1], Words, " \t,");
14370        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
14371            Words[2] == "$0") {
14372          Words.clear();
14373          SplitString(AsmPieces[2], Words, " \t,");
14374          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14375              Words[2] == "${0:w}") {
14376            AsmPieces.clear();
14377            const std::string &ConstraintsStr = IA->getConstraintString();
14378            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14379            std::sort(AsmPieces.begin(), AsmPieces.end());
14380            if (AsmPieces.size() == 4 &&
14381                AsmPieces[0] == "~{cc}" &&
14382                AsmPieces[1] == "~{dirflag}" &&
14383                AsmPieces[2] == "~{flags}" &&
14384                AsmPieces[3] == "~{fpsr}") {
14385              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14386              if (!Ty || Ty->getBitWidth() % 16 != 0)
14387                return false;
14388              return IntrinsicLowering::LowerToByteSwap(CI);
14389            }
14390          }
14391        }
14392      }
14393    }
14394
14395    if (CI->getType()->isIntegerTy(64)) {
14396      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14397      if (Constraints.size() >= 2 &&
14398          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14399          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14400        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14401        SmallVector<StringRef, 4> Words;
14402        SplitString(AsmPieces[0], Words, " \t");
14403        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
14404          Words.clear();
14405          SplitString(AsmPieces[1], Words, " \t");
14406          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
14407            Words.clear();
14408            SplitString(AsmPieces[2], Words, " \t,");
14409            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
14410                Words[2] == "%edx") {
14411              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14412              if (!Ty || Ty->getBitWidth() % 16 != 0)
14413                return false;
14414              return IntrinsicLowering::LowerToByteSwap(CI);
14415            }
14416          }
14417        }
14418      }
14419    }
14420    break;
14421  }
14422  return false;
14423}
14424
14425
14426
14427/// getConstraintType - Given a constraint letter, return the type of
14428/// constraint it is for this target.
14429X86TargetLowering::ConstraintType
14430X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14431  if (Constraint.size() == 1) {
14432    switch (Constraint[0]) {
14433    case 'R':
14434    case 'q':
14435    case 'Q':
14436    case 'f':
14437    case 't':
14438    case 'u':
14439    case 'y':
14440    case 'x':
14441    case 'Y':
14442    case 'l':
14443      return C_RegisterClass;
14444    case 'a':
14445    case 'b':
14446    case 'c':
14447    case 'd':
14448    case 'S':
14449    case 'D':
14450    case 'A':
14451      return C_Register;
14452    case 'I':
14453    case 'J':
14454    case 'K':
14455    case 'L':
14456    case 'M':
14457    case 'N':
14458    case 'G':
14459    case 'C':
14460    case 'e':
14461    case 'Z':
14462      return C_Other;
14463    default:
14464      break;
14465    }
14466  }
14467  return TargetLowering::getConstraintType(Constraint);
14468}
14469
14470/// Examine constraint type and operand type and determine a weight value.
14471/// This object must already have been set up with the operand type
14472/// and the current alternative constraint selected.
14473TargetLowering::ConstraintWeight
14474  X86TargetLowering::getSingleConstraintMatchWeight(
14475    AsmOperandInfo &info, const char *constraint) const {
14476  ConstraintWeight weight = CW_Invalid;
14477  Value *CallOperandVal = info.CallOperandVal;
14478    // If we don't have a value, we can't do a match,
14479    // but allow it at the lowest weight.
14480  if (CallOperandVal == NULL)
14481    return CW_Default;
14482  Type *type = CallOperandVal->getType();
14483  // Look at the constraint type.
14484  switch (*constraint) {
14485  default:
14486    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14487  case 'R':
14488  case 'q':
14489  case 'Q':
14490  case 'a':
14491  case 'b':
14492  case 'c':
14493  case 'd':
14494  case 'S':
14495  case 'D':
14496  case 'A':
14497    if (CallOperandVal->getType()->isIntegerTy())
14498      weight = CW_SpecificReg;
14499    break;
14500  case 'f':
14501  case 't':
14502  case 'u':
14503      if (type->isFloatingPointTy())
14504        weight = CW_SpecificReg;
14505      break;
14506  case 'y':
14507      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14508        weight = CW_SpecificReg;
14509      break;
14510  case 'x':
14511  case 'Y':
14512    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
14513      weight = CW_Register;
14514    break;
14515  case 'I':
14516    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14517      if (C->getZExtValue() <= 31)
14518        weight = CW_Constant;
14519    }
14520    break;
14521  case 'J':
14522    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14523      if (C->getZExtValue() <= 63)
14524        weight = CW_Constant;
14525    }
14526    break;
14527  case 'K':
14528    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14529      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14530        weight = CW_Constant;
14531    }
14532    break;
14533  case 'L':
14534    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14535      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14536        weight = CW_Constant;
14537    }
14538    break;
14539  case 'M':
14540    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14541      if (C->getZExtValue() <= 3)
14542        weight = CW_Constant;
14543    }
14544    break;
14545  case 'N':
14546    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14547      if (C->getZExtValue() <= 0xff)
14548        weight = CW_Constant;
14549    }
14550    break;
14551  case 'G':
14552  case 'C':
14553    if (dyn_cast<ConstantFP>(CallOperandVal)) {
14554      weight = CW_Constant;
14555    }
14556    break;
14557  case 'e':
14558    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14559      if ((C->getSExtValue() >= -0x80000000LL) &&
14560          (C->getSExtValue() <= 0x7fffffffLL))
14561        weight = CW_Constant;
14562    }
14563    break;
14564  case 'Z':
14565    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14566      if (C->getZExtValue() <= 0xffffffff)
14567        weight = CW_Constant;
14568    }
14569    break;
14570  }
14571  return weight;
14572}
14573
14574/// LowerXConstraint - try to replace an X constraint, which matches anything,
14575/// with another that has more specific requirements based on the type of the
14576/// corresponding operand.
14577const char *X86TargetLowering::
14578LowerXConstraint(EVT ConstraintVT) const {
14579  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14580  // 'f' like normal targets.
14581  if (ConstraintVT.isFloatingPoint()) {
14582    if (Subtarget->hasXMMInt())
14583      return "Y";
14584    if (Subtarget->hasXMM())
14585      return "x";
14586  }
14587
14588  return TargetLowering::LowerXConstraint(ConstraintVT);
14589}
14590
14591/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14592/// vector.  If it is invalid, don't add anything to Ops.
14593void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14594                                                     std::string &Constraint,
14595                                                     std::vector<SDValue>&Ops,
14596                                                     SelectionDAG &DAG) const {
14597  SDValue Result(0, 0);
14598
14599  // Only support length 1 constraints for now.
14600  if (Constraint.length() > 1) return;
14601
14602  char ConstraintLetter = Constraint[0];
14603  switch (ConstraintLetter) {
14604  default: break;
14605  case 'I':
14606    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14607      if (C->getZExtValue() <= 31) {
14608        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14609        break;
14610      }
14611    }
14612    return;
14613  case 'J':
14614    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14615      if (C->getZExtValue() <= 63) {
14616        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14617        break;
14618      }
14619    }
14620    return;
14621  case 'K':
14622    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14623      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
14624        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14625        break;
14626      }
14627    }
14628    return;
14629  case 'N':
14630    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14631      if (C->getZExtValue() <= 255) {
14632        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14633        break;
14634      }
14635    }
14636    return;
14637  case 'e': {
14638    // 32-bit signed value
14639    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14640      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14641                                           C->getSExtValue())) {
14642        // Widen to 64 bits here to get it sign extended.
14643        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
14644        break;
14645      }
14646    // FIXME gcc accepts some relocatable values here too, but only in certain
14647    // memory models; it's complicated.
14648    }
14649    return;
14650  }
14651  case 'Z': {
14652    // 32-bit unsigned value
14653    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14654      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14655                                           C->getZExtValue())) {
14656        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14657        break;
14658      }
14659    }
14660    // FIXME gcc accepts some relocatable values here too, but only in certain
14661    // memory models; it's complicated.
14662    return;
14663  }
14664  case 'i': {
14665    // Literal immediates are always ok.
14666    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
14667      // Widen to 64 bits here to get it sign extended.
14668      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
14669      break;
14670    }
14671
14672    // In any sort of PIC mode addresses need to be computed at runtime by
14673    // adding in a register or some sort of table lookup.  These can't
14674    // be used as immediates.
14675    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
14676      return;
14677
14678    // If we are in non-pic codegen mode, we allow the address of a global (with
14679    // an optional displacement) to be used with 'i'.
14680    GlobalAddressSDNode *GA = 0;
14681    int64_t Offset = 0;
14682
14683    // Match either (GA), (GA+C), (GA+C1+C2), etc.
14684    while (1) {
14685      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
14686        Offset += GA->getOffset();
14687        break;
14688      } else if (Op.getOpcode() == ISD::ADD) {
14689        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14690          Offset += C->getZExtValue();
14691          Op = Op.getOperand(0);
14692          continue;
14693        }
14694      } else if (Op.getOpcode() == ISD::SUB) {
14695        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14696          Offset += -C->getZExtValue();
14697          Op = Op.getOperand(0);
14698          continue;
14699        }
14700      }
14701
14702      // Otherwise, this isn't something we can handle, reject it.
14703      return;
14704    }
14705
14706    const GlobalValue *GV = GA->getGlobal();
14707    // If we require an extra load to get this address, as in PIC mode, we
14708    // can't accept it.
14709    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
14710                                                        getTargetMachine())))
14711      return;
14712
14713    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
14714                                        GA->getValueType(0), Offset);
14715    break;
14716  }
14717  }
14718
14719  if (Result.getNode()) {
14720    Ops.push_back(Result);
14721    return;
14722  }
14723  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14724}
14725
14726std::pair<unsigned, const TargetRegisterClass*>
14727X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
14728                                                EVT VT) const {
14729  // First, see if this is a constraint that directly corresponds to an LLVM
14730  // register class.
14731  if (Constraint.size() == 1) {
14732    // GCC Constraint Letters
14733    switch (Constraint[0]) {
14734    default: break;
14735      // TODO: Slight differences here in allocation order and leaving
14736      // RIP in the class. Do they matter any more here than they do
14737      // in the normal allocation?
14738    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
14739      if (Subtarget->is64Bit()) {
14740	if (VT == MVT::i32 || VT == MVT::f32)
14741	  return std::make_pair(0U, X86::GR32RegisterClass);
14742	else if (VT == MVT::i16)
14743	  return std::make_pair(0U, X86::GR16RegisterClass);
14744	else if (VT == MVT::i8 || VT == MVT::i1)
14745	  return std::make_pair(0U, X86::GR8RegisterClass);
14746	else if (VT == MVT::i64 || VT == MVT::f64)
14747	  return std::make_pair(0U, X86::GR64RegisterClass);
14748	break;
14749      }
14750      // 32-bit fallthrough
14751    case 'Q':   // Q_REGS
14752      if (VT == MVT::i32 || VT == MVT::f32)
14753	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
14754      else if (VT == MVT::i16)
14755	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
14756      else if (VT == MVT::i8 || VT == MVT::i1)
14757	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
14758      else if (VT == MVT::i64)
14759	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
14760      break;
14761    case 'r':   // GENERAL_REGS
14762    case 'l':   // INDEX_REGS
14763      if (VT == MVT::i8 || VT == MVT::i1)
14764        return std::make_pair(0U, X86::GR8RegisterClass);
14765      if (VT == MVT::i16)
14766        return std::make_pair(0U, X86::GR16RegisterClass);
14767      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
14768        return std::make_pair(0U, X86::GR32RegisterClass);
14769      return std::make_pair(0U, X86::GR64RegisterClass);
14770    case 'R':   // LEGACY_REGS
14771      if (VT == MVT::i8 || VT == MVT::i1)
14772        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
14773      if (VT == MVT::i16)
14774        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
14775      if (VT == MVT::i32 || !Subtarget->is64Bit())
14776        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
14777      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
14778    case 'f':  // FP Stack registers.
14779      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
14780      // value to the correct fpstack register class.
14781      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
14782        return std::make_pair(0U, X86::RFP32RegisterClass);
14783      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
14784        return std::make_pair(0U, X86::RFP64RegisterClass);
14785      return std::make_pair(0U, X86::RFP80RegisterClass);
14786    case 'y':   // MMX_REGS if MMX allowed.
14787      if (!Subtarget->hasMMX()) break;
14788      return std::make_pair(0U, X86::VR64RegisterClass);
14789    case 'Y':   // SSE_REGS if SSE2 allowed
14790      if (!Subtarget->hasXMMInt()) break;
14791      // FALL THROUGH.
14792    case 'x':   // SSE_REGS if SSE1 allowed
14793      if (!Subtarget->hasXMM()) break;
14794
14795      switch (VT.getSimpleVT().SimpleTy) {
14796      default: break;
14797      // Scalar SSE types.
14798      case MVT::f32:
14799      case MVT::i32:
14800        return std::make_pair(0U, X86::FR32RegisterClass);
14801      case MVT::f64:
14802      case MVT::i64:
14803        return std::make_pair(0U, X86::FR64RegisterClass);
14804      // Vector types.
14805      case MVT::v16i8:
14806      case MVT::v8i16:
14807      case MVT::v4i32:
14808      case MVT::v2i64:
14809      case MVT::v4f32:
14810      case MVT::v2f64:
14811        return std::make_pair(0U, X86::VR128RegisterClass);
14812      }
14813      break;
14814    }
14815  }
14816
14817  // Use the default implementation in TargetLowering to convert the register
14818  // constraint into a member of a register class.
14819  std::pair<unsigned, const TargetRegisterClass*> Res;
14820  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
14821
14822  // Not found as a standard register?
14823  if (Res.second == 0) {
14824    // Map st(0) -> st(7) -> ST0
14825    if (Constraint.size() == 7 && Constraint[0] == '{' &&
14826        tolower(Constraint[1]) == 's' &&
14827        tolower(Constraint[2]) == 't' &&
14828        Constraint[3] == '(' &&
14829        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
14830        Constraint[5] == ')' &&
14831        Constraint[6] == '}') {
14832
14833      Res.first = X86::ST0+Constraint[4]-'0';
14834      Res.second = X86::RFP80RegisterClass;
14835      return Res;
14836    }
14837
14838    // GCC allows "st(0)" to be called just plain "st".
14839    if (StringRef("{st}").equals_lower(Constraint)) {
14840      Res.first = X86::ST0;
14841      Res.second = X86::RFP80RegisterClass;
14842      return Res;
14843    }
14844
14845    // flags -> EFLAGS
14846    if (StringRef("{flags}").equals_lower(Constraint)) {
14847      Res.first = X86::EFLAGS;
14848      Res.second = X86::CCRRegisterClass;
14849      return Res;
14850    }
14851
14852    // 'A' means EAX + EDX.
14853    if (Constraint == "A") {
14854      Res.first = X86::EAX;
14855      Res.second = X86::GR32_ADRegisterClass;
14856      return Res;
14857    }
14858    return Res;
14859  }
14860
14861  // Otherwise, check to see if this is a register class of the wrong value
14862  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
14863  // turn into {ax},{dx}.
14864  if (Res.second->hasType(VT))
14865    return Res;   // Correct type already, nothing to do.
14866
14867  // All of the single-register GCC register classes map their values onto
14868  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
14869  // really want an 8-bit or 32-bit register, map to the appropriate register
14870  // class and return the appropriate register.
14871  if (Res.second == X86::GR16RegisterClass) {
14872    if (VT == MVT::i8) {
14873      unsigned DestReg = 0;
14874      switch (Res.first) {
14875      default: break;
14876      case X86::AX: DestReg = X86::AL; break;
14877      case X86::DX: DestReg = X86::DL; break;
14878      case X86::CX: DestReg = X86::CL; break;
14879      case X86::BX: DestReg = X86::BL; break;
14880      }
14881      if (DestReg) {
14882        Res.first = DestReg;
14883        Res.second = X86::GR8RegisterClass;
14884      }
14885    } else if (VT == MVT::i32) {
14886      unsigned DestReg = 0;
14887      switch (Res.first) {
14888      default: break;
14889      case X86::AX: DestReg = X86::EAX; break;
14890      case X86::DX: DestReg = X86::EDX; break;
14891      case X86::CX: DestReg = X86::ECX; break;
14892      case X86::BX: DestReg = X86::EBX; break;
14893      case X86::SI: DestReg = X86::ESI; break;
14894      case X86::DI: DestReg = X86::EDI; break;
14895      case X86::BP: DestReg = X86::EBP; break;
14896      case X86::SP: DestReg = X86::ESP; break;
14897      }
14898      if (DestReg) {
14899        Res.first = DestReg;
14900        Res.second = X86::GR32RegisterClass;
14901      }
14902    } else if (VT == MVT::i64) {
14903      unsigned DestReg = 0;
14904      switch (Res.first) {
14905      default: break;
14906      case X86::AX: DestReg = X86::RAX; break;
14907      case X86::DX: DestReg = X86::RDX; break;
14908      case X86::CX: DestReg = X86::RCX; break;
14909      case X86::BX: DestReg = X86::RBX; break;
14910      case X86::SI: DestReg = X86::RSI; break;
14911      case X86::DI: DestReg = X86::RDI; break;
14912      case X86::BP: DestReg = X86::RBP; break;
14913      case X86::SP: DestReg = X86::RSP; break;
14914      }
14915      if (DestReg) {
14916        Res.first = DestReg;
14917        Res.second = X86::GR64RegisterClass;
14918      }
14919    }
14920  } else if (Res.second == X86::FR32RegisterClass ||
14921             Res.second == X86::FR64RegisterClass ||
14922             Res.second == X86::VR128RegisterClass) {
14923    // Handle references to XMM physical registers that got mapped into the
14924    // wrong class.  This can happen with constraints like {xmm0} where the
14925    // target independent register mapper will just pick the first match it can
14926    // find, ignoring the required type.
14927    if (VT == MVT::f32)
14928      Res.second = X86::FR32RegisterClass;
14929    else if (VT == MVT::f64)
14930      Res.second = X86::FR64RegisterClass;
14931    else if (X86::VR128RegisterClass->hasType(VT))
14932      Res.second = X86::VR128RegisterClass;
14933  }
14934
14935  return Res;
14936}
14937