X86ISelLowering.cpp revision e321d7ffc5b06152efc4d6e8e1880e08f5c936a8
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasXMMInt() || Subtarget->hasAVX();
172  X86ScalarSSEf32 = Subtarget->hasXMM() || Subtarget->hasAVX();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183
184  // For 64-bit since we have so many registers use the ILP scheduler, for
185  // 32-bit code use the register pressure specific scheduling.
186  if (Subtarget->is64Bit())
187    setSchedulingPreference(Sched::ILP);
188  else
189    setSchedulingPreference(Sched::RegPressure);
190  setStackPointerRegisterToSaveRestore(X86StackPtr);
191
192  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
193    // Setup Windows compiler runtime calls.
194    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
195    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
196    setLibcallName(RTLIB::SREM_I64, "_allrem");
197    setLibcallName(RTLIB::UREM_I64, "_aullrem");
198    setLibcallName(RTLIB::MUL_I64, "_allmul");
199    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
200    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
201    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
202    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
203    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
207    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
225  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
226  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
257  } else if (!UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!UseSoftFloat) {
315    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
316      // Expand FP_TO_UINT into a select.
317      // FIXME: We would like to use a Custom expander here eventually to do
318      // the optimal thing for SSE vs. the default expansion in the legalizer.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
320    else
321      // With SSE3 we can use fisttpll to convert to a signed i64; without
322      // SSE, we're stuck with a fistpll.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
324  }
325
326  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
327  if (!X86ScalarSSEf64) {
328    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
329    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
330    if (Subtarget->is64Bit()) {
331      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
332      // Without SSE, i64->f64 goes through memory.
333      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
334    }
335  }
336
337  // Scalar integer divide and remainder are lowered to use operations that
338  // produce two results, to match the available instructions. This exposes
339  // the two-result form to trivial CSE, which is able to combine x/y and x%y
340  // into a single instruction.
341  //
342  // Scalar integer multiply-high is also lowered to use two-result
343  // operations, to match the available instructions. However, plain multiply
344  // (low) operations are left as Legal, as there are single-result
345  // instructions for this in x86. Using the two-result multiply instructions
346  // when both high and low results are needed must be arranged by dagcombine.
347  for (unsigned i = 0, e = 4; i != e; ++i) {
348    MVT VT = IntVTs[i];
349    setOperationAction(ISD::MULHS, VT, Expand);
350    setOperationAction(ISD::MULHU, VT, Expand);
351    setOperationAction(ISD::SDIV, VT, Expand);
352    setOperationAction(ISD::UDIV, VT, Expand);
353    setOperationAction(ISD::SREM, VT, Expand);
354    setOperationAction(ISD::UREM, VT, Expand);
355
356    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
357    setOperationAction(ISD::ADDC, VT, Custom);
358    setOperationAction(ISD::ADDE, VT, Custom);
359    setOperationAction(ISD::SUBC, VT, Custom);
360    setOperationAction(ISD::SUBE, VT, Custom);
361  }
362
363  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
364  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
365  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
366  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
367  if (Subtarget->is64Bit())
368    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
369  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
372  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
373  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
376  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
377
378  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
379  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
380  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
381  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
382  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
383  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
384  if (Subtarget->is64Bit()) {
385    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
386    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
387  }
388
389  if (Subtarget->hasPOPCNT()) {
390    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
391  } else {
392    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
393    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
394    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
397  }
398
399  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
400  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
401
402  // These should be promoted to a larger select which is supported.
403  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
404  // X86 wants to expand cmov itself.
405  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
406  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
407  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
408  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
409  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
410  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
411  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
412  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
413  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
414  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
415  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
416  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
417  if (Subtarget->is64Bit()) {
418    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
419    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
420  }
421  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
422
423  // Darwin ABI issue.
424  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
425  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
426  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
427  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
428  if (Subtarget->is64Bit())
429    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
430  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
431  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
432  if (Subtarget->is64Bit()) {
433    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
434    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
435    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
436    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
437    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
438  }
439  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
440  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
441  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
442  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
443  if (Subtarget->is64Bit()) {
444    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
445    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
446    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
447  }
448
449  if (Subtarget->hasXMM())
450    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
451
452  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
453  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
454
455  // On X86 and X86-64, atomic operations are lowered to locked instructions.
456  // Locked instructions, in turn, have implicit fence semantics (all memory
457  // operations are flushed before issuing the locked instruction, and they
458  // are not buffered), so we can fold away the common pattern of
459  // fence-atomic-fence.
460  setShouldFoldAtomicFences(true);
461
462  // Expand certain atomics
463  for (unsigned i = 0, e = 4; i != e; ++i) {
464    MVT VT = IntVTs[i];
465    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
466    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
467  }
468
469  if (!Subtarget->is64Bit()) {
470    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
471    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
472    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
473    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
474    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
475    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
476    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
477  }
478
479  // FIXME - use subtarget debug flags
480  if (!Subtarget->isTargetDarwin() &&
481      !Subtarget->isTargetELF() &&
482      !Subtarget->isTargetCygMing()) {
483    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
484  }
485
486  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
487  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
488  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
489  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
490  if (Subtarget->is64Bit()) {
491    setExceptionPointerRegister(X86::RAX);
492    setExceptionSelectorRegister(X86::RDX);
493  } else {
494    setExceptionPointerRegister(X86::EAX);
495    setExceptionSelectorRegister(X86::EDX);
496  }
497  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
498  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
499
500  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
501
502  setOperationAction(ISD::TRAP, MVT::Other, Legal);
503
504  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
505  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
506  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
507  if (Subtarget->is64Bit()) {
508    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
509    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
510  } else {
511    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
512    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
513  }
514
515  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
516  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
517  setOperationAction(ISD::DYNAMIC_STACKALLOC,
518                     (Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
519                     (Subtarget->isTargetCOFF()
520                      && !Subtarget->isTargetEnvMacho()
521                      ? Custom : Expand));
522
523  if (!UseSoftFloat && X86ScalarSSEf64) {
524    // f32 and f64 use SSE.
525    // Set up the FP register classes.
526    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
527    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
528
529    // Use ANDPD to simulate FABS.
530    setOperationAction(ISD::FABS , MVT::f64, Custom);
531    setOperationAction(ISD::FABS , MVT::f32, Custom);
532
533    // Use XORP to simulate FNEG.
534    setOperationAction(ISD::FNEG , MVT::f64, Custom);
535    setOperationAction(ISD::FNEG , MVT::f32, Custom);
536
537    // Use ANDPD and ORPD to simulate FCOPYSIGN.
538    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
539    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
540
541    // Lower this to FGETSIGNx86 plus an AND.
542    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
543    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
544
545    // We don't support sin/cos/fmod
546    setOperationAction(ISD::FSIN , MVT::f64, Expand);
547    setOperationAction(ISD::FCOS , MVT::f64, Expand);
548    setOperationAction(ISD::FSIN , MVT::f32, Expand);
549    setOperationAction(ISD::FCOS , MVT::f32, Expand);
550
551    // Expand FP immediates into loads from the stack, except for the special
552    // cases we handle.
553    addLegalFPImmediate(APFloat(+0.0)); // xorpd
554    addLegalFPImmediate(APFloat(+0.0f)); // xorps
555  } else if (!UseSoftFloat && X86ScalarSSEf32) {
556    // Use SSE for f32, x87 for f64.
557    // Set up the FP register classes.
558    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
559    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
560
561    // Use ANDPS to simulate FABS.
562    setOperationAction(ISD::FABS , MVT::f32, Custom);
563
564    // Use XORP to simulate FNEG.
565    setOperationAction(ISD::FNEG , MVT::f32, Custom);
566
567    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
568
569    // Use ANDPS and ORPS to simulate FCOPYSIGN.
570    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
571    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
572
573    // We don't support sin/cos/fmod
574    setOperationAction(ISD::FSIN , MVT::f32, Expand);
575    setOperationAction(ISD::FCOS , MVT::f32, Expand);
576
577    // Special cases we handle for FP constants.
578    addLegalFPImmediate(APFloat(+0.0f)); // xorps
579    addLegalFPImmediate(APFloat(+0.0)); // FLD0
580    addLegalFPImmediate(APFloat(+1.0)); // FLD1
581    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
582    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
583
584    if (!UnsafeFPMath) {
585      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
586      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
587    }
588  } else if (!UseSoftFloat) {
589    // f32 and f64 in x87.
590    // Set up the FP register classes.
591    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
592    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
593
594    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
595    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
596    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
597    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
598
599    if (!UnsafeFPMath) {
600      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
601      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
602    }
603    addLegalFPImmediate(APFloat(+0.0)); // FLD0
604    addLegalFPImmediate(APFloat(+1.0)); // FLD1
605    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
606    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
607    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
608    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
609    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
610    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
611  }
612
613  // We don't support FMA.
614  setOperationAction(ISD::FMA, MVT::f64, Expand);
615  setOperationAction(ISD::FMA, MVT::f32, Expand);
616
617  // Long double always uses X87.
618  if (!UseSoftFloat) {
619    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
620    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
622    {
623      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
624      addLegalFPImmediate(TmpFlt);  // FLD0
625      TmpFlt.changeSign();
626      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
627
628      bool ignored;
629      APFloat TmpFlt2(+1.0);
630      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
631                      &ignored);
632      addLegalFPImmediate(TmpFlt2);  // FLD1
633      TmpFlt2.changeSign();
634      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
635    }
636
637    if (!UnsafeFPMath) {
638      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
639      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
640    }
641
642    setOperationAction(ISD::FMA, MVT::f80, Expand);
643  }
644
645  // Always use a library call for pow.
646  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
647  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
648  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
649
650  setOperationAction(ISD::FLOG, MVT::f80, Expand);
651  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
652  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
653  setOperationAction(ISD::FEXP, MVT::f80, Expand);
654  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
655
656  // First set operation action for all vector types to either promote
657  // (for widening) or expand (for scalarization). Then we will selectively
658  // turn on ones that can be effectively codegen'd.
659  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
660       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
661    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
662    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
663    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
664    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
665    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
666    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
667    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
668    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
669    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
670    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
671    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
672    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
673    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
674    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
675    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
676    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
677    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
678    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
679    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
680    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
681    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
711    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
715    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
716         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
717      setTruncStoreAction((MVT::SimpleValueType)VT,
718                          (MVT::SimpleValueType)InnerVT, Expand);
719    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
720    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
721    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
722  }
723
724  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
725  // with -msoft-float, disable use of MMX as well.
726  if (!UseSoftFloat && Subtarget->hasMMX()) {
727    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
728    // No operations on x86mmx supported, everything uses intrinsics.
729  }
730
731  // MMX-sized vectors (other than x86mmx) are expected to be expanded
732  // into smaller operations.
733  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
734  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
735  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
736  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
737  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
738  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
739  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
740  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
741  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
742  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
743  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
744  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
745  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
746  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
747  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
748  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
749  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
750  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
751  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
752  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
753  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
754  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
755  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
756  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
757  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
758  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
759  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
760  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
761  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
762
763  if (!UseSoftFloat && Subtarget->hasXMM()) {
764    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
765
766    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
767    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
768    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
769    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
770    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
771    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
772    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
773    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
774    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
775    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
776    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
777    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
778  }
779
780  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
781    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
782
783    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
784    // registers cannot be used even for integer operations.
785    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
786    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
787    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
788    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
789
790    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
791    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
792    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
793    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
794    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
795    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
796    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
797    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
798    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
799    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
800    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
801    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
802    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
803    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
804    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
805    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
806
807    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
808    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
809    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
810    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
811
812    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
813    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
814    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
815    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
816    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
817
818    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
819    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
820    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
821    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
822    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
823
824    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
825    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
826      EVT VT = (MVT::SimpleValueType)i;
827      // Do not attempt to custom lower non-power-of-2 vectors
828      if (!isPowerOf2_32(VT.getVectorNumElements()))
829        continue;
830      // Do not attempt to custom lower non-128-bit vectors
831      if (!VT.is128BitVector())
832        continue;
833      setOperationAction(ISD::BUILD_VECTOR,
834                         VT.getSimpleVT().SimpleTy, Custom);
835      setOperationAction(ISD::VECTOR_SHUFFLE,
836                         VT.getSimpleVT().SimpleTy, Custom);
837      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
838                         VT.getSimpleVT().SimpleTy, Custom);
839    }
840
841    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
842    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
843    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
844    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
845    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
846    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
847
848    if (Subtarget->is64Bit()) {
849      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
850      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
851    }
852
853    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
854    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
855      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
856      EVT VT = SVT;
857
858      // Do not attempt to promote non-128-bit vectors
859      if (!VT.is128BitVector())
860        continue;
861
862      setOperationAction(ISD::AND,    SVT, Promote);
863      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
864      setOperationAction(ISD::OR,     SVT, Promote);
865      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
866      setOperationAction(ISD::XOR,    SVT, Promote);
867      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
868      setOperationAction(ISD::LOAD,   SVT, Promote);
869      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
870      setOperationAction(ISD::SELECT, SVT, Promote);
871      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
872    }
873
874    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
875
876    // Custom lower v2i64 and v2f64 selects.
877    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
879    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
880    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
881
882    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
883    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
884  }
885
886  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
887    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
888    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
889    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
890    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
891    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
892    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
893    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
894    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
895    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
896    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
897
898    // FIXME: Do we need to handle scalar-to-vector here?
899    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
900
901    // Can turn SHL into an integer multiply.
902    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
903    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
904
905    // i8 and i16 vectors are custom , because the source register and source
906    // source memory operand types are not the same width.  f32 vectors are
907    // custom since the immediate controlling the insert encodes additional
908    // information.
909    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
910    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
911    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
913
914    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
915    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
916    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
917    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
918
919    if (Subtarget->is64Bit()) {
920      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
921      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
922    }
923  }
924
925  if (Subtarget->hasSSE2() || Subtarget->hasAVX()) {
926    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
927    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
928    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
929    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
930
931    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
932    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
933    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
934
935    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
936    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
937  }
938
939  if (Subtarget->hasSSE42() || Subtarget->hasAVX())
940    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
941
942  if (!UseSoftFloat && Subtarget->hasAVX()) {
943    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
944    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
945    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
946    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
947    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
948    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
949
950    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
951    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
952    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
953
954    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
955    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
956    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
957    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
958    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
959    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
960
961    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
962    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
963    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
964    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
965    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
966    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
967
968    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
969    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
970    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
971
972    // sint_to_fp between different vector types needs custom handling
973    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Custom);
974
975    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
976    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
977    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
978    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
979    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
980    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
981
982    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
983    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
984    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
985    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
986
987    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
988    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
989    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
990    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
991
992    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
993    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
994
995    setOperationAction(ISD::VSETCC,            MVT::v8i32, Custom);
996    setOperationAction(ISD::VSETCC,            MVT::v4i64, Custom);
997
998    // Custom lower several nodes for 256-bit types.
999    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1000                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1001      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1002      EVT VT = SVT;
1003
1004      // Extract subvector is special because the value type
1005      // (result) is 128-bit but the source is 256-bit wide.
1006      if (VT.is128BitVector())
1007        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1008
1009      // Do not attempt to custom lower other non-256-bit vectors
1010      if (!VT.is256BitVector())
1011        continue;
1012
1013      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1014      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1015      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1016      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1017      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1018      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1019    }
1020
1021    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1022    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1023      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1024      EVT VT = SVT;
1025
1026      // Do not attempt to promote non-256-bit vectors
1027      if (!VT.is256BitVector())
1028        continue;
1029
1030      setOperationAction(ISD::AND,    SVT, Promote);
1031      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1032      setOperationAction(ISD::OR,     SVT, Promote);
1033      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1034      setOperationAction(ISD::XOR,    SVT, Promote);
1035      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1036      setOperationAction(ISD::LOAD,   SVT, Promote);
1037      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1038      setOperationAction(ISD::SELECT, SVT, Promote);
1039      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1040    }
1041  }
1042
1043  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1044  // of this type with custom code.
1045  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1046         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1047    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1048  }
1049
1050  // We want to custom lower some of our intrinsics.
1051  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1052
1053
1054  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1055  // handle type legalization for these operations here.
1056  //
1057  // FIXME: We really should do custom legalization for addition and
1058  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1059  // than generic legalization for 64-bit multiplication-with-overflow, though.
1060  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1061    // Add/Sub/Mul with overflow operations are custom lowered.
1062    MVT VT = IntVTs[i];
1063    setOperationAction(ISD::SADDO, VT, Custom);
1064    setOperationAction(ISD::UADDO, VT, Custom);
1065    setOperationAction(ISD::SSUBO, VT, Custom);
1066    setOperationAction(ISD::USUBO, VT, Custom);
1067    setOperationAction(ISD::SMULO, VT, Custom);
1068    setOperationAction(ISD::UMULO, VT, Custom);
1069  }
1070
1071  // There are no 8-bit 3-address imul/mul instructions
1072  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1073  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1074
1075  if (!Subtarget->is64Bit()) {
1076    // These libcalls are not available in 32-bit.
1077    setLibcallName(RTLIB::SHL_I128, 0);
1078    setLibcallName(RTLIB::SRL_I128, 0);
1079    setLibcallName(RTLIB::SRA_I128, 0);
1080  }
1081
1082  // We have target-specific dag combine patterns for the following nodes:
1083  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1084  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1085  setTargetDAGCombine(ISD::BUILD_VECTOR);
1086  setTargetDAGCombine(ISD::SELECT);
1087  setTargetDAGCombine(ISD::SHL);
1088  setTargetDAGCombine(ISD::SRA);
1089  setTargetDAGCombine(ISD::SRL);
1090  setTargetDAGCombine(ISD::OR);
1091  setTargetDAGCombine(ISD::AND);
1092  setTargetDAGCombine(ISD::ADD);
1093  setTargetDAGCombine(ISD::SUB);
1094  setTargetDAGCombine(ISD::STORE);
1095  setTargetDAGCombine(ISD::ZERO_EXTEND);
1096  setTargetDAGCombine(ISD::SINT_TO_FP);
1097  if (Subtarget->is64Bit())
1098    setTargetDAGCombine(ISD::MUL);
1099
1100  computeRegisterProperties();
1101
1102  // On Darwin, -Os means optimize for size without hurting performance,
1103  // do not reduce the limit.
1104  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1105  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1106  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1107  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1108  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1109  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1110  setPrefLoopAlignment(16);
1111  benefitFromCodePlacementOpt = true;
1112
1113  setPrefFunctionAlignment(4);
1114}
1115
1116
1117MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1118  return MVT::i8;
1119}
1120
1121
1122/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1123/// the desired ByVal argument alignment.
1124static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1125  if (MaxAlign == 16)
1126    return;
1127  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1128    if (VTy->getBitWidth() == 128)
1129      MaxAlign = 16;
1130  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1131    unsigned EltAlign = 0;
1132    getMaxByValAlign(ATy->getElementType(), EltAlign);
1133    if (EltAlign > MaxAlign)
1134      MaxAlign = EltAlign;
1135  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1136    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1137      unsigned EltAlign = 0;
1138      getMaxByValAlign(STy->getElementType(i), EltAlign);
1139      if (EltAlign > MaxAlign)
1140        MaxAlign = EltAlign;
1141      if (MaxAlign == 16)
1142        break;
1143    }
1144  }
1145  return;
1146}
1147
1148/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1149/// function arguments in the caller parameter area. For X86, aggregates
1150/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1151/// are at 4-byte boundaries.
1152unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1153  if (Subtarget->is64Bit()) {
1154    // Max of 8 and alignment of type.
1155    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1156    if (TyAlign > 8)
1157      return TyAlign;
1158    return 8;
1159  }
1160
1161  unsigned Align = 4;
1162  if (Subtarget->hasXMM())
1163    getMaxByValAlign(Ty, Align);
1164  return Align;
1165}
1166
1167/// getOptimalMemOpType - Returns the target specific optimal type for load
1168/// and store operations as a result of memset, memcpy, and memmove
1169/// lowering. If DstAlign is zero that means it's safe to destination
1170/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1171/// means there isn't a need to check it against alignment requirement,
1172/// probably because the source does not need to be loaded. If
1173/// 'NonScalarIntSafe' is true, that means it's safe to return a
1174/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1175/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1176/// constant so it does not need to be loaded.
1177/// It returns EVT::Other if the type should be determined using generic
1178/// target-independent logic.
1179EVT
1180X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1181                                       unsigned DstAlign, unsigned SrcAlign,
1182                                       bool NonScalarIntSafe,
1183                                       bool MemcpyStrSrc,
1184                                       MachineFunction &MF) const {
1185  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1186  // linux.  This is because the stack realignment code can't handle certain
1187  // cases like PR2962.  This should be removed when PR2962 is fixed.
1188  const Function *F = MF.getFunction();
1189  if (NonScalarIntSafe &&
1190      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1191    if (Size >= 16 &&
1192        (Subtarget->isUnalignedMemAccessFast() ||
1193         ((DstAlign == 0 || DstAlign >= 16) &&
1194          (SrcAlign == 0 || SrcAlign >= 16))) &&
1195        Subtarget->getStackAlignment() >= 16) {
1196      if (Subtarget->hasSSE2())
1197        return MVT::v4i32;
1198      if (Subtarget->hasSSE1())
1199        return MVT::v4f32;
1200    } else if (!MemcpyStrSrc && Size >= 8 &&
1201               !Subtarget->is64Bit() &&
1202               Subtarget->getStackAlignment() >= 8 &&
1203               Subtarget->hasXMMInt()) {
1204      // Do not use f64 to lower memcpy if source is string constant. It's
1205      // better to use i32 to avoid the loads.
1206      return MVT::f64;
1207    }
1208  }
1209  if (Subtarget->is64Bit() && Size >= 8)
1210    return MVT::i64;
1211  return MVT::i32;
1212}
1213
1214/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1215/// current function.  The returned value is a member of the
1216/// MachineJumpTableInfo::JTEntryKind enum.
1217unsigned X86TargetLowering::getJumpTableEncoding() const {
1218  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1219  // symbol.
1220  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1221      Subtarget->isPICStyleGOT())
1222    return MachineJumpTableInfo::EK_Custom32;
1223
1224  // Otherwise, use the normal jump table encoding heuristics.
1225  return TargetLowering::getJumpTableEncoding();
1226}
1227
1228const MCExpr *
1229X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1230                                             const MachineBasicBlock *MBB,
1231                                             unsigned uid,MCContext &Ctx) const{
1232  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1233         Subtarget->isPICStyleGOT());
1234  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1235  // entries.
1236  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1237                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1238}
1239
1240/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1241/// jumptable.
1242SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1243                                                    SelectionDAG &DAG) const {
1244  if (!Subtarget->is64Bit())
1245    // This doesn't have DebugLoc associated with it, but is not really the
1246    // same as a Register.
1247    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1248  return Table;
1249}
1250
1251/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1252/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1253/// MCExpr.
1254const MCExpr *X86TargetLowering::
1255getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1256                             MCContext &Ctx) const {
1257  // X86-64 uses RIP relative addressing based on the jump table label.
1258  if (Subtarget->isPICStyleRIPRel())
1259    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1260
1261  // Otherwise, the reference is relative to the PIC base.
1262  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1263}
1264
1265// FIXME: Why this routine is here? Move to RegInfo!
1266std::pair<const TargetRegisterClass*, uint8_t>
1267X86TargetLowering::findRepresentativeClass(EVT VT) const{
1268  const TargetRegisterClass *RRC = 0;
1269  uint8_t Cost = 1;
1270  switch (VT.getSimpleVT().SimpleTy) {
1271  default:
1272    return TargetLowering::findRepresentativeClass(VT);
1273  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1274    RRC = (Subtarget->is64Bit()
1275           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1276    break;
1277  case MVT::x86mmx:
1278    RRC = X86::VR64RegisterClass;
1279    break;
1280  case MVT::f32: case MVT::f64:
1281  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1282  case MVT::v4f32: case MVT::v2f64:
1283  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1284  case MVT::v4f64:
1285    RRC = X86::VR128RegisterClass;
1286    break;
1287  }
1288  return std::make_pair(RRC, Cost);
1289}
1290
1291bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1292                                               unsigned &Offset) const {
1293  if (!Subtarget->isTargetLinux())
1294    return false;
1295
1296  if (Subtarget->is64Bit()) {
1297    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1298    Offset = 0x28;
1299    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1300      AddressSpace = 256;
1301    else
1302      AddressSpace = 257;
1303  } else {
1304    // %gs:0x14 on i386
1305    Offset = 0x14;
1306    AddressSpace = 256;
1307  }
1308  return true;
1309}
1310
1311
1312//===----------------------------------------------------------------------===//
1313//               Return Value Calling Convention Implementation
1314//===----------------------------------------------------------------------===//
1315
1316#include "X86GenCallingConv.inc"
1317
1318bool
1319X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1320				  MachineFunction &MF, bool isVarArg,
1321                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1322                        LLVMContext &Context) const {
1323  SmallVector<CCValAssign, 16> RVLocs;
1324  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1325                 RVLocs, Context);
1326  return CCInfo.CheckReturn(Outs, RetCC_X86);
1327}
1328
1329SDValue
1330X86TargetLowering::LowerReturn(SDValue Chain,
1331                               CallingConv::ID CallConv, bool isVarArg,
1332                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1333                               const SmallVectorImpl<SDValue> &OutVals,
1334                               DebugLoc dl, SelectionDAG &DAG) const {
1335  MachineFunction &MF = DAG.getMachineFunction();
1336  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1337
1338  SmallVector<CCValAssign, 16> RVLocs;
1339  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1340                 RVLocs, *DAG.getContext());
1341  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1342
1343  // Add the regs to the liveout set for the function.
1344  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1345  for (unsigned i = 0; i != RVLocs.size(); ++i)
1346    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1347      MRI.addLiveOut(RVLocs[i].getLocReg());
1348
1349  SDValue Flag;
1350
1351  SmallVector<SDValue, 6> RetOps;
1352  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1353  // Operand #1 = Bytes To Pop
1354  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1355                   MVT::i16));
1356
1357  // Copy the result values into the output registers.
1358  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1359    CCValAssign &VA = RVLocs[i];
1360    assert(VA.isRegLoc() && "Can only return in registers!");
1361    SDValue ValToCopy = OutVals[i];
1362    EVT ValVT = ValToCopy.getValueType();
1363
1364    // If this is x86-64, and we disabled SSE, we can't return FP values,
1365    // or SSE or MMX vectors.
1366    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1367         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1368          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1369      report_fatal_error("SSE register return with SSE disabled");
1370    }
1371    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1372    // llvm-gcc has never done it right and no one has noticed, so this
1373    // should be OK for now.
1374    if (ValVT == MVT::f64 &&
1375        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1376      report_fatal_error("SSE2 register return with SSE2 disabled");
1377
1378    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1379    // the RET instruction and handled by the FP Stackifier.
1380    if (VA.getLocReg() == X86::ST0 ||
1381        VA.getLocReg() == X86::ST1) {
1382      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1383      // change the value to the FP stack register class.
1384      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1385        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1386      RetOps.push_back(ValToCopy);
1387      // Don't emit a copytoreg.
1388      continue;
1389    }
1390
1391    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1392    // which is returned in RAX / RDX.
1393    if (Subtarget->is64Bit()) {
1394      if (ValVT == MVT::x86mmx) {
1395        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1396          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1397          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1398                                  ValToCopy);
1399          // If we don't have SSE2 available, convert to v4f32 so the generated
1400          // register is legal.
1401          if (!Subtarget->hasSSE2())
1402            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1403        }
1404      }
1405    }
1406
1407    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1408    Flag = Chain.getValue(1);
1409  }
1410
1411  // The x86-64 ABI for returning structs by value requires that we copy
1412  // the sret argument into %rax for the return. We saved the argument into
1413  // a virtual register in the entry block, so now we copy the value out
1414  // and into %rax.
1415  if (Subtarget->is64Bit() &&
1416      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1417    MachineFunction &MF = DAG.getMachineFunction();
1418    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1419    unsigned Reg = FuncInfo->getSRetReturnReg();
1420    assert(Reg &&
1421           "SRetReturnReg should have been set in LowerFormalArguments().");
1422    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1423
1424    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1425    Flag = Chain.getValue(1);
1426
1427    // RAX now acts like a return value.
1428    MRI.addLiveOut(X86::RAX);
1429  }
1430
1431  RetOps[0] = Chain;  // Update chain.
1432
1433  // Add the flag if we have it.
1434  if (Flag.getNode())
1435    RetOps.push_back(Flag);
1436
1437  return DAG.getNode(X86ISD::RET_FLAG, dl,
1438                     MVT::Other, &RetOps[0], RetOps.size());
1439}
1440
1441bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1442  if (N->getNumValues() != 1)
1443    return false;
1444  if (!N->hasNUsesOfValue(1, 0))
1445    return false;
1446
1447  SDNode *Copy = *N->use_begin();
1448  if (Copy->getOpcode() != ISD::CopyToReg &&
1449      Copy->getOpcode() != ISD::FP_EXTEND)
1450    return false;
1451
1452  bool HasRet = false;
1453  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1454       UI != UE; ++UI) {
1455    if (UI->getOpcode() != X86ISD::RET_FLAG)
1456      return false;
1457    HasRet = true;
1458  }
1459
1460  return HasRet;
1461}
1462
1463EVT
1464X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1465                                            ISD::NodeType ExtendKind) const {
1466  MVT ReturnMVT;
1467  // TODO: Is this also valid on 32-bit?
1468  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1469    ReturnMVT = MVT::i8;
1470  else
1471    ReturnMVT = MVT::i32;
1472
1473  EVT MinVT = getRegisterType(Context, ReturnMVT);
1474  return VT.bitsLT(MinVT) ? MinVT : VT;
1475}
1476
1477/// LowerCallResult - Lower the result values of a call into the
1478/// appropriate copies out of appropriate physical registers.
1479///
1480SDValue
1481X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1482                                   CallingConv::ID CallConv, bool isVarArg,
1483                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1484                                   DebugLoc dl, SelectionDAG &DAG,
1485                                   SmallVectorImpl<SDValue> &InVals) const {
1486
1487  // Assign locations to each value returned by this call.
1488  SmallVector<CCValAssign, 16> RVLocs;
1489  bool Is64Bit = Subtarget->is64Bit();
1490  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1491		 getTargetMachine(), RVLocs, *DAG.getContext());
1492  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1493
1494  // Copy all of the result registers out of their specified physreg.
1495  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1496    CCValAssign &VA = RVLocs[i];
1497    EVT CopyVT = VA.getValVT();
1498
1499    // If this is x86-64, and we disabled SSE, we can't return FP values
1500    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1501        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1502      report_fatal_error("SSE register return with SSE disabled");
1503    }
1504
1505    SDValue Val;
1506
1507    // If this is a call to a function that returns an fp value on the floating
1508    // point stack, we must guarantee the the value is popped from the stack, so
1509    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1510    // if the return value is not used. We use the FpPOP_RETVAL instruction
1511    // instead.
1512    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1513      // If we prefer to use the value in xmm registers, copy it out as f80 and
1514      // use a truncate to move it from fp stack reg to xmm reg.
1515      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1516      SDValue Ops[] = { Chain, InFlag };
1517      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1518                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1519      Val = Chain.getValue(0);
1520
1521      // Round the f80 to the right size, which also moves it to the appropriate
1522      // xmm register.
1523      if (CopyVT != VA.getValVT())
1524        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1525                          // This truncation won't change the value.
1526                          DAG.getIntPtrConstant(1));
1527    } else {
1528      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1529                                 CopyVT, InFlag).getValue(1);
1530      Val = Chain.getValue(0);
1531    }
1532    InFlag = Chain.getValue(2);
1533    InVals.push_back(Val);
1534  }
1535
1536  return Chain;
1537}
1538
1539
1540//===----------------------------------------------------------------------===//
1541//                C & StdCall & Fast Calling Convention implementation
1542//===----------------------------------------------------------------------===//
1543//  StdCall calling convention seems to be standard for many Windows' API
1544//  routines and around. It differs from C calling convention just a little:
1545//  callee should clean up the stack, not caller. Symbols should be also
1546//  decorated in some fancy way :) It doesn't support any vector arguments.
1547//  For info on fast calling convention see Fast Calling Convention (tail call)
1548//  implementation LowerX86_32FastCCCallTo.
1549
1550/// CallIsStructReturn - Determines whether a call uses struct return
1551/// semantics.
1552static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1553  if (Outs.empty())
1554    return false;
1555
1556  return Outs[0].Flags.isSRet();
1557}
1558
1559/// ArgsAreStructReturn - Determines whether a function uses struct
1560/// return semantics.
1561static bool
1562ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1563  if (Ins.empty())
1564    return false;
1565
1566  return Ins[0].Flags.isSRet();
1567}
1568
1569/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1570/// by "Src" to address "Dst" with size and alignment information specified by
1571/// the specific parameter attribute. The copy will be passed as a byval
1572/// function parameter.
1573static SDValue
1574CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1575                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1576                          DebugLoc dl) {
1577  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1578
1579  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1580                       /*isVolatile*/false, /*AlwaysInline=*/true,
1581                       MachinePointerInfo(), MachinePointerInfo());
1582}
1583
1584/// IsTailCallConvention - Return true if the calling convention is one that
1585/// supports tail call optimization.
1586static bool IsTailCallConvention(CallingConv::ID CC) {
1587  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1588}
1589
1590bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1591  if (!CI->isTailCall())
1592    return false;
1593
1594  CallSite CS(CI);
1595  CallingConv::ID CalleeCC = CS.getCallingConv();
1596  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1597    return false;
1598
1599  return true;
1600}
1601
1602/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1603/// a tailcall target by changing its ABI.
1604static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1605  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1606}
1607
1608SDValue
1609X86TargetLowering::LowerMemArgument(SDValue Chain,
1610                                    CallingConv::ID CallConv,
1611                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1612                                    DebugLoc dl, SelectionDAG &DAG,
1613                                    const CCValAssign &VA,
1614                                    MachineFrameInfo *MFI,
1615                                    unsigned i) const {
1616  // Create the nodes corresponding to a load from this parameter slot.
1617  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1618  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1619  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1620  EVT ValVT;
1621
1622  // If value is passed by pointer we have address passed instead of the value
1623  // itself.
1624  if (VA.getLocInfo() == CCValAssign::Indirect)
1625    ValVT = VA.getLocVT();
1626  else
1627    ValVT = VA.getValVT();
1628
1629  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1630  // changed with more analysis.
1631  // In case of tail call optimization mark all arguments mutable. Since they
1632  // could be overwritten by lowering of arguments in case of a tail call.
1633  if (Flags.isByVal()) {
1634    unsigned Bytes = Flags.getByValSize();
1635    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1636    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1637    return DAG.getFrameIndex(FI, getPointerTy());
1638  } else {
1639    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1640                                    VA.getLocMemOffset(), isImmutable);
1641    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1642    return DAG.getLoad(ValVT, dl, Chain, FIN,
1643                       MachinePointerInfo::getFixedStack(FI),
1644                       false, false, 0);
1645  }
1646}
1647
1648SDValue
1649X86TargetLowering::LowerFormalArguments(SDValue Chain,
1650                                        CallingConv::ID CallConv,
1651                                        bool isVarArg,
1652                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1653                                        DebugLoc dl,
1654                                        SelectionDAG &DAG,
1655                                        SmallVectorImpl<SDValue> &InVals)
1656                                          const {
1657  MachineFunction &MF = DAG.getMachineFunction();
1658  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1659
1660  const Function* Fn = MF.getFunction();
1661  if (Fn->hasExternalLinkage() &&
1662      Subtarget->isTargetCygMing() &&
1663      Fn->getName() == "main")
1664    FuncInfo->setForceFramePointer(true);
1665
1666  MachineFrameInfo *MFI = MF.getFrameInfo();
1667  bool Is64Bit = Subtarget->is64Bit();
1668  bool IsWin64 = Subtarget->isTargetWin64();
1669
1670  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1671         "Var args not supported with calling convention fastcc or ghc");
1672
1673  // Assign locations to all of the incoming arguments.
1674  SmallVector<CCValAssign, 16> ArgLocs;
1675  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1676                 ArgLocs, *DAG.getContext());
1677
1678  // Allocate shadow area for Win64
1679  if (IsWin64) {
1680    CCInfo.AllocateStack(32, 8);
1681  }
1682
1683  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1684
1685  unsigned LastVal = ~0U;
1686  SDValue ArgValue;
1687  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1688    CCValAssign &VA = ArgLocs[i];
1689    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1690    // places.
1691    assert(VA.getValNo() != LastVal &&
1692           "Don't support value assigned to multiple locs yet");
1693    LastVal = VA.getValNo();
1694
1695    if (VA.isRegLoc()) {
1696      EVT RegVT = VA.getLocVT();
1697      TargetRegisterClass *RC = NULL;
1698      if (RegVT == MVT::i32)
1699        RC = X86::GR32RegisterClass;
1700      else if (Is64Bit && RegVT == MVT::i64)
1701        RC = X86::GR64RegisterClass;
1702      else if (RegVT == MVT::f32)
1703        RC = X86::FR32RegisterClass;
1704      else if (RegVT == MVT::f64)
1705        RC = X86::FR64RegisterClass;
1706      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1707        RC = X86::VR256RegisterClass;
1708      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1709        RC = X86::VR128RegisterClass;
1710      else if (RegVT == MVT::x86mmx)
1711        RC = X86::VR64RegisterClass;
1712      else
1713        llvm_unreachable("Unknown argument type!");
1714
1715      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1716      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1717
1718      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1719      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1720      // right size.
1721      if (VA.getLocInfo() == CCValAssign::SExt)
1722        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1723                               DAG.getValueType(VA.getValVT()));
1724      else if (VA.getLocInfo() == CCValAssign::ZExt)
1725        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1726                               DAG.getValueType(VA.getValVT()));
1727      else if (VA.getLocInfo() == CCValAssign::BCvt)
1728        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1729
1730      if (VA.isExtInLoc()) {
1731        // Handle MMX values passed in XMM regs.
1732        if (RegVT.isVector()) {
1733          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1734                                 ArgValue);
1735        } else
1736          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1737      }
1738    } else {
1739      assert(VA.isMemLoc());
1740      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1741    }
1742
1743    // If value is passed via pointer - do a load.
1744    if (VA.getLocInfo() == CCValAssign::Indirect)
1745      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1746                             MachinePointerInfo(), false, false, 0);
1747
1748    InVals.push_back(ArgValue);
1749  }
1750
1751  // The x86-64 ABI for returning structs by value requires that we copy
1752  // the sret argument into %rax for the return. Save the argument into
1753  // a virtual register so that we can access it from the return points.
1754  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1755    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1756    unsigned Reg = FuncInfo->getSRetReturnReg();
1757    if (!Reg) {
1758      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1759      FuncInfo->setSRetReturnReg(Reg);
1760    }
1761    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1762    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1763  }
1764
1765  unsigned StackSize = CCInfo.getNextStackOffset();
1766  // Align stack specially for tail calls.
1767  if (FuncIsMadeTailCallSafe(CallConv))
1768    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1769
1770  // If the function takes variable number of arguments, make a frame index for
1771  // the start of the first vararg value... for expansion of llvm.va_start.
1772  if (isVarArg) {
1773    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1774                    CallConv != CallingConv::X86_ThisCall)) {
1775      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1776    }
1777    if (Is64Bit) {
1778      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1779
1780      // FIXME: We should really autogenerate these arrays
1781      static const unsigned GPR64ArgRegsWin64[] = {
1782        X86::RCX, X86::RDX, X86::R8,  X86::R9
1783      };
1784      static const unsigned GPR64ArgRegs64Bit[] = {
1785        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1786      };
1787      static const unsigned XMMArgRegs64Bit[] = {
1788        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1789        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1790      };
1791      const unsigned *GPR64ArgRegs;
1792      unsigned NumXMMRegs = 0;
1793
1794      if (IsWin64) {
1795        // The XMM registers which might contain var arg parameters are shadowed
1796        // in their paired GPR.  So we only need to save the GPR to their home
1797        // slots.
1798        TotalNumIntRegs = 4;
1799        GPR64ArgRegs = GPR64ArgRegsWin64;
1800      } else {
1801        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1802        GPR64ArgRegs = GPR64ArgRegs64Bit;
1803
1804        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1805      }
1806      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1807                                                       TotalNumIntRegs);
1808
1809      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1810      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1811             "SSE register cannot be used when SSE is disabled!");
1812      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1813             "SSE register cannot be used when SSE is disabled!");
1814      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1815        // Kernel mode asks for SSE to be disabled, so don't push them
1816        // on the stack.
1817        TotalNumXMMRegs = 0;
1818
1819      if (IsWin64) {
1820        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1821        // Get to the caller-allocated home save location.  Add 8 to account
1822        // for the return address.
1823        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1824        FuncInfo->setRegSaveFrameIndex(
1825          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1826        // Fixup to set vararg frame on shadow area (4 x i64).
1827        if (NumIntRegs < 4)
1828          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1829      } else {
1830        // For X86-64, if there are vararg parameters that are passed via
1831        // registers, then we must store them to their spots on the stack so they
1832        // may be loaded by deferencing the result of va_next.
1833        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1834        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1835        FuncInfo->setRegSaveFrameIndex(
1836          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1837                               false));
1838      }
1839
1840      // Store the integer parameter registers.
1841      SmallVector<SDValue, 8> MemOps;
1842      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1843                                        getPointerTy());
1844      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1845      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1846        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1847                                  DAG.getIntPtrConstant(Offset));
1848        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1849                                     X86::GR64RegisterClass);
1850        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1851        SDValue Store =
1852          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1853                       MachinePointerInfo::getFixedStack(
1854                         FuncInfo->getRegSaveFrameIndex(), Offset),
1855                       false, false, 0);
1856        MemOps.push_back(Store);
1857        Offset += 8;
1858      }
1859
1860      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1861        // Now store the XMM (fp + vector) parameter registers.
1862        SmallVector<SDValue, 11> SaveXMMOps;
1863        SaveXMMOps.push_back(Chain);
1864
1865        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1866        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1867        SaveXMMOps.push_back(ALVal);
1868
1869        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1870                               FuncInfo->getRegSaveFrameIndex()));
1871        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1872                               FuncInfo->getVarArgsFPOffset()));
1873
1874        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1875          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1876                                       X86::VR128RegisterClass);
1877          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1878          SaveXMMOps.push_back(Val);
1879        }
1880        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1881                                     MVT::Other,
1882                                     &SaveXMMOps[0], SaveXMMOps.size()));
1883      }
1884
1885      if (!MemOps.empty())
1886        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1887                            &MemOps[0], MemOps.size());
1888    }
1889  }
1890
1891  // Some CCs need callee pop.
1892  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1893    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1894  } else {
1895    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1896    // If this is an sret function, the return should pop the hidden pointer.
1897    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1898      FuncInfo->setBytesToPopOnReturn(4);
1899  }
1900
1901  if (!Is64Bit) {
1902    // RegSaveFrameIndex is X86-64 only.
1903    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1904    if (CallConv == CallingConv::X86_FastCall ||
1905        CallConv == CallingConv::X86_ThisCall)
1906      // fastcc functions can't have varargs.
1907      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1908  }
1909
1910  return Chain;
1911}
1912
1913SDValue
1914X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1915                                    SDValue StackPtr, SDValue Arg,
1916                                    DebugLoc dl, SelectionDAG &DAG,
1917                                    const CCValAssign &VA,
1918                                    ISD::ArgFlagsTy Flags) const {
1919  unsigned LocMemOffset = VA.getLocMemOffset();
1920  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1921  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1922  if (Flags.isByVal())
1923    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1924
1925  return DAG.getStore(Chain, dl, Arg, PtrOff,
1926                      MachinePointerInfo::getStack(LocMemOffset),
1927                      false, false, 0);
1928}
1929
1930/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1931/// optimization is performed and it is required.
1932SDValue
1933X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1934                                           SDValue &OutRetAddr, SDValue Chain,
1935                                           bool IsTailCall, bool Is64Bit,
1936                                           int FPDiff, DebugLoc dl) const {
1937  // Adjust the Return address stack slot.
1938  EVT VT = getPointerTy();
1939  OutRetAddr = getReturnAddressFrameIndex(DAG);
1940
1941  // Load the "old" Return address.
1942  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1943                           false, false, 0);
1944  return SDValue(OutRetAddr.getNode(), 1);
1945}
1946
1947/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1948/// optimization is performed and it is required (FPDiff!=0).
1949static SDValue
1950EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1951                         SDValue Chain, SDValue RetAddrFrIdx,
1952                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1953  // Store the return address to the appropriate stack slot.
1954  if (!FPDiff) return Chain;
1955  // Calculate the new stack slot for the return address.
1956  int SlotSize = Is64Bit ? 8 : 4;
1957  int NewReturnAddrFI =
1958    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1959  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1960  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1961  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1962                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1963                       false, false, 0);
1964  return Chain;
1965}
1966
1967SDValue
1968X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1969                             CallingConv::ID CallConv, bool isVarArg,
1970                             bool &isTailCall,
1971                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1972                             const SmallVectorImpl<SDValue> &OutVals,
1973                             const SmallVectorImpl<ISD::InputArg> &Ins,
1974                             DebugLoc dl, SelectionDAG &DAG,
1975                             SmallVectorImpl<SDValue> &InVals) const {
1976  MachineFunction &MF = DAG.getMachineFunction();
1977  bool Is64Bit        = Subtarget->is64Bit();
1978  bool IsWin64        = Subtarget->isTargetWin64();
1979  bool IsStructRet    = CallIsStructReturn(Outs);
1980  bool IsSibcall      = false;
1981
1982  if (isTailCall) {
1983    // Check if it's really possible to do a tail call.
1984    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1985                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1986                                                   Outs, OutVals, Ins, DAG);
1987
1988    // Sibcalls are automatically detected tailcalls which do not require
1989    // ABI changes.
1990    if (!GuaranteedTailCallOpt && isTailCall)
1991      IsSibcall = true;
1992
1993    if (isTailCall)
1994      ++NumTailCalls;
1995  }
1996
1997  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1998         "Var args not supported with calling convention fastcc or ghc");
1999
2000  // Analyze operands of the call, assigning locations to each operand.
2001  SmallVector<CCValAssign, 16> ArgLocs;
2002  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2003                 ArgLocs, *DAG.getContext());
2004
2005  // Allocate shadow area for Win64
2006  if (IsWin64) {
2007    CCInfo.AllocateStack(32, 8);
2008  }
2009
2010  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2011
2012  // Get a count of how many bytes are to be pushed on the stack.
2013  unsigned NumBytes = CCInfo.getNextStackOffset();
2014  if (IsSibcall)
2015    // This is a sibcall. The memory operands are available in caller's
2016    // own caller's stack.
2017    NumBytes = 0;
2018  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2019    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2020
2021  int FPDiff = 0;
2022  if (isTailCall && !IsSibcall) {
2023    // Lower arguments at fp - stackoffset + fpdiff.
2024    unsigned NumBytesCallerPushed =
2025      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2026    FPDiff = NumBytesCallerPushed - NumBytes;
2027
2028    // Set the delta of movement of the returnaddr stackslot.
2029    // But only set if delta is greater than previous delta.
2030    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2031      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2032  }
2033
2034  if (!IsSibcall)
2035    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2036
2037  SDValue RetAddrFrIdx;
2038  // Load return address for tail calls.
2039  if (isTailCall && FPDiff)
2040    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2041                                    Is64Bit, FPDiff, dl);
2042
2043  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2044  SmallVector<SDValue, 8> MemOpChains;
2045  SDValue StackPtr;
2046
2047  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2048  // of tail call optimization arguments are handle later.
2049  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2050    CCValAssign &VA = ArgLocs[i];
2051    EVT RegVT = VA.getLocVT();
2052    SDValue Arg = OutVals[i];
2053    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2054    bool isByVal = Flags.isByVal();
2055
2056    // Promote the value if needed.
2057    switch (VA.getLocInfo()) {
2058    default: llvm_unreachable("Unknown loc info!");
2059    case CCValAssign::Full: break;
2060    case CCValAssign::SExt:
2061      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2062      break;
2063    case CCValAssign::ZExt:
2064      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2065      break;
2066    case CCValAssign::AExt:
2067      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2068        // Special case: passing MMX values in XMM registers.
2069        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2070        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2071        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2072      } else
2073        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2074      break;
2075    case CCValAssign::BCvt:
2076      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2077      break;
2078    case CCValAssign::Indirect: {
2079      // Store the argument.
2080      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2081      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2082      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2083                           MachinePointerInfo::getFixedStack(FI),
2084                           false, false, 0);
2085      Arg = SpillSlot;
2086      break;
2087    }
2088    }
2089
2090    if (VA.isRegLoc()) {
2091      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2092      if (isVarArg && IsWin64) {
2093        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2094        // shadow reg if callee is a varargs function.
2095        unsigned ShadowReg = 0;
2096        switch (VA.getLocReg()) {
2097        case X86::XMM0: ShadowReg = X86::RCX; break;
2098        case X86::XMM1: ShadowReg = X86::RDX; break;
2099        case X86::XMM2: ShadowReg = X86::R8; break;
2100        case X86::XMM3: ShadowReg = X86::R9; break;
2101        }
2102        if (ShadowReg)
2103          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2104      }
2105    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2106      assert(VA.isMemLoc());
2107      if (StackPtr.getNode() == 0)
2108        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2109      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2110                                             dl, DAG, VA, Flags));
2111    }
2112  }
2113
2114  if (!MemOpChains.empty())
2115    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2116                        &MemOpChains[0], MemOpChains.size());
2117
2118  // Build a sequence of copy-to-reg nodes chained together with token chain
2119  // and flag operands which copy the outgoing args into registers.
2120  SDValue InFlag;
2121  // Tail call byval lowering might overwrite argument registers so in case of
2122  // tail call optimization the copies to registers are lowered later.
2123  if (!isTailCall)
2124    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2125      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2126                               RegsToPass[i].second, InFlag);
2127      InFlag = Chain.getValue(1);
2128    }
2129
2130  if (Subtarget->isPICStyleGOT()) {
2131    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2132    // GOT pointer.
2133    if (!isTailCall) {
2134      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2135                               DAG.getNode(X86ISD::GlobalBaseReg,
2136                                           DebugLoc(), getPointerTy()),
2137                               InFlag);
2138      InFlag = Chain.getValue(1);
2139    } else {
2140      // If we are tail calling and generating PIC/GOT style code load the
2141      // address of the callee into ECX. The value in ecx is used as target of
2142      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2143      // for tail calls on PIC/GOT architectures. Normally we would just put the
2144      // address of GOT into ebx and then call target@PLT. But for tail calls
2145      // ebx would be restored (since ebx is callee saved) before jumping to the
2146      // target@PLT.
2147
2148      // Note: The actual moving to ECX is done further down.
2149      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2150      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2151          !G->getGlobal()->hasProtectedVisibility())
2152        Callee = LowerGlobalAddress(Callee, DAG);
2153      else if (isa<ExternalSymbolSDNode>(Callee))
2154        Callee = LowerExternalSymbol(Callee, DAG);
2155    }
2156  }
2157
2158  if (Is64Bit && isVarArg && !IsWin64) {
2159    // From AMD64 ABI document:
2160    // For calls that may call functions that use varargs or stdargs
2161    // (prototype-less calls or calls to functions containing ellipsis (...) in
2162    // the declaration) %al is used as hidden argument to specify the number
2163    // of SSE registers used. The contents of %al do not need to match exactly
2164    // the number of registers, but must be an ubound on the number of SSE
2165    // registers used and is in the range 0 - 8 inclusive.
2166
2167    // Count the number of XMM registers allocated.
2168    static const unsigned XMMArgRegs[] = {
2169      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2170      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2171    };
2172    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2173    assert((Subtarget->hasXMM() || !NumXMMRegs)
2174           && "SSE registers cannot be used when SSE is disabled");
2175
2176    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2177                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2178    InFlag = Chain.getValue(1);
2179  }
2180
2181
2182  // For tail calls lower the arguments to the 'real' stack slot.
2183  if (isTailCall) {
2184    // Force all the incoming stack arguments to be loaded from the stack
2185    // before any new outgoing arguments are stored to the stack, because the
2186    // outgoing stack slots may alias the incoming argument stack slots, and
2187    // the alias isn't otherwise explicit. This is slightly more conservative
2188    // than necessary, because it means that each store effectively depends
2189    // on every argument instead of just those arguments it would clobber.
2190    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2191
2192    SmallVector<SDValue, 8> MemOpChains2;
2193    SDValue FIN;
2194    int FI = 0;
2195    // Do not flag preceding copytoreg stuff together with the following stuff.
2196    InFlag = SDValue();
2197    if (GuaranteedTailCallOpt) {
2198      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2199        CCValAssign &VA = ArgLocs[i];
2200        if (VA.isRegLoc())
2201          continue;
2202        assert(VA.isMemLoc());
2203        SDValue Arg = OutVals[i];
2204        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2205        // Create frame index.
2206        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2207        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2208        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2209        FIN = DAG.getFrameIndex(FI, getPointerTy());
2210
2211        if (Flags.isByVal()) {
2212          // Copy relative to framepointer.
2213          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2214          if (StackPtr.getNode() == 0)
2215            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2216                                          getPointerTy());
2217          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2218
2219          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2220                                                           ArgChain,
2221                                                           Flags, DAG, dl));
2222        } else {
2223          // Store relative to framepointer.
2224          MemOpChains2.push_back(
2225            DAG.getStore(ArgChain, dl, Arg, FIN,
2226                         MachinePointerInfo::getFixedStack(FI),
2227                         false, false, 0));
2228        }
2229      }
2230    }
2231
2232    if (!MemOpChains2.empty())
2233      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2234                          &MemOpChains2[0], MemOpChains2.size());
2235
2236    // Copy arguments to their registers.
2237    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2238      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2239                               RegsToPass[i].second, InFlag);
2240      InFlag = Chain.getValue(1);
2241    }
2242    InFlag =SDValue();
2243
2244    // Store the return address to the appropriate stack slot.
2245    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2246                                     FPDiff, dl);
2247  }
2248
2249  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2250    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2251    // In the 64-bit large code model, we have to make all calls
2252    // through a register, since the call instruction's 32-bit
2253    // pc-relative offset may not be large enough to hold the whole
2254    // address.
2255  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2256    // If the callee is a GlobalAddress node (quite common, every direct call
2257    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2258    // it.
2259
2260    // We should use extra load for direct calls to dllimported functions in
2261    // non-JIT mode.
2262    const GlobalValue *GV = G->getGlobal();
2263    if (!GV->hasDLLImportLinkage()) {
2264      unsigned char OpFlags = 0;
2265      bool ExtraLoad = false;
2266      unsigned WrapperKind = ISD::DELETED_NODE;
2267
2268      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2269      // external symbols most go through the PLT in PIC mode.  If the symbol
2270      // has hidden or protected visibility, or if it is static or local, then
2271      // we don't need to use the PLT - we can directly call it.
2272      if (Subtarget->isTargetELF() &&
2273          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2274          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2275        OpFlags = X86II::MO_PLT;
2276      } else if (Subtarget->isPICStyleStubAny() &&
2277                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2278                 (!Subtarget->getTargetTriple().isMacOSX() ||
2279                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2280        // PC-relative references to external symbols should go through $stub,
2281        // unless we're building with the leopard linker or later, which
2282        // automatically synthesizes these stubs.
2283        OpFlags = X86II::MO_DARWIN_STUB;
2284      } else if (Subtarget->isPICStyleRIPRel() &&
2285                 isa<Function>(GV) &&
2286                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2287        // If the function is marked as non-lazy, generate an indirect call
2288        // which loads from the GOT directly. This avoids runtime overhead
2289        // at the cost of eager binding (and one extra byte of encoding).
2290        OpFlags = X86II::MO_GOTPCREL;
2291        WrapperKind = X86ISD::WrapperRIP;
2292        ExtraLoad = true;
2293      }
2294
2295      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2296                                          G->getOffset(), OpFlags);
2297
2298      // Add a wrapper if needed.
2299      if (WrapperKind != ISD::DELETED_NODE)
2300        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2301      // Add extra indirection if needed.
2302      if (ExtraLoad)
2303        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2304                             MachinePointerInfo::getGOT(),
2305                             false, false, 0);
2306    }
2307  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2308    unsigned char OpFlags = 0;
2309
2310    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2311    // external symbols should go through the PLT.
2312    if (Subtarget->isTargetELF() &&
2313        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2314      OpFlags = X86II::MO_PLT;
2315    } else if (Subtarget->isPICStyleStubAny() &&
2316               (!Subtarget->getTargetTriple().isMacOSX() ||
2317                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2318      // PC-relative references to external symbols should go through $stub,
2319      // unless we're building with the leopard linker or later, which
2320      // automatically synthesizes these stubs.
2321      OpFlags = X86II::MO_DARWIN_STUB;
2322    }
2323
2324    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2325                                         OpFlags);
2326  }
2327
2328  // Returns a chain & a flag for retval copy to use.
2329  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2330  SmallVector<SDValue, 8> Ops;
2331
2332  if (!IsSibcall && isTailCall) {
2333    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2334                           DAG.getIntPtrConstant(0, true), InFlag);
2335    InFlag = Chain.getValue(1);
2336  }
2337
2338  Ops.push_back(Chain);
2339  Ops.push_back(Callee);
2340
2341  if (isTailCall)
2342    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2343
2344  // Add argument registers to the end of the list so that they are known live
2345  // into the call.
2346  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2347    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2348                                  RegsToPass[i].second.getValueType()));
2349
2350  // Add an implicit use GOT pointer in EBX.
2351  if (!isTailCall && Subtarget->isPICStyleGOT())
2352    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2353
2354  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2355  if (Is64Bit && isVarArg && !IsWin64)
2356    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2357
2358  if (InFlag.getNode())
2359    Ops.push_back(InFlag);
2360
2361  if (isTailCall) {
2362    // We used to do:
2363    //// If this is the first return lowered for this function, add the regs
2364    //// to the liveout set for the function.
2365    // This isn't right, although it's probably harmless on x86; liveouts
2366    // should be computed from returns not tail calls.  Consider a void
2367    // function making a tail call to a function returning int.
2368    return DAG.getNode(X86ISD::TC_RETURN, dl,
2369                       NodeTys, &Ops[0], Ops.size());
2370  }
2371
2372  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2373  InFlag = Chain.getValue(1);
2374
2375  // Create the CALLSEQ_END node.
2376  unsigned NumBytesForCalleeToPush;
2377  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2378    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2379  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2380    // If this is a call to a struct-return function, the callee
2381    // pops the hidden struct pointer, so we have to push it back.
2382    // This is common for Darwin/X86, Linux & Mingw32 targets.
2383    NumBytesForCalleeToPush = 4;
2384  else
2385    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2386
2387  // Returns a flag for retval copy to use.
2388  if (!IsSibcall) {
2389    Chain = DAG.getCALLSEQ_END(Chain,
2390                               DAG.getIntPtrConstant(NumBytes, true),
2391                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2392                                                     true),
2393                               InFlag);
2394    InFlag = Chain.getValue(1);
2395  }
2396
2397  // Handle result values, copying them out of physregs into vregs that we
2398  // return.
2399  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2400                         Ins, dl, DAG, InVals);
2401}
2402
2403
2404//===----------------------------------------------------------------------===//
2405//                Fast Calling Convention (tail call) implementation
2406//===----------------------------------------------------------------------===//
2407
2408//  Like std call, callee cleans arguments, convention except that ECX is
2409//  reserved for storing the tail called function address. Only 2 registers are
2410//  free for argument passing (inreg). Tail call optimization is performed
2411//  provided:
2412//                * tailcallopt is enabled
2413//                * caller/callee are fastcc
2414//  On X86_64 architecture with GOT-style position independent code only local
2415//  (within module) calls are supported at the moment.
2416//  To keep the stack aligned according to platform abi the function
2417//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2418//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2419//  If a tail called function callee has more arguments than the caller the
2420//  caller needs to make sure that there is room to move the RETADDR to. This is
2421//  achieved by reserving an area the size of the argument delta right after the
2422//  original REtADDR, but before the saved framepointer or the spilled registers
2423//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2424//  stack layout:
2425//    arg1
2426//    arg2
2427//    RETADDR
2428//    [ new RETADDR
2429//      move area ]
2430//    (possible EBP)
2431//    ESI
2432//    EDI
2433//    local1 ..
2434
2435/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2436/// for a 16 byte align requirement.
2437unsigned
2438X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2439                                               SelectionDAG& DAG) const {
2440  MachineFunction &MF = DAG.getMachineFunction();
2441  const TargetMachine &TM = MF.getTarget();
2442  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2443  unsigned StackAlignment = TFI.getStackAlignment();
2444  uint64_t AlignMask = StackAlignment - 1;
2445  int64_t Offset = StackSize;
2446  uint64_t SlotSize = TD->getPointerSize();
2447  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2448    // Number smaller than 12 so just add the difference.
2449    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2450  } else {
2451    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2452    Offset = ((~AlignMask) & Offset) + StackAlignment +
2453      (StackAlignment-SlotSize);
2454  }
2455  return Offset;
2456}
2457
2458/// MatchingStackOffset - Return true if the given stack call argument is
2459/// already available in the same position (relatively) of the caller's
2460/// incoming argument stack.
2461static
2462bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2463                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2464                         const X86InstrInfo *TII) {
2465  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2466  int FI = INT_MAX;
2467  if (Arg.getOpcode() == ISD::CopyFromReg) {
2468    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2469    if (!TargetRegisterInfo::isVirtualRegister(VR))
2470      return false;
2471    MachineInstr *Def = MRI->getVRegDef(VR);
2472    if (!Def)
2473      return false;
2474    if (!Flags.isByVal()) {
2475      if (!TII->isLoadFromStackSlot(Def, FI))
2476        return false;
2477    } else {
2478      unsigned Opcode = Def->getOpcode();
2479      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2480          Def->getOperand(1).isFI()) {
2481        FI = Def->getOperand(1).getIndex();
2482        Bytes = Flags.getByValSize();
2483      } else
2484        return false;
2485    }
2486  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2487    if (Flags.isByVal())
2488      // ByVal argument is passed in as a pointer but it's now being
2489      // dereferenced. e.g.
2490      // define @foo(%struct.X* %A) {
2491      //   tail call @bar(%struct.X* byval %A)
2492      // }
2493      return false;
2494    SDValue Ptr = Ld->getBasePtr();
2495    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2496    if (!FINode)
2497      return false;
2498    FI = FINode->getIndex();
2499  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2500    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2501    FI = FINode->getIndex();
2502    Bytes = Flags.getByValSize();
2503  } else
2504    return false;
2505
2506  assert(FI != INT_MAX);
2507  if (!MFI->isFixedObjectIndex(FI))
2508    return false;
2509  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2510}
2511
2512/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2513/// for tail call optimization. Targets which want to do tail call
2514/// optimization should implement this function.
2515bool
2516X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2517                                                     CallingConv::ID CalleeCC,
2518                                                     bool isVarArg,
2519                                                     bool isCalleeStructRet,
2520                                                     bool isCallerStructRet,
2521                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2522                                    const SmallVectorImpl<SDValue> &OutVals,
2523                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2524                                                     SelectionDAG& DAG) const {
2525  if (!IsTailCallConvention(CalleeCC) &&
2526      CalleeCC != CallingConv::C)
2527    return false;
2528
2529  // If -tailcallopt is specified, make fastcc functions tail-callable.
2530  const MachineFunction &MF = DAG.getMachineFunction();
2531  const Function *CallerF = DAG.getMachineFunction().getFunction();
2532  CallingConv::ID CallerCC = CallerF->getCallingConv();
2533  bool CCMatch = CallerCC == CalleeCC;
2534
2535  if (GuaranteedTailCallOpt) {
2536    if (IsTailCallConvention(CalleeCC) && CCMatch)
2537      return true;
2538    return false;
2539  }
2540
2541  // Look for obvious safe cases to perform tail call optimization that do not
2542  // require ABI changes. This is what gcc calls sibcall.
2543
2544  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2545  // emit a special epilogue.
2546  if (RegInfo->needsStackRealignment(MF))
2547    return false;
2548
2549  // Also avoid sibcall optimization if either caller or callee uses struct
2550  // return semantics.
2551  if (isCalleeStructRet || isCallerStructRet)
2552    return false;
2553
2554  // An stdcall caller is expected to clean up its arguments; the callee
2555  // isn't going to do that.
2556  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2557    return false;
2558
2559  // Do not sibcall optimize vararg calls unless all arguments are passed via
2560  // registers.
2561  if (isVarArg && !Outs.empty()) {
2562
2563    // Optimizing for varargs on Win64 is unlikely to be safe without
2564    // additional testing.
2565    if (Subtarget->isTargetWin64())
2566      return false;
2567
2568    SmallVector<CCValAssign, 16> ArgLocs;
2569    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2570		   getTargetMachine(), ArgLocs, *DAG.getContext());
2571
2572    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2573    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2574      if (!ArgLocs[i].isRegLoc())
2575        return false;
2576  }
2577
2578  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2579  // Therefore if it's not used by the call it is not safe to optimize this into
2580  // a sibcall.
2581  bool Unused = false;
2582  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2583    if (!Ins[i].Used) {
2584      Unused = true;
2585      break;
2586    }
2587  }
2588  if (Unused) {
2589    SmallVector<CCValAssign, 16> RVLocs;
2590    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2591		   getTargetMachine(), RVLocs, *DAG.getContext());
2592    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2593    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2594      CCValAssign &VA = RVLocs[i];
2595      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2596        return false;
2597    }
2598  }
2599
2600  // If the calling conventions do not match, then we'd better make sure the
2601  // results are returned in the same way as what the caller expects.
2602  if (!CCMatch) {
2603    SmallVector<CCValAssign, 16> RVLocs1;
2604    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2605		    getTargetMachine(), RVLocs1, *DAG.getContext());
2606    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2607
2608    SmallVector<CCValAssign, 16> RVLocs2;
2609    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2610		    getTargetMachine(), RVLocs2, *DAG.getContext());
2611    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2612
2613    if (RVLocs1.size() != RVLocs2.size())
2614      return false;
2615    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2616      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2617        return false;
2618      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2619        return false;
2620      if (RVLocs1[i].isRegLoc()) {
2621        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2622          return false;
2623      } else {
2624        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2625          return false;
2626      }
2627    }
2628  }
2629
2630  // If the callee takes no arguments then go on to check the results of the
2631  // call.
2632  if (!Outs.empty()) {
2633    // Check if stack adjustment is needed. For now, do not do this if any
2634    // argument is passed on the stack.
2635    SmallVector<CCValAssign, 16> ArgLocs;
2636    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2637		   getTargetMachine(), ArgLocs, *DAG.getContext());
2638
2639    // Allocate shadow area for Win64
2640    if (Subtarget->isTargetWin64()) {
2641      CCInfo.AllocateStack(32, 8);
2642    }
2643
2644    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2645    if (CCInfo.getNextStackOffset()) {
2646      MachineFunction &MF = DAG.getMachineFunction();
2647      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2648        return false;
2649
2650      // Check if the arguments are already laid out in the right way as
2651      // the caller's fixed stack objects.
2652      MachineFrameInfo *MFI = MF.getFrameInfo();
2653      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2654      const X86InstrInfo *TII =
2655        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2656      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2657        CCValAssign &VA = ArgLocs[i];
2658        SDValue Arg = OutVals[i];
2659        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2660        if (VA.getLocInfo() == CCValAssign::Indirect)
2661          return false;
2662        if (!VA.isRegLoc()) {
2663          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2664                                   MFI, MRI, TII))
2665            return false;
2666        }
2667      }
2668    }
2669
2670    // If the tailcall address may be in a register, then make sure it's
2671    // possible to register allocate for it. In 32-bit, the call address can
2672    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2673    // callee-saved registers are restored. These happen to be the same
2674    // registers used to pass 'inreg' arguments so watch out for those.
2675    if (!Subtarget->is64Bit() &&
2676        !isa<GlobalAddressSDNode>(Callee) &&
2677        !isa<ExternalSymbolSDNode>(Callee)) {
2678      unsigned NumInRegs = 0;
2679      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2680        CCValAssign &VA = ArgLocs[i];
2681        if (!VA.isRegLoc())
2682          continue;
2683        unsigned Reg = VA.getLocReg();
2684        switch (Reg) {
2685        default: break;
2686        case X86::EAX: case X86::EDX: case X86::ECX:
2687          if (++NumInRegs == 3)
2688            return false;
2689          break;
2690        }
2691      }
2692    }
2693  }
2694
2695  return true;
2696}
2697
2698FastISel *
2699X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2700  return X86::createFastISel(funcInfo);
2701}
2702
2703
2704//===----------------------------------------------------------------------===//
2705//                           Other Lowering Hooks
2706//===----------------------------------------------------------------------===//
2707
2708static bool MayFoldLoad(SDValue Op) {
2709  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2710}
2711
2712static bool MayFoldIntoStore(SDValue Op) {
2713  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2714}
2715
2716static bool isTargetShuffle(unsigned Opcode) {
2717  switch(Opcode) {
2718  default: return false;
2719  case X86ISD::PSHUFD:
2720  case X86ISD::PSHUFHW:
2721  case X86ISD::PSHUFLW:
2722  case X86ISD::SHUFPD:
2723  case X86ISD::PALIGN:
2724  case X86ISD::SHUFPS:
2725  case X86ISD::MOVLHPS:
2726  case X86ISD::MOVLHPD:
2727  case X86ISD::MOVHLPS:
2728  case X86ISD::MOVLPS:
2729  case X86ISD::MOVLPD:
2730  case X86ISD::MOVSHDUP:
2731  case X86ISD::MOVSLDUP:
2732  case X86ISD::MOVDDUP:
2733  case X86ISD::MOVSS:
2734  case X86ISD::MOVSD:
2735  case X86ISD::UNPCKLPS:
2736  case X86ISD::UNPCKLPD:
2737  case X86ISD::VUNPCKLPSY:
2738  case X86ISD::VUNPCKLPDY:
2739  case X86ISD::PUNPCKLWD:
2740  case X86ISD::PUNPCKLBW:
2741  case X86ISD::PUNPCKLDQ:
2742  case X86ISD::PUNPCKLQDQ:
2743  case X86ISD::UNPCKHPS:
2744  case X86ISD::UNPCKHPD:
2745  case X86ISD::VUNPCKHPSY:
2746  case X86ISD::VUNPCKHPDY:
2747  case X86ISD::PUNPCKHWD:
2748  case X86ISD::PUNPCKHBW:
2749  case X86ISD::PUNPCKHDQ:
2750  case X86ISD::PUNPCKHQDQ:
2751  case X86ISD::VPERMILPS:
2752  case X86ISD::VPERMILPSY:
2753  case X86ISD::VPERMILPD:
2754  case X86ISD::VPERMILPDY:
2755    return true;
2756  }
2757  return false;
2758}
2759
2760static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2761                                               SDValue V1, SelectionDAG &DAG) {
2762  switch(Opc) {
2763  default: llvm_unreachable("Unknown x86 shuffle node");
2764  case X86ISD::MOVSHDUP:
2765  case X86ISD::MOVSLDUP:
2766  case X86ISD::MOVDDUP:
2767    return DAG.getNode(Opc, dl, VT, V1);
2768  }
2769
2770  return SDValue();
2771}
2772
2773static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2774                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2775  switch(Opc) {
2776  default: llvm_unreachable("Unknown x86 shuffle node");
2777  case X86ISD::PSHUFD:
2778  case X86ISD::PSHUFHW:
2779  case X86ISD::PSHUFLW:
2780  case X86ISD::VPERMILPS:
2781  case X86ISD::VPERMILPSY:
2782  case X86ISD::VPERMILPD:
2783  case X86ISD::VPERMILPDY:
2784    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2785  }
2786
2787  return SDValue();
2788}
2789
2790static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2791               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2792  switch(Opc) {
2793  default: llvm_unreachable("Unknown x86 shuffle node");
2794  case X86ISD::PALIGN:
2795  case X86ISD::SHUFPD:
2796  case X86ISD::SHUFPS:
2797    return DAG.getNode(Opc, dl, VT, V1, V2,
2798                       DAG.getConstant(TargetMask, MVT::i8));
2799  }
2800  return SDValue();
2801}
2802
2803static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2804                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2805  switch(Opc) {
2806  default: llvm_unreachable("Unknown x86 shuffle node");
2807  case X86ISD::MOVLHPS:
2808  case X86ISD::MOVLHPD:
2809  case X86ISD::MOVHLPS:
2810  case X86ISD::MOVLPS:
2811  case X86ISD::MOVLPD:
2812  case X86ISD::MOVSS:
2813  case X86ISD::MOVSD:
2814  case X86ISD::UNPCKLPS:
2815  case X86ISD::UNPCKLPD:
2816  case X86ISD::VUNPCKLPSY:
2817  case X86ISD::VUNPCKLPDY:
2818  case X86ISD::PUNPCKLWD:
2819  case X86ISD::PUNPCKLBW:
2820  case X86ISD::PUNPCKLDQ:
2821  case X86ISD::PUNPCKLQDQ:
2822  case X86ISD::UNPCKHPS:
2823  case X86ISD::UNPCKHPD:
2824  case X86ISD::VUNPCKHPSY:
2825  case X86ISD::VUNPCKHPDY:
2826  case X86ISD::PUNPCKHWD:
2827  case X86ISD::PUNPCKHBW:
2828  case X86ISD::PUNPCKHDQ:
2829  case X86ISD::PUNPCKHQDQ:
2830    return DAG.getNode(Opc, dl, VT, V1, V2);
2831  }
2832  return SDValue();
2833}
2834
2835SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2836  MachineFunction &MF = DAG.getMachineFunction();
2837  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2838  int ReturnAddrIndex = FuncInfo->getRAIndex();
2839
2840  if (ReturnAddrIndex == 0) {
2841    // Set up a frame object for the return address.
2842    uint64_t SlotSize = TD->getPointerSize();
2843    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2844                                                           false);
2845    FuncInfo->setRAIndex(ReturnAddrIndex);
2846  }
2847
2848  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2849}
2850
2851
2852bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2853                                       bool hasSymbolicDisplacement) {
2854  // Offset should fit into 32 bit immediate field.
2855  if (!isInt<32>(Offset))
2856    return false;
2857
2858  // If we don't have a symbolic displacement - we don't have any extra
2859  // restrictions.
2860  if (!hasSymbolicDisplacement)
2861    return true;
2862
2863  // FIXME: Some tweaks might be needed for medium code model.
2864  if (M != CodeModel::Small && M != CodeModel::Kernel)
2865    return false;
2866
2867  // For small code model we assume that latest object is 16MB before end of 31
2868  // bits boundary. We may also accept pretty large negative constants knowing
2869  // that all objects are in the positive half of address space.
2870  if (M == CodeModel::Small && Offset < 16*1024*1024)
2871    return true;
2872
2873  // For kernel code model we know that all object resist in the negative half
2874  // of 32bits address space. We may not accept negative offsets, since they may
2875  // be just off and we may accept pretty large positive ones.
2876  if (M == CodeModel::Kernel && Offset > 0)
2877    return true;
2878
2879  return false;
2880}
2881
2882/// isCalleePop - Determines whether the callee is required to pop its
2883/// own arguments. Callee pop is necessary to support tail calls.
2884bool X86::isCalleePop(CallingConv::ID CallingConv,
2885                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2886  if (IsVarArg)
2887    return false;
2888
2889  switch (CallingConv) {
2890  default:
2891    return false;
2892  case CallingConv::X86_StdCall:
2893    return !is64Bit;
2894  case CallingConv::X86_FastCall:
2895    return !is64Bit;
2896  case CallingConv::X86_ThisCall:
2897    return !is64Bit;
2898  case CallingConv::Fast:
2899    return TailCallOpt;
2900  case CallingConv::GHC:
2901    return TailCallOpt;
2902  }
2903}
2904
2905/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2906/// specific condition code, returning the condition code and the LHS/RHS of the
2907/// comparison to make.
2908static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2909                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2910  if (!isFP) {
2911    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2912      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2913        // X > -1   -> X == 0, jump !sign.
2914        RHS = DAG.getConstant(0, RHS.getValueType());
2915        return X86::COND_NS;
2916      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2917        // X < 0   -> X == 0, jump on sign.
2918        return X86::COND_S;
2919      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2920        // X < 1   -> X <= 0
2921        RHS = DAG.getConstant(0, RHS.getValueType());
2922        return X86::COND_LE;
2923      }
2924    }
2925
2926    switch (SetCCOpcode) {
2927    default: llvm_unreachable("Invalid integer condition!");
2928    case ISD::SETEQ:  return X86::COND_E;
2929    case ISD::SETGT:  return X86::COND_G;
2930    case ISD::SETGE:  return X86::COND_GE;
2931    case ISD::SETLT:  return X86::COND_L;
2932    case ISD::SETLE:  return X86::COND_LE;
2933    case ISD::SETNE:  return X86::COND_NE;
2934    case ISD::SETULT: return X86::COND_B;
2935    case ISD::SETUGT: return X86::COND_A;
2936    case ISD::SETULE: return X86::COND_BE;
2937    case ISD::SETUGE: return X86::COND_AE;
2938    }
2939  }
2940
2941  // First determine if it is required or is profitable to flip the operands.
2942
2943  // If LHS is a foldable load, but RHS is not, flip the condition.
2944  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2945      !ISD::isNON_EXTLoad(RHS.getNode())) {
2946    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2947    std::swap(LHS, RHS);
2948  }
2949
2950  switch (SetCCOpcode) {
2951  default: break;
2952  case ISD::SETOLT:
2953  case ISD::SETOLE:
2954  case ISD::SETUGT:
2955  case ISD::SETUGE:
2956    std::swap(LHS, RHS);
2957    break;
2958  }
2959
2960  // On a floating point condition, the flags are set as follows:
2961  // ZF  PF  CF   op
2962  //  0 | 0 | 0 | X > Y
2963  //  0 | 0 | 1 | X < Y
2964  //  1 | 0 | 0 | X == Y
2965  //  1 | 1 | 1 | unordered
2966  switch (SetCCOpcode) {
2967  default: llvm_unreachable("Condcode should be pre-legalized away");
2968  case ISD::SETUEQ:
2969  case ISD::SETEQ:   return X86::COND_E;
2970  case ISD::SETOLT:              // flipped
2971  case ISD::SETOGT:
2972  case ISD::SETGT:   return X86::COND_A;
2973  case ISD::SETOLE:              // flipped
2974  case ISD::SETOGE:
2975  case ISD::SETGE:   return X86::COND_AE;
2976  case ISD::SETUGT:              // flipped
2977  case ISD::SETULT:
2978  case ISD::SETLT:   return X86::COND_B;
2979  case ISD::SETUGE:              // flipped
2980  case ISD::SETULE:
2981  case ISD::SETLE:   return X86::COND_BE;
2982  case ISD::SETONE:
2983  case ISD::SETNE:   return X86::COND_NE;
2984  case ISD::SETUO:   return X86::COND_P;
2985  case ISD::SETO:    return X86::COND_NP;
2986  case ISD::SETOEQ:
2987  case ISD::SETUNE:  return X86::COND_INVALID;
2988  }
2989}
2990
2991/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2992/// code. Current x86 isa includes the following FP cmov instructions:
2993/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2994static bool hasFPCMov(unsigned X86CC) {
2995  switch (X86CC) {
2996  default:
2997    return false;
2998  case X86::COND_B:
2999  case X86::COND_BE:
3000  case X86::COND_E:
3001  case X86::COND_P:
3002  case X86::COND_A:
3003  case X86::COND_AE:
3004  case X86::COND_NE:
3005  case X86::COND_NP:
3006    return true;
3007  }
3008}
3009
3010/// isFPImmLegal - Returns true if the target can instruction select the
3011/// specified FP immediate natively. If false, the legalizer will
3012/// materialize the FP immediate as a load from a constant pool.
3013bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3014  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3015    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3016      return true;
3017  }
3018  return false;
3019}
3020
3021/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3022/// the specified range (L, H].
3023static bool isUndefOrInRange(int Val, int Low, int Hi) {
3024  return (Val < 0) || (Val >= Low && Val < Hi);
3025}
3026
3027/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3028/// specified value.
3029static bool isUndefOrEqual(int Val, int CmpVal) {
3030  if (Val < 0 || Val == CmpVal)
3031    return true;
3032  return false;
3033}
3034
3035/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3036/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3037/// the second operand.
3038static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3039  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3040    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3041  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3042    return (Mask[0] < 2 && Mask[1] < 2);
3043  return false;
3044}
3045
3046bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3047  SmallVector<int, 8> M;
3048  N->getMask(M);
3049  return ::isPSHUFDMask(M, N->getValueType(0));
3050}
3051
3052/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3053/// is suitable for input to PSHUFHW.
3054static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3055  if (VT != MVT::v8i16)
3056    return false;
3057
3058  // Lower quadword copied in order or undef.
3059  for (int i = 0; i != 4; ++i)
3060    if (Mask[i] >= 0 && Mask[i] != i)
3061      return false;
3062
3063  // Upper quadword shuffled.
3064  for (int i = 4; i != 8; ++i)
3065    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3066      return false;
3067
3068  return true;
3069}
3070
3071bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3072  SmallVector<int, 8> M;
3073  N->getMask(M);
3074  return ::isPSHUFHWMask(M, N->getValueType(0));
3075}
3076
3077/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3078/// is suitable for input to PSHUFLW.
3079static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3080  if (VT != MVT::v8i16)
3081    return false;
3082
3083  // Upper quadword copied in order.
3084  for (int i = 4; i != 8; ++i)
3085    if (Mask[i] >= 0 && Mask[i] != i)
3086      return false;
3087
3088  // Lower quadword shuffled.
3089  for (int i = 0; i != 4; ++i)
3090    if (Mask[i] >= 4)
3091      return false;
3092
3093  return true;
3094}
3095
3096bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3097  SmallVector<int, 8> M;
3098  N->getMask(M);
3099  return ::isPSHUFLWMask(M, N->getValueType(0));
3100}
3101
3102/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3103/// is suitable for input to PALIGNR.
3104static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3105                          bool hasSSSE3) {
3106  int i, e = VT.getVectorNumElements();
3107  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3108    return false;
3109
3110  // Do not handle v2i64 / v2f64 shuffles with palignr.
3111  if (e < 4 || !hasSSSE3)
3112    return false;
3113
3114  for (i = 0; i != e; ++i)
3115    if (Mask[i] >= 0)
3116      break;
3117
3118  // All undef, not a palignr.
3119  if (i == e)
3120    return false;
3121
3122  // Make sure we're shifting in the right direction.
3123  if (Mask[i] <= i)
3124    return false;
3125
3126  int s = Mask[i] - i;
3127
3128  // Check the rest of the elements to see if they are consecutive.
3129  for (++i; i != e; ++i) {
3130    int m = Mask[i];
3131    if (m >= 0 && m != s+i)
3132      return false;
3133  }
3134  return true;
3135}
3136
3137/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3138/// specifies a shuffle of elements that is suitable for input to SHUFP*.
3139static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3140  int NumElems = VT.getVectorNumElements();
3141  if (NumElems != 2 && NumElems != 4)
3142    return false;
3143
3144  int Half = NumElems / 2;
3145  for (int i = 0; i < Half; ++i)
3146    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3147      return false;
3148  for (int i = Half; i < NumElems; ++i)
3149    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3150      return false;
3151
3152  return true;
3153}
3154
3155bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3156  SmallVector<int, 8> M;
3157  N->getMask(M);
3158  return ::isSHUFPMask(M, N->getValueType(0));
3159}
3160
3161/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3162/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3163/// half elements to come from vector 1 (which would equal the dest.) and
3164/// the upper half to come from vector 2.
3165static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3166  int NumElems = VT.getVectorNumElements();
3167
3168  if (NumElems != 2 && NumElems != 4)
3169    return false;
3170
3171  int Half = NumElems / 2;
3172  for (int i = 0; i < Half; ++i)
3173    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3174      return false;
3175  for (int i = Half; i < NumElems; ++i)
3176    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3177      return false;
3178  return true;
3179}
3180
3181static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3182  SmallVector<int, 8> M;
3183  N->getMask(M);
3184  return isCommutedSHUFPMask(M, N->getValueType(0));
3185}
3186
3187/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3188/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3189bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3190  EVT VT = N->getValueType(0);
3191  unsigned NumElems = VT.getVectorNumElements();
3192
3193  if (VT.getSizeInBits() != 128)
3194    return false;
3195
3196  if (NumElems != 4)
3197    return false;
3198
3199  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3200  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3201         isUndefOrEqual(N->getMaskElt(1), 7) &&
3202         isUndefOrEqual(N->getMaskElt(2), 2) &&
3203         isUndefOrEqual(N->getMaskElt(3), 3);
3204}
3205
3206/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3207/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3208/// <2, 3, 2, 3>
3209bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3210  EVT VT = N->getValueType(0);
3211  unsigned NumElems = VT.getVectorNumElements();
3212
3213  if (VT.getSizeInBits() != 128)
3214    return false;
3215
3216  if (NumElems != 4)
3217    return false;
3218
3219  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3220         isUndefOrEqual(N->getMaskElt(1), 3) &&
3221         isUndefOrEqual(N->getMaskElt(2), 2) &&
3222         isUndefOrEqual(N->getMaskElt(3), 3);
3223}
3224
3225/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3226/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3227bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3228  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3229
3230  if (NumElems != 2 && NumElems != 4)
3231    return false;
3232
3233  for (unsigned i = 0; i < NumElems/2; ++i)
3234    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3235      return false;
3236
3237  for (unsigned i = NumElems/2; i < NumElems; ++i)
3238    if (!isUndefOrEqual(N->getMaskElt(i), i))
3239      return false;
3240
3241  return true;
3242}
3243
3244/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3245/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3246bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3247  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3248
3249  if ((NumElems != 2 && NumElems != 4)
3250      || N->getValueType(0).getSizeInBits() > 128)
3251    return false;
3252
3253  for (unsigned i = 0; i < NumElems/2; ++i)
3254    if (!isUndefOrEqual(N->getMaskElt(i), i))
3255      return false;
3256
3257  for (unsigned i = 0; i < NumElems/2; ++i)
3258    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3259      return false;
3260
3261  return true;
3262}
3263
3264/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3265/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3266static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3267                         bool V2IsSplat = false) {
3268  int NumElts = VT.getVectorNumElements();
3269
3270  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3271         "Unsupported vector type for unpckh");
3272
3273  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3274    return false;
3275
3276  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3277  // independently on 128-bit lanes.
3278  unsigned NumLanes = VT.getSizeInBits()/128;
3279  unsigned NumLaneElts = NumElts/NumLanes;
3280
3281  unsigned Start = 0;
3282  unsigned End = NumLaneElts;
3283  for (unsigned s = 0; s < NumLanes; ++s) {
3284    for (unsigned i = Start, j = s * NumLaneElts;
3285         i != End;
3286         i += 2, ++j) {
3287      int BitI  = Mask[i];
3288      int BitI1 = Mask[i+1];
3289      if (!isUndefOrEqual(BitI, j))
3290        return false;
3291      if (V2IsSplat) {
3292        if (!isUndefOrEqual(BitI1, NumElts))
3293          return false;
3294      } else {
3295        if (!isUndefOrEqual(BitI1, j + NumElts))
3296          return false;
3297      }
3298    }
3299    // Process the next 128 bits.
3300    Start += NumLaneElts;
3301    End += NumLaneElts;
3302  }
3303
3304  return true;
3305}
3306
3307bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3308  SmallVector<int, 8> M;
3309  N->getMask(M);
3310  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3311}
3312
3313/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3314/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3315static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3316                         bool V2IsSplat = false) {
3317  int NumElts = VT.getVectorNumElements();
3318
3319  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3320         "Unsupported vector type for unpckh");
3321
3322  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3323    return false;
3324
3325  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3326  // independently on 128-bit lanes.
3327  unsigned NumLanes = VT.getSizeInBits()/128;
3328  unsigned NumLaneElts = NumElts/NumLanes;
3329
3330  unsigned Start = 0;
3331  unsigned End = NumLaneElts;
3332  for (unsigned l = 0; l != NumLanes; ++l) {
3333    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3334                             i != End; i += 2, ++j) {
3335      int BitI  = Mask[i];
3336      int BitI1 = Mask[i+1];
3337      if (!isUndefOrEqual(BitI, j))
3338        return false;
3339      if (V2IsSplat) {
3340        if (isUndefOrEqual(BitI1, NumElts))
3341          return false;
3342      } else {
3343        if (!isUndefOrEqual(BitI1, j+NumElts))
3344          return false;
3345      }
3346    }
3347    // Process the next 128 bits.
3348    Start += NumLaneElts;
3349    End += NumLaneElts;
3350  }
3351  return true;
3352}
3353
3354bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3355  SmallVector<int, 8> M;
3356  N->getMask(M);
3357  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3358}
3359
3360/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3361/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3362/// <0, 0, 1, 1>
3363static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3364  int NumElems = VT.getVectorNumElements();
3365  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3366    return false;
3367
3368  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3369  // independently on 128-bit lanes.
3370  unsigned NumLanes = VT.getSizeInBits() / 128;
3371  unsigned NumLaneElts = NumElems / NumLanes;
3372
3373  for (unsigned s = 0; s < NumLanes; ++s) {
3374    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3375         i != NumLaneElts * (s + 1);
3376         i += 2, ++j) {
3377      int BitI  = Mask[i];
3378      int BitI1 = Mask[i+1];
3379
3380      if (!isUndefOrEqual(BitI, j))
3381        return false;
3382      if (!isUndefOrEqual(BitI1, j))
3383        return false;
3384    }
3385  }
3386
3387  return true;
3388}
3389
3390bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3391  SmallVector<int, 8> M;
3392  N->getMask(M);
3393  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3394}
3395
3396/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3397/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3398/// <2, 2, 3, 3>
3399static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3400  int NumElems = VT.getVectorNumElements();
3401  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3402    return false;
3403
3404  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3405    int BitI  = Mask[i];
3406    int BitI1 = Mask[i+1];
3407    if (!isUndefOrEqual(BitI, j))
3408      return false;
3409    if (!isUndefOrEqual(BitI1, j))
3410      return false;
3411  }
3412  return true;
3413}
3414
3415bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3416  SmallVector<int, 8> M;
3417  N->getMask(M);
3418  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3419}
3420
3421/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3422/// specifies a shuffle of elements that is suitable for input to MOVSS,
3423/// MOVSD, and MOVD, i.e. setting the lowest element.
3424static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3425  if (VT.getVectorElementType().getSizeInBits() < 32)
3426    return false;
3427
3428  int NumElts = VT.getVectorNumElements();
3429
3430  if (!isUndefOrEqual(Mask[0], NumElts))
3431    return false;
3432
3433  for (int i = 1; i < NumElts; ++i)
3434    if (!isUndefOrEqual(Mask[i], i))
3435      return false;
3436
3437  return true;
3438}
3439
3440bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3441  SmallVector<int, 8> M;
3442  N->getMask(M);
3443  return ::isMOVLMask(M, N->getValueType(0));
3444}
3445
3446/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3447/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3448/// Note that VPERMIL mask matching is different depending whether theunderlying
3449/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3450/// to the same elements of the low, but to the higher half of the source.
3451/// In VPERMILPD the two lanes could be shuffled independently of each other
3452/// with the same restriction that lanes can't be crossed.
3453static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3454                            const X86Subtarget *Subtarget) {
3455  int NumElts = VT.getVectorNumElements();
3456  int NumLanes = VT.getSizeInBits()/128;
3457
3458  if (!Subtarget->hasAVX())
3459    return false;
3460
3461  // Match any permutation of 128-bit vector with 64-bit types
3462  if (NumLanes == 1 && NumElts != 2)
3463    return false;
3464
3465  // Only match 256-bit with 32 types
3466  if (VT.getSizeInBits() == 256 && NumElts != 4)
3467    return false;
3468
3469  // The mask on the high lane is independent of the low. Both can match
3470  // any element in inside its own lane, but can't cross.
3471  int LaneSize = NumElts/NumLanes;
3472  for (int l = 0; l < NumLanes; ++l)
3473    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3474      int LaneStart = l*LaneSize;
3475      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3476        return false;
3477    }
3478
3479  return true;
3480}
3481
3482/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3483/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3484/// Note that VPERMIL mask matching is different depending whether theunderlying
3485/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3486/// to the same elements of the low, but to the higher half of the source.
3487/// In VPERMILPD the two lanes could be shuffled independently of each other
3488/// with the same restriction that lanes can't be crossed.
3489static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3490                            const X86Subtarget *Subtarget) {
3491  unsigned NumElts = VT.getVectorNumElements();
3492  unsigned NumLanes = VT.getSizeInBits()/128;
3493
3494  if (!Subtarget->hasAVX())
3495    return false;
3496
3497  // Match any permutation of 128-bit vector with 32-bit types
3498  if (NumLanes == 1 && NumElts != 4)
3499    return false;
3500
3501  // Only match 256-bit with 32 types
3502  if (VT.getSizeInBits() == 256 && NumElts != 8)
3503    return false;
3504
3505  // The mask on the high lane should be the same as the low. Actually,
3506  // they can differ if any of the corresponding index in a lane is undef
3507  // and the other stays in range.
3508  int LaneSize = NumElts/NumLanes;
3509  for (int i = 0; i < LaneSize; ++i) {
3510    int HighElt = i+LaneSize;
3511    if (Mask[i] < 0 && (isUndefOrInRange(Mask[HighElt], LaneSize, NumElts)))
3512      continue;
3513    if (Mask[HighElt] < 0 && (isUndefOrInRange(Mask[i], 0, LaneSize)))
3514      continue;
3515    if (Mask[HighElt]-Mask[i] != LaneSize)
3516      return false;
3517  }
3518
3519  return true;
3520}
3521
3522/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3523/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3524static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3525  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3526  EVT VT = SVOp->getValueType(0);
3527
3528  int NumElts = VT.getVectorNumElements();
3529  int NumLanes = VT.getSizeInBits()/128;
3530  int LaneSize = NumElts/NumLanes;
3531
3532  // Although the mask is equal for both lanes do it twice to get the cases
3533  // where a mask will match because the same mask element is undef on the
3534  // first half but valid on the second. This would get pathological cases
3535  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3536  unsigned Mask = 0;
3537  for (int l = 0; l < NumLanes; ++l) {
3538    for (int i = 0; i < LaneSize; ++i) {
3539      int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3540      if (MaskElt < 0)
3541        continue;
3542      if (MaskElt >= LaneSize)
3543        MaskElt -= LaneSize;
3544      Mask |= MaskElt << (i*2);
3545    }
3546  }
3547
3548  return Mask;
3549}
3550
3551/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3552/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3553static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3554  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3555  EVT VT = SVOp->getValueType(0);
3556
3557  int NumElts = VT.getVectorNumElements();
3558  int NumLanes = VT.getSizeInBits()/128;
3559
3560  unsigned Mask = 0;
3561  int LaneSize = NumElts/NumLanes;
3562  for (int l = 0; l < NumLanes; ++l)
3563    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3564      int MaskElt = SVOp->getMaskElt(i);
3565      if (MaskElt < 0)
3566        continue;
3567      Mask |= (MaskElt-l*LaneSize) << i;
3568    }
3569
3570  return Mask;
3571}
3572
3573/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3574/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3575/// element of vector 2 and the other elements to come from vector 1 in order.
3576static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3577                               bool V2IsSplat = false, bool V2IsUndef = false) {
3578  int NumOps = VT.getVectorNumElements();
3579  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3580    return false;
3581
3582  if (!isUndefOrEqual(Mask[0], 0))
3583    return false;
3584
3585  for (int i = 1; i < NumOps; ++i)
3586    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3587          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3588          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3589      return false;
3590
3591  return true;
3592}
3593
3594static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3595                           bool V2IsUndef = false) {
3596  SmallVector<int, 8> M;
3597  N->getMask(M);
3598  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3599}
3600
3601/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3602/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3603/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3604bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3605                         const X86Subtarget *Subtarget) {
3606  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3607    return false;
3608
3609  // The second vector must be undef
3610  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3611    return false;
3612
3613  EVT VT = N->getValueType(0);
3614  unsigned NumElems = VT.getVectorNumElements();
3615
3616  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3617      (VT.getSizeInBits() == 256 && NumElems != 8))
3618    return false;
3619
3620  // "i+1" is the value the indexed mask element must have
3621  for (unsigned i = 0; i < NumElems; i += 2)
3622    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3623        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3624      return false;
3625
3626  return true;
3627}
3628
3629/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3630/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3631/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3632bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3633                         const X86Subtarget *Subtarget) {
3634  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3635    return false;
3636
3637  // The second vector must be undef
3638  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3639    return false;
3640
3641  EVT VT = N->getValueType(0);
3642  unsigned NumElems = VT.getVectorNumElements();
3643
3644  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3645      (VT.getSizeInBits() == 256 && NumElems != 8))
3646    return false;
3647
3648  // "i" is the value the indexed mask element must have
3649  for (unsigned i = 0; i < NumElems; i += 2)
3650    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3651        !isUndefOrEqual(N->getMaskElt(i+1), i))
3652      return false;
3653
3654  return true;
3655}
3656
3657/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3658/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3659bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3660  int e = N->getValueType(0).getVectorNumElements() / 2;
3661
3662  for (int i = 0; i < e; ++i)
3663    if (!isUndefOrEqual(N->getMaskElt(i), i))
3664      return false;
3665  for (int i = 0; i < e; ++i)
3666    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3667      return false;
3668  return true;
3669}
3670
3671/// isVEXTRACTF128Index - Return true if the specified
3672/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3673/// suitable for input to VEXTRACTF128.
3674bool X86::isVEXTRACTF128Index(SDNode *N) {
3675  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3676    return false;
3677
3678  // The index should be aligned on a 128-bit boundary.
3679  uint64_t Index =
3680    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3681
3682  unsigned VL = N->getValueType(0).getVectorNumElements();
3683  unsigned VBits = N->getValueType(0).getSizeInBits();
3684  unsigned ElSize = VBits / VL;
3685  bool Result = (Index * ElSize) % 128 == 0;
3686
3687  return Result;
3688}
3689
3690/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3691/// operand specifies a subvector insert that is suitable for input to
3692/// VINSERTF128.
3693bool X86::isVINSERTF128Index(SDNode *N) {
3694  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3695    return false;
3696
3697  // The index should be aligned on a 128-bit boundary.
3698  uint64_t Index =
3699    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3700
3701  unsigned VL = N->getValueType(0).getVectorNumElements();
3702  unsigned VBits = N->getValueType(0).getSizeInBits();
3703  unsigned ElSize = VBits / VL;
3704  bool Result = (Index * ElSize) % 128 == 0;
3705
3706  return Result;
3707}
3708
3709/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3710/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3711unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3712  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3713  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3714
3715  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3716  unsigned Mask = 0;
3717  for (int i = 0; i < NumOperands; ++i) {
3718    int Val = SVOp->getMaskElt(NumOperands-i-1);
3719    if (Val < 0) Val = 0;
3720    if (Val >= NumOperands) Val -= NumOperands;
3721    Mask |= Val;
3722    if (i != NumOperands - 1)
3723      Mask <<= Shift;
3724  }
3725  return Mask;
3726}
3727
3728/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3729/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3730unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3731  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3732  unsigned Mask = 0;
3733  // 8 nodes, but we only care about the last 4.
3734  for (unsigned i = 7; i >= 4; --i) {
3735    int Val = SVOp->getMaskElt(i);
3736    if (Val >= 0)
3737      Mask |= (Val - 4);
3738    if (i != 4)
3739      Mask <<= 2;
3740  }
3741  return Mask;
3742}
3743
3744/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3745/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3746unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3747  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3748  unsigned Mask = 0;
3749  // 8 nodes, but we only care about the first 4.
3750  for (int i = 3; i >= 0; --i) {
3751    int Val = SVOp->getMaskElt(i);
3752    if (Val >= 0)
3753      Mask |= Val;
3754    if (i != 0)
3755      Mask <<= 2;
3756  }
3757  return Mask;
3758}
3759
3760/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3761/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3762unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3763  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3764  EVT VVT = N->getValueType(0);
3765  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3766  int Val = 0;
3767
3768  unsigned i, e;
3769  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3770    Val = SVOp->getMaskElt(i);
3771    if (Val >= 0)
3772      break;
3773  }
3774  assert(Val - i > 0 && "PALIGNR imm should be positive");
3775  return (Val - i) * EltSize;
3776}
3777
3778/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3779/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3780/// instructions.
3781unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3782  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3783    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3784
3785  uint64_t Index =
3786    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3787
3788  EVT VecVT = N->getOperand(0).getValueType();
3789  EVT ElVT = VecVT.getVectorElementType();
3790
3791  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3792  return Index / NumElemsPerChunk;
3793}
3794
3795/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3796/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3797/// instructions.
3798unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3799  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3800    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3801
3802  uint64_t Index =
3803    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3804
3805  EVT VecVT = N->getValueType(0);
3806  EVT ElVT = VecVT.getVectorElementType();
3807
3808  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3809  return Index / NumElemsPerChunk;
3810}
3811
3812/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3813/// constant +0.0.
3814bool X86::isZeroNode(SDValue Elt) {
3815  return ((isa<ConstantSDNode>(Elt) &&
3816           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3817          (isa<ConstantFPSDNode>(Elt) &&
3818           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3819}
3820
3821/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3822/// their permute mask.
3823static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3824                                    SelectionDAG &DAG) {
3825  EVT VT = SVOp->getValueType(0);
3826  unsigned NumElems = VT.getVectorNumElements();
3827  SmallVector<int, 8> MaskVec;
3828
3829  for (unsigned i = 0; i != NumElems; ++i) {
3830    int idx = SVOp->getMaskElt(i);
3831    if (idx < 0)
3832      MaskVec.push_back(idx);
3833    else if (idx < (int)NumElems)
3834      MaskVec.push_back(idx + NumElems);
3835    else
3836      MaskVec.push_back(idx - NumElems);
3837  }
3838  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3839                              SVOp->getOperand(0), &MaskVec[0]);
3840}
3841
3842/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3843/// the two vector operands have swapped position.
3844static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3845  unsigned NumElems = VT.getVectorNumElements();
3846  for (unsigned i = 0; i != NumElems; ++i) {
3847    int idx = Mask[i];
3848    if (idx < 0)
3849      continue;
3850    else if (idx < (int)NumElems)
3851      Mask[i] = idx + NumElems;
3852    else
3853      Mask[i] = idx - NumElems;
3854  }
3855}
3856
3857/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3858/// match movhlps. The lower half elements should come from upper half of
3859/// V1 (and in order), and the upper half elements should come from the upper
3860/// half of V2 (and in order).
3861static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3862  if (Op->getValueType(0).getVectorNumElements() != 4)
3863    return false;
3864  for (unsigned i = 0, e = 2; i != e; ++i)
3865    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3866      return false;
3867  for (unsigned i = 2; i != 4; ++i)
3868    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3869      return false;
3870  return true;
3871}
3872
3873/// isScalarLoadToVector - Returns true if the node is a scalar load that
3874/// is promoted to a vector. It also returns the LoadSDNode by reference if
3875/// required.
3876static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3877  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3878    return false;
3879  N = N->getOperand(0).getNode();
3880  if (!ISD::isNON_EXTLoad(N))
3881    return false;
3882  if (LD)
3883    *LD = cast<LoadSDNode>(N);
3884  return true;
3885}
3886
3887/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3888/// match movlp{s|d}. The lower half elements should come from lower half of
3889/// V1 (and in order), and the upper half elements should come from the upper
3890/// half of V2 (and in order). And since V1 will become the source of the
3891/// MOVLP, it must be either a vector load or a scalar load to vector.
3892static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3893                               ShuffleVectorSDNode *Op) {
3894  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3895    return false;
3896  // Is V2 is a vector load, don't do this transformation. We will try to use
3897  // load folding shufps op.
3898  if (ISD::isNON_EXTLoad(V2))
3899    return false;
3900
3901  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3902
3903  if (NumElems != 2 && NumElems != 4)
3904    return false;
3905  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3906    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3907      return false;
3908  for (unsigned i = NumElems/2; i != NumElems; ++i)
3909    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3910      return false;
3911  return true;
3912}
3913
3914/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3915/// all the same.
3916static bool isSplatVector(SDNode *N) {
3917  if (N->getOpcode() != ISD::BUILD_VECTOR)
3918    return false;
3919
3920  SDValue SplatValue = N->getOperand(0);
3921  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3922    if (N->getOperand(i) != SplatValue)
3923      return false;
3924  return true;
3925}
3926
3927/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3928/// to an zero vector.
3929/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3930static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3931  SDValue V1 = N->getOperand(0);
3932  SDValue V2 = N->getOperand(1);
3933  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3934  for (unsigned i = 0; i != NumElems; ++i) {
3935    int Idx = N->getMaskElt(i);
3936    if (Idx >= (int)NumElems) {
3937      unsigned Opc = V2.getOpcode();
3938      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3939        continue;
3940      if (Opc != ISD::BUILD_VECTOR ||
3941          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3942        return false;
3943    } else if (Idx >= 0) {
3944      unsigned Opc = V1.getOpcode();
3945      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3946        continue;
3947      if (Opc != ISD::BUILD_VECTOR ||
3948          !X86::isZeroNode(V1.getOperand(Idx)))
3949        return false;
3950    }
3951  }
3952  return true;
3953}
3954
3955/// getZeroVector - Returns a vector of specified type with all zero elements.
3956///
3957static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3958                             DebugLoc dl) {
3959  assert(VT.isVector() && "Expected a vector type");
3960
3961  // Always build SSE zero vectors as <4 x i32> bitcasted
3962  // to their dest type. This ensures they get CSE'd.
3963  SDValue Vec;
3964  if (VT.getSizeInBits() == 128) {  // SSE
3965    if (HasSSE2) {  // SSE2
3966      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3967      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3968    } else { // SSE1
3969      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3970      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3971    }
3972  } else if (VT.getSizeInBits() == 256) { // AVX
3973    // 256-bit logic and arithmetic instructions in AVX are
3974    // all floating-point, no support for integer ops. Default
3975    // to emitting fp zeroed vectors then.
3976    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3977    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3978    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3979  }
3980  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3981}
3982
3983/// getOnesVector - Returns a vector of specified type with all bits set.
3984/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
3985/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
3986/// original type, ensuring they get CSE'd.
3987static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3988  assert(VT.isVector() && "Expected a vector type");
3989  assert((VT.is128BitVector() || VT.is256BitVector())
3990         && "Expected a 128-bit or 256-bit vector type");
3991
3992  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3993  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
3994                            Cst, Cst, Cst, Cst);
3995
3996  if (VT.is256BitVector()) {
3997    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
3998                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
3999    Vec = Insert128BitVector(InsV, Vec,
4000                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4001  }
4002
4003  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4004}
4005
4006/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4007/// that point to V2 points to its first element.
4008static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4009  EVT VT = SVOp->getValueType(0);
4010  unsigned NumElems = VT.getVectorNumElements();
4011
4012  bool Changed = false;
4013  SmallVector<int, 8> MaskVec;
4014  SVOp->getMask(MaskVec);
4015
4016  for (unsigned i = 0; i != NumElems; ++i) {
4017    if (MaskVec[i] > (int)NumElems) {
4018      MaskVec[i] = NumElems;
4019      Changed = true;
4020    }
4021  }
4022  if (Changed)
4023    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4024                                SVOp->getOperand(1), &MaskVec[0]);
4025  return SDValue(SVOp, 0);
4026}
4027
4028/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4029/// operation of specified width.
4030static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4031                       SDValue V2) {
4032  unsigned NumElems = VT.getVectorNumElements();
4033  SmallVector<int, 8> Mask;
4034  Mask.push_back(NumElems);
4035  for (unsigned i = 1; i != NumElems; ++i)
4036    Mask.push_back(i);
4037  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4038}
4039
4040/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4041static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4042                          SDValue V2) {
4043  unsigned NumElems = VT.getVectorNumElements();
4044  SmallVector<int, 8> Mask;
4045  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4046    Mask.push_back(i);
4047    Mask.push_back(i + NumElems);
4048  }
4049  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4050}
4051
4052/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4053static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4054                          SDValue V2) {
4055  unsigned NumElems = VT.getVectorNumElements();
4056  unsigned Half = NumElems/2;
4057  SmallVector<int, 8> Mask;
4058  for (unsigned i = 0; i != Half; ++i) {
4059    Mask.push_back(i + Half);
4060    Mask.push_back(i + NumElems + Half);
4061  }
4062  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4063}
4064
4065// PromoteSplatv8v16 - All i16 and i8 vector types can't be used directly by
4066// a generic shuffle instruction because the target has no such instructions.
4067// Generate shuffles which repeat i16 and i8 several times until they can be
4068// represented by v4f32 and then be manipulated by target suported shuffles.
4069static SDValue PromoteSplatv8v16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4070  EVT VT = V.getValueType();
4071  int NumElems = VT.getVectorNumElements();
4072  DebugLoc dl = V.getDebugLoc();
4073
4074  while (NumElems > 4) {
4075    if (EltNo < NumElems/2) {
4076      V = getUnpackl(DAG, dl, VT, V, V);
4077    } else {
4078      V = getUnpackh(DAG, dl, VT, V, V);
4079      EltNo -= NumElems/2;
4080    }
4081    NumElems >>= 1;
4082  }
4083  return V;
4084}
4085
4086/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4087static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4088  EVT VT = V.getValueType();
4089  DebugLoc dl = V.getDebugLoc();
4090  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4091         && "Vector size not supported");
4092
4093  bool Is128 = VT.getSizeInBits() == 128;
4094  EVT NVT = Is128 ? MVT::v4f32 : MVT::v8f32;
4095  V = DAG.getNode(ISD::BITCAST, dl, NVT, V);
4096
4097  if (Is128) {
4098    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4099    V = DAG.getVectorShuffle(NVT, dl, V, DAG.getUNDEF(NVT), &SplatMask[0]);
4100  } else {
4101    // The second half of indicies refer to the higher part, which is a
4102    // duplication of the lower one. This makes this shuffle a perfect match
4103    // for the VPERM instruction.
4104    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4105                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4106    V = DAG.getVectorShuffle(NVT, dl, V, DAG.getUNDEF(NVT), &SplatMask[0]);
4107  }
4108
4109  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4110}
4111
4112/// PromoteVectorToScalarSplat - Since there's no native support for
4113/// scalar_to_vector for 256-bit AVX, a 128-bit scalar_to_vector +
4114/// INSERT_SUBVECTOR is generated. Recognize this idiom and do the
4115/// shuffle before the insertion, this yields less instructions in the end.
4116static SDValue PromoteVectorToScalarSplat(ShuffleVectorSDNode *SV,
4117                                          SelectionDAG &DAG) {
4118  EVT SrcVT = SV->getValueType(0);
4119  SDValue V1 = SV->getOperand(0);
4120  DebugLoc dl = SV->getDebugLoc();
4121  int NumElems = SrcVT.getVectorNumElements();
4122
4123  assert(SrcVT.is256BitVector() && "unknown howto handle vector type");
4124
4125  SmallVector<int, 4> Mask;
4126  for (int i = 0; i < NumElems/2; ++i)
4127    Mask.push_back(SV->getMaskElt(i));
4128
4129  EVT SVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
4130                             NumElems/2);
4131  SDValue SV1 = DAG.getVectorShuffle(SVT, dl, V1.getOperand(1),
4132                                     DAG.getUNDEF(SVT), &Mask[0]);
4133  SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), SV1,
4134                                    DAG.getConstant(0, MVT::i32), DAG, dl);
4135
4136  return Insert128BitVector(InsV, SV1,
4137                       DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4138}
4139
4140/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32 and
4141/// v8i32, v16i16 or v32i8 to v8f32.
4142static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4143  EVT SrcVT = SV->getValueType(0);
4144  SDValue V1 = SV->getOperand(0);
4145  DebugLoc dl = SV->getDebugLoc();
4146
4147  int EltNo = SV->getSplatIndex();
4148  int NumElems = SrcVT.getVectorNumElements();
4149  unsigned Size = SrcVT.getSizeInBits();
4150
4151  // Extract the 128-bit part containing the splat element and update
4152  // the splat element index when it refers to the higher register.
4153  if (Size == 256) {
4154    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4155    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4156    if (Idx > 0)
4157      EltNo -= NumElems/2;
4158  }
4159
4160  // Make this 128-bit vector duplicate i8 and i16 elements
4161  if (NumElems > 4)
4162    V1 = PromoteSplatv8v16(V1, DAG, EltNo);
4163
4164  // Recreate the 256-bit vector and place the same 128-bit vector
4165  // into the low and high part. This is necessary because we want
4166  // to use VPERM to shuffle the v8f32 vector, and VPERM only shuffles
4167  // inside each separate v4f32 lane.
4168  if (Size == 256) {
4169    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4170                         DAG.getConstant(0, MVT::i32), DAG, dl);
4171    V1 = Insert128BitVector(InsV, V1,
4172               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4173  }
4174
4175  return getLegalSplat(DAG, V1, EltNo);
4176}
4177
4178/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4179/// vector of zero or undef vector.  This produces a shuffle where the low
4180/// element of V2 is swizzled into the zero/undef vector, landing at element
4181/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4182static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4183                                             bool isZero, bool HasSSE2,
4184                                             SelectionDAG &DAG) {
4185  EVT VT = V2.getValueType();
4186  SDValue V1 = isZero
4187    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4188  unsigned NumElems = VT.getVectorNumElements();
4189  SmallVector<int, 16> MaskVec;
4190  for (unsigned i = 0; i != NumElems; ++i)
4191    // If this is the insertion idx, put the low elt of V2 here.
4192    MaskVec.push_back(i == Idx ? NumElems : i);
4193  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4194}
4195
4196/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4197/// element of the result of the vector shuffle.
4198static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4199                                   unsigned Depth) {
4200  if (Depth == 6)
4201    return SDValue();  // Limit search depth.
4202
4203  SDValue V = SDValue(N, 0);
4204  EVT VT = V.getValueType();
4205  unsigned Opcode = V.getOpcode();
4206
4207  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4208  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4209    Index = SV->getMaskElt(Index);
4210
4211    if (Index < 0)
4212      return DAG.getUNDEF(VT.getVectorElementType());
4213
4214    int NumElems = VT.getVectorNumElements();
4215    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4216    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4217  }
4218
4219  // Recurse into target specific vector shuffles to find scalars.
4220  if (isTargetShuffle(Opcode)) {
4221    int NumElems = VT.getVectorNumElements();
4222    SmallVector<unsigned, 16> ShuffleMask;
4223    SDValue ImmN;
4224
4225    switch(Opcode) {
4226    case X86ISD::SHUFPS:
4227    case X86ISD::SHUFPD:
4228      ImmN = N->getOperand(N->getNumOperands()-1);
4229      DecodeSHUFPSMask(NumElems,
4230                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4231                       ShuffleMask);
4232      break;
4233    case X86ISD::PUNPCKHBW:
4234    case X86ISD::PUNPCKHWD:
4235    case X86ISD::PUNPCKHDQ:
4236    case X86ISD::PUNPCKHQDQ:
4237      DecodePUNPCKHMask(NumElems, ShuffleMask);
4238      break;
4239    case X86ISD::UNPCKHPS:
4240    case X86ISD::UNPCKHPD:
4241    case X86ISD::VUNPCKHPSY:
4242    case X86ISD::VUNPCKHPDY:
4243      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4244      break;
4245    case X86ISD::PUNPCKLBW:
4246    case X86ISD::PUNPCKLWD:
4247    case X86ISD::PUNPCKLDQ:
4248    case X86ISD::PUNPCKLQDQ:
4249      DecodePUNPCKLMask(VT, ShuffleMask);
4250      break;
4251    case X86ISD::UNPCKLPS:
4252    case X86ISD::UNPCKLPD:
4253    case X86ISD::VUNPCKLPSY:
4254    case X86ISD::VUNPCKLPDY:
4255      DecodeUNPCKLPMask(VT, ShuffleMask);
4256      break;
4257    case X86ISD::MOVHLPS:
4258      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4259      break;
4260    case X86ISD::MOVLHPS:
4261      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4262      break;
4263    case X86ISD::PSHUFD:
4264      ImmN = N->getOperand(N->getNumOperands()-1);
4265      DecodePSHUFMask(NumElems,
4266                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4267                      ShuffleMask);
4268      break;
4269    case X86ISD::PSHUFHW:
4270      ImmN = N->getOperand(N->getNumOperands()-1);
4271      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4272                        ShuffleMask);
4273      break;
4274    case X86ISD::PSHUFLW:
4275      ImmN = N->getOperand(N->getNumOperands()-1);
4276      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4277                        ShuffleMask);
4278      break;
4279    case X86ISD::MOVSS:
4280    case X86ISD::MOVSD: {
4281      // The index 0 always comes from the first element of the second source,
4282      // this is why MOVSS and MOVSD are used in the first place. The other
4283      // elements come from the other positions of the first source vector.
4284      unsigned OpNum = (Index == 0) ? 1 : 0;
4285      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4286                                 Depth+1);
4287    }
4288    case X86ISD::VPERMILPS:
4289      ImmN = N->getOperand(N->getNumOperands()-1);
4290      DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4291                        ShuffleMask);
4292      break;
4293    case X86ISD::VPERMILPSY:
4294      ImmN = N->getOperand(N->getNumOperands()-1);
4295      DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4296                        ShuffleMask);
4297      break;
4298    case X86ISD::VPERMILPD:
4299      ImmN = N->getOperand(N->getNumOperands()-1);
4300      DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4301                        ShuffleMask);
4302      break;
4303    case X86ISD::VPERMILPDY:
4304      ImmN = N->getOperand(N->getNumOperands()-1);
4305      DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4306                        ShuffleMask);
4307      break;
4308    default:
4309      assert("not implemented for target shuffle node");
4310      return SDValue();
4311    }
4312
4313    Index = ShuffleMask[Index];
4314    if (Index < 0)
4315      return DAG.getUNDEF(VT.getVectorElementType());
4316
4317    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4318    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4319                               Depth+1);
4320  }
4321
4322  // Actual nodes that may contain scalar elements
4323  if (Opcode == ISD::BITCAST) {
4324    V = V.getOperand(0);
4325    EVT SrcVT = V.getValueType();
4326    unsigned NumElems = VT.getVectorNumElements();
4327
4328    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4329      return SDValue();
4330  }
4331
4332  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4333    return (Index == 0) ? V.getOperand(0)
4334                          : DAG.getUNDEF(VT.getVectorElementType());
4335
4336  if (V.getOpcode() == ISD::BUILD_VECTOR)
4337    return V.getOperand(Index);
4338
4339  return SDValue();
4340}
4341
4342/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4343/// shuffle operation which come from a consecutively from a zero. The
4344/// search can start in two different directions, from left or right.
4345static
4346unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4347                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4348  int i = 0;
4349
4350  while (i < NumElems) {
4351    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4352    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4353    if (!(Elt.getNode() &&
4354         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4355      break;
4356    ++i;
4357  }
4358
4359  return i;
4360}
4361
4362/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4363/// MaskE correspond consecutively to elements from one of the vector operands,
4364/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4365static
4366bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4367                              int OpIdx, int NumElems, unsigned &OpNum) {
4368  bool SeenV1 = false;
4369  bool SeenV2 = false;
4370
4371  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4372    int Idx = SVOp->getMaskElt(i);
4373    // Ignore undef indicies
4374    if (Idx < 0)
4375      continue;
4376
4377    if (Idx < NumElems)
4378      SeenV1 = true;
4379    else
4380      SeenV2 = true;
4381
4382    // Only accept consecutive elements from the same vector
4383    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4384      return false;
4385  }
4386
4387  OpNum = SeenV1 ? 0 : 1;
4388  return true;
4389}
4390
4391/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4392/// logical left shift of a vector.
4393static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4394                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4395  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4396  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4397              false /* check zeros from right */, DAG);
4398  unsigned OpSrc;
4399
4400  if (!NumZeros)
4401    return false;
4402
4403  // Considering the elements in the mask that are not consecutive zeros,
4404  // check if they consecutively come from only one of the source vectors.
4405  //
4406  //               V1 = {X, A, B, C}     0
4407  //                         \  \  \    /
4408  //   vector_shuffle V1, V2 <1, 2, 3, X>
4409  //
4410  if (!isShuffleMaskConsecutive(SVOp,
4411            0,                   // Mask Start Index
4412            NumElems-NumZeros-1, // Mask End Index
4413            NumZeros,            // Where to start looking in the src vector
4414            NumElems,            // Number of elements in vector
4415            OpSrc))              // Which source operand ?
4416    return false;
4417
4418  isLeft = false;
4419  ShAmt = NumZeros;
4420  ShVal = SVOp->getOperand(OpSrc);
4421  return true;
4422}
4423
4424/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4425/// logical left shift of a vector.
4426static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4427                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4428  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4429  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4430              true /* check zeros from left */, DAG);
4431  unsigned OpSrc;
4432
4433  if (!NumZeros)
4434    return false;
4435
4436  // Considering the elements in the mask that are not consecutive zeros,
4437  // check if they consecutively come from only one of the source vectors.
4438  //
4439  //                           0    { A, B, X, X } = V2
4440  //                          / \    /  /
4441  //   vector_shuffle V1, V2 <X, X, 4, 5>
4442  //
4443  if (!isShuffleMaskConsecutive(SVOp,
4444            NumZeros,     // Mask Start Index
4445            NumElems-1,   // Mask End Index
4446            0,            // Where to start looking in the src vector
4447            NumElems,     // Number of elements in vector
4448            OpSrc))       // Which source operand ?
4449    return false;
4450
4451  isLeft = true;
4452  ShAmt = NumZeros;
4453  ShVal = SVOp->getOperand(OpSrc);
4454  return true;
4455}
4456
4457/// isVectorShift - Returns true if the shuffle can be implemented as a
4458/// logical left or right shift of a vector.
4459static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4460                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4461  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4462      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4463    return true;
4464
4465  return false;
4466}
4467
4468/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4469///
4470static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4471                                       unsigned NumNonZero, unsigned NumZero,
4472                                       SelectionDAG &DAG,
4473                                       const TargetLowering &TLI) {
4474  if (NumNonZero > 8)
4475    return SDValue();
4476
4477  DebugLoc dl = Op.getDebugLoc();
4478  SDValue V(0, 0);
4479  bool First = true;
4480  for (unsigned i = 0; i < 16; ++i) {
4481    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4482    if (ThisIsNonZero && First) {
4483      if (NumZero)
4484        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4485      else
4486        V = DAG.getUNDEF(MVT::v8i16);
4487      First = false;
4488    }
4489
4490    if ((i & 1) != 0) {
4491      SDValue ThisElt(0, 0), LastElt(0, 0);
4492      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4493      if (LastIsNonZero) {
4494        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4495                              MVT::i16, Op.getOperand(i-1));
4496      }
4497      if (ThisIsNonZero) {
4498        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4499        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4500                              ThisElt, DAG.getConstant(8, MVT::i8));
4501        if (LastIsNonZero)
4502          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4503      } else
4504        ThisElt = LastElt;
4505
4506      if (ThisElt.getNode())
4507        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4508                        DAG.getIntPtrConstant(i/2));
4509    }
4510  }
4511
4512  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4513}
4514
4515/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4516///
4517static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4518                                     unsigned NumNonZero, unsigned NumZero,
4519                                     SelectionDAG &DAG,
4520                                     const TargetLowering &TLI) {
4521  if (NumNonZero > 4)
4522    return SDValue();
4523
4524  DebugLoc dl = Op.getDebugLoc();
4525  SDValue V(0, 0);
4526  bool First = true;
4527  for (unsigned i = 0; i < 8; ++i) {
4528    bool isNonZero = (NonZeros & (1 << i)) != 0;
4529    if (isNonZero) {
4530      if (First) {
4531        if (NumZero)
4532          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4533        else
4534          V = DAG.getUNDEF(MVT::v8i16);
4535        First = false;
4536      }
4537      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4538                      MVT::v8i16, V, Op.getOperand(i),
4539                      DAG.getIntPtrConstant(i));
4540    }
4541  }
4542
4543  return V;
4544}
4545
4546/// getVShift - Return a vector logical shift node.
4547///
4548static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4549                         unsigned NumBits, SelectionDAG &DAG,
4550                         const TargetLowering &TLI, DebugLoc dl) {
4551  EVT ShVT = MVT::v2i64;
4552  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4553  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4554  return DAG.getNode(ISD::BITCAST, dl, VT,
4555                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4556                             DAG.getConstant(NumBits,
4557                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4558}
4559
4560SDValue
4561X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4562                                          SelectionDAG &DAG) const {
4563
4564  // Check if the scalar load can be widened into a vector load. And if
4565  // the address is "base + cst" see if the cst can be "absorbed" into
4566  // the shuffle mask.
4567  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4568    SDValue Ptr = LD->getBasePtr();
4569    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4570      return SDValue();
4571    EVT PVT = LD->getValueType(0);
4572    if (PVT != MVT::i32 && PVT != MVT::f32)
4573      return SDValue();
4574
4575    int FI = -1;
4576    int64_t Offset = 0;
4577    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4578      FI = FINode->getIndex();
4579      Offset = 0;
4580    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4581               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4582      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4583      Offset = Ptr.getConstantOperandVal(1);
4584      Ptr = Ptr.getOperand(0);
4585    } else {
4586      return SDValue();
4587    }
4588
4589    // FIXME: 256-bit vector instructions don't require a strict alignment,
4590    // improve this code to support it better.
4591    unsigned RequiredAlign = VT.getSizeInBits()/8;
4592    SDValue Chain = LD->getChain();
4593    // Make sure the stack object alignment is at least 16 or 32.
4594    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4595    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4596      if (MFI->isFixedObjectIndex(FI)) {
4597        // Can't change the alignment. FIXME: It's possible to compute
4598        // the exact stack offset and reference FI + adjust offset instead.
4599        // If someone *really* cares about this. That's the way to implement it.
4600        return SDValue();
4601      } else {
4602        MFI->setObjectAlignment(FI, RequiredAlign);
4603      }
4604    }
4605
4606    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4607    // Ptr + (Offset & ~15).
4608    if (Offset < 0)
4609      return SDValue();
4610    if ((Offset % RequiredAlign) & 3)
4611      return SDValue();
4612    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4613    if (StartOffset)
4614      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4615                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4616
4617    int EltNo = (Offset - StartOffset) >> 2;
4618    int NumElems = VT.getVectorNumElements();
4619
4620    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4621    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4622    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4623                             LD->getPointerInfo().getWithOffset(StartOffset),
4624                             false, false, 0);
4625
4626    // Canonicalize it to a v4i32 or v8i32 shuffle.
4627    SmallVector<int, 8> Mask;
4628    for (int i = 0; i < NumElems; ++i)
4629      Mask.push_back(EltNo);
4630
4631    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4632    return DAG.getNode(ISD::BITCAST, dl, NVT,
4633                       DAG.getVectorShuffle(CanonVT, dl, V1,
4634                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4635  }
4636
4637  return SDValue();
4638}
4639
4640/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4641/// vector of type 'VT', see if the elements can be replaced by a single large
4642/// load which has the same value as a build_vector whose operands are 'elts'.
4643///
4644/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4645///
4646/// FIXME: we'd also like to handle the case where the last elements are zero
4647/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4648/// There's even a handy isZeroNode for that purpose.
4649static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4650                                        DebugLoc &DL, SelectionDAG &DAG) {
4651  EVT EltVT = VT.getVectorElementType();
4652  unsigned NumElems = Elts.size();
4653
4654  LoadSDNode *LDBase = NULL;
4655  unsigned LastLoadedElt = -1U;
4656
4657  // For each element in the initializer, see if we've found a load or an undef.
4658  // If we don't find an initial load element, or later load elements are
4659  // non-consecutive, bail out.
4660  for (unsigned i = 0; i < NumElems; ++i) {
4661    SDValue Elt = Elts[i];
4662
4663    if (!Elt.getNode() ||
4664        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4665      return SDValue();
4666    if (!LDBase) {
4667      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4668        return SDValue();
4669      LDBase = cast<LoadSDNode>(Elt.getNode());
4670      LastLoadedElt = i;
4671      continue;
4672    }
4673    if (Elt.getOpcode() == ISD::UNDEF)
4674      continue;
4675
4676    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4677    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4678      return SDValue();
4679    LastLoadedElt = i;
4680  }
4681
4682  // If we have found an entire vector of loads and undefs, then return a large
4683  // load of the entire vector width starting at the base pointer.  If we found
4684  // consecutive loads for the low half, generate a vzext_load node.
4685  if (LastLoadedElt == NumElems - 1) {
4686    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4687      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4688                         LDBase->getPointerInfo(),
4689                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4690    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4691                       LDBase->getPointerInfo(),
4692                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4693                       LDBase->getAlignment());
4694  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4695             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4696    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4697    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4698    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4699                                              Ops, 2, MVT::i32,
4700                                              LDBase->getMemOperand());
4701    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4702  }
4703  return SDValue();
4704}
4705
4706SDValue
4707X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4708  DebugLoc dl = Op.getDebugLoc();
4709
4710  EVT VT = Op.getValueType();
4711  EVT ExtVT = VT.getVectorElementType();
4712  unsigned NumElems = Op.getNumOperands();
4713
4714  // Vectors containing all zeros can be matched by pxor and xorps later
4715  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
4716    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
4717    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
4718    if (Op.getValueType() == MVT::v4i32 ||
4719        Op.getValueType() == MVT::v8i32)
4720      return Op;
4721
4722    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4723  }
4724
4725  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
4726  // vectors or broken into v4i32 operations on 256-bit vectors.
4727  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
4728    if (Op.getValueType() == MVT::v4i32)
4729      return Op;
4730
4731    return getOnesVector(Op.getValueType(), DAG, dl);
4732  }
4733
4734  unsigned EVTBits = ExtVT.getSizeInBits();
4735
4736  unsigned NumZero  = 0;
4737  unsigned NumNonZero = 0;
4738  unsigned NonZeros = 0;
4739  bool IsAllConstants = true;
4740  SmallSet<SDValue, 8> Values;
4741  for (unsigned i = 0; i < NumElems; ++i) {
4742    SDValue Elt = Op.getOperand(i);
4743    if (Elt.getOpcode() == ISD::UNDEF)
4744      continue;
4745    Values.insert(Elt);
4746    if (Elt.getOpcode() != ISD::Constant &&
4747        Elt.getOpcode() != ISD::ConstantFP)
4748      IsAllConstants = false;
4749    if (X86::isZeroNode(Elt))
4750      NumZero++;
4751    else {
4752      NonZeros |= (1 << i);
4753      NumNonZero++;
4754    }
4755  }
4756
4757  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4758  if (NumNonZero == 0)
4759    return DAG.getUNDEF(VT);
4760
4761  // Special case for single non-zero, non-undef, element.
4762  if (NumNonZero == 1) {
4763    unsigned Idx = CountTrailingZeros_32(NonZeros);
4764    SDValue Item = Op.getOperand(Idx);
4765
4766    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4767    // the value are obviously zero, truncate the value to i32 and do the
4768    // insertion that way.  Only do this if the value is non-constant or if the
4769    // value is a constant being inserted into element 0.  It is cheaper to do
4770    // a constant pool load than it is to do a movd + shuffle.
4771    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4772        (!IsAllConstants || Idx == 0)) {
4773      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4774        // Handle SSE only.
4775        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4776        EVT VecVT = MVT::v4i32;
4777        unsigned VecElts = 4;
4778
4779        // Truncate the value (which may itself be a constant) to i32, and
4780        // convert it to a vector with movd (S2V+shuffle to zero extend).
4781        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4782        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4783        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4784                                           Subtarget->hasSSE2(), DAG);
4785
4786        // Now we have our 32-bit value zero extended in the low element of
4787        // a vector.  If Idx != 0, swizzle it into place.
4788        if (Idx != 0) {
4789          SmallVector<int, 4> Mask;
4790          Mask.push_back(Idx);
4791          for (unsigned i = 1; i != VecElts; ++i)
4792            Mask.push_back(i);
4793          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4794                                      DAG.getUNDEF(Item.getValueType()),
4795                                      &Mask[0]);
4796        }
4797        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4798      }
4799    }
4800
4801    // If we have a constant or non-constant insertion into the low element of
4802    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4803    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4804    // depending on what the source datatype is.
4805    if (Idx == 0) {
4806      if (NumZero == 0) {
4807        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4808      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4809          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4810        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4811        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4812        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4813                                           DAG);
4814      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4815        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4816        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4817        EVT MiddleVT = MVT::v4i32;
4818        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4819        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4820                                           Subtarget->hasSSE2(), DAG);
4821        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4822      }
4823    }
4824
4825    // Is it a vector logical left shift?
4826    if (NumElems == 2 && Idx == 1 &&
4827        X86::isZeroNode(Op.getOperand(0)) &&
4828        !X86::isZeroNode(Op.getOperand(1))) {
4829      unsigned NumBits = VT.getSizeInBits();
4830      return getVShift(true, VT,
4831                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4832                                   VT, Op.getOperand(1)),
4833                       NumBits/2, DAG, *this, dl);
4834    }
4835
4836    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4837      return SDValue();
4838
4839    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4840    // is a non-constant being inserted into an element other than the low one,
4841    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4842    // movd/movss) to move this into the low element, then shuffle it into
4843    // place.
4844    if (EVTBits == 32) {
4845      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4846
4847      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4848      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4849                                         Subtarget->hasSSE2(), DAG);
4850      SmallVector<int, 8> MaskVec;
4851      for (unsigned i = 0; i < NumElems; i++)
4852        MaskVec.push_back(i == Idx ? 0 : 1);
4853      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4854    }
4855  }
4856
4857  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4858  if (Values.size() == 1) {
4859    if (EVTBits == 32) {
4860      // Instead of a shuffle like this:
4861      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4862      // Check if it's possible to issue this instead.
4863      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4864      unsigned Idx = CountTrailingZeros_32(NonZeros);
4865      SDValue Item = Op.getOperand(Idx);
4866      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4867        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4868    }
4869    return SDValue();
4870  }
4871
4872  // A vector full of immediates; various special cases are already
4873  // handled, so this is best done with a single constant-pool load.
4874  if (IsAllConstants)
4875    return SDValue();
4876
4877  // For AVX-length vectors, build the individual 128-bit pieces and use
4878  // shuffles to put them in place.
4879  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
4880    SmallVector<SDValue, 32> V;
4881    for (unsigned i = 0; i < NumElems; ++i)
4882      V.push_back(Op.getOperand(i));
4883
4884    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
4885
4886    // Build both the lower and upper subvector.
4887    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
4888    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
4889                                NumElems/2);
4890
4891    // Recreate the wider vector with the lower and upper part.
4892    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
4893                                DAG.getConstant(0, MVT::i32), DAG, dl);
4894    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
4895                              DAG, dl);
4896  }
4897
4898  // Let legalizer expand 2-wide build_vectors.
4899  if (EVTBits == 64) {
4900    if (NumNonZero == 1) {
4901      // One half is zero or undef.
4902      unsigned Idx = CountTrailingZeros_32(NonZeros);
4903      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4904                                 Op.getOperand(Idx));
4905      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4906                                         Subtarget->hasSSE2(), DAG);
4907    }
4908    return SDValue();
4909  }
4910
4911  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4912  if (EVTBits == 8 && NumElems == 16) {
4913    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4914                                        *this);
4915    if (V.getNode()) return V;
4916  }
4917
4918  if (EVTBits == 16 && NumElems == 8) {
4919    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4920                                      *this);
4921    if (V.getNode()) return V;
4922  }
4923
4924  // If element VT is == 32 bits, turn it into a number of shuffles.
4925  SmallVector<SDValue, 8> V;
4926  V.resize(NumElems);
4927  if (NumElems == 4 && NumZero > 0) {
4928    for (unsigned i = 0; i < 4; ++i) {
4929      bool isZero = !(NonZeros & (1 << i));
4930      if (isZero)
4931        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4932      else
4933        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4934    }
4935
4936    for (unsigned i = 0; i < 2; ++i) {
4937      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4938        default: break;
4939        case 0:
4940          V[i] = V[i*2];  // Must be a zero vector.
4941          break;
4942        case 1:
4943          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4944          break;
4945        case 2:
4946          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4947          break;
4948        case 3:
4949          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4950          break;
4951      }
4952    }
4953
4954    SmallVector<int, 8> MaskVec;
4955    bool Reverse = (NonZeros & 0x3) == 2;
4956    for (unsigned i = 0; i < 2; ++i)
4957      MaskVec.push_back(Reverse ? 1-i : i);
4958    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4959    for (unsigned i = 0; i < 2; ++i)
4960      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4961    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4962  }
4963
4964  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4965    // Check for a build vector of consecutive loads.
4966    for (unsigned i = 0; i < NumElems; ++i)
4967      V[i] = Op.getOperand(i);
4968
4969    // Check for elements which are consecutive loads.
4970    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4971    if (LD.getNode())
4972      return LD;
4973
4974    // For SSE 4.1, use insertps to put the high elements into the low element.
4975    if (getSubtarget()->hasSSE41()) {
4976      SDValue Result;
4977      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4978        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4979      else
4980        Result = DAG.getUNDEF(VT);
4981
4982      for (unsigned i = 1; i < NumElems; ++i) {
4983        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4984        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4985                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4986      }
4987      return Result;
4988    }
4989
4990    // Otherwise, expand into a number of unpckl*, start by extending each of
4991    // our (non-undef) elements to the full vector width with the element in the
4992    // bottom slot of the vector (which generates no code for SSE).
4993    for (unsigned i = 0; i < NumElems; ++i) {
4994      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4995        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4996      else
4997        V[i] = DAG.getUNDEF(VT);
4998    }
4999
5000    // Next, we iteratively mix elements, e.g. for v4f32:
5001    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5002    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5003    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5004    unsigned EltStride = NumElems >> 1;
5005    while (EltStride != 0) {
5006      for (unsigned i = 0; i < EltStride; ++i) {
5007        // If V[i+EltStride] is undef and this is the first round of mixing,
5008        // then it is safe to just drop this shuffle: V[i] is already in the
5009        // right place, the one element (since it's the first round) being
5010        // inserted as undef can be dropped.  This isn't safe for successive
5011        // rounds because they will permute elements within both vectors.
5012        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5013            EltStride == NumElems/2)
5014          continue;
5015
5016        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5017      }
5018      EltStride >>= 1;
5019    }
5020    return V[0];
5021  }
5022  return SDValue();
5023}
5024
5025// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5026// them in a MMX register.  This is better than doing a stack convert.
5027static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5028  DebugLoc dl = Op.getDebugLoc();
5029  EVT ResVT = Op.getValueType();
5030
5031  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5032         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5033  int Mask[2];
5034  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5035  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5036  InVec = Op.getOperand(1);
5037  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5038    unsigned NumElts = ResVT.getVectorNumElements();
5039    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5040    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5041                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5042  } else {
5043    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5044    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5045    Mask[0] = 0; Mask[1] = 2;
5046    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5047  }
5048  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5049}
5050
5051// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5052// to create 256-bit vectors from two other 128-bit ones.
5053static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5054  DebugLoc dl = Op.getDebugLoc();
5055  EVT ResVT = Op.getValueType();
5056
5057  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5058
5059  SDValue V1 = Op.getOperand(0);
5060  SDValue V2 = Op.getOperand(1);
5061  unsigned NumElems = ResVT.getVectorNumElements();
5062
5063  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5064                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5065  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5066                            DAG, dl);
5067}
5068
5069SDValue
5070X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5071  EVT ResVT = Op.getValueType();
5072
5073  assert(Op.getNumOperands() == 2);
5074  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5075         "Unsupported CONCAT_VECTORS for value type");
5076
5077  // We support concatenate two MMX registers and place them in a MMX register.
5078  // This is better than doing a stack convert.
5079  if (ResVT.is128BitVector())
5080    return LowerMMXCONCAT_VECTORS(Op, DAG);
5081
5082  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5083  // from two other 128-bit ones.
5084  return LowerAVXCONCAT_VECTORS(Op, DAG);
5085}
5086
5087// v8i16 shuffles - Prefer shuffles in the following order:
5088// 1. [all]   pshuflw, pshufhw, optional move
5089// 2. [ssse3] 1 x pshufb
5090// 3. [ssse3] 2 x pshufb + 1 x por
5091// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5092SDValue
5093X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5094                                            SelectionDAG &DAG) const {
5095  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5096  SDValue V1 = SVOp->getOperand(0);
5097  SDValue V2 = SVOp->getOperand(1);
5098  DebugLoc dl = SVOp->getDebugLoc();
5099  SmallVector<int, 8> MaskVals;
5100
5101  // Determine if more than 1 of the words in each of the low and high quadwords
5102  // of the result come from the same quadword of one of the two inputs.  Undef
5103  // mask values count as coming from any quadword, for better codegen.
5104  SmallVector<unsigned, 4> LoQuad(4);
5105  SmallVector<unsigned, 4> HiQuad(4);
5106  BitVector InputQuads(4);
5107  for (unsigned i = 0; i < 8; ++i) {
5108    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
5109    int EltIdx = SVOp->getMaskElt(i);
5110    MaskVals.push_back(EltIdx);
5111    if (EltIdx < 0) {
5112      ++Quad[0];
5113      ++Quad[1];
5114      ++Quad[2];
5115      ++Quad[3];
5116      continue;
5117    }
5118    ++Quad[EltIdx / 4];
5119    InputQuads.set(EltIdx / 4);
5120  }
5121
5122  int BestLoQuad = -1;
5123  unsigned MaxQuad = 1;
5124  for (unsigned i = 0; i < 4; ++i) {
5125    if (LoQuad[i] > MaxQuad) {
5126      BestLoQuad = i;
5127      MaxQuad = LoQuad[i];
5128    }
5129  }
5130
5131  int BestHiQuad = -1;
5132  MaxQuad = 1;
5133  for (unsigned i = 0; i < 4; ++i) {
5134    if (HiQuad[i] > MaxQuad) {
5135      BestHiQuad = i;
5136      MaxQuad = HiQuad[i];
5137    }
5138  }
5139
5140  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5141  // of the two input vectors, shuffle them into one input vector so only a
5142  // single pshufb instruction is necessary. If There are more than 2 input
5143  // quads, disable the next transformation since it does not help SSSE3.
5144  bool V1Used = InputQuads[0] || InputQuads[1];
5145  bool V2Used = InputQuads[2] || InputQuads[3];
5146  if (Subtarget->hasSSSE3()) {
5147    if (InputQuads.count() == 2 && V1Used && V2Used) {
5148      BestLoQuad = InputQuads.find_first();
5149      BestHiQuad = InputQuads.find_next(BestLoQuad);
5150    }
5151    if (InputQuads.count() > 2) {
5152      BestLoQuad = -1;
5153      BestHiQuad = -1;
5154    }
5155  }
5156
5157  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5158  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5159  // words from all 4 input quadwords.
5160  SDValue NewV;
5161  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5162    SmallVector<int, 8> MaskV;
5163    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5164    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5165    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5166                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5167                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5168    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5169
5170    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5171    // source words for the shuffle, to aid later transformations.
5172    bool AllWordsInNewV = true;
5173    bool InOrder[2] = { true, true };
5174    for (unsigned i = 0; i != 8; ++i) {
5175      int idx = MaskVals[i];
5176      if (idx != (int)i)
5177        InOrder[i/4] = false;
5178      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5179        continue;
5180      AllWordsInNewV = false;
5181      break;
5182    }
5183
5184    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5185    if (AllWordsInNewV) {
5186      for (int i = 0; i != 8; ++i) {
5187        int idx = MaskVals[i];
5188        if (idx < 0)
5189          continue;
5190        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5191        if ((idx != i) && idx < 4)
5192          pshufhw = false;
5193        if ((idx != i) && idx > 3)
5194          pshuflw = false;
5195      }
5196      V1 = NewV;
5197      V2Used = false;
5198      BestLoQuad = 0;
5199      BestHiQuad = 1;
5200    }
5201
5202    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5203    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5204    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5205      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5206      unsigned TargetMask = 0;
5207      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5208                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5209      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5210                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5211      V1 = NewV.getOperand(0);
5212      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5213    }
5214  }
5215
5216  // If we have SSSE3, and all words of the result are from 1 input vector,
5217  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5218  // is present, fall back to case 4.
5219  if (Subtarget->hasSSSE3()) {
5220    SmallVector<SDValue,16> pshufbMask;
5221
5222    // If we have elements from both input vectors, set the high bit of the
5223    // shuffle mask element to zero out elements that come from V2 in the V1
5224    // mask, and elements that come from V1 in the V2 mask, so that the two
5225    // results can be OR'd together.
5226    bool TwoInputs = V1Used && V2Used;
5227    for (unsigned i = 0; i != 8; ++i) {
5228      int EltIdx = MaskVals[i] * 2;
5229      if (TwoInputs && (EltIdx >= 16)) {
5230        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5231        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5232        continue;
5233      }
5234      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5235      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5236    }
5237    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5238    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5239                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5240                                 MVT::v16i8, &pshufbMask[0], 16));
5241    if (!TwoInputs)
5242      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5243
5244    // Calculate the shuffle mask for the second input, shuffle it, and
5245    // OR it with the first shuffled input.
5246    pshufbMask.clear();
5247    for (unsigned i = 0; i != 8; ++i) {
5248      int EltIdx = MaskVals[i] * 2;
5249      if (EltIdx < 16) {
5250        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5251        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5252        continue;
5253      }
5254      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5255      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5256    }
5257    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5258    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5259                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5260                                 MVT::v16i8, &pshufbMask[0], 16));
5261    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5262    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5263  }
5264
5265  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5266  // and update MaskVals with new element order.
5267  BitVector InOrder(8);
5268  if (BestLoQuad >= 0) {
5269    SmallVector<int, 8> MaskV;
5270    for (int i = 0; i != 4; ++i) {
5271      int idx = MaskVals[i];
5272      if (idx < 0) {
5273        MaskV.push_back(-1);
5274        InOrder.set(i);
5275      } else if ((idx / 4) == BestLoQuad) {
5276        MaskV.push_back(idx & 3);
5277        InOrder.set(i);
5278      } else {
5279        MaskV.push_back(-1);
5280      }
5281    }
5282    for (unsigned i = 4; i != 8; ++i)
5283      MaskV.push_back(i);
5284    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5285                                &MaskV[0]);
5286
5287    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5288      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5289                               NewV.getOperand(0),
5290                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5291                               DAG);
5292  }
5293
5294  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5295  // and update MaskVals with the new element order.
5296  if (BestHiQuad >= 0) {
5297    SmallVector<int, 8> MaskV;
5298    for (unsigned i = 0; i != 4; ++i)
5299      MaskV.push_back(i);
5300    for (unsigned i = 4; i != 8; ++i) {
5301      int idx = MaskVals[i];
5302      if (idx < 0) {
5303        MaskV.push_back(-1);
5304        InOrder.set(i);
5305      } else if ((idx / 4) == BestHiQuad) {
5306        MaskV.push_back((idx & 3) + 4);
5307        InOrder.set(i);
5308      } else {
5309        MaskV.push_back(-1);
5310      }
5311    }
5312    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5313                                &MaskV[0]);
5314
5315    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5316      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5317                              NewV.getOperand(0),
5318                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5319                              DAG);
5320  }
5321
5322  // In case BestHi & BestLo were both -1, which means each quadword has a word
5323  // from each of the four input quadwords, calculate the InOrder bitvector now
5324  // before falling through to the insert/extract cleanup.
5325  if (BestLoQuad == -1 && BestHiQuad == -1) {
5326    NewV = V1;
5327    for (int i = 0; i != 8; ++i)
5328      if (MaskVals[i] < 0 || MaskVals[i] == i)
5329        InOrder.set(i);
5330  }
5331
5332  // The other elements are put in the right place using pextrw and pinsrw.
5333  for (unsigned i = 0; i != 8; ++i) {
5334    if (InOrder[i])
5335      continue;
5336    int EltIdx = MaskVals[i];
5337    if (EltIdx < 0)
5338      continue;
5339    SDValue ExtOp = (EltIdx < 8)
5340    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5341                  DAG.getIntPtrConstant(EltIdx))
5342    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5343                  DAG.getIntPtrConstant(EltIdx - 8));
5344    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5345                       DAG.getIntPtrConstant(i));
5346  }
5347  return NewV;
5348}
5349
5350// v16i8 shuffles - Prefer shuffles in the following order:
5351// 1. [ssse3] 1 x pshufb
5352// 2. [ssse3] 2 x pshufb + 1 x por
5353// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5354static
5355SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5356                                 SelectionDAG &DAG,
5357                                 const X86TargetLowering &TLI) {
5358  SDValue V1 = SVOp->getOperand(0);
5359  SDValue V2 = SVOp->getOperand(1);
5360  DebugLoc dl = SVOp->getDebugLoc();
5361  SmallVector<int, 16> MaskVals;
5362  SVOp->getMask(MaskVals);
5363
5364  // If we have SSSE3, case 1 is generated when all result bytes come from
5365  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5366  // present, fall back to case 3.
5367  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5368  bool V1Only = true;
5369  bool V2Only = true;
5370  for (unsigned i = 0; i < 16; ++i) {
5371    int EltIdx = MaskVals[i];
5372    if (EltIdx < 0)
5373      continue;
5374    if (EltIdx < 16)
5375      V2Only = false;
5376    else
5377      V1Only = false;
5378  }
5379
5380  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5381  if (TLI.getSubtarget()->hasSSSE3()) {
5382    SmallVector<SDValue,16> pshufbMask;
5383
5384    // If all result elements are from one input vector, then only translate
5385    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5386    //
5387    // Otherwise, we have elements from both input vectors, and must zero out
5388    // elements that come from V2 in the first mask, and V1 in the second mask
5389    // so that we can OR them together.
5390    bool TwoInputs = !(V1Only || V2Only);
5391    for (unsigned i = 0; i != 16; ++i) {
5392      int EltIdx = MaskVals[i];
5393      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5394        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5395        continue;
5396      }
5397      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5398    }
5399    // If all the elements are from V2, assign it to V1 and return after
5400    // building the first pshufb.
5401    if (V2Only)
5402      V1 = V2;
5403    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5404                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5405                                 MVT::v16i8, &pshufbMask[0], 16));
5406    if (!TwoInputs)
5407      return V1;
5408
5409    // Calculate the shuffle mask for the second input, shuffle it, and
5410    // OR it with the first shuffled input.
5411    pshufbMask.clear();
5412    for (unsigned i = 0; i != 16; ++i) {
5413      int EltIdx = MaskVals[i];
5414      if (EltIdx < 16) {
5415        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5416        continue;
5417      }
5418      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5419    }
5420    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5421                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5422                                 MVT::v16i8, &pshufbMask[0], 16));
5423    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5424  }
5425
5426  // No SSSE3 - Calculate in place words and then fix all out of place words
5427  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5428  // the 16 different words that comprise the two doublequadword input vectors.
5429  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5430  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5431  SDValue NewV = V2Only ? V2 : V1;
5432  for (int i = 0; i != 8; ++i) {
5433    int Elt0 = MaskVals[i*2];
5434    int Elt1 = MaskVals[i*2+1];
5435
5436    // This word of the result is all undef, skip it.
5437    if (Elt0 < 0 && Elt1 < 0)
5438      continue;
5439
5440    // This word of the result is already in the correct place, skip it.
5441    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5442      continue;
5443    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5444      continue;
5445
5446    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5447    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5448    SDValue InsElt;
5449
5450    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5451    // using a single extract together, load it and store it.
5452    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5453      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5454                           DAG.getIntPtrConstant(Elt1 / 2));
5455      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5456                        DAG.getIntPtrConstant(i));
5457      continue;
5458    }
5459
5460    // If Elt1 is defined, extract it from the appropriate source.  If the
5461    // source byte is not also odd, shift the extracted word left 8 bits
5462    // otherwise clear the bottom 8 bits if we need to do an or.
5463    if (Elt1 >= 0) {
5464      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5465                           DAG.getIntPtrConstant(Elt1 / 2));
5466      if ((Elt1 & 1) == 0)
5467        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5468                             DAG.getConstant(8,
5469                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5470      else if (Elt0 >= 0)
5471        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5472                             DAG.getConstant(0xFF00, MVT::i16));
5473    }
5474    // If Elt0 is defined, extract it from the appropriate source.  If the
5475    // source byte is not also even, shift the extracted word right 8 bits. If
5476    // Elt1 was also defined, OR the extracted values together before
5477    // inserting them in the result.
5478    if (Elt0 >= 0) {
5479      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5480                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5481      if ((Elt0 & 1) != 0)
5482        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5483                              DAG.getConstant(8,
5484                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5485      else if (Elt1 >= 0)
5486        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5487                             DAG.getConstant(0x00FF, MVT::i16));
5488      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5489                         : InsElt0;
5490    }
5491    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5492                       DAG.getIntPtrConstant(i));
5493  }
5494  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5495}
5496
5497/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5498/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5499/// done when every pair / quad of shuffle mask elements point to elements in
5500/// the right sequence. e.g.
5501/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5502static
5503SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5504                                 SelectionDAG &DAG, DebugLoc dl) {
5505  EVT VT = SVOp->getValueType(0);
5506  SDValue V1 = SVOp->getOperand(0);
5507  SDValue V2 = SVOp->getOperand(1);
5508  unsigned NumElems = VT.getVectorNumElements();
5509  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5510  EVT NewVT;
5511  switch (VT.getSimpleVT().SimpleTy) {
5512  default: assert(false && "Unexpected!");
5513  case MVT::v4f32: NewVT = MVT::v2f64; break;
5514  case MVT::v4i32: NewVT = MVT::v2i64; break;
5515  case MVT::v8i16: NewVT = MVT::v4i32; break;
5516  case MVT::v16i8: NewVT = MVT::v4i32; break;
5517  }
5518
5519  int Scale = NumElems / NewWidth;
5520  SmallVector<int, 8> MaskVec;
5521  for (unsigned i = 0; i < NumElems; i += Scale) {
5522    int StartIdx = -1;
5523    for (int j = 0; j < Scale; ++j) {
5524      int EltIdx = SVOp->getMaskElt(i+j);
5525      if (EltIdx < 0)
5526        continue;
5527      if (StartIdx == -1)
5528        StartIdx = EltIdx - (EltIdx % Scale);
5529      if (EltIdx != StartIdx + j)
5530        return SDValue();
5531    }
5532    if (StartIdx == -1)
5533      MaskVec.push_back(-1);
5534    else
5535      MaskVec.push_back(StartIdx / Scale);
5536  }
5537
5538  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5539  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5540  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5541}
5542
5543/// getVZextMovL - Return a zero-extending vector move low node.
5544///
5545static SDValue getVZextMovL(EVT VT, EVT OpVT,
5546                            SDValue SrcOp, SelectionDAG &DAG,
5547                            const X86Subtarget *Subtarget, DebugLoc dl) {
5548  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5549    LoadSDNode *LD = NULL;
5550    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5551      LD = dyn_cast<LoadSDNode>(SrcOp);
5552    if (!LD) {
5553      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5554      // instead.
5555      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5556      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5557          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5558          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5559          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5560        // PR2108
5561        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5562        return DAG.getNode(ISD::BITCAST, dl, VT,
5563                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5564                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5565                                                   OpVT,
5566                                                   SrcOp.getOperand(0)
5567                                                          .getOperand(0))));
5568      }
5569    }
5570  }
5571
5572  return DAG.getNode(ISD::BITCAST, dl, VT,
5573                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5574                                 DAG.getNode(ISD::BITCAST, dl,
5575                                             OpVT, SrcOp)));
5576}
5577
5578/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5579/// which could not be matched by any known target speficic shuffle
5580static SDValue
5581LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5582  return SDValue();
5583}
5584
5585/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5586/// 4 elements, and match them with several different shuffle types.
5587static SDValue
5588LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5589  SDValue V1 = SVOp->getOperand(0);
5590  SDValue V2 = SVOp->getOperand(1);
5591  DebugLoc dl = SVOp->getDebugLoc();
5592  EVT VT = SVOp->getValueType(0);
5593
5594  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5595
5596  SmallVector<std::pair<int, int>, 8> Locs;
5597  Locs.resize(4);
5598  SmallVector<int, 8> Mask1(4U, -1);
5599  SmallVector<int, 8> PermMask;
5600  SVOp->getMask(PermMask);
5601
5602  unsigned NumHi = 0;
5603  unsigned NumLo = 0;
5604  for (unsigned i = 0; i != 4; ++i) {
5605    int Idx = PermMask[i];
5606    if (Idx < 0) {
5607      Locs[i] = std::make_pair(-1, -1);
5608    } else {
5609      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5610      if (Idx < 4) {
5611        Locs[i] = std::make_pair(0, NumLo);
5612        Mask1[NumLo] = Idx;
5613        NumLo++;
5614      } else {
5615        Locs[i] = std::make_pair(1, NumHi);
5616        if (2+NumHi < 4)
5617          Mask1[2+NumHi] = Idx;
5618        NumHi++;
5619      }
5620    }
5621  }
5622
5623  if (NumLo <= 2 && NumHi <= 2) {
5624    // If no more than two elements come from either vector. This can be
5625    // implemented with two shuffles. First shuffle gather the elements.
5626    // The second shuffle, which takes the first shuffle as both of its
5627    // vector operands, put the elements into the right order.
5628    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5629
5630    SmallVector<int, 8> Mask2(4U, -1);
5631
5632    for (unsigned i = 0; i != 4; ++i) {
5633      if (Locs[i].first == -1)
5634        continue;
5635      else {
5636        unsigned Idx = (i < 2) ? 0 : 4;
5637        Idx += Locs[i].first * 2 + Locs[i].second;
5638        Mask2[i] = Idx;
5639      }
5640    }
5641
5642    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5643  } else if (NumLo == 3 || NumHi == 3) {
5644    // Otherwise, we must have three elements from one vector, call it X, and
5645    // one element from the other, call it Y.  First, use a shufps to build an
5646    // intermediate vector with the one element from Y and the element from X
5647    // that will be in the same half in the final destination (the indexes don't
5648    // matter). Then, use a shufps to build the final vector, taking the half
5649    // containing the element from Y from the intermediate, and the other half
5650    // from X.
5651    if (NumHi == 3) {
5652      // Normalize it so the 3 elements come from V1.
5653      CommuteVectorShuffleMask(PermMask, VT);
5654      std::swap(V1, V2);
5655    }
5656
5657    // Find the element from V2.
5658    unsigned HiIndex;
5659    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5660      int Val = PermMask[HiIndex];
5661      if (Val < 0)
5662        continue;
5663      if (Val >= 4)
5664        break;
5665    }
5666
5667    Mask1[0] = PermMask[HiIndex];
5668    Mask1[1] = -1;
5669    Mask1[2] = PermMask[HiIndex^1];
5670    Mask1[3] = -1;
5671    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5672
5673    if (HiIndex >= 2) {
5674      Mask1[0] = PermMask[0];
5675      Mask1[1] = PermMask[1];
5676      Mask1[2] = HiIndex & 1 ? 6 : 4;
5677      Mask1[3] = HiIndex & 1 ? 4 : 6;
5678      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5679    } else {
5680      Mask1[0] = HiIndex & 1 ? 2 : 0;
5681      Mask1[1] = HiIndex & 1 ? 0 : 2;
5682      Mask1[2] = PermMask[2];
5683      Mask1[3] = PermMask[3];
5684      if (Mask1[2] >= 0)
5685        Mask1[2] += 4;
5686      if (Mask1[3] >= 0)
5687        Mask1[3] += 4;
5688      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5689    }
5690  }
5691
5692  // Break it into (shuffle shuffle_hi, shuffle_lo).
5693  Locs.clear();
5694  Locs.resize(4);
5695  SmallVector<int,8> LoMask(4U, -1);
5696  SmallVector<int,8> HiMask(4U, -1);
5697
5698  SmallVector<int,8> *MaskPtr = &LoMask;
5699  unsigned MaskIdx = 0;
5700  unsigned LoIdx = 0;
5701  unsigned HiIdx = 2;
5702  for (unsigned i = 0; i != 4; ++i) {
5703    if (i == 2) {
5704      MaskPtr = &HiMask;
5705      MaskIdx = 1;
5706      LoIdx = 0;
5707      HiIdx = 2;
5708    }
5709    int Idx = PermMask[i];
5710    if (Idx < 0) {
5711      Locs[i] = std::make_pair(-1, -1);
5712    } else if (Idx < 4) {
5713      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5714      (*MaskPtr)[LoIdx] = Idx;
5715      LoIdx++;
5716    } else {
5717      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5718      (*MaskPtr)[HiIdx] = Idx;
5719      HiIdx++;
5720    }
5721  }
5722
5723  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5724  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5725  SmallVector<int, 8> MaskOps;
5726  for (unsigned i = 0; i != 4; ++i) {
5727    if (Locs[i].first == -1) {
5728      MaskOps.push_back(-1);
5729    } else {
5730      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5731      MaskOps.push_back(Idx);
5732    }
5733  }
5734  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5735}
5736
5737static bool MayFoldVectorLoad(SDValue V) {
5738  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5739    V = V.getOperand(0);
5740  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5741    V = V.getOperand(0);
5742  if (MayFoldLoad(V))
5743    return true;
5744  return false;
5745}
5746
5747// FIXME: the version above should always be used. Since there's
5748// a bug where several vector shuffles can't be folded because the
5749// DAG is not updated during lowering and a node claims to have two
5750// uses while it only has one, use this version, and let isel match
5751// another instruction if the load really happens to have more than
5752// one use. Remove this version after this bug get fixed.
5753// rdar://8434668, PR8156
5754static bool RelaxedMayFoldVectorLoad(SDValue V) {
5755  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5756    V = V.getOperand(0);
5757  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5758    V = V.getOperand(0);
5759  if (ISD::isNormalLoad(V.getNode()))
5760    return true;
5761  return false;
5762}
5763
5764/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5765/// a vector extract, and if both can be later optimized into a single load.
5766/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5767/// here because otherwise a target specific shuffle node is going to be
5768/// emitted for this shuffle, and the optimization not done.
5769/// FIXME: This is probably not the best approach, but fix the problem
5770/// until the right path is decided.
5771static
5772bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5773                                         const TargetLowering &TLI) {
5774  EVT VT = V.getValueType();
5775  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5776
5777  // Be sure that the vector shuffle is present in a pattern like this:
5778  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5779  if (!V.hasOneUse())
5780    return false;
5781
5782  SDNode *N = *V.getNode()->use_begin();
5783  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5784    return false;
5785
5786  SDValue EltNo = N->getOperand(1);
5787  if (!isa<ConstantSDNode>(EltNo))
5788    return false;
5789
5790  // If the bit convert changed the number of elements, it is unsafe
5791  // to examine the mask.
5792  bool HasShuffleIntoBitcast = false;
5793  if (V.getOpcode() == ISD::BITCAST) {
5794    EVT SrcVT = V.getOperand(0).getValueType();
5795    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5796      return false;
5797    V = V.getOperand(0);
5798    HasShuffleIntoBitcast = true;
5799  }
5800
5801  // Select the input vector, guarding against out of range extract vector.
5802  unsigned NumElems = VT.getVectorNumElements();
5803  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5804  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5805  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5806
5807  // Skip one more bit_convert if necessary
5808  if (V.getOpcode() == ISD::BITCAST)
5809    V = V.getOperand(0);
5810
5811  if (ISD::isNormalLoad(V.getNode())) {
5812    // Is the original load suitable?
5813    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5814
5815    // FIXME: avoid the multi-use bug that is preventing lots of
5816    // of foldings to be detected, this is still wrong of course, but
5817    // give the temporary desired behavior, and if it happens that
5818    // the load has real more uses, during isel it will not fold, and
5819    // will generate poor code.
5820    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5821      return false;
5822
5823    if (!HasShuffleIntoBitcast)
5824      return true;
5825
5826    // If there's a bitcast before the shuffle, check if the load type and
5827    // alignment is valid.
5828    unsigned Align = LN0->getAlignment();
5829    unsigned NewAlign =
5830      TLI.getTargetData()->getABITypeAlignment(
5831                                    VT.getTypeForEVT(*DAG.getContext()));
5832
5833    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5834      return false;
5835  }
5836
5837  return true;
5838}
5839
5840static
5841SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5842  EVT VT = Op.getValueType();
5843
5844  // Canonizalize to v2f64.
5845  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5846  return DAG.getNode(ISD::BITCAST, dl, VT,
5847                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5848                                          V1, DAG));
5849}
5850
5851static
5852SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5853                        bool HasSSE2) {
5854  SDValue V1 = Op.getOperand(0);
5855  SDValue V2 = Op.getOperand(1);
5856  EVT VT = Op.getValueType();
5857
5858  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5859
5860  if (HasSSE2 && VT == MVT::v2f64)
5861    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5862
5863  // v4f32 or v4i32
5864  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5865}
5866
5867static
5868SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5869  SDValue V1 = Op.getOperand(0);
5870  SDValue V2 = Op.getOperand(1);
5871  EVT VT = Op.getValueType();
5872
5873  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5874         "unsupported shuffle type");
5875
5876  if (V2.getOpcode() == ISD::UNDEF)
5877    V2 = V1;
5878
5879  // v4i32 or v4f32
5880  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5881}
5882
5883static
5884SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5885  SDValue V1 = Op.getOperand(0);
5886  SDValue V2 = Op.getOperand(1);
5887  EVT VT = Op.getValueType();
5888  unsigned NumElems = VT.getVectorNumElements();
5889
5890  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5891  // operand of these instructions is only memory, so check if there's a
5892  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5893  // same masks.
5894  bool CanFoldLoad = false;
5895
5896  // Trivial case, when V2 comes from a load.
5897  if (MayFoldVectorLoad(V2))
5898    CanFoldLoad = true;
5899
5900  // When V1 is a load, it can be folded later into a store in isel, example:
5901  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5902  //    turns into:
5903  //  (MOVLPSmr addr:$src1, VR128:$src2)
5904  // So, recognize this potential and also use MOVLPS or MOVLPD
5905  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5906    CanFoldLoad = true;
5907
5908  // Both of them can't be memory operations though.
5909  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
5910    CanFoldLoad = false;
5911
5912  if (CanFoldLoad) {
5913    if (HasSSE2 && NumElems == 2)
5914      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5915
5916    if (NumElems == 4)
5917      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5918  }
5919
5920  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5921  // movl and movlp will both match v2i64, but v2i64 is never matched by
5922  // movl earlier because we make it strict to avoid messing with the movlp load
5923  // folding logic (see the code above getMOVLP call). Match it here then,
5924  // this is horrible, but will stay like this until we move all shuffle
5925  // matching to x86 specific nodes. Note that for the 1st condition all
5926  // types are matched with movsd.
5927  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5928    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5929  else if (HasSSE2)
5930    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5931
5932
5933  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5934
5935  // Invert the operand order and use SHUFPS to match it.
5936  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5937                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5938}
5939
5940static inline unsigned getUNPCKLOpcode(EVT VT) {
5941  switch(VT.getSimpleVT().SimpleTy) {
5942  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5943  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5944  case MVT::v4f32: return X86ISD::UNPCKLPS;
5945  case MVT::v2f64: return X86ISD::UNPCKLPD;
5946  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
5947  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
5948  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5949  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5950  default:
5951    llvm_unreachable("Unknown type for unpckl");
5952  }
5953  return 0;
5954}
5955
5956static inline unsigned getUNPCKHOpcode(EVT VT) {
5957  switch(VT.getSimpleVT().SimpleTy) {
5958  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5959  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5960  case MVT::v4f32: return X86ISD::UNPCKHPS;
5961  case MVT::v2f64: return X86ISD::UNPCKHPD;
5962  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
5963  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
5964  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5965  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5966  default:
5967    llvm_unreachable("Unknown type for unpckh");
5968  }
5969  return 0;
5970}
5971
5972static inline unsigned getVPERMILOpcode(EVT VT) {
5973  switch(VT.getSimpleVT().SimpleTy) {
5974  case MVT::v4i32:
5975  case MVT::v4f32: return X86ISD::VPERMILPS;
5976  case MVT::v2i64:
5977  case MVT::v2f64: return X86ISD::VPERMILPD;
5978  case MVT::v8i32:
5979  case MVT::v8f32: return X86ISD::VPERMILPSY;
5980  case MVT::v4i64:
5981  case MVT::v4f64: return X86ISD::VPERMILPDY;
5982  default:
5983    llvm_unreachable("Unknown type for vpermil");
5984  }
5985  return 0;
5986}
5987
5988static
5989SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5990                               const TargetLowering &TLI,
5991                               const X86Subtarget *Subtarget) {
5992  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5993  EVT VT = Op.getValueType();
5994  DebugLoc dl = Op.getDebugLoc();
5995  SDValue V1 = Op.getOperand(0);
5996  SDValue V2 = Op.getOperand(1);
5997
5998  if (isZeroShuffle(SVOp))
5999    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
6000
6001  // Handle splat operations
6002  if (SVOp->isSplat()) {
6003    unsigned NumElem = VT.getVectorNumElements();
6004    // Special case, this is the only place now where it's allowed to return
6005    // a vector_shuffle operation without using a target specific node, because
6006    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6007    // this be moved to DAGCombine instead?
6008    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6009      return Op;
6010
6011    // Since there's no native support for scalar_to_vector for 256-bit AVX, a
6012    // 128-bit scalar_to_vector + INSERT_SUBVECTOR is generated. Recognize this
6013    // idiom and do the shuffle before the insertion, this yields less
6014    // instructions in the end.
6015    if (VT.is256BitVector() &&
6016        V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
6017        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
6018        V1.getOperand(1).getOpcode() == ISD::SCALAR_TO_VECTOR)
6019      return PromoteVectorToScalarSplat(SVOp, DAG);
6020
6021    // Handle splats by matching through known shuffle masks
6022    if ((VT.is128BitVector() && NumElem <= 4) ||
6023        (VT.is256BitVector() && NumElem <= 8))
6024      return SDValue();
6025
6026    // All i16 and i8 vector types can't be used directly by a generic shuffle
6027    // instruction because the target has no such instruction. Generate shuffles
6028    // which repeat i16 and i8 several times until they fit in i32, and then can
6029    // be manipulated by target suported shuffles. After the insertion of the
6030    // necessary shuffles, the result is bitcasted back to v4f32 or v8f32.
6031    return PromoteSplat(SVOp, DAG);
6032  }
6033
6034  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6035  // do it!
6036  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6037    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6038    if (NewOp.getNode())
6039      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6040  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6041    // FIXME: Figure out a cleaner way to do this.
6042    // Try to make use of movq to zero out the top part.
6043    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6044      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6045      if (NewOp.getNode()) {
6046        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6047          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6048                              DAG, Subtarget, dl);
6049      }
6050    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6051      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6052      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6053        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6054                            DAG, Subtarget, dl);
6055    }
6056  }
6057  return SDValue();
6058}
6059
6060SDValue
6061X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6062  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6063  SDValue V1 = Op.getOperand(0);
6064  SDValue V2 = Op.getOperand(1);
6065  EVT VT = Op.getValueType();
6066  DebugLoc dl = Op.getDebugLoc();
6067  unsigned NumElems = VT.getVectorNumElements();
6068  bool isMMX = VT.getSizeInBits() == 64;
6069  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6070  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6071  bool V1IsSplat = false;
6072  bool V2IsSplat = false;
6073  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
6074  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
6075  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
6076  MachineFunction &MF = DAG.getMachineFunction();
6077  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6078
6079  // Shuffle operations on MMX not supported.
6080  if (isMMX)
6081    return Op;
6082
6083  // Vector shuffle lowering takes 3 steps:
6084  //
6085  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6086  //    narrowing and commutation of operands should be handled.
6087  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6088  //    shuffle nodes.
6089  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6090  //    so the shuffle can be broken into other shuffles and the legalizer can
6091  //    try the lowering again.
6092  //
6093  // The general ideia is that no vector_shuffle operation should be left to
6094  // be matched during isel, all of them must be converted to a target specific
6095  // node here.
6096
6097  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6098  // narrowing and commutation of operands should be handled. The actual code
6099  // doesn't include all of those, work in progress...
6100  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6101  if (NewOp.getNode())
6102    return NewOp;
6103
6104  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6105  // unpckh_undef). Only use pshufd if speed is more important than size.
6106  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6107    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6108  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6109    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6110
6111  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
6112      RelaxedMayFoldVectorLoad(V1))
6113    return getMOVDDup(Op, dl, V1, DAG);
6114
6115  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6116    return getMOVHighToLow(Op, dl, DAG);
6117
6118  // Use to match splats
6119  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6120      (VT == MVT::v2f64 || VT == MVT::v2i64))
6121    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6122
6123  if (X86::isPSHUFDMask(SVOp)) {
6124    // The actual implementation will match the mask in the if above and then
6125    // during isel it can match several different instructions, not only pshufd
6126    // as its name says, sad but true, emulate the behavior for now...
6127    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6128        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6129
6130    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6131
6132    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6133      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6134
6135    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6136      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
6137                                  TargetMask, DAG);
6138
6139    if (VT == MVT::v4f32)
6140      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
6141                                  TargetMask, DAG);
6142  }
6143
6144  // Check if this can be converted into a logical shift.
6145  bool isLeft = false;
6146  unsigned ShAmt = 0;
6147  SDValue ShVal;
6148  bool isShift = getSubtarget()->hasSSE2() &&
6149    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6150  if (isShift && ShVal.hasOneUse()) {
6151    // If the shifted value has multiple uses, it may be cheaper to use
6152    // v_set0 + movlhps or movhlps, etc.
6153    EVT EltVT = VT.getVectorElementType();
6154    ShAmt *= EltVT.getSizeInBits();
6155    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6156  }
6157
6158  if (X86::isMOVLMask(SVOp)) {
6159    if (V1IsUndef)
6160      return V2;
6161    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6162      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6163    if (!X86::isMOVLPMask(SVOp)) {
6164      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6165        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6166
6167      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6168        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6169    }
6170  }
6171
6172  // FIXME: fold these into legal mask.
6173  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6174    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6175
6176  if (X86::isMOVHLPSMask(SVOp))
6177    return getMOVHighToLow(Op, dl, DAG);
6178
6179  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6180    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6181
6182  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6183    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6184
6185  if (X86::isMOVLPMask(SVOp))
6186    return getMOVLP(Op, dl, DAG, HasSSE2);
6187
6188  if (ShouldXformToMOVHLPS(SVOp) ||
6189      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6190    return CommuteVectorShuffle(SVOp, DAG);
6191
6192  if (isShift) {
6193    // No better options. Use a vshl / vsrl.
6194    EVT EltVT = VT.getVectorElementType();
6195    ShAmt *= EltVT.getSizeInBits();
6196    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6197  }
6198
6199  bool Commuted = false;
6200  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6201  // 1,1,1,1 -> v8i16 though.
6202  V1IsSplat = isSplatVector(V1.getNode());
6203  V2IsSplat = isSplatVector(V2.getNode());
6204
6205  // Canonicalize the splat or undef, if present, to be on the RHS.
6206  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6207    Op = CommuteVectorShuffle(SVOp, DAG);
6208    SVOp = cast<ShuffleVectorSDNode>(Op);
6209    V1 = SVOp->getOperand(0);
6210    V2 = SVOp->getOperand(1);
6211    std::swap(V1IsSplat, V2IsSplat);
6212    std::swap(V1IsUndef, V2IsUndef);
6213    Commuted = true;
6214  }
6215
6216  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6217    // Shuffling low element of v1 into undef, just return v1.
6218    if (V2IsUndef)
6219      return V1;
6220    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6221    // the instruction selector will not match, so get a canonical MOVL with
6222    // swapped operands to undo the commute.
6223    return getMOVL(DAG, dl, VT, V2, V1);
6224  }
6225
6226  if (X86::isUNPCKLMask(SVOp))
6227    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6228
6229  if (X86::isUNPCKHMask(SVOp))
6230    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6231
6232  if (V2IsSplat) {
6233    // Normalize mask so all entries that point to V2 points to its first
6234    // element then try to match unpck{h|l} again. If match, return a
6235    // new vector_shuffle with the corrected mask.
6236    SDValue NewMask = NormalizeMask(SVOp, DAG);
6237    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6238    if (NSVOp != SVOp) {
6239      if (X86::isUNPCKLMask(NSVOp, true)) {
6240        return NewMask;
6241      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6242        return NewMask;
6243      }
6244    }
6245  }
6246
6247  if (Commuted) {
6248    // Commute is back and try unpck* again.
6249    // FIXME: this seems wrong.
6250    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6251    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6252
6253    if (X86::isUNPCKLMask(NewSVOp))
6254      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6255
6256    if (X86::isUNPCKHMask(NewSVOp))
6257      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6258  }
6259
6260  // Normalize the node to match x86 shuffle ops if needed
6261  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6262    return CommuteVectorShuffle(SVOp, DAG);
6263
6264  // The checks below are all present in isShuffleMaskLegal, but they are
6265  // inlined here right now to enable us to directly emit target specific
6266  // nodes, and remove one by one until they don't return Op anymore.
6267  SmallVector<int, 16> M;
6268  SVOp->getMask(M);
6269
6270  if (isPALIGNRMask(M, VT, HasSSSE3))
6271    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6272                                X86::getShufflePALIGNRImmediate(SVOp),
6273                                DAG);
6274
6275  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6276      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6277    if (VT == MVT::v2f64)
6278      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6279    if (VT == MVT::v2i64)
6280      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6281  }
6282
6283  if (isPSHUFHWMask(M, VT))
6284    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6285                                X86::getShufflePSHUFHWImmediate(SVOp),
6286                                DAG);
6287
6288  if (isPSHUFLWMask(M, VT))
6289    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6290                                X86::getShufflePSHUFLWImmediate(SVOp),
6291                                DAG);
6292
6293  if (isSHUFPMask(M, VT)) {
6294    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6295    if (VT == MVT::v4f32 || VT == MVT::v4i32)
6296      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
6297                                  TargetMask, DAG);
6298    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6299      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
6300                                  TargetMask, DAG);
6301  }
6302
6303  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6304    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6305  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6306    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6307
6308  //===--------------------------------------------------------------------===//
6309  // Generate target specific nodes for 128 or 256-bit shuffles only
6310  // supported in the AVX instruction set.
6311  //
6312
6313  // Handle VPERMILPS* permutations
6314  if (isVPERMILPSMask(M, VT, Subtarget))
6315    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6316                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6317
6318  // Handle VPERMILPD* permutations
6319  if (isVPERMILPDMask(M, VT, Subtarget))
6320    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6321                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6322
6323  //===--------------------------------------------------------------------===//
6324  // Since no target specific shuffle was selected for this generic one,
6325  // lower it into other known shuffles. FIXME: this isn't true yet, but
6326  // this is the plan.
6327  //
6328
6329  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6330  if (VT == MVT::v8i16) {
6331    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6332    if (NewOp.getNode())
6333      return NewOp;
6334  }
6335
6336  if (VT == MVT::v16i8) {
6337    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6338    if (NewOp.getNode())
6339      return NewOp;
6340  }
6341
6342  // Handle all 128-bit wide vectors with 4 elements, and match them with
6343  // several different shuffle types.
6344  if (NumElems == 4 && VT.getSizeInBits() == 128)
6345    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6346
6347  // Handle general 256-bit shuffles
6348  if (VT.is256BitVector())
6349    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6350
6351  return SDValue();
6352}
6353
6354SDValue
6355X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6356                                                SelectionDAG &DAG) const {
6357  EVT VT = Op.getValueType();
6358  DebugLoc dl = Op.getDebugLoc();
6359
6360  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6361    return SDValue();
6362
6363  if (VT.getSizeInBits() == 8) {
6364    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6365                                    Op.getOperand(0), Op.getOperand(1));
6366    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6367                                    DAG.getValueType(VT));
6368    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6369  } else if (VT.getSizeInBits() == 16) {
6370    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6371    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6372    if (Idx == 0)
6373      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6374                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6375                                     DAG.getNode(ISD::BITCAST, dl,
6376                                                 MVT::v4i32,
6377                                                 Op.getOperand(0)),
6378                                     Op.getOperand(1)));
6379    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6380                                    Op.getOperand(0), Op.getOperand(1));
6381    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6382                                    DAG.getValueType(VT));
6383    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6384  } else if (VT == MVT::f32) {
6385    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6386    // the result back to FR32 register. It's only worth matching if the
6387    // result has a single use which is a store or a bitcast to i32.  And in
6388    // the case of a store, it's not worth it if the index is a constant 0,
6389    // because a MOVSSmr can be used instead, which is smaller and faster.
6390    if (!Op.hasOneUse())
6391      return SDValue();
6392    SDNode *User = *Op.getNode()->use_begin();
6393    if ((User->getOpcode() != ISD::STORE ||
6394         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6395          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6396        (User->getOpcode() != ISD::BITCAST ||
6397         User->getValueType(0) != MVT::i32))
6398      return SDValue();
6399    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6400                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6401                                              Op.getOperand(0)),
6402                                              Op.getOperand(1));
6403    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6404  } else if (VT == MVT::i32) {
6405    // ExtractPS works with constant index.
6406    if (isa<ConstantSDNode>(Op.getOperand(1)))
6407      return Op;
6408  }
6409  return SDValue();
6410}
6411
6412
6413SDValue
6414X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6415                                           SelectionDAG &DAG) const {
6416  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6417    return SDValue();
6418
6419  SDValue Vec = Op.getOperand(0);
6420  EVT VecVT = Vec.getValueType();
6421
6422  // If this is a 256-bit vector result, first extract the 128-bit vector and
6423  // then extract the element from the 128-bit vector.
6424  if (VecVT.getSizeInBits() == 256) {
6425    DebugLoc dl = Op.getNode()->getDebugLoc();
6426    unsigned NumElems = VecVT.getVectorNumElements();
6427    SDValue Idx = Op.getOperand(1);
6428    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6429
6430    // Get the 128-bit vector.
6431    bool Upper = IdxVal >= NumElems/2;
6432    Vec = Extract128BitVector(Vec,
6433                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6434
6435    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6436                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6437  }
6438
6439  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6440
6441  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
6442    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6443    if (Res.getNode())
6444      return Res;
6445  }
6446
6447  EVT VT = Op.getValueType();
6448  DebugLoc dl = Op.getDebugLoc();
6449  // TODO: handle v16i8.
6450  if (VT.getSizeInBits() == 16) {
6451    SDValue Vec = Op.getOperand(0);
6452    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6453    if (Idx == 0)
6454      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6455                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6456                                     DAG.getNode(ISD::BITCAST, dl,
6457                                                 MVT::v4i32, Vec),
6458                                     Op.getOperand(1)));
6459    // Transform it so it match pextrw which produces a 32-bit result.
6460    EVT EltVT = MVT::i32;
6461    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6462                                    Op.getOperand(0), Op.getOperand(1));
6463    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6464                                    DAG.getValueType(VT));
6465    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6466  } else if (VT.getSizeInBits() == 32) {
6467    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6468    if (Idx == 0)
6469      return Op;
6470
6471    // SHUFPS the element to the lowest double word, then movss.
6472    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6473    EVT VVT = Op.getOperand(0).getValueType();
6474    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6475                                       DAG.getUNDEF(VVT), Mask);
6476    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6477                       DAG.getIntPtrConstant(0));
6478  } else if (VT.getSizeInBits() == 64) {
6479    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6480    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6481    //        to match extract_elt for f64.
6482    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6483    if (Idx == 0)
6484      return Op;
6485
6486    // UNPCKHPD the element to the lowest double word, then movsd.
6487    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6488    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6489    int Mask[2] = { 1, -1 };
6490    EVT VVT = Op.getOperand(0).getValueType();
6491    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6492                                       DAG.getUNDEF(VVT), Mask);
6493    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6494                       DAG.getIntPtrConstant(0));
6495  }
6496
6497  return SDValue();
6498}
6499
6500SDValue
6501X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6502                                               SelectionDAG &DAG) const {
6503  EVT VT = Op.getValueType();
6504  EVT EltVT = VT.getVectorElementType();
6505  DebugLoc dl = Op.getDebugLoc();
6506
6507  SDValue N0 = Op.getOperand(0);
6508  SDValue N1 = Op.getOperand(1);
6509  SDValue N2 = Op.getOperand(2);
6510
6511  if (VT.getSizeInBits() == 256)
6512    return SDValue();
6513
6514  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6515      isa<ConstantSDNode>(N2)) {
6516    unsigned Opc;
6517    if (VT == MVT::v8i16)
6518      Opc = X86ISD::PINSRW;
6519    else if (VT == MVT::v16i8)
6520      Opc = X86ISD::PINSRB;
6521    else
6522      Opc = X86ISD::PINSRB;
6523
6524    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6525    // argument.
6526    if (N1.getValueType() != MVT::i32)
6527      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6528    if (N2.getValueType() != MVT::i32)
6529      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6530    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6531  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6532    // Bits [7:6] of the constant are the source select.  This will always be
6533    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6534    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6535    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6536    // Bits [5:4] of the constant are the destination select.  This is the
6537    //  value of the incoming immediate.
6538    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6539    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6540    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6541    // Create this as a scalar to vector..
6542    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6543    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6544  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6545    // PINSR* works with constant index.
6546    return Op;
6547  }
6548  return SDValue();
6549}
6550
6551SDValue
6552X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6553  EVT VT = Op.getValueType();
6554  EVT EltVT = VT.getVectorElementType();
6555
6556  DebugLoc dl = Op.getDebugLoc();
6557  SDValue N0 = Op.getOperand(0);
6558  SDValue N1 = Op.getOperand(1);
6559  SDValue N2 = Op.getOperand(2);
6560
6561  // If this is a 256-bit vector result, first extract the 128-bit vector,
6562  // insert the element into the extracted half and then place it back.
6563  if (VT.getSizeInBits() == 256) {
6564    if (!isa<ConstantSDNode>(N2))
6565      return SDValue();
6566
6567    // Get the desired 128-bit vector half.
6568    unsigned NumElems = VT.getVectorNumElements();
6569    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6570    bool Upper = IdxVal >= NumElems/2;
6571    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6572    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6573
6574    // Insert the element into the desired half.
6575    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6576                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6577
6578    // Insert the changed part back to the 256-bit vector
6579    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6580  }
6581
6582  if (Subtarget->hasSSE41() || Subtarget->hasAVX())
6583    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6584
6585  if (EltVT == MVT::i8)
6586    return SDValue();
6587
6588  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6589    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6590    // as its second argument.
6591    if (N1.getValueType() != MVT::i32)
6592      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6593    if (N2.getValueType() != MVT::i32)
6594      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6595    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6596  }
6597  return SDValue();
6598}
6599
6600SDValue
6601X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6602  LLVMContext *Context = DAG.getContext();
6603  DebugLoc dl = Op.getDebugLoc();
6604  EVT OpVT = Op.getValueType();
6605
6606  // If this is a 256-bit vector result, first insert into a 128-bit
6607  // vector and then insert into the 256-bit vector.
6608  if (OpVT.getSizeInBits() > 128) {
6609    // Insert into a 128-bit vector.
6610    EVT VT128 = EVT::getVectorVT(*Context,
6611                                 OpVT.getVectorElementType(),
6612                                 OpVT.getVectorNumElements() / 2);
6613
6614    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6615
6616    // Insert the 128-bit vector.
6617    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6618                              DAG.getConstant(0, MVT::i32),
6619                              DAG, dl);
6620  }
6621
6622  if (Op.getValueType() == MVT::v1i64 &&
6623      Op.getOperand(0).getValueType() == MVT::i64)
6624    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6625
6626  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6627  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6628         "Expected an SSE type!");
6629  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6630                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6631}
6632
6633// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6634// a simple subregister reference or explicit instructions to grab
6635// upper bits of a vector.
6636SDValue
6637X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6638  if (Subtarget->hasAVX()) {
6639    DebugLoc dl = Op.getNode()->getDebugLoc();
6640    SDValue Vec = Op.getNode()->getOperand(0);
6641    SDValue Idx = Op.getNode()->getOperand(1);
6642
6643    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6644        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6645        return Extract128BitVector(Vec, Idx, DAG, dl);
6646    }
6647  }
6648  return SDValue();
6649}
6650
6651// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6652// simple superregister reference or explicit instructions to insert
6653// the upper bits of a vector.
6654SDValue
6655X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6656  if (Subtarget->hasAVX()) {
6657    DebugLoc dl = Op.getNode()->getDebugLoc();
6658    SDValue Vec = Op.getNode()->getOperand(0);
6659    SDValue SubVec = Op.getNode()->getOperand(1);
6660    SDValue Idx = Op.getNode()->getOperand(2);
6661
6662    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6663        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6664      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6665    }
6666  }
6667  return SDValue();
6668}
6669
6670// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6671// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6672// one of the above mentioned nodes. It has to be wrapped because otherwise
6673// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6674// be used to form addressing mode. These wrapped nodes will be selected
6675// into MOV32ri.
6676SDValue
6677X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6678  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6679
6680  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6681  // global base reg.
6682  unsigned char OpFlag = 0;
6683  unsigned WrapperKind = X86ISD::Wrapper;
6684  CodeModel::Model M = getTargetMachine().getCodeModel();
6685
6686  if (Subtarget->isPICStyleRIPRel() &&
6687      (M == CodeModel::Small || M == CodeModel::Kernel))
6688    WrapperKind = X86ISD::WrapperRIP;
6689  else if (Subtarget->isPICStyleGOT())
6690    OpFlag = X86II::MO_GOTOFF;
6691  else if (Subtarget->isPICStyleStubPIC())
6692    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6693
6694  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6695                                             CP->getAlignment(),
6696                                             CP->getOffset(), OpFlag);
6697  DebugLoc DL = CP->getDebugLoc();
6698  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6699  // With PIC, the address is actually $g + Offset.
6700  if (OpFlag) {
6701    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6702                         DAG.getNode(X86ISD::GlobalBaseReg,
6703                                     DebugLoc(), getPointerTy()),
6704                         Result);
6705  }
6706
6707  return Result;
6708}
6709
6710SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6711  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6712
6713  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6714  // global base reg.
6715  unsigned char OpFlag = 0;
6716  unsigned WrapperKind = X86ISD::Wrapper;
6717  CodeModel::Model M = getTargetMachine().getCodeModel();
6718
6719  if (Subtarget->isPICStyleRIPRel() &&
6720      (M == CodeModel::Small || M == CodeModel::Kernel))
6721    WrapperKind = X86ISD::WrapperRIP;
6722  else if (Subtarget->isPICStyleGOT())
6723    OpFlag = X86II::MO_GOTOFF;
6724  else if (Subtarget->isPICStyleStubPIC())
6725    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6726
6727  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6728                                          OpFlag);
6729  DebugLoc DL = JT->getDebugLoc();
6730  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6731
6732  // With PIC, the address is actually $g + Offset.
6733  if (OpFlag)
6734    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6735                         DAG.getNode(X86ISD::GlobalBaseReg,
6736                                     DebugLoc(), getPointerTy()),
6737                         Result);
6738
6739  return Result;
6740}
6741
6742SDValue
6743X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6744  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6745
6746  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6747  // global base reg.
6748  unsigned char OpFlag = 0;
6749  unsigned WrapperKind = X86ISD::Wrapper;
6750  CodeModel::Model M = getTargetMachine().getCodeModel();
6751
6752  if (Subtarget->isPICStyleRIPRel() &&
6753      (M == CodeModel::Small || M == CodeModel::Kernel))
6754    WrapperKind = X86ISD::WrapperRIP;
6755  else if (Subtarget->isPICStyleGOT())
6756    OpFlag = X86II::MO_GOTOFF;
6757  else if (Subtarget->isPICStyleStubPIC())
6758    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6759
6760  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6761
6762  DebugLoc DL = Op.getDebugLoc();
6763  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6764
6765
6766  // With PIC, the address is actually $g + Offset.
6767  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6768      !Subtarget->is64Bit()) {
6769    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6770                         DAG.getNode(X86ISD::GlobalBaseReg,
6771                                     DebugLoc(), getPointerTy()),
6772                         Result);
6773  }
6774
6775  return Result;
6776}
6777
6778SDValue
6779X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6780  // Create the TargetBlockAddressAddress node.
6781  unsigned char OpFlags =
6782    Subtarget->ClassifyBlockAddressReference();
6783  CodeModel::Model M = getTargetMachine().getCodeModel();
6784  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6785  DebugLoc dl = Op.getDebugLoc();
6786  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6787                                       /*isTarget=*/true, OpFlags);
6788
6789  if (Subtarget->isPICStyleRIPRel() &&
6790      (M == CodeModel::Small || M == CodeModel::Kernel))
6791    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6792  else
6793    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6794
6795  // With PIC, the address is actually $g + Offset.
6796  if (isGlobalRelativeToPICBase(OpFlags)) {
6797    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6798                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6799                         Result);
6800  }
6801
6802  return Result;
6803}
6804
6805SDValue
6806X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6807                                      int64_t Offset,
6808                                      SelectionDAG &DAG) const {
6809  // Create the TargetGlobalAddress node, folding in the constant
6810  // offset if it is legal.
6811  unsigned char OpFlags =
6812    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6813  CodeModel::Model M = getTargetMachine().getCodeModel();
6814  SDValue Result;
6815  if (OpFlags == X86II::MO_NO_FLAG &&
6816      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6817    // A direct static reference to a global.
6818    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6819    Offset = 0;
6820  } else {
6821    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6822  }
6823
6824  if (Subtarget->isPICStyleRIPRel() &&
6825      (M == CodeModel::Small || M == CodeModel::Kernel))
6826    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6827  else
6828    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6829
6830  // With PIC, the address is actually $g + Offset.
6831  if (isGlobalRelativeToPICBase(OpFlags)) {
6832    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6833                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6834                         Result);
6835  }
6836
6837  // For globals that require a load from a stub to get the address, emit the
6838  // load.
6839  if (isGlobalStubReference(OpFlags))
6840    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6841                         MachinePointerInfo::getGOT(), false, false, 0);
6842
6843  // If there was a non-zero offset that we didn't fold, create an explicit
6844  // addition for it.
6845  if (Offset != 0)
6846    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6847                         DAG.getConstant(Offset, getPointerTy()));
6848
6849  return Result;
6850}
6851
6852SDValue
6853X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6854  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6855  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6856  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6857}
6858
6859static SDValue
6860GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6861           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6862           unsigned char OperandFlags) {
6863  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6864  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6865  DebugLoc dl = GA->getDebugLoc();
6866  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6867                                           GA->getValueType(0),
6868                                           GA->getOffset(),
6869                                           OperandFlags);
6870  if (InFlag) {
6871    SDValue Ops[] = { Chain,  TGA, *InFlag };
6872    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6873  } else {
6874    SDValue Ops[]  = { Chain, TGA };
6875    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6876  }
6877
6878  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6879  MFI->setAdjustsStack(true);
6880
6881  SDValue Flag = Chain.getValue(1);
6882  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6883}
6884
6885// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6886static SDValue
6887LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6888                                const EVT PtrVT) {
6889  SDValue InFlag;
6890  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6891  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6892                                     DAG.getNode(X86ISD::GlobalBaseReg,
6893                                                 DebugLoc(), PtrVT), InFlag);
6894  InFlag = Chain.getValue(1);
6895
6896  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6897}
6898
6899// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6900static SDValue
6901LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6902                                const EVT PtrVT) {
6903  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6904                    X86::RAX, X86II::MO_TLSGD);
6905}
6906
6907// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6908// "local exec" model.
6909static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6910                                   const EVT PtrVT, TLSModel::Model model,
6911                                   bool is64Bit) {
6912  DebugLoc dl = GA->getDebugLoc();
6913
6914  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6915  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6916                                                         is64Bit ? 257 : 256));
6917
6918  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6919                                      DAG.getIntPtrConstant(0),
6920                                      MachinePointerInfo(Ptr), false, false, 0);
6921
6922  unsigned char OperandFlags = 0;
6923  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6924  // initialexec.
6925  unsigned WrapperKind = X86ISD::Wrapper;
6926  if (model == TLSModel::LocalExec) {
6927    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6928  } else if (is64Bit) {
6929    assert(model == TLSModel::InitialExec);
6930    OperandFlags = X86II::MO_GOTTPOFF;
6931    WrapperKind = X86ISD::WrapperRIP;
6932  } else {
6933    assert(model == TLSModel::InitialExec);
6934    OperandFlags = X86II::MO_INDNTPOFF;
6935  }
6936
6937  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6938  // exec)
6939  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6940                                           GA->getValueType(0),
6941                                           GA->getOffset(), OperandFlags);
6942  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6943
6944  if (model == TLSModel::InitialExec)
6945    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6946                         MachinePointerInfo::getGOT(), false, false, 0);
6947
6948  // The address of the thread local variable is the add of the thread
6949  // pointer with the offset of the variable.
6950  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6951}
6952
6953SDValue
6954X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6955
6956  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6957  const GlobalValue *GV = GA->getGlobal();
6958
6959  if (Subtarget->isTargetELF()) {
6960    // TODO: implement the "local dynamic" model
6961    // TODO: implement the "initial exec"model for pic executables
6962
6963    // If GV is an alias then use the aliasee for determining
6964    // thread-localness.
6965    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6966      GV = GA->resolveAliasedGlobal(false);
6967
6968    TLSModel::Model model
6969      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6970
6971    switch (model) {
6972      case TLSModel::GeneralDynamic:
6973      case TLSModel::LocalDynamic: // not implemented
6974        if (Subtarget->is64Bit())
6975          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6976        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6977
6978      case TLSModel::InitialExec:
6979      case TLSModel::LocalExec:
6980        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6981                                   Subtarget->is64Bit());
6982    }
6983  } else if (Subtarget->isTargetDarwin()) {
6984    // Darwin only has one model of TLS.  Lower to that.
6985    unsigned char OpFlag = 0;
6986    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6987                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6988
6989    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6990    // global base reg.
6991    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6992                  !Subtarget->is64Bit();
6993    if (PIC32)
6994      OpFlag = X86II::MO_TLVP_PIC_BASE;
6995    else
6996      OpFlag = X86II::MO_TLVP;
6997    DebugLoc DL = Op.getDebugLoc();
6998    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6999                                                GA->getValueType(0),
7000                                                GA->getOffset(), OpFlag);
7001    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7002
7003    // With PIC32, the address is actually $g + Offset.
7004    if (PIC32)
7005      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7006                           DAG.getNode(X86ISD::GlobalBaseReg,
7007                                       DebugLoc(), getPointerTy()),
7008                           Offset);
7009
7010    // Lowering the machine isd will make sure everything is in the right
7011    // location.
7012    SDValue Chain = DAG.getEntryNode();
7013    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7014    SDValue Args[] = { Chain, Offset };
7015    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7016
7017    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7018    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7019    MFI->setAdjustsStack(true);
7020
7021    // And our return value (tls address) is in the standard call return value
7022    // location.
7023    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7024    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
7025  }
7026
7027  assert(false &&
7028         "TLS not implemented for this target.");
7029
7030  llvm_unreachable("Unreachable");
7031  return SDValue();
7032}
7033
7034
7035/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7036/// take a 2 x i32 value to shift plus a shift amount.
7037SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7038  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7039  EVT VT = Op.getValueType();
7040  unsigned VTBits = VT.getSizeInBits();
7041  DebugLoc dl = Op.getDebugLoc();
7042  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7043  SDValue ShOpLo = Op.getOperand(0);
7044  SDValue ShOpHi = Op.getOperand(1);
7045  SDValue ShAmt  = Op.getOperand(2);
7046  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7047                                     DAG.getConstant(VTBits - 1, MVT::i8))
7048                       : DAG.getConstant(0, VT);
7049
7050  SDValue Tmp2, Tmp3;
7051  if (Op.getOpcode() == ISD::SHL_PARTS) {
7052    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7053    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7054  } else {
7055    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7056    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7057  }
7058
7059  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7060                                DAG.getConstant(VTBits, MVT::i8));
7061  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7062                             AndNode, DAG.getConstant(0, MVT::i8));
7063
7064  SDValue Hi, Lo;
7065  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7066  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7067  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7068
7069  if (Op.getOpcode() == ISD::SHL_PARTS) {
7070    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7071    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7072  } else {
7073    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7074    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7075  }
7076
7077  SDValue Ops[2] = { Lo, Hi };
7078  return DAG.getMergeValues(Ops, 2, dl);
7079}
7080
7081SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7082                                           SelectionDAG &DAG) const {
7083  EVT SrcVT = Op.getOperand(0).getValueType();
7084  EVT DstVT = Op.getValueType();
7085  DebugLoc dl = Op.getDebugLoc();
7086
7087  if (SrcVT.isVector() && DstVT.isVector()) {
7088    unsigned SrcVTSize = SrcVT.getSizeInBits();
7089    unsigned DstVTSize = DstVT.getSizeInBits();
7090
7091    // Support directly by the target
7092    if (SrcVTSize == DstVTSize)
7093      return Op;
7094
7095    // Handle v4f64 = sitofp v4i32
7096    if (DstVT != MVT::v4f64 && SrcVT != MVT::v4i32)
7097      return SDValue();
7098
7099    SDValue V = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Op.getOperand(0));
7100    return DAG.getNode(ISD::FP_EXTEND, dl, DstVT, V);
7101  }
7102
7103  if (SrcVT.isVector())
7104    return SDValue();
7105
7106  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7107         "Unknown SINT_TO_FP to lower!");
7108
7109  // These are really Legal; return the operand so the caller accepts it as
7110  // Legal.
7111  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7112    return Op;
7113  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7114      Subtarget->is64Bit()) {
7115    return Op;
7116  }
7117
7118  unsigned Size = SrcVT.getSizeInBits()/8;
7119  MachineFunction &MF = DAG.getMachineFunction();
7120  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7121  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7122  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7123                               StackSlot,
7124                               MachinePointerInfo::getFixedStack(SSFI),
7125                               false, false, 0);
7126  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7127}
7128
7129SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7130                                     SDValue StackSlot,
7131                                     SelectionDAG &DAG) const {
7132  // Build the FILD
7133  DebugLoc DL = Op.getDebugLoc();
7134  SDVTList Tys;
7135  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7136  if (useSSE)
7137    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7138  else
7139    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7140
7141  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7142
7143  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7144  MachineMemOperand *MMO;
7145  if (FI) {
7146    int SSFI = FI->getIndex();
7147    MMO =
7148      DAG.getMachineFunction()
7149      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7150                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7151  } else {
7152    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7153    StackSlot = StackSlot.getOperand(1);
7154  }
7155  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7156  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7157                                           X86ISD::FILD, DL,
7158                                           Tys, Ops, array_lengthof(Ops),
7159                                           SrcVT, MMO);
7160
7161  if (useSSE) {
7162    Chain = Result.getValue(1);
7163    SDValue InFlag = Result.getValue(2);
7164
7165    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7166    // shouldn't be necessary except that RFP cannot be live across
7167    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7168    MachineFunction &MF = DAG.getMachineFunction();
7169    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7170    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7171    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7172    Tys = DAG.getVTList(MVT::Other);
7173    SDValue Ops[] = {
7174      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7175    };
7176    MachineMemOperand *MMO =
7177      DAG.getMachineFunction()
7178      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7179                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7180
7181    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7182                                    Ops, array_lengthof(Ops),
7183                                    Op.getValueType(), MMO);
7184    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7185                         MachinePointerInfo::getFixedStack(SSFI),
7186                         false, false, 0);
7187  }
7188
7189  return Result;
7190}
7191
7192// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7193SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7194                                               SelectionDAG &DAG) const {
7195  // This algorithm is not obvious. Here it is in C code, more or less:
7196  /*
7197    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7198      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7199      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7200
7201      // Copy ints to xmm registers.
7202      __m128i xh = _mm_cvtsi32_si128( hi );
7203      __m128i xl = _mm_cvtsi32_si128( lo );
7204
7205      // Combine into low half of a single xmm register.
7206      __m128i x = _mm_unpacklo_epi32( xh, xl );
7207      __m128d d;
7208      double sd;
7209
7210      // Merge in appropriate exponents to give the integer bits the right
7211      // magnitude.
7212      x = _mm_unpacklo_epi32( x, exp );
7213
7214      // Subtract away the biases to deal with the IEEE-754 double precision
7215      // implicit 1.
7216      d = _mm_sub_pd( (__m128d) x, bias );
7217
7218      // All conversions up to here are exact. The correctly rounded result is
7219      // calculated using the current rounding mode using the following
7220      // horizontal add.
7221      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7222      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7223                                // store doesn't really need to be here (except
7224                                // maybe to zero the other double)
7225      return sd;
7226    }
7227  */
7228
7229  DebugLoc dl = Op.getDebugLoc();
7230  LLVMContext *Context = DAG.getContext();
7231
7232  // Build some magic constants.
7233  std::vector<Constant*> CV0;
7234  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7235  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7236  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7237  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7238  Constant *C0 = ConstantVector::get(CV0);
7239  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7240
7241  std::vector<Constant*> CV1;
7242  CV1.push_back(
7243    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7244  CV1.push_back(
7245    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7246  Constant *C1 = ConstantVector::get(CV1);
7247  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7248
7249  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7250                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7251                                        Op.getOperand(0),
7252                                        DAG.getIntPtrConstant(1)));
7253  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7254                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7255                                        Op.getOperand(0),
7256                                        DAG.getIntPtrConstant(0)));
7257  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7258  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7259                              MachinePointerInfo::getConstantPool(),
7260                              false, false, 16);
7261  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7262  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7263  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7264                              MachinePointerInfo::getConstantPool(),
7265                              false, false, 16);
7266  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7267
7268  // Add the halves; easiest way is to swap them into another reg first.
7269  int ShufMask[2] = { 1, -1 };
7270  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7271                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7272  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7273  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7274                     DAG.getIntPtrConstant(0));
7275}
7276
7277// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7278SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7279                                               SelectionDAG &DAG) const {
7280  DebugLoc dl = Op.getDebugLoc();
7281  // FP constant to bias correct the final result.
7282  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7283                                   MVT::f64);
7284
7285  // Load the 32-bit value into an XMM register.
7286  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7287                             Op.getOperand(0));
7288
7289  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7290                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7291                     DAG.getIntPtrConstant(0));
7292
7293  // Or the load with the bias.
7294  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7295                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7296                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7297                                                   MVT::v2f64, Load)),
7298                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7299                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7300                                                   MVT::v2f64, Bias)));
7301  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7302                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7303                   DAG.getIntPtrConstant(0));
7304
7305  // Subtract the bias.
7306  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7307
7308  // Handle final rounding.
7309  EVT DestVT = Op.getValueType();
7310
7311  if (DestVT.bitsLT(MVT::f64)) {
7312    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7313                       DAG.getIntPtrConstant(0));
7314  } else if (DestVT.bitsGT(MVT::f64)) {
7315    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7316  }
7317
7318  // Handle final rounding.
7319  return Sub;
7320}
7321
7322SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7323                                           SelectionDAG &DAG) const {
7324  SDValue N0 = Op.getOperand(0);
7325  DebugLoc dl = Op.getDebugLoc();
7326
7327  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7328  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7329  // the optimization here.
7330  if (DAG.SignBitIsZero(N0))
7331    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7332
7333  EVT SrcVT = N0.getValueType();
7334  EVT DstVT = Op.getValueType();
7335  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7336    return LowerUINT_TO_FP_i64(Op, DAG);
7337  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7338    return LowerUINT_TO_FP_i32(Op, DAG);
7339
7340  // Make a 64-bit buffer, and use it to build an FILD.
7341  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7342  if (SrcVT == MVT::i32) {
7343    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7344    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7345                                     getPointerTy(), StackSlot, WordOff);
7346    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7347                                  StackSlot, MachinePointerInfo(),
7348                                  false, false, 0);
7349    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7350                                  OffsetSlot, MachinePointerInfo(),
7351                                  false, false, 0);
7352    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7353    return Fild;
7354  }
7355
7356  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7357  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7358                                StackSlot, MachinePointerInfo(),
7359                               false, false, 0);
7360  // For i64 source, we need to add the appropriate power of 2 if the input
7361  // was negative.  This is the same as the optimization in
7362  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7363  // we must be careful to do the computation in x87 extended precision, not
7364  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7365  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7366  MachineMemOperand *MMO =
7367    DAG.getMachineFunction()
7368    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7369                          MachineMemOperand::MOLoad, 8, 8);
7370
7371  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7372  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7373  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7374                                         MVT::i64, MMO);
7375
7376  APInt FF(32, 0x5F800000ULL);
7377
7378  // Check whether the sign bit is set.
7379  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7380                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7381                                 ISD::SETLT);
7382
7383  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7384  SDValue FudgePtr = DAG.getConstantPool(
7385                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7386                                         getPointerTy());
7387
7388  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7389  SDValue Zero = DAG.getIntPtrConstant(0);
7390  SDValue Four = DAG.getIntPtrConstant(4);
7391  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7392                               Zero, Four);
7393  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7394
7395  // Load the value out, extending it from f32 to f80.
7396  // FIXME: Avoid the extend by constructing the right constant pool?
7397  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7398                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7399                                 MVT::f32, false, false, 4);
7400  // Extend everything to 80 bits to force it to be done on x87.
7401  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7402  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7403}
7404
7405std::pair<SDValue,SDValue> X86TargetLowering::
7406FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7407  DebugLoc DL = Op.getDebugLoc();
7408
7409  EVT DstTy = Op.getValueType();
7410
7411  if (!IsSigned) {
7412    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7413    DstTy = MVT::i64;
7414  }
7415
7416  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7417         DstTy.getSimpleVT() >= MVT::i16 &&
7418         "Unknown FP_TO_SINT to lower!");
7419
7420  // These are really Legal.
7421  if (DstTy == MVT::i32 &&
7422      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7423    return std::make_pair(SDValue(), SDValue());
7424  if (Subtarget->is64Bit() &&
7425      DstTy == MVT::i64 &&
7426      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7427    return std::make_pair(SDValue(), SDValue());
7428
7429  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7430  // stack slot.
7431  MachineFunction &MF = DAG.getMachineFunction();
7432  unsigned MemSize = DstTy.getSizeInBits()/8;
7433  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7434  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7435
7436
7437
7438  unsigned Opc;
7439  switch (DstTy.getSimpleVT().SimpleTy) {
7440  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7441  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7442  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7443  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7444  }
7445
7446  SDValue Chain = DAG.getEntryNode();
7447  SDValue Value = Op.getOperand(0);
7448  EVT TheVT = Op.getOperand(0).getValueType();
7449  if (isScalarFPTypeInSSEReg(TheVT)) {
7450    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7451    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7452                         MachinePointerInfo::getFixedStack(SSFI),
7453                         false, false, 0);
7454    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7455    SDValue Ops[] = {
7456      Chain, StackSlot, DAG.getValueType(TheVT)
7457    };
7458
7459    MachineMemOperand *MMO =
7460      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7461                              MachineMemOperand::MOLoad, MemSize, MemSize);
7462    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7463                                    DstTy, MMO);
7464    Chain = Value.getValue(1);
7465    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7466    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7467  }
7468
7469  MachineMemOperand *MMO =
7470    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7471                            MachineMemOperand::MOStore, MemSize, MemSize);
7472
7473  // Build the FP_TO_INT*_IN_MEM
7474  SDValue Ops[] = { Chain, Value, StackSlot };
7475  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7476                                         Ops, 3, DstTy, MMO);
7477
7478  return std::make_pair(FIST, StackSlot);
7479}
7480
7481SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7482                                           SelectionDAG &DAG) const {
7483  if (Op.getValueType().isVector())
7484    return SDValue();
7485
7486  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7487  SDValue FIST = Vals.first, StackSlot = Vals.second;
7488  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7489  if (FIST.getNode() == 0) return Op;
7490
7491  // Load the result.
7492  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7493                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7494}
7495
7496SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7497                                           SelectionDAG &DAG) const {
7498  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7499  SDValue FIST = Vals.first, StackSlot = Vals.second;
7500  assert(FIST.getNode() && "Unexpected failure");
7501
7502  // Load the result.
7503  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7504                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7505}
7506
7507SDValue X86TargetLowering::LowerFABS(SDValue Op,
7508                                     SelectionDAG &DAG) const {
7509  LLVMContext *Context = DAG.getContext();
7510  DebugLoc dl = Op.getDebugLoc();
7511  EVT VT = Op.getValueType();
7512  EVT EltVT = VT;
7513  if (VT.isVector())
7514    EltVT = VT.getVectorElementType();
7515  std::vector<Constant*> CV;
7516  if (EltVT == MVT::f64) {
7517    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7518    CV.push_back(C);
7519    CV.push_back(C);
7520  } else {
7521    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7522    CV.push_back(C);
7523    CV.push_back(C);
7524    CV.push_back(C);
7525    CV.push_back(C);
7526  }
7527  Constant *C = ConstantVector::get(CV);
7528  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7529  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7530                             MachinePointerInfo::getConstantPool(),
7531                             false, false, 16);
7532  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7533}
7534
7535SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7536  LLVMContext *Context = DAG.getContext();
7537  DebugLoc dl = Op.getDebugLoc();
7538  EVT VT = Op.getValueType();
7539  EVT EltVT = VT;
7540  if (VT.isVector())
7541    EltVT = VT.getVectorElementType();
7542  std::vector<Constant*> CV;
7543  if (EltVT == MVT::f64) {
7544    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7545    CV.push_back(C);
7546    CV.push_back(C);
7547  } else {
7548    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7549    CV.push_back(C);
7550    CV.push_back(C);
7551    CV.push_back(C);
7552    CV.push_back(C);
7553  }
7554  Constant *C = ConstantVector::get(CV);
7555  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7556  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7557                             MachinePointerInfo::getConstantPool(),
7558                             false, false, 16);
7559  if (VT.isVector()) {
7560    return DAG.getNode(ISD::BITCAST, dl, VT,
7561                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7562                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7563                                Op.getOperand(0)),
7564                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7565  } else {
7566    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7567  }
7568}
7569
7570SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7571  LLVMContext *Context = DAG.getContext();
7572  SDValue Op0 = Op.getOperand(0);
7573  SDValue Op1 = Op.getOperand(1);
7574  DebugLoc dl = Op.getDebugLoc();
7575  EVT VT = Op.getValueType();
7576  EVT SrcVT = Op1.getValueType();
7577
7578  // If second operand is smaller, extend it first.
7579  if (SrcVT.bitsLT(VT)) {
7580    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7581    SrcVT = VT;
7582  }
7583  // And if it is bigger, shrink it first.
7584  if (SrcVT.bitsGT(VT)) {
7585    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7586    SrcVT = VT;
7587  }
7588
7589  // At this point the operands and the result should have the same
7590  // type, and that won't be f80 since that is not custom lowered.
7591
7592  // First get the sign bit of second operand.
7593  std::vector<Constant*> CV;
7594  if (SrcVT == MVT::f64) {
7595    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7596    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7597  } else {
7598    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7599    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7600    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7601    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7602  }
7603  Constant *C = ConstantVector::get(CV);
7604  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7605  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7606                              MachinePointerInfo::getConstantPool(),
7607                              false, false, 16);
7608  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7609
7610  // Shift sign bit right or left if the two operands have different types.
7611  if (SrcVT.bitsGT(VT)) {
7612    // Op0 is MVT::f32, Op1 is MVT::f64.
7613    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7614    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7615                          DAG.getConstant(32, MVT::i32));
7616    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7617    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7618                          DAG.getIntPtrConstant(0));
7619  }
7620
7621  // Clear first operand sign bit.
7622  CV.clear();
7623  if (VT == MVT::f64) {
7624    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7625    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7626  } else {
7627    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7628    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7629    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7630    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7631  }
7632  C = ConstantVector::get(CV);
7633  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7634  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7635                              MachinePointerInfo::getConstantPool(),
7636                              false, false, 16);
7637  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7638
7639  // Or the value with the sign bit.
7640  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7641}
7642
7643SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7644  SDValue N0 = Op.getOperand(0);
7645  DebugLoc dl = Op.getDebugLoc();
7646  EVT VT = Op.getValueType();
7647
7648  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7649  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7650                                  DAG.getConstant(1, VT));
7651  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7652}
7653
7654/// Emit nodes that will be selected as "test Op0,Op0", or something
7655/// equivalent.
7656SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7657                                    SelectionDAG &DAG) const {
7658  DebugLoc dl = Op.getDebugLoc();
7659
7660  // CF and OF aren't always set the way we want. Determine which
7661  // of these we need.
7662  bool NeedCF = false;
7663  bool NeedOF = false;
7664  switch (X86CC) {
7665  default: break;
7666  case X86::COND_A: case X86::COND_AE:
7667  case X86::COND_B: case X86::COND_BE:
7668    NeedCF = true;
7669    break;
7670  case X86::COND_G: case X86::COND_GE:
7671  case X86::COND_L: case X86::COND_LE:
7672  case X86::COND_O: case X86::COND_NO:
7673    NeedOF = true;
7674    break;
7675  }
7676
7677  // See if we can use the EFLAGS value from the operand instead of
7678  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7679  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7680  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7681    // Emit a CMP with 0, which is the TEST pattern.
7682    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7683                       DAG.getConstant(0, Op.getValueType()));
7684
7685  unsigned Opcode = 0;
7686  unsigned NumOperands = 0;
7687  switch (Op.getNode()->getOpcode()) {
7688  case ISD::ADD:
7689    // Due to an isel shortcoming, be conservative if this add is likely to be
7690    // selected as part of a load-modify-store instruction. When the root node
7691    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7692    // uses of other nodes in the match, such as the ADD in this case. This
7693    // leads to the ADD being left around and reselected, with the result being
7694    // two adds in the output.  Alas, even if none our users are stores, that
7695    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7696    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7697    // climbing the DAG back to the root, and it doesn't seem to be worth the
7698    // effort.
7699    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7700           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7701      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
7702        goto default_case;
7703
7704    if (ConstantSDNode *C =
7705        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7706      // An add of one will be selected as an INC.
7707      if (C->getAPIntValue() == 1) {
7708        Opcode = X86ISD::INC;
7709        NumOperands = 1;
7710        break;
7711      }
7712
7713      // An add of negative one (subtract of one) will be selected as a DEC.
7714      if (C->getAPIntValue().isAllOnesValue()) {
7715        Opcode = X86ISD::DEC;
7716        NumOperands = 1;
7717        break;
7718      }
7719    }
7720
7721    // Otherwise use a regular EFLAGS-setting add.
7722    Opcode = X86ISD::ADD;
7723    NumOperands = 2;
7724    break;
7725  case ISD::AND: {
7726    // If the primary and result isn't used, don't bother using X86ISD::AND,
7727    // because a TEST instruction will be better.
7728    bool NonFlagUse = false;
7729    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7730           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7731      SDNode *User = *UI;
7732      unsigned UOpNo = UI.getOperandNo();
7733      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7734        // Look pass truncate.
7735        UOpNo = User->use_begin().getOperandNo();
7736        User = *User->use_begin();
7737      }
7738
7739      if (User->getOpcode() != ISD::BRCOND &&
7740          User->getOpcode() != ISD::SETCC &&
7741          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
7742        NonFlagUse = true;
7743        break;
7744      }
7745    }
7746
7747    if (!NonFlagUse)
7748      break;
7749  }
7750    // FALL THROUGH
7751  case ISD::SUB:
7752  case ISD::OR:
7753  case ISD::XOR:
7754    // Due to the ISEL shortcoming noted above, be conservative if this op is
7755    // likely to be selected as part of a load-modify-store instruction.
7756    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7757           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7758      if (UI->getOpcode() == ISD::STORE)
7759        goto default_case;
7760
7761    // Otherwise use a regular EFLAGS-setting instruction.
7762    switch (Op.getNode()->getOpcode()) {
7763    default: llvm_unreachable("unexpected operator!");
7764    case ISD::SUB: Opcode = X86ISD::SUB; break;
7765    case ISD::OR:  Opcode = X86ISD::OR;  break;
7766    case ISD::XOR: Opcode = X86ISD::XOR; break;
7767    case ISD::AND: Opcode = X86ISD::AND; break;
7768    }
7769
7770    NumOperands = 2;
7771    break;
7772  case X86ISD::ADD:
7773  case X86ISD::SUB:
7774  case X86ISD::INC:
7775  case X86ISD::DEC:
7776  case X86ISD::OR:
7777  case X86ISD::XOR:
7778  case X86ISD::AND:
7779    return SDValue(Op.getNode(), 1);
7780  default:
7781  default_case:
7782    break;
7783  }
7784
7785  if (Opcode == 0)
7786    // Emit a CMP with 0, which is the TEST pattern.
7787    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7788                       DAG.getConstant(0, Op.getValueType()));
7789
7790  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7791  SmallVector<SDValue, 4> Ops;
7792  for (unsigned i = 0; i != NumOperands; ++i)
7793    Ops.push_back(Op.getOperand(i));
7794
7795  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7796  DAG.ReplaceAllUsesWith(Op, New);
7797  return SDValue(New.getNode(), 1);
7798}
7799
7800/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7801/// equivalent.
7802SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7803                                   SelectionDAG &DAG) const {
7804  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7805    if (C->getAPIntValue() == 0)
7806      return EmitTest(Op0, X86CC, DAG);
7807
7808  DebugLoc dl = Op0.getDebugLoc();
7809  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7810}
7811
7812/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7813/// if it's possible.
7814SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7815                                     DebugLoc dl, SelectionDAG &DAG) const {
7816  SDValue Op0 = And.getOperand(0);
7817  SDValue Op1 = And.getOperand(1);
7818  if (Op0.getOpcode() == ISD::TRUNCATE)
7819    Op0 = Op0.getOperand(0);
7820  if (Op1.getOpcode() == ISD::TRUNCATE)
7821    Op1 = Op1.getOperand(0);
7822
7823  SDValue LHS, RHS;
7824  if (Op1.getOpcode() == ISD::SHL)
7825    std::swap(Op0, Op1);
7826  if (Op0.getOpcode() == ISD::SHL) {
7827    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7828      if (And00C->getZExtValue() == 1) {
7829        // If we looked past a truncate, check that it's only truncating away
7830        // known zeros.
7831        unsigned BitWidth = Op0.getValueSizeInBits();
7832        unsigned AndBitWidth = And.getValueSizeInBits();
7833        if (BitWidth > AndBitWidth) {
7834          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7835          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7836          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7837            return SDValue();
7838        }
7839        LHS = Op1;
7840        RHS = Op0.getOperand(1);
7841      }
7842  } else if (Op1.getOpcode() == ISD::Constant) {
7843    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7844    SDValue AndLHS = Op0;
7845    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7846      LHS = AndLHS.getOperand(0);
7847      RHS = AndLHS.getOperand(1);
7848    }
7849  }
7850
7851  if (LHS.getNode()) {
7852    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7853    // instruction.  Since the shift amount is in-range-or-undefined, we know
7854    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7855    // the encoding for the i16 version is larger than the i32 version.
7856    // Also promote i16 to i32 for performance / code size reason.
7857    if (LHS.getValueType() == MVT::i8 ||
7858        LHS.getValueType() == MVT::i16)
7859      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7860
7861    // If the operand types disagree, extend the shift amount to match.  Since
7862    // BT ignores high bits (like shifts) we can use anyextend.
7863    if (LHS.getValueType() != RHS.getValueType())
7864      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7865
7866    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7867    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7868    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7869                       DAG.getConstant(Cond, MVT::i8), BT);
7870  }
7871
7872  return SDValue();
7873}
7874
7875SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7876  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7877  SDValue Op0 = Op.getOperand(0);
7878  SDValue Op1 = Op.getOperand(1);
7879  DebugLoc dl = Op.getDebugLoc();
7880  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7881
7882  // Optimize to BT if possible.
7883  // Lower (X & (1 << N)) == 0 to BT(X, N).
7884  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7885  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7886  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7887      Op1.getOpcode() == ISD::Constant &&
7888      cast<ConstantSDNode>(Op1)->isNullValue() &&
7889      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7890    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7891    if (NewSetCC.getNode())
7892      return NewSetCC;
7893  }
7894
7895  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7896  // these.
7897  if (Op1.getOpcode() == ISD::Constant &&
7898      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7899       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7900      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7901
7902    // If the input is a setcc, then reuse the input setcc or use a new one with
7903    // the inverted condition.
7904    if (Op0.getOpcode() == X86ISD::SETCC) {
7905      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7906      bool Invert = (CC == ISD::SETNE) ^
7907        cast<ConstantSDNode>(Op1)->isNullValue();
7908      if (!Invert) return Op0;
7909
7910      CCode = X86::GetOppositeBranchCondition(CCode);
7911      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7912                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7913    }
7914  }
7915
7916  bool isFP = Op1.getValueType().isFloatingPoint();
7917  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7918  if (X86CC == X86::COND_INVALID)
7919    return SDValue();
7920
7921  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7922  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7923                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7924}
7925
7926SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7927  SDValue Cond;
7928  SDValue Op0 = Op.getOperand(0);
7929  SDValue Op1 = Op.getOperand(1);
7930  SDValue CC = Op.getOperand(2);
7931  EVT VT = Op.getValueType();
7932  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7933  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7934  DebugLoc dl = Op.getDebugLoc();
7935
7936  if (isFP) {
7937    unsigned SSECC = 8;
7938    EVT EltVT = Op0.getValueType().getVectorElementType();
7939    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
7940
7941    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7942    bool Swap = false;
7943
7944    switch (SetCCOpcode) {
7945    default: break;
7946    case ISD::SETOEQ:
7947    case ISD::SETEQ:  SSECC = 0; break;
7948    case ISD::SETOGT:
7949    case ISD::SETGT: Swap = true; // Fallthrough
7950    case ISD::SETLT:
7951    case ISD::SETOLT: SSECC = 1; break;
7952    case ISD::SETOGE:
7953    case ISD::SETGE: Swap = true; // Fallthrough
7954    case ISD::SETLE:
7955    case ISD::SETOLE: SSECC = 2; break;
7956    case ISD::SETUO:  SSECC = 3; break;
7957    case ISD::SETUNE:
7958    case ISD::SETNE:  SSECC = 4; break;
7959    case ISD::SETULE: Swap = true;
7960    case ISD::SETUGE: SSECC = 5; break;
7961    case ISD::SETULT: Swap = true;
7962    case ISD::SETUGT: SSECC = 6; break;
7963    case ISD::SETO:   SSECC = 7; break;
7964    }
7965    if (Swap)
7966      std::swap(Op0, Op1);
7967
7968    // In the two special cases we can't handle, emit two comparisons.
7969    if (SSECC == 8) {
7970      if (SetCCOpcode == ISD::SETUEQ) {
7971        SDValue UNORD, EQ;
7972        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7973        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7974        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7975      }
7976      else if (SetCCOpcode == ISD::SETONE) {
7977        SDValue ORD, NEQ;
7978        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7979        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7980        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7981      }
7982      llvm_unreachable("Illegal FP comparison");
7983    }
7984    // Handle all other FP comparisons here.
7985    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7986  }
7987
7988  if (!isFP && VT.getSizeInBits() == 256)
7989    return SDValue();
7990
7991  // We are handling one of the integer comparisons here.  Since SSE only has
7992  // GT and EQ comparisons for integer, swapping operands and multiple
7993  // operations may be required for some comparisons.
7994  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7995  bool Swap = false, Invert = false, FlipSigns = false;
7996
7997  switch (VT.getSimpleVT().SimpleTy) {
7998  default: break;
7999  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8000  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8001  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8002  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8003  }
8004
8005  switch (SetCCOpcode) {
8006  default: break;
8007  case ISD::SETNE:  Invert = true;
8008  case ISD::SETEQ:  Opc = EQOpc; break;
8009  case ISD::SETLT:  Swap = true;
8010  case ISD::SETGT:  Opc = GTOpc; break;
8011  case ISD::SETGE:  Swap = true;
8012  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8013  case ISD::SETULT: Swap = true;
8014  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8015  case ISD::SETUGE: Swap = true;
8016  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8017  }
8018  if (Swap)
8019    std::swap(Op0, Op1);
8020
8021  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8022  // bits of the inputs before performing those operations.
8023  if (FlipSigns) {
8024    EVT EltVT = VT.getVectorElementType();
8025    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8026                                      EltVT);
8027    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8028    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8029                                    SignBits.size());
8030    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8031    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8032  }
8033
8034  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8035
8036  // If the logical-not of the result is required, perform that now.
8037  if (Invert)
8038    Result = DAG.getNOT(dl, Result, VT);
8039
8040  return Result;
8041}
8042
8043// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8044static bool isX86LogicalCmp(SDValue Op) {
8045  unsigned Opc = Op.getNode()->getOpcode();
8046  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8047    return true;
8048  if (Op.getResNo() == 1 &&
8049      (Opc == X86ISD::ADD ||
8050       Opc == X86ISD::SUB ||
8051       Opc == X86ISD::ADC ||
8052       Opc == X86ISD::SBB ||
8053       Opc == X86ISD::SMUL ||
8054       Opc == X86ISD::UMUL ||
8055       Opc == X86ISD::INC ||
8056       Opc == X86ISD::DEC ||
8057       Opc == X86ISD::OR ||
8058       Opc == X86ISD::XOR ||
8059       Opc == X86ISD::AND))
8060    return true;
8061
8062  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8063    return true;
8064
8065  return false;
8066}
8067
8068static bool isZero(SDValue V) {
8069  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8070  return C && C->isNullValue();
8071}
8072
8073static bool isAllOnes(SDValue V) {
8074  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8075  return C && C->isAllOnesValue();
8076}
8077
8078SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8079  bool addTest = true;
8080  SDValue Cond  = Op.getOperand(0);
8081  SDValue Op1 = Op.getOperand(1);
8082  SDValue Op2 = Op.getOperand(2);
8083  DebugLoc DL = Op.getDebugLoc();
8084  SDValue CC;
8085
8086  if (Cond.getOpcode() == ISD::SETCC) {
8087    SDValue NewCond = LowerSETCC(Cond, DAG);
8088    if (NewCond.getNode())
8089      Cond = NewCond;
8090  }
8091
8092  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8093  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8094  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8095  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8096  if (Cond.getOpcode() == X86ISD::SETCC &&
8097      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8098      isZero(Cond.getOperand(1).getOperand(1))) {
8099    SDValue Cmp = Cond.getOperand(1);
8100
8101    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8102
8103    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8104        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8105      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8106
8107      SDValue CmpOp0 = Cmp.getOperand(0);
8108      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8109                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8110
8111      SDValue Res =   // Res = 0 or -1.
8112        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8113                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8114
8115      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8116        Res = DAG.getNOT(DL, Res, Res.getValueType());
8117
8118      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8119      if (N2C == 0 || !N2C->isNullValue())
8120        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8121      return Res;
8122    }
8123  }
8124
8125  // Look past (and (setcc_carry (cmp ...)), 1).
8126  if (Cond.getOpcode() == ISD::AND &&
8127      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8128    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8129    if (C && C->getAPIntValue() == 1)
8130      Cond = Cond.getOperand(0);
8131  }
8132
8133  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8134  // setting operand in place of the X86ISD::SETCC.
8135  if (Cond.getOpcode() == X86ISD::SETCC ||
8136      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8137    CC = Cond.getOperand(0);
8138
8139    SDValue Cmp = Cond.getOperand(1);
8140    unsigned Opc = Cmp.getOpcode();
8141    EVT VT = Op.getValueType();
8142
8143    bool IllegalFPCMov = false;
8144    if (VT.isFloatingPoint() && !VT.isVector() &&
8145        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8146      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8147
8148    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8149        Opc == X86ISD::BT) { // FIXME
8150      Cond = Cmp;
8151      addTest = false;
8152    }
8153  }
8154
8155  if (addTest) {
8156    // Look pass the truncate.
8157    if (Cond.getOpcode() == ISD::TRUNCATE)
8158      Cond = Cond.getOperand(0);
8159
8160    // We know the result of AND is compared against zero. Try to match
8161    // it to BT.
8162    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8163      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8164      if (NewSetCC.getNode()) {
8165        CC = NewSetCC.getOperand(0);
8166        Cond = NewSetCC.getOperand(1);
8167        addTest = false;
8168      }
8169    }
8170  }
8171
8172  if (addTest) {
8173    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8174    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8175  }
8176
8177  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8178  // a <  b ?  0 : -1 -> RES = setcc_carry
8179  // a >= b ? -1 :  0 -> RES = setcc_carry
8180  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8181  if (Cond.getOpcode() == X86ISD::CMP) {
8182    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8183
8184    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8185        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8186      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8187                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8188      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8189        return DAG.getNOT(DL, Res, Res.getValueType());
8190      return Res;
8191    }
8192  }
8193
8194  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8195  // condition is true.
8196  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8197  SDValue Ops[] = { Op2, Op1, CC, Cond };
8198  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8199}
8200
8201// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8202// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8203// from the AND / OR.
8204static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8205  Opc = Op.getOpcode();
8206  if (Opc != ISD::OR && Opc != ISD::AND)
8207    return false;
8208  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8209          Op.getOperand(0).hasOneUse() &&
8210          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8211          Op.getOperand(1).hasOneUse());
8212}
8213
8214// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8215// 1 and that the SETCC node has a single use.
8216static bool isXor1OfSetCC(SDValue Op) {
8217  if (Op.getOpcode() != ISD::XOR)
8218    return false;
8219  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8220  if (N1C && N1C->getAPIntValue() == 1) {
8221    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8222      Op.getOperand(0).hasOneUse();
8223  }
8224  return false;
8225}
8226
8227SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8228  bool addTest = true;
8229  SDValue Chain = Op.getOperand(0);
8230  SDValue Cond  = Op.getOperand(1);
8231  SDValue Dest  = Op.getOperand(2);
8232  DebugLoc dl = Op.getDebugLoc();
8233  SDValue CC;
8234
8235  if (Cond.getOpcode() == ISD::SETCC) {
8236    SDValue NewCond = LowerSETCC(Cond, DAG);
8237    if (NewCond.getNode())
8238      Cond = NewCond;
8239  }
8240#if 0
8241  // FIXME: LowerXALUO doesn't handle these!!
8242  else if (Cond.getOpcode() == X86ISD::ADD  ||
8243           Cond.getOpcode() == X86ISD::SUB  ||
8244           Cond.getOpcode() == X86ISD::SMUL ||
8245           Cond.getOpcode() == X86ISD::UMUL)
8246    Cond = LowerXALUO(Cond, DAG);
8247#endif
8248
8249  // Look pass (and (setcc_carry (cmp ...)), 1).
8250  if (Cond.getOpcode() == ISD::AND &&
8251      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8252    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8253    if (C && C->getAPIntValue() == 1)
8254      Cond = Cond.getOperand(0);
8255  }
8256
8257  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8258  // setting operand in place of the X86ISD::SETCC.
8259  if (Cond.getOpcode() == X86ISD::SETCC ||
8260      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8261    CC = Cond.getOperand(0);
8262
8263    SDValue Cmp = Cond.getOperand(1);
8264    unsigned Opc = Cmp.getOpcode();
8265    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8266    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8267      Cond = Cmp;
8268      addTest = false;
8269    } else {
8270      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8271      default: break;
8272      case X86::COND_O:
8273      case X86::COND_B:
8274        // These can only come from an arithmetic instruction with overflow,
8275        // e.g. SADDO, UADDO.
8276        Cond = Cond.getNode()->getOperand(1);
8277        addTest = false;
8278        break;
8279      }
8280    }
8281  } else {
8282    unsigned CondOpc;
8283    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8284      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8285      if (CondOpc == ISD::OR) {
8286        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8287        // two branches instead of an explicit OR instruction with a
8288        // separate test.
8289        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8290            isX86LogicalCmp(Cmp)) {
8291          CC = Cond.getOperand(0).getOperand(0);
8292          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8293                              Chain, Dest, CC, Cmp);
8294          CC = Cond.getOperand(1).getOperand(0);
8295          Cond = Cmp;
8296          addTest = false;
8297        }
8298      } else { // ISD::AND
8299        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8300        // two branches instead of an explicit AND instruction with a
8301        // separate test. However, we only do this if this block doesn't
8302        // have a fall-through edge, because this requires an explicit
8303        // jmp when the condition is false.
8304        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8305            isX86LogicalCmp(Cmp) &&
8306            Op.getNode()->hasOneUse()) {
8307          X86::CondCode CCode =
8308            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8309          CCode = X86::GetOppositeBranchCondition(CCode);
8310          CC = DAG.getConstant(CCode, MVT::i8);
8311          SDNode *User = *Op.getNode()->use_begin();
8312          // Look for an unconditional branch following this conditional branch.
8313          // We need this because we need to reverse the successors in order
8314          // to implement FCMP_OEQ.
8315          if (User->getOpcode() == ISD::BR) {
8316            SDValue FalseBB = User->getOperand(1);
8317            SDNode *NewBR =
8318              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8319            assert(NewBR == User);
8320            (void)NewBR;
8321            Dest = FalseBB;
8322
8323            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8324                                Chain, Dest, CC, Cmp);
8325            X86::CondCode CCode =
8326              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8327            CCode = X86::GetOppositeBranchCondition(CCode);
8328            CC = DAG.getConstant(CCode, MVT::i8);
8329            Cond = Cmp;
8330            addTest = false;
8331          }
8332        }
8333      }
8334    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8335      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8336      // It should be transformed during dag combiner except when the condition
8337      // is set by a arithmetics with overflow node.
8338      X86::CondCode CCode =
8339        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8340      CCode = X86::GetOppositeBranchCondition(CCode);
8341      CC = DAG.getConstant(CCode, MVT::i8);
8342      Cond = Cond.getOperand(0).getOperand(1);
8343      addTest = false;
8344    }
8345  }
8346
8347  if (addTest) {
8348    // Look pass the truncate.
8349    if (Cond.getOpcode() == ISD::TRUNCATE)
8350      Cond = Cond.getOperand(0);
8351
8352    // We know the result of AND is compared against zero. Try to match
8353    // it to BT.
8354    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8355      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8356      if (NewSetCC.getNode()) {
8357        CC = NewSetCC.getOperand(0);
8358        Cond = NewSetCC.getOperand(1);
8359        addTest = false;
8360      }
8361    }
8362  }
8363
8364  if (addTest) {
8365    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8366    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8367  }
8368  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8369                     Chain, Dest, CC, Cond);
8370}
8371
8372
8373// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8374// Calls to _alloca is needed to probe the stack when allocating more than 4k
8375// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8376// that the guard pages used by the OS virtual memory manager are allocated in
8377// correct sequence.
8378SDValue
8379X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8380                                           SelectionDAG &DAG) const {
8381  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
8382         "This should be used only on Windows targets");
8383  assert(!Subtarget->isTargetEnvMacho());
8384  DebugLoc dl = Op.getDebugLoc();
8385
8386  // Get the inputs.
8387  SDValue Chain = Op.getOperand(0);
8388  SDValue Size  = Op.getOperand(1);
8389  // FIXME: Ensure alignment here
8390
8391  SDValue Flag;
8392
8393  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
8394  unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8395
8396  Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8397  Flag = Chain.getValue(1);
8398
8399  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8400
8401  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8402  Flag = Chain.getValue(1);
8403
8404  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8405
8406  SDValue Ops1[2] = { Chain.getValue(0), Chain };
8407  return DAG.getMergeValues(Ops1, 2, dl);
8408}
8409
8410SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8411  MachineFunction &MF = DAG.getMachineFunction();
8412  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8413
8414  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8415  DebugLoc DL = Op.getDebugLoc();
8416
8417  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8418    // vastart just stores the address of the VarArgsFrameIndex slot into the
8419    // memory location argument.
8420    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8421                                   getPointerTy());
8422    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8423                        MachinePointerInfo(SV), false, false, 0);
8424  }
8425
8426  // __va_list_tag:
8427  //   gp_offset         (0 - 6 * 8)
8428  //   fp_offset         (48 - 48 + 8 * 16)
8429  //   overflow_arg_area (point to parameters coming in memory).
8430  //   reg_save_area
8431  SmallVector<SDValue, 8> MemOps;
8432  SDValue FIN = Op.getOperand(1);
8433  // Store gp_offset
8434  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8435                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8436                                               MVT::i32),
8437                               FIN, MachinePointerInfo(SV), false, false, 0);
8438  MemOps.push_back(Store);
8439
8440  // Store fp_offset
8441  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8442                    FIN, DAG.getIntPtrConstant(4));
8443  Store = DAG.getStore(Op.getOperand(0), DL,
8444                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8445                                       MVT::i32),
8446                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8447  MemOps.push_back(Store);
8448
8449  // Store ptr to overflow_arg_area
8450  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8451                    FIN, DAG.getIntPtrConstant(4));
8452  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8453                                    getPointerTy());
8454  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8455                       MachinePointerInfo(SV, 8),
8456                       false, false, 0);
8457  MemOps.push_back(Store);
8458
8459  // Store ptr to reg_save_area.
8460  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8461                    FIN, DAG.getIntPtrConstant(8));
8462  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8463                                    getPointerTy());
8464  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8465                       MachinePointerInfo(SV, 16), false, false, 0);
8466  MemOps.push_back(Store);
8467  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8468                     &MemOps[0], MemOps.size());
8469}
8470
8471SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8472  assert(Subtarget->is64Bit() &&
8473         "LowerVAARG only handles 64-bit va_arg!");
8474  assert((Subtarget->isTargetLinux() ||
8475          Subtarget->isTargetDarwin()) &&
8476          "Unhandled target in LowerVAARG");
8477  assert(Op.getNode()->getNumOperands() == 4);
8478  SDValue Chain = Op.getOperand(0);
8479  SDValue SrcPtr = Op.getOperand(1);
8480  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8481  unsigned Align = Op.getConstantOperandVal(3);
8482  DebugLoc dl = Op.getDebugLoc();
8483
8484  EVT ArgVT = Op.getNode()->getValueType(0);
8485  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8486  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8487  uint8_t ArgMode;
8488
8489  // Decide which area this value should be read from.
8490  // TODO: Implement the AMD64 ABI in its entirety. This simple
8491  // selection mechanism works only for the basic types.
8492  if (ArgVT == MVT::f80) {
8493    llvm_unreachable("va_arg for f80 not yet implemented");
8494  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8495    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8496  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8497    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8498  } else {
8499    llvm_unreachable("Unhandled argument type in LowerVAARG");
8500  }
8501
8502  if (ArgMode == 2) {
8503    // Sanity Check: Make sure using fp_offset makes sense.
8504    assert(!UseSoftFloat &&
8505           !(DAG.getMachineFunction()
8506                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8507           Subtarget->hasXMM());
8508  }
8509
8510  // Insert VAARG_64 node into the DAG
8511  // VAARG_64 returns two values: Variable Argument Address, Chain
8512  SmallVector<SDValue, 11> InstOps;
8513  InstOps.push_back(Chain);
8514  InstOps.push_back(SrcPtr);
8515  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8516  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8517  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8518  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8519  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8520                                          VTs, &InstOps[0], InstOps.size(),
8521                                          MVT::i64,
8522                                          MachinePointerInfo(SV),
8523                                          /*Align=*/0,
8524                                          /*Volatile=*/false,
8525                                          /*ReadMem=*/true,
8526                                          /*WriteMem=*/true);
8527  Chain = VAARG.getValue(1);
8528
8529  // Load the next argument and return it
8530  return DAG.getLoad(ArgVT, dl,
8531                     Chain,
8532                     VAARG,
8533                     MachinePointerInfo(),
8534                     false, false, 0);
8535}
8536
8537SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8538  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8539  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8540  SDValue Chain = Op.getOperand(0);
8541  SDValue DstPtr = Op.getOperand(1);
8542  SDValue SrcPtr = Op.getOperand(2);
8543  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8544  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8545  DebugLoc DL = Op.getDebugLoc();
8546
8547  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8548                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8549                       false,
8550                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8551}
8552
8553SDValue
8554X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8555  DebugLoc dl = Op.getDebugLoc();
8556  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8557  switch (IntNo) {
8558  default: return SDValue();    // Don't custom lower most intrinsics.
8559  // Comparison intrinsics.
8560  case Intrinsic::x86_sse_comieq_ss:
8561  case Intrinsic::x86_sse_comilt_ss:
8562  case Intrinsic::x86_sse_comile_ss:
8563  case Intrinsic::x86_sse_comigt_ss:
8564  case Intrinsic::x86_sse_comige_ss:
8565  case Intrinsic::x86_sse_comineq_ss:
8566  case Intrinsic::x86_sse_ucomieq_ss:
8567  case Intrinsic::x86_sse_ucomilt_ss:
8568  case Intrinsic::x86_sse_ucomile_ss:
8569  case Intrinsic::x86_sse_ucomigt_ss:
8570  case Intrinsic::x86_sse_ucomige_ss:
8571  case Intrinsic::x86_sse_ucomineq_ss:
8572  case Intrinsic::x86_sse2_comieq_sd:
8573  case Intrinsic::x86_sse2_comilt_sd:
8574  case Intrinsic::x86_sse2_comile_sd:
8575  case Intrinsic::x86_sse2_comigt_sd:
8576  case Intrinsic::x86_sse2_comige_sd:
8577  case Intrinsic::x86_sse2_comineq_sd:
8578  case Intrinsic::x86_sse2_ucomieq_sd:
8579  case Intrinsic::x86_sse2_ucomilt_sd:
8580  case Intrinsic::x86_sse2_ucomile_sd:
8581  case Intrinsic::x86_sse2_ucomigt_sd:
8582  case Intrinsic::x86_sse2_ucomige_sd:
8583  case Intrinsic::x86_sse2_ucomineq_sd: {
8584    unsigned Opc = 0;
8585    ISD::CondCode CC = ISD::SETCC_INVALID;
8586    switch (IntNo) {
8587    default: break;
8588    case Intrinsic::x86_sse_comieq_ss:
8589    case Intrinsic::x86_sse2_comieq_sd:
8590      Opc = X86ISD::COMI;
8591      CC = ISD::SETEQ;
8592      break;
8593    case Intrinsic::x86_sse_comilt_ss:
8594    case Intrinsic::x86_sse2_comilt_sd:
8595      Opc = X86ISD::COMI;
8596      CC = ISD::SETLT;
8597      break;
8598    case Intrinsic::x86_sse_comile_ss:
8599    case Intrinsic::x86_sse2_comile_sd:
8600      Opc = X86ISD::COMI;
8601      CC = ISD::SETLE;
8602      break;
8603    case Intrinsic::x86_sse_comigt_ss:
8604    case Intrinsic::x86_sse2_comigt_sd:
8605      Opc = X86ISD::COMI;
8606      CC = ISD::SETGT;
8607      break;
8608    case Intrinsic::x86_sse_comige_ss:
8609    case Intrinsic::x86_sse2_comige_sd:
8610      Opc = X86ISD::COMI;
8611      CC = ISD::SETGE;
8612      break;
8613    case Intrinsic::x86_sse_comineq_ss:
8614    case Intrinsic::x86_sse2_comineq_sd:
8615      Opc = X86ISD::COMI;
8616      CC = ISD::SETNE;
8617      break;
8618    case Intrinsic::x86_sse_ucomieq_ss:
8619    case Intrinsic::x86_sse2_ucomieq_sd:
8620      Opc = X86ISD::UCOMI;
8621      CC = ISD::SETEQ;
8622      break;
8623    case Intrinsic::x86_sse_ucomilt_ss:
8624    case Intrinsic::x86_sse2_ucomilt_sd:
8625      Opc = X86ISD::UCOMI;
8626      CC = ISD::SETLT;
8627      break;
8628    case Intrinsic::x86_sse_ucomile_ss:
8629    case Intrinsic::x86_sse2_ucomile_sd:
8630      Opc = X86ISD::UCOMI;
8631      CC = ISD::SETLE;
8632      break;
8633    case Intrinsic::x86_sse_ucomigt_ss:
8634    case Intrinsic::x86_sse2_ucomigt_sd:
8635      Opc = X86ISD::UCOMI;
8636      CC = ISD::SETGT;
8637      break;
8638    case Intrinsic::x86_sse_ucomige_ss:
8639    case Intrinsic::x86_sse2_ucomige_sd:
8640      Opc = X86ISD::UCOMI;
8641      CC = ISD::SETGE;
8642      break;
8643    case Intrinsic::x86_sse_ucomineq_ss:
8644    case Intrinsic::x86_sse2_ucomineq_sd:
8645      Opc = X86ISD::UCOMI;
8646      CC = ISD::SETNE;
8647      break;
8648    }
8649
8650    SDValue LHS = Op.getOperand(1);
8651    SDValue RHS = Op.getOperand(2);
8652    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
8653    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
8654    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
8655    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8656                                DAG.getConstant(X86CC, MVT::i8), Cond);
8657    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8658  }
8659  // ptest and testp intrinsics. The intrinsic these come from are designed to
8660  // return an integer value, not just an instruction so lower it to the ptest
8661  // or testp pattern and a setcc for the result.
8662  case Intrinsic::x86_sse41_ptestz:
8663  case Intrinsic::x86_sse41_ptestc:
8664  case Intrinsic::x86_sse41_ptestnzc:
8665  case Intrinsic::x86_avx_ptestz_256:
8666  case Intrinsic::x86_avx_ptestc_256:
8667  case Intrinsic::x86_avx_ptestnzc_256:
8668  case Intrinsic::x86_avx_vtestz_ps:
8669  case Intrinsic::x86_avx_vtestc_ps:
8670  case Intrinsic::x86_avx_vtestnzc_ps:
8671  case Intrinsic::x86_avx_vtestz_pd:
8672  case Intrinsic::x86_avx_vtestc_pd:
8673  case Intrinsic::x86_avx_vtestnzc_pd:
8674  case Intrinsic::x86_avx_vtestz_ps_256:
8675  case Intrinsic::x86_avx_vtestc_ps_256:
8676  case Intrinsic::x86_avx_vtestnzc_ps_256:
8677  case Intrinsic::x86_avx_vtestz_pd_256:
8678  case Intrinsic::x86_avx_vtestc_pd_256:
8679  case Intrinsic::x86_avx_vtestnzc_pd_256: {
8680    bool IsTestPacked = false;
8681    unsigned X86CC = 0;
8682    switch (IntNo) {
8683    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
8684    case Intrinsic::x86_avx_vtestz_ps:
8685    case Intrinsic::x86_avx_vtestz_pd:
8686    case Intrinsic::x86_avx_vtestz_ps_256:
8687    case Intrinsic::x86_avx_vtestz_pd_256:
8688      IsTestPacked = true; // Fallthrough
8689    case Intrinsic::x86_sse41_ptestz:
8690    case Intrinsic::x86_avx_ptestz_256:
8691      // ZF = 1
8692      X86CC = X86::COND_E;
8693      break;
8694    case Intrinsic::x86_avx_vtestc_ps:
8695    case Intrinsic::x86_avx_vtestc_pd:
8696    case Intrinsic::x86_avx_vtestc_ps_256:
8697    case Intrinsic::x86_avx_vtestc_pd_256:
8698      IsTestPacked = true; // Fallthrough
8699    case Intrinsic::x86_sse41_ptestc:
8700    case Intrinsic::x86_avx_ptestc_256:
8701      // CF = 1
8702      X86CC = X86::COND_B;
8703      break;
8704    case Intrinsic::x86_avx_vtestnzc_ps:
8705    case Intrinsic::x86_avx_vtestnzc_pd:
8706    case Intrinsic::x86_avx_vtestnzc_ps_256:
8707    case Intrinsic::x86_avx_vtestnzc_pd_256:
8708      IsTestPacked = true; // Fallthrough
8709    case Intrinsic::x86_sse41_ptestnzc:
8710    case Intrinsic::x86_avx_ptestnzc_256:
8711      // ZF and CF = 0
8712      X86CC = X86::COND_A;
8713      break;
8714    }
8715
8716    SDValue LHS = Op.getOperand(1);
8717    SDValue RHS = Op.getOperand(2);
8718    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
8719    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
8720    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
8721    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
8722    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8723  }
8724
8725  // Fix vector shift instructions where the last operand is a non-immediate
8726  // i32 value.
8727  case Intrinsic::x86_sse2_pslli_w:
8728  case Intrinsic::x86_sse2_pslli_d:
8729  case Intrinsic::x86_sse2_pslli_q:
8730  case Intrinsic::x86_sse2_psrli_w:
8731  case Intrinsic::x86_sse2_psrli_d:
8732  case Intrinsic::x86_sse2_psrli_q:
8733  case Intrinsic::x86_sse2_psrai_w:
8734  case Intrinsic::x86_sse2_psrai_d:
8735  case Intrinsic::x86_mmx_pslli_w:
8736  case Intrinsic::x86_mmx_pslli_d:
8737  case Intrinsic::x86_mmx_pslli_q:
8738  case Intrinsic::x86_mmx_psrli_w:
8739  case Intrinsic::x86_mmx_psrli_d:
8740  case Intrinsic::x86_mmx_psrli_q:
8741  case Intrinsic::x86_mmx_psrai_w:
8742  case Intrinsic::x86_mmx_psrai_d: {
8743    SDValue ShAmt = Op.getOperand(2);
8744    if (isa<ConstantSDNode>(ShAmt))
8745      return SDValue();
8746
8747    unsigned NewIntNo = 0;
8748    EVT ShAmtVT = MVT::v4i32;
8749    switch (IntNo) {
8750    case Intrinsic::x86_sse2_pslli_w:
8751      NewIntNo = Intrinsic::x86_sse2_psll_w;
8752      break;
8753    case Intrinsic::x86_sse2_pslli_d:
8754      NewIntNo = Intrinsic::x86_sse2_psll_d;
8755      break;
8756    case Intrinsic::x86_sse2_pslli_q:
8757      NewIntNo = Intrinsic::x86_sse2_psll_q;
8758      break;
8759    case Intrinsic::x86_sse2_psrli_w:
8760      NewIntNo = Intrinsic::x86_sse2_psrl_w;
8761      break;
8762    case Intrinsic::x86_sse2_psrli_d:
8763      NewIntNo = Intrinsic::x86_sse2_psrl_d;
8764      break;
8765    case Intrinsic::x86_sse2_psrli_q:
8766      NewIntNo = Intrinsic::x86_sse2_psrl_q;
8767      break;
8768    case Intrinsic::x86_sse2_psrai_w:
8769      NewIntNo = Intrinsic::x86_sse2_psra_w;
8770      break;
8771    case Intrinsic::x86_sse2_psrai_d:
8772      NewIntNo = Intrinsic::x86_sse2_psra_d;
8773      break;
8774    default: {
8775      ShAmtVT = MVT::v2i32;
8776      switch (IntNo) {
8777      case Intrinsic::x86_mmx_pslli_w:
8778        NewIntNo = Intrinsic::x86_mmx_psll_w;
8779        break;
8780      case Intrinsic::x86_mmx_pslli_d:
8781        NewIntNo = Intrinsic::x86_mmx_psll_d;
8782        break;
8783      case Intrinsic::x86_mmx_pslli_q:
8784        NewIntNo = Intrinsic::x86_mmx_psll_q;
8785        break;
8786      case Intrinsic::x86_mmx_psrli_w:
8787        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8788        break;
8789      case Intrinsic::x86_mmx_psrli_d:
8790        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8791        break;
8792      case Intrinsic::x86_mmx_psrli_q:
8793        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8794        break;
8795      case Intrinsic::x86_mmx_psrai_w:
8796        NewIntNo = Intrinsic::x86_mmx_psra_w;
8797        break;
8798      case Intrinsic::x86_mmx_psrai_d:
8799        NewIntNo = Intrinsic::x86_mmx_psra_d;
8800        break;
8801      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8802      }
8803      break;
8804    }
8805    }
8806
8807    // The vector shift intrinsics with scalars uses 32b shift amounts but
8808    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8809    // to be zero.
8810    SDValue ShOps[4];
8811    ShOps[0] = ShAmt;
8812    ShOps[1] = DAG.getConstant(0, MVT::i32);
8813    if (ShAmtVT == MVT::v4i32) {
8814      ShOps[2] = DAG.getUNDEF(MVT::i32);
8815      ShOps[3] = DAG.getUNDEF(MVT::i32);
8816      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8817    } else {
8818      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8819// FIXME this must be lowered to get rid of the invalid type.
8820    }
8821
8822    EVT VT = Op.getValueType();
8823    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8824    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8825                       DAG.getConstant(NewIntNo, MVT::i32),
8826                       Op.getOperand(1), ShAmt);
8827  }
8828  }
8829}
8830
8831SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8832                                           SelectionDAG &DAG) const {
8833  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8834  MFI->setReturnAddressIsTaken(true);
8835
8836  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8837  DebugLoc dl = Op.getDebugLoc();
8838
8839  if (Depth > 0) {
8840    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8841    SDValue Offset =
8842      DAG.getConstant(TD->getPointerSize(),
8843                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8844    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8845                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8846                                   FrameAddr, Offset),
8847                       MachinePointerInfo(), false, false, 0);
8848  }
8849
8850  // Just load the return address.
8851  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8852  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8853                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8854}
8855
8856SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8857  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8858  MFI->setFrameAddressIsTaken(true);
8859
8860  EVT VT = Op.getValueType();
8861  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8862  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8863  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8864  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8865  while (Depth--)
8866    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8867                            MachinePointerInfo(),
8868                            false, false, 0);
8869  return FrameAddr;
8870}
8871
8872SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8873                                                     SelectionDAG &DAG) const {
8874  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8875}
8876
8877SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8878  MachineFunction &MF = DAG.getMachineFunction();
8879  SDValue Chain     = Op.getOperand(0);
8880  SDValue Offset    = Op.getOperand(1);
8881  SDValue Handler   = Op.getOperand(2);
8882  DebugLoc dl       = Op.getDebugLoc();
8883
8884  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8885                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8886                                     getPointerTy());
8887  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8888
8889  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8890                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8891  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8892  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8893                       false, false, 0);
8894  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8895  MF.getRegInfo().addLiveOut(StoreAddrReg);
8896
8897  return DAG.getNode(X86ISD::EH_RETURN, dl,
8898                     MVT::Other,
8899                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8900}
8901
8902SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8903                                             SelectionDAG &DAG) const {
8904  SDValue Root = Op.getOperand(0);
8905  SDValue Trmp = Op.getOperand(1); // trampoline
8906  SDValue FPtr = Op.getOperand(2); // nested function
8907  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8908  DebugLoc dl  = Op.getDebugLoc();
8909
8910  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8911
8912  if (Subtarget->is64Bit()) {
8913    SDValue OutChains[6];
8914
8915    // Large code-model.
8916    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8917    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8918
8919    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
8920    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
8921
8922    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8923
8924    // Load the pointer to the nested function into R11.
8925    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8926    SDValue Addr = Trmp;
8927    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8928                                Addr, MachinePointerInfo(TrmpAddr),
8929                                false, false, 0);
8930
8931    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8932                       DAG.getConstant(2, MVT::i64));
8933    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8934                                MachinePointerInfo(TrmpAddr, 2),
8935                                false, false, 2);
8936
8937    // Load the 'nest' parameter value into R10.
8938    // R10 is specified in X86CallingConv.td
8939    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8940    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8941                       DAG.getConstant(10, MVT::i64));
8942    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8943                                Addr, MachinePointerInfo(TrmpAddr, 10),
8944                                false, false, 0);
8945
8946    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8947                       DAG.getConstant(12, MVT::i64));
8948    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8949                                MachinePointerInfo(TrmpAddr, 12),
8950                                false, false, 2);
8951
8952    // Jump to the nested function.
8953    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8954    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8955                       DAG.getConstant(20, MVT::i64));
8956    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8957                                Addr, MachinePointerInfo(TrmpAddr, 20),
8958                                false, false, 0);
8959
8960    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8961    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8962                       DAG.getConstant(22, MVT::i64));
8963    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8964                                MachinePointerInfo(TrmpAddr, 22),
8965                                false, false, 0);
8966
8967    SDValue Ops[] =
8968      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8969    return DAG.getMergeValues(Ops, 2, dl);
8970  } else {
8971    const Function *Func =
8972      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8973    CallingConv::ID CC = Func->getCallingConv();
8974    unsigned NestReg;
8975
8976    switch (CC) {
8977    default:
8978      llvm_unreachable("Unsupported calling convention");
8979    case CallingConv::C:
8980    case CallingConv::X86_StdCall: {
8981      // Pass 'nest' parameter in ECX.
8982      // Must be kept in sync with X86CallingConv.td
8983      NestReg = X86::ECX;
8984
8985      // Check that ECX wasn't needed by an 'inreg' parameter.
8986      FunctionType *FTy = Func->getFunctionType();
8987      const AttrListPtr &Attrs = Func->getAttributes();
8988
8989      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8990        unsigned InRegCount = 0;
8991        unsigned Idx = 1;
8992
8993        for (FunctionType::param_iterator I = FTy->param_begin(),
8994             E = FTy->param_end(); I != E; ++I, ++Idx)
8995          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8996            // FIXME: should only count parameters that are lowered to integers.
8997            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8998
8999        if (InRegCount > 2) {
9000          report_fatal_error("Nest register in use - reduce number of inreg"
9001                             " parameters!");
9002        }
9003      }
9004      break;
9005    }
9006    case CallingConv::X86_FastCall:
9007    case CallingConv::X86_ThisCall:
9008    case CallingConv::Fast:
9009      // Pass 'nest' parameter in EAX.
9010      // Must be kept in sync with X86CallingConv.td
9011      NestReg = X86::EAX;
9012      break;
9013    }
9014
9015    SDValue OutChains[4];
9016    SDValue Addr, Disp;
9017
9018    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9019                       DAG.getConstant(10, MVT::i32));
9020    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9021
9022    // This is storing the opcode for MOV32ri.
9023    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9024    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9025    OutChains[0] = DAG.getStore(Root, dl,
9026                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9027                                Trmp, MachinePointerInfo(TrmpAddr),
9028                                false, false, 0);
9029
9030    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9031                       DAG.getConstant(1, MVT::i32));
9032    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9033                                MachinePointerInfo(TrmpAddr, 1),
9034                                false, false, 1);
9035
9036    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9037    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9038                       DAG.getConstant(5, MVT::i32));
9039    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9040                                MachinePointerInfo(TrmpAddr, 5),
9041                                false, false, 1);
9042
9043    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9044                       DAG.getConstant(6, MVT::i32));
9045    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9046                                MachinePointerInfo(TrmpAddr, 6),
9047                                false, false, 1);
9048
9049    SDValue Ops[] =
9050      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
9051    return DAG.getMergeValues(Ops, 2, dl);
9052  }
9053}
9054
9055SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9056                                            SelectionDAG &DAG) const {
9057  /*
9058   The rounding mode is in bits 11:10 of FPSR, and has the following
9059   settings:
9060     00 Round to nearest
9061     01 Round to -inf
9062     10 Round to +inf
9063     11 Round to 0
9064
9065  FLT_ROUNDS, on the other hand, expects the following:
9066    -1 Undefined
9067     0 Round to 0
9068     1 Round to nearest
9069     2 Round to +inf
9070     3 Round to -inf
9071
9072  To perform the conversion, we do:
9073    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9074  */
9075
9076  MachineFunction &MF = DAG.getMachineFunction();
9077  const TargetMachine &TM = MF.getTarget();
9078  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9079  unsigned StackAlignment = TFI.getStackAlignment();
9080  EVT VT = Op.getValueType();
9081  DebugLoc DL = Op.getDebugLoc();
9082
9083  // Save FP Control Word to stack slot
9084  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9085  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9086
9087
9088  MachineMemOperand *MMO =
9089   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9090                           MachineMemOperand::MOStore, 2, 2);
9091
9092  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9093  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9094                                          DAG.getVTList(MVT::Other),
9095                                          Ops, 2, MVT::i16, MMO);
9096
9097  // Load FP Control Word from stack slot
9098  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9099                            MachinePointerInfo(), false, false, 0);
9100
9101  // Transform as necessary
9102  SDValue CWD1 =
9103    DAG.getNode(ISD::SRL, DL, MVT::i16,
9104                DAG.getNode(ISD::AND, DL, MVT::i16,
9105                            CWD, DAG.getConstant(0x800, MVT::i16)),
9106                DAG.getConstant(11, MVT::i8));
9107  SDValue CWD2 =
9108    DAG.getNode(ISD::SRL, DL, MVT::i16,
9109                DAG.getNode(ISD::AND, DL, MVT::i16,
9110                            CWD, DAG.getConstant(0x400, MVT::i16)),
9111                DAG.getConstant(9, MVT::i8));
9112
9113  SDValue RetVal =
9114    DAG.getNode(ISD::AND, DL, MVT::i16,
9115                DAG.getNode(ISD::ADD, DL, MVT::i16,
9116                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9117                            DAG.getConstant(1, MVT::i16)),
9118                DAG.getConstant(3, MVT::i16));
9119
9120
9121  return DAG.getNode((VT.getSizeInBits() < 16 ?
9122                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9123}
9124
9125SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9126  EVT VT = Op.getValueType();
9127  EVT OpVT = VT;
9128  unsigned NumBits = VT.getSizeInBits();
9129  DebugLoc dl = Op.getDebugLoc();
9130
9131  Op = Op.getOperand(0);
9132  if (VT == MVT::i8) {
9133    // Zero extend to i32 since there is not an i8 bsr.
9134    OpVT = MVT::i32;
9135    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9136  }
9137
9138  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9139  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9140  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9141
9142  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9143  SDValue Ops[] = {
9144    Op,
9145    DAG.getConstant(NumBits+NumBits-1, OpVT),
9146    DAG.getConstant(X86::COND_E, MVT::i8),
9147    Op.getValue(1)
9148  };
9149  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9150
9151  // Finally xor with NumBits-1.
9152  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9153
9154  if (VT == MVT::i8)
9155    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9156  return Op;
9157}
9158
9159SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9160  EVT VT = Op.getValueType();
9161  EVT OpVT = VT;
9162  unsigned NumBits = VT.getSizeInBits();
9163  DebugLoc dl = Op.getDebugLoc();
9164
9165  Op = Op.getOperand(0);
9166  if (VT == MVT::i8) {
9167    OpVT = MVT::i32;
9168    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9169  }
9170
9171  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9172  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9173  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9174
9175  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9176  SDValue Ops[] = {
9177    Op,
9178    DAG.getConstant(NumBits, OpVT),
9179    DAG.getConstant(X86::COND_E, MVT::i8),
9180    Op.getValue(1)
9181  };
9182  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9183
9184  if (VT == MVT::i8)
9185    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9186  return Op;
9187}
9188
9189SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
9190  EVT VT = Op.getValueType();
9191  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9192  DebugLoc dl = Op.getDebugLoc();
9193
9194  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9195  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9196  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9197  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9198  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9199  //
9200  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9201  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9202  //  return AloBlo + AloBhi + AhiBlo;
9203
9204  SDValue A = Op.getOperand(0);
9205  SDValue B = Op.getOperand(1);
9206
9207  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9208                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9209                       A, DAG.getConstant(32, MVT::i32));
9210  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9211                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9212                       B, DAG.getConstant(32, MVT::i32));
9213  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9214                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9215                       A, B);
9216  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9217                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9218                       A, Bhi);
9219  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9220                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9221                       Ahi, B);
9222  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9223                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9224                       AloBhi, DAG.getConstant(32, MVT::i32));
9225  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9226                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9227                       AhiBlo, DAG.getConstant(32, MVT::i32));
9228  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9229  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9230  return Res;
9231}
9232
9233SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9234
9235  EVT VT = Op.getValueType();
9236  DebugLoc dl = Op.getDebugLoc();
9237  SDValue R = Op.getOperand(0);
9238  SDValue Amt = Op.getOperand(1);
9239  LLVMContext *Context = DAG.getContext();
9240
9241  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
9242    return SDValue();
9243
9244  // Decompose 256-bit shifts into smaller 128-bit shifts.
9245  if (VT.getSizeInBits() == 256) {
9246    int NumElems = VT.getVectorNumElements();
9247    MVT EltVT = VT.getVectorElementType().getSimpleVT();
9248    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9249
9250    // Extract the two vectors
9251    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
9252    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
9253                                     DAG, dl);
9254
9255    // Recreate the shift amount vectors
9256    SmallVector<SDValue, 4> Amt1Csts;
9257    SmallVector<SDValue, 4> Amt2Csts;
9258    for (int i = 0; i < NumElems/2; ++i)
9259      Amt1Csts.push_back(Amt->getOperand(i));
9260    for (int i = NumElems/2; i < NumElems; ++i)
9261      Amt2Csts.push_back(Amt->getOperand(i));
9262
9263    SDValue Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9264                               &Amt1Csts[0], NumElems/2);
9265    SDValue Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9266                               &Amt2Csts[0], NumElems/2);
9267
9268    // Issue new vector shifts for the smaller types
9269    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
9270    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
9271
9272    // Concatenate the result back
9273    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
9274  }
9275
9276  // Optimize shl/srl/sra with constant shift amount.
9277  if (isSplatVector(Amt.getNode())) {
9278    SDValue SclrAmt = Amt->getOperand(0);
9279    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9280      uint64_t ShiftAmt = C->getZExtValue();
9281
9282      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9283       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9284                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9285                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9286
9287      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9288       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9289                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9290                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9291
9292      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9293       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9294                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9295                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9296
9297      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9298       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9299                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9300                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9301
9302      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9303       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9304                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9305                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9306
9307      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9308       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9309                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9310                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9311
9312      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9313       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9314                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9315                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9316
9317      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9318       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9319                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9320                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9321    }
9322  }
9323
9324  // Lower SHL with variable shift amount.
9325  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9326    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9327                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9328                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9329
9330    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9331
9332    std::vector<Constant*> CV(4, CI);
9333    Constant *C = ConstantVector::get(CV);
9334    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9335    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9336                                 MachinePointerInfo::getConstantPool(),
9337                                 false, false, 16);
9338
9339    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9340    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9341    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9342    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9343  }
9344  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9345    // a = a << 5;
9346    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9347                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9348                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9349
9350    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9351    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
9352
9353    std::vector<Constant*> CVM1(16, CM1);
9354    std::vector<Constant*> CVM2(16, CM2);
9355    Constant *C = ConstantVector::get(CVM1);
9356    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9357    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9358                            MachinePointerInfo::getConstantPool(),
9359                            false, false, 16);
9360
9361    // r = pblendv(r, psllw(r & (char16)15, 4), a);
9362    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9363    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9364                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9365                    DAG.getConstant(4, MVT::i32));
9366    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9367    // a += a
9368    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9369
9370    C = ConstantVector::get(CVM2);
9371    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9372    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9373                    MachinePointerInfo::getConstantPool(),
9374                    false, false, 16);
9375
9376    // r = pblendv(r, psllw(r & (char16)63, 2), a);
9377    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9378    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9379                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9380                    DAG.getConstant(2, MVT::i32));
9381    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9382    // a += a
9383    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9384
9385    // return pblendv(r, r+r, a);
9386    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
9387                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
9388    return R;
9389  }
9390  return SDValue();
9391}
9392
9393SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
9394  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
9395  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
9396  // looks for this combo and may remove the "setcc" instruction if the "setcc"
9397  // has only one use.
9398  SDNode *N = Op.getNode();
9399  SDValue LHS = N->getOperand(0);
9400  SDValue RHS = N->getOperand(1);
9401  unsigned BaseOp = 0;
9402  unsigned Cond = 0;
9403  DebugLoc DL = Op.getDebugLoc();
9404  switch (Op.getOpcode()) {
9405  default: llvm_unreachable("Unknown ovf instruction!");
9406  case ISD::SADDO:
9407    // A subtract of one will be selected as a INC. Note that INC doesn't
9408    // set CF, so we can't do this for UADDO.
9409    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9410      if (C->isOne()) {
9411        BaseOp = X86ISD::INC;
9412        Cond = X86::COND_O;
9413        break;
9414      }
9415    BaseOp = X86ISD::ADD;
9416    Cond = X86::COND_O;
9417    break;
9418  case ISD::UADDO:
9419    BaseOp = X86ISD::ADD;
9420    Cond = X86::COND_B;
9421    break;
9422  case ISD::SSUBO:
9423    // A subtract of one will be selected as a DEC. Note that DEC doesn't
9424    // set CF, so we can't do this for USUBO.
9425    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9426      if (C->isOne()) {
9427        BaseOp = X86ISD::DEC;
9428        Cond = X86::COND_O;
9429        break;
9430      }
9431    BaseOp = X86ISD::SUB;
9432    Cond = X86::COND_O;
9433    break;
9434  case ISD::USUBO:
9435    BaseOp = X86ISD::SUB;
9436    Cond = X86::COND_B;
9437    break;
9438  case ISD::SMULO:
9439    BaseOp = X86ISD::SMUL;
9440    Cond = X86::COND_O;
9441    break;
9442  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
9443    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
9444                                 MVT::i32);
9445    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
9446
9447    SDValue SetCC =
9448      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9449                  DAG.getConstant(X86::COND_O, MVT::i32),
9450                  SDValue(Sum.getNode(), 2));
9451
9452    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9453  }
9454  }
9455
9456  // Also sets EFLAGS.
9457  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
9458  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
9459
9460  SDValue SetCC =
9461    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
9462                DAG.getConstant(Cond, MVT::i32),
9463                SDValue(Sum.getNode(), 1));
9464
9465  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9466}
9467
9468SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
9469  DebugLoc dl = Op.getDebugLoc();
9470  SDNode* Node = Op.getNode();
9471  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9472  EVT VT = Node->getValueType(0);
9473
9474  if (Subtarget->hasSSE2() && VT.isVector()) {
9475    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
9476                        ExtraVT.getScalarType().getSizeInBits();
9477    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
9478
9479    unsigned SHLIntrinsicsID = 0;
9480    unsigned SRAIntrinsicsID = 0;
9481    switch (VT.getSimpleVT().SimpleTy) {
9482      default:
9483        return SDValue();
9484      case MVT::v2i64: {
9485        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_q;
9486        SRAIntrinsicsID = 0;
9487        break;
9488      }
9489      case MVT::v4i32: {
9490        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
9491        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
9492        break;
9493      }
9494      case MVT::v8i16: {
9495        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
9496        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
9497        break;
9498      }
9499    }
9500
9501    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9502                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
9503                         Node->getOperand(0), ShAmt);
9504
9505    // In case of 1 bit sext, no need to shr
9506    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
9507
9508    if (SRAIntrinsicsID) {
9509      Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9510                         DAG.getConstant(SRAIntrinsicsID, MVT::i32),
9511                         Tmp1, ShAmt);
9512    }
9513    return Tmp1;
9514  }
9515
9516  return SDValue();
9517}
9518
9519
9520SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
9521  DebugLoc dl = Op.getDebugLoc();
9522
9523  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
9524  // There isn't any reason to disable it if the target processor supports it.
9525  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
9526    SDValue Chain = Op.getOperand(0);
9527    SDValue Zero = DAG.getConstant(0, MVT::i32);
9528    SDValue Ops[] = {
9529      DAG.getRegister(X86::ESP, MVT::i32), // Base
9530      DAG.getTargetConstant(1, MVT::i8),   // Scale
9531      DAG.getRegister(0, MVT::i32),        // Index
9532      DAG.getTargetConstant(0, MVT::i32),  // Disp
9533      DAG.getRegister(0, MVT::i32),        // Segment.
9534      Zero,
9535      Chain
9536    };
9537    SDNode *Res =
9538      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
9539                          array_lengthof(Ops));
9540    return SDValue(Res, 0);
9541  }
9542
9543  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
9544  if (!isDev)
9545    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
9546
9547  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9548  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
9549  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
9550  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
9551
9552  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
9553  if (!Op1 && !Op2 && !Op3 && Op4)
9554    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
9555
9556  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
9557  if (Op1 && !Op2 && !Op3 && !Op4)
9558    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
9559
9560  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
9561  //           (MFENCE)>;
9562  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
9563}
9564
9565SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
9566                                             SelectionDAG &DAG) const {
9567  DebugLoc dl = Op.getDebugLoc();
9568  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
9569    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
9570  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
9571    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
9572
9573  // The only fence that needs an instruction is a sequentially-consistent
9574  // cross-thread fence.
9575  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
9576    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
9577    // no-sse2). There isn't any reason to disable it if the target processor
9578    // supports it.
9579    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
9580      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
9581
9582    SDValue Chain = Op.getOperand(0);
9583    SDValue Zero = DAG.getConstant(0, MVT::i32);
9584    SDValue Ops[] = {
9585      DAG.getRegister(X86::ESP, MVT::i32), // Base
9586      DAG.getTargetConstant(1, MVT::i8),   // Scale
9587      DAG.getRegister(0, MVT::i32),        // Index
9588      DAG.getTargetConstant(0, MVT::i32),  // Disp
9589      DAG.getRegister(0, MVT::i32),        // Segment.
9590      Zero,
9591      Chain
9592    };
9593    SDNode *Res =
9594      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
9595                         array_lengthof(Ops));
9596    return SDValue(Res, 0);
9597  }
9598
9599  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
9600  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
9601}
9602
9603
9604SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9605  EVT T = Op.getValueType();
9606  DebugLoc DL = Op.getDebugLoc();
9607  unsigned Reg = 0;
9608  unsigned size = 0;
9609  switch(T.getSimpleVT().SimpleTy) {
9610  default:
9611    assert(false && "Invalid value type!");
9612  case MVT::i8:  Reg = X86::AL;  size = 1; break;
9613  case MVT::i16: Reg = X86::AX;  size = 2; break;
9614  case MVT::i32: Reg = X86::EAX; size = 4; break;
9615  case MVT::i64:
9616    assert(Subtarget->is64Bit() && "Node not type legal!");
9617    Reg = X86::RAX; size = 8;
9618    break;
9619  }
9620  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
9621                                    Op.getOperand(2), SDValue());
9622  SDValue Ops[] = { cpIn.getValue(0),
9623                    Op.getOperand(1),
9624                    Op.getOperand(3),
9625                    DAG.getTargetConstant(size, MVT::i8),
9626                    cpIn.getValue(1) };
9627  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9628  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
9629  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
9630                                           Ops, 5, T, MMO);
9631  SDValue cpOut =
9632    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
9633  return cpOut;
9634}
9635
9636SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
9637                                                 SelectionDAG &DAG) const {
9638  assert(Subtarget->is64Bit() && "Result not type legalized?");
9639  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9640  SDValue TheChain = Op.getOperand(0);
9641  DebugLoc dl = Op.getDebugLoc();
9642  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9643  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
9644  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
9645                                   rax.getValue(2));
9646  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
9647                            DAG.getConstant(32, MVT::i8));
9648  SDValue Ops[] = {
9649    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
9650    rdx.getValue(1)
9651  };
9652  return DAG.getMergeValues(Ops, 2, dl);
9653}
9654
9655SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
9656                                            SelectionDAG &DAG) const {
9657  EVT SrcVT = Op.getOperand(0).getValueType();
9658  EVT DstVT = Op.getValueType();
9659  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
9660         Subtarget->hasMMX() && "Unexpected custom BITCAST");
9661  assert((DstVT == MVT::i64 ||
9662          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
9663         "Unexpected custom BITCAST");
9664  // i64 <=> MMX conversions are Legal.
9665  if (SrcVT==MVT::i64 && DstVT.isVector())
9666    return Op;
9667  if (DstVT==MVT::i64 && SrcVT.isVector())
9668    return Op;
9669  // MMX <=> MMX conversions are Legal.
9670  if (SrcVT.isVector() && DstVT.isVector())
9671    return Op;
9672  // All other conversions need to be expanded.
9673  return SDValue();
9674}
9675
9676SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
9677  SDNode *Node = Op.getNode();
9678  DebugLoc dl = Node->getDebugLoc();
9679  EVT T = Node->getValueType(0);
9680  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
9681                              DAG.getConstant(0, T), Node->getOperand(2));
9682  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
9683                       cast<AtomicSDNode>(Node)->getMemoryVT(),
9684                       Node->getOperand(0),
9685                       Node->getOperand(1), negOp,
9686                       cast<AtomicSDNode>(Node)->getSrcValue(),
9687                       cast<AtomicSDNode>(Node)->getAlignment(),
9688                       cast<AtomicSDNode>(Node)->getOrdering(),
9689                       cast<AtomicSDNode>(Node)->getSynchScope());
9690}
9691
9692static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
9693  EVT VT = Op.getNode()->getValueType(0);
9694
9695  // Let legalize expand this if it isn't a legal type yet.
9696  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9697    return SDValue();
9698
9699  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9700
9701  unsigned Opc;
9702  bool ExtraOp = false;
9703  switch (Op.getOpcode()) {
9704  default: assert(0 && "Invalid code");
9705  case ISD::ADDC: Opc = X86ISD::ADD; break;
9706  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
9707  case ISD::SUBC: Opc = X86ISD::SUB; break;
9708  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
9709  }
9710
9711  if (!ExtraOp)
9712    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9713                       Op.getOperand(1));
9714  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9715                     Op.getOperand(1), Op.getOperand(2));
9716}
9717
9718/// LowerOperation - Provide custom lowering hooks for some operations.
9719///
9720SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9721  switch (Op.getOpcode()) {
9722  default: llvm_unreachable("Should not custom lower this!");
9723  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
9724  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
9725  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
9726  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
9727  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
9728  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9729  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
9730  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9731  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9732  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9733  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
9734  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
9735  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9736  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9737  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9738  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9739  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
9740  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9741  case ISD::SHL_PARTS:
9742  case ISD::SRA_PARTS:
9743  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
9744  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
9745  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
9746  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
9747  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
9748  case ISD::FABS:               return LowerFABS(Op, DAG);
9749  case ISD::FNEG:               return LowerFNEG(Op, DAG);
9750  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
9751  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
9752  case ISD::SETCC:              return LowerSETCC(Op, DAG);
9753  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
9754  case ISD::SELECT:             return LowerSELECT(Op, DAG);
9755  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
9756  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9757  case ISD::VASTART:            return LowerVASTART(Op, DAG);
9758  case ISD::VAARG:              return LowerVAARG(Op, DAG);
9759  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9760  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9761  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9762  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9763  case ISD::FRAME_TO_ARGS_OFFSET:
9764                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
9765  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9766  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
9767  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
9768  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9769  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
9770  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
9771  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
9772  case ISD::SRA:
9773  case ISD::SRL:
9774  case ISD::SHL:                return LowerShift(Op, DAG);
9775  case ISD::SADDO:
9776  case ISD::UADDO:
9777  case ISD::SSUBO:
9778  case ISD::USUBO:
9779  case ISD::SMULO:
9780  case ISD::UMULO:              return LowerXALUO(Op, DAG);
9781  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
9782  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9783  case ISD::ADDC:
9784  case ISD::ADDE:
9785  case ISD::SUBC:
9786  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
9787  }
9788}
9789
9790void X86TargetLowering::
9791ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
9792                        SelectionDAG &DAG, unsigned NewOp) const {
9793  EVT T = Node->getValueType(0);
9794  DebugLoc dl = Node->getDebugLoc();
9795  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
9796
9797  SDValue Chain = Node->getOperand(0);
9798  SDValue In1 = Node->getOperand(1);
9799  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9800                             Node->getOperand(2), DAG.getIntPtrConstant(0));
9801  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9802                             Node->getOperand(2), DAG.getIntPtrConstant(1));
9803  SDValue Ops[] = { Chain, In1, In2L, In2H };
9804  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9805  SDValue Result =
9806    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
9807                            cast<MemSDNode>(Node)->getMemOperand());
9808  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
9809  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9810  Results.push_back(Result.getValue(2));
9811}
9812
9813/// ReplaceNodeResults - Replace a node with an illegal result type
9814/// with a new node built out of custom code.
9815void X86TargetLowering::ReplaceNodeResults(SDNode *N,
9816                                           SmallVectorImpl<SDValue>&Results,
9817                                           SelectionDAG &DAG) const {
9818  DebugLoc dl = N->getDebugLoc();
9819  switch (N->getOpcode()) {
9820  default:
9821    assert(false && "Do not know how to custom type legalize this operation!");
9822    return;
9823  case ISD::SIGN_EXTEND_INREG:
9824  case ISD::ADDC:
9825  case ISD::ADDE:
9826  case ISD::SUBC:
9827  case ISD::SUBE:
9828    // We don't want to expand or promote these.
9829    return;
9830  case ISD::FP_TO_SINT: {
9831    std::pair<SDValue,SDValue> Vals =
9832        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
9833    SDValue FIST = Vals.first, StackSlot = Vals.second;
9834    if (FIST.getNode() != 0) {
9835      EVT VT = N->getValueType(0);
9836      // Return a load from the stack slot.
9837      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
9838                                    MachinePointerInfo(), false, false, 0));
9839    }
9840    return;
9841  }
9842  case ISD::READCYCLECOUNTER: {
9843    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9844    SDValue TheChain = N->getOperand(0);
9845    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9846    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
9847                                     rd.getValue(1));
9848    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
9849                                     eax.getValue(2));
9850    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
9851    SDValue Ops[] = { eax, edx };
9852    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
9853    Results.push_back(edx.getValue(1));
9854    return;
9855  }
9856  case ISD::ATOMIC_CMP_SWAP: {
9857    EVT T = N->getValueType(0);
9858    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
9859    SDValue cpInL, cpInH;
9860    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9861                        DAG.getConstant(0, MVT::i32));
9862    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9863                        DAG.getConstant(1, MVT::i32));
9864    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
9865    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
9866                             cpInL.getValue(1));
9867    SDValue swapInL, swapInH;
9868    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9869                          DAG.getConstant(0, MVT::i32));
9870    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9871                          DAG.getConstant(1, MVT::i32));
9872    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
9873                               cpInH.getValue(1));
9874    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
9875                               swapInL.getValue(1));
9876    SDValue Ops[] = { swapInH.getValue(0),
9877                      N->getOperand(1),
9878                      swapInH.getValue(1) };
9879    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9880    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
9881    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
9882                                             Ops, 3, T, MMO);
9883    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
9884                                        MVT::i32, Result.getValue(1));
9885    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
9886                                        MVT::i32, cpOutL.getValue(2));
9887    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
9888    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9889    Results.push_back(cpOutH.getValue(1));
9890    return;
9891  }
9892  case ISD::ATOMIC_LOAD_ADD:
9893    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
9894    return;
9895  case ISD::ATOMIC_LOAD_AND:
9896    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
9897    return;
9898  case ISD::ATOMIC_LOAD_NAND:
9899    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
9900    return;
9901  case ISD::ATOMIC_LOAD_OR:
9902    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
9903    return;
9904  case ISD::ATOMIC_LOAD_SUB:
9905    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
9906    return;
9907  case ISD::ATOMIC_LOAD_XOR:
9908    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
9909    return;
9910  case ISD::ATOMIC_SWAP:
9911    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
9912    return;
9913  }
9914}
9915
9916const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
9917  switch (Opcode) {
9918  default: return NULL;
9919  case X86ISD::BSF:                return "X86ISD::BSF";
9920  case X86ISD::BSR:                return "X86ISD::BSR";
9921  case X86ISD::SHLD:               return "X86ISD::SHLD";
9922  case X86ISD::SHRD:               return "X86ISD::SHRD";
9923  case X86ISD::FAND:               return "X86ISD::FAND";
9924  case X86ISD::FOR:                return "X86ISD::FOR";
9925  case X86ISD::FXOR:               return "X86ISD::FXOR";
9926  case X86ISD::FSRL:               return "X86ISD::FSRL";
9927  case X86ISD::FILD:               return "X86ISD::FILD";
9928  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
9929  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
9930  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
9931  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
9932  case X86ISD::FLD:                return "X86ISD::FLD";
9933  case X86ISD::FST:                return "X86ISD::FST";
9934  case X86ISD::CALL:               return "X86ISD::CALL";
9935  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
9936  case X86ISD::BT:                 return "X86ISD::BT";
9937  case X86ISD::CMP:                return "X86ISD::CMP";
9938  case X86ISD::COMI:               return "X86ISD::COMI";
9939  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
9940  case X86ISD::SETCC:              return "X86ISD::SETCC";
9941  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
9942  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
9943  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
9944  case X86ISD::CMOV:               return "X86ISD::CMOV";
9945  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
9946  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
9947  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
9948  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
9949  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
9950  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
9951  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
9952  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
9953  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
9954  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
9955  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
9956  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
9957  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
9958  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
9959  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
9960  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
9961  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
9962  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
9963  case X86ISD::FMAX:               return "X86ISD::FMAX";
9964  case X86ISD::FMIN:               return "X86ISD::FMIN";
9965  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9966  case X86ISD::FRCP:               return "X86ISD::FRCP";
9967  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9968  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9969  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9970  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9971  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9972  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9973  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9974  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9975  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9976  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9977  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9978  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9979  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9980  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9981  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9982  case X86ISD::VSHL:               return "X86ISD::VSHL";
9983  case X86ISD::VSRL:               return "X86ISD::VSRL";
9984  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9985  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9986  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9987  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9988  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9989  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9990  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9991  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9992  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9993  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9994  case X86ISD::ADD:                return "X86ISD::ADD";
9995  case X86ISD::SUB:                return "X86ISD::SUB";
9996  case X86ISD::ADC:                return "X86ISD::ADC";
9997  case X86ISD::SBB:                return "X86ISD::SBB";
9998  case X86ISD::SMUL:               return "X86ISD::SMUL";
9999  case X86ISD::UMUL:               return "X86ISD::UMUL";
10000  case X86ISD::INC:                return "X86ISD::INC";
10001  case X86ISD::DEC:                return "X86ISD::DEC";
10002  case X86ISD::OR:                 return "X86ISD::OR";
10003  case X86ISD::XOR:                return "X86ISD::XOR";
10004  case X86ISD::AND:                return "X86ISD::AND";
10005  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10006  case X86ISD::PTEST:              return "X86ISD::PTEST";
10007  case X86ISD::TESTP:              return "X86ISD::TESTP";
10008  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10009  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10010  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10011  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10012  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10013  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10014  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10015  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10016  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10017  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10018  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10019  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
10020  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10021  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10022  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10023  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10024  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10025  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10026  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10027  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10028  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10029  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
10030  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
10031  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
10032  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
10033  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
10034  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
10035  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
10036  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
10037  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
10038  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
10039  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
10040  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
10041  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
10042  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
10043  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
10044  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
10045  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
10046  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10047  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10048  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10049  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10050  }
10051}
10052
10053// isLegalAddressingMode - Return true if the addressing mode represented
10054// by AM is legal for this target, for a load/store of the specified type.
10055bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10056                                              Type *Ty) const {
10057  // X86 supports extremely general addressing modes.
10058  CodeModel::Model M = getTargetMachine().getCodeModel();
10059  Reloc::Model R = getTargetMachine().getRelocationModel();
10060
10061  // X86 allows a sign-extended 32-bit immediate field as a displacement.
10062  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10063    return false;
10064
10065  if (AM.BaseGV) {
10066    unsigned GVFlags =
10067      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10068
10069    // If a reference to this global requires an extra load, we can't fold it.
10070    if (isGlobalStubReference(GVFlags))
10071      return false;
10072
10073    // If BaseGV requires a register for the PIC base, we cannot also have a
10074    // BaseReg specified.
10075    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10076      return false;
10077
10078    // If lower 4G is not available, then we must use rip-relative addressing.
10079    if ((M != CodeModel::Small || R != Reloc::Static) &&
10080        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10081      return false;
10082  }
10083
10084  switch (AM.Scale) {
10085  case 0:
10086  case 1:
10087  case 2:
10088  case 4:
10089  case 8:
10090    // These scales always work.
10091    break;
10092  case 3:
10093  case 5:
10094  case 9:
10095    // These scales are formed with basereg+scalereg.  Only accept if there is
10096    // no basereg yet.
10097    if (AM.HasBaseReg)
10098      return false;
10099    break;
10100  default:  // Other stuff never works.
10101    return false;
10102  }
10103
10104  return true;
10105}
10106
10107
10108bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10109  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10110    return false;
10111  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
10112  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
10113  if (NumBits1 <= NumBits2)
10114    return false;
10115  return true;
10116}
10117
10118bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10119  if (!VT1.isInteger() || !VT2.isInteger())
10120    return false;
10121  unsigned NumBits1 = VT1.getSizeInBits();
10122  unsigned NumBits2 = VT2.getSizeInBits();
10123  if (NumBits1 <= NumBits2)
10124    return false;
10125  return true;
10126}
10127
10128bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
10129  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10130  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
10131}
10132
10133bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
10134  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10135  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
10136}
10137
10138bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
10139  // i16 instructions are longer (0x66 prefix) and potentially slower.
10140  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
10141}
10142
10143/// isShuffleMaskLegal - Targets can use this to indicate that they only
10144/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
10145/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
10146/// are assumed to be legal.
10147bool
10148X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
10149                                      EVT VT) const {
10150  // Very little shuffling can be done for 64-bit vectors right now.
10151  if (VT.getSizeInBits() == 64)
10152    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
10153
10154  // FIXME: pshufb, blends, shifts.
10155  return (VT.getVectorNumElements() == 2 ||
10156          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10157          isMOVLMask(M, VT) ||
10158          isSHUFPMask(M, VT) ||
10159          isPSHUFDMask(M, VT) ||
10160          isPSHUFHWMask(M, VT) ||
10161          isPSHUFLWMask(M, VT) ||
10162          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
10163          isUNPCKLMask(M, VT) ||
10164          isUNPCKHMask(M, VT) ||
10165          isUNPCKL_v_undef_Mask(M, VT) ||
10166          isUNPCKH_v_undef_Mask(M, VT));
10167}
10168
10169bool
10170X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10171                                          EVT VT) const {
10172  unsigned NumElts = VT.getVectorNumElements();
10173  // FIXME: This collection of masks seems suspect.
10174  if (NumElts == 2)
10175    return true;
10176  if (NumElts == 4 && VT.getSizeInBits() == 128) {
10177    return (isMOVLMask(Mask, VT)  ||
10178            isCommutedMOVLMask(Mask, VT, true) ||
10179            isSHUFPMask(Mask, VT) ||
10180            isCommutedSHUFPMask(Mask, VT));
10181  }
10182  return false;
10183}
10184
10185//===----------------------------------------------------------------------===//
10186//                           X86 Scheduler Hooks
10187//===----------------------------------------------------------------------===//
10188
10189// private utility function
10190MachineBasicBlock *
10191X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10192                                                       MachineBasicBlock *MBB,
10193                                                       unsigned regOpc,
10194                                                       unsigned immOpc,
10195                                                       unsigned LoadOpc,
10196                                                       unsigned CXchgOpc,
10197                                                       unsigned notOpc,
10198                                                       unsigned EAXreg,
10199                                                       TargetRegisterClass *RC,
10200                                                       bool invSrc) const {
10201  // For the atomic bitwise operator, we generate
10202  //   thisMBB:
10203  //   newMBB:
10204  //     ld  t1 = [bitinstr.addr]
10205  //     op  t2 = t1, [bitinstr.val]
10206  //     mov EAX = t1
10207  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10208  //     bz  newMBB
10209  //     fallthrough -->nextMBB
10210  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10211  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10212  MachineFunction::iterator MBBIter = MBB;
10213  ++MBBIter;
10214
10215  /// First build the CFG
10216  MachineFunction *F = MBB->getParent();
10217  MachineBasicBlock *thisMBB = MBB;
10218  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10219  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10220  F->insert(MBBIter, newMBB);
10221  F->insert(MBBIter, nextMBB);
10222
10223  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10224  nextMBB->splice(nextMBB->begin(), thisMBB,
10225                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10226                  thisMBB->end());
10227  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10228
10229  // Update thisMBB to fall through to newMBB
10230  thisMBB->addSuccessor(newMBB);
10231
10232  // newMBB jumps to itself and fall through to nextMBB
10233  newMBB->addSuccessor(nextMBB);
10234  newMBB->addSuccessor(newMBB);
10235
10236  // Insert instructions into newMBB based on incoming instruction
10237  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10238         "unexpected number of operands");
10239  DebugLoc dl = bInstr->getDebugLoc();
10240  MachineOperand& destOper = bInstr->getOperand(0);
10241  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10242  int numArgs = bInstr->getNumOperands() - 1;
10243  for (int i=0; i < numArgs; ++i)
10244    argOpers[i] = &bInstr->getOperand(i+1);
10245
10246  // x86 address has 4 operands: base, index, scale, and displacement
10247  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10248  int valArgIndx = lastAddrIndx + 1;
10249
10250  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10251  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10252  for (int i=0; i <= lastAddrIndx; ++i)
10253    (*MIB).addOperand(*argOpers[i]);
10254
10255  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10256  if (invSrc) {
10257    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10258  }
10259  else
10260    tt = t1;
10261
10262  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10263  assert((argOpers[valArgIndx]->isReg() ||
10264          argOpers[valArgIndx]->isImm()) &&
10265         "invalid operand");
10266  if (argOpers[valArgIndx]->isReg())
10267    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10268  else
10269    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10270  MIB.addReg(tt);
10271  (*MIB).addOperand(*argOpers[valArgIndx]);
10272
10273  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10274  MIB.addReg(t1);
10275
10276  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10277  for (int i=0; i <= lastAddrIndx; ++i)
10278    (*MIB).addOperand(*argOpers[i]);
10279  MIB.addReg(t2);
10280  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10281  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10282                    bInstr->memoperands_end());
10283
10284  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10285  MIB.addReg(EAXreg);
10286
10287  // insert branch
10288  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10289
10290  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10291  return nextMBB;
10292}
10293
10294// private utility function:  64 bit atomics on 32 bit host.
10295MachineBasicBlock *
10296X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
10297                                                       MachineBasicBlock *MBB,
10298                                                       unsigned regOpcL,
10299                                                       unsigned regOpcH,
10300                                                       unsigned immOpcL,
10301                                                       unsigned immOpcH,
10302                                                       bool invSrc) const {
10303  // For the atomic bitwise operator, we generate
10304  //   thisMBB (instructions are in pairs, except cmpxchg8b)
10305  //     ld t1,t2 = [bitinstr.addr]
10306  //   newMBB:
10307  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
10308  //     op  t5, t6 <- out1, out2, [bitinstr.val]
10309  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
10310  //     mov ECX, EBX <- t5, t6
10311  //     mov EAX, EDX <- t1, t2
10312  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
10313  //     mov t3, t4 <- EAX, EDX
10314  //     bz  newMBB
10315  //     result in out1, out2
10316  //     fallthrough -->nextMBB
10317
10318  const TargetRegisterClass *RC = X86::GR32RegisterClass;
10319  const unsigned LoadOpc = X86::MOV32rm;
10320  const unsigned NotOpc = X86::NOT32r;
10321  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10322  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10323  MachineFunction::iterator MBBIter = MBB;
10324  ++MBBIter;
10325
10326  /// First build the CFG
10327  MachineFunction *F = MBB->getParent();
10328  MachineBasicBlock *thisMBB = MBB;
10329  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10330  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10331  F->insert(MBBIter, newMBB);
10332  F->insert(MBBIter, nextMBB);
10333
10334  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10335  nextMBB->splice(nextMBB->begin(), thisMBB,
10336                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10337                  thisMBB->end());
10338  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10339
10340  // Update thisMBB to fall through to newMBB
10341  thisMBB->addSuccessor(newMBB);
10342
10343  // newMBB jumps to itself and fall through to nextMBB
10344  newMBB->addSuccessor(nextMBB);
10345  newMBB->addSuccessor(newMBB);
10346
10347  DebugLoc dl = bInstr->getDebugLoc();
10348  // Insert instructions into newMBB based on incoming instruction
10349  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
10350  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
10351         "unexpected number of operands");
10352  MachineOperand& dest1Oper = bInstr->getOperand(0);
10353  MachineOperand& dest2Oper = bInstr->getOperand(1);
10354  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10355  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
10356    argOpers[i] = &bInstr->getOperand(i+2);
10357
10358    // We use some of the operands multiple times, so conservatively just
10359    // clear any kill flags that might be present.
10360    if (argOpers[i]->isReg() && argOpers[i]->isUse())
10361      argOpers[i]->setIsKill(false);
10362  }
10363
10364  // x86 address has 5 operands: base, index, scale, displacement, and segment.
10365  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10366
10367  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10368  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
10369  for (int i=0; i <= lastAddrIndx; ++i)
10370    (*MIB).addOperand(*argOpers[i]);
10371  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10372  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
10373  // add 4 to displacement.
10374  for (int i=0; i <= lastAddrIndx-2; ++i)
10375    (*MIB).addOperand(*argOpers[i]);
10376  MachineOperand newOp3 = *(argOpers[3]);
10377  if (newOp3.isImm())
10378    newOp3.setImm(newOp3.getImm()+4);
10379  else
10380    newOp3.setOffset(newOp3.getOffset()+4);
10381  (*MIB).addOperand(newOp3);
10382  (*MIB).addOperand(*argOpers[lastAddrIndx]);
10383
10384  // t3/4 are defined later, at the bottom of the loop
10385  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
10386  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
10387  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
10388    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
10389  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
10390    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
10391
10392  // The subsequent operations should be using the destination registers of
10393  //the PHI instructions.
10394  if (invSrc) {
10395    t1 = F->getRegInfo().createVirtualRegister(RC);
10396    t2 = F->getRegInfo().createVirtualRegister(RC);
10397    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
10398    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
10399  } else {
10400    t1 = dest1Oper.getReg();
10401    t2 = dest2Oper.getReg();
10402  }
10403
10404  int valArgIndx = lastAddrIndx + 1;
10405  assert((argOpers[valArgIndx]->isReg() ||
10406          argOpers[valArgIndx]->isImm()) &&
10407         "invalid operand");
10408  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
10409  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
10410  if (argOpers[valArgIndx]->isReg())
10411    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
10412  else
10413    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
10414  if (regOpcL != X86::MOV32rr)
10415    MIB.addReg(t1);
10416  (*MIB).addOperand(*argOpers[valArgIndx]);
10417  assert(argOpers[valArgIndx + 1]->isReg() ==
10418         argOpers[valArgIndx]->isReg());
10419  assert(argOpers[valArgIndx + 1]->isImm() ==
10420         argOpers[valArgIndx]->isImm());
10421  if (argOpers[valArgIndx + 1]->isReg())
10422    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
10423  else
10424    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
10425  if (regOpcH != X86::MOV32rr)
10426    MIB.addReg(t2);
10427  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
10428
10429  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10430  MIB.addReg(t1);
10431  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
10432  MIB.addReg(t2);
10433
10434  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
10435  MIB.addReg(t5);
10436  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
10437  MIB.addReg(t6);
10438
10439  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
10440  for (int i=0; i <= lastAddrIndx; ++i)
10441    (*MIB).addOperand(*argOpers[i]);
10442
10443  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10444  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10445                    bInstr->memoperands_end());
10446
10447  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
10448  MIB.addReg(X86::EAX);
10449  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
10450  MIB.addReg(X86::EDX);
10451
10452  // insert branch
10453  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10454
10455  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10456  return nextMBB;
10457}
10458
10459// private utility function
10460MachineBasicBlock *
10461X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
10462                                                      MachineBasicBlock *MBB,
10463                                                      unsigned cmovOpc) const {
10464  // For the atomic min/max operator, we generate
10465  //   thisMBB:
10466  //   newMBB:
10467  //     ld t1 = [min/max.addr]
10468  //     mov t2 = [min/max.val]
10469  //     cmp  t1, t2
10470  //     cmov[cond] t2 = t1
10471  //     mov EAX = t1
10472  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10473  //     bz   newMBB
10474  //     fallthrough -->nextMBB
10475  //
10476  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10477  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10478  MachineFunction::iterator MBBIter = MBB;
10479  ++MBBIter;
10480
10481  /// First build the CFG
10482  MachineFunction *F = MBB->getParent();
10483  MachineBasicBlock *thisMBB = MBB;
10484  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10485  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10486  F->insert(MBBIter, newMBB);
10487  F->insert(MBBIter, nextMBB);
10488
10489  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10490  nextMBB->splice(nextMBB->begin(), thisMBB,
10491                  llvm::next(MachineBasicBlock::iterator(mInstr)),
10492                  thisMBB->end());
10493  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10494
10495  // Update thisMBB to fall through to newMBB
10496  thisMBB->addSuccessor(newMBB);
10497
10498  // newMBB jumps to newMBB and fall through to nextMBB
10499  newMBB->addSuccessor(nextMBB);
10500  newMBB->addSuccessor(newMBB);
10501
10502  DebugLoc dl = mInstr->getDebugLoc();
10503  // Insert instructions into newMBB based on incoming instruction
10504  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10505         "unexpected number of operands");
10506  MachineOperand& destOper = mInstr->getOperand(0);
10507  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10508  int numArgs = mInstr->getNumOperands() - 1;
10509  for (int i=0; i < numArgs; ++i)
10510    argOpers[i] = &mInstr->getOperand(i+1);
10511
10512  // x86 address has 4 operands: base, index, scale, and displacement
10513  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10514  int valArgIndx = lastAddrIndx + 1;
10515
10516  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10517  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
10518  for (int i=0; i <= lastAddrIndx; ++i)
10519    (*MIB).addOperand(*argOpers[i]);
10520
10521  // We only support register and immediate values
10522  assert((argOpers[valArgIndx]->isReg() ||
10523          argOpers[valArgIndx]->isImm()) &&
10524         "invalid operand");
10525
10526  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10527  if (argOpers[valArgIndx]->isReg())
10528    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
10529  else
10530    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
10531  (*MIB).addOperand(*argOpers[valArgIndx]);
10532
10533  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10534  MIB.addReg(t1);
10535
10536  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
10537  MIB.addReg(t1);
10538  MIB.addReg(t2);
10539
10540  // Generate movc
10541  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10542  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
10543  MIB.addReg(t2);
10544  MIB.addReg(t1);
10545
10546  // Cmp and exchange if none has modified the memory location
10547  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
10548  for (int i=0; i <= lastAddrIndx; ++i)
10549    (*MIB).addOperand(*argOpers[i]);
10550  MIB.addReg(t3);
10551  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10552  (*MIB).setMemRefs(mInstr->memoperands_begin(),
10553                    mInstr->memoperands_end());
10554
10555  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10556  MIB.addReg(X86::EAX);
10557
10558  // insert branch
10559  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10560
10561  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
10562  return nextMBB;
10563}
10564
10565// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
10566// or XMM0_V32I8 in AVX all of this code can be replaced with that
10567// in the .td file.
10568MachineBasicBlock *
10569X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
10570                            unsigned numArgs, bool memArg) const {
10571  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
10572         "Target must have SSE4.2 or AVX features enabled");
10573
10574  DebugLoc dl = MI->getDebugLoc();
10575  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10576  unsigned Opc;
10577  if (!Subtarget->hasAVX()) {
10578    if (memArg)
10579      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
10580    else
10581      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
10582  } else {
10583    if (memArg)
10584      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
10585    else
10586      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
10587  }
10588
10589  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
10590  for (unsigned i = 0; i < numArgs; ++i) {
10591    MachineOperand &Op = MI->getOperand(i+1);
10592    if (!(Op.isReg() && Op.isImplicit()))
10593      MIB.addOperand(Op);
10594  }
10595  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
10596    .addReg(X86::XMM0);
10597
10598  MI->eraseFromParent();
10599  return BB;
10600}
10601
10602MachineBasicBlock *
10603X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
10604  DebugLoc dl = MI->getDebugLoc();
10605  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10606
10607  // Address into RAX/EAX, other two args into ECX, EDX.
10608  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
10609  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
10610  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
10611  for (int i = 0; i < X86::AddrNumOperands; ++i)
10612    MIB.addOperand(MI->getOperand(i));
10613
10614  unsigned ValOps = X86::AddrNumOperands;
10615  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10616    .addReg(MI->getOperand(ValOps).getReg());
10617  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
10618    .addReg(MI->getOperand(ValOps+1).getReg());
10619
10620  // The instruction doesn't actually take any operands though.
10621  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
10622
10623  MI->eraseFromParent(); // The pseudo is gone now.
10624  return BB;
10625}
10626
10627MachineBasicBlock *
10628X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
10629  DebugLoc dl = MI->getDebugLoc();
10630  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10631
10632  // First arg in ECX, the second in EAX.
10633  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10634    .addReg(MI->getOperand(0).getReg());
10635  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
10636    .addReg(MI->getOperand(1).getReg());
10637
10638  // The instruction doesn't actually take any operands though.
10639  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
10640
10641  MI->eraseFromParent(); // The pseudo is gone now.
10642  return BB;
10643}
10644
10645MachineBasicBlock *
10646X86TargetLowering::EmitVAARG64WithCustomInserter(
10647                   MachineInstr *MI,
10648                   MachineBasicBlock *MBB) const {
10649  // Emit va_arg instruction on X86-64.
10650
10651  // Operands to this pseudo-instruction:
10652  // 0  ) Output        : destination address (reg)
10653  // 1-5) Input         : va_list address (addr, i64mem)
10654  // 6  ) ArgSize       : Size (in bytes) of vararg type
10655  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
10656  // 8  ) Align         : Alignment of type
10657  // 9  ) EFLAGS (implicit-def)
10658
10659  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
10660  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
10661
10662  unsigned DestReg = MI->getOperand(0).getReg();
10663  MachineOperand &Base = MI->getOperand(1);
10664  MachineOperand &Scale = MI->getOperand(2);
10665  MachineOperand &Index = MI->getOperand(3);
10666  MachineOperand &Disp = MI->getOperand(4);
10667  MachineOperand &Segment = MI->getOperand(5);
10668  unsigned ArgSize = MI->getOperand(6).getImm();
10669  unsigned ArgMode = MI->getOperand(7).getImm();
10670  unsigned Align = MI->getOperand(8).getImm();
10671
10672  // Memory Reference
10673  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
10674  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
10675  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
10676
10677  // Machine Information
10678  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10679  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10680  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
10681  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
10682  DebugLoc DL = MI->getDebugLoc();
10683
10684  // struct va_list {
10685  //   i32   gp_offset
10686  //   i32   fp_offset
10687  //   i64   overflow_area (address)
10688  //   i64   reg_save_area (address)
10689  // }
10690  // sizeof(va_list) = 24
10691  // alignment(va_list) = 8
10692
10693  unsigned TotalNumIntRegs = 6;
10694  unsigned TotalNumXMMRegs = 8;
10695  bool UseGPOffset = (ArgMode == 1);
10696  bool UseFPOffset = (ArgMode == 2);
10697  unsigned MaxOffset = TotalNumIntRegs * 8 +
10698                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
10699
10700  /* Align ArgSize to a multiple of 8 */
10701  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
10702  bool NeedsAlign = (Align > 8);
10703
10704  MachineBasicBlock *thisMBB = MBB;
10705  MachineBasicBlock *overflowMBB;
10706  MachineBasicBlock *offsetMBB;
10707  MachineBasicBlock *endMBB;
10708
10709  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
10710  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
10711  unsigned OffsetReg = 0;
10712
10713  if (!UseGPOffset && !UseFPOffset) {
10714    // If we only pull from the overflow region, we don't create a branch.
10715    // We don't need to alter control flow.
10716    OffsetDestReg = 0; // unused
10717    OverflowDestReg = DestReg;
10718
10719    offsetMBB = NULL;
10720    overflowMBB = thisMBB;
10721    endMBB = thisMBB;
10722  } else {
10723    // First emit code to check if gp_offset (or fp_offset) is below the bound.
10724    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
10725    // If not, pull from overflow_area. (branch to overflowMBB)
10726    //
10727    //       thisMBB
10728    //         |     .
10729    //         |        .
10730    //     offsetMBB   overflowMBB
10731    //         |        .
10732    //         |     .
10733    //        endMBB
10734
10735    // Registers for the PHI in endMBB
10736    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
10737    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
10738
10739    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10740    MachineFunction *MF = MBB->getParent();
10741    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10742    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10743    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10744
10745    MachineFunction::iterator MBBIter = MBB;
10746    ++MBBIter;
10747
10748    // Insert the new basic blocks
10749    MF->insert(MBBIter, offsetMBB);
10750    MF->insert(MBBIter, overflowMBB);
10751    MF->insert(MBBIter, endMBB);
10752
10753    // Transfer the remainder of MBB and its successor edges to endMBB.
10754    endMBB->splice(endMBB->begin(), thisMBB,
10755                    llvm::next(MachineBasicBlock::iterator(MI)),
10756                    thisMBB->end());
10757    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10758
10759    // Make offsetMBB and overflowMBB successors of thisMBB
10760    thisMBB->addSuccessor(offsetMBB);
10761    thisMBB->addSuccessor(overflowMBB);
10762
10763    // endMBB is a successor of both offsetMBB and overflowMBB
10764    offsetMBB->addSuccessor(endMBB);
10765    overflowMBB->addSuccessor(endMBB);
10766
10767    // Load the offset value into a register
10768    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10769    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
10770      .addOperand(Base)
10771      .addOperand(Scale)
10772      .addOperand(Index)
10773      .addDisp(Disp, UseFPOffset ? 4 : 0)
10774      .addOperand(Segment)
10775      .setMemRefs(MMOBegin, MMOEnd);
10776
10777    // Check if there is enough room left to pull this argument.
10778    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
10779      .addReg(OffsetReg)
10780      .addImm(MaxOffset + 8 - ArgSizeA8);
10781
10782    // Branch to "overflowMBB" if offset >= max
10783    // Fall through to "offsetMBB" otherwise
10784    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
10785      .addMBB(overflowMBB);
10786  }
10787
10788  // In offsetMBB, emit code to use the reg_save_area.
10789  if (offsetMBB) {
10790    assert(OffsetReg != 0);
10791
10792    // Read the reg_save_area address.
10793    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
10794    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
10795      .addOperand(Base)
10796      .addOperand(Scale)
10797      .addOperand(Index)
10798      .addDisp(Disp, 16)
10799      .addOperand(Segment)
10800      .setMemRefs(MMOBegin, MMOEnd);
10801
10802    // Zero-extend the offset
10803    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
10804      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
10805        .addImm(0)
10806        .addReg(OffsetReg)
10807        .addImm(X86::sub_32bit);
10808
10809    // Add the offset to the reg_save_area to get the final address.
10810    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
10811      .addReg(OffsetReg64)
10812      .addReg(RegSaveReg);
10813
10814    // Compute the offset for the next argument
10815    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10816    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
10817      .addReg(OffsetReg)
10818      .addImm(UseFPOffset ? 16 : 8);
10819
10820    // Store it back into the va_list.
10821    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
10822      .addOperand(Base)
10823      .addOperand(Scale)
10824      .addOperand(Index)
10825      .addDisp(Disp, UseFPOffset ? 4 : 0)
10826      .addOperand(Segment)
10827      .addReg(NextOffsetReg)
10828      .setMemRefs(MMOBegin, MMOEnd);
10829
10830    // Jump to endMBB
10831    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
10832      .addMBB(endMBB);
10833  }
10834
10835  //
10836  // Emit code to use overflow area
10837  //
10838
10839  // Load the overflow_area address into a register.
10840  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
10841  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
10842    .addOperand(Base)
10843    .addOperand(Scale)
10844    .addOperand(Index)
10845    .addDisp(Disp, 8)
10846    .addOperand(Segment)
10847    .setMemRefs(MMOBegin, MMOEnd);
10848
10849  // If we need to align it, do so. Otherwise, just copy the address
10850  // to OverflowDestReg.
10851  if (NeedsAlign) {
10852    // Align the overflow address
10853    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
10854    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
10855
10856    // aligned_addr = (addr + (align-1)) & ~(align-1)
10857    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
10858      .addReg(OverflowAddrReg)
10859      .addImm(Align-1);
10860
10861    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
10862      .addReg(TmpReg)
10863      .addImm(~(uint64_t)(Align-1));
10864  } else {
10865    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
10866      .addReg(OverflowAddrReg);
10867  }
10868
10869  // Compute the next overflow address after this argument.
10870  // (the overflow address should be kept 8-byte aligned)
10871  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
10872  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
10873    .addReg(OverflowDestReg)
10874    .addImm(ArgSizeA8);
10875
10876  // Store the new overflow address.
10877  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
10878    .addOperand(Base)
10879    .addOperand(Scale)
10880    .addOperand(Index)
10881    .addDisp(Disp, 8)
10882    .addOperand(Segment)
10883    .addReg(NextAddrReg)
10884    .setMemRefs(MMOBegin, MMOEnd);
10885
10886  // If we branched, emit the PHI to the front of endMBB.
10887  if (offsetMBB) {
10888    BuildMI(*endMBB, endMBB->begin(), DL,
10889            TII->get(X86::PHI), DestReg)
10890      .addReg(OffsetDestReg).addMBB(offsetMBB)
10891      .addReg(OverflowDestReg).addMBB(overflowMBB);
10892  }
10893
10894  // Erase the pseudo instruction
10895  MI->eraseFromParent();
10896
10897  return endMBB;
10898}
10899
10900MachineBasicBlock *
10901X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
10902                                                 MachineInstr *MI,
10903                                                 MachineBasicBlock *MBB) const {
10904  // Emit code to save XMM registers to the stack. The ABI says that the
10905  // number of registers to save is given in %al, so it's theoretically
10906  // possible to do an indirect jump trick to avoid saving all of them,
10907  // however this code takes a simpler approach and just executes all
10908  // of the stores if %al is non-zero. It's less code, and it's probably
10909  // easier on the hardware branch predictor, and stores aren't all that
10910  // expensive anyway.
10911
10912  // Create the new basic blocks. One block contains all the XMM stores,
10913  // and one block is the final destination regardless of whether any
10914  // stores were performed.
10915  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10916  MachineFunction *F = MBB->getParent();
10917  MachineFunction::iterator MBBIter = MBB;
10918  ++MBBIter;
10919  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
10920  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
10921  F->insert(MBBIter, XMMSaveMBB);
10922  F->insert(MBBIter, EndMBB);
10923
10924  // Transfer the remainder of MBB and its successor edges to EndMBB.
10925  EndMBB->splice(EndMBB->begin(), MBB,
10926                 llvm::next(MachineBasicBlock::iterator(MI)),
10927                 MBB->end());
10928  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
10929
10930  // The original block will now fall through to the XMM save block.
10931  MBB->addSuccessor(XMMSaveMBB);
10932  // The XMMSaveMBB will fall through to the end block.
10933  XMMSaveMBB->addSuccessor(EndMBB);
10934
10935  // Now add the instructions.
10936  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10937  DebugLoc DL = MI->getDebugLoc();
10938
10939  unsigned CountReg = MI->getOperand(0).getReg();
10940  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
10941  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
10942
10943  if (!Subtarget->isTargetWin64()) {
10944    // If %al is 0, branch around the XMM save block.
10945    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
10946    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
10947    MBB->addSuccessor(EndMBB);
10948  }
10949
10950  // In the XMM save block, save all the XMM argument registers.
10951  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
10952    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
10953    MachineMemOperand *MMO =
10954      F->getMachineMemOperand(
10955          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
10956        MachineMemOperand::MOStore,
10957        /*Size=*/16, /*Align=*/16);
10958    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
10959      .addFrameIndex(RegSaveFrameIndex)
10960      .addImm(/*Scale=*/1)
10961      .addReg(/*IndexReg=*/0)
10962      .addImm(/*Disp=*/Offset)
10963      .addReg(/*Segment=*/0)
10964      .addReg(MI->getOperand(i).getReg())
10965      .addMemOperand(MMO);
10966  }
10967
10968  MI->eraseFromParent();   // The pseudo instruction is gone now.
10969
10970  return EndMBB;
10971}
10972
10973MachineBasicBlock *
10974X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10975                                     MachineBasicBlock *BB) const {
10976  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10977  DebugLoc DL = MI->getDebugLoc();
10978
10979  // To "insert" a SELECT_CC instruction, we actually have to insert the
10980  // diamond control-flow pattern.  The incoming instruction knows the
10981  // destination vreg to set, the condition code register to branch on, the
10982  // true/false values to select between, and a branch opcode to use.
10983  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10984  MachineFunction::iterator It = BB;
10985  ++It;
10986
10987  //  thisMBB:
10988  //  ...
10989  //   TrueVal = ...
10990  //   cmpTY ccX, r1, r2
10991  //   bCC copy1MBB
10992  //   fallthrough --> copy0MBB
10993  MachineBasicBlock *thisMBB = BB;
10994  MachineFunction *F = BB->getParent();
10995  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10996  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10997  F->insert(It, copy0MBB);
10998  F->insert(It, sinkMBB);
10999
11000  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11001  // live into the sink and copy blocks.
11002  const MachineFunction *MF = BB->getParent();
11003  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
11004  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
11005
11006  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
11007    const MachineOperand &MO = MI->getOperand(I);
11008    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
11009    unsigned Reg = MO.getReg();
11010    if (Reg != X86::EFLAGS) continue;
11011    copy0MBB->addLiveIn(Reg);
11012    sinkMBB->addLiveIn(Reg);
11013  }
11014
11015  // Transfer the remainder of BB and its successor edges to sinkMBB.
11016  sinkMBB->splice(sinkMBB->begin(), BB,
11017                  llvm::next(MachineBasicBlock::iterator(MI)),
11018                  BB->end());
11019  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11020
11021  // Add the true and fallthrough blocks as its successors.
11022  BB->addSuccessor(copy0MBB);
11023  BB->addSuccessor(sinkMBB);
11024
11025  // Create the conditional branch instruction.
11026  unsigned Opc =
11027    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11028  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11029
11030  //  copy0MBB:
11031  //   %FalseValue = ...
11032  //   # fallthrough to sinkMBB
11033  copy0MBB->addSuccessor(sinkMBB);
11034
11035  //  sinkMBB:
11036  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11037  //  ...
11038  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11039          TII->get(X86::PHI), MI->getOperand(0).getReg())
11040    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11041    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11042
11043  MI->eraseFromParent();   // The pseudo instruction is gone now.
11044  return sinkMBB;
11045}
11046
11047MachineBasicBlock *
11048X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
11049                                          MachineBasicBlock *BB) const {
11050  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11051  DebugLoc DL = MI->getDebugLoc();
11052
11053  assert(!Subtarget->isTargetEnvMacho());
11054
11055  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
11056  // non-trivial part is impdef of ESP.
11057
11058  if (Subtarget->isTargetWin64()) {
11059    if (Subtarget->isTargetCygMing()) {
11060      // ___chkstk(Mingw64):
11061      // Clobbers R10, R11, RAX and EFLAGS.
11062      // Updates RSP.
11063      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11064        .addExternalSymbol("___chkstk")
11065        .addReg(X86::RAX, RegState::Implicit)
11066        .addReg(X86::RSP, RegState::Implicit)
11067        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
11068        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
11069        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11070    } else {
11071      // __chkstk(MSVCRT): does not update stack pointer.
11072      // Clobbers R10, R11 and EFLAGS.
11073      // FIXME: RAX(allocated size) might be reused and not killed.
11074      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11075        .addExternalSymbol("__chkstk")
11076        .addReg(X86::RAX, RegState::Implicit)
11077        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11078      // RAX has the offset to subtracted from RSP.
11079      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
11080        .addReg(X86::RSP)
11081        .addReg(X86::RAX);
11082    }
11083  } else {
11084    const char *StackProbeSymbol =
11085      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
11086
11087    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
11088      .addExternalSymbol(StackProbeSymbol)
11089      .addReg(X86::EAX, RegState::Implicit)
11090      .addReg(X86::ESP, RegState::Implicit)
11091      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
11092      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
11093      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11094  }
11095
11096  MI->eraseFromParent();   // The pseudo instruction is gone now.
11097  return BB;
11098}
11099
11100MachineBasicBlock *
11101X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
11102                                      MachineBasicBlock *BB) const {
11103  // This is pretty easy.  We're taking the value that we received from
11104  // our load from the relocation, sticking it in either RDI (x86-64)
11105  // or EAX and doing an indirect call.  The return value will then
11106  // be in the normal return register.
11107  const X86InstrInfo *TII
11108    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
11109  DebugLoc DL = MI->getDebugLoc();
11110  MachineFunction *F = BB->getParent();
11111
11112  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
11113  assert(MI->getOperand(3).isGlobal() && "This should be a global");
11114
11115  if (Subtarget->is64Bit()) {
11116    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11117                                      TII->get(X86::MOV64rm), X86::RDI)
11118    .addReg(X86::RIP)
11119    .addImm(0).addReg(0)
11120    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11121                      MI->getOperand(3).getTargetFlags())
11122    .addReg(0);
11123    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
11124    addDirectMem(MIB, X86::RDI);
11125  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
11126    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11127                                      TII->get(X86::MOV32rm), X86::EAX)
11128    .addReg(0)
11129    .addImm(0).addReg(0)
11130    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11131                      MI->getOperand(3).getTargetFlags())
11132    .addReg(0);
11133    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11134    addDirectMem(MIB, X86::EAX);
11135  } else {
11136    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11137                                      TII->get(X86::MOV32rm), X86::EAX)
11138    .addReg(TII->getGlobalBaseReg(F))
11139    .addImm(0).addReg(0)
11140    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11141                      MI->getOperand(3).getTargetFlags())
11142    .addReg(0);
11143    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11144    addDirectMem(MIB, X86::EAX);
11145  }
11146
11147  MI->eraseFromParent(); // The pseudo instruction is gone now.
11148  return BB;
11149}
11150
11151MachineBasicBlock *
11152X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
11153                                               MachineBasicBlock *BB) const {
11154  switch (MI->getOpcode()) {
11155  default: assert(false && "Unexpected instr type to insert");
11156  case X86::TAILJMPd64:
11157  case X86::TAILJMPr64:
11158  case X86::TAILJMPm64:
11159    assert(!"TAILJMP64 would not be touched here.");
11160  case X86::TCRETURNdi64:
11161  case X86::TCRETURNri64:
11162  case X86::TCRETURNmi64:
11163    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11164    // On AMD64, additional defs should be added before register allocation.
11165    if (!Subtarget->isTargetWin64()) {
11166      MI->addRegisterDefined(X86::RSI);
11167      MI->addRegisterDefined(X86::RDI);
11168      MI->addRegisterDefined(X86::XMM6);
11169      MI->addRegisterDefined(X86::XMM7);
11170      MI->addRegisterDefined(X86::XMM8);
11171      MI->addRegisterDefined(X86::XMM9);
11172      MI->addRegisterDefined(X86::XMM10);
11173      MI->addRegisterDefined(X86::XMM11);
11174      MI->addRegisterDefined(X86::XMM12);
11175      MI->addRegisterDefined(X86::XMM13);
11176      MI->addRegisterDefined(X86::XMM14);
11177      MI->addRegisterDefined(X86::XMM15);
11178    }
11179    return BB;
11180  case X86::WIN_ALLOCA:
11181    return EmitLoweredWinAlloca(MI, BB);
11182  case X86::TLSCall_32:
11183  case X86::TLSCall_64:
11184    return EmitLoweredTLSCall(MI, BB);
11185  case X86::CMOV_GR8:
11186  case X86::CMOV_FR32:
11187  case X86::CMOV_FR64:
11188  case X86::CMOV_V4F32:
11189  case X86::CMOV_V2F64:
11190  case X86::CMOV_V2I64:
11191  case X86::CMOV_GR16:
11192  case X86::CMOV_GR32:
11193  case X86::CMOV_RFP32:
11194  case X86::CMOV_RFP64:
11195  case X86::CMOV_RFP80:
11196    return EmitLoweredSelect(MI, BB);
11197
11198  case X86::FP32_TO_INT16_IN_MEM:
11199  case X86::FP32_TO_INT32_IN_MEM:
11200  case X86::FP32_TO_INT64_IN_MEM:
11201  case X86::FP64_TO_INT16_IN_MEM:
11202  case X86::FP64_TO_INT32_IN_MEM:
11203  case X86::FP64_TO_INT64_IN_MEM:
11204  case X86::FP80_TO_INT16_IN_MEM:
11205  case X86::FP80_TO_INT32_IN_MEM:
11206  case X86::FP80_TO_INT64_IN_MEM: {
11207    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11208    DebugLoc DL = MI->getDebugLoc();
11209
11210    // Change the floating point control register to use "round towards zero"
11211    // mode when truncating to an integer value.
11212    MachineFunction *F = BB->getParent();
11213    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
11214    addFrameReference(BuildMI(*BB, MI, DL,
11215                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
11216
11217    // Load the old value of the high byte of the control word...
11218    unsigned OldCW =
11219      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
11220    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
11221                      CWFrameIdx);
11222
11223    // Set the high part to be round to zero...
11224    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
11225      .addImm(0xC7F);
11226
11227    // Reload the modified control word now...
11228    addFrameReference(BuildMI(*BB, MI, DL,
11229                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11230
11231    // Restore the memory image of control word to original value
11232    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
11233      .addReg(OldCW);
11234
11235    // Get the X86 opcode to use.
11236    unsigned Opc;
11237    switch (MI->getOpcode()) {
11238    default: llvm_unreachable("illegal opcode!");
11239    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
11240    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
11241    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
11242    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
11243    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
11244    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
11245    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
11246    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
11247    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
11248    }
11249
11250    X86AddressMode AM;
11251    MachineOperand &Op = MI->getOperand(0);
11252    if (Op.isReg()) {
11253      AM.BaseType = X86AddressMode::RegBase;
11254      AM.Base.Reg = Op.getReg();
11255    } else {
11256      AM.BaseType = X86AddressMode::FrameIndexBase;
11257      AM.Base.FrameIndex = Op.getIndex();
11258    }
11259    Op = MI->getOperand(1);
11260    if (Op.isImm())
11261      AM.Scale = Op.getImm();
11262    Op = MI->getOperand(2);
11263    if (Op.isImm())
11264      AM.IndexReg = Op.getImm();
11265    Op = MI->getOperand(3);
11266    if (Op.isGlobal()) {
11267      AM.GV = Op.getGlobal();
11268    } else {
11269      AM.Disp = Op.getImm();
11270    }
11271    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
11272                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
11273
11274    // Reload the original control word now.
11275    addFrameReference(BuildMI(*BB, MI, DL,
11276                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11277
11278    MI->eraseFromParent();   // The pseudo instruction is gone now.
11279    return BB;
11280  }
11281    // String/text processing lowering.
11282  case X86::PCMPISTRM128REG:
11283  case X86::VPCMPISTRM128REG:
11284    return EmitPCMP(MI, BB, 3, false /* in-mem */);
11285  case X86::PCMPISTRM128MEM:
11286  case X86::VPCMPISTRM128MEM:
11287    return EmitPCMP(MI, BB, 3, true /* in-mem */);
11288  case X86::PCMPESTRM128REG:
11289  case X86::VPCMPESTRM128REG:
11290    return EmitPCMP(MI, BB, 5, false /* in mem */);
11291  case X86::PCMPESTRM128MEM:
11292  case X86::VPCMPESTRM128MEM:
11293    return EmitPCMP(MI, BB, 5, true /* in mem */);
11294
11295    // Thread synchronization.
11296  case X86::MONITOR:
11297    return EmitMonitor(MI, BB);
11298  case X86::MWAIT:
11299    return EmitMwait(MI, BB);
11300
11301    // Atomic Lowering.
11302  case X86::ATOMAND32:
11303    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11304                                               X86::AND32ri, X86::MOV32rm,
11305                                               X86::LCMPXCHG32,
11306                                               X86::NOT32r, X86::EAX,
11307                                               X86::GR32RegisterClass);
11308  case X86::ATOMOR32:
11309    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
11310                                               X86::OR32ri, X86::MOV32rm,
11311                                               X86::LCMPXCHG32,
11312                                               X86::NOT32r, X86::EAX,
11313                                               X86::GR32RegisterClass);
11314  case X86::ATOMXOR32:
11315    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
11316                                               X86::XOR32ri, X86::MOV32rm,
11317                                               X86::LCMPXCHG32,
11318                                               X86::NOT32r, X86::EAX,
11319                                               X86::GR32RegisterClass);
11320  case X86::ATOMNAND32:
11321    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11322                                               X86::AND32ri, X86::MOV32rm,
11323                                               X86::LCMPXCHG32,
11324                                               X86::NOT32r, X86::EAX,
11325                                               X86::GR32RegisterClass, true);
11326  case X86::ATOMMIN32:
11327    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
11328  case X86::ATOMMAX32:
11329    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
11330  case X86::ATOMUMIN32:
11331    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
11332  case X86::ATOMUMAX32:
11333    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
11334
11335  case X86::ATOMAND16:
11336    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11337                                               X86::AND16ri, X86::MOV16rm,
11338                                               X86::LCMPXCHG16,
11339                                               X86::NOT16r, X86::AX,
11340                                               X86::GR16RegisterClass);
11341  case X86::ATOMOR16:
11342    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
11343                                               X86::OR16ri, X86::MOV16rm,
11344                                               X86::LCMPXCHG16,
11345                                               X86::NOT16r, X86::AX,
11346                                               X86::GR16RegisterClass);
11347  case X86::ATOMXOR16:
11348    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
11349                                               X86::XOR16ri, X86::MOV16rm,
11350                                               X86::LCMPXCHG16,
11351                                               X86::NOT16r, X86::AX,
11352                                               X86::GR16RegisterClass);
11353  case X86::ATOMNAND16:
11354    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11355                                               X86::AND16ri, X86::MOV16rm,
11356                                               X86::LCMPXCHG16,
11357                                               X86::NOT16r, X86::AX,
11358                                               X86::GR16RegisterClass, true);
11359  case X86::ATOMMIN16:
11360    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
11361  case X86::ATOMMAX16:
11362    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
11363  case X86::ATOMUMIN16:
11364    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
11365  case X86::ATOMUMAX16:
11366    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
11367
11368  case X86::ATOMAND8:
11369    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11370                                               X86::AND8ri, X86::MOV8rm,
11371                                               X86::LCMPXCHG8,
11372                                               X86::NOT8r, X86::AL,
11373                                               X86::GR8RegisterClass);
11374  case X86::ATOMOR8:
11375    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
11376                                               X86::OR8ri, X86::MOV8rm,
11377                                               X86::LCMPXCHG8,
11378                                               X86::NOT8r, X86::AL,
11379                                               X86::GR8RegisterClass);
11380  case X86::ATOMXOR8:
11381    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
11382                                               X86::XOR8ri, X86::MOV8rm,
11383                                               X86::LCMPXCHG8,
11384                                               X86::NOT8r, X86::AL,
11385                                               X86::GR8RegisterClass);
11386  case X86::ATOMNAND8:
11387    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11388                                               X86::AND8ri, X86::MOV8rm,
11389                                               X86::LCMPXCHG8,
11390                                               X86::NOT8r, X86::AL,
11391                                               X86::GR8RegisterClass, true);
11392  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
11393  // This group is for 64-bit host.
11394  case X86::ATOMAND64:
11395    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11396                                               X86::AND64ri32, X86::MOV64rm,
11397                                               X86::LCMPXCHG64,
11398                                               X86::NOT64r, X86::RAX,
11399                                               X86::GR64RegisterClass);
11400  case X86::ATOMOR64:
11401    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
11402                                               X86::OR64ri32, X86::MOV64rm,
11403                                               X86::LCMPXCHG64,
11404                                               X86::NOT64r, X86::RAX,
11405                                               X86::GR64RegisterClass);
11406  case X86::ATOMXOR64:
11407    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
11408                                               X86::XOR64ri32, X86::MOV64rm,
11409                                               X86::LCMPXCHG64,
11410                                               X86::NOT64r, X86::RAX,
11411                                               X86::GR64RegisterClass);
11412  case X86::ATOMNAND64:
11413    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11414                                               X86::AND64ri32, X86::MOV64rm,
11415                                               X86::LCMPXCHG64,
11416                                               X86::NOT64r, X86::RAX,
11417                                               X86::GR64RegisterClass, true);
11418  case X86::ATOMMIN64:
11419    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
11420  case X86::ATOMMAX64:
11421    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
11422  case X86::ATOMUMIN64:
11423    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
11424  case X86::ATOMUMAX64:
11425    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
11426
11427  // This group does 64-bit operations on a 32-bit host.
11428  case X86::ATOMAND6432:
11429    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11430                                               X86::AND32rr, X86::AND32rr,
11431                                               X86::AND32ri, X86::AND32ri,
11432                                               false);
11433  case X86::ATOMOR6432:
11434    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11435                                               X86::OR32rr, X86::OR32rr,
11436                                               X86::OR32ri, X86::OR32ri,
11437                                               false);
11438  case X86::ATOMXOR6432:
11439    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11440                                               X86::XOR32rr, X86::XOR32rr,
11441                                               X86::XOR32ri, X86::XOR32ri,
11442                                               false);
11443  case X86::ATOMNAND6432:
11444    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11445                                               X86::AND32rr, X86::AND32rr,
11446                                               X86::AND32ri, X86::AND32ri,
11447                                               true);
11448  case X86::ATOMADD6432:
11449    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11450                                               X86::ADD32rr, X86::ADC32rr,
11451                                               X86::ADD32ri, X86::ADC32ri,
11452                                               false);
11453  case X86::ATOMSUB6432:
11454    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11455                                               X86::SUB32rr, X86::SBB32rr,
11456                                               X86::SUB32ri, X86::SBB32ri,
11457                                               false);
11458  case X86::ATOMSWAP6432:
11459    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11460                                               X86::MOV32rr, X86::MOV32rr,
11461                                               X86::MOV32ri, X86::MOV32ri,
11462                                               false);
11463  case X86::VASTART_SAVE_XMM_REGS:
11464    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
11465
11466  case X86::VAARG_64:
11467    return EmitVAARG64WithCustomInserter(MI, BB);
11468  }
11469}
11470
11471//===----------------------------------------------------------------------===//
11472//                           X86 Optimization Hooks
11473//===----------------------------------------------------------------------===//
11474
11475void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
11476                                                       const APInt &Mask,
11477                                                       APInt &KnownZero,
11478                                                       APInt &KnownOne,
11479                                                       const SelectionDAG &DAG,
11480                                                       unsigned Depth) const {
11481  unsigned Opc = Op.getOpcode();
11482  assert((Opc >= ISD::BUILTIN_OP_END ||
11483          Opc == ISD::INTRINSIC_WO_CHAIN ||
11484          Opc == ISD::INTRINSIC_W_CHAIN ||
11485          Opc == ISD::INTRINSIC_VOID) &&
11486         "Should use MaskedValueIsZero if you don't know whether Op"
11487         " is a target node!");
11488
11489  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
11490  switch (Opc) {
11491  default: break;
11492  case X86ISD::ADD:
11493  case X86ISD::SUB:
11494  case X86ISD::ADC:
11495  case X86ISD::SBB:
11496  case X86ISD::SMUL:
11497  case X86ISD::UMUL:
11498  case X86ISD::INC:
11499  case X86ISD::DEC:
11500  case X86ISD::OR:
11501  case X86ISD::XOR:
11502  case X86ISD::AND:
11503    // These nodes' second result is a boolean.
11504    if (Op.getResNo() == 0)
11505      break;
11506    // Fallthrough
11507  case X86ISD::SETCC:
11508    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
11509                                       Mask.getBitWidth() - 1);
11510    break;
11511  }
11512}
11513
11514unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
11515                                                         unsigned Depth) const {
11516  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
11517  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
11518    return Op.getValueType().getScalarType().getSizeInBits();
11519
11520  // Fallback case.
11521  return 1;
11522}
11523
11524/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
11525/// node is a GlobalAddress + offset.
11526bool X86TargetLowering::isGAPlusOffset(SDNode *N,
11527                                       const GlobalValue* &GA,
11528                                       int64_t &Offset) const {
11529  if (N->getOpcode() == X86ISD::Wrapper) {
11530    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
11531      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
11532      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
11533      return true;
11534    }
11535  }
11536  return TargetLowering::isGAPlusOffset(N, GA, Offset);
11537}
11538
11539/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
11540static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
11541                                        TargetLowering::DAGCombinerInfo &DCI) {
11542  DebugLoc dl = N->getDebugLoc();
11543  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
11544  SDValue V1 = SVOp->getOperand(0);
11545  SDValue V2 = SVOp->getOperand(1);
11546  EVT VT = SVOp->getValueType(0);
11547
11548  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
11549      V2.getOpcode() == ISD::CONCAT_VECTORS) {
11550    //
11551    //                   0,0,0,...
11552    //                      |
11553    //    V      UNDEF    BUILD_VECTOR    UNDEF
11554    //     \      /           \           /
11555    //  CONCAT_VECTOR         CONCAT_VECTOR
11556    //         \                  /
11557    //          \                /
11558    //          RESULT: V + zero extended
11559    //
11560    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
11561        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
11562        V1.getOperand(1).getOpcode() != ISD::UNDEF)
11563      return SDValue();
11564
11565    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
11566      return SDValue();
11567
11568    // To match the shuffle mask, the first half of the mask should
11569    // be exactly the first vector, and all the rest a splat with the
11570    // first element of the second one.
11571    int NumElems = VT.getVectorNumElements();
11572    for (int i = 0; i < NumElems/2; ++i)
11573      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
11574          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
11575        return SDValue();
11576
11577    // Emit a zeroed vector and insert the desired subvector on its
11578    // first half.
11579    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
11580    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
11581                         DAG.getConstant(0, MVT::i32), DAG, dl);
11582    return DCI.CombineTo(N, InsV);
11583  }
11584
11585  return SDValue();
11586}
11587
11588/// PerformShuffleCombine - Performs several different shuffle combines.
11589static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
11590                                     TargetLowering::DAGCombinerInfo &DCI) {
11591  DebugLoc dl = N->getDebugLoc();
11592  EVT VT = N->getValueType(0);
11593
11594  // Don't create instructions with illegal types after legalize types has run.
11595  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11596  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
11597    return SDValue();
11598
11599  // Only handle pure VECTOR_SHUFFLE nodes.
11600  if (VT.getSizeInBits() == 256 && N->getOpcode() == ISD::VECTOR_SHUFFLE)
11601    return PerformShuffleCombine256(N, DAG, DCI);
11602
11603  // Only handle 128 wide vector from here on.
11604  if (VT.getSizeInBits() != 128)
11605    return SDValue();
11606
11607  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
11608  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
11609  // consecutive, non-overlapping, and in the right order.
11610  SmallVector<SDValue, 16> Elts;
11611  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
11612    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
11613
11614  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
11615}
11616
11617/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
11618/// generation and convert it from being a bunch of shuffles and extracts
11619/// to a simple store and scalar loads to extract the elements.
11620static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
11621                                                const TargetLowering &TLI) {
11622  SDValue InputVector = N->getOperand(0);
11623
11624  // Only operate on vectors of 4 elements, where the alternative shuffling
11625  // gets to be more expensive.
11626  if (InputVector.getValueType() != MVT::v4i32)
11627    return SDValue();
11628
11629  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
11630  // single use which is a sign-extend or zero-extend, and all elements are
11631  // used.
11632  SmallVector<SDNode *, 4> Uses;
11633  unsigned ExtractedElements = 0;
11634  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
11635       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
11636    if (UI.getUse().getResNo() != InputVector.getResNo())
11637      return SDValue();
11638
11639    SDNode *Extract = *UI;
11640    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11641      return SDValue();
11642
11643    if (Extract->getValueType(0) != MVT::i32)
11644      return SDValue();
11645    if (!Extract->hasOneUse())
11646      return SDValue();
11647    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
11648        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
11649      return SDValue();
11650    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
11651      return SDValue();
11652
11653    // Record which element was extracted.
11654    ExtractedElements |=
11655      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
11656
11657    Uses.push_back(Extract);
11658  }
11659
11660  // If not all the elements were used, this may not be worthwhile.
11661  if (ExtractedElements != 15)
11662    return SDValue();
11663
11664  // Ok, we've now decided to do the transformation.
11665  DebugLoc dl = InputVector.getDebugLoc();
11666
11667  // Store the value to a temporary stack slot.
11668  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
11669  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
11670                            MachinePointerInfo(), false, false, 0);
11671
11672  // Replace each use (extract) with a load of the appropriate element.
11673  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
11674       UE = Uses.end(); UI != UE; ++UI) {
11675    SDNode *Extract = *UI;
11676
11677    // cOMpute the element's address.
11678    SDValue Idx = Extract->getOperand(1);
11679    unsigned EltSize =
11680        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
11681    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
11682    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
11683
11684    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
11685                                     StackPtr, OffsetVal);
11686
11687    // Load the scalar.
11688    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
11689                                     ScalarAddr, MachinePointerInfo(),
11690                                     false, false, 0);
11691
11692    // Replace the exact with the load.
11693    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
11694  }
11695
11696  // The replacement was made in place; don't return anything.
11697  return SDValue();
11698}
11699
11700/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
11701static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
11702                                    const X86Subtarget *Subtarget) {
11703  DebugLoc DL = N->getDebugLoc();
11704  SDValue Cond = N->getOperand(0);
11705  // Get the LHS/RHS of the select.
11706  SDValue LHS = N->getOperand(1);
11707  SDValue RHS = N->getOperand(2);
11708
11709  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
11710  // instructions match the semantics of the common C idiom x<y?x:y but not
11711  // x<=y?x:y, because of how they handle negative zero (which can be
11712  // ignored in unsafe-math mode).
11713  if (Subtarget->hasSSE2() &&
11714      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
11715      Cond.getOpcode() == ISD::SETCC) {
11716    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
11717
11718    unsigned Opcode = 0;
11719    // Check for x CC y ? x : y.
11720    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
11721        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
11722      switch (CC) {
11723      default: break;
11724      case ISD::SETULT:
11725        // Converting this to a min would handle NaNs incorrectly, and swapping
11726        // the operands would cause it to handle comparisons between positive
11727        // and negative zero incorrectly.
11728        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11729          if (!UnsafeFPMath &&
11730              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11731            break;
11732          std::swap(LHS, RHS);
11733        }
11734        Opcode = X86ISD::FMIN;
11735        break;
11736      case ISD::SETOLE:
11737        // Converting this to a min would handle comparisons between positive
11738        // and negative zero incorrectly.
11739        if (!UnsafeFPMath &&
11740            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11741          break;
11742        Opcode = X86ISD::FMIN;
11743        break;
11744      case ISD::SETULE:
11745        // Converting this to a min would handle both negative zeros and NaNs
11746        // incorrectly, but we can swap the operands to fix both.
11747        std::swap(LHS, RHS);
11748      case ISD::SETOLT:
11749      case ISD::SETLT:
11750      case ISD::SETLE:
11751        Opcode = X86ISD::FMIN;
11752        break;
11753
11754      case ISD::SETOGE:
11755        // Converting this to a max would handle comparisons between positive
11756        // and negative zero incorrectly.
11757        if (!UnsafeFPMath &&
11758            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11759          break;
11760        Opcode = X86ISD::FMAX;
11761        break;
11762      case ISD::SETUGT:
11763        // Converting this to a max would handle NaNs incorrectly, and swapping
11764        // the operands would cause it to handle comparisons between positive
11765        // and negative zero incorrectly.
11766        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11767          if (!UnsafeFPMath &&
11768              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11769            break;
11770          std::swap(LHS, RHS);
11771        }
11772        Opcode = X86ISD::FMAX;
11773        break;
11774      case ISD::SETUGE:
11775        // Converting this to a max would handle both negative zeros and NaNs
11776        // incorrectly, but we can swap the operands to fix both.
11777        std::swap(LHS, RHS);
11778      case ISD::SETOGT:
11779      case ISD::SETGT:
11780      case ISD::SETGE:
11781        Opcode = X86ISD::FMAX;
11782        break;
11783      }
11784    // Check for x CC y ? y : x -- a min/max with reversed arms.
11785    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
11786               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
11787      switch (CC) {
11788      default: break;
11789      case ISD::SETOGE:
11790        // Converting this to a min would handle comparisons between positive
11791        // and negative zero incorrectly, and swapping the operands would
11792        // cause it to handle NaNs incorrectly.
11793        if (!UnsafeFPMath &&
11794            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
11795          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11796            break;
11797          std::swap(LHS, RHS);
11798        }
11799        Opcode = X86ISD::FMIN;
11800        break;
11801      case ISD::SETUGT:
11802        // Converting this to a min would handle NaNs incorrectly.
11803        if (!UnsafeFPMath &&
11804            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
11805          break;
11806        Opcode = X86ISD::FMIN;
11807        break;
11808      case ISD::SETUGE:
11809        // Converting this to a min would handle both negative zeros and NaNs
11810        // incorrectly, but we can swap the operands to fix both.
11811        std::swap(LHS, RHS);
11812      case ISD::SETOGT:
11813      case ISD::SETGT:
11814      case ISD::SETGE:
11815        Opcode = X86ISD::FMIN;
11816        break;
11817
11818      case ISD::SETULT:
11819        // Converting this to a max would handle NaNs incorrectly.
11820        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11821          break;
11822        Opcode = X86ISD::FMAX;
11823        break;
11824      case ISD::SETOLE:
11825        // Converting this to a max would handle comparisons between positive
11826        // and negative zero incorrectly, and swapping the operands would
11827        // cause it to handle NaNs incorrectly.
11828        if (!UnsafeFPMath &&
11829            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
11830          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11831            break;
11832          std::swap(LHS, RHS);
11833        }
11834        Opcode = X86ISD::FMAX;
11835        break;
11836      case ISD::SETULE:
11837        // Converting this to a max would handle both negative zeros and NaNs
11838        // incorrectly, but we can swap the operands to fix both.
11839        std::swap(LHS, RHS);
11840      case ISD::SETOLT:
11841      case ISD::SETLT:
11842      case ISD::SETLE:
11843        Opcode = X86ISD::FMAX;
11844        break;
11845      }
11846    }
11847
11848    if (Opcode)
11849      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
11850  }
11851
11852  // If this is a select between two integer constants, try to do some
11853  // optimizations.
11854  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
11855    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
11856      // Don't do this for crazy integer types.
11857      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
11858        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
11859        // so that TrueC (the true value) is larger than FalseC.
11860        bool NeedsCondInvert = false;
11861
11862        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
11863            // Efficiently invertible.
11864            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
11865             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
11866              isa<ConstantSDNode>(Cond.getOperand(1))))) {
11867          NeedsCondInvert = true;
11868          std::swap(TrueC, FalseC);
11869        }
11870
11871        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
11872        if (FalseC->getAPIntValue() == 0 &&
11873            TrueC->getAPIntValue().isPowerOf2()) {
11874          if (NeedsCondInvert) // Invert the condition if needed.
11875            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11876                               DAG.getConstant(1, Cond.getValueType()));
11877
11878          // Zero extend the condition if needed.
11879          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
11880
11881          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11882          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
11883                             DAG.getConstant(ShAmt, MVT::i8));
11884        }
11885
11886        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
11887        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11888          if (NeedsCondInvert) // Invert the condition if needed.
11889            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11890                               DAG.getConstant(1, Cond.getValueType()));
11891
11892          // Zero extend the condition if needed.
11893          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11894                             FalseC->getValueType(0), Cond);
11895          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11896                             SDValue(FalseC, 0));
11897        }
11898
11899        // Optimize cases that will turn into an LEA instruction.  This requires
11900        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11901        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11902          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11903          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11904
11905          bool isFastMultiplier = false;
11906          if (Diff < 10) {
11907            switch ((unsigned char)Diff) {
11908              default: break;
11909              case 1:  // result = add base, cond
11910              case 2:  // result = lea base(    , cond*2)
11911              case 3:  // result = lea base(cond, cond*2)
11912              case 4:  // result = lea base(    , cond*4)
11913              case 5:  // result = lea base(cond, cond*4)
11914              case 8:  // result = lea base(    , cond*8)
11915              case 9:  // result = lea base(cond, cond*8)
11916                isFastMultiplier = true;
11917                break;
11918            }
11919          }
11920
11921          if (isFastMultiplier) {
11922            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11923            if (NeedsCondInvert) // Invert the condition if needed.
11924              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11925                                 DAG.getConstant(1, Cond.getValueType()));
11926
11927            // Zero extend the condition if needed.
11928            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11929                               Cond);
11930            // Scale the condition by the difference.
11931            if (Diff != 1)
11932              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11933                                 DAG.getConstant(Diff, Cond.getValueType()));
11934
11935            // Add the base if non-zero.
11936            if (FalseC->getAPIntValue() != 0)
11937              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11938                                 SDValue(FalseC, 0));
11939            return Cond;
11940          }
11941        }
11942      }
11943  }
11944
11945  return SDValue();
11946}
11947
11948/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
11949static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
11950                                  TargetLowering::DAGCombinerInfo &DCI) {
11951  DebugLoc DL = N->getDebugLoc();
11952
11953  // If the flag operand isn't dead, don't touch this CMOV.
11954  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
11955    return SDValue();
11956
11957  SDValue FalseOp = N->getOperand(0);
11958  SDValue TrueOp = N->getOperand(1);
11959  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
11960  SDValue Cond = N->getOperand(3);
11961  if (CC == X86::COND_E || CC == X86::COND_NE) {
11962    switch (Cond.getOpcode()) {
11963    default: break;
11964    case X86ISD::BSR:
11965    case X86ISD::BSF:
11966      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
11967      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
11968        return (CC == X86::COND_E) ? FalseOp : TrueOp;
11969    }
11970  }
11971
11972  // If this is a select between two integer constants, try to do some
11973  // optimizations.  Note that the operands are ordered the opposite of SELECT
11974  // operands.
11975  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
11976    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
11977      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
11978      // larger than FalseC (the false value).
11979      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
11980        CC = X86::GetOppositeBranchCondition(CC);
11981        std::swap(TrueC, FalseC);
11982      }
11983
11984      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
11985      // This is efficient for any integer data type (including i8/i16) and
11986      // shift amount.
11987      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
11988        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11989                           DAG.getConstant(CC, MVT::i8), Cond);
11990
11991        // Zero extend the condition if needed.
11992        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
11993
11994        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11995        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
11996                           DAG.getConstant(ShAmt, MVT::i8));
11997        if (N->getNumValues() == 2)  // Dead flag value?
11998          return DCI.CombineTo(N, Cond, SDValue());
11999        return Cond;
12000      }
12001
12002      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
12003      // for any integer data type, including i8/i16.
12004      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12005        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12006                           DAG.getConstant(CC, MVT::i8), Cond);
12007
12008        // Zero extend the condition if needed.
12009        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12010                           FalseC->getValueType(0), Cond);
12011        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12012                           SDValue(FalseC, 0));
12013
12014        if (N->getNumValues() == 2)  // Dead flag value?
12015          return DCI.CombineTo(N, Cond, SDValue());
12016        return Cond;
12017      }
12018
12019      // Optimize cases that will turn into an LEA instruction.  This requires
12020      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12021      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12022        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12023        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12024
12025        bool isFastMultiplier = false;
12026        if (Diff < 10) {
12027          switch ((unsigned char)Diff) {
12028          default: break;
12029          case 1:  // result = add base, cond
12030          case 2:  // result = lea base(    , cond*2)
12031          case 3:  // result = lea base(cond, cond*2)
12032          case 4:  // result = lea base(    , cond*4)
12033          case 5:  // result = lea base(cond, cond*4)
12034          case 8:  // result = lea base(    , cond*8)
12035          case 9:  // result = lea base(cond, cond*8)
12036            isFastMultiplier = true;
12037            break;
12038          }
12039        }
12040
12041        if (isFastMultiplier) {
12042          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12043          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12044                             DAG.getConstant(CC, MVT::i8), Cond);
12045          // Zero extend the condition if needed.
12046          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12047                             Cond);
12048          // Scale the condition by the difference.
12049          if (Diff != 1)
12050            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12051                               DAG.getConstant(Diff, Cond.getValueType()));
12052
12053          // Add the base if non-zero.
12054          if (FalseC->getAPIntValue() != 0)
12055            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12056                               SDValue(FalseC, 0));
12057          if (N->getNumValues() == 2)  // Dead flag value?
12058            return DCI.CombineTo(N, Cond, SDValue());
12059          return Cond;
12060        }
12061      }
12062    }
12063  }
12064  return SDValue();
12065}
12066
12067
12068/// PerformMulCombine - Optimize a single multiply with constant into two
12069/// in order to implement it with two cheaper instructions, e.g.
12070/// LEA + SHL, LEA + LEA.
12071static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
12072                                 TargetLowering::DAGCombinerInfo &DCI) {
12073  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12074    return SDValue();
12075
12076  EVT VT = N->getValueType(0);
12077  if (VT != MVT::i64)
12078    return SDValue();
12079
12080  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12081  if (!C)
12082    return SDValue();
12083  uint64_t MulAmt = C->getZExtValue();
12084  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
12085    return SDValue();
12086
12087  uint64_t MulAmt1 = 0;
12088  uint64_t MulAmt2 = 0;
12089  if ((MulAmt % 9) == 0) {
12090    MulAmt1 = 9;
12091    MulAmt2 = MulAmt / 9;
12092  } else if ((MulAmt % 5) == 0) {
12093    MulAmt1 = 5;
12094    MulAmt2 = MulAmt / 5;
12095  } else if ((MulAmt % 3) == 0) {
12096    MulAmt1 = 3;
12097    MulAmt2 = MulAmt / 3;
12098  }
12099  if (MulAmt2 &&
12100      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
12101    DebugLoc DL = N->getDebugLoc();
12102
12103    if (isPowerOf2_64(MulAmt2) &&
12104        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
12105      // If second multiplifer is pow2, issue it first. We want the multiply by
12106      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
12107      // is an add.
12108      std::swap(MulAmt1, MulAmt2);
12109
12110    SDValue NewMul;
12111    if (isPowerOf2_64(MulAmt1))
12112      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
12113                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
12114    else
12115      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
12116                           DAG.getConstant(MulAmt1, VT));
12117
12118    if (isPowerOf2_64(MulAmt2))
12119      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
12120                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
12121    else
12122      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
12123                           DAG.getConstant(MulAmt2, VT));
12124
12125    // Do not add new nodes to DAG combiner worklist.
12126    DCI.CombineTo(N, NewMul, false);
12127  }
12128  return SDValue();
12129}
12130
12131static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
12132  SDValue N0 = N->getOperand(0);
12133  SDValue N1 = N->getOperand(1);
12134  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
12135  EVT VT = N0.getValueType();
12136
12137  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
12138  // since the result of setcc_c is all zero's or all ones.
12139  if (N1C && N0.getOpcode() == ISD::AND &&
12140      N0.getOperand(1).getOpcode() == ISD::Constant) {
12141    SDValue N00 = N0.getOperand(0);
12142    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
12143        ((N00.getOpcode() == ISD::ANY_EXTEND ||
12144          N00.getOpcode() == ISD::ZERO_EXTEND) &&
12145         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
12146      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
12147      APInt ShAmt = N1C->getAPIntValue();
12148      Mask = Mask.shl(ShAmt);
12149      if (Mask != 0)
12150        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
12151                           N00, DAG.getConstant(Mask, VT));
12152    }
12153  }
12154
12155  return SDValue();
12156}
12157
12158/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
12159///                       when possible.
12160static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
12161                                   const X86Subtarget *Subtarget) {
12162  EVT VT = N->getValueType(0);
12163  if (!VT.isVector() && VT.isInteger() &&
12164      N->getOpcode() == ISD::SHL)
12165    return PerformSHLCombine(N, DAG);
12166
12167  // On X86 with SSE2 support, we can transform this to a vector shift if
12168  // all elements are shifted by the same amount.  We can't do this in legalize
12169  // because the a constant vector is typically transformed to a constant pool
12170  // so we have no knowledge of the shift amount.
12171  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
12172    return SDValue();
12173
12174  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
12175    return SDValue();
12176
12177  SDValue ShAmtOp = N->getOperand(1);
12178  EVT EltVT = VT.getVectorElementType();
12179  DebugLoc DL = N->getDebugLoc();
12180  SDValue BaseShAmt = SDValue();
12181  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
12182    unsigned NumElts = VT.getVectorNumElements();
12183    unsigned i = 0;
12184    for (; i != NumElts; ++i) {
12185      SDValue Arg = ShAmtOp.getOperand(i);
12186      if (Arg.getOpcode() == ISD::UNDEF) continue;
12187      BaseShAmt = Arg;
12188      break;
12189    }
12190    for (; i != NumElts; ++i) {
12191      SDValue Arg = ShAmtOp.getOperand(i);
12192      if (Arg.getOpcode() == ISD::UNDEF) continue;
12193      if (Arg != BaseShAmt) {
12194        return SDValue();
12195      }
12196    }
12197  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
12198             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
12199    SDValue InVec = ShAmtOp.getOperand(0);
12200    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
12201      unsigned NumElts = InVec.getValueType().getVectorNumElements();
12202      unsigned i = 0;
12203      for (; i != NumElts; ++i) {
12204        SDValue Arg = InVec.getOperand(i);
12205        if (Arg.getOpcode() == ISD::UNDEF) continue;
12206        BaseShAmt = Arg;
12207        break;
12208      }
12209    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12210       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
12211         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
12212         if (C->getZExtValue() == SplatIdx)
12213           BaseShAmt = InVec.getOperand(1);
12214       }
12215    }
12216    if (BaseShAmt.getNode() == 0)
12217      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
12218                              DAG.getIntPtrConstant(0));
12219  } else
12220    return SDValue();
12221
12222  // The shift amount is an i32.
12223  if (EltVT.bitsGT(MVT::i32))
12224    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
12225  else if (EltVT.bitsLT(MVT::i32))
12226    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
12227
12228  // The shift amount is identical so we can do a vector shift.
12229  SDValue  ValOp = N->getOperand(0);
12230  switch (N->getOpcode()) {
12231  default:
12232    llvm_unreachable("Unknown shift opcode!");
12233    break;
12234  case ISD::SHL:
12235    if (VT == MVT::v2i64)
12236      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12237                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
12238                         ValOp, BaseShAmt);
12239    if (VT == MVT::v4i32)
12240      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12241                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
12242                         ValOp, BaseShAmt);
12243    if (VT == MVT::v8i16)
12244      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12245                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
12246                         ValOp, BaseShAmt);
12247    break;
12248  case ISD::SRA:
12249    if (VT == MVT::v4i32)
12250      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12251                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
12252                         ValOp, BaseShAmt);
12253    if (VT == MVT::v8i16)
12254      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12255                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
12256                         ValOp, BaseShAmt);
12257    break;
12258  case ISD::SRL:
12259    if (VT == MVT::v2i64)
12260      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12261                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
12262                         ValOp, BaseShAmt);
12263    if (VT == MVT::v4i32)
12264      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12265                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
12266                         ValOp, BaseShAmt);
12267    if (VT ==  MVT::v8i16)
12268      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12269                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
12270                         ValOp, BaseShAmt);
12271    break;
12272  }
12273  return SDValue();
12274}
12275
12276
12277// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
12278// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
12279// and friends.  Likewise for OR -> CMPNEQSS.
12280static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
12281                            TargetLowering::DAGCombinerInfo &DCI,
12282                            const X86Subtarget *Subtarget) {
12283  unsigned opcode;
12284
12285  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
12286  // we're requiring SSE2 for both.
12287  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
12288    SDValue N0 = N->getOperand(0);
12289    SDValue N1 = N->getOperand(1);
12290    SDValue CMP0 = N0->getOperand(1);
12291    SDValue CMP1 = N1->getOperand(1);
12292    DebugLoc DL = N->getDebugLoc();
12293
12294    // The SETCCs should both refer to the same CMP.
12295    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
12296      return SDValue();
12297
12298    SDValue CMP00 = CMP0->getOperand(0);
12299    SDValue CMP01 = CMP0->getOperand(1);
12300    EVT     VT    = CMP00.getValueType();
12301
12302    if (VT == MVT::f32 || VT == MVT::f64) {
12303      bool ExpectingFlags = false;
12304      // Check for any users that want flags:
12305      for (SDNode::use_iterator UI = N->use_begin(),
12306             UE = N->use_end();
12307           !ExpectingFlags && UI != UE; ++UI)
12308        switch (UI->getOpcode()) {
12309        default:
12310        case ISD::BR_CC:
12311        case ISD::BRCOND:
12312        case ISD::SELECT:
12313          ExpectingFlags = true;
12314          break;
12315        case ISD::CopyToReg:
12316        case ISD::SIGN_EXTEND:
12317        case ISD::ZERO_EXTEND:
12318        case ISD::ANY_EXTEND:
12319          break;
12320        }
12321
12322      if (!ExpectingFlags) {
12323        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
12324        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
12325
12326        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
12327          X86::CondCode tmp = cc0;
12328          cc0 = cc1;
12329          cc1 = tmp;
12330        }
12331
12332        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
12333            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
12334          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
12335          X86ISD::NodeType NTOperator = is64BitFP ?
12336            X86ISD::FSETCCsd : X86ISD::FSETCCss;
12337          // FIXME: need symbolic constants for these magic numbers.
12338          // See X86ATTInstPrinter.cpp:printSSECC().
12339          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
12340          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
12341                                              DAG.getConstant(x86cc, MVT::i8));
12342          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
12343                                              OnesOrZeroesF);
12344          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
12345                                      DAG.getConstant(1, MVT::i32));
12346          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
12347          return OneBitOfTruth;
12348        }
12349      }
12350    }
12351  }
12352  return SDValue();
12353}
12354
12355/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
12356/// so it can be folded inside ANDNP.
12357static bool CanFoldXORWithAllOnes(const SDNode *N) {
12358  EVT VT = N->getValueType(0);
12359
12360  // Match direct AllOnes for 128 and 256-bit vectors
12361  if (ISD::isBuildVectorAllOnes(N))
12362    return true;
12363
12364  // Look through a bit convert.
12365  if (N->getOpcode() == ISD::BITCAST)
12366    N = N->getOperand(0).getNode();
12367
12368  // Sometimes the operand may come from a insert_subvector building a 256-bit
12369  // allones vector
12370  if (VT.getSizeInBits() == 256 &&
12371      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
12372    SDValue V1 = N->getOperand(0);
12373    SDValue V2 = N->getOperand(1);
12374
12375    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
12376        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
12377        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
12378        ISD::isBuildVectorAllOnes(V2.getNode()))
12379      return true;
12380  }
12381
12382  return false;
12383}
12384
12385static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
12386                                 TargetLowering::DAGCombinerInfo &DCI,
12387                                 const X86Subtarget *Subtarget) {
12388  if (DCI.isBeforeLegalizeOps())
12389    return SDValue();
12390
12391  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
12392  if (R.getNode())
12393    return R;
12394
12395  // Want to form ANDNP nodes:
12396  // 1) In the hopes of then easily combining them with OR and AND nodes
12397  //    to form PBLEND/PSIGN.
12398  // 2) To match ANDN packed intrinsics
12399  EVT VT = N->getValueType(0);
12400  if (VT != MVT::v2i64 && VT != MVT::v4i64)
12401    return SDValue();
12402
12403  SDValue N0 = N->getOperand(0);
12404  SDValue N1 = N->getOperand(1);
12405  DebugLoc DL = N->getDebugLoc();
12406
12407  // Check LHS for vnot
12408  if (N0.getOpcode() == ISD::XOR &&
12409      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
12410      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
12411    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
12412
12413  // Check RHS for vnot
12414  if (N1.getOpcode() == ISD::XOR &&
12415      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
12416      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
12417    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
12418
12419  return SDValue();
12420}
12421
12422static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
12423                                TargetLowering::DAGCombinerInfo &DCI,
12424                                const X86Subtarget *Subtarget) {
12425  if (DCI.isBeforeLegalizeOps())
12426    return SDValue();
12427
12428  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
12429  if (R.getNode())
12430    return R;
12431
12432  EVT VT = N->getValueType(0);
12433  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
12434    return SDValue();
12435
12436  SDValue N0 = N->getOperand(0);
12437  SDValue N1 = N->getOperand(1);
12438
12439  // look for psign/blend
12440  if (Subtarget->hasSSSE3()) {
12441    if (VT == MVT::v2i64) {
12442      // Canonicalize pandn to RHS
12443      if (N0.getOpcode() == X86ISD::ANDNP)
12444        std::swap(N0, N1);
12445      // or (and (m, x), (pandn m, y))
12446      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
12447        SDValue Mask = N1.getOperand(0);
12448        SDValue X    = N1.getOperand(1);
12449        SDValue Y;
12450        if (N0.getOperand(0) == Mask)
12451          Y = N0.getOperand(1);
12452        if (N0.getOperand(1) == Mask)
12453          Y = N0.getOperand(0);
12454
12455        // Check to see if the mask appeared in both the AND and ANDNP and
12456        if (!Y.getNode())
12457          return SDValue();
12458
12459        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
12460        if (Mask.getOpcode() != ISD::BITCAST ||
12461            X.getOpcode() != ISD::BITCAST ||
12462            Y.getOpcode() != ISD::BITCAST)
12463          return SDValue();
12464
12465        // Look through mask bitcast.
12466        Mask = Mask.getOperand(0);
12467        EVT MaskVT = Mask.getValueType();
12468
12469        // Validate that the Mask operand is a vector sra node.  The sra node
12470        // will be an intrinsic.
12471        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
12472          return SDValue();
12473
12474        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
12475        // there is no psrai.b
12476        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
12477        case Intrinsic::x86_sse2_psrai_w:
12478        case Intrinsic::x86_sse2_psrai_d:
12479          break;
12480        default: return SDValue();
12481        }
12482
12483        // Check that the SRA is all signbits.
12484        SDValue SraC = Mask.getOperand(2);
12485        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
12486        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
12487        if ((SraAmt + 1) != EltBits)
12488          return SDValue();
12489
12490        DebugLoc DL = N->getDebugLoc();
12491
12492        // Now we know we at least have a plendvb with the mask val.  See if
12493        // we can form a psignb/w/d.
12494        // psign = x.type == y.type == mask.type && y = sub(0, x);
12495        X = X.getOperand(0);
12496        Y = Y.getOperand(0);
12497        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
12498            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
12499            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
12500          unsigned Opc = 0;
12501          switch (EltBits) {
12502          case 8: Opc = X86ISD::PSIGNB; break;
12503          case 16: Opc = X86ISD::PSIGNW; break;
12504          case 32: Opc = X86ISD::PSIGND; break;
12505          default: break;
12506          }
12507          if (Opc) {
12508            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
12509            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
12510          }
12511        }
12512        // PBLENDVB only available on SSE 4.1
12513        if (!Subtarget->hasSSE41())
12514          return SDValue();
12515
12516        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
12517        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
12518        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
12519        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
12520        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
12521      }
12522    }
12523  }
12524
12525  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
12526  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
12527    std::swap(N0, N1);
12528  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
12529    return SDValue();
12530  if (!N0.hasOneUse() || !N1.hasOneUse())
12531    return SDValue();
12532
12533  SDValue ShAmt0 = N0.getOperand(1);
12534  if (ShAmt0.getValueType() != MVT::i8)
12535    return SDValue();
12536  SDValue ShAmt1 = N1.getOperand(1);
12537  if (ShAmt1.getValueType() != MVT::i8)
12538    return SDValue();
12539  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
12540    ShAmt0 = ShAmt0.getOperand(0);
12541  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
12542    ShAmt1 = ShAmt1.getOperand(0);
12543
12544  DebugLoc DL = N->getDebugLoc();
12545  unsigned Opc = X86ISD::SHLD;
12546  SDValue Op0 = N0.getOperand(0);
12547  SDValue Op1 = N1.getOperand(0);
12548  if (ShAmt0.getOpcode() == ISD::SUB) {
12549    Opc = X86ISD::SHRD;
12550    std::swap(Op0, Op1);
12551    std::swap(ShAmt0, ShAmt1);
12552  }
12553
12554  unsigned Bits = VT.getSizeInBits();
12555  if (ShAmt1.getOpcode() == ISD::SUB) {
12556    SDValue Sum = ShAmt1.getOperand(0);
12557    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
12558      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
12559      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
12560        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
12561      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
12562        return DAG.getNode(Opc, DL, VT,
12563                           Op0, Op1,
12564                           DAG.getNode(ISD::TRUNCATE, DL,
12565                                       MVT::i8, ShAmt0));
12566    }
12567  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
12568    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
12569    if (ShAmt0C &&
12570        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
12571      return DAG.getNode(Opc, DL, VT,
12572                         N0.getOperand(0), N1.getOperand(0),
12573                         DAG.getNode(ISD::TRUNCATE, DL,
12574                                       MVT::i8, ShAmt0));
12575  }
12576
12577  return SDValue();
12578}
12579
12580/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
12581static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
12582                                   const X86Subtarget *Subtarget) {
12583  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
12584  // the FP state in cases where an emms may be missing.
12585  // A preferable solution to the general problem is to figure out the right
12586  // places to insert EMMS.  This qualifies as a quick hack.
12587
12588  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
12589  StoreSDNode *St = cast<StoreSDNode>(N);
12590  EVT VT = St->getValue().getValueType();
12591  if (VT.getSizeInBits() != 64)
12592    return SDValue();
12593
12594  const Function *F = DAG.getMachineFunction().getFunction();
12595  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
12596  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
12597    && Subtarget->hasSSE2();
12598  if ((VT.isVector() ||
12599       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
12600      isa<LoadSDNode>(St->getValue()) &&
12601      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
12602      St->getChain().hasOneUse() && !St->isVolatile()) {
12603    SDNode* LdVal = St->getValue().getNode();
12604    LoadSDNode *Ld = 0;
12605    int TokenFactorIndex = -1;
12606    SmallVector<SDValue, 8> Ops;
12607    SDNode* ChainVal = St->getChain().getNode();
12608    // Must be a store of a load.  We currently handle two cases:  the load
12609    // is a direct child, and it's under an intervening TokenFactor.  It is
12610    // possible to dig deeper under nested TokenFactors.
12611    if (ChainVal == LdVal)
12612      Ld = cast<LoadSDNode>(St->getChain());
12613    else if (St->getValue().hasOneUse() &&
12614             ChainVal->getOpcode() == ISD::TokenFactor) {
12615      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
12616        if (ChainVal->getOperand(i).getNode() == LdVal) {
12617          TokenFactorIndex = i;
12618          Ld = cast<LoadSDNode>(St->getValue());
12619        } else
12620          Ops.push_back(ChainVal->getOperand(i));
12621      }
12622    }
12623
12624    if (!Ld || !ISD::isNormalLoad(Ld))
12625      return SDValue();
12626
12627    // If this is not the MMX case, i.e. we are just turning i64 load/store
12628    // into f64 load/store, avoid the transformation if there are multiple
12629    // uses of the loaded value.
12630    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
12631      return SDValue();
12632
12633    DebugLoc LdDL = Ld->getDebugLoc();
12634    DebugLoc StDL = N->getDebugLoc();
12635    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
12636    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
12637    // pair instead.
12638    if (Subtarget->is64Bit() || F64IsLegal) {
12639      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
12640      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
12641                                  Ld->getPointerInfo(), Ld->isVolatile(),
12642                                  Ld->isNonTemporal(), Ld->getAlignment());
12643      SDValue NewChain = NewLd.getValue(1);
12644      if (TokenFactorIndex != -1) {
12645        Ops.push_back(NewChain);
12646        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12647                               Ops.size());
12648      }
12649      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
12650                          St->getPointerInfo(),
12651                          St->isVolatile(), St->isNonTemporal(),
12652                          St->getAlignment());
12653    }
12654
12655    // Otherwise, lower to two pairs of 32-bit loads / stores.
12656    SDValue LoAddr = Ld->getBasePtr();
12657    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
12658                                 DAG.getConstant(4, MVT::i32));
12659
12660    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
12661                               Ld->getPointerInfo(),
12662                               Ld->isVolatile(), Ld->isNonTemporal(),
12663                               Ld->getAlignment());
12664    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
12665                               Ld->getPointerInfo().getWithOffset(4),
12666                               Ld->isVolatile(), Ld->isNonTemporal(),
12667                               MinAlign(Ld->getAlignment(), 4));
12668
12669    SDValue NewChain = LoLd.getValue(1);
12670    if (TokenFactorIndex != -1) {
12671      Ops.push_back(LoLd);
12672      Ops.push_back(HiLd);
12673      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12674                             Ops.size());
12675    }
12676
12677    LoAddr = St->getBasePtr();
12678    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
12679                         DAG.getConstant(4, MVT::i32));
12680
12681    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
12682                                St->getPointerInfo(),
12683                                St->isVolatile(), St->isNonTemporal(),
12684                                St->getAlignment());
12685    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
12686                                St->getPointerInfo().getWithOffset(4),
12687                                St->isVolatile(),
12688                                St->isNonTemporal(),
12689                                MinAlign(St->getAlignment(), 4));
12690    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
12691  }
12692  return SDValue();
12693}
12694
12695/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
12696/// X86ISD::FXOR nodes.
12697static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
12698  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
12699  // F[X]OR(0.0, x) -> x
12700  // F[X]OR(x, 0.0) -> x
12701  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12702    if (C->getValueAPF().isPosZero())
12703      return N->getOperand(1);
12704  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12705    if (C->getValueAPF().isPosZero())
12706      return N->getOperand(0);
12707  return SDValue();
12708}
12709
12710/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
12711static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
12712  // FAND(0.0, x) -> 0.0
12713  // FAND(x, 0.0) -> 0.0
12714  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12715    if (C->getValueAPF().isPosZero())
12716      return N->getOperand(0);
12717  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12718    if (C->getValueAPF().isPosZero())
12719      return N->getOperand(1);
12720  return SDValue();
12721}
12722
12723static SDValue PerformBTCombine(SDNode *N,
12724                                SelectionDAG &DAG,
12725                                TargetLowering::DAGCombinerInfo &DCI) {
12726  // BT ignores high bits in the bit index operand.
12727  SDValue Op1 = N->getOperand(1);
12728  if (Op1.hasOneUse()) {
12729    unsigned BitWidth = Op1.getValueSizeInBits();
12730    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
12731    APInt KnownZero, KnownOne;
12732    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
12733                                          !DCI.isBeforeLegalizeOps());
12734    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12735    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
12736        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
12737      DCI.CommitTargetLoweringOpt(TLO);
12738  }
12739  return SDValue();
12740}
12741
12742static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
12743  SDValue Op = N->getOperand(0);
12744  if (Op.getOpcode() == ISD::BITCAST)
12745    Op = Op.getOperand(0);
12746  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
12747  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
12748      VT.getVectorElementType().getSizeInBits() ==
12749      OpVT.getVectorElementType().getSizeInBits()) {
12750    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
12751  }
12752  return SDValue();
12753}
12754
12755static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
12756  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
12757  //           (and (i32 x86isd::setcc_carry), 1)
12758  // This eliminates the zext. This transformation is necessary because
12759  // ISD::SETCC is always legalized to i8.
12760  DebugLoc dl = N->getDebugLoc();
12761  SDValue N0 = N->getOperand(0);
12762  EVT VT = N->getValueType(0);
12763  if (N0.getOpcode() == ISD::AND &&
12764      N0.hasOneUse() &&
12765      N0.getOperand(0).hasOneUse()) {
12766    SDValue N00 = N0.getOperand(0);
12767    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
12768      return SDValue();
12769    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
12770    if (!C || C->getZExtValue() != 1)
12771      return SDValue();
12772    return DAG.getNode(ISD::AND, dl, VT,
12773                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
12774                                   N00.getOperand(0), N00.getOperand(1)),
12775                       DAG.getConstant(1, VT));
12776  }
12777
12778  return SDValue();
12779}
12780
12781// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
12782static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
12783  unsigned X86CC = N->getConstantOperandVal(0);
12784  SDValue EFLAG = N->getOperand(1);
12785  DebugLoc DL = N->getDebugLoc();
12786
12787  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
12788  // a zext and produces an all-ones bit which is more useful than 0/1 in some
12789  // cases.
12790  if (X86CC == X86::COND_B)
12791    return DAG.getNode(ISD::AND, DL, MVT::i8,
12792                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
12793                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
12794                       DAG.getConstant(1, MVT::i8));
12795
12796  return SDValue();
12797}
12798
12799static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
12800                                        const X86TargetLowering *XTLI) {
12801  SDValue Op0 = N->getOperand(0);
12802  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
12803  // a 32-bit target where SSE doesn't support i64->FP operations.
12804  if (Op0.getOpcode() == ISD::LOAD) {
12805    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
12806    EVT VT = Ld->getValueType(0);
12807    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
12808        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
12809        !XTLI->getSubtarget()->is64Bit() &&
12810        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12811      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
12812                                          Ld->getChain(), Op0, DAG);
12813      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
12814      return FILDChain;
12815    }
12816  }
12817  return SDValue();
12818}
12819
12820// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
12821static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
12822                                 X86TargetLowering::DAGCombinerInfo &DCI) {
12823  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
12824  // the result is either zero or one (depending on the input carry bit).
12825  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
12826  if (X86::isZeroNode(N->getOperand(0)) &&
12827      X86::isZeroNode(N->getOperand(1)) &&
12828      // We don't have a good way to replace an EFLAGS use, so only do this when
12829      // dead right now.
12830      SDValue(N, 1).use_empty()) {
12831    DebugLoc DL = N->getDebugLoc();
12832    EVT VT = N->getValueType(0);
12833    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
12834    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
12835                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
12836                                           DAG.getConstant(X86::COND_B,MVT::i8),
12837                                           N->getOperand(2)),
12838                               DAG.getConstant(1, VT));
12839    return DCI.CombineTo(N, Res1, CarryOut);
12840  }
12841
12842  return SDValue();
12843}
12844
12845// fold (add Y, (sete  X, 0)) -> adc  0, Y
12846//      (add Y, (setne X, 0)) -> sbb -1, Y
12847//      (sub (sete  X, 0), Y) -> sbb  0, Y
12848//      (sub (setne X, 0), Y) -> adc -1, Y
12849static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
12850  DebugLoc DL = N->getDebugLoc();
12851
12852  // Look through ZExts.
12853  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
12854  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
12855    return SDValue();
12856
12857  SDValue SetCC = Ext.getOperand(0);
12858  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
12859    return SDValue();
12860
12861  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
12862  if (CC != X86::COND_E && CC != X86::COND_NE)
12863    return SDValue();
12864
12865  SDValue Cmp = SetCC.getOperand(1);
12866  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
12867      !X86::isZeroNode(Cmp.getOperand(1)) ||
12868      !Cmp.getOperand(0).getValueType().isInteger())
12869    return SDValue();
12870
12871  SDValue CmpOp0 = Cmp.getOperand(0);
12872  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
12873                               DAG.getConstant(1, CmpOp0.getValueType()));
12874
12875  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
12876  if (CC == X86::COND_NE)
12877    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
12878                       DL, OtherVal.getValueType(), OtherVal,
12879                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
12880  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
12881                     DL, OtherVal.getValueType(), OtherVal,
12882                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
12883}
12884
12885static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
12886  SDValue Op0 = N->getOperand(0);
12887  SDValue Op1 = N->getOperand(1);
12888
12889  // X86 can't encode an immediate LHS of a sub. See if we can push the
12890  // negation into a preceding instruction.
12891  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
12892    uint64_t Op0C = C->getSExtValue();
12893
12894    // If the RHS of the sub is a XOR with one use and a constant, invert the
12895    // immediate. Then add one to the LHS of the sub so we can turn
12896    // X-Y -> X+~Y+1, saving one register.
12897    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
12898        isa<ConstantSDNode>(Op1.getOperand(1))) {
12899      uint64_t XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getSExtValue();
12900      EVT VT = Op0.getValueType();
12901      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
12902                                   Op1.getOperand(0),
12903                                   DAG.getConstant(~XorC, VT));
12904      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
12905                         DAG.getConstant(Op0C+1, VT));
12906    }
12907  }
12908
12909  return OptimizeConditionalInDecrement(N, DAG);
12910}
12911
12912SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
12913                                             DAGCombinerInfo &DCI) const {
12914  SelectionDAG &DAG = DCI.DAG;
12915  switch (N->getOpcode()) {
12916  default: break;
12917  case ISD::EXTRACT_VECTOR_ELT:
12918    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
12919  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
12920  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
12921  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
12922  case ISD::SUB:            return PerformSubCombine(N, DAG);
12923  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
12924  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
12925  case ISD::SHL:
12926  case ISD::SRA:
12927  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
12928  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
12929  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
12930  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
12931  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
12932  case X86ISD::FXOR:
12933  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
12934  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
12935  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
12936  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
12937  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
12938  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
12939  case X86ISD::SHUFPS:      // Handle all target specific shuffles
12940  case X86ISD::SHUFPD:
12941  case X86ISD::PALIGN:
12942  case X86ISD::PUNPCKHBW:
12943  case X86ISD::PUNPCKHWD:
12944  case X86ISD::PUNPCKHDQ:
12945  case X86ISD::PUNPCKHQDQ:
12946  case X86ISD::UNPCKHPS:
12947  case X86ISD::UNPCKHPD:
12948  case X86ISD::VUNPCKHPSY:
12949  case X86ISD::VUNPCKHPDY:
12950  case X86ISD::PUNPCKLBW:
12951  case X86ISD::PUNPCKLWD:
12952  case X86ISD::PUNPCKLDQ:
12953  case X86ISD::PUNPCKLQDQ:
12954  case X86ISD::UNPCKLPS:
12955  case X86ISD::UNPCKLPD:
12956  case X86ISD::VUNPCKLPSY:
12957  case X86ISD::VUNPCKLPDY:
12958  case X86ISD::MOVHLPS:
12959  case X86ISD::MOVLHPS:
12960  case X86ISD::PSHUFD:
12961  case X86ISD::PSHUFHW:
12962  case X86ISD::PSHUFLW:
12963  case X86ISD::MOVSS:
12964  case X86ISD::MOVSD:
12965  case X86ISD::VPERMILPS:
12966  case X86ISD::VPERMILPSY:
12967  case X86ISD::VPERMILPD:
12968  case X86ISD::VPERMILPDY:
12969  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
12970  }
12971
12972  return SDValue();
12973}
12974
12975/// isTypeDesirableForOp - Return true if the target has native support for
12976/// the specified value type and it is 'desirable' to use the type for the
12977/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
12978/// instruction encodings are longer and some i16 instructions are slow.
12979bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
12980  if (!isTypeLegal(VT))
12981    return false;
12982  if (VT != MVT::i16)
12983    return true;
12984
12985  switch (Opc) {
12986  default:
12987    return true;
12988  case ISD::LOAD:
12989  case ISD::SIGN_EXTEND:
12990  case ISD::ZERO_EXTEND:
12991  case ISD::ANY_EXTEND:
12992  case ISD::SHL:
12993  case ISD::SRL:
12994  case ISD::SUB:
12995  case ISD::ADD:
12996  case ISD::MUL:
12997  case ISD::AND:
12998  case ISD::OR:
12999  case ISD::XOR:
13000    return false;
13001  }
13002}
13003
13004/// IsDesirableToPromoteOp - This method query the target whether it is
13005/// beneficial for dag combiner to promote the specified node. If true, it
13006/// should return the desired promotion type by reference.
13007bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
13008  EVT VT = Op.getValueType();
13009  if (VT != MVT::i16)
13010    return false;
13011
13012  bool Promote = false;
13013  bool Commute = false;
13014  switch (Op.getOpcode()) {
13015  default: break;
13016  case ISD::LOAD: {
13017    LoadSDNode *LD = cast<LoadSDNode>(Op);
13018    // If the non-extending load has a single use and it's not live out, then it
13019    // might be folded.
13020    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
13021                                                     Op.hasOneUse()*/) {
13022      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
13023             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
13024        // The only case where we'd want to promote LOAD (rather then it being
13025        // promoted as an operand is when it's only use is liveout.
13026        if (UI->getOpcode() != ISD::CopyToReg)
13027          return false;
13028      }
13029    }
13030    Promote = true;
13031    break;
13032  }
13033  case ISD::SIGN_EXTEND:
13034  case ISD::ZERO_EXTEND:
13035  case ISD::ANY_EXTEND:
13036    Promote = true;
13037    break;
13038  case ISD::SHL:
13039  case ISD::SRL: {
13040    SDValue N0 = Op.getOperand(0);
13041    // Look out for (store (shl (load), x)).
13042    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
13043      return false;
13044    Promote = true;
13045    break;
13046  }
13047  case ISD::ADD:
13048  case ISD::MUL:
13049  case ISD::AND:
13050  case ISD::OR:
13051  case ISD::XOR:
13052    Commute = true;
13053    // fallthrough
13054  case ISD::SUB: {
13055    SDValue N0 = Op.getOperand(0);
13056    SDValue N1 = Op.getOperand(1);
13057    if (!Commute && MayFoldLoad(N1))
13058      return false;
13059    // Avoid disabling potential load folding opportunities.
13060    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
13061      return false;
13062    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
13063      return false;
13064    Promote = true;
13065  }
13066  }
13067
13068  PVT = MVT::i32;
13069  return Promote;
13070}
13071
13072//===----------------------------------------------------------------------===//
13073//                           X86 Inline Assembly Support
13074//===----------------------------------------------------------------------===//
13075
13076bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
13077  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
13078
13079  std::string AsmStr = IA->getAsmString();
13080
13081  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
13082  SmallVector<StringRef, 4> AsmPieces;
13083  SplitString(AsmStr, AsmPieces, ";\n");
13084
13085  switch (AsmPieces.size()) {
13086  default: return false;
13087  case 1:
13088    AsmStr = AsmPieces[0];
13089    AsmPieces.clear();
13090    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
13091
13092    // FIXME: this should verify that we are targeting a 486 or better.  If not,
13093    // we will turn this bswap into something that will be lowered to logical ops
13094    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
13095    // so don't worry about this.
13096    // bswap $0
13097    if (AsmPieces.size() == 2 &&
13098        (AsmPieces[0] == "bswap" ||
13099         AsmPieces[0] == "bswapq" ||
13100         AsmPieces[0] == "bswapl") &&
13101        (AsmPieces[1] == "$0" ||
13102         AsmPieces[1] == "${0:q}")) {
13103      // No need to check constraints, nothing other than the equivalent of
13104      // "=r,0" would be valid here.
13105      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13106      if (!Ty || Ty->getBitWidth() % 16 != 0)
13107        return false;
13108      return IntrinsicLowering::LowerToByteSwap(CI);
13109    }
13110    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
13111    if (CI->getType()->isIntegerTy(16) &&
13112        AsmPieces.size() == 3 &&
13113        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
13114        AsmPieces[1] == "$$8," &&
13115        AsmPieces[2] == "${0:w}" &&
13116        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
13117      AsmPieces.clear();
13118      const std::string &ConstraintsStr = IA->getConstraintString();
13119      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
13120      std::sort(AsmPieces.begin(), AsmPieces.end());
13121      if (AsmPieces.size() == 4 &&
13122          AsmPieces[0] == "~{cc}" &&
13123          AsmPieces[1] == "~{dirflag}" &&
13124          AsmPieces[2] == "~{flags}" &&
13125          AsmPieces[3] == "~{fpsr}") {
13126        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13127        if (!Ty || Ty->getBitWidth() % 16 != 0)
13128          return false;
13129        return IntrinsicLowering::LowerToByteSwap(CI);
13130      }
13131    }
13132    break;
13133  case 3:
13134    if (CI->getType()->isIntegerTy(32) &&
13135        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
13136      SmallVector<StringRef, 4> Words;
13137      SplitString(AsmPieces[0], Words, " \t,");
13138      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
13139          Words[2] == "${0:w}") {
13140        Words.clear();
13141        SplitString(AsmPieces[1], Words, " \t,");
13142        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
13143            Words[2] == "$0") {
13144          Words.clear();
13145          SplitString(AsmPieces[2], Words, " \t,");
13146          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
13147              Words[2] == "${0:w}") {
13148            AsmPieces.clear();
13149            const std::string &ConstraintsStr = IA->getConstraintString();
13150            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
13151            std::sort(AsmPieces.begin(), AsmPieces.end());
13152            if (AsmPieces.size() == 4 &&
13153                AsmPieces[0] == "~{cc}" &&
13154                AsmPieces[1] == "~{dirflag}" &&
13155                AsmPieces[2] == "~{flags}" &&
13156                AsmPieces[3] == "~{fpsr}") {
13157              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13158              if (!Ty || Ty->getBitWidth() % 16 != 0)
13159                return false;
13160              return IntrinsicLowering::LowerToByteSwap(CI);
13161            }
13162          }
13163        }
13164      }
13165    }
13166
13167    if (CI->getType()->isIntegerTy(64)) {
13168      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
13169      if (Constraints.size() >= 2 &&
13170          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
13171          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
13172        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
13173        SmallVector<StringRef, 4> Words;
13174        SplitString(AsmPieces[0], Words, " \t");
13175        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
13176          Words.clear();
13177          SplitString(AsmPieces[1], Words, " \t");
13178          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
13179            Words.clear();
13180            SplitString(AsmPieces[2], Words, " \t,");
13181            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
13182                Words[2] == "%edx") {
13183              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13184              if (!Ty || Ty->getBitWidth() % 16 != 0)
13185                return false;
13186              return IntrinsicLowering::LowerToByteSwap(CI);
13187            }
13188          }
13189        }
13190      }
13191    }
13192    break;
13193  }
13194  return false;
13195}
13196
13197
13198
13199/// getConstraintType - Given a constraint letter, return the type of
13200/// constraint it is for this target.
13201X86TargetLowering::ConstraintType
13202X86TargetLowering::getConstraintType(const std::string &Constraint) const {
13203  if (Constraint.size() == 1) {
13204    switch (Constraint[0]) {
13205    case 'R':
13206    case 'q':
13207    case 'Q':
13208    case 'f':
13209    case 't':
13210    case 'u':
13211    case 'y':
13212    case 'x':
13213    case 'Y':
13214    case 'l':
13215      return C_RegisterClass;
13216    case 'a':
13217    case 'b':
13218    case 'c':
13219    case 'd':
13220    case 'S':
13221    case 'D':
13222    case 'A':
13223      return C_Register;
13224    case 'I':
13225    case 'J':
13226    case 'K':
13227    case 'L':
13228    case 'M':
13229    case 'N':
13230    case 'G':
13231    case 'C':
13232    case 'e':
13233    case 'Z':
13234      return C_Other;
13235    default:
13236      break;
13237    }
13238  }
13239  return TargetLowering::getConstraintType(Constraint);
13240}
13241
13242/// Examine constraint type and operand type and determine a weight value.
13243/// This object must already have been set up with the operand type
13244/// and the current alternative constraint selected.
13245TargetLowering::ConstraintWeight
13246  X86TargetLowering::getSingleConstraintMatchWeight(
13247    AsmOperandInfo &info, const char *constraint) const {
13248  ConstraintWeight weight = CW_Invalid;
13249  Value *CallOperandVal = info.CallOperandVal;
13250    // If we don't have a value, we can't do a match,
13251    // but allow it at the lowest weight.
13252  if (CallOperandVal == NULL)
13253    return CW_Default;
13254  Type *type = CallOperandVal->getType();
13255  // Look at the constraint type.
13256  switch (*constraint) {
13257  default:
13258    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13259  case 'R':
13260  case 'q':
13261  case 'Q':
13262  case 'a':
13263  case 'b':
13264  case 'c':
13265  case 'd':
13266  case 'S':
13267  case 'D':
13268  case 'A':
13269    if (CallOperandVal->getType()->isIntegerTy())
13270      weight = CW_SpecificReg;
13271    break;
13272  case 'f':
13273  case 't':
13274  case 'u':
13275      if (type->isFloatingPointTy())
13276        weight = CW_SpecificReg;
13277      break;
13278  case 'y':
13279      if (type->isX86_MMXTy() && Subtarget->hasMMX())
13280        weight = CW_SpecificReg;
13281      break;
13282  case 'x':
13283  case 'Y':
13284    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
13285      weight = CW_Register;
13286    break;
13287  case 'I':
13288    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
13289      if (C->getZExtValue() <= 31)
13290        weight = CW_Constant;
13291    }
13292    break;
13293  case 'J':
13294    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13295      if (C->getZExtValue() <= 63)
13296        weight = CW_Constant;
13297    }
13298    break;
13299  case 'K':
13300    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13301      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
13302        weight = CW_Constant;
13303    }
13304    break;
13305  case 'L':
13306    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13307      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
13308        weight = CW_Constant;
13309    }
13310    break;
13311  case 'M':
13312    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13313      if (C->getZExtValue() <= 3)
13314        weight = CW_Constant;
13315    }
13316    break;
13317  case 'N':
13318    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13319      if (C->getZExtValue() <= 0xff)
13320        weight = CW_Constant;
13321    }
13322    break;
13323  case 'G':
13324  case 'C':
13325    if (dyn_cast<ConstantFP>(CallOperandVal)) {
13326      weight = CW_Constant;
13327    }
13328    break;
13329  case 'e':
13330    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13331      if ((C->getSExtValue() >= -0x80000000LL) &&
13332          (C->getSExtValue() <= 0x7fffffffLL))
13333        weight = CW_Constant;
13334    }
13335    break;
13336  case 'Z':
13337    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13338      if (C->getZExtValue() <= 0xffffffff)
13339        weight = CW_Constant;
13340    }
13341    break;
13342  }
13343  return weight;
13344}
13345
13346/// LowerXConstraint - try to replace an X constraint, which matches anything,
13347/// with another that has more specific requirements based on the type of the
13348/// corresponding operand.
13349const char *X86TargetLowering::
13350LowerXConstraint(EVT ConstraintVT) const {
13351  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
13352  // 'f' like normal targets.
13353  if (ConstraintVT.isFloatingPoint()) {
13354    if (Subtarget->hasXMMInt())
13355      return "Y";
13356    if (Subtarget->hasXMM())
13357      return "x";
13358  }
13359
13360  return TargetLowering::LowerXConstraint(ConstraintVT);
13361}
13362
13363/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13364/// vector.  If it is invalid, don't add anything to Ops.
13365void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13366                                                     std::string &Constraint,
13367                                                     std::vector<SDValue>&Ops,
13368                                                     SelectionDAG &DAG) const {
13369  SDValue Result(0, 0);
13370
13371  // Only support length 1 constraints for now.
13372  if (Constraint.length() > 1) return;
13373
13374  char ConstraintLetter = Constraint[0];
13375  switch (ConstraintLetter) {
13376  default: break;
13377  case 'I':
13378    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13379      if (C->getZExtValue() <= 31) {
13380        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13381        break;
13382      }
13383    }
13384    return;
13385  case 'J':
13386    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13387      if (C->getZExtValue() <= 63) {
13388        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13389        break;
13390      }
13391    }
13392    return;
13393  case 'K':
13394    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13395      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
13396        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13397        break;
13398      }
13399    }
13400    return;
13401  case 'N':
13402    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13403      if (C->getZExtValue() <= 255) {
13404        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13405        break;
13406      }
13407    }
13408    return;
13409  case 'e': {
13410    // 32-bit signed value
13411    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13412      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
13413                                           C->getSExtValue())) {
13414        // Widen to 64 bits here to get it sign extended.
13415        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
13416        break;
13417      }
13418    // FIXME gcc accepts some relocatable values here too, but only in certain
13419    // memory models; it's complicated.
13420    }
13421    return;
13422  }
13423  case 'Z': {
13424    // 32-bit unsigned value
13425    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13426      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
13427                                           C->getZExtValue())) {
13428        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13429        break;
13430      }
13431    }
13432    // FIXME gcc accepts some relocatable values here too, but only in certain
13433    // memory models; it's complicated.
13434    return;
13435  }
13436  case 'i': {
13437    // Literal immediates are always ok.
13438    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
13439      // Widen to 64 bits here to get it sign extended.
13440      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
13441      break;
13442    }
13443
13444    // In any sort of PIC mode addresses need to be computed at runtime by
13445    // adding in a register or some sort of table lookup.  These can't
13446    // be used as immediates.
13447    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
13448      return;
13449
13450    // If we are in non-pic codegen mode, we allow the address of a global (with
13451    // an optional displacement) to be used with 'i'.
13452    GlobalAddressSDNode *GA = 0;
13453    int64_t Offset = 0;
13454
13455    // Match either (GA), (GA+C), (GA+C1+C2), etc.
13456    while (1) {
13457      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
13458        Offset += GA->getOffset();
13459        break;
13460      } else if (Op.getOpcode() == ISD::ADD) {
13461        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
13462          Offset += C->getZExtValue();
13463          Op = Op.getOperand(0);
13464          continue;
13465        }
13466      } else if (Op.getOpcode() == ISD::SUB) {
13467        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
13468          Offset += -C->getZExtValue();
13469          Op = Op.getOperand(0);
13470          continue;
13471        }
13472      }
13473
13474      // Otherwise, this isn't something we can handle, reject it.
13475      return;
13476    }
13477
13478    const GlobalValue *GV = GA->getGlobal();
13479    // If we require an extra load to get this address, as in PIC mode, we
13480    // can't accept it.
13481    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
13482                                                        getTargetMachine())))
13483      return;
13484
13485    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
13486                                        GA->getValueType(0), Offset);
13487    break;
13488  }
13489  }
13490
13491  if (Result.getNode()) {
13492    Ops.push_back(Result);
13493    return;
13494  }
13495  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13496}
13497
13498std::pair<unsigned, const TargetRegisterClass*>
13499X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
13500                                                EVT VT) const {
13501  // First, see if this is a constraint that directly corresponds to an LLVM
13502  // register class.
13503  if (Constraint.size() == 1) {
13504    // GCC Constraint Letters
13505    switch (Constraint[0]) {
13506    default: break;
13507      // TODO: Slight differences here in allocation order and leaving
13508      // RIP in the class. Do they matter any more here than they do
13509      // in the normal allocation?
13510    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
13511      if (Subtarget->is64Bit()) {
13512	if (VT == MVT::i32 || VT == MVT::f32)
13513	  return std::make_pair(0U, X86::GR32RegisterClass);
13514	else if (VT == MVT::i16)
13515	  return std::make_pair(0U, X86::GR16RegisterClass);
13516	else if (VT == MVT::i8 || VT == MVT::i1)
13517	  return std::make_pair(0U, X86::GR8RegisterClass);
13518	else if (VT == MVT::i64 || VT == MVT::f64)
13519	  return std::make_pair(0U, X86::GR64RegisterClass);
13520	break;
13521      }
13522      // 32-bit fallthrough
13523    case 'Q':   // Q_REGS
13524      if (VT == MVT::i32 || VT == MVT::f32)
13525	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
13526      else if (VT == MVT::i16)
13527	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
13528      else if (VT == MVT::i8 || VT == MVT::i1)
13529	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
13530      else if (VT == MVT::i64)
13531	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
13532      break;
13533    case 'r':   // GENERAL_REGS
13534    case 'l':   // INDEX_REGS
13535      if (VT == MVT::i8 || VT == MVT::i1)
13536        return std::make_pair(0U, X86::GR8RegisterClass);
13537      if (VT == MVT::i16)
13538        return std::make_pair(0U, X86::GR16RegisterClass);
13539      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
13540        return std::make_pair(0U, X86::GR32RegisterClass);
13541      return std::make_pair(0U, X86::GR64RegisterClass);
13542    case 'R':   // LEGACY_REGS
13543      if (VT == MVT::i8 || VT == MVT::i1)
13544        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
13545      if (VT == MVT::i16)
13546        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
13547      if (VT == MVT::i32 || !Subtarget->is64Bit())
13548        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
13549      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
13550    case 'f':  // FP Stack registers.
13551      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
13552      // value to the correct fpstack register class.
13553      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
13554        return std::make_pair(0U, X86::RFP32RegisterClass);
13555      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
13556        return std::make_pair(0U, X86::RFP64RegisterClass);
13557      return std::make_pair(0U, X86::RFP80RegisterClass);
13558    case 'y':   // MMX_REGS if MMX allowed.
13559      if (!Subtarget->hasMMX()) break;
13560      return std::make_pair(0U, X86::VR64RegisterClass);
13561    case 'Y':   // SSE_REGS if SSE2 allowed
13562      if (!Subtarget->hasXMMInt()) break;
13563      // FALL THROUGH.
13564    case 'x':   // SSE_REGS if SSE1 allowed
13565      if (!Subtarget->hasXMM()) break;
13566
13567      switch (VT.getSimpleVT().SimpleTy) {
13568      default: break;
13569      // Scalar SSE types.
13570      case MVT::f32:
13571      case MVT::i32:
13572        return std::make_pair(0U, X86::FR32RegisterClass);
13573      case MVT::f64:
13574      case MVT::i64:
13575        return std::make_pair(0U, X86::FR64RegisterClass);
13576      // Vector types.
13577      case MVT::v16i8:
13578      case MVT::v8i16:
13579      case MVT::v4i32:
13580      case MVT::v2i64:
13581      case MVT::v4f32:
13582      case MVT::v2f64:
13583        return std::make_pair(0U, X86::VR128RegisterClass);
13584      }
13585      break;
13586    }
13587  }
13588
13589  // Use the default implementation in TargetLowering to convert the register
13590  // constraint into a member of a register class.
13591  std::pair<unsigned, const TargetRegisterClass*> Res;
13592  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
13593
13594  // Not found as a standard register?
13595  if (Res.second == 0) {
13596    // Map st(0) -> st(7) -> ST0
13597    if (Constraint.size() == 7 && Constraint[0] == '{' &&
13598        tolower(Constraint[1]) == 's' &&
13599        tolower(Constraint[2]) == 't' &&
13600        Constraint[3] == '(' &&
13601        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
13602        Constraint[5] == ')' &&
13603        Constraint[6] == '}') {
13604
13605      Res.first = X86::ST0+Constraint[4]-'0';
13606      Res.second = X86::RFP80RegisterClass;
13607      return Res;
13608    }
13609
13610    // GCC allows "st(0)" to be called just plain "st".
13611    if (StringRef("{st}").equals_lower(Constraint)) {
13612      Res.first = X86::ST0;
13613      Res.second = X86::RFP80RegisterClass;
13614      return Res;
13615    }
13616
13617    // flags -> EFLAGS
13618    if (StringRef("{flags}").equals_lower(Constraint)) {
13619      Res.first = X86::EFLAGS;
13620      Res.second = X86::CCRRegisterClass;
13621      return Res;
13622    }
13623
13624    // 'A' means EAX + EDX.
13625    if (Constraint == "A") {
13626      Res.first = X86::EAX;
13627      Res.second = X86::GR32_ADRegisterClass;
13628      return Res;
13629    }
13630    return Res;
13631  }
13632
13633  // Otherwise, check to see if this is a register class of the wrong value
13634  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
13635  // turn into {ax},{dx}.
13636  if (Res.second->hasType(VT))
13637    return Res;   // Correct type already, nothing to do.
13638
13639  // All of the single-register GCC register classes map their values onto
13640  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
13641  // really want an 8-bit or 32-bit register, map to the appropriate register
13642  // class and return the appropriate register.
13643  if (Res.second == X86::GR16RegisterClass) {
13644    if (VT == MVT::i8) {
13645      unsigned DestReg = 0;
13646      switch (Res.first) {
13647      default: break;
13648      case X86::AX: DestReg = X86::AL; break;
13649      case X86::DX: DestReg = X86::DL; break;
13650      case X86::CX: DestReg = X86::CL; break;
13651      case X86::BX: DestReg = X86::BL; break;
13652      }
13653      if (DestReg) {
13654        Res.first = DestReg;
13655        Res.second = X86::GR8RegisterClass;
13656      }
13657    } else if (VT == MVT::i32) {
13658      unsigned DestReg = 0;
13659      switch (Res.first) {
13660      default: break;
13661      case X86::AX: DestReg = X86::EAX; break;
13662      case X86::DX: DestReg = X86::EDX; break;
13663      case X86::CX: DestReg = X86::ECX; break;
13664      case X86::BX: DestReg = X86::EBX; break;
13665      case X86::SI: DestReg = X86::ESI; break;
13666      case X86::DI: DestReg = X86::EDI; break;
13667      case X86::BP: DestReg = X86::EBP; break;
13668      case X86::SP: DestReg = X86::ESP; break;
13669      }
13670      if (DestReg) {
13671        Res.first = DestReg;
13672        Res.second = X86::GR32RegisterClass;
13673      }
13674    } else if (VT == MVT::i64) {
13675      unsigned DestReg = 0;
13676      switch (Res.first) {
13677      default: break;
13678      case X86::AX: DestReg = X86::RAX; break;
13679      case X86::DX: DestReg = X86::RDX; break;
13680      case X86::CX: DestReg = X86::RCX; break;
13681      case X86::BX: DestReg = X86::RBX; break;
13682      case X86::SI: DestReg = X86::RSI; break;
13683      case X86::DI: DestReg = X86::RDI; break;
13684      case X86::BP: DestReg = X86::RBP; break;
13685      case X86::SP: DestReg = X86::RSP; break;
13686      }
13687      if (DestReg) {
13688        Res.first = DestReg;
13689        Res.second = X86::GR64RegisterClass;
13690      }
13691    }
13692  } else if (Res.second == X86::FR32RegisterClass ||
13693             Res.second == X86::FR64RegisterClass ||
13694             Res.second == X86::VR128RegisterClass) {
13695    // Handle references to XMM physical registers that got mapped into the
13696    // wrong class.  This can happen with constraints like {xmm0} where the
13697    // target independent register mapper will just pick the first match it can
13698    // find, ignoring the required type.
13699    if (VT == MVT::f32)
13700      Res.second = X86::FR32RegisterClass;
13701    else if (VT == MVT::f64)
13702      Res.second = X86::FR64RegisterClass;
13703    else if (X86::VR128RegisterClass->hasType(VT))
13704      Res.second = X86::VR128RegisterClass;
13705  }
13706
13707  return Res;
13708}
13709