X86ISelLowering.cpp revision e11130340898467ab6f46503455a6956995c259b
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/ADT/VectorExtras.h"
26#include "llvm/Analysis/ScalarEvolutionExpressions.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/CodeGen/SSARegMap.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37// FIXME: temporary.
38static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden,
39                                  cl::desc("Enable fastcc on X86"));
40static cl::opt<bool> NoShuffleOpti("disable-x86-shuffle-opti", cl::Hidden,
41                       cl::desc("Disable vector shuffle optimizations on X86"));
42
43X86TargetLowering::X86TargetLowering(TargetMachine &TM)
44  : TargetLowering(TM) {
45  Subtarget = &TM.getSubtarget<X86Subtarget>();
46  X86ScalarSSE = Subtarget->hasSSE2();
47  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
48
49  // Set up the TargetLowering object.
50
51  // X86 is weird, it always uses i8 for shift amounts and setcc results.
52  setShiftAmountType(MVT::i8);
53  setSetCCResultType(MVT::i8);
54  setSetCCResultContents(ZeroOrOneSetCCResult);
55  setSchedulingPreference(SchedulingForRegPressure);
56  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
57  setStackPointerRegisterToSaveRestore(X86StackPtr);
58
59  if (!Subtarget->isTargetDarwin())
60    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
61    setUseUnderscoreSetJmpLongJmp(true);
62
63  // Add legal addressing mode scale values.
64  addLegalAddressScale(8);
65  addLegalAddressScale(4);
66  addLegalAddressScale(2);
67  // Enter the ones which require both scale + index last. These are more
68  // expensive.
69  addLegalAddressScale(9);
70  addLegalAddressScale(5);
71  addLegalAddressScale(3);
72
73  // Set up the register classes.
74  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
75  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
76  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
77  if (Subtarget->is64Bit())
78    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
79
80  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
81
82  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
83  // operation.
84  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
85  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
86  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
87
88  if (Subtarget->is64Bit()) {
89    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
90    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
91  } else {
92    if (X86ScalarSSE)
93      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
94      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
95    else
96      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
97  }
98
99  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
100  // this operation.
101  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
102  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
103  // SSE has no i16 to fp conversion, only i32
104  if (X86ScalarSSE)
105    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
106  else {
107    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
108    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
109  }
110
111  if (!Subtarget->is64Bit()) {
112    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
113    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
114    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
115  }
116
117  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
118  // this operation.
119  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
120  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
121
122  if (X86ScalarSSE) {
123    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
124  } else {
125    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
126    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
127  }
128
129  // Handle FP_TO_UINT by promoting the destination to a larger signed
130  // conversion.
131  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
132  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
133  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
134
135  if (Subtarget->is64Bit()) {
136    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
137    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
138  } else {
139    if (X86ScalarSSE && !Subtarget->hasSSE3())
140      // Expand FP_TO_UINT into a select.
141      // FIXME: We would like to use a Custom expander here eventually to do
142      // the optimal thing for SSE vs. the default expansion in the legalizer.
143      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
144    else
145      // With SSE3 we can use fisttpll to convert to a signed i64.
146      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
147  }
148
149  setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
150  setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
151
152  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
153  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
154  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
155  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
156  if (Subtarget->is64Bit())
157    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
158  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
159  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
160  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
161  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
162  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
163
164  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
165  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
166  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
167  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
168  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
169  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
170  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
171  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
172  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
173  if (Subtarget->is64Bit()) {
174    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
175    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
176    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
177  }
178
179  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
180  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
181
182  // These should be promoted to a larger select which is supported.
183  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
184  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
185  // X86 wants to expand cmov itself.
186  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
187  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
188  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
189  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
190  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
191  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
192  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
193  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
194  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
195  if (Subtarget->is64Bit()) {
196    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
197    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
198  }
199  // X86 ret instruction may pop stack.
200  setOperationAction(ISD::RET             , MVT::Other, Custom);
201  // Darwin ABI issue.
202  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
203  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
204  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
205  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
206  if (Subtarget->is64Bit()) {
207    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
208    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
209    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
210    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
211  }
212  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
213  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
214  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
215  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
216  // X86 wants to expand memset / memcpy itself.
217  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
218  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
219
220  // We don't have line number support yet.
221  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
222  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
223  // FIXME - use subtarget debug flags
224  if (!Subtarget->isTargetDarwin())
225    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
226
227  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
228  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
229
230  // Use the default implementation.
231  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
232  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
233  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
234  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
235  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
236  if (Subtarget->is64Bit())
237    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
238  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
239
240  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
241  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
242
243  if (X86ScalarSSE) {
244    // Set up the FP register classes.
245    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
246    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
247
248    // Use ANDPD to simulate FABS.
249    setOperationAction(ISD::FABS , MVT::f64, Custom);
250    setOperationAction(ISD::FABS , MVT::f32, Custom);
251
252    // Use XORP to simulate FNEG.
253    setOperationAction(ISD::FNEG , MVT::f64, Custom);
254    setOperationAction(ISD::FNEG , MVT::f32, Custom);
255
256    // We don't support sin/cos/fmod
257    setOperationAction(ISD::FSIN , MVT::f64, Expand);
258    setOperationAction(ISD::FCOS , MVT::f64, Expand);
259    setOperationAction(ISD::FREM , MVT::f64, Expand);
260    setOperationAction(ISD::FSIN , MVT::f32, Expand);
261    setOperationAction(ISD::FCOS , MVT::f32, Expand);
262    setOperationAction(ISD::FREM , MVT::f32, Expand);
263
264    // Expand FP immediates into loads from the stack, except for the special
265    // cases we handle.
266    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
267    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
268    addLegalFPImmediate(+0.0); // xorps / xorpd
269  } else {
270    // Set up the FP register classes.
271    addRegisterClass(MVT::f64, X86::RFPRegisterClass);
272
273    setOperationAction(ISD::UNDEF, MVT::f64, Expand);
274
275    if (!UnsafeFPMath) {
276      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
277      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
278    }
279
280    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
281    addLegalFPImmediate(+0.0); // FLD0
282    addLegalFPImmediate(+1.0); // FLD1
283    addLegalFPImmediate(-0.0); // FLD0/FCHS
284    addLegalFPImmediate(-1.0); // FLD1/FCHS
285  }
286
287  // First set operation action for all vector types to expand. Then we
288  // will selectively turn on ones that can be effectively codegen'd.
289  for (unsigned VT = (unsigned)MVT::Vector + 1;
290       VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
291    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
292    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
293    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
294    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
295    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
296    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
297    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
298  }
299
300  if (Subtarget->hasMMX()) {
301    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
302    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
303    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
304
305    // FIXME: add MMX packed arithmetics
306    setOperationAction(ISD::BUILD_VECTOR,     MVT::v8i8,  Expand);
307    setOperationAction(ISD::BUILD_VECTOR,     MVT::v4i16, Expand);
308    setOperationAction(ISD::BUILD_VECTOR,     MVT::v2i32, Expand);
309  }
310
311  if (Subtarget->hasSSE1()) {
312    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
313
314    setOperationAction(ISD::AND,                MVT::v4f32, Legal);
315    setOperationAction(ISD::OR,                 MVT::v4f32, Legal);
316    setOperationAction(ISD::XOR,                MVT::v4f32, Legal);
317    setOperationAction(ISD::ADD,                MVT::v4f32, Legal);
318    setOperationAction(ISD::SUB,                MVT::v4f32, Legal);
319    setOperationAction(ISD::MUL,                MVT::v4f32, Legal);
320    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
321    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
322    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
323    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
324    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
325  }
326
327  if (Subtarget->hasSSE2()) {
328    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
329    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
330    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
331    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
332    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
333
334    setOperationAction(ISD::ADD,                MVT::v2f64, Legal);
335    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
336    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
337    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
338    setOperationAction(ISD::SUB,                MVT::v2f64, Legal);
339    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
340    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
341    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
342    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
343    setOperationAction(ISD::MUL,                MVT::v2f64, Legal);
344
345    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
346    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
347    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
348    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
349    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
350    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
351
352    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
353    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
354      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
355      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
356      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
357    }
358    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
359    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
360    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
361    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
362    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
363    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
364
365    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
366    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
367      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
368      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
369      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
370      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
371      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
372      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
373      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
374      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
375      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
376      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
377    }
378
379    // Custom lower v2i64 and v2f64 selects.
380    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
381    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
382    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
383    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
384  }
385
386  // We want to custom lower some of our intrinsics.
387  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
388
389  // We have target-specific dag combine patterns for the following nodes:
390  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
391  setTargetDAGCombine(ISD::SELECT);
392
393  computeRegisterProperties();
394
395  // FIXME: These should be based on subtarget info. Plus, the values should
396  // be smaller when we are in optimizing for size mode.
397  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
398  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
399  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
400  allowUnalignedMemoryAccesses = true; // x86 supports it!
401}
402
403//===----------------------------------------------------------------------===//
404//                    C Calling Convention implementation
405//===----------------------------------------------------------------------===//
406
407/// AddLiveIn - This helper function adds the specified physical register to the
408/// MachineFunction as a live in value.  It also creates a corresponding virtual
409/// register for it.
410static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
411                          TargetRegisterClass *RC) {
412  assert(RC->contains(PReg) && "Not the correct regclass!");
413  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
414  MF.addLiveIn(PReg, VReg);
415  return VReg;
416}
417
418/// HowToPassCCCArgument - Returns how an formal argument of the specified type
419/// should be passed. If it is through stack, returns the size of the stack
420/// slot; if it is through XMM register, returns the number of XMM registers
421/// are needed.
422static void
423HowToPassCCCArgument(MVT::ValueType ObjectVT, unsigned NumXMMRegs,
424                     unsigned &ObjSize, unsigned &ObjXMMRegs) {
425  ObjXMMRegs = 0;
426
427  switch (ObjectVT) {
428  default: assert(0 && "Unhandled argument type!");
429  case MVT::i8:  ObjSize = 1; break;
430  case MVT::i16: ObjSize = 2; break;
431  case MVT::i32: ObjSize = 4; break;
432  case MVT::i64: ObjSize = 8; break;
433  case MVT::f32: ObjSize = 4; break;
434  case MVT::f64: ObjSize = 8; break;
435  case MVT::v16i8:
436  case MVT::v8i16:
437  case MVT::v4i32:
438  case MVT::v2i64:
439  case MVT::v4f32:
440  case MVT::v2f64:
441    if (NumXMMRegs < 4)
442      ObjXMMRegs = 1;
443    else
444      ObjSize = 16;
445    break;
446  }
447}
448
449SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG) {
450  unsigned NumArgs = Op.Val->getNumValues() - 1;
451  MachineFunction &MF = DAG.getMachineFunction();
452  MachineFrameInfo *MFI = MF.getFrameInfo();
453  SDOperand Root = Op.getOperand(0);
454  std::vector<SDOperand> ArgValues;
455
456  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
457  // the stack frame looks like this:
458  //
459  // [ESP] -- return address
460  // [ESP + 4] -- first argument (leftmost lexically)
461  // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
462  //    ...
463  //
464  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
465  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
466  static const unsigned XMMArgRegs[] = {
467    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
468  };
469  for (unsigned i = 0; i < NumArgs; ++i) {
470    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
471    unsigned ArgIncrement = 4;
472    unsigned ObjSize = 0;
473    unsigned ObjXMMRegs = 0;
474    HowToPassCCCArgument(ObjectVT, NumXMMRegs, ObjSize, ObjXMMRegs);
475    if (ObjSize > 4)
476      ArgIncrement = ObjSize;
477
478    SDOperand ArgValue;
479    if (ObjXMMRegs) {
480      // Passed in a XMM register.
481      unsigned Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
482                               X86::VR128RegisterClass);
483      ArgValue= DAG.getCopyFromReg(Root, Reg, ObjectVT);
484      ArgValues.push_back(ArgValue);
485      NumXMMRegs += ObjXMMRegs;
486    } else {
487      // XMM arguments have to be aligned on 16-byte boundary.
488      if (ObjSize == 16)
489        ArgOffset = ((ArgOffset + 15) / 16) * 16;
490      // Create the frame index object for this incoming parameter...
491      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
492      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
493      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
494                             DAG.getSrcValue(NULL));
495      ArgValues.push_back(ArgValue);
496      ArgOffset += ArgIncrement;   // Move on to the next argument...
497    }
498  }
499
500  ArgValues.push_back(Root);
501
502  // If the function takes variable number of arguments, make a frame index for
503  // the start of the first vararg value... for expansion of llvm.va_start.
504  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
505  if (isVarArg)
506    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
507  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
508  ReturnAddrIndex = 0;            // No return address slot generated yet.
509  BytesToPopOnReturn = 0;         // Callee pops nothing.
510  BytesCallerReserves = ArgOffset;
511
512  // If this is a struct return on Darwin/X86, the callee pops the hidden struct
513  // pointer.
514  if (MF.getFunction()->getCallingConv() == CallingConv::CSRet &&
515      Subtarget->isTargetDarwin())
516    BytesToPopOnReturn = 4;
517
518  // Return the new list of results.
519  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
520                                     Op.Val->value_end());
521  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
522}
523
524
525SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG) {
526  SDOperand Chain     = Op.getOperand(0);
527  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
528  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
529  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
530  SDOperand Callee    = Op.getOperand(4);
531  MVT::ValueType RetVT= Op.Val->getValueType(0);
532  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
533
534  // Keep track of the number of XMM regs passed so far.
535  unsigned NumXMMRegs = 0;
536  static const unsigned XMMArgRegs[] = {
537    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
538  };
539
540  // Count how many bytes are to be pushed on the stack.
541  unsigned NumBytes = 0;
542  for (unsigned i = 0; i != NumOps; ++i) {
543    SDOperand Arg = Op.getOperand(5+2*i);
544
545    switch (Arg.getValueType()) {
546    default: assert(0 && "Unexpected ValueType for argument!");
547    case MVT::i8:
548    case MVT::i16:
549    case MVT::i32:
550    case MVT::f32:
551      NumBytes += 4;
552      break;
553    case MVT::i64:
554    case MVT::f64:
555      NumBytes += 8;
556      break;
557    case MVT::v16i8:
558    case MVT::v8i16:
559    case MVT::v4i32:
560    case MVT::v2i64:
561    case MVT::v4f32:
562    case MVT::v2f64:
563      if (NumXMMRegs < 4)
564        ++NumXMMRegs;
565      else {
566        // XMM arguments have to be aligned on 16-byte boundary.
567        NumBytes = ((NumBytes + 15) / 16) * 16;
568        NumBytes += 16;
569      }
570      break;
571    }
572  }
573
574  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
575
576  // Arguments go on the stack in reverse order, as specified by the ABI.
577  unsigned ArgOffset = 0;
578  NumXMMRegs = 0;
579  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
580  std::vector<SDOperand> MemOpChains;
581  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
582  for (unsigned i = 0; i != NumOps; ++i) {
583    SDOperand Arg = Op.getOperand(5+2*i);
584
585    switch (Arg.getValueType()) {
586    default: assert(0 && "Unexpected ValueType for argument!");
587    case MVT::i8:
588    case MVT::i16: {
589      // Promote the integer to 32 bits.  If the input type is signed use a
590      // sign extend, otherwise use a zero extend.
591      unsigned ExtOp =
592        dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ?
593        ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
594      Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
595    }
596    // Fallthrough
597
598    case MVT::i32:
599    case MVT::f32: {
600      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
601      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
602      MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
603                                        Arg, PtrOff, DAG.getSrcValue(NULL)));
604      ArgOffset += 4;
605      break;
606    }
607    case MVT::i64:
608    case MVT::f64: {
609      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
610      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
611      MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
612                                        Arg, PtrOff, DAG.getSrcValue(NULL)));
613      ArgOffset += 8;
614      break;
615    }
616    case MVT::v16i8:
617    case MVT::v8i16:
618    case MVT::v4i32:
619    case MVT::v2i64:
620    case MVT::v4f32:
621    case MVT::v2f64:
622      if (NumXMMRegs < 4) {
623        RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
624        NumXMMRegs++;
625      } else {
626        // XMM arguments have to be aligned on 16-byte boundary.
627        ArgOffset = ((ArgOffset + 15) / 16) * 16;
628        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
629        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
630        MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
631                                          Arg, PtrOff, DAG.getSrcValue(NULL)));
632        ArgOffset += 16;
633      }
634    }
635  }
636
637  if (!MemOpChains.empty())
638    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
639                        &MemOpChains[0], MemOpChains.size());
640
641  // Build a sequence of copy-to-reg nodes chained together with token chain
642  // and flag operands which copy the outgoing args into registers.
643  SDOperand InFlag;
644  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
645    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
646                             InFlag);
647    InFlag = Chain.getValue(1);
648  }
649
650  // If the callee is a GlobalAddress node (quite common, every direct call is)
651  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
652  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
653    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
654  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
655    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
656
657  std::vector<MVT::ValueType> NodeTys;
658  NodeTys.push_back(MVT::Other);   // Returns a chain
659  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
660  std::vector<SDOperand> Ops;
661  Ops.push_back(Chain);
662  Ops.push_back(Callee);
663
664  // Add argument registers to the end of the list so that they are known live
665  // into the call.
666  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
667    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
668                                  RegsToPass[i].second.getValueType()));
669
670  if (InFlag.Val)
671    Ops.push_back(InFlag);
672
673  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
674                      NodeTys, &Ops[0], Ops.size());
675  InFlag = Chain.getValue(1);
676
677  // Create the CALLSEQ_END node.
678  unsigned NumBytesForCalleeToPush = 0;
679
680  // If this is is a call to a struct-return function on Darwin/X86, the callee
681  // pops the hidden struct pointer, so we have to push it back.
682  if (CallingConv == CallingConv::CSRet && Subtarget->isTargetDarwin())
683    NumBytesForCalleeToPush = 4;
684
685  NodeTys.clear();
686  NodeTys.push_back(MVT::Other);   // Returns a chain
687  if (RetVT != MVT::Other)
688    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
689  Ops.clear();
690  Ops.push_back(Chain);
691  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
692  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
693  Ops.push_back(InFlag);
694  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
695  if (RetVT != MVT::Other)
696    InFlag = Chain.getValue(1);
697
698  std::vector<SDOperand> ResultVals;
699  NodeTys.clear();
700  switch (RetVT) {
701  default: assert(0 && "Unknown value type to return!");
702  case MVT::Other: break;
703  case MVT::i8:
704    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
705    ResultVals.push_back(Chain.getValue(0));
706    NodeTys.push_back(MVT::i8);
707    break;
708  case MVT::i16:
709    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
710    ResultVals.push_back(Chain.getValue(0));
711    NodeTys.push_back(MVT::i16);
712    break;
713  case MVT::i32:
714    if (Op.Val->getValueType(1) == MVT::i32) {
715      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
716      ResultVals.push_back(Chain.getValue(0));
717      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
718                                 Chain.getValue(2)).getValue(1);
719      ResultVals.push_back(Chain.getValue(0));
720      NodeTys.push_back(MVT::i32);
721    } else {
722      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
723      ResultVals.push_back(Chain.getValue(0));
724    }
725    NodeTys.push_back(MVT::i32);
726    break;
727  case MVT::v16i8:
728  case MVT::v8i16:
729  case MVT::v4i32:
730  case MVT::v2i64:
731  case MVT::v4f32:
732  case MVT::v2f64:
733    Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
734    ResultVals.push_back(Chain.getValue(0));
735    NodeTys.push_back(RetVT);
736    break;
737  case MVT::f32:
738  case MVT::f64: {
739    std::vector<MVT::ValueType> Tys;
740    Tys.push_back(MVT::f64);
741    Tys.push_back(MVT::Other);
742    Tys.push_back(MVT::Flag);
743    std::vector<SDOperand> Ops;
744    Ops.push_back(Chain);
745    Ops.push_back(InFlag);
746    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
747                                   &Ops[0], Ops.size());
748    Chain  = RetVal.getValue(1);
749    InFlag = RetVal.getValue(2);
750    if (X86ScalarSSE) {
751      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
752      // shouldn't be necessary except that RFP cannot be live across
753      // multiple blocks. When stackifier is fixed, they can be uncoupled.
754      MachineFunction &MF = DAG.getMachineFunction();
755      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
756      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
757      Tys.clear();
758      Tys.push_back(MVT::Other);
759      Ops.clear();
760      Ops.push_back(Chain);
761      Ops.push_back(RetVal);
762      Ops.push_back(StackSlot);
763      Ops.push_back(DAG.getValueType(RetVT));
764      Ops.push_back(InFlag);
765      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
766      RetVal = DAG.getLoad(RetVT, Chain, StackSlot,
767                           DAG.getSrcValue(NULL));
768      Chain = RetVal.getValue(1);
769    }
770
771    if (RetVT == MVT::f32 && !X86ScalarSSE)
772      // FIXME: we would really like to remember that this FP_ROUND
773      // operation is okay to eliminate if we allow excess FP precision.
774      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
775    ResultVals.push_back(RetVal);
776    NodeTys.push_back(RetVT);
777    break;
778  }
779  }
780
781  // If the function returns void, just return the chain.
782  if (ResultVals.empty())
783    return Chain;
784
785  // Otherwise, merge everything together with a MERGE_VALUES node.
786  NodeTys.push_back(MVT::Other);
787  ResultVals.push_back(Chain);
788  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
789                              &ResultVals[0], ResultVals.size());
790  return Res.getValue(Op.ResNo);
791}
792
793
794//===----------------------------------------------------------------------===//
795//                 X86-64 C Calling Convention implementation
796//===----------------------------------------------------------------------===//
797
798/// HowToPassX86_64CCCArgument - Returns how an formal argument of the specified
799/// type should be passed. If it is through stack, returns the size of the stack
800/// slot; if it is through integer or XMM register, returns the number of
801/// integer or XMM registers are needed.
802static void
803HowToPassX86_64CCCArgument(MVT::ValueType ObjectVT,
804                           unsigned NumIntRegs, unsigned NumXMMRegs,
805                           unsigned &ObjSize, unsigned &ObjIntRegs,
806                           unsigned &ObjXMMRegs) {
807  ObjSize = 0;
808  ObjIntRegs = 0;
809  ObjXMMRegs = 0;
810
811  switch (ObjectVT) {
812  default: assert(0 && "Unhandled argument type!");
813  case MVT::i8:
814  case MVT::i16:
815  case MVT::i32:
816  case MVT::i64:
817    if (NumIntRegs < 6)
818      ObjIntRegs = 1;
819    else {
820      switch (ObjectVT) {
821      default: break;
822      case MVT::i8:  ObjSize = 1; break;
823      case MVT::i16: ObjSize = 2; break;
824      case MVT::i32: ObjSize = 4; break;
825      case MVT::i64: ObjSize = 8; break;
826      }
827    }
828    break;
829  case MVT::f32:
830  case MVT::f64:
831  case MVT::v16i8:
832  case MVT::v8i16:
833  case MVT::v4i32:
834  case MVT::v2i64:
835  case MVT::v4f32:
836  case MVT::v2f64:
837    if (NumXMMRegs < 8)
838      ObjXMMRegs = 1;
839    else {
840      switch (ObjectVT) {
841      default: break;
842      case MVT::f32:  ObjSize = 4; break;
843      case MVT::f64:  ObjSize = 8; break;
844      case MVT::v16i8:
845      case MVT::v8i16:
846      case MVT::v4i32:
847      case MVT::v2i64:
848      case MVT::v4f32:
849      case MVT::v2f64: ObjSize = 16; break;
850    }
851    break;
852  }
853  }
854}
855
856SDOperand
857X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
858  unsigned NumArgs = Op.Val->getNumValues() - 1;
859  MachineFunction &MF = DAG.getMachineFunction();
860  MachineFrameInfo *MFI = MF.getFrameInfo();
861  SDOperand Root = Op.getOperand(0);
862  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
863  std::vector<SDOperand> ArgValues;
864
865  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
866  // the stack frame looks like this:
867  //
868  // [RSP] -- return address
869  // [RSP + 8] -- first nonreg argument (leftmost lexically)
870  // [RSP +16] -- second nonreg argument, if 1st argument is <= 8 bytes in size
871  //    ...
872  //
873  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
874  unsigned NumIntRegs = 0;  // Int regs used for parameter passing.
875  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
876
877  static const unsigned GPR8ArgRegs[] = {
878    X86::DIL, X86::SIL, X86::DL,  X86::CL,  X86::R8B, X86::R9B
879  };
880  static const unsigned GPR16ArgRegs[] = {
881    X86::DI,  X86::SI,  X86::DX,  X86::CX,  X86::R8W, X86::R9W
882  };
883  static const unsigned GPR32ArgRegs[] = {
884    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
885  };
886  static const unsigned GPR64ArgRegs[] = {
887    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
888  };
889  static const unsigned XMMArgRegs[] = {
890    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
891    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
892  };
893
894  for (unsigned i = 0; i < NumArgs; ++i) {
895    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
896    unsigned ArgIncrement = 8;
897    unsigned ObjSize = 0;
898    unsigned ObjIntRegs = 0;
899    unsigned ObjXMMRegs = 0;
900
901    // FIXME: __int128 and long double support?
902    HowToPassX86_64CCCArgument(ObjectVT, NumIntRegs, NumXMMRegs,
903                               ObjSize, ObjIntRegs, ObjXMMRegs);
904    if (ObjSize > 8)
905      ArgIncrement = ObjSize;
906
907    unsigned Reg = 0;
908    SDOperand ArgValue;
909    if (ObjIntRegs || ObjXMMRegs) {
910      switch (ObjectVT) {
911      default: assert(0 && "Unhandled argument type!");
912      case MVT::i8:
913      case MVT::i16:
914      case MVT::i32:
915      case MVT::i64: {
916        TargetRegisterClass *RC = NULL;
917        switch (ObjectVT) {
918        default: break;
919        case MVT::i8:
920          RC = X86::GR8RegisterClass;
921          Reg = GPR8ArgRegs[NumIntRegs];
922          break;
923        case MVT::i16:
924          RC = X86::GR16RegisterClass;
925          Reg = GPR16ArgRegs[NumIntRegs];
926          break;
927        case MVT::i32:
928          RC = X86::GR32RegisterClass;
929          Reg = GPR32ArgRegs[NumIntRegs];
930          break;
931        case MVT::i64:
932          RC = X86::GR64RegisterClass;
933          Reg = GPR64ArgRegs[NumIntRegs];
934          break;
935        }
936        Reg = AddLiveIn(MF, Reg, RC);
937        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
938        break;
939      }
940      case MVT::f32:
941      case MVT::f64:
942      case MVT::v16i8:
943      case MVT::v8i16:
944      case MVT::v4i32:
945      case MVT::v2i64:
946      case MVT::v4f32:
947      case MVT::v2f64: {
948        TargetRegisterClass *RC= (ObjectVT == MVT::f32) ?
949          X86::FR32RegisterClass : ((ObjectVT == MVT::f64) ?
950                              X86::FR64RegisterClass : X86::VR128RegisterClass);
951        Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], RC);
952        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
953        break;
954      }
955      }
956      NumIntRegs += ObjIntRegs;
957      NumXMMRegs += ObjXMMRegs;
958    } else if (ObjSize) {
959      // XMM arguments have to be aligned on 16-byte boundary.
960      if (ObjSize == 16)
961        ArgOffset = ((ArgOffset + 15) / 16) * 16;
962      // Create the SelectionDAG nodes corresponding to a load from this
963      // parameter.
964      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
965      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
966      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
967                             DAG.getSrcValue(NULL));
968      ArgOffset += ArgIncrement;   // Move on to the next argument.
969    }
970
971    ArgValues.push_back(ArgValue);
972  }
973
974  // If the function takes variable number of arguments, make a frame index for
975  // the start of the first vararg value... for expansion of llvm.va_start.
976  if (isVarArg) {
977    // For X86-64, if there are vararg parameters that are passed via
978    // registers, then we must store them to their spots on the stack so they
979    // may be loaded by deferencing the result of va_next.
980    VarArgsGPOffset = NumIntRegs * 8;
981    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
982    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
983    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
984
985    // Store the integer parameter registers.
986    std::vector<SDOperand> MemOps;
987    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
988    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
989                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
990    for (; NumIntRegs != 6; ++NumIntRegs) {
991      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
992                                X86::GR64RegisterClass);
993      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
994      SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
995                                    Val, FIN, DAG.getSrcValue(NULL));
996      MemOps.push_back(Store);
997      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
998                        DAG.getConstant(8, getPointerTy()));
999    }
1000
1001    // Now store the XMM (fp + vector) parameter registers.
1002    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1003                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1004    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1005      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1006                                X86::VR128RegisterClass);
1007      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1008      SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
1009                                    Val, FIN, DAG.getSrcValue(NULL));
1010      MemOps.push_back(Store);
1011      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1012                        DAG.getConstant(16, getPointerTy()));
1013    }
1014    if (!MemOps.empty())
1015        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1016                           &MemOps[0], MemOps.size());
1017  }
1018
1019  ArgValues.push_back(Root);
1020
1021  ReturnAddrIndex = 0;     // No return address slot generated yet.
1022  BytesToPopOnReturn = 0;  // Callee pops nothing.
1023  BytesCallerReserves = ArgOffset;
1024
1025  // Return the new list of results.
1026  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
1027                                     Op.Val->value_end());
1028  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
1029}
1030
1031SDOperand
1032X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG) {
1033  SDOperand Chain     = Op.getOperand(0);
1034  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1035  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1036  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1037  SDOperand Callee    = Op.getOperand(4);
1038  MVT::ValueType RetVT= Op.Val->getValueType(0);
1039  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1040
1041  // Count how many bytes are to be pushed on the stack.
1042  unsigned NumBytes = 0;
1043  unsigned NumIntRegs = 0;  // Int regs used for parameter passing.
1044  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1045
1046  static const unsigned GPR8ArgRegs[] = {
1047    X86::DIL, X86::SIL, X86::DL,  X86::CL,  X86::R8B, X86::R9B
1048  };
1049  static const unsigned GPR16ArgRegs[] = {
1050    X86::DI,  X86::SI,  X86::DX,  X86::CX,  X86::R8W, X86::R9W
1051  };
1052  static const unsigned GPR32ArgRegs[] = {
1053    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
1054  };
1055  static const unsigned GPR64ArgRegs[] = {
1056    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1057  };
1058  static const unsigned XMMArgRegs[] = {
1059    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1060    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1061  };
1062
1063  for (unsigned i = 0; i != NumOps; ++i) {
1064    SDOperand Arg = Op.getOperand(5+2*i);
1065    MVT::ValueType ArgVT = Arg.getValueType();
1066
1067    switch (ArgVT) {
1068    default: assert(0 && "Unknown value type!");
1069    case MVT::i8:
1070    case MVT::i16:
1071    case MVT::i32:
1072    case MVT::i64:
1073      if (NumIntRegs < 6)
1074        ++NumIntRegs;
1075      else
1076        NumBytes += 8;
1077      break;
1078    case MVT::f32:
1079    case MVT::f64:
1080    case MVT::v16i8:
1081    case MVT::v8i16:
1082    case MVT::v4i32:
1083    case MVT::v2i64:
1084    case MVT::v4f32:
1085    case MVT::v2f64:
1086      if (NumXMMRegs < 8)
1087        NumXMMRegs++;
1088      else if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
1089        NumBytes += 8;
1090      else {
1091        // XMM arguments have to be aligned on 16-byte boundary.
1092        NumBytes = ((NumBytes + 15) / 16) * 16;
1093        NumBytes += 16;
1094      }
1095      break;
1096    }
1097  }
1098
1099  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1100
1101  // Arguments go on the stack in reverse order, as specified by the ABI.
1102  unsigned ArgOffset = 0;
1103  NumIntRegs = 0;
1104  NumXMMRegs = 0;
1105  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1106  std::vector<SDOperand> MemOpChains;
1107  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1108  for (unsigned i = 0; i != NumOps; ++i) {
1109    SDOperand Arg = Op.getOperand(5+2*i);
1110    MVT::ValueType ArgVT = Arg.getValueType();
1111
1112    switch (ArgVT) {
1113    default: assert(0 && "Unexpected ValueType for argument!");
1114    case MVT::i8:
1115    case MVT::i16:
1116    case MVT::i32:
1117    case MVT::i64:
1118      if (NumIntRegs < 6) {
1119        unsigned Reg = 0;
1120        switch (ArgVT) {
1121        default: break;
1122        case MVT::i8:  Reg = GPR8ArgRegs[NumIntRegs];  break;
1123        case MVT::i16: Reg = GPR16ArgRegs[NumIntRegs]; break;
1124        case MVT::i32: Reg = GPR32ArgRegs[NumIntRegs]; break;
1125        case MVT::i64: Reg = GPR64ArgRegs[NumIntRegs]; break;
1126        }
1127        RegsToPass.push_back(std::make_pair(Reg, Arg));
1128        ++NumIntRegs;
1129      } else {
1130        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1131        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1132        MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1133                                          Arg, PtrOff, DAG.getSrcValue(NULL)));
1134        ArgOffset += 8;
1135      }
1136      break;
1137    case MVT::f32:
1138    case MVT::f64:
1139    case MVT::v16i8:
1140    case MVT::v8i16:
1141    case MVT::v4i32:
1142    case MVT::v2i64:
1143    case MVT::v4f32:
1144    case MVT::v2f64:
1145      if (NumXMMRegs < 8) {
1146        RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
1147        NumXMMRegs++;
1148      } else {
1149        if (ArgVT != MVT::f32 && ArgVT != MVT::f64) {
1150          // XMM arguments have to be aligned on 16-byte boundary.
1151          ArgOffset = ((ArgOffset + 15) / 16) * 16;
1152        }
1153        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1154        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1155        MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1156                                          Arg, PtrOff, DAG.getSrcValue(NULL)));
1157        if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
1158          ArgOffset += 8;
1159        else
1160          ArgOffset += 16;
1161      }
1162    }
1163  }
1164
1165  if (!MemOpChains.empty())
1166    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1167                        &MemOpChains[0], MemOpChains.size());
1168
1169  // Build a sequence of copy-to-reg nodes chained together with token chain
1170  // and flag operands which copy the outgoing args into registers.
1171  SDOperand InFlag;
1172  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1173    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1174                             InFlag);
1175    InFlag = Chain.getValue(1);
1176  }
1177
1178  if (isVarArg) {
1179    // From AMD64 ABI document:
1180    // For calls that may call functions that use varargs or stdargs
1181    // (prototype-less calls or calls to functions containing ellipsis (...) in
1182    // the declaration) %al is used as hidden argument to specify the number
1183    // of SSE registers used. The contents of %al do not need to match exactly
1184    // the number of registers, but must be an ubound on the number of SSE
1185    // registers used and is in the range 0 - 8 inclusive.
1186    Chain = DAG.getCopyToReg(Chain, X86::AL,
1187                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1188    InFlag = Chain.getValue(1);
1189  }
1190
1191  // If the callee is a GlobalAddress node (quite common, every direct call is)
1192  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1193  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1194    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1195  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1196    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1197
1198  std::vector<MVT::ValueType> NodeTys;
1199  NodeTys.push_back(MVT::Other);   // Returns a chain
1200  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1201  std::vector<SDOperand> Ops;
1202  Ops.push_back(Chain);
1203  Ops.push_back(Callee);
1204
1205  // Add argument registers to the end of the list so that they are known live
1206  // into the call.
1207  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1208    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1209                                  RegsToPass[i].second.getValueType()));
1210
1211  if (InFlag.Val)
1212    Ops.push_back(InFlag);
1213
1214  // FIXME: Do not generate X86ISD::TAILCALL for now.
1215  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1216                      NodeTys, &Ops[0], Ops.size());
1217  InFlag = Chain.getValue(1);
1218
1219  NodeTys.clear();
1220  NodeTys.push_back(MVT::Other);   // Returns a chain
1221  if (RetVT != MVT::Other)
1222    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
1223  Ops.clear();
1224  Ops.push_back(Chain);
1225  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1226  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1227  Ops.push_back(InFlag);
1228  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1229  if (RetVT != MVT::Other)
1230    InFlag = Chain.getValue(1);
1231
1232  std::vector<SDOperand> ResultVals;
1233  NodeTys.clear();
1234  switch (RetVT) {
1235  default: assert(0 && "Unknown value type to return!");
1236  case MVT::Other: break;
1237  case MVT::i8:
1238    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
1239    ResultVals.push_back(Chain.getValue(0));
1240    NodeTys.push_back(MVT::i8);
1241    break;
1242  case MVT::i16:
1243    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
1244    ResultVals.push_back(Chain.getValue(0));
1245    NodeTys.push_back(MVT::i16);
1246    break;
1247  case MVT::i32:
1248    Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1249    ResultVals.push_back(Chain.getValue(0));
1250    NodeTys.push_back(MVT::i32);
1251    break;
1252  case MVT::i64:
1253    if (Op.Val->getValueType(1) == MVT::i64) {
1254      // FIXME: __int128 support?
1255      Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1);
1256      ResultVals.push_back(Chain.getValue(0));
1257      Chain = DAG.getCopyFromReg(Chain, X86::RDX, MVT::i64,
1258                                 Chain.getValue(2)).getValue(1);
1259      ResultVals.push_back(Chain.getValue(0));
1260      NodeTys.push_back(MVT::i64);
1261    } else {
1262      Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1);
1263      ResultVals.push_back(Chain.getValue(0));
1264    }
1265    NodeTys.push_back(MVT::i64);
1266    break;
1267  case MVT::f32:
1268  case MVT::f64:
1269  case MVT::v16i8:
1270  case MVT::v8i16:
1271  case MVT::v4i32:
1272  case MVT::v2i64:
1273  case MVT::v4f32:
1274  case MVT::v2f64:
1275    // FIXME: long double support?
1276    Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
1277    ResultVals.push_back(Chain.getValue(0));
1278    NodeTys.push_back(RetVT);
1279    break;
1280  }
1281
1282  // If the function returns void, just return the chain.
1283  if (ResultVals.empty())
1284    return Chain;
1285
1286  // Otherwise, merge everything together with a MERGE_VALUES node.
1287  NodeTys.push_back(MVT::Other);
1288  ResultVals.push_back(Chain);
1289  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1290                              &ResultVals[0], ResultVals.size());
1291  return Res.getValue(Op.ResNo);
1292}
1293
1294//===----------------------------------------------------------------------===//
1295//                    Fast Calling Convention implementation
1296//===----------------------------------------------------------------------===//
1297//
1298// The X86 'fast' calling convention passes up to two integer arguments in
1299// registers (an appropriate portion of EAX/EDX), passes arguments in C order,
1300// and requires that the callee pop its arguments off the stack (allowing proper
1301// tail calls), and has the same return value conventions as C calling convs.
1302//
1303// This calling convention always arranges for the callee pop value to be 8n+4
1304// bytes, which is needed for tail recursion elimination and stack alignment
1305// reasons.
1306//
1307// Note that this can be enhanced in the future to pass fp vals in registers
1308// (when we have a global fp allocator) and do other tricks.
1309//
1310
1311/// HowToPassFastCCArgument - Returns how an formal argument of the specified
1312/// type should be passed. If it is through stack, returns the size of the stack
1313/// slot; if it is through integer or XMM register, returns the number of
1314/// integer or XMM registers are needed.
1315static void
1316HowToPassFastCCArgument(MVT::ValueType ObjectVT,
1317                        unsigned NumIntRegs, unsigned NumXMMRegs,
1318                        unsigned &ObjSize, unsigned &ObjIntRegs,
1319                        unsigned &ObjXMMRegs) {
1320  ObjSize = 0;
1321  ObjIntRegs = 0;
1322  ObjXMMRegs = 0;
1323
1324  switch (ObjectVT) {
1325  default: assert(0 && "Unhandled argument type!");
1326  case MVT::i8:
1327#if FASTCC_NUM_INT_ARGS_INREGS > 0
1328    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
1329      ObjIntRegs = 1;
1330    else
1331#endif
1332      ObjSize = 1;
1333    break;
1334  case MVT::i16:
1335#if FASTCC_NUM_INT_ARGS_INREGS > 0
1336    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
1337      ObjIntRegs = 1;
1338    else
1339#endif
1340      ObjSize = 2;
1341    break;
1342  case MVT::i32:
1343#if FASTCC_NUM_INT_ARGS_INREGS > 0
1344    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
1345      ObjIntRegs = 1;
1346    else
1347#endif
1348      ObjSize = 4;
1349    break;
1350  case MVT::i64:
1351#if FASTCC_NUM_INT_ARGS_INREGS > 0
1352    if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) {
1353      ObjIntRegs = 2;
1354    } else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) {
1355      ObjIntRegs = 1;
1356      ObjSize = 4;
1357    } else
1358#endif
1359      ObjSize = 8;
1360  case MVT::f32:
1361    ObjSize = 4;
1362    break;
1363  case MVT::f64:
1364    ObjSize = 8;
1365    break;
1366  case MVT::v16i8:
1367  case MVT::v8i16:
1368  case MVT::v4i32:
1369  case MVT::v2i64:
1370  case MVT::v4f32:
1371  case MVT::v2f64:
1372    if (NumXMMRegs < 4)
1373      ObjXMMRegs = 1;
1374    else
1375      ObjSize = 16;
1376    break;
1377  }
1378}
1379
1380SDOperand
1381X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1382  unsigned NumArgs = Op.Val->getNumValues()-1;
1383  MachineFunction &MF = DAG.getMachineFunction();
1384  MachineFrameInfo *MFI = MF.getFrameInfo();
1385  SDOperand Root = Op.getOperand(0);
1386  std::vector<SDOperand> ArgValues;
1387
1388  // Add DAG nodes to load the arguments...  On entry to a function the stack
1389  // frame looks like this:
1390  //
1391  // [ESP] -- return address
1392  // [ESP + 4] -- first nonreg argument (leftmost lexically)
1393  // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
1394  //    ...
1395  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
1396
1397  // Keep track of the number of integer regs passed so far.  This can be either
1398  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
1399  // used).
1400  unsigned NumIntRegs = 0;
1401  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1402
1403  static const unsigned XMMArgRegs[] = {
1404    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1405  };
1406
1407  for (unsigned i = 0; i < NumArgs; ++i) {
1408    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
1409    unsigned ArgIncrement = 4;
1410    unsigned ObjSize = 0;
1411    unsigned ObjIntRegs = 0;
1412    unsigned ObjXMMRegs = 0;
1413
1414    HowToPassFastCCArgument(ObjectVT, NumIntRegs, NumXMMRegs,
1415                            ObjSize, ObjIntRegs, ObjXMMRegs);
1416    if (ObjSize > 4)
1417      ArgIncrement = ObjSize;
1418
1419    unsigned Reg = 0;
1420    SDOperand ArgValue;
1421    if (ObjIntRegs || ObjXMMRegs) {
1422      switch (ObjectVT) {
1423      default: assert(0 && "Unhandled argument type!");
1424      case MVT::i8:
1425        Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL,
1426                        X86::GR8RegisterClass);
1427        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8);
1428        break;
1429      case MVT::i16:
1430        Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX,
1431                        X86::GR16RegisterClass);
1432        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16);
1433        break;
1434      case MVT::i32:
1435        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
1436                        X86::GR32RegisterClass);
1437        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
1438        break;
1439      case MVT::i64:
1440        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
1441                        X86::GR32RegisterClass);
1442        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
1443        if (ObjIntRegs == 2) {
1444          Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass);
1445          SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32);
1446          ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
1447        }
1448        break;
1449      case MVT::v16i8:
1450      case MVT::v8i16:
1451      case MVT::v4i32:
1452      case MVT::v2i64:
1453      case MVT::v4f32:
1454      case MVT::v2f64:
1455        Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass);
1456        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
1457        break;
1458      }
1459      NumIntRegs += ObjIntRegs;
1460      NumXMMRegs += ObjXMMRegs;
1461    }
1462
1463    if (ObjSize) {
1464      // XMM arguments have to be aligned on 16-byte boundary.
1465      if (ObjSize == 16)
1466        ArgOffset = ((ArgOffset + 15) / 16) * 16;
1467      // Create the SelectionDAG nodes corresponding to a load from this
1468      // parameter.
1469      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1470      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1471      if (ObjectVT == MVT::i64 && ObjIntRegs) {
1472        SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
1473                                          DAG.getSrcValue(NULL));
1474        ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
1475      } else
1476        ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
1477                               DAG.getSrcValue(NULL));
1478      ArgOffset += ArgIncrement;   // Move on to the next argument.
1479    }
1480
1481    ArgValues.push_back(ArgValue);
1482  }
1483
1484  ArgValues.push_back(Root);
1485
1486  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1487  // arguments and the arguments after the retaddr has been pushed are aligned.
1488  if ((ArgOffset & 7) == 0)
1489    ArgOffset += 4;
1490
1491  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1492  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1493  ReturnAddrIndex = 0;             // No return address slot generated yet.
1494  BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments.
1495  BytesCallerReserves = 0;
1496
1497  // Finally, inform the code generator which regs we return values in.
1498  switch (getValueType(MF.getFunction()->getReturnType())) {
1499  default: assert(0 && "Unknown type!");
1500  case MVT::isVoid: break;
1501  case MVT::i1:
1502  case MVT::i8:
1503  case MVT::i16:
1504  case MVT::i32:
1505    MF.addLiveOut(X86::EAX);
1506    break;
1507  case MVT::i64:
1508    MF.addLiveOut(X86::EAX);
1509    MF.addLiveOut(X86::EDX);
1510    break;
1511  case MVT::f32:
1512  case MVT::f64:
1513    MF.addLiveOut(X86::ST0);
1514    break;
1515  case MVT::v16i8:
1516  case MVT::v8i16:
1517  case MVT::v4i32:
1518  case MVT::v2i64:
1519  case MVT::v4f32:
1520  case MVT::v2f64:
1521    MF.addLiveOut(X86::XMM0);
1522    break;
1523  }
1524
1525  // Return the new list of results.
1526  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
1527                                     Op.Val->value_end());
1528  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
1529}
1530
1531SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1532                                               bool isFastCall) {
1533  SDOperand Chain     = Op.getOperand(0);
1534  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1535  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1536  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1537  SDOperand Callee    = Op.getOperand(4);
1538  MVT::ValueType RetVT= Op.Val->getValueType(0);
1539  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1540
1541  // Count how many bytes are to be pushed on the stack.
1542  unsigned NumBytes = 0;
1543
1544  // Keep track of the number of integer regs passed so far.  This can be either
1545  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
1546  // used).
1547  unsigned NumIntRegs = 0;
1548  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1549
1550  static const unsigned GPRArgRegs[][2] = {
1551    { X86::AL,  X86::DL },
1552    { X86::AX,  X86::DX },
1553    { X86::EAX, X86::EDX }
1554  };
1555  static const unsigned FastCallGPRArgRegs[][2] = {
1556    { X86::CL,  X86::DL },
1557    { X86::CX,  X86::DX },
1558    { X86::ECX, X86::EDX }
1559  };
1560  static const unsigned XMMArgRegs[] = {
1561    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1562  };
1563
1564  for (unsigned i = 0; i != NumOps; ++i) {
1565    SDOperand Arg = Op.getOperand(5+2*i);
1566
1567    switch (Arg.getValueType()) {
1568    default: assert(0 && "Unknown value type!");
1569    case MVT::i8:
1570    case MVT::i16:
1571    case MVT::i32: {
1572     unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
1573     if (NumIntRegs < MaxNumIntRegs) {
1574       ++NumIntRegs;
1575       break;
1576     }
1577     } // Fall through
1578    case MVT::f32:
1579      NumBytes += 4;
1580      break;
1581    case MVT::f64:
1582      NumBytes += 8;
1583      break;
1584    case MVT::v16i8:
1585    case MVT::v8i16:
1586    case MVT::v4i32:
1587    case MVT::v2i64:
1588    case MVT::v4f32:
1589    case MVT::v2f64:
1590     if (isFastCall) {
1591      assert(0 && "Unknown value type!");
1592     } else {
1593       if (NumXMMRegs < 4)
1594         NumXMMRegs++;
1595       else {
1596         // XMM arguments have to be aligned on 16-byte boundary.
1597         NumBytes = ((NumBytes + 15) / 16) * 16;
1598         NumBytes += 16;
1599       }
1600     }
1601     break;
1602    }
1603  }
1604
1605  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1606  // arguments and the arguments after the retaddr has been pushed are aligned.
1607  if ((NumBytes & 7) == 0)
1608    NumBytes += 4;
1609
1610  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1611
1612  // Arguments go on the stack in reverse order, as specified by the ABI.
1613  unsigned ArgOffset = 0;
1614  NumIntRegs = 0;
1615  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1616  std::vector<SDOperand> MemOpChains;
1617  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1618  for (unsigned i = 0; i != NumOps; ++i) {
1619    SDOperand Arg = Op.getOperand(5+2*i);
1620
1621    switch (Arg.getValueType()) {
1622    default: assert(0 && "Unexpected ValueType for argument!");
1623    case MVT::i8:
1624    case MVT::i16:
1625    case MVT::i32: {
1626     unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
1627     if (NumIntRegs < MaxNumIntRegs) {
1628       RegsToPass.push_back(
1629         std::make_pair(GPRArgRegs[Arg.getValueType()-MVT::i8][NumIntRegs],
1630                        Arg));
1631       ++NumIntRegs;
1632       break;
1633     }
1634     } // Fall through
1635    case MVT::f32: {
1636      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1637      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1638      MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1639                                        Arg, PtrOff, DAG.getSrcValue(NULL)));
1640      ArgOffset += 4;
1641      break;
1642    }
1643    case MVT::f64: {
1644      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1645      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1646      MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1647                                        Arg, PtrOff, DAG.getSrcValue(NULL)));
1648      ArgOffset += 8;
1649      break;
1650    }
1651    case MVT::v16i8:
1652    case MVT::v8i16:
1653    case MVT::v4i32:
1654    case MVT::v2i64:
1655    case MVT::v4f32:
1656    case MVT::v2f64:
1657     if (isFastCall) {
1658       assert(0 && "Unexpected ValueType for argument!");
1659     } else {
1660       if (NumXMMRegs < 4) {
1661         RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
1662         NumXMMRegs++;
1663       } else {
1664         // XMM arguments have to be aligned on 16-byte boundary.
1665         ArgOffset = ((ArgOffset + 15) / 16) * 16;
1666         SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1667         PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1668         MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1669                                           Arg, PtrOff, DAG.getSrcValue(NULL)));
1670         ArgOffset += 16;
1671       }
1672     }
1673     break;
1674    }
1675  }
1676
1677  if (!MemOpChains.empty())
1678    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1679                        &MemOpChains[0], MemOpChains.size());
1680
1681  // Build a sequence of copy-to-reg nodes chained together with token chain
1682  // and flag operands which copy the outgoing args into registers.
1683  SDOperand InFlag;
1684  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1685    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1686                             InFlag);
1687    InFlag = Chain.getValue(1);
1688  }
1689
1690  // If the callee is a GlobalAddress node (quite common, every direct call is)
1691  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1692  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1693    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1694  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1695    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1696
1697  std::vector<MVT::ValueType> NodeTys;
1698  NodeTys.push_back(MVT::Other);   // Returns a chain
1699  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1700  std::vector<SDOperand> Ops;
1701  Ops.push_back(Chain);
1702  Ops.push_back(Callee);
1703
1704  // Add argument registers to the end of the list so that they are known live
1705  // into the call.
1706  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1707    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1708                                  RegsToPass[i].second.getValueType()));
1709
1710  if (InFlag.Val)
1711    Ops.push_back(InFlag);
1712
1713  // FIXME: Do not generate X86ISD::TAILCALL for now.
1714  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1715                      NodeTys, &Ops[0], Ops.size());
1716  InFlag = Chain.getValue(1);
1717
1718  NodeTys.clear();
1719  NodeTys.push_back(MVT::Other);   // Returns a chain
1720  if (RetVT != MVT::Other)
1721    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
1722  Ops.clear();
1723  Ops.push_back(Chain);
1724  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1725  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1726  Ops.push_back(InFlag);
1727  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1728  if (RetVT != MVT::Other)
1729    InFlag = Chain.getValue(1);
1730
1731  std::vector<SDOperand> ResultVals;
1732  NodeTys.clear();
1733  switch (RetVT) {
1734  default: assert(0 && "Unknown value type to return!");
1735  case MVT::Other: break;
1736  case MVT::i8:
1737    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
1738    ResultVals.push_back(Chain.getValue(0));
1739    NodeTys.push_back(MVT::i8);
1740    break;
1741  case MVT::i16:
1742    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
1743    ResultVals.push_back(Chain.getValue(0));
1744    NodeTys.push_back(MVT::i16);
1745    break;
1746  case MVT::i32:
1747    if (Op.Val->getValueType(1) == MVT::i32) {
1748      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1749      ResultVals.push_back(Chain.getValue(0));
1750      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
1751                                 Chain.getValue(2)).getValue(1);
1752      ResultVals.push_back(Chain.getValue(0));
1753      NodeTys.push_back(MVT::i32);
1754    } else {
1755      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1756      ResultVals.push_back(Chain.getValue(0));
1757    }
1758    NodeTys.push_back(MVT::i32);
1759    break;
1760  case MVT::v16i8:
1761  case MVT::v8i16:
1762  case MVT::v4i32:
1763  case MVT::v2i64:
1764  case MVT::v4f32:
1765  case MVT::v2f64:
1766   if (isFastCall) {
1767     assert(0 && "Unknown value type to return!");
1768   } else {
1769     Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
1770     ResultVals.push_back(Chain.getValue(0));
1771     NodeTys.push_back(RetVT);
1772   }
1773   break;
1774  case MVT::f32:
1775  case MVT::f64: {
1776    std::vector<MVT::ValueType> Tys;
1777    Tys.push_back(MVT::f64);
1778    Tys.push_back(MVT::Other);
1779    Tys.push_back(MVT::Flag);
1780    std::vector<SDOperand> Ops;
1781    Ops.push_back(Chain);
1782    Ops.push_back(InFlag);
1783    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
1784                                   &Ops[0], Ops.size());
1785    Chain  = RetVal.getValue(1);
1786    InFlag = RetVal.getValue(2);
1787    if (X86ScalarSSE) {
1788      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
1789      // shouldn't be necessary except that RFP cannot be live across
1790      // multiple blocks. When stackifier is fixed, they can be uncoupled.
1791      MachineFunction &MF = DAG.getMachineFunction();
1792      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
1793      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
1794      Tys.clear();
1795      Tys.push_back(MVT::Other);
1796      Ops.clear();
1797      Ops.push_back(Chain);
1798      Ops.push_back(RetVal);
1799      Ops.push_back(StackSlot);
1800      Ops.push_back(DAG.getValueType(RetVT));
1801      Ops.push_back(InFlag);
1802      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
1803      RetVal = DAG.getLoad(RetVT, Chain, StackSlot,
1804                           DAG.getSrcValue(NULL));
1805      Chain = RetVal.getValue(1);
1806    }
1807
1808    if (RetVT == MVT::f32 && !X86ScalarSSE)
1809      // FIXME: we would really like to remember that this FP_ROUND
1810      // operation is okay to eliminate if we allow excess FP precision.
1811      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
1812    ResultVals.push_back(RetVal);
1813    NodeTys.push_back(RetVT);
1814    break;
1815  }
1816  }
1817
1818
1819  // If the function returns void, just return the chain.
1820  if (ResultVals.empty())
1821    return Chain;
1822
1823  // Otherwise, merge everything together with a MERGE_VALUES node.
1824  NodeTys.push_back(MVT::Other);
1825  ResultVals.push_back(Chain);
1826  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1827                              &ResultVals[0], ResultVals.size());
1828  return Res.getValue(Op.ResNo);
1829}
1830
1831//===----------------------------------------------------------------------===//
1832//                  StdCall Calling Convention implementation
1833//===----------------------------------------------------------------------===//
1834//  StdCall calling convention seems to be standard for many Windows' API
1835//  routines and around. It differs from C calling convention just a little:
1836//  callee should clean up the stack, not caller. Symbols should be also
1837//  decorated in some fancy way :) It doesn't support any vector arguments.
1838
1839/// HowToPassStdCallCCArgument - Returns how an formal argument of the specified
1840/// type should be passed. Returns the size of the stack slot
1841static void
1842HowToPassStdCallCCArgument(MVT::ValueType ObjectVT, unsigned &ObjSize) {
1843  switch (ObjectVT) {
1844  default: assert(0 && "Unhandled argument type!");
1845  case MVT::i8:  ObjSize = 1; break;
1846  case MVT::i16: ObjSize = 2; break;
1847  case MVT::i32: ObjSize = 4; break;
1848  case MVT::i64: ObjSize = 8; break;
1849  case MVT::f32: ObjSize = 4; break;
1850  case MVT::f64: ObjSize = 8; break;
1851  }
1852}
1853
1854SDOperand X86TargetLowering::LowerStdCallCCArguments(SDOperand Op,
1855                                                     SelectionDAG &DAG) {
1856  unsigned NumArgs = Op.Val->getNumValues() - 1;
1857  MachineFunction &MF = DAG.getMachineFunction();
1858  MachineFrameInfo *MFI = MF.getFrameInfo();
1859  SDOperand Root = Op.getOperand(0);
1860  std::vector<SDOperand> ArgValues;
1861
1862  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
1863  // the stack frame looks like this:
1864  //
1865  // [ESP] -- return address
1866  // [ESP + 4] -- first argument (leftmost lexically)
1867  // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
1868  //    ...
1869  //
1870  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
1871  for (unsigned i = 0; i < NumArgs; ++i) {
1872    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
1873    unsigned ArgIncrement = 4;
1874    unsigned ObjSize = 0;
1875    HowToPassStdCallCCArgument(ObjectVT, ObjSize);
1876    if (ObjSize > 4)
1877      ArgIncrement = ObjSize;
1878
1879    SDOperand ArgValue;
1880    // Create the frame index object for this incoming parameter...
1881    int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1882    SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1883    ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
1884                           DAG.getSrcValue(NULL));
1885    ArgValues.push_back(ArgValue);
1886    ArgOffset += ArgIncrement;   // Move on to the next argument...
1887  }
1888
1889  ArgValues.push_back(Root);
1890
1891  // If the function takes variable number of arguments, make a frame index for
1892  // the start of the first vararg value... for expansion of llvm.va_start.
1893  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1894  if (isVarArg) {
1895    BytesToPopOnReturn = 0;         // Callee pops nothing.
1896    BytesCallerReserves = ArgOffset;
1897    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
1898  } else {
1899    BytesToPopOnReturn = ArgOffset; // Callee pops everything..
1900    BytesCallerReserves = 0;
1901  }
1902  RegSaveFrameIndex = 0xAAAAAAA;    // X86-64 only.
1903  ReturnAddrIndex = 0;              // No return address slot generated yet.
1904
1905  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
1906
1907  // Return the new list of results.
1908  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
1909                                     Op.Val->value_end());
1910  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
1911}
1912
1913
1914SDOperand X86TargetLowering::LowerStdCallCCCallTo(SDOperand Op,
1915                                                  SelectionDAG &DAG) {
1916  SDOperand Chain     = Op.getOperand(0);
1917  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1918  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1919  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1920  SDOperand Callee    = Op.getOperand(4);
1921  MVT::ValueType RetVT= Op.Val->getValueType(0);
1922  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1923
1924  // Count how many bytes are to be pushed on the stack.
1925  unsigned NumBytes = 0;
1926  for (unsigned i = 0; i != NumOps; ++i) {
1927    SDOperand Arg = Op.getOperand(5+2*i);
1928
1929    switch (Arg.getValueType()) {
1930    default: assert(0 && "Unexpected ValueType for argument!");
1931    case MVT::i8:
1932    case MVT::i16:
1933    case MVT::i32:
1934    case MVT::f32:
1935      NumBytes += 4;
1936      break;
1937    case MVT::i64:
1938    case MVT::f64:
1939      NumBytes += 8;
1940      break;
1941    }
1942  }
1943
1944  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1945
1946  // Arguments go on the stack in reverse order, as specified by the ABI.
1947  unsigned ArgOffset = 0;
1948  std::vector<SDOperand> MemOpChains;
1949  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1950  for (unsigned i = 0; i != NumOps; ++i) {
1951    SDOperand Arg = Op.getOperand(5+2*i);
1952
1953    switch (Arg.getValueType()) {
1954    default: assert(0 && "Unexpected ValueType for argument!");
1955    case MVT::i8:
1956    case MVT::i16: {
1957      // Promote the integer to 32 bits.  If the input type is signed use a
1958      // sign extend, otherwise use a zero extend.
1959      unsigned ExtOp =
1960        dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ?
1961        ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1962      Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
1963    }
1964    // Fallthrough
1965
1966    case MVT::i32:
1967    case MVT::f32: {
1968      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1969      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1970      MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1971                                        Arg, PtrOff, DAG.getSrcValue(NULL)));
1972      ArgOffset += 4;
1973      break;
1974    }
1975    case MVT::i64:
1976    case MVT::f64: {
1977      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1978      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1979      MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1980                                        Arg, PtrOff, DAG.getSrcValue(NULL)));
1981      ArgOffset += 8;
1982      break;
1983    }
1984    }
1985  }
1986
1987  if (!MemOpChains.empty())
1988    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1989                        &MemOpChains[0], MemOpChains.size());
1990
1991  // If the callee is a GlobalAddress node (quite common, every direct call is)
1992  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1993  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1994    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1995  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1996    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1997
1998  std::vector<MVT::ValueType> NodeTys;
1999  NodeTys.push_back(MVT::Other);   // Returns a chain
2000  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2001  std::vector<SDOperand> Ops;
2002  Ops.push_back(Chain);
2003  Ops.push_back(Callee);
2004
2005  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
2006                      NodeTys, &Ops[0], Ops.size());
2007  SDOperand InFlag = Chain.getValue(1);
2008
2009  // Create the CALLSEQ_END node.
2010  unsigned NumBytesForCalleeToPush;
2011
2012  if (isVarArg) {
2013    NumBytesForCalleeToPush = 0;
2014  } else {
2015    NumBytesForCalleeToPush = NumBytes;
2016  }
2017
2018  NodeTys.clear();
2019  NodeTys.push_back(MVT::Other);   // Returns a chain
2020  if (RetVT != MVT::Other)
2021    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
2022  Ops.clear();
2023  Ops.push_back(Chain);
2024  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
2025  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
2026  Ops.push_back(InFlag);
2027  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
2028  if (RetVT != MVT::Other)
2029    InFlag = Chain.getValue(1);
2030
2031  std::vector<SDOperand> ResultVals;
2032  NodeTys.clear();
2033  switch (RetVT) {
2034  default: assert(0 && "Unknown value type to return!");
2035  case MVT::Other: break;
2036  case MVT::i8:
2037    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
2038    ResultVals.push_back(Chain.getValue(0));
2039    NodeTys.push_back(MVT::i8);
2040    break;
2041  case MVT::i16:
2042    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
2043    ResultVals.push_back(Chain.getValue(0));
2044    NodeTys.push_back(MVT::i16);
2045    break;
2046  case MVT::i32:
2047    if (Op.Val->getValueType(1) == MVT::i32) {
2048      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
2049      ResultVals.push_back(Chain.getValue(0));
2050      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
2051                                 Chain.getValue(2)).getValue(1);
2052      ResultVals.push_back(Chain.getValue(0));
2053      NodeTys.push_back(MVT::i32);
2054    } else {
2055      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
2056      ResultVals.push_back(Chain.getValue(0));
2057    }
2058    NodeTys.push_back(MVT::i32);
2059    break;
2060  case MVT::f32:
2061  case MVT::f64: {
2062    std::vector<MVT::ValueType> Tys;
2063    Tys.push_back(MVT::f64);
2064    Tys.push_back(MVT::Other);
2065    Tys.push_back(MVT::Flag);
2066    std::vector<SDOperand> Ops;
2067    Ops.push_back(Chain);
2068    Ops.push_back(InFlag);
2069    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
2070                                   &Ops[0], Ops.size());
2071    Chain  = RetVal.getValue(1);
2072    InFlag = RetVal.getValue(2);
2073    if (X86ScalarSSE) {
2074      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
2075      // shouldn't be necessary except that RFP cannot be live across
2076      // multiple blocks. When stackifier is fixed, they can be uncoupled.
2077      MachineFunction &MF = DAG.getMachineFunction();
2078      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2079      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
2080      Tys.clear();
2081      Tys.push_back(MVT::Other);
2082      Ops.clear();
2083      Ops.push_back(Chain);
2084      Ops.push_back(RetVal);
2085      Ops.push_back(StackSlot);
2086      Ops.push_back(DAG.getValueType(RetVT));
2087      Ops.push_back(InFlag);
2088      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
2089      RetVal = DAG.getLoad(RetVT, Chain, StackSlot,
2090                           DAG.getSrcValue(NULL));
2091      Chain = RetVal.getValue(1);
2092    }
2093
2094    if (RetVT == MVT::f32 && !X86ScalarSSE)
2095      // FIXME: we would really like to remember that this FP_ROUND
2096      // operation is okay to eliminate if we allow excess FP precision.
2097      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
2098    ResultVals.push_back(RetVal);
2099    NodeTys.push_back(RetVT);
2100    break;
2101  }
2102  }
2103
2104  // If the function returns void, just return the chain.
2105  if (ResultVals.empty())
2106    return Chain;
2107
2108  // Otherwise, merge everything together with a MERGE_VALUES node.
2109  NodeTys.push_back(MVT::Other);
2110  ResultVals.push_back(Chain);
2111  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
2112                              &ResultVals[0], ResultVals.size());
2113  return Res.getValue(Op.ResNo);
2114}
2115
2116//===----------------------------------------------------------------------===//
2117//                  FastCall Calling Convention implementation
2118//===----------------------------------------------------------------------===//
2119//
2120// The X86 'fastcall' calling convention passes up to two integer arguments in
2121// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
2122// and requires that the callee pop its arguments off the stack (allowing proper
2123// tail calls), and has the same return value conventions as C calling convs.
2124//
2125// This calling convention always arranges for the callee pop value to be 8n+4
2126// bytes, which is needed for tail recursion elimination and stack alignment
2127// reasons.
2128//
2129
2130/// HowToPassFastCallCCArgument - Returns how an formal argument of the
2131/// specified type should be passed. If it is through stack, returns the size of
2132/// the stack slot; if it is through integer register, returns the number of
2133/// integer registers are needed.
2134static void
2135HowToPassFastCallCCArgument(MVT::ValueType ObjectVT,
2136                            unsigned NumIntRegs,
2137                            unsigned &ObjSize,
2138                            unsigned &ObjIntRegs)
2139{
2140  ObjSize = 0;
2141  ObjIntRegs = 0;
2142
2143  switch (ObjectVT) {
2144  default: assert(0 && "Unhandled argument type!");
2145  case MVT::i8:
2146   if (NumIntRegs < 2)
2147     ObjIntRegs = 1;
2148   else
2149     ObjSize = 1;
2150   break;
2151  case MVT::i16:
2152   if (NumIntRegs < 2)
2153     ObjIntRegs = 1;
2154   else
2155     ObjSize = 2;
2156   break;
2157  case MVT::i32:
2158   if (NumIntRegs < 2)
2159     ObjIntRegs = 1;
2160   else
2161     ObjSize = 4;
2162    break;
2163  case MVT::i64:
2164   if (NumIntRegs+2 <= 2) {
2165     ObjIntRegs = 2;
2166   } else if (NumIntRegs+1 <= 2) {
2167     ObjIntRegs = 1;
2168     ObjSize = 4;
2169   } else
2170     ObjSize = 8;
2171   case MVT::f32:
2172    ObjSize = 4;
2173    break;
2174   case MVT::f64:
2175    ObjSize = 8;
2176    break;
2177  }
2178}
2179
2180SDOperand
2181X86TargetLowering::LowerFastCallCCArguments(SDOperand Op, SelectionDAG &DAG) {
2182  unsigned NumArgs = Op.Val->getNumValues()-1;
2183  MachineFunction &MF = DAG.getMachineFunction();
2184  MachineFrameInfo *MFI = MF.getFrameInfo();
2185  SDOperand Root = Op.getOperand(0);
2186  std::vector<SDOperand> ArgValues;
2187
2188  // Add DAG nodes to load the arguments...  On entry to a function the stack
2189  // frame looks like this:
2190  //
2191  // [ESP] -- return address
2192  // [ESP + 4] -- first nonreg argument (leftmost lexically)
2193  // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
2194  //    ...
2195  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
2196
2197  // Keep track of the number of integer regs passed so far.  This can be either
2198  // 0 (neither ECX or EDX used), 1 (ECX is used) or 2 (ECX and EDX are both
2199  // used).
2200  unsigned NumIntRegs = 0;
2201
2202  for (unsigned i = 0; i < NumArgs; ++i) {
2203    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
2204    unsigned ArgIncrement = 4;
2205    unsigned ObjSize = 0;
2206    unsigned ObjIntRegs = 0;
2207
2208    HowToPassFastCallCCArgument(ObjectVT, NumIntRegs, ObjSize, ObjIntRegs);
2209    if (ObjSize > 4)
2210      ArgIncrement = ObjSize;
2211
2212    unsigned Reg = 0;
2213    SDOperand ArgValue;
2214    if (ObjIntRegs) {
2215      switch (ObjectVT) {
2216      default: assert(0 && "Unhandled argument type!");
2217      case MVT::i8:
2218        Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::CL,
2219                        X86::GR8RegisterClass);
2220        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8);
2221        break;
2222      case MVT::i16:
2223        Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::CX,
2224                        X86::GR16RegisterClass);
2225        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16);
2226        break;
2227      case MVT::i32:
2228        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::ECX,
2229                        X86::GR32RegisterClass);
2230        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
2231        break;
2232      case MVT::i64:
2233        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::ECX,
2234                        X86::GR32RegisterClass);
2235        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
2236        if (ObjIntRegs == 2) {
2237          Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass);
2238          SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32);
2239          ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
2240        }
2241        break;
2242      }
2243
2244      NumIntRegs += ObjIntRegs;
2245    }
2246
2247    if (ObjSize) {
2248      // Create the SelectionDAG nodes corresponding to a load from this
2249      // parameter.
2250      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
2251      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
2252      if (ObjectVT == MVT::i64 && ObjIntRegs) {
2253        SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
2254                                          DAG.getSrcValue(NULL));
2255        ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
2256      } else
2257        ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
2258                               DAG.getSrcValue(NULL));
2259      ArgOffset += ArgIncrement;   // Move on to the next argument.
2260    }
2261
2262    ArgValues.push_back(ArgValue);
2263  }
2264
2265  ArgValues.push_back(Root);
2266
2267  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
2268  // arguments and the arguments after the retaddr has been pushed are aligned.
2269  if ((ArgOffset & 7) == 0)
2270    ArgOffset += 4;
2271
2272  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
2273  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
2274  ReturnAddrIndex = 0;             // No return address slot generated yet.
2275  BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments.
2276  BytesCallerReserves = 0;
2277
2278  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
2279
2280  // Finally, inform the code generator which regs we return values in.
2281  switch (getValueType(MF.getFunction()->getReturnType())) {
2282  default: assert(0 && "Unknown type!");
2283  case MVT::isVoid: break;
2284  case MVT::i1:
2285  case MVT::i8:
2286  case MVT::i16:
2287  case MVT::i32:
2288    MF.addLiveOut(X86::ECX);
2289    break;
2290  case MVT::i64:
2291    MF.addLiveOut(X86::ECX);
2292    MF.addLiveOut(X86::EDX);
2293    break;
2294  case MVT::f32:
2295  case MVT::f64:
2296    MF.addLiveOut(X86::ST0);
2297    break;
2298  }
2299
2300  // Return the new list of results.
2301  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
2302                                     Op.Val->value_end());
2303  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
2304}
2305
2306SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2307  if (ReturnAddrIndex == 0) {
2308    // Set up a frame object for the return address.
2309    MachineFunction &MF = DAG.getMachineFunction();
2310    if (Subtarget->is64Bit())
2311      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
2312    else
2313      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
2314  }
2315
2316  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2317}
2318
2319
2320
2321std::pair<SDOperand, SDOperand> X86TargetLowering::
2322LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
2323                        SelectionDAG &DAG) {
2324  SDOperand Result;
2325  if (Depth)        // Depths > 0 not supported yet!
2326    Result = DAG.getConstant(0, getPointerTy());
2327  else {
2328    SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
2329    if (!isFrameAddress)
2330      // Just load the return address
2331      Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI,
2332                           DAG.getSrcValue(NULL));
2333    else
2334      Result = DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
2335                           DAG.getConstant(4, getPointerTy()));
2336  }
2337  return std::make_pair(Result, Chain);
2338}
2339
2340/// getCondBrOpcodeForX86CC - Returns the X86 conditional branch opcode
2341/// which corresponds to the condition code.
2342static unsigned getCondBrOpcodeForX86CC(unsigned X86CC) {
2343  switch (X86CC) {
2344  default: assert(0 && "Unknown X86 conditional code!");
2345  case X86ISD::COND_A:  return X86::JA;
2346  case X86ISD::COND_AE: return X86::JAE;
2347  case X86ISD::COND_B:  return X86::JB;
2348  case X86ISD::COND_BE: return X86::JBE;
2349  case X86ISD::COND_E:  return X86::JE;
2350  case X86ISD::COND_G:  return X86::JG;
2351  case X86ISD::COND_GE: return X86::JGE;
2352  case X86ISD::COND_L:  return X86::JL;
2353  case X86ISD::COND_LE: return X86::JLE;
2354  case X86ISD::COND_NE: return X86::JNE;
2355  case X86ISD::COND_NO: return X86::JNO;
2356  case X86ISD::COND_NP: return X86::JNP;
2357  case X86ISD::COND_NS: return X86::JNS;
2358  case X86ISD::COND_O:  return X86::JO;
2359  case X86ISD::COND_P:  return X86::JP;
2360  case X86ISD::COND_S:  return X86::JS;
2361  }
2362}
2363
2364/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
2365/// specific condition code. It returns a false if it cannot do a direct
2366/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
2367/// needed.
2368static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2369                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
2370                           SelectionDAG &DAG) {
2371  X86CC = X86ISD::COND_INVALID;
2372  if (!isFP) {
2373    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2374      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2375        // X > -1   -> X == 0, jump !sign.
2376        RHS = DAG.getConstant(0, RHS.getValueType());
2377        X86CC = X86ISD::COND_NS;
2378        return true;
2379      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2380        // X < 0   -> X == 0, jump on sign.
2381        X86CC = X86ISD::COND_S;
2382        return true;
2383      }
2384    }
2385
2386    switch (SetCCOpcode) {
2387    default: break;
2388    case ISD::SETEQ:  X86CC = X86ISD::COND_E;  break;
2389    case ISD::SETGT:  X86CC = X86ISD::COND_G;  break;
2390    case ISD::SETGE:  X86CC = X86ISD::COND_GE; break;
2391    case ISD::SETLT:  X86CC = X86ISD::COND_L;  break;
2392    case ISD::SETLE:  X86CC = X86ISD::COND_LE; break;
2393    case ISD::SETNE:  X86CC = X86ISD::COND_NE; break;
2394    case ISD::SETULT: X86CC = X86ISD::COND_B;  break;
2395    case ISD::SETUGT: X86CC = X86ISD::COND_A;  break;
2396    case ISD::SETULE: X86CC = X86ISD::COND_BE; break;
2397    case ISD::SETUGE: X86CC = X86ISD::COND_AE; break;
2398    }
2399  } else {
2400    // On a floating point condition, the flags are set as follows:
2401    // ZF  PF  CF   op
2402    //  0 | 0 | 0 | X > Y
2403    //  0 | 0 | 1 | X < Y
2404    //  1 | 0 | 0 | X == Y
2405    //  1 | 1 | 1 | unordered
2406    bool Flip = false;
2407    switch (SetCCOpcode) {
2408    default: break;
2409    case ISD::SETUEQ:
2410    case ISD::SETEQ: X86CC = X86ISD::COND_E;  break;
2411    case ISD::SETOLT: Flip = true; // Fallthrough
2412    case ISD::SETOGT:
2413    case ISD::SETGT: X86CC = X86ISD::COND_A;  break;
2414    case ISD::SETOLE: Flip = true; // Fallthrough
2415    case ISD::SETOGE:
2416    case ISD::SETGE: X86CC = X86ISD::COND_AE; break;
2417    case ISD::SETUGT: Flip = true; // Fallthrough
2418    case ISD::SETULT:
2419    case ISD::SETLT: X86CC = X86ISD::COND_B;  break;
2420    case ISD::SETUGE: Flip = true; // Fallthrough
2421    case ISD::SETULE:
2422    case ISD::SETLE: X86CC = X86ISD::COND_BE; break;
2423    case ISD::SETONE:
2424    case ISD::SETNE: X86CC = X86ISD::COND_NE; break;
2425    case ISD::SETUO: X86CC = X86ISD::COND_P;  break;
2426    case ISD::SETO:  X86CC = X86ISD::COND_NP; break;
2427    }
2428    if (Flip)
2429      std::swap(LHS, RHS);
2430  }
2431
2432  return X86CC != X86ISD::COND_INVALID;
2433}
2434
2435/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2436/// code. Current x86 isa includes the following FP cmov instructions:
2437/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2438static bool hasFPCMov(unsigned X86CC) {
2439  switch (X86CC) {
2440  default:
2441    return false;
2442  case X86ISD::COND_B:
2443  case X86ISD::COND_BE:
2444  case X86ISD::COND_E:
2445  case X86ISD::COND_P:
2446  case X86ISD::COND_A:
2447  case X86ISD::COND_AE:
2448  case X86ISD::COND_NE:
2449  case X86ISD::COND_NP:
2450    return true;
2451  }
2452}
2453
2454/// DarwinGVRequiresExtraLoad - true if accessing the GV requires an extra
2455/// load. For Darwin, external and weak symbols are indirect, loading the value
2456/// at address GV rather then the value of GV itself. This means that the
2457/// GlobalAddress must be in the base or index register of the address, not the
2458/// GV offset field.
2459static bool DarwinGVRequiresExtraLoad(GlobalValue *GV) {
2460  return (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
2461          (GV->isExternal() && !GV->hasNotBeenReadFromBytecode()));
2462}
2463
2464/// WindowsGVRequiresExtraLoad - true if accessing the GV requires an extra
2465/// load. For Windows, dllimported symbols are indirect, loading the value at
2466/// address GV rather then the value of GV itself. This means that the
2467/// GlobalAddress must be in the base or index register of the address, not the
2468/// GV offset field.
2469static bool WindowsGVRequiresExtraLoad(GlobalValue *GV) {
2470  return (GV->hasDLLImportLinkage());
2471}
2472
2473/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2474/// true if Op is undef or if its value falls within the specified range (L, H].
2475static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2476  if (Op.getOpcode() == ISD::UNDEF)
2477    return true;
2478
2479  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2480  return (Val >= Low && Val < Hi);
2481}
2482
2483/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2484/// true if Op is undef or if its value equal to the specified value.
2485static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2486  if (Op.getOpcode() == ISD::UNDEF)
2487    return true;
2488  return cast<ConstantSDNode>(Op)->getValue() == Val;
2489}
2490
2491/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2492/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2493bool X86::isPSHUFDMask(SDNode *N) {
2494  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2495
2496  if (N->getNumOperands() != 4)
2497    return false;
2498
2499  // Check if the value doesn't reference the second vector.
2500  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2501    SDOperand Arg = N->getOperand(i);
2502    if (Arg.getOpcode() == ISD::UNDEF) continue;
2503    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2504    if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
2505      return false;
2506  }
2507
2508  return true;
2509}
2510
2511/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2512/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2513bool X86::isPSHUFHWMask(SDNode *N) {
2514  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2515
2516  if (N->getNumOperands() != 8)
2517    return false;
2518
2519  // Lower quadword copied in order.
2520  for (unsigned i = 0; i != 4; ++i) {
2521    SDOperand Arg = N->getOperand(i);
2522    if (Arg.getOpcode() == ISD::UNDEF) continue;
2523    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2524    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2525      return false;
2526  }
2527
2528  // Upper quadword shuffled.
2529  for (unsigned i = 4; i != 8; ++i) {
2530    SDOperand Arg = N->getOperand(i);
2531    if (Arg.getOpcode() == ISD::UNDEF) continue;
2532    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2533    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2534    if (Val < 4 || Val > 7)
2535      return false;
2536  }
2537
2538  return true;
2539}
2540
2541/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2542/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2543bool X86::isPSHUFLWMask(SDNode *N) {
2544  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2545
2546  if (N->getNumOperands() != 8)
2547    return false;
2548
2549  // Upper quadword copied in order.
2550  for (unsigned i = 4; i != 8; ++i)
2551    if (!isUndefOrEqual(N->getOperand(i), i))
2552      return false;
2553
2554  // Lower quadword shuffled.
2555  for (unsigned i = 0; i != 4; ++i)
2556    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2557      return false;
2558
2559  return true;
2560}
2561
2562/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2563/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2564static bool isSHUFPMask(std::vector<SDOperand> &N) {
2565  unsigned NumElems = N.size();
2566  if (NumElems != 2 && NumElems != 4) return false;
2567
2568  unsigned Half = NumElems / 2;
2569  for (unsigned i = 0; i < Half; ++i)
2570    if (!isUndefOrInRange(N[i], 0, NumElems))
2571      return false;
2572  for (unsigned i = Half; i < NumElems; ++i)
2573    if (!isUndefOrInRange(N[i], NumElems, NumElems*2))
2574      return false;
2575
2576  return true;
2577}
2578
2579bool X86::isSHUFPMask(SDNode *N) {
2580  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2581  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2582  return ::isSHUFPMask(Ops);
2583}
2584
2585/// isCommutedSHUFP - Returns true if the shuffle mask is except
2586/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2587/// half elements to come from vector 1 (which would equal the dest.) and
2588/// the upper half to come from vector 2.
2589static bool isCommutedSHUFP(std::vector<SDOperand> &Ops) {
2590  unsigned NumElems = Ops.size();
2591  if (NumElems != 2 && NumElems != 4) return false;
2592
2593  unsigned Half = NumElems / 2;
2594  for (unsigned i = 0; i < Half; ++i)
2595    if (!isUndefOrInRange(Ops[i], NumElems, NumElems*2))
2596      return false;
2597  for (unsigned i = Half; i < NumElems; ++i)
2598    if (!isUndefOrInRange(Ops[i], 0, NumElems))
2599      return false;
2600  return true;
2601}
2602
2603static bool isCommutedSHUFP(SDNode *N) {
2604  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2605  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2606  return isCommutedSHUFP(Ops);
2607}
2608
2609/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2610/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2611bool X86::isMOVHLPSMask(SDNode *N) {
2612  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2613
2614  if (N->getNumOperands() != 4)
2615    return false;
2616
2617  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2618  return isUndefOrEqual(N->getOperand(0), 6) &&
2619         isUndefOrEqual(N->getOperand(1), 7) &&
2620         isUndefOrEqual(N->getOperand(2), 2) &&
2621         isUndefOrEqual(N->getOperand(3), 3);
2622}
2623
2624/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2625/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2626bool X86::isMOVLPMask(SDNode *N) {
2627  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2628
2629  unsigned NumElems = N->getNumOperands();
2630  if (NumElems != 2 && NumElems != 4)
2631    return false;
2632
2633  for (unsigned i = 0; i < NumElems/2; ++i)
2634    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2635      return false;
2636
2637  for (unsigned i = NumElems/2; i < NumElems; ++i)
2638    if (!isUndefOrEqual(N->getOperand(i), i))
2639      return false;
2640
2641  return true;
2642}
2643
2644/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2645/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2646/// and MOVLHPS.
2647bool X86::isMOVHPMask(SDNode *N) {
2648  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2649
2650  unsigned NumElems = N->getNumOperands();
2651  if (NumElems != 2 && NumElems != 4)
2652    return false;
2653
2654  for (unsigned i = 0; i < NumElems/2; ++i)
2655    if (!isUndefOrEqual(N->getOperand(i), i))
2656      return false;
2657
2658  for (unsigned i = 0; i < NumElems/2; ++i) {
2659    SDOperand Arg = N->getOperand(i + NumElems/2);
2660    if (!isUndefOrEqual(Arg, i + NumElems))
2661      return false;
2662  }
2663
2664  return true;
2665}
2666
2667/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2668/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2669bool static isUNPCKLMask(std::vector<SDOperand> &N, bool V2IsSplat = false) {
2670  unsigned NumElems = N.size();
2671  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2672    return false;
2673
2674  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2675    SDOperand BitI  = N[i];
2676    SDOperand BitI1 = N[i+1];
2677    if (!isUndefOrEqual(BitI, j))
2678      return false;
2679    if (V2IsSplat) {
2680      if (isUndefOrEqual(BitI1, NumElems))
2681        return false;
2682    } else {
2683      if (!isUndefOrEqual(BitI1, j + NumElems))
2684        return false;
2685    }
2686  }
2687
2688  return true;
2689}
2690
2691bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2692  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2693  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2694  return ::isUNPCKLMask(Ops, V2IsSplat);
2695}
2696
2697/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2698/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2699bool static isUNPCKHMask(std::vector<SDOperand> &N, bool V2IsSplat = false) {
2700  unsigned NumElems = N.size();
2701  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2702    return false;
2703
2704  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2705    SDOperand BitI  = N[i];
2706    SDOperand BitI1 = N[i+1];
2707    if (!isUndefOrEqual(BitI, j + NumElems/2))
2708      return false;
2709    if (V2IsSplat) {
2710      if (isUndefOrEqual(BitI1, NumElems))
2711        return false;
2712    } else {
2713      if (!isUndefOrEqual(BitI1, j + NumElems/2 + NumElems))
2714        return false;
2715    }
2716  }
2717
2718  return true;
2719}
2720
2721bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2722  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2723  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2724  return ::isUNPCKHMask(Ops, V2IsSplat);
2725}
2726
2727/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2728/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2729/// <0, 0, 1, 1>
2730bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2731  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2732
2733  unsigned NumElems = N->getNumOperands();
2734  if (NumElems != 4 && NumElems != 8 && NumElems != 16)
2735    return false;
2736
2737  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2738    SDOperand BitI  = N->getOperand(i);
2739    SDOperand BitI1 = N->getOperand(i+1);
2740
2741    if (!isUndefOrEqual(BitI, j))
2742      return false;
2743    if (!isUndefOrEqual(BitI1, j))
2744      return false;
2745  }
2746
2747  return true;
2748}
2749
2750/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2751/// specifies a shuffle of elements that is suitable for input to MOVSS,
2752/// MOVSD, and MOVD, i.e. setting the lowest element.
2753static bool isMOVLMask(std::vector<SDOperand> &N) {
2754  unsigned NumElems = N.size();
2755  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2756    return false;
2757
2758  if (!isUndefOrEqual(N[0], NumElems))
2759    return false;
2760
2761  for (unsigned i = 1; i < NumElems; ++i) {
2762    SDOperand Arg = N[i];
2763    if (!isUndefOrEqual(Arg, i))
2764      return false;
2765  }
2766
2767  return true;
2768}
2769
2770bool X86::isMOVLMask(SDNode *N) {
2771  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2772  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2773  return ::isMOVLMask(Ops);
2774}
2775
2776/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2777/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2778/// element of vector 2 and the other elements to come from vector 1 in order.
2779static bool isCommutedMOVL(std::vector<SDOperand> &Ops, bool V2IsSplat = false,
2780                           bool V2IsUndef = false) {
2781  unsigned NumElems = Ops.size();
2782  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2783    return false;
2784
2785  if (!isUndefOrEqual(Ops[0], 0))
2786    return false;
2787
2788  for (unsigned i = 1; i < NumElems; ++i) {
2789    SDOperand Arg = Ops[i];
2790    if (!(isUndefOrEqual(Arg, i+NumElems) ||
2791          (V2IsUndef && isUndefOrInRange(Arg, NumElems, NumElems*2)) ||
2792          (V2IsSplat && isUndefOrEqual(Arg, NumElems))))
2793      return false;
2794  }
2795
2796  return true;
2797}
2798
2799static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2800                           bool V2IsUndef = false) {
2801  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2802  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2803  return isCommutedMOVL(Ops, V2IsSplat, V2IsUndef);
2804}
2805
2806/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2807/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2808bool X86::isMOVSHDUPMask(SDNode *N) {
2809  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2810
2811  if (N->getNumOperands() != 4)
2812    return false;
2813
2814  // Expect 1, 1, 3, 3
2815  for (unsigned i = 0; i < 2; ++i) {
2816    SDOperand Arg = N->getOperand(i);
2817    if (Arg.getOpcode() == ISD::UNDEF) continue;
2818    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2819    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2820    if (Val != 1) return false;
2821  }
2822
2823  bool HasHi = false;
2824  for (unsigned i = 2; i < 4; ++i) {
2825    SDOperand Arg = N->getOperand(i);
2826    if (Arg.getOpcode() == ISD::UNDEF) continue;
2827    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2828    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2829    if (Val != 3) return false;
2830    HasHi = true;
2831  }
2832
2833  // Don't use movshdup if it can be done with a shufps.
2834  return HasHi;
2835}
2836
2837/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2838/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2839bool X86::isMOVSLDUPMask(SDNode *N) {
2840  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2841
2842  if (N->getNumOperands() != 4)
2843    return false;
2844
2845  // Expect 0, 0, 2, 2
2846  for (unsigned i = 0; i < 2; ++i) {
2847    SDOperand Arg = N->getOperand(i);
2848    if (Arg.getOpcode() == ISD::UNDEF) continue;
2849    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2850    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2851    if (Val != 0) return false;
2852  }
2853
2854  bool HasHi = false;
2855  for (unsigned i = 2; i < 4; ++i) {
2856    SDOperand Arg = N->getOperand(i);
2857    if (Arg.getOpcode() == ISD::UNDEF) continue;
2858    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2859    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2860    if (Val != 2) return false;
2861    HasHi = true;
2862  }
2863
2864  // Don't use movshdup if it can be done with a shufps.
2865  return HasHi;
2866}
2867
2868/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2869/// a splat of a single element.
2870static bool isSplatMask(SDNode *N) {
2871  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2872
2873  // This is a splat operation if each element of the permute is the same, and
2874  // if the value doesn't reference the second vector.
2875  unsigned NumElems = N->getNumOperands();
2876  SDOperand ElementBase;
2877  unsigned i = 0;
2878  for (; i != NumElems; ++i) {
2879    SDOperand Elt = N->getOperand(i);
2880    if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt)) {
2881      ElementBase = Elt;
2882      break;
2883    }
2884  }
2885
2886  if (!ElementBase.Val)
2887    return false;
2888
2889  for (; i != NumElems; ++i) {
2890    SDOperand Arg = N->getOperand(i);
2891    if (Arg.getOpcode() == ISD::UNDEF) continue;
2892    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2893    if (Arg != ElementBase) return false;
2894  }
2895
2896  // Make sure it is a splat of the first vector operand.
2897  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2898}
2899
2900/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2901/// a splat of a single element and it's a 2 or 4 element mask.
2902bool X86::isSplatMask(SDNode *N) {
2903  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2904
2905  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2906  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2907    return false;
2908  return ::isSplatMask(N);
2909}
2910
2911/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2912/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2913/// instructions.
2914unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2915  unsigned NumOperands = N->getNumOperands();
2916  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2917  unsigned Mask = 0;
2918  for (unsigned i = 0; i < NumOperands; ++i) {
2919    unsigned Val = 0;
2920    SDOperand Arg = N->getOperand(NumOperands-i-1);
2921    if (Arg.getOpcode() != ISD::UNDEF)
2922      Val = cast<ConstantSDNode>(Arg)->getValue();
2923    if (Val >= NumOperands) Val -= NumOperands;
2924    Mask |= Val;
2925    if (i != NumOperands - 1)
2926      Mask <<= Shift;
2927  }
2928
2929  return Mask;
2930}
2931
2932/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2933/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2934/// instructions.
2935unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2936  unsigned Mask = 0;
2937  // 8 nodes, but we only care about the last 4.
2938  for (unsigned i = 7; i >= 4; --i) {
2939    unsigned Val = 0;
2940    SDOperand Arg = N->getOperand(i);
2941    if (Arg.getOpcode() != ISD::UNDEF)
2942      Val = cast<ConstantSDNode>(Arg)->getValue();
2943    Mask |= (Val - 4);
2944    if (i != 4)
2945      Mask <<= 2;
2946  }
2947
2948  return Mask;
2949}
2950
2951/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2952/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2953/// instructions.
2954unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2955  unsigned Mask = 0;
2956  // 8 nodes, but we only care about the first 4.
2957  for (int i = 3; i >= 0; --i) {
2958    unsigned Val = 0;
2959    SDOperand Arg = N->getOperand(i);
2960    if (Arg.getOpcode() != ISD::UNDEF)
2961      Val = cast<ConstantSDNode>(Arg)->getValue();
2962    Mask |= Val;
2963    if (i != 0)
2964      Mask <<= 2;
2965  }
2966
2967  return Mask;
2968}
2969
2970/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2971/// specifies a 8 element shuffle that can be broken into a pair of
2972/// PSHUFHW and PSHUFLW.
2973static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2974  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2975
2976  if (N->getNumOperands() != 8)
2977    return false;
2978
2979  // Lower quadword shuffled.
2980  for (unsigned i = 0; i != 4; ++i) {
2981    SDOperand Arg = N->getOperand(i);
2982    if (Arg.getOpcode() == ISD::UNDEF) continue;
2983    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2984    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2985    if (Val > 4)
2986      return false;
2987  }
2988
2989  // Upper quadword shuffled.
2990  for (unsigned i = 4; i != 8; ++i) {
2991    SDOperand Arg = N->getOperand(i);
2992    if (Arg.getOpcode() == ISD::UNDEF) continue;
2993    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2994    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2995    if (Val < 4 || Val > 7)
2996      return false;
2997  }
2998
2999  return true;
3000}
3001
3002/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
3003/// values in ther permute mask.
3004static SDOperand CommuteVectorShuffle(SDOperand Op, SelectionDAG &DAG) {
3005  SDOperand V1 = Op.getOperand(0);
3006  SDOperand V2 = Op.getOperand(1);
3007  SDOperand Mask = Op.getOperand(2);
3008  MVT::ValueType VT = Op.getValueType();
3009  MVT::ValueType MaskVT = Mask.getValueType();
3010  MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT);
3011  unsigned NumElems = Mask.getNumOperands();
3012  std::vector<SDOperand> MaskVec;
3013
3014  for (unsigned i = 0; i != NumElems; ++i) {
3015    SDOperand Arg = Mask.getOperand(i);
3016    if (Arg.getOpcode() == ISD::UNDEF) {
3017      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
3018      continue;
3019    }
3020    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
3021    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
3022    if (Val < NumElems)
3023      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
3024    else
3025      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
3026  }
3027
3028  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3029  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1, Mask);
3030}
3031
3032/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3033/// match movhlps. The lower half elements should come from upper half of
3034/// V1 (and in order), and the upper half elements should come from the upper
3035/// half of V2 (and in order).
3036static bool ShouldXformToMOVHLPS(SDNode *Mask) {
3037  unsigned NumElems = Mask->getNumOperands();
3038  if (NumElems != 4)
3039    return false;
3040  for (unsigned i = 0, e = 2; i != e; ++i)
3041    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
3042      return false;
3043  for (unsigned i = 2; i != 4; ++i)
3044    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
3045      return false;
3046  return true;
3047}
3048
3049/// isScalarLoadToVector - Returns true if the node is a scalar load that
3050/// is promoted to a vector.
3051static inline bool isScalarLoadToVector(SDNode *N) {
3052  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
3053    N = N->getOperand(0).Val;
3054    return (N->getOpcode() == ISD::LOAD);
3055  }
3056  return false;
3057}
3058
3059/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3060/// match movlp{s|d}. The lower half elements should come from lower half of
3061/// V1 (and in order), and the upper half elements should come from the upper
3062/// half of V2 (and in order). And since V1 will become the source of the
3063/// MOVLP, it must be either a vector load or a scalar load to vector.
3064static bool ShouldXformToMOVLP(SDNode *V1, SDNode *Mask) {
3065  if (V1->getOpcode() != ISD::LOAD && !isScalarLoadToVector(V1))
3066    return false;
3067
3068  unsigned NumElems = Mask->getNumOperands();
3069  if (NumElems != 2 && NumElems != 4)
3070    return false;
3071  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3072    if (!isUndefOrEqual(Mask->getOperand(i), i))
3073      return false;
3074  for (unsigned i = NumElems/2; i != NumElems; ++i)
3075    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
3076      return false;
3077  return true;
3078}
3079
3080/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3081/// all the same.
3082static bool isSplatVector(SDNode *N) {
3083  if (N->getOpcode() != ISD::BUILD_VECTOR)
3084    return false;
3085
3086  SDOperand SplatValue = N->getOperand(0);
3087  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3088    if (N->getOperand(i) != SplatValue)
3089      return false;
3090  return true;
3091}
3092
3093/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3094/// to an undef.
3095static bool isUndefShuffle(SDNode *N) {
3096  if (N->getOpcode() != ISD::BUILD_VECTOR)
3097    return false;
3098
3099  SDOperand V1 = N->getOperand(0);
3100  SDOperand V2 = N->getOperand(1);
3101  SDOperand Mask = N->getOperand(2);
3102  unsigned NumElems = Mask.getNumOperands();
3103  for (unsigned i = 0; i != NumElems; ++i) {
3104    SDOperand Arg = Mask.getOperand(i);
3105    if (Arg.getOpcode() != ISD::UNDEF) {
3106      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
3107      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
3108        return false;
3109      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
3110        return false;
3111    }
3112  }
3113  return true;
3114}
3115
3116/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3117/// that point to V2 points to its first element.
3118static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
3119  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
3120
3121  bool Changed = false;
3122  std::vector<SDOperand> MaskVec;
3123  unsigned NumElems = Mask.getNumOperands();
3124  for (unsigned i = 0; i != NumElems; ++i) {
3125    SDOperand Arg = Mask.getOperand(i);
3126    if (Arg.getOpcode() != ISD::UNDEF) {
3127      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
3128      if (Val > NumElems) {
3129        Arg = DAG.getConstant(NumElems, Arg.getValueType());
3130        Changed = true;
3131      }
3132    }
3133    MaskVec.push_back(Arg);
3134  }
3135
3136  if (Changed)
3137    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
3138                       &MaskVec[0], MaskVec.size());
3139  return Mask;
3140}
3141
3142/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3143/// operation of specified width.
3144static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
3145  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3146  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3147
3148  std::vector<SDOperand> MaskVec;
3149  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
3150  for (unsigned i = 1; i != NumElems; ++i)
3151    MaskVec.push_back(DAG.getConstant(i, BaseVT));
3152  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3153}
3154
3155/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
3156/// of specified width.
3157static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
3158  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3159  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3160  std::vector<SDOperand> MaskVec;
3161  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3162    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
3163    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
3164  }
3165  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3166}
3167
3168/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
3169/// of specified width.
3170static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
3171  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3172  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3173  unsigned Half = NumElems/2;
3174  std::vector<SDOperand> MaskVec;
3175  for (unsigned i = 0; i != Half; ++i) {
3176    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
3177    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
3178  }
3179  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3180}
3181
3182/// getZeroVector - Returns a vector of specified type with all zero elements.
3183///
3184static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
3185  assert(MVT::isVector(VT) && "Expected a vector type");
3186  unsigned NumElems = getVectorNumElements(VT);
3187  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
3188  bool isFP = MVT::isFloatingPoint(EVT);
3189  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
3190  std::vector<SDOperand> ZeroVec(NumElems, Zero);
3191  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
3192}
3193
3194/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
3195///
3196static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
3197  SDOperand V1 = Op.getOperand(0);
3198  SDOperand Mask = Op.getOperand(2);
3199  MVT::ValueType VT = Op.getValueType();
3200  unsigned NumElems = Mask.getNumOperands();
3201  Mask = getUnpacklMask(NumElems, DAG);
3202  while (NumElems != 4) {
3203    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
3204    NumElems >>= 1;
3205  }
3206  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
3207
3208  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3209  Mask = getZeroVector(MaskVT, DAG);
3210  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
3211                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
3212  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3213}
3214
3215/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3216/// constant +0.0.
3217static inline bool isZeroNode(SDOperand Elt) {
3218  return ((isa<ConstantSDNode>(Elt) &&
3219           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
3220          (isa<ConstantFPSDNode>(Elt) &&
3221           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
3222}
3223
3224/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3225/// vector and zero or undef vector.
3226static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
3227                                             unsigned NumElems, unsigned Idx,
3228                                             bool isZero, SelectionDAG &DAG) {
3229  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
3230  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3231  MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
3232  SDOperand Zero = DAG.getConstant(0, EVT);
3233  std::vector<SDOperand> MaskVec(NumElems, Zero);
3234  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
3235  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3236                               &MaskVec[0], MaskVec.size());
3237  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3238}
3239
3240/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3241///
3242static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
3243                                       unsigned NumNonZero, unsigned NumZero,
3244                                       SelectionDAG &DAG, TargetLowering &TLI) {
3245  if (NumNonZero > 8)
3246    return SDOperand();
3247
3248  SDOperand V(0, 0);
3249  bool First = true;
3250  for (unsigned i = 0; i < 16; ++i) {
3251    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3252    if (ThisIsNonZero && First) {
3253      if (NumZero)
3254        V = getZeroVector(MVT::v8i16, DAG);
3255      else
3256        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3257      First = false;
3258    }
3259
3260    if ((i & 1) != 0) {
3261      SDOperand ThisElt(0, 0), LastElt(0, 0);
3262      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3263      if (LastIsNonZero) {
3264        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3265      }
3266      if (ThisIsNonZero) {
3267        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3268        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3269                              ThisElt, DAG.getConstant(8, MVT::i8));
3270        if (LastIsNonZero)
3271          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3272      } else
3273        ThisElt = LastElt;
3274
3275      if (ThisElt.Val)
3276        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3277                        DAG.getConstant(i/2, TLI.getPointerTy()));
3278    }
3279  }
3280
3281  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3282}
3283
3284/// LowerBuildVectorv16i8 - Custom lower build_vector of v8i16.
3285///
3286static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3287                                       unsigned NumNonZero, unsigned NumZero,
3288                                       SelectionDAG &DAG, TargetLowering &TLI) {
3289  if (NumNonZero > 4)
3290    return SDOperand();
3291
3292  SDOperand V(0, 0);
3293  bool First = true;
3294  for (unsigned i = 0; i < 8; ++i) {
3295    bool isNonZero = (NonZeros & (1 << i)) != 0;
3296    if (isNonZero) {
3297      if (First) {
3298        if (NumZero)
3299          V = getZeroVector(MVT::v8i16, DAG);
3300        else
3301          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3302        First = false;
3303      }
3304      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3305                      DAG.getConstant(i, TLI.getPointerTy()));
3306    }
3307  }
3308
3309  return V;
3310}
3311
3312SDOperand
3313X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3314  // All zero's are handled with pxor.
3315  if (ISD::isBuildVectorAllZeros(Op.Val))
3316    return Op;
3317
3318  // All one's are handled with pcmpeqd.
3319  if (ISD::isBuildVectorAllOnes(Op.Val))
3320    return Op;
3321
3322  MVT::ValueType VT = Op.getValueType();
3323  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
3324  unsigned EVTBits = MVT::getSizeInBits(EVT);
3325
3326  unsigned NumElems = Op.getNumOperands();
3327  unsigned NumZero  = 0;
3328  unsigned NumNonZero = 0;
3329  unsigned NonZeros = 0;
3330  std::set<SDOperand> Values;
3331  for (unsigned i = 0; i < NumElems; ++i) {
3332    SDOperand Elt = Op.getOperand(i);
3333    if (Elt.getOpcode() != ISD::UNDEF) {
3334      Values.insert(Elt);
3335      if (isZeroNode(Elt))
3336        NumZero++;
3337      else {
3338        NonZeros |= (1 << i);
3339        NumNonZero++;
3340      }
3341    }
3342  }
3343
3344  if (NumNonZero == 0)
3345    // Must be a mix of zero and undef. Return a zero vector.
3346    return getZeroVector(VT, DAG);
3347
3348  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3349  if (Values.size() == 1)
3350    return SDOperand();
3351
3352  // Special case for single non-zero element.
3353  if (!NoShuffleOpti && NumNonZero == 1) {
3354    unsigned Idx = CountTrailingZeros_32(NonZeros);
3355    SDOperand Item = Op.getOperand(Idx);
3356    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3357    if (Idx == 0)
3358      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3359      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
3360                                         NumZero > 0, DAG);
3361
3362    if (EVTBits == 32) {
3363      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3364      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
3365                                         DAG);
3366      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3367      MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
3368      std::vector<SDOperand> MaskVec;
3369      for (unsigned i = 0; i < NumElems; i++)
3370        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3371      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3372                                   &MaskVec[0], MaskVec.size());
3373      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3374                         DAG.getNode(ISD::UNDEF, VT), Mask);
3375    }
3376  }
3377
3378  // Let legalizer expand 2-wide build_vector's.
3379  if (EVTBits == 64)
3380    return SDOperand();
3381
3382  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3383  if (EVTBits == 8) {
3384    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3385                                        *this);
3386    if (V.Val) return V;
3387  }
3388
3389  if (EVTBits == 16) {
3390    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3391                                        *this);
3392    if (V.Val) return V;
3393  }
3394
3395  // If element VT is == 32 bits, turn it into a number of shuffles.
3396  std::vector<SDOperand> V(NumElems);
3397  if (NumElems == 4 && NumZero > 0) {
3398    for (unsigned i = 0; i < 4; ++i) {
3399      bool isZero = !(NonZeros & (1 << i));
3400      if (isZero)
3401        V[i] = getZeroVector(VT, DAG);
3402      else
3403        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3404    }
3405
3406    for (unsigned i = 0; i < 2; ++i) {
3407      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3408        default: break;
3409        case 0:
3410          V[i] = V[i*2];  // Must be a zero vector.
3411          break;
3412        case 1:
3413          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3414                             getMOVLMask(NumElems, DAG));
3415          break;
3416        case 2:
3417          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3418                             getMOVLMask(NumElems, DAG));
3419          break;
3420        case 3:
3421          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3422                             getUnpacklMask(NumElems, DAG));
3423          break;
3424      }
3425    }
3426
3427    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3428    // clears the upper bits.
3429    // FIXME: we can do the same for v4f32 case when we know both parts of
3430    // the lower half come from scalar_to_vector (loadf32). We should do
3431    // that in post legalizer dag combiner with target specific hooks.
3432    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3433      return V[0];
3434    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3435    MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
3436    std::vector<SDOperand> MaskVec;
3437    bool Reverse = (NonZeros & 0x3) == 2;
3438    for (unsigned i = 0; i < 2; ++i)
3439      if (Reverse)
3440        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3441      else
3442        MaskVec.push_back(DAG.getConstant(i, EVT));
3443    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3444    for (unsigned i = 0; i < 2; ++i)
3445      if (Reverse)
3446        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3447      else
3448        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3449    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3450                                     &MaskVec[0], MaskVec.size());
3451    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3452  }
3453
3454  if (Values.size() > 2) {
3455    // Expand into a number of unpckl*.
3456    // e.g. for v4f32
3457    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3458    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3459    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3460    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3461    for (unsigned i = 0; i < NumElems; ++i)
3462      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3463    NumElems >>= 1;
3464    while (NumElems != 0) {
3465      for (unsigned i = 0; i < NumElems; ++i)
3466        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3467                           UnpckMask);
3468      NumElems >>= 1;
3469    }
3470    return V[0];
3471  }
3472
3473  return SDOperand();
3474}
3475
3476SDOperand
3477X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3478  SDOperand V1 = Op.getOperand(0);
3479  SDOperand V2 = Op.getOperand(1);
3480  SDOperand PermMask = Op.getOperand(2);
3481  MVT::ValueType VT = Op.getValueType();
3482  unsigned NumElems = PermMask.getNumOperands();
3483  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3484  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3485
3486  if (isUndefShuffle(Op.Val))
3487    return DAG.getNode(ISD::UNDEF, VT);
3488
3489  if (isSplatMask(PermMask.Val)) {
3490    if (NumElems <= 4) return Op;
3491    // Promote it to a v4i32 splat.
3492    if (!NoShuffleOpti)
3493      return PromoteSplat(Op, DAG);
3494  }
3495
3496  if (!NoShuffleOpti) {
3497    if (X86::isMOVLMask(PermMask.Val))
3498      return (V1IsUndef) ? V2 : Op;
3499
3500    if (X86::isMOVSHDUPMask(PermMask.Val) ||
3501        X86::isMOVSLDUPMask(PermMask.Val) ||
3502        X86::isMOVHLPSMask(PermMask.Val) ||
3503        X86::isMOVHPMask(PermMask.Val) ||
3504        X86::isMOVLPMask(PermMask.Val))
3505      return Op;
3506
3507    if (ShouldXformToMOVHLPS(PermMask.Val) ||
3508        ShouldXformToMOVLP(V1.Val, PermMask.Val))
3509      return CommuteVectorShuffle(Op, DAG);
3510
3511    bool V1IsSplat = isSplatVector(V1.Val);
3512    bool V2IsSplat = isSplatVector(V2.Val);
3513    if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3514      Op = CommuteVectorShuffle(Op, DAG);
3515      V1 = Op.getOperand(0);
3516      V2 = Op.getOperand(1);
3517      PermMask = Op.getOperand(2);
3518      std::swap(V1IsSplat, V2IsSplat);
3519      std::swap(V1IsUndef, V2IsUndef);
3520    }
3521
3522    if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3523      if (V2IsUndef) return V1;
3524      Op = CommuteVectorShuffle(Op, DAG);
3525      V1 = Op.getOperand(0);
3526      V2 = Op.getOperand(1);
3527      PermMask = Op.getOperand(2);
3528      if (V2IsSplat) {
3529        // V2 is a splat, so the mask may be malformed. That is, it may point
3530        // to any V2 element. The instruction selectior won't like this. Get
3531        // a corrected mask and commute to form a proper MOVS{S|D}.
3532        SDOperand NewMask = getMOVLMask(NumElems, DAG);
3533        if (NewMask.Val != PermMask.Val)
3534          Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3535      }
3536      return Op;
3537    }
3538
3539    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3540        X86::isUNPCKLMask(PermMask.Val) ||
3541        X86::isUNPCKHMask(PermMask.Val))
3542      return Op;
3543
3544    if (V2IsSplat) {
3545      // Normalize mask so all entries that point to V2 points to its first
3546      // element then try to match unpck{h|l} again. If match, return a
3547      // new vector_shuffle with the corrected mask.
3548      SDOperand NewMask = NormalizeMask(PermMask, DAG);
3549      if (NewMask.Val != PermMask.Val) {
3550        if (X86::isUNPCKLMask(PermMask.Val, true)) {
3551          SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3552          return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3553        } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3554          SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3555          return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3556        }
3557      }
3558    }
3559  }
3560
3561  // Normalize the node to match x86 shuffle ops if needed
3562  if (V2.getOpcode() != ISD::UNDEF)
3563    if (isCommutedSHUFP(PermMask.Val)) {
3564      Op = CommuteVectorShuffle(Op, DAG);
3565      V1 = Op.getOperand(0);
3566      V2 = Op.getOperand(1);
3567      PermMask = Op.getOperand(2);
3568    }
3569
3570  // If VT is integer, try PSHUF* first, then SHUFP*.
3571  if (MVT::isInteger(VT)) {
3572    if (X86::isPSHUFDMask(PermMask.Val) ||
3573        X86::isPSHUFHWMask(PermMask.Val) ||
3574        X86::isPSHUFLWMask(PermMask.Val)) {
3575      if (V2.getOpcode() != ISD::UNDEF)
3576        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3577                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3578      return Op;
3579    }
3580
3581    if (X86::isSHUFPMask(PermMask.Val))
3582      return Op;
3583
3584    // Handle v8i16 shuffle high / low shuffle node pair.
3585    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
3586      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3587      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3588      std::vector<SDOperand> MaskVec;
3589      for (unsigned i = 0; i != 4; ++i)
3590        MaskVec.push_back(PermMask.getOperand(i));
3591      for (unsigned i = 4; i != 8; ++i)
3592        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3593      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3594                                   &MaskVec[0], MaskVec.size());
3595      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3596      MaskVec.clear();
3597      for (unsigned i = 0; i != 4; ++i)
3598        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3599      for (unsigned i = 4; i != 8; ++i)
3600        MaskVec.push_back(PermMask.getOperand(i));
3601      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
3602      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3603    }
3604  } else {
3605    // Floating point cases in the other order.
3606    if (X86::isSHUFPMask(PermMask.Val))
3607      return Op;
3608    if (X86::isPSHUFDMask(PermMask.Val) ||
3609        X86::isPSHUFHWMask(PermMask.Val) ||
3610        X86::isPSHUFLWMask(PermMask.Val)) {
3611      if (V2.getOpcode() != ISD::UNDEF)
3612        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3613                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3614      return Op;
3615    }
3616  }
3617
3618  if (NumElems == 4) {
3619    MVT::ValueType MaskVT = PermMask.getValueType();
3620    MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
3621    std::vector<std::pair<int, int> > Locs;
3622    Locs.reserve(NumElems);
3623    std::vector<SDOperand> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3624    std::vector<SDOperand> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3625    unsigned NumHi = 0;
3626    unsigned NumLo = 0;
3627    // If no more than two elements come from either vector. This can be
3628    // implemented with two shuffles. First shuffle gather the elements.
3629    // The second shuffle, which takes the first shuffle as both of its
3630    // vector operands, put the elements into the right order.
3631    for (unsigned i = 0; i != NumElems; ++i) {
3632      SDOperand Elt = PermMask.getOperand(i);
3633      if (Elt.getOpcode() == ISD::UNDEF) {
3634        Locs[i] = std::make_pair(-1, -1);
3635      } else {
3636        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3637        if (Val < NumElems) {
3638          Locs[i] = std::make_pair(0, NumLo);
3639          Mask1[NumLo] = Elt;
3640          NumLo++;
3641        } else {
3642          Locs[i] = std::make_pair(1, NumHi);
3643          if (2+NumHi < NumElems)
3644            Mask1[2+NumHi] = Elt;
3645          NumHi++;
3646        }
3647      }
3648    }
3649    if (NumLo <= 2 && NumHi <= 2) {
3650      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3651                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3652                                   &Mask1[0], Mask1.size()));
3653      for (unsigned i = 0; i != NumElems; ++i) {
3654        if (Locs[i].first == -1)
3655          continue;
3656        else {
3657          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3658          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3659          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3660        }
3661      }
3662
3663      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3664                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3665                                     &Mask2[0], Mask2.size()));
3666    }
3667
3668    // Break it into (shuffle shuffle_hi, shuffle_lo).
3669    Locs.clear();
3670    std::vector<SDOperand> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3671    std::vector<SDOperand> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3672    std::vector<SDOperand> *MaskPtr = &LoMask;
3673    unsigned MaskIdx = 0;
3674    unsigned LoIdx = 0;
3675    unsigned HiIdx = NumElems/2;
3676    for (unsigned i = 0; i != NumElems; ++i) {
3677      if (i == NumElems/2) {
3678        MaskPtr = &HiMask;
3679        MaskIdx = 1;
3680        LoIdx = 0;
3681        HiIdx = NumElems/2;
3682      }
3683      SDOperand Elt = PermMask.getOperand(i);
3684      if (Elt.getOpcode() == ISD::UNDEF) {
3685        Locs[i] = std::make_pair(-1, -1);
3686      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3687        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3688        (*MaskPtr)[LoIdx] = Elt;
3689        LoIdx++;
3690      } else {
3691        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3692        (*MaskPtr)[HiIdx] = Elt;
3693        HiIdx++;
3694      }
3695    }
3696
3697    SDOperand LoShuffle =
3698      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3699                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3700                              &LoMask[0], LoMask.size()));
3701    SDOperand HiShuffle =
3702      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3703                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3704                              &HiMask[0], HiMask.size()));
3705    std::vector<SDOperand> MaskOps;
3706    for (unsigned i = 0; i != NumElems; ++i) {
3707      if (Locs[i].first == -1) {
3708        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3709      } else {
3710        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3711        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3712      }
3713    }
3714    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3715                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3716                                   &MaskOps[0], MaskOps.size()));
3717  }
3718
3719  return SDOperand();
3720}
3721
3722SDOperand
3723X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3724  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3725    return SDOperand();
3726
3727  MVT::ValueType VT = Op.getValueType();
3728  // TODO: handle v16i8.
3729  if (MVT::getSizeInBits(VT) == 16) {
3730    // Transform it so it match pextrw which produces a 32-bit result.
3731    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3732    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3733                                    Op.getOperand(0), Op.getOperand(1));
3734    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3735                                    DAG.getValueType(VT));
3736    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3737  } else if (MVT::getSizeInBits(VT) == 32) {
3738    SDOperand Vec = Op.getOperand(0);
3739    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3740    if (Idx == 0)
3741      return Op;
3742    // SHUFPS the element to the lowest double word, then movss.
3743    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3744    std::vector<SDOperand> IdxVec;
3745    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT)));
3746    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3747    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3748    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3749    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3750                                 &IdxVec[0], IdxVec.size());
3751    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3752                      Vec, Vec, Mask);
3753    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3754                       DAG.getConstant(0, getPointerTy()));
3755  } else if (MVT::getSizeInBits(VT) == 64) {
3756    SDOperand Vec = Op.getOperand(0);
3757    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3758    if (Idx == 0)
3759      return Op;
3760
3761    // UNPCKHPD the element to the lowest double word, then movsd.
3762    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3763    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3764    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3765    std::vector<SDOperand> IdxVec;
3766    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT)));
3767    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3768    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3769                                 &IdxVec[0], IdxVec.size());
3770    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3771                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3772    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3773                       DAG.getConstant(0, getPointerTy()));
3774  }
3775
3776  return SDOperand();
3777}
3778
3779SDOperand
3780X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3781  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3782  // as its second argument.
3783  MVT::ValueType VT = Op.getValueType();
3784  MVT::ValueType BaseVT = MVT::getVectorBaseType(VT);
3785  SDOperand N0 = Op.getOperand(0);
3786  SDOperand N1 = Op.getOperand(1);
3787  SDOperand N2 = Op.getOperand(2);
3788  if (MVT::getSizeInBits(BaseVT) == 16) {
3789    if (N1.getValueType() != MVT::i32)
3790      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3791    if (N2.getValueType() != MVT::i32)
3792      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32);
3793    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3794  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3795    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3796    if (Idx == 0) {
3797      // Use a movss.
3798      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3799      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3800      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3801      std::vector<SDOperand> MaskVec;
3802      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3803      for (unsigned i = 1; i <= 3; ++i)
3804        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3805      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3806                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3807                                     &MaskVec[0], MaskVec.size()));
3808    } else {
3809      // Use two pinsrw instructions to insert a 32 bit value.
3810      Idx <<= 1;
3811      if (MVT::isFloatingPoint(N1.getValueType())) {
3812        if (N1.getOpcode() == ISD::LOAD) {
3813          // Just load directly from f32mem to GR32.
3814          N1 = DAG.getLoad(MVT::i32, N1.getOperand(0), N1.getOperand(1),
3815                           N1.getOperand(2));
3816        } else {
3817          N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3818          N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3819          N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3820                           DAG.getConstant(0, getPointerTy()));
3821        }
3822      }
3823      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3824      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3825                       DAG.getConstant(Idx, getPointerTy()));
3826      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3827      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3828                       DAG.getConstant(Idx+1, getPointerTy()));
3829      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3830    }
3831  }
3832
3833  return SDOperand();
3834}
3835
3836SDOperand
3837X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3838  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3839  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3840}
3841
3842// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3843// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3844// one of the above mentioned nodes. It has to be wrapped because otherwise
3845// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3846// be used to form addressing mode. These wrapped nodes will be selected
3847// into MOV32ri.
3848SDOperand
3849X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3850  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3851  SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
3852                                 DAG.getTargetConstantPool(CP->getConstVal(),
3853                                                           getPointerTy(),
3854                                                           CP->getAlignment()));
3855  if (Subtarget->isTargetDarwin()) {
3856    // With PIC, the address is actually $g + Offset.
3857    if (!Subtarget->is64Bit() &&
3858        getTargetMachine().getRelocationModel() == Reloc::PIC_)
3859      Result = DAG.getNode(ISD::ADD, getPointerTy(),
3860                    DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);
3861  }
3862
3863  return Result;
3864}
3865
3866SDOperand
3867X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3868  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3869  SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
3870                                 DAG.getTargetGlobalAddress(GV,
3871                                                            getPointerTy()));
3872  if (Subtarget->isTargetDarwin()) {
3873    // With PIC, the address is actually $g + Offset.
3874    if (!Subtarget->is64Bit() &&
3875        getTargetMachine().getRelocationModel() == Reloc::PIC_)
3876      Result = DAG.getNode(ISD::ADD, getPointerTy(),
3877                           DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3878                           Result);
3879
3880    // For Darwin, external and weak symbols are indirect, so we want to load
3881    // the value at address GV, not the value of GV itself. This means that
3882    // the GlobalAddress must be in the base or index register of the address,
3883    // not the GV offset field.
3884    if (getTargetMachine().getRelocationModel() != Reloc::Static &&
3885        DarwinGVRequiresExtraLoad(GV))
3886      Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(),
3887                           Result, DAG.getSrcValue(NULL));
3888  } else if (Subtarget->isTargetCygwin() || Subtarget->isTargetWindows()) {
3889    // FIXME: What's about PIC?
3890    if (WindowsGVRequiresExtraLoad(GV)) {
3891      Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(),
3892                           Result, DAG.getSrcValue(NULL));
3893    }
3894  }
3895
3896
3897  return Result;
3898}
3899
3900SDOperand
3901X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3902  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3903  SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
3904                                 DAG.getTargetExternalSymbol(Sym,
3905                                                             getPointerTy()));
3906  if (Subtarget->isTargetDarwin()) {
3907    // With PIC, the address is actually $g + Offset.
3908    if (!Subtarget->is64Bit() &&
3909        getTargetMachine().getRelocationModel() == Reloc::PIC_)
3910      Result = DAG.getNode(ISD::ADD, getPointerTy(),
3911                           DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3912                           Result);
3913  }
3914
3915  return Result;
3916}
3917
3918SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3919    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3920           "Not an i64 shift!");
3921    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3922    SDOperand ShOpLo = Op.getOperand(0);
3923    SDOperand ShOpHi = Op.getOperand(1);
3924    SDOperand ShAmt  = Op.getOperand(2);
3925    SDOperand Tmp1 = isSRA ?
3926      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3927      DAG.getConstant(0, MVT::i32);
3928
3929    SDOperand Tmp2, Tmp3;
3930    if (Op.getOpcode() == ISD::SHL_PARTS) {
3931      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3932      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3933    } else {
3934      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3935      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3936    }
3937
3938    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3939    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3940                                    DAG.getConstant(32, MVT::i8));
3941    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3942    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3943
3944    SDOperand Hi, Lo;
3945    SDOperand CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8);
3946
3947    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3948    SmallVector<SDOperand, 4> Ops;
3949    if (Op.getOpcode() == ISD::SHL_PARTS) {
3950      Ops.push_back(Tmp2);
3951      Ops.push_back(Tmp3);
3952      Ops.push_back(CC);
3953      Ops.push_back(InFlag);
3954      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3955      InFlag = Hi.getValue(1);
3956
3957      Ops.clear();
3958      Ops.push_back(Tmp3);
3959      Ops.push_back(Tmp1);
3960      Ops.push_back(CC);
3961      Ops.push_back(InFlag);
3962      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3963    } else {
3964      Ops.push_back(Tmp2);
3965      Ops.push_back(Tmp3);
3966      Ops.push_back(CC);
3967      Ops.push_back(InFlag);
3968      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3969      InFlag = Lo.getValue(1);
3970
3971      Ops.clear();
3972      Ops.push_back(Tmp3);
3973      Ops.push_back(Tmp1);
3974      Ops.push_back(CC);
3975      Ops.push_back(InFlag);
3976      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3977    }
3978
3979    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3980    Ops.clear();
3981    Ops.push_back(Lo);
3982    Ops.push_back(Hi);
3983    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3984}
3985
3986SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3987  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3988         Op.getOperand(0).getValueType() >= MVT::i16 &&
3989         "Unknown SINT_TO_FP to lower!");
3990
3991  SDOperand Result;
3992  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3993  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3994  MachineFunction &MF = DAG.getMachineFunction();
3995  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3996  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3997  SDOperand Chain = DAG.getNode(ISD::STORE, MVT::Other,
3998                                DAG.getEntryNode(), Op.getOperand(0),
3999                                StackSlot, DAG.getSrcValue(NULL));
4000
4001  // Build the FILD
4002  std::vector<MVT::ValueType> Tys;
4003  Tys.push_back(MVT::f64);
4004  Tys.push_back(MVT::Other);
4005  if (X86ScalarSSE) Tys.push_back(MVT::Flag);
4006  std::vector<SDOperand> Ops;
4007  Ops.push_back(Chain);
4008  Ops.push_back(StackSlot);
4009  Ops.push_back(DAG.getValueType(SrcVT));
4010  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
4011                       Tys, &Ops[0], Ops.size());
4012
4013  if (X86ScalarSSE) {
4014    Chain = Result.getValue(1);
4015    SDOperand InFlag = Result.getValue(2);
4016
4017    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4018    // shouldn't be necessary except that RFP cannot be live across
4019    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4020    MachineFunction &MF = DAG.getMachineFunction();
4021    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4022    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4023    std::vector<MVT::ValueType> Tys;
4024    Tys.push_back(MVT::Other);
4025    std::vector<SDOperand> Ops;
4026    Ops.push_back(Chain);
4027    Ops.push_back(Result);
4028    Ops.push_back(StackSlot);
4029    Ops.push_back(DAG.getValueType(Op.getValueType()));
4030    Ops.push_back(InFlag);
4031    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4032    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4033                         DAG.getSrcValue(NULL));
4034  }
4035
4036  return Result;
4037}
4038
4039SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
4040  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
4041         "Unknown FP_TO_SINT to lower!");
4042  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4043  // stack slot.
4044  MachineFunction &MF = DAG.getMachineFunction();
4045  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
4046  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4047  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4048
4049  unsigned Opc;
4050  switch (Op.getValueType()) {
4051    default: assert(0 && "Invalid FP_TO_SINT to lower!");
4052    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4053    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4054    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4055  }
4056
4057  SDOperand Chain = DAG.getEntryNode();
4058  SDOperand Value = Op.getOperand(0);
4059  if (X86ScalarSSE) {
4060    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4061    Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, StackSlot,
4062                        DAG.getSrcValue(0));
4063    std::vector<MVT::ValueType> Tys;
4064    Tys.push_back(MVT::f64);
4065    Tys.push_back(MVT::Other);
4066    std::vector<SDOperand> Ops;
4067    Ops.push_back(Chain);
4068    Ops.push_back(StackSlot);
4069    Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType()));
4070    Value = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size());
4071    Chain = Value.getValue(1);
4072    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4073    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4074  }
4075
4076  // Build the FP_TO_INT*_IN_MEM
4077  std::vector<SDOperand> Ops;
4078  Ops.push_back(Chain);
4079  Ops.push_back(Value);
4080  Ops.push_back(StackSlot);
4081  SDOperand FIST = DAG.getNode(Opc, MVT::Other, &Ops[0], Ops.size());
4082
4083  // Load the result.
4084  return DAG.getLoad(Op.getValueType(), FIST, StackSlot,
4085                     DAG.getSrcValue(NULL));
4086}
4087
4088SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4089  MVT::ValueType VT = Op.getValueType();
4090  const Type *OpNTy =  MVT::getTypeForValueType(VT);
4091  std::vector<Constant*> CV;
4092  if (VT == MVT::f64) {
4093    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
4094    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4095  } else {
4096    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
4097    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4098    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4099    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4100  }
4101  Constant *CS = ConstantStruct::get(CV);
4102  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
4103  std::vector<MVT::ValueType> Tys;
4104  Tys.push_back(VT);
4105  Tys.push_back(MVT::Other);
4106  SmallVector<SDOperand, 3> Ops;
4107  Ops.push_back(DAG.getEntryNode());
4108  Ops.push_back(CPIdx);
4109  Ops.push_back(DAG.getSrcValue(NULL));
4110  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
4111  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4112}
4113
4114SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4115  MVT::ValueType VT = Op.getValueType();
4116  const Type *OpNTy =  MVT::getTypeForValueType(VT);
4117  std::vector<Constant*> CV;
4118  if (VT == MVT::f64) {
4119    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
4120    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4121  } else {
4122    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
4123    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4124    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4125    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4126  }
4127  Constant *CS = ConstantStruct::get(CV);
4128  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
4129  std::vector<MVT::ValueType> Tys;
4130  Tys.push_back(VT);
4131  Tys.push_back(MVT::Other);
4132  SmallVector<SDOperand, 3> Ops;
4133  Ops.push_back(DAG.getEntryNode());
4134  Ops.push_back(CPIdx);
4135  Ops.push_back(DAG.getSrcValue(NULL));
4136  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
4137  return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4138}
4139
4140SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
4141                                        SDOperand Chain) {
4142  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4143  SDOperand Cond;
4144  SDOperand Op0 = Op.getOperand(0);
4145  SDOperand Op1 = Op.getOperand(1);
4146  SDOperand CC = Op.getOperand(2);
4147  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4148  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4149  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4150  unsigned X86CC;
4151
4152  VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4153  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4154                     Op0, Op1, DAG)) {
4155    SDOperand Ops1[] = { Chain, Op0, Op1 };
4156    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops1, 3).getValue(1);
4157    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4158    return DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4159  }
4160
4161  assert(isFP && "Illegal integer SetCC!");
4162
4163  SDOperand COps[] = { Chain, Op0, Op1 };
4164  Cond = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
4165
4166  switch (SetCCOpcode) {
4167  default: assert(false && "Illegal floating point SetCC!");
4168  case ISD::SETOEQ: {  // !PF & ZF
4169    SDOperand Ops1[] = { DAG.getConstant(X86ISD::COND_NP, MVT::i8), Cond };
4170    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops1, 2);
4171    SDOperand Ops2[] = { DAG.getConstant(X86ISD::COND_E, MVT::i8),
4172                         Tmp1.getValue(1) };
4173    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4174    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4175  }
4176  case ISD::SETUNE: {  // PF | !ZF
4177    SDOperand Ops1[] = { DAG.getConstant(X86ISD::COND_P, MVT::i8), Cond };
4178    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops1, 2);
4179    SDOperand Ops2[] = { DAG.getConstant(X86ISD::COND_NE, MVT::i8),
4180                         Tmp1.getValue(1) };
4181    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4182    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4183  }
4184  }
4185}
4186
4187SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4188  bool addTest = true;
4189  SDOperand Chain = DAG.getEntryNode();
4190  SDOperand Cond  = Op.getOperand(0);
4191  SDOperand CC;
4192  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4193
4194  if (Cond.getOpcode() == ISD::SETCC)
4195    Cond = LowerSETCC(Cond, DAG, Chain);
4196
4197  if (Cond.getOpcode() == X86ISD::SETCC) {
4198    CC = Cond.getOperand(0);
4199
4200    // If condition flag is set by a X86ISD::CMP, then make a copy of it
4201    // (since flag operand cannot be shared). Use it as the condition setting
4202    // operand in place of the X86ISD::SETCC.
4203    // If the X86ISD::SETCC has more than one use, then perhaps it's better
4204    // to use a test instead of duplicating the X86ISD::CMP (for register
4205    // pressure reason)?
4206    SDOperand Cmp = Cond.getOperand(1);
4207    unsigned Opc = Cmp.getOpcode();
4208    bool IllegalFPCMov = !X86ScalarSSE &&
4209      MVT::isFloatingPoint(Op.getValueType()) &&
4210      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4211    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
4212        !IllegalFPCMov) {
4213      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
4214      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
4215      addTest = false;
4216    }
4217  }
4218
4219  if (addTest) {
4220    CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8);
4221    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
4222    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
4223  }
4224
4225  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
4226  SmallVector<SDOperand, 4> Ops;
4227  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4228  // condition is true.
4229  Ops.push_back(Op.getOperand(2));
4230  Ops.push_back(Op.getOperand(1));
4231  Ops.push_back(CC);
4232  Ops.push_back(Cond.getValue(1));
4233  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4234}
4235
4236SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4237  bool addTest = true;
4238  SDOperand Chain = Op.getOperand(0);
4239  SDOperand Cond  = Op.getOperand(1);
4240  SDOperand Dest  = Op.getOperand(2);
4241  SDOperand CC;
4242  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4243
4244  if (Cond.getOpcode() == ISD::SETCC)
4245    Cond = LowerSETCC(Cond, DAG, Chain);
4246
4247  if (Cond.getOpcode() == X86ISD::SETCC) {
4248    CC = Cond.getOperand(0);
4249
4250    // If condition flag is set by a X86ISD::CMP, then make a copy of it
4251    // (since flag operand cannot be shared). Use it as the condition setting
4252    // operand in place of the X86ISD::SETCC.
4253    // If the X86ISD::SETCC has more than one use, then perhaps it's better
4254    // to use a test instead of duplicating the X86ISD::CMP (for register
4255    // pressure reason)?
4256    SDOperand Cmp = Cond.getOperand(1);
4257    unsigned Opc = Cmp.getOpcode();
4258    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
4259      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
4260      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
4261      addTest = false;
4262    }
4263  }
4264
4265  if (addTest) {
4266    CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8);
4267    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
4268    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
4269  }
4270  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4271                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
4272}
4273
4274SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
4275  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4276  SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
4277                                 DAG.getTargetJumpTable(JT->getIndex(),
4278                                                        getPointerTy()));
4279  if (Subtarget->isTargetDarwin()) {
4280    // With PIC, the address is actually $g + Offset.
4281    if (!Subtarget->is64Bit() &&
4282        getTargetMachine().getRelocationModel() == Reloc::PIC_)
4283      Result = DAG.getNode(ISD::ADD, getPointerTy(),
4284                           DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4285                           Result);
4286  }
4287
4288  return Result;
4289}
4290
4291SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
4292  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4293
4294  if (Subtarget->is64Bit())
4295    return LowerX86_64CCCCallTo(Op, DAG);
4296  else
4297    switch (CallingConv) {
4298    default:
4299      assert(0 && "Unsupported calling convention");
4300    case CallingConv::Fast:
4301      if (EnableFastCC) {
4302        return LowerFastCCCallTo(Op, DAG, false);
4303      }
4304      // Falls through
4305    case CallingConv::C:
4306    case CallingConv::CSRet:
4307      return LowerCCCCallTo(Op, DAG);
4308    case CallingConv::X86_StdCall:
4309      return LowerStdCallCCCallTo(Op, DAG);
4310    case CallingConv::X86_FastCall:
4311      return LowerFastCCCallTo(Op, DAG, true);
4312    }
4313}
4314
4315SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
4316  SDOperand Copy;
4317
4318  switch(Op.getNumOperands()) {
4319    default:
4320      assert(0 && "Do not know how to return this many arguments!");
4321      abort();
4322    case 1:    // ret void.
4323      return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0),
4324                        DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
4325    case 3: {
4326      MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
4327
4328      if (MVT::isVector(ArgVT) ||
4329          (Subtarget->is64Bit() && MVT::isFloatingPoint(ArgVT))) {
4330        // Integer or FP vector result -> XMM0.
4331        if (DAG.getMachineFunction().liveout_empty())
4332          DAG.getMachineFunction().addLiveOut(X86::XMM0);
4333        Copy = DAG.getCopyToReg(Op.getOperand(0), X86::XMM0, Op.getOperand(1),
4334                                SDOperand());
4335      } else if (MVT::isInteger(ArgVT)) {
4336        // Integer result -> EAX / RAX.
4337        // The C calling convention guarantees the return value has been
4338        // promoted to at least MVT::i32. The X86-64 ABI doesn't require the
4339        // value to be promoted MVT::i64. So we don't have to extend it to
4340        // 64-bit. Return the value in EAX, but mark RAX as liveout.
4341        unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
4342        if (DAG.getMachineFunction().liveout_empty())
4343          DAG.getMachineFunction().addLiveOut(Reg);
4344
4345        Reg = (ArgVT == MVT::i64) ? X86::RAX : X86::EAX;
4346        Copy = DAG.getCopyToReg(Op.getOperand(0), Reg, Op.getOperand(1),
4347                                SDOperand());
4348      } else if (!X86ScalarSSE) {
4349        // FP return with fp-stack value.
4350        if (DAG.getMachineFunction().liveout_empty())
4351          DAG.getMachineFunction().addLiveOut(X86::ST0);
4352
4353        std::vector<MVT::ValueType> Tys;
4354        Tys.push_back(MVT::Other);
4355        Tys.push_back(MVT::Flag);
4356        std::vector<SDOperand> Ops;
4357        Ops.push_back(Op.getOperand(0));
4358        Ops.push_back(Op.getOperand(1));
4359        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size());
4360      } else {
4361        // FP return with ScalarSSE (return on fp-stack).
4362        if (DAG.getMachineFunction().liveout_empty())
4363          DAG.getMachineFunction().addLiveOut(X86::ST0);
4364
4365        SDOperand MemLoc;
4366        SDOperand Chain = Op.getOperand(0);
4367        SDOperand Value = Op.getOperand(1);
4368
4369        if (Value.getOpcode() == ISD::LOAD &&
4370            (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
4371          Chain  = Value.getOperand(0);
4372          MemLoc = Value.getOperand(1);
4373        } else {
4374          // Spill the value to memory and reload it into top of stack.
4375          unsigned Size = MVT::getSizeInBits(ArgVT)/8;
4376          MachineFunction &MF = DAG.getMachineFunction();
4377          int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4378          MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
4379          Chain = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0),
4380                              Value, MemLoc, DAG.getSrcValue(0));
4381        }
4382        std::vector<MVT::ValueType> Tys;
4383        Tys.push_back(MVT::f64);
4384        Tys.push_back(MVT::Other);
4385        std::vector<SDOperand> Ops;
4386        Ops.push_back(Chain);
4387        Ops.push_back(MemLoc);
4388        Ops.push_back(DAG.getValueType(ArgVT));
4389        Copy = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size());
4390        Tys.clear();
4391        Tys.push_back(MVT::Other);
4392        Tys.push_back(MVT::Flag);
4393        Ops.clear();
4394        Ops.push_back(Copy.getValue(1));
4395        Ops.push_back(Copy);
4396        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size());
4397      }
4398      break;
4399    }
4400    case 5: {
4401      unsigned Reg1 = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
4402      unsigned Reg2 = Subtarget->is64Bit() ? X86::RDX : X86::EDX;
4403      if (DAG.getMachineFunction().liveout_empty()) {
4404        DAG.getMachineFunction().addLiveOut(Reg1);
4405        DAG.getMachineFunction().addLiveOut(Reg2);
4406      }
4407
4408      Copy = DAG.getCopyToReg(Op.getOperand(0), Reg2, Op.getOperand(3),
4409                              SDOperand());
4410      Copy = DAG.getCopyToReg(Copy, Reg1, Op.getOperand(1), Copy.getValue(1));
4411      break;
4412    }
4413  }
4414  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other,
4415                     Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16),
4416                     Copy.getValue(1));
4417}
4418
4419SDOperand
4420X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4421  MachineFunction &MF = DAG.getMachineFunction();
4422  const Function* Fn = MF.getFunction();
4423  if (Fn->hasExternalLinkage() &&
4424      Subtarget->isTargetCygwin() &&
4425      Fn->getName() == "main")
4426    MF.getInfo<X86FunctionInfo>()->setForceFramePointer(true);
4427
4428  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4429  if (Subtarget->is64Bit())
4430    return LowerX86_64CCCArguments(Op, DAG);
4431  else
4432    switch(CC) {
4433    default:
4434      assert(0 && "Unsupported calling convention");
4435    case CallingConv::Fast:
4436      if (EnableFastCC) {
4437        return LowerFastCCArguments(Op, DAG);
4438      }
4439      // Falls through
4440    case CallingConv::C:
4441    case CallingConv::CSRet:
4442      return LowerCCCArguments(Op, DAG);
4443    case CallingConv::X86_StdCall:
4444      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(StdCall);
4445      return LowerStdCallCCArguments(Op, DAG);
4446    case CallingConv::X86_FastCall:
4447      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(FastCall);
4448      return LowerFastCallCCArguments(Op, DAG);
4449    }
4450}
4451
4452SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4453  SDOperand InFlag(0, 0);
4454  SDOperand Chain = Op.getOperand(0);
4455  unsigned Align =
4456    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4457  if (Align == 0) Align = 1;
4458
4459  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4460  // If not DWORD aligned, call memset if size is less than the threshold.
4461  // It knows how to align to the right boundary first.
4462  if ((Align & 3) != 0 ||
4463      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
4464    MVT::ValueType IntPtr = getPointerTy();
4465    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4466    std::vector<std::pair<SDOperand, const Type*> > Args;
4467    Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
4468    // Extend the ubyte argument to be an int value for the call.
4469    SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4470    Args.push_back(std::make_pair(Val, IntPtrTy));
4471    Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
4472    std::pair<SDOperand,SDOperand> CallResult =
4473      LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
4474                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4475    return CallResult.second;
4476  }
4477
4478  MVT::ValueType AVT;
4479  SDOperand Count;
4480  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4481  unsigned BytesLeft = 0;
4482  bool TwoRepStos = false;
4483  if (ValC) {
4484    unsigned ValReg;
4485    uint64_t Val = ValC->getValue() & 255;
4486
4487    // If the value is a constant, then we can potentially use larger sets.
4488    switch (Align & 3) {
4489      case 2:   // WORD aligned
4490        AVT = MVT::i16;
4491        ValReg = X86::AX;
4492        Val = (Val << 8) | Val;
4493        break;
4494      case 0:  // DWORD aligned
4495        AVT = MVT::i32;
4496        ValReg = X86::EAX;
4497        Val = (Val << 8)  | Val;
4498        Val = (Val << 16) | Val;
4499        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4500          AVT = MVT::i64;
4501          ValReg = X86::RAX;
4502          Val = (Val << 32) | Val;
4503        }
4504        break;
4505      default:  // Byte aligned
4506        AVT = MVT::i8;
4507        ValReg = X86::AL;
4508        Count = Op.getOperand(3);
4509        break;
4510    }
4511
4512    if (AVT > MVT::i8) {
4513      if (I) {
4514        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4515        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4516        BytesLeft = I->getValue() % UBytes;
4517      } else {
4518        assert(AVT >= MVT::i32 &&
4519               "Do not use rep;stos if not at least DWORD aligned");
4520        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4521                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4522        TwoRepStos = true;
4523      }
4524    }
4525
4526    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4527                              InFlag);
4528    InFlag = Chain.getValue(1);
4529  } else {
4530    AVT = MVT::i8;
4531    Count  = Op.getOperand(3);
4532    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4533    InFlag = Chain.getValue(1);
4534  }
4535
4536  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4537                            Count, InFlag);
4538  InFlag = Chain.getValue(1);
4539  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4540                            Op.getOperand(1), InFlag);
4541  InFlag = Chain.getValue(1);
4542
4543  std::vector<MVT::ValueType> Tys;
4544  Tys.push_back(MVT::Other);
4545  Tys.push_back(MVT::Flag);
4546  std::vector<SDOperand> Ops;
4547  Ops.push_back(Chain);
4548  Ops.push_back(DAG.getValueType(AVT));
4549  Ops.push_back(InFlag);
4550  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4551
4552  if (TwoRepStos) {
4553    InFlag = Chain.getValue(1);
4554    Count = Op.getOperand(3);
4555    MVT::ValueType CVT = Count.getValueType();
4556    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4557                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4558    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4559                              Left, InFlag);
4560    InFlag = Chain.getValue(1);
4561    Tys.clear();
4562    Tys.push_back(MVT::Other);
4563    Tys.push_back(MVT::Flag);
4564    Ops.clear();
4565    Ops.push_back(Chain);
4566    Ops.push_back(DAG.getValueType(MVT::i8));
4567    Ops.push_back(InFlag);
4568    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4569  } else if (BytesLeft) {
4570    // Issue stores for the last 1 - 7 bytes.
4571    SDOperand Value;
4572    unsigned Val = ValC->getValue() & 255;
4573    unsigned Offset = I->getValue() - BytesLeft;
4574    SDOperand DstAddr = Op.getOperand(1);
4575    MVT::ValueType AddrVT = DstAddr.getValueType();
4576    if (BytesLeft >= 4) {
4577      Val = (Val << 8)  | Val;
4578      Val = (Val << 16) | Val;
4579      Value = DAG.getConstant(Val, MVT::i32);
4580      Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
4581                          DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4582                                      DAG.getConstant(Offset, AddrVT)),
4583                          DAG.getSrcValue(NULL));
4584      BytesLeft -= 4;
4585      Offset += 4;
4586    }
4587    if (BytesLeft >= 2) {
4588      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4589      Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
4590                          DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4591                                      DAG.getConstant(Offset, AddrVT)),
4592                          DAG.getSrcValue(NULL));
4593      BytesLeft -= 2;
4594      Offset += 2;
4595    }
4596    if (BytesLeft == 1) {
4597      Value = DAG.getConstant(Val, MVT::i8);
4598      Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
4599                          DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4600                                      DAG.getConstant(Offset, AddrVT)),
4601                          DAG.getSrcValue(NULL));
4602    }
4603  }
4604
4605  return Chain;
4606}
4607
4608SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
4609  SDOperand Chain = Op.getOperand(0);
4610  unsigned Align =
4611    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4612  if (Align == 0) Align = 1;
4613
4614  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4615  // If not DWORD aligned, call memcpy if size is less than the threshold.
4616  // It knows how to align to the right boundary first.
4617  if ((Align & 3) != 0 ||
4618      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
4619    MVT::ValueType IntPtr = getPointerTy();
4620    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4621    std::vector<std::pair<SDOperand, const Type*> > Args;
4622    Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
4623    Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy));
4624    Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
4625    std::pair<SDOperand,SDOperand> CallResult =
4626      LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
4627                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
4628    return CallResult.second;
4629  }
4630
4631  MVT::ValueType AVT;
4632  SDOperand Count;
4633  unsigned BytesLeft = 0;
4634  bool TwoRepMovs = false;
4635  switch (Align & 3) {
4636    case 2:   // WORD aligned
4637      AVT = MVT::i16;
4638      break;
4639    case 0:  // DWORD aligned
4640      AVT = MVT::i32;
4641      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4642        AVT = MVT::i64;
4643      break;
4644    default:  // Byte aligned
4645      AVT = MVT::i8;
4646      Count = Op.getOperand(3);
4647      break;
4648  }
4649
4650  if (AVT > MVT::i8) {
4651    if (I) {
4652      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4653      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4654      BytesLeft = I->getValue() % UBytes;
4655    } else {
4656      assert(AVT >= MVT::i32 &&
4657             "Do not use rep;movs if not at least DWORD aligned");
4658      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4659                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4660      TwoRepMovs = true;
4661    }
4662  }
4663
4664  SDOperand InFlag(0, 0);
4665  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4666                            Count, InFlag);
4667  InFlag = Chain.getValue(1);
4668  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4669                            Op.getOperand(1), InFlag);
4670  InFlag = Chain.getValue(1);
4671  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4672                            Op.getOperand(2), InFlag);
4673  InFlag = Chain.getValue(1);
4674
4675  std::vector<MVT::ValueType> Tys;
4676  Tys.push_back(MVT::Other);
4677  Tys.push_back(MVT::Flag);
4678  std::vector<SDOperand> Ops;
4679  Ops.push_back(Chain);
4680  Ops.push_back(DAG.getValueType(AVT));
4681  Ops.push_back(InFlag);
4682  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4683
4684  if (TwoRepMovs) {
4685    InFlag = Chain.getValue(1);
4686    Count = Op.getOperand(3);
4687    MVT::ValueType CVT = Count.getValueType();
4688    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4689                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4690    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4691                              Left, InFlag);
4692    InFlag = Chain.getValue(1);
4693    Tys.clear();
4694    Tys.push_back(MVT::Other);
4695    Tys.push_back(MVT::Flag);
4696    Ops.clear();
4697    Ops.push_back(Chain);
4698    Ops.push_back(DAG.getValueType(MVT::i8));
4699    Ops.push_back(InFlag);
4700    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4701  } else if (BytesLeft) {
4702    // Issue loads and stores for the last 1 - 7 bytes.
4703    unsigned Offset = I->getValue() - BytesLeft;
4704    SDOperand DstAddr = Op.getOperand(1);
4705    MVT::ValueType DstVT = DstAddr.getValueType();
4706    SDOperand SrcAddr = Op.getOperand(2);
4707    MVT::ValueType SrcVT = SrcAddr.getValueType();
4708    SDOperand Value;
4709    if (BytesLeft >= 4) {
4710      Value = DAG.getLoad(MVT::i32, Chain,
4711                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4712                                      DAG.getConstant(Offset, SrcVT)),
4713                          DAG.getSrcValue(NULL));
4714      Chain = Value.getValue(1);
4715      Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
4716                          DAG.getNode(ISD::ADD, DstVT, DstAddr,
4717                                      DAG.getConstant(Offset, DstVT)),
4718                          DAG.getSrcValue(NULL));
4719      BytesLeft -= 4;
4720      Offset += 4;
4721    }
4722    if (BytesLeft >= 2) {
4723      Value = DAG.getLoad(MVT::i16, Chain,
4724                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4725                                      DAG.getConstant(Offset, SrcVT)),
4726                          DAG.getSrcValue(NULL));
4727      Chain = Value.getValue(1);
4728      Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
4729                          DAG.getNode(ISD::ADD, DstVT, DstAddr,
4730                                      DAG.getConstant(Offset, DstVT)),
4731                          DAG.getSrcValue(NULL));
4732      BytesLeft -= 2;
4733      Offset += 2;
4734    }
4735
4736    if (BytesLeft == 1) {
4737      Value = DAG.getLoad(MVT::i8, Chain,
4738                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4739                                      DAG.getConstant(Offset, SrcVT)),
4740                          DAG.getSrcValue(NULL));
4741      Chain = Value.getValue(1);
4742      Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
4743                          DAG.getNode(ISD::ADD, DstVT, DstAddr,
4744                                      DAG.getConstant(Offset, DstVT)),
4745                          DAG.getSrcValue(NULL));
4746    }
4747  }
4748
4749  return Chain;
4750}
4751
4752SDOperand
4753X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4754  std::vector<MVT::ValueType> Tys;
4755  Tys.push_back(MVT::Other);
4756  Tys.push_back(MVT::Flag);
4757  std::vector<SDOperand> Ops;
4758  Ops.push_back(Op.getOperand(0));
4759  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &Ops[0], Ops.size());
4760  Ops.clear();
4761  Ops.push_back(DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1)));
4762  Ops.push_back(DAG.getCopyFromReg(Ops[0].getValue(1), X86::EDX,
4763                                   MVT::i32, Ops[0].getValue(2)));
4764  Ops.push_back(Ops[1].getValue(1));
4765  Tys[0] = Tys[1] = MVT::i32;
4766  Tys.push_back(MVT::Other);
4767  return DAG.getNode(ISD::MERGE_VALUES, Tys, &Ops[0], Ops.size());
4768}
4769
4770SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4771  if (!Subtarget->is64Bit()) {
4772    // vastart just stores the address of the VarArgsFrameIndex slot into the
4773    // memory location argument.
4774    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4775    return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
4776                       Op.getOperand(1), Op.getOperand(2));
4777  }
4778
4779  // __va_list_tag:
4780  //   gp_offset         (0 - 6 * 8)
4781  //   fp_offset         (48 - 48 + 8 * 16)
4782  //   overflow_arg_area (point to parameters coming in memory).
4783  //   reg_save_area
4784  std::vector<SDOperand> MemOps;
4785  SDOperand FIN = Op.getOperand(1);
4786  // Store gp_offset
4787  SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0),
4788                                DAG.getConstant(VarArgsGPOffset, MVT::i32),
4789                                FIN, Op.getOperand(2));
4790  MemOps.push_back(Store);
4791
4792  // Store fp_offset
4793  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4794                    DAG.getConstant(4, getPointerTy()));
4795  Store = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0),
4796                      DAG.getConstant(VarArgsFPOffset, MVT::i32),
4797                      FIN, Op.getOperand(2));
4798  MemOps.push_back(Store);
4799
4800  // Store ptr to overflow_arg_area
4801  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4802                    DAG.getConstant(4, getPointerTy()));
4803  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4804  Store = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0),
4805                      OVFIN, FIN, Op.getOperand(2));
4806  MemOps.push_back(Store);
4807
4808  // Store ptr to reg_save_area.
4809  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4810                    DAG.getConstant(8, getPointerTy()));
4811  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4812  Store = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0),
4813                      RSFIN, FIN, Op.getOperand(2));
4814  MemOps.push_back(Store);
4815  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4816}
4817
4818SDOperand
4819X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4820  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4821  switch (IntNo) {
4822  default: return SDOperand();    // Don't custom lower most intrinsics.
4823    // Comparison intrinsics.
4824  case Intrinsic::x86_sse_comieq_ss:
4825  case Intrinsic::x86_sse_comilt_ss:
4826  case Intrinsic::x86_sse_comile_ss:
4827  case Intrinsic::x86_sse_comigt_ss:
4828  case Intrinsic::x86_sse_comige_ss:
4829  case Intrinsic::x86_sse_comineq_ss:
4830  case Intrinsic::x86_sse_ucomieq_ss:
4831  case Intrinsic::x86_sse_ucomilt_ss:
4832  case Intrinsic::x86_sse_ucomile_ss:
4833  case Intrinsic::x86_sse_ucomigt_ss:
4834  case Intrinsic::x86_sse_ucomige_ss:
4835  case Intrinsic::x86_sse_ucomineq_ss:
4836  case Intrinsic::x86_sse2_comieq_sd:
4837  case Intrinsic::x86_sse2_comilt_sd:
4838  case Intrinsic::x86_sse2_comile_sd:
4839  case Intrinsic::x86_sse2_comigt_sd:
4840  case Intrinsic::x86_sse2_comige_sd:
4841  case Intrinsic::x86_sse2_comineq_sd:
4842  case Intrinsic::x86_sse2_ucomieq_sd:
4843  case Intrinsic::x86_sse2_ucomilt_sd:
4844  case Intrinsic::x86_sse2_ucomile_sd:
4845  case Intrinsic::x86_sse2_ucomigt_sd:
4846  case Intrinsic::x86_sse2_ucomige_sd:
4847  case Intrinsic::x86_sse2_ucomineq_sd: {
4848    unsigned Opc = 0;
4849    ISD::CondCode CC = ISD::SETCC_INVALID;
4850    switch (IntNo) {
4851    default: break;
4852    case Intrinsic::x86_sse_comieq_ss:
4853    case Intrinsic::x86_sse2_comieq_sd:
4854      Opc = X86ISD::COMI;
4855      CC = ISD::SETEQ;
4856      break;
4857    case Intrinsic::x86_sse_comilt_ss:
4858    case Intrinsic::x86_sse2_comilt_sd:
4859      Opc = X86ISD::COMI;
4860      CC = ISD::SETLT;
4861      break;
4862    case Intrinsic::x86_sse_comile_ss:
4863    case Intrinsic::x86_sse2_comile_sd:
4864      Opc = X86ISD::COMI;
4865      CC = ISD::SETLE;
4866      break;
4867    case Intrinsic::x86_sse_comigt_ss:
4868    case Intrinsic::x86_sse2_comigt_sd:
4869      Opc = X86ISD::COMI;
4870      CC = ISD::SETGT;
4871      break;
4872    case Intrinsic::x86_sse_comige_ss:
4873    case Intrinsic::x86_sse2_comige_sd:
4874      Opc = X86ISD::COMI;
4875      CC = ISD::SETGE;
4876      break;
4877    case Intrinsic::x86_sse_comineq_ss:
4878    case Intrinsic::x86_sse2_comineq_sd:
4879      Opc = X86ISD::COMI;
4880      CC = ISD::SETNE;
4881      break;
4882    case Intrinsic::x86_sse_ucomieq_ss:
4883    case Intrinsic::x86_sse2_ucomieq_sd:
4884      Opc = X86ISD::UCOMI;
4885      CC = ISD::SETEQ;
4886      break;
4887    case Intrinsic::x86_sse_ucomilt_ss:
4888    case Intrinsic::x86_sse2_ucomilt_sd:
4889      Opc = X86ISD::UCOMI;
4890      CC = ISD::SETLT;
4891      break;
4892    case Intrinsic::x86_sse_ucomile_ss:
4893    case Intrinsic::x86_sse2_ucomile_sd:
4894      Opc = X86ISD::UCOMI;
4895      CC = ISD::SETLE;
4896      break;
4897    case Intrinsic::x86_sse_ucomigt_ss:
4898    case Intrinsic::x86_sse2_ucomigt_sd:
4899      Opc = X86ISD::UCOMI;
4900      CC = ISD::SETGT;
4901      break;
4902    case Intrinsic::x86_sse_ucomige_ss:
4903    case Intrinsic::x86_sse2_ucomige_sd:
4904      Opc = X86ISD::UCOMI;
4905      CC = ISD::SETGE;
4906      break;
4907    case Intrinsic::x86_sse_ucomineq_ss:
4908    case Intrinsic::x86_sse2_ucomineq_sd:
4909      Opc = X86ISD::UCOMI;
4910      CC = ISD::SETNE;
4911      break;
4912    }
4913
4914    unsigned X86CC;
4915    SDOperand LHS = Op.getOperand(1);
4916    SDOperand RHS = Op.getOperand(2);
4917    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4918
4919    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4920    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4921    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4922    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4923    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4924    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4925    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4926  }
4927  }
4928}
4929
4930/// LowerOperation - Provide custom lowering hooks for some operations.
4931///
4932SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4933  switch (Op.getOpcode()) {
4934  default: assert(0 && "Should not custom lower this!");
4935  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4936  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4937  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4938  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4939  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4940  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4941  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4942  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4943  case ISD::SHL_PARTS:
4944  case ISD::SRA_PARTS:
4945  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4946  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4947  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4948  case ISD::FABS:               return LowerFABS(Op, DAG);
4949  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4950  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4951  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4952  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4953  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4954  case ISD::CALL:               return LowerCALL(Op, DAG);
4955  case ISD::RET:                return LowerRET(Op, DAG);
4956  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4957  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4958  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4959  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4960  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4961  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4962  }
4963}
4964
4965const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4966  switch (Opcode) {
4967  default: return NULL;
4968  case X86ISD::SHLD:               return "X86ISD::SHLD";
4969  case X86ISD::SHRD:               return "X86ISD::SHRD";
4970  case X86ISD::FAND:               return "X86ISD::FAND";
4971  case X86ISD::FXOR:               return "X86ISD::FXOR";
4972  case X86ISD::FILD:               return "X86ISD::FILD";
4973  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4974  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4975  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4976  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4977  case X86ISD::FLD:                return "X86ISD::FLD";
4978  case X86ISD::FST:                return "X86ISD::FST";
4979  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4980  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4981  case X86ISD::CALL:               return "X86ISD::CALL";
4982  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4983  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4984  case X86ISD::CMP:                return "X86ISD::CMP";
4985  case X86ISD::COMI:               return "X86ISD::COMI";
4986  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4987  case X86ISD::SETCC:              return "X86ISD::SETCC";
4988  case X86ISD::CMOV:               return "X86ISD::CMOV";
4989  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4990  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4991  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4992  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4993  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
4994  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
4995  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4996  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4997  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4998  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4999  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5000  }
5001}
5002
5003/// isLegalAddressImmediate - Return true if the integer value or
5004/// GlobalValue can be used as the offset of the target addressing mode.
5005bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const {
5006  // X86 allows a sign-extended 32-bit immediate field.
5007  return (V > -(1LL << 32) && V < (1LL << 32)-1);
5008}
5009
5010bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
5011  // GV is 64-bit but displacement field is 32-bit unless we are in small code
5012  // model. Mac OS X happens to support only small PIC code model.
5013  // FIXME: better support for other OS's.
5014  if (Subtarget->is64Bit() && !Subtarget->isTargetDarwin())
5015    return false;
5016  if (Subtarget->isTargetDarwin()) {
5017    Reloc::Model RModel = getTargetMachine().getRelocationModel();
5018    if (RModel == Reloc::Static)
5019      return true;
5020    else if (RModel == Reloc::DynamicNoPIC)
5021      return !DarwinGVRequiresExtraLoad(GV);
5022    else
5023      return false;
5024  } else
5025    return true;
5026}
5027
5028/// isShuffleMaskLegal - Targets can use this to indicate that they only
5029/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5030/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5031/// are assumed to be legal.
5032bool
5033X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5034  // Only do shuffles on 128-bit vector types for now.
5035  if (MVT::getSizeInBits(VT) == 64) return false;
5036  return (Mask.Val->getNumOperands() <= 4 ||
5037          isSplatMask(Mask.Val)  ||
5038          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5039          X86::isUNPCKLMask(Mask.Val) ||
5040          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5041          X86::isUNPCKHMask(Mask.Val));
5042}
5043
5044bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5045                                               MVT::ValueType EVT,
5046                                               SelectionDAG &DAG) const {
5047  unsigned NumElts = BVOps.size();
5048  // Only do shuffles on 128-bit vector types for now.
5049  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5050  if (NumElts == 2) return true;
5051  if (NumElts == 4) {
5052    return (isMOVLMask(BVOps)  || isCommutedMOVL(BVOps, true) ||
5053            isSHUFPMask(BVOps) || isCommutedSHUFP(BVOps));
5054  }
5055  return false;
5056}
5057
5058//===----------------------------------------------------------------------===//
5059//                           X86 Scheduler Hooks
5060//===----------------------------------------------------------------------===//
5061
5062MachineBasicBlock *
5063X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5064                                           MachineBasicBlock *BB) {
5065  switch (MI->getOpcode()) {
5066  default: assert(false && "Unexpected instr type to insert");
5067  case X86::CMOV_FR32:
5068  case X86::CMOV_FR64:
5069  case X86::CMOV_V4F32:
5070  case X86::CMOV_V2F64:
5071  case X86::CMOV_V2I64: {
5072    // To "insert" a SELECT_CC instruction, we actually have to insert the
5073    // diamond control-flow pattern.  The incoming instruction knows the
5074    // destination vreg to set, the condition code register to branch on, the
5075    // true/false values to select between, and a branch opcode to use.
5076    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5077    ilist<MachineBasicBlock>::iterator It = BB;
5078    ++It;
5079
5080    //  thisMBB:
5081    //  ...
5082    //   TrueVal = ...
5083    //   cmpTY ccX, r1, r2
5084    //   bCC copy1MBB
5085    //   fallthrough --> copy0MBB
5086    MachineBasicBlock *thisMBB = BB;
5087    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5088    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5089    unsigned Opc = getCondBrOpcodeForX86CC(MI->getOperand(3).getImmedValue());
5090    BuildMI(BB, Opc, 1).addMBB(sinkMBB);
5091    MachineFunction *F = BB->getParent();
5092    F->getBasicBlockList().insert(It, copy0MBB);
5093    F->getBasicBlockList().insert(It, sinkMBB);
5094    // Update machine-CFG edges by first adding all successors of the current
5095    // block to the new block which will contain the Phi node for the select.
5096    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5097        e = BB->succ_end(); i != e; ++i)
5098      sinkMBB->addSuccessor(*i);
5099    // Next, remove all successors of the current block, and add the true
5100    // and fallthrough blocks as its successors.
5101    while(!BB->succ_empty())
5102      BB->removeSuccessor(BB->succ_begin());
5103    BB->addSuccessor(copy0MBB);
5104    BB->addSuccessor(sinkMBB);
5105
5106    //  copy0MBB:
5107    //   %FalseValue = ...
5108    //   # fallthrough to sinkMBB
5109    BB = copy0MBB;
5110
5111    // Update machine-CFG edges
5112    BB->addSuccessor(sinkMBB);
5113
5114    //  sinkMBB:
5115    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5116    //  ...
5117    BB = sinkMBB;
5118    BuildMI(BB, X86::PHI, 4, MI->getOperand(0).getReg())
5119      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5120      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5121
5122    delete MI;   // The pseudo instruction is gone now.
5123    return BB;
5124  }
5125
5126  case X86::FP_TO_INT16_IN_MEM:
5127  case X86::FP_TO_INT32_IN_MEM:
5128  case X86::FP_TO_INT64_IN_MEM: {
5129    // Change the floating point control register to use "round towards zero"
5130    // mode when truncating to an integer value.
5131    MachineFunction *F = BB->getParent();
5132    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5133    addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
5134
5135    // Load the old value of the high byte of the control word...
5136    unsigned OldCW =
5137      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
5138    addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx);
5139
5140    // Set the high part to be round to zero...
5141    addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F);
5142
5143    // Reload the modified control word now...
5144    addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
5145
5146    // Restore the memory image of control word to original value
5147    addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW);
5148
5149    // Get the X86 opcode to use.
5150    unsigned Opc;
5151    switch (MI->getOpcode()) {
5152    default: assert(0 && "illegal opcode!");
5153    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
5154    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
5155    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
5156    }
5157
5158    X86AddressMode AM;
5159    MachineOperand &Op = MI->getOperand(0);
5160    if (Op.isRegister()) {
5161      AM.BaseType = X86AddressMode::RegBase;
5162      AM.Base.Reg = Op.getReg();
5163    } else {
5164      AM.BaseType = X86AddressMode::FrameIndexBase;
5165      AM.Base.FrameIndex = Op.getFrameIndex();
5166    }
5167    Op = MI->getOperand(1);
5168    if (Op.isImmediate())
5169      AM.Scale = Op.getImmedValue();
5170    Op = MI->getOperand(2);
5171    if (Op.isImmediate())
5172      AM.IndexReg = Op.getImmedValue();
5173    Op = MI->getOperand(3);
5174    if (Op.isGlobalAddress()) {
5175      AM.GV = Op.getGlobal();
5176    } else {
5177      AM.Disp = Op.getImmedValue();
5178    }
5179    addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(MI->getOperand(4).getReg());
5180
5181    // Reload the original control word now.
5182    addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
5183
5184    delete MI;   // The pseudo instruction is gone now.
5185    return BB;
5186  }
5187  }
5188}
5189
5190//===----------------------------------------------------------------------===//
5191//                           X86 Optimization Hooks
5192//===----------------------------------------------------------------------===//
5193
5194void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5195                                                       uint64_t Mask,
5196                                                       uint64_t &KnownZero,
5197                                                       uint64_t &KnownOne,
5198                                                       unsigned Depth) const {
5199  unsigned Opc = Op.getOpcode();
5200  assert((Opc >= ISD::BUILTIN_OP_END ||
5201          Opc == ISD::INTRINSIC_WO_CHAIN ||
5202          Opc == ISD::INTRINSIC_W_CHAIN ||
5203          Opc == ISD::INTRINSIC_VOID) &&
5204         "Should use MaskedValueIsZero if you don't know whether Op"
5205         " is a target node!");
5206
5207  KnownZero = KnownOne = 0;   // Don't know anything.
5208  switch (Opc) {
5209  default: break;
5210  case X86ISD::SETCC:
5211    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5212    break;
5213  }
5214}
5215
5216/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5217/// element of the result of the vector shuffle.
5218static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5219  MVT::ValueType VT = N->getValueType(0);
5220  SDOperand PermMask = N->getOperand(2);
5221  unsigned NumElems = PermMask.getNumOperands();
5222  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5223  i %= NumElems;
5224  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5225    return (i == 0)
5226      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
5227  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5228    SDOperand Idx = PermMask.getOperand(i);
5229    if (Idx.getOpcode() == ISD::UNDEF)
5230      return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
5231    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5232  }
5233  return SDOperand();
5234}
5235
5236/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5237/// node is a GlobalAddress + an offset.
5238static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5239  if (N->getOpcode() == X86ISD::Wrapper) {
5240    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5241      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5242      return true;
5243    }
5244  } else if (N->getOpcode() == ISD::ADD) {
5245    SDOperand N1 = N->getOperand(0);
5246    SDOperand N2 = N->getOperand(1);
5247    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5248      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5249      if (V) {
5250        Offset += V->getSignExtended();
5251        return true;
5252      }
5253    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5254      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5255      if (V) {
5256        Offset += V->getSignExtended();
5257        return true;
5258      }
5259    }
5260  }
5261  return false;
5262}
5263
5264/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5265/// + Dist * Size.
5266static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5267                              MachineFrameInfo *MFI) {
5268  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5269    return false;
5270
5271  SDOperand Loc = N->getOperand(1);
5272  SDOperand BaseLoc = Base->getOperand(1);
5273  if (Loc.getOpcode() == ISD::FrameIndex) {
5274    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5275      return false;
5276    int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
5277    int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5278    int FS  = MFI->getObjectSize(FI);
5279    int BFS = MFI->getObjectSize(BFI);
5280    if (FS != BFS || FS != Size) return false;
5281    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5282  } else {
5283    GlobalValue *GV1 = NULL;
5284    GlobalValue *GV2 = NULL;
5285    int64_t Offset1 = 0;
5286    int64_t Offset2 = 0;
5287    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5288    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5289    if (isGA1 && isGA2 && GV1 == GV2)
5290      return Offset1 == (Offset2 + Dist*Size);
5291  }
5292
5293  return false;
5294}
5295
5296static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5297                              const X86Subtarget *Subtarget) {
5298  GlobalValue *GV;
5299  int64_t Offset;
5300  if (isGAPlusOffset(Base, GV, Offset))
5301    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5302  else {
5303    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
5304    int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
5305    if (BFI < 0)
5306      // Fixed objects do not specify alignment, however the offsets are known.
5307      return ((Subtarget->getStackAlignment() % 16) == 0 &&
5308              (MFI->getObjectOffset(BFI) % 16) == 0);
5309    else
5310      return MFI->getObjectAlignment(BFI) >= 16;
5311  }
5312  return false;
5313}
5314
5315
5316/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5317/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5318/// if the load addresses are consecutive, non-overlapping, and in the right
5319/// order.
5320static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5321                                       const X86Subtarget *Subtarget) {
5322  MachineFunction &MF = DAG.getMachineFunction();
5323  MachineFrameInfo *MFI = MF.getFrameInfo();
5324  MVT::ValueType VT = N->getValueType(0);
5325  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
5326  SDOperand PermMask = N->getOperand(2);
5327  int NumElems = (int)PermMask.getNumOperands();
5328  SDNode *Base = NULL;
5329  for (int i = 0; i < NumElems; ++i) {
5330    SDOperand Idx = PermMask.getOperand(i);
5331    if (Idx.getOpcode() == ISD::UNDEF) {
5332      if (!Base) return SDOperand();
5333    } else {
5334      SDOperand Arg =
5335        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5336      if (!Arg.Val || Arg.getOpcode() != ISD::LOAD)
5337        return SDOperand();
5338      if (!Base)
5339        Base = Arg.Val;
5340      else if (!isConsecutiveLoad(Arg.Val, Base,
5341                                  i, MVT::getSizeInBits(EVT)/8,MFI))
5342        return SDOperand();
5343    }
5344  }
5345
5346  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
5347  if (isAlign16)
5348    return DAG.getLoad(VT, Base->getOperand(0), Base->getOperand(1),
5349                       Base->getOperand(2));
5350  else {
5351    // Just use movups, it's shorter.
5352    std::vector<MVT::ValueType> Tys;
5353    Tys.push_back(MVT::v4f32);
5354    Tys.push_back(MVT::Other);
5355    SmallVector<SDOperand, 3> Ops;
5356    Ops.push_back(Base->getOperand(0));
5357    Ops.push_back(Base->getOperand(1));
5358    Ops.push_back(Base->getOperand(2));
5359    return DAG.getNode(ISD::BIT_CONVERT, VT,
5360                       DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
5361  }
5362}
5363
5364/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5365static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5366                                      const X86Subtarget *Subtarget) {
5367  SDOperand Cond = N->getOperand(0);
5368
5369  // If we have SSE[12] support, try to form min/max nodes.
5370  if (Subtarget->hasSSE2() &&
5371      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5372    if (Cond.getOpcode() == ISD::SETCC) {
5373      // Get the LHS/RHS of the select.
5374      SDOperand LHS = N->getOperand(1);
5375      SDOperand RHS = N->getOperand(2);
5376      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5377
5378      unsigned IntNo = 0;
5379      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5380        // (X olt Y) ? X : Y -> min
5381        if (CC == ISD::SETOLT || CC == ISD::SETLT)
5382          IntNo = LHS.getValueType() == MVT::f32 ? Intrinsic::x86_sse_min_ss :
5383                                                   Intrinsic::x86_sse2_min_sd;
5384        // (X uge Y) ? X : Y -> max
5385        if (CC == ISD::SETUGE || CC == ISD::SETGE)
5386          IntNo = LHS.getValueType() == MVT::f32 ? Intrinsic::x86_sse_max_ss :
5387            Intrinsic::x86_sse2_max_sd;
5388        // TODO: Handle more cases if unsafe math!
5389      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5390        // (X uge Y) ? Y : X -> min
5391        if (CC == ISD::SETUGE || CC == ISD::SETGE)
5392          IntNo = LHS.getValueType() == MVT::f32 ? Intrinsic::x86_sse_min_ss :
5393            Intrinsic::x86_sse2_min_sd;
5394        // (X olt Y) ? Y : X -> max
5395        if (CC == ISD::SETOLT || CC == ISD::SETLT)
5396          IntNo = LHS.getValueType() == MVT::f32 ? Intrinsic::x86_sse_max_ss :
5397            Intrinsic::x86_sse2_max_sd;
5398        // TODO: Handle more cases if unsafe math!
5399      }
5400
5401      // minss/maxss take a v4f32 operand.
5402      if (IntNo) {
5403        if (LHS.getValueType() == MVT::f32) {
5404          LHS = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, LHS);
5405          RHS = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, RHS);
5406        } else {
5407          LHS = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, LHS);
5408          RHS = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, RHS);
5409        }
5410
5411        MVT::ValueType PtrTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5412        SDOperand IntNoN = DAG.getConstant(IntNo, PtrTy);
5413
5414        SDOperand Val = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, LHS.getValueType(),
5415                                    IntNoN, LHS, RHS);
5416        return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getValueType(0), Val,
5417                           DAG.getConstant(0, PtrTy));
5418      }
5419    }
5420
5421  }
5422
5423  return SDOperand();
5424}
5425
5426
5427SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5428                                               DAGCombinerInfo &DCI) const {
5429  TargetMachine &TM = getTargetMachine();
5430  SelectionDAG &DAG = DCI.DAG;
5431  switch (N->getOpcode()) {
5432  default: break;
5433  case ISD::VECTOR_SHUFFLE:
5434    return PerformShuffleCombine(N, DAG, Subtarget);
5435  case ISD::SELECT:
5436    return PerformSELECTCombine(N, DAG, Subtarget);
5437  }
5438
5439  return SDOperand();
5440}
5441
5442//===----------------------------------------------------------------------===//
5443//                           X86 Inline Assembly Support
5444//===----------------------------------------------------------------------===//
5445
5446/// getConstraintType - Given a constraint letter, return the type of
5447/// constraint it is for this target.
5448X86TargetLowering::ConstraintType
5449X86TargetLowering::getConstraintType(char ConstraintLetter) const {
5450  switch (ConstraintLetter) {
5451  case 'A':
5452  case 'r':
5453  case 'R':
5454  case 'l':
5455  case 'q':
5456  case 'Q':
5457  case 'x':
5458  case 'Y':
5459    return C_RegisterClass;
5460  default: return TargetLowering::getConstraintType(ConstraintLetter);
5461  }
5462}
5463
5464std::vector<unsigned> X86TargetLowering::
5465getRegClassForInlineAsmConstraint(const std::string &Constraint,
5466                                  MVT::ValueType VT) const {
5467  if (Constraint.size() == 1) {
5468    // FIXME: not handling fp-stack yet!
5469    // FIXME: not handling MMX registers yet ('y' constraint).
5470    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5471    default: break;  // Unknown constraint letter
5472    case 'A':   // EAX/EDX
5473      if (VT == MVT::i32 || VT == MVT::i64)
5474        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5475      break;
5476    case 'r':   // GENERAL_REGS
5477    case 'R':   // LEGACY_REGS
5478      if (VT == MVT::i32)
5479        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
5480                                     X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0);
5481      else if (VT == MVT::i16)
5482        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
5483                                     X86::SI, X86::DI, X86::BP, X86::SP, 0);
5484      else if (VT == MVT::i8)
5485        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
5486      break;
5487    case 'l':   // INDEX_REGS
5488      if (VT == MVT::i32)
5489        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
5490                                     X86::ESI, X86::EDI, X86::EBP, 0);
5491      else if (VT == MVT::i16)
5492        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
5493                                     X86::SI, X86::DI, X86::BP, 0);
5494      else if (VT == MVT::i8)
5495        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
5496      break;
5497    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5498    case 'Q':   // Q_REGS
5499      if (VT == MVT::i32)
5500        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5501      else if (VT == MVT::i16)
5502        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5503      else if (VT == MVT::i8)
5504        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
5505        break;
5506    case 'x':   // SSE_REGS if SSE1 allowed
5507      if (Subtarget->hasSSE1())
5508        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
5509                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
5510                                     0);
5511      return std::vector<unsigned>();
5512    case 'Y':   // SSE_REGS if SSE2 allowed
5513      if (Subtarget->hasSSE2())
5514        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
5515                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
5516                                     0);
5517      return std::vector<unsigned>();
5518    }
5519  }
5520
5521  return std::vector<unsigned>();
5522}
5523
5524std::pair<unsigned, const TargetRegisterClass*>
5525X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5526                                                MVT::ValueType VT) const {
5527  // Use the default implementation in TargetLowering to convert the register
5528  // constraint into a member of a register class.
5529  std::pair<unsigned, const TargetRegisterClass*> Res;
5530  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5531
5532  // Not found?  Bail out.
5533  if (Res.second == 0) return Res;
5534
5535  // Otherwise, check to see if this is a register class of the wrong value
5536  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5537  // turn into {ax},{dx}.
5538  if (Res.second->hasType(VT))
5539    return Res;   // Correct type already, nothing to do.
5540
5541  // All of the single-register GCC register classes map their values onto
5542  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5543  // really want an 8-bit or 32-bit register, map to the appropriate register
5544  // class and return the appropriate register.
5545  if (Res.second != X86::GR16RegisterClass)
5546    return Res;
5547
5548  if (VT == MVT::i8) {
5549    unsigned DestReg = 0;
5550    switch (Res.first) {
5551    default: break;
5552    case X86::AX: DestReg = X86::AL; break;
5553    case X86::DX: DestReg = X86::DL; break;
5554    case X86::CX: DestReg = X86::CL; break;
5555    case X86::BX: DestReg = X86::BL; break;
5556    }
5557    if (DestReg) {
5558      Res.first = DestReg;
5559      Res.second = Res.second = X86::GR8RegisterClass;
5560    }
5561  } else if (VT == MVT::i32) {
5562    unsigned DestReg = 0;
5563    switch (Res.first) {
5564    default: break;
5565    case X86::AX: DestReg = X86::EAX; break;
5566    case X86::DX: DestReg = X86::EDX; break;
5567    case X86::CX: DestReg = X86::ECX; break;
5568    case X86::BX: DestReg = X86::EBX; break;
5569    case X86::SI: DestReg = X86::ESI; break;
5570    case X86::DI: DestReg = X86::EDI; break;
5571    case X86::BP: DestReg = X86::EBP; break;
5572    case X86::SP: DestReg = X86::ESP; break;
5573    }
5574    if (DestReg) {
5575      Res.first = DestReg;
5576      Res.second = Res.second = X86::GR32RegisterClass;
5577    }
5578  } else if (VT == MVT::i64) {
5579    unsigned DestReg = 0;
5580    switch (Res.first) {
5581    default: break;
5582    case X86::AX: DestReg = X86::RAX; break;
5583    case X86::DX: DestReg = X86::RDX; break;
5584    case X86::CX: DestReg = X86::RCX; break;
5585    case X86::BX: DestReg = X86::RBX; break;
5586    case X86::SI: DestReg = X86::RSI; break;
5587    case X86::DI: DestReg = X86::RDI; break;
5588    case X86::BP: DestReg = X86::RBP; break;
5589    case X86::SP: DestReg = X86::RSP; break;
5590    }
5591    if (DestReg) {
5592      Res.first = DestReg;
5593      Res.second = Res.second = X86::GR64RegisterClass;
5594    }
5595  }
5596
5597  return Res;
5598}
5599
5600