X86ISelLowering.cpp revision e6d8fa7d0b4352902886930debe459b9f477303e
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86InstrBuilder.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/VariadicFunction.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/IR/CallingConv.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GlobalAlias.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/MC/MCContext.h"
44#include "llvm/MC/MCExpr.h"
45#include "llvm/MC/MCSymbol.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
89  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
90                               VecIdx);
91
92  return Result;
93}
94
95/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
96/// sets things up to match to an AVX VINSERTF128 instruction or a
97/// simple superregister reference.  Idx is an index in the 128 bits
98/// we want.  It need not be aligned to a 128-bit bounday.  That makes
99/// lowering INSERT_VECTOR_ELT operations easier.
100static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
101                                  unsigned IdxVal, SelectionDAG &DAG,
102                                  DebugLoc dl) {
103  // Inserting UNDEF is Result
104  if (Vec.getOpcode() == ISD::UNDEF)
105    return Result;
106
107  EVT VT = Vec.getValueType();
108  assert(VT.is128BitVector() && "Unexpected vector size!");
109
110  EVT ElVT = VT.getVectorElementType();
111  EVT ResultVT = Result.getValueType();
112
113  // Insert the relevant 128 bits.
114  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
115
116  // This is the index of the first element of the 128-bit chunk
117  // we want.
118  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
119                               * ElemsPerChunk);
120
121  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
122  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
123                     VecIdx);
124}
125
126/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
127/// instructions. This is used because creating CONCAT_VECTOR nodes of
128/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
129/// large BUILD_VECTORS.
130static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
131                                   unsigned NumElems, SelectionDAG &DAG,
132                                   DebugLoc dl) {
133  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
134  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X86_64MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetLinux())
148    return new X86LinuxTargetObjectFile();
149  if (Subtarget->isTargetELF())
150    return new TargetLoweringObjectFileELF();
151  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
152    return new TargetLoweringObjectFileCOFF();
153  llvm_unreachable("unknown subtarget type");
154}
155
156X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
157  : TargetLowering(TM, createTLOF(TM)) {
158  Subtarget = &TM.getSubtarget<X86Subtarget>();
159  X86ScalarSSEf64 = Subtarget->hasSSE2();
160  X86ScalarSSEf32 = Subtarget->hasSSE1();
161
162  RegInfo = TM.getRegisterInfo();
163  TD = getDataLayout();
164
165  // Set up the TargetLowering object.
166  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
167
168  // X86 is weird, it always uses i8 for shift amounts and setcc results.
169  setBooleanContents(ZeroOrOneBooleanContent);
170  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
171  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
172
173  // For 64-bit since we have so many registers use the ILP scheduler, for
174  // 32-bit code use the register pressure specific scheduling.
175  // For Atom, always use ILP scheduling.
176  if (Subtarget->isAtom())
177    setSchedulingPreference(Sched::ILP);
178  else if (Subtarget->is64Bit())
179    setSchedulingPreference(Sched::ILP);
180  else
181    setSchedulingPreference(Sched::RegPressure);
182  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
183
184  // Bypass i32 with i8 on Atom when compiling with O2
185  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default)
186    addBypassSlowDiv(32, 8);
187
188  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
189    // Setup Windows compiler runtime calls.
190    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
191    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
192    setLibcallName(RTLIB::SREM_I64, "_allrem");
193    setLibcallName(RTLIB::UREM_I64, "_aullrem");
194    setLibcallName(RTLIB::MUL_I64, "_allmul");
195    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
196    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
197    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
200
201    // The _ftol2 runtime function has an unusual calling conv, which
202    // is modeled by a special pseudo-instruction.
203    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
204    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
205    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
206    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
207  }
208
209  if (Subtarget->isTargetDarwin()) {
210    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
211    setUseUnderscoreSetJmp(false);
212    setUseUnderscoreLongJmp(false);
213  } else if (Subtarget->isTargetMingw()) {
214    // MS runtime is weird: it exports _setjmp, but longjmp!
215    setUseUnderscoreSetJmp(true);
216    setUseUnderscoreLongJmp(false);
217  } else {
218    setUseUnderscoreSetJmp(true);
219    setUseUnderscoreLongJmp(true);
220  }
221
222  // Set up the register classes.
223  addRegisterClass(MVT::i8, &X86::GR8RegClass);
224  addRegisterClass(MVT::i16, &X86::GR16RegClass);
225  addRegisterClass(MVT::i32, &X86::GR32RegClass);
226  if (Subtarget->is64Bit())
227    addRegisterClass(MVT::i64, &X86::GR64RegClass);
228
229  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
230
231  // We don't accept any truncstore of integer registers.
232  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
233  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
235  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
236  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
237  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
238
239  // SETOEQ and SETUNE require checking two conditions.
240  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
243  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
246
247  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
248  // operation.
249  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
252
253  if (Subtarget->is64Bit()) {
254    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
256  } else if (!TM.Options.UseSoftFloat) {
257    // We have an algorithm for SSE2->double, and we turn this into a
258    // 64-bit FILD followed by conditional FADD for other targets.
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
260    // We have an algorithm for SSE2, and we turn this into a 64-bit
261    // FILD for other targets.
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
263  }
264
265  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
266  // this operation.
267  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
269
270  if (!TM.Options.UseSoftFloat) {
271    // SSE has no i16 to fp conversion, only i32
272    if (X86ScalarSSEf32) {
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
274      // f32 and f64 cases are Legal, f80 case is not
275      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
276    } else {
277      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
279    }
280  } else {
281    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
283  }
284
285  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
286  // are Legal, f80 is custom lowered.
287  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
288  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
289
290  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
291  // this operation.
292  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
294
295  if (X86ScalarSSEf32) {
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
297    // f32 and f64 cases are Legal, f80 case is not
298    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
299  } else {
300    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
302  }
303
304  // Handle FP_TO_UINT by promoting the destination to a larger signed
305  // conversion.
306  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
309
310  if (Subtarget->is64Bit()) {
311    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
313  } else if (!TM.Options.UseSoftFloat) {
314    // Since AVX is a superset of SSE3, only check for SSE here.
315    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
316      // Expand FP_TO_UINT into a select.
317      // FIXME: We would like to use a Custom expander here eventually to do
318      // the optimal thing for SSE vs. the default expansion in the legalizer.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
320    else
321      // With SSE3 we can use fisttpll to convert to a signed i64; without
322      // SSE, we're stuck with a fistpll.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
324  }
325
326  if (isTargetFTOL()) {
327    // Use the _ftol2 runtime function, which has a pseudo-instruction
328    // to handle its weird calling convention.
329    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
330  }
331
332  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
333  if (!X86ScalarSSEf64) {
334    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
335    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
336    if (Subtarget->is64Bit()) {
337      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
338      // Without SSE, i64->f64 goes through memory.
339      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
340    }
341  }
342
343  // Scalar integer divide and remainder are lowered to use operations that
344  // produce two results, to match the available instructions. This exposes
345  // the two-result form to trivial CSE, which is able to combine x/y and x%y
346  // into a single instruction.
347  //
348  // Scalar integer multiply-high is also lowered to use two-result
349  // operations, to match the available instructions. However, plain multiply
350  // (low) operations are left as Legal, as there are single-result
351  // instructions for this in x86. Using the two-result multiply instructions
352  // when both high and low results are needed must be arranged by dagcombine.
353  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
354    MVT VT = IntVTs[i];
355    setOperationAction(ISD::MULHS, VT, Expand);
356    setOperationAction(ISD::MULHU, VT, Expand);
357    setOperationAction(ISD::SDIV, VT, Expand);
358    setOperationAction(ISD::UDIV, VT, Expand);
359    setOperationAction(ISD::SREM, VT, Expand);
360    setOperationAction(ISD::UREM, VT, Expand);
361
362    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
363    setOperationAction(ISD::ADDC, VT, Custom);
364    setOperationAction(ISD::ADDE, VT, Custom);
365    setOperationAction(ISD::SUBC, VT, Custom);
366    setOperationAction(ISD::SUBE, VT, Custom);
367  }
368
369  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
370  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
371  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
372  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
373  if (Subtarget->is64Bit())
374    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
375  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
376  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
377  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
378  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
379  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
380  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
381  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
382  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
383
384  // Promote the i8 variants and force them on up to i32 which has a shorter
385  // encoding.
386  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
387  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
388  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
389  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
390  if (Subtarget->hasBMI()) {
391    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
392    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
393    if (Subtarget->is64Bit())
394      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
395  } else {
396    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
397    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
398    if (Subtarget->is64Bit())
399      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
400  }
401
402  if (Subtarget->hasLZCNT()) {
403    // When promoting the i8 variants, force them to i32 for a shorter
404    // encoding.
405    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
406    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
407    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
408    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
409    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
411    if (Subtarget->is64Bit())
412      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
413  } else {
414    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
415    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
416    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
417    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
418    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
419    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
420    if (Subtarget->is64Bit()) {
421      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
422      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
423    }
424  }
425
426  if (Subtarget->hasPOPCNT()) {
427    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
428  } else {
429    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
430    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
431    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
432    if (Subtarget->is64Bit())
433      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
434  }
435
436  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
437  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
438
439  // These should be promoted to a larger select which is supported.
440  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
441  // X86 wants to expand cmov itself.
442  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
443  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
447  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
453  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
454  if (Subtarget->is64Bit()) {
455    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
456    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
457  }
458  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
459  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intened to support
460  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
461  // support continuation, user-level threading, and etc.. As a result, no
462  // other SjLj exception interfaces are implemented and please don't build
463  // your own exception handling based on them.
464  // LLVM/Clang supports zero-cost DWARF exception handling.
465  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
466  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
467
468  // Darwin ABI issue.
469  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
470  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
471  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
472  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
473  if (Subtarget->is64Bit())
474    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
475  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
476  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
477  if (Subtarget->is64Bit()) {
478    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
479    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
480    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
481    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
482    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
483  }
484  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
485  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
486  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
487  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
488  if (Subtarget->is64Bit()) {
489    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
490    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
491    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
492  }
493
494  if (Subtarget->hasSSE1())
495    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
496
497  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
498  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
499
500  // On X86 and X86-64, atomic operations are lowered to locked instructions.
501  // Locked instructions, in turn, have implicit fence semantics (all memory
502  // operations are flushed before issuing the locked instruction, and they
503  // are not buffered), so we can fold away the common pattern of
504  // fence-atomic-fence.
505  setShouldFoldAtomicFences(true);
506
507  // Expand certain atomics
508  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
509    MVT VT = IntVTs[i];
510    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
512    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
513  }
514
515  if (!Subtarget->is64Bit()) {
516    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
517    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
518    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
519    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
520    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
521    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
522    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
523    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
524    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
525    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
526    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
527    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
528  }
529
530  if (Subtarget->hasCmpxchg16b()) {
531    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
532  }
533
534  // FIXME - use subtarget debug flags
535  if (!Subtarget->isTargetDarwin() &&
536      !Subtarget->isTargetELF() &&
537      !Subtarget->isTargetCygMing()) {
538    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
539  }
540
541  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
542  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
543  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
544  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
545  if (Subtarget->is64Bit()) {
546    setExceptionPointerRegister(X86::RAX);
547    setExceptionSelectorRegister(X86::RDX);
548  } else {
549    setExceptionPointerRegister(X86::EAX);
550    setExceptionSelectorRegister(X86::EDX);
551  }
552  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
553  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
554
555  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
556  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
557
558  setOperationAction(ISD::TRAP, MVT::Other, Legal);
559  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
560
561  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
562  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
563  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
564  if (Subtarget->is64Bit()) {
565    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
566    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
567  } else {
568    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
569    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
570  }
571
572  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
573  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
574
575  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
576    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
577                       MVT::i64 : MVT::i32, Custom);
578  else if (TM.Options.EnableSegmentedStacks)
579    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
580                       MVT::i64 : MVT::i32, Custom);
581  else
582    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
583                       MVT::i64 : MVT::i32, Expand);
584
585  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
586    // f32 and f64 use SSE.
587    // Set up the FP register classes.
588    addRegisterClass(MVT::f32, &X86::FR32RegClass);
589    addRegisterClass(MVT::f64, &X86::FR64RegClass);
590
591    // Use ANDPD to simulate FABS.
592    setOperationAction(ISD::FABS , MVT::f64, Custom);
593    setOperationAction(ISD::FABS , MVT::f32, Custom);
594
595    // Use XORP to simulate FNEG.
596    setOperationAction(ISD::FNEG , MVT::f64, Custom);
597    setOperationAction(ISD::FNEG , MVT::f32, Custom);
598
599    // Use ANDPD and ORPD to simulate FCOPYSIGN.
600    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
601    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
602
603    // Lower this to FGETSIGNx86 plus an AND.
604    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
605    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
606
607    // We don't support sin/cos/fmod
608    setOperationAction(ISD::FSIN , MVT::f64, Expand);
609    setOperationAction(ISD::FCOS , MVT::f64, Expand);
610    setOperationAction(ISD::FSIN , MVT::f32, Expand);
611    setOperationAction(ISD::FCOS , MVT::f32, Expand);
612
613    // Expand FP immediates into loads from the stack, except for the special
614    // cases we handle.
615    addLegalFPImmediate(APFloat(+0.0)); // xorpd
616    addLegalFPImmediate(APFloat(+0.0f)); // xorps
617  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
618    // Use SSE for f32, x87 for f64.
619    // Set up the FP register classes.
620    addRegisterClass(MVT::f32, &X86::FR32RegClass);
621    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
622
623    // Use ANDPS to simulate FABS.
624    setOperationAction(ISD::FABS , MVT::f32, Custom);
625
626    // Use XORP to simulate FNEG.
627    setOperationAction(ISD::FNEG , MVT::f32, Custom);
628
629    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
630
631    // Use ANDPS and ORPS to simulate FCOPYSIGN.
632    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
633    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
634
635    // We don't support sin/cos/fmod
636    setOperationAction(ISD::FSIN , MVT::f32, Expand);
637    setOperationAction(ISD::FCOS , MVT::f32, Expand);
638
639    // Special cases we handle for FP constants.
640    addLegalFPImmediate(APFloat(+0.0f)); // xorps
641    addLegalFPImmediate(APFloat(+0.0)); // FLD0
642    addLegalFPImmediate(APFloat(+1.0)); // FLD1
643    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
644    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
645
646    if (!TM.Options.UnsafeFPMath) {
647      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
648      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
649    }
650  } else if (!TM.Options.UseSoftFloat) {
651    // f32 and f64 in x87.
652    // Set up the FP register classes.
653    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
654    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
655
656    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
657    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
658    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
659    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
660
661    if (!TM.Options.UnsafeFPMath) {
662      setOperationAction(ISD::FSIN           , MVT::f32  , Expand);
663      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
664      setOperationAction(ISD::FCOS           , MVT::f32  , Expand);
665      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
666    }
667    addLegalFPImmediate(APFloat(+0.0)); // FLD0
668    addLegalFPImmediate(APFloat(+1.0)); // FLD1
669    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
670    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
671    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
672    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
673    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
674    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
675  }
676
677  // We don't support FMA.
678  setOperationAction(ISD::FMA, MVT::f64, Expand);
679  setOperationAction(ISD::FMA, MVT::f32, Expand);
680
681  // Long double always uses X87.
682  if (!TM.Options.UseSoftFloat) {
683    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
684    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
685    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
686    {
687      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
688      addLegalFPImmediate(TmpFlt);  // FLD0
689      TmpFlt.changeSign();
690      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
691
692      bool ignored;
693      APFloat TmpFlt2(+1.0);
694      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
695                      &ignored);
696      addLegalFPImmediate(TmpFlt2);  // FLD1
697      TmpFlt2.changeSign();
698      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
699    }
700
701    if (!TM.Options.UnsafeFPMath) {
702      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
703      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
704    }
705
706    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
707    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
708    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
709    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
710    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
711    setOperationAction(ISD::FMA, MVT::f80, Expand);
712  }
713
714  // Always use a library call for pow.
715  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
716  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
717  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
718
719  setOperationAction(ISD::FLOG, MVT::f80, Expand);
720  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
721  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
722  setOperationAction(ISD::FEXP, MVT::f80, Expand);
723  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
724
725  // First set operation action for all vector types to either promote
726  // (for widening) or expand (for scalarization). Then we will selectively
727  // turn on ones that can be effectively codegen'd.
728  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
729           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
730    MVT VT = (MVT::SimpleValueType)i;
731    setOperationAction(ISD::ADD , VT, Expand);
732    setOperationAction(ISD::SUB , VT, Expand);
733    setOperationAction(ISD::FADD, VT, Expand);
734    setOperationAction(ISD::FNEG, VT, Expand);
735    setOperationAction(ISD::FSUB, VT, Expand);
736    setOperationAction(ISD::MUL , VT, Expand);
737    setOperationAction(ISD::FMUL, VT, Expand);
738    setOperationAction(ISD::SDIV, VT, Expand);
739    setOperationAction(ISD::UDIV, VT, Expand);
740    setOperationAction(ISD::FDIV, VT, Expand);
741    setOperationAction(ISD::SREM, VT, Expand);
742    setOperationAction(ISD::UREM, VT, Expand);
743    setOperationAction(ISD::LOAD, VT, Expand);
744    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
745    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
746    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
747    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
748    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
749    setOperationAction(ISD::FABS, VT, Expand);
750    setOperationAction(ISD::FSIN, VT, Expand);
751    setOperationAction(ISD::FCOS, VT, Expand);
752    setOperationAction(ISD::FREM, VT, Expand);
753    setOperationAction(ISD::FMA,  VT, Expand);
754    setOperationAction(ISD::FPOWI, VT, Expand);
755    setOperationAction(ISD::FSQRT, VT, Expand);
756    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
757    setOperationAction(ISD::FFLOOR, VT, Expand);
758    setOperationAction(ISD::FCEIL, VT, Expand);
759    setOperationAction(ISD::FTRUNC, VT, Expand);
760    setOperationAction(ISD::FRINT, VT, Expand);
761    setOperationAction(ISD::FNEARBYINT, VT, Expand);
762    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
763    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
764    setOperationAction(ISD::SDIVREM, VT, Expand);
765    setOperationAction(ISD::UDIVREM, VT, Expand);
766    setOperationAction(ISD::FPOW, VT, Expand);
767    setOperationAction(ISD::CTPOP, VT, Expand);
768    setOperationAction(ISD::CTTZ, VT, Expand);
769    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
770    setOperationAction(ISD::CTLZ, VT, Expand);
771    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
772    setOperationAction(ISD::SHL, VT, Expand);
773    setOperationAction(ISD::SRA, VT, Expand);
774    setOperationAction(ISD::SRL, VT, Expand);
775    setOperationAction(ISD::ROTL, VT, Expand);
776    setOperationAction(ISD::ROTR, VT, Expand);
777    setOperationAction(ISD::BSWAP, VT, Expand);
778    setOperationAction(ISD::SETCC, VT, Expand);
779    setOperationAction(ISD::FLOG, VT, Expand);
780    setOperationAction(ISD::FLOG2, VT, Expand);
781    setOperationAction(ISD::FLOG10, VT, Expand);
782    setOperationAction(ISD::FEXP, VT, Expand);
783    setOperationAction(ISD::FEXP2, VT, Expand);
784    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
785    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
786    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
787    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
788    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
789    setOperationAction(ISD::TRUNCATE, VT, Expand);
790    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
791    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
792    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
793    setOperationAction(ISD::VSELECT, VT, Expand);
794    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
795             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
796      setTruncStoreAction(VT,
797                          (MVT::SimpleValueType)InnerVT, Expand);
798    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
799    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
800    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
801  }
802
803  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
804  // with -msoft-float, disable use of MMX as well.
805  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
806    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
807    // No operations on x86mmx supported, everything uses intrinsics.
808  }
809
810  // MMX-sized vectors (other than x86mmx) are expected to be expanded
811  // into smaller operations.
812  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
813  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
814  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
815  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
816  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
817  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
818  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
819  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
820  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
821  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
822  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
823  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
824  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
825  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
826  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
827  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
828  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
829  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
830  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
831  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
832  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
833  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
834  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
835  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
836  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
837  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
838  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
839  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
840  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
841
842  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
843    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
844
845    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
846    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
847    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
848    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
849    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
850    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
851    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
852    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
853    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
854    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
855    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
856    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
857  }
858
859  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
860    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
861
862    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
863    // registers cannot be used even for integer operations.
864    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
865    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
866    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
867    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
868
869    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
870    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
871    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
872    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
873    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
874    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
875    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
876    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
877    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
878    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
879    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
880    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
881    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
882    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
883    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
884    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
885    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
886    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
887
888    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
889    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
890    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
891    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
892
893    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
894    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
895    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
896    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
897    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
898
899    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
900    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
901      MVT VT = (MVT::SimpleValueType)i;
902      // Do not attempt to custom lower non-power-of-2 vectors
903      if (!isPowerOf2_32(VT.getVectorNumElements()))
904        continue;
905      // Do not attempt to custom lower non-128-bit vectors
906      if (!VT.is128BitVector())
907        continue;
908      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
909      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
910      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
911    }
912
913    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
914    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
915    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
916    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
917    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
918    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
919
920    if (Subtarget->is64Bit()) {
921      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
922      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
923    }
924
925    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
926    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
927      MVT VT = (MVT::SimpleValueType)i;
928
929      // Do not attempt to promote non-128-bit vectors
930      if (!VT.is128BitVector())
931        continue;
932
933      setOperationAction(ISD::AND,    VT, Promote);
934      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
935      setOperationAction(ISD::OR,     VT, Promote);
936      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
937      setOperationAction(ISD::XOR,    VT, Promote);
938      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
939      setOperationAction(ISD::LOAD,   VT, Promote);
940      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
941      setOperationAction(ISD::SELECT, VT, Promote);
942      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
943    }
944
945    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
946
947    // Custom lower v2i64 and v2f64 selects.
948    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
949    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
950    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
951    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
952
953    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
954    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
955
956    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
957    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
958    // As there is no 64-bit GPR available, we need build a special custom
959    // sequence to convert from v2i32 to v2f32.
960    if (!Subtarget->is64Bit())
961      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
962
963    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
964    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
965
966    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
967  }
968
969  if (Subtarget->hasSSE41()) {
970    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
971    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
972    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
973    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
974    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
975    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
976    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
977    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
978    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
979    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
980
981    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
982    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
983    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
984    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
985    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
986    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
987    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
988    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
989    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
990    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
991
992    // FIXME: Do we need to handle scalar-to-vector here?
993    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
994
995    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
996    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
997    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
998    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
999    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
1000
1001    // i8 and i16 vectors are custom , because the source register and source
1002    // source memory operand types are not the same width.  f32 vectors are
1003    // custom since the immediate controlling the insert encodes additional
1004    // information.
1005    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1006    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1007    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1008    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1009
1010    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1011    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1012    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1013    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1014
1015    // FIXME: these should be Legal but thats only for the case where
1016    // the index is constant.  For now custom expand to deal with that.
1017    if (Subtarget->is64Bit()) {
1018      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1019      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1020    }
1021  }
1022
1023  if (Subtarget->hasSSE2()) {
1024    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1025    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1026
1027    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1028    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1029
1030    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1031    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1032
1033    if (Subtarget->hasInt256()) {
1034      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
1035      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
1036
1037      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1038      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1039
1040      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1041    } else {
1042      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1043      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1044
1045      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1046      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1047
1048      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1049    }
1050    setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
1051    setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
1052  }
1053
1054  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1055    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1056    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1057    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1058    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1059    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1060    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1061
1062    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1063    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1064    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1065
1066    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1067    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1068    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1069    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1070    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1071    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1072    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1073    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1074    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1075    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1076    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1077    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1078
1079    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1080    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1081    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1082    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1083    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1084    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1085    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1086    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1087    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1088    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1089    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1090    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1091
1092    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1093    setOperationAction(ISD::TRUNCATE,           MVT::v4i32, Custom);
1094
1095    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1096
1097    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1098    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1099    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1100
1101    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
1102    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1103    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1104
1105    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1106
1107    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1108    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1109
1110    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1111    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1112
1113    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1114    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1115
1116    setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
1117
1118    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1119    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1120    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1121    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1122
1123    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1124    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1125    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1126
1127    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1128    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1129    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1130    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1131
1132    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1133    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1134    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1135    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1136    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1137    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1138
1139    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1140      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1141      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1142      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1143      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1144      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1145      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1146    }
1147
1148    if (Subtarget->hasInt256()) {
1149      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1150      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1151      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1152      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1153
1154      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1155      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1156      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1157      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1158
1159      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1160      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1161      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1162      // Don't lower v32i8 because there is no 128-bit byte mul
1163
1164      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1165
1166      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1167      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1168
1169      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1170      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1171
1172      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1173
1174      setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
1175    } else {
1176      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1177      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1178      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1179      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1180
1181      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1182      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1183      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1184      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1185
1186      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1187      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1188      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1189      // Don't lower v32i8 because there is no 128-bit byte mul
1190
1191      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1192      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1193
1194      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1195      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1196
1197      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1198    }
1199
1200    // Custom lower several nodes for 256-bit types.
1201    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1202             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1203      MVT VT = (MVT::SimpleValueType)i;
1204
1205      // Extract subvector is special because the value type
1206      // (result) is 128-bit but the source is 256-bit wide.
1207      if (VT.is128BitVector())
1208        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1209
1210      // Do not attempt to custom lower other non-256-bit vectors
1211      if (!VT.is256BitVector())
1212        continue;
1213
1214      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1215      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1216      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1217      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1218      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1219      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1220      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1221    }
1222
1223    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1224    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1225      MVT VT = (MVT::SimpleValueType)i;
1226
1227      // Do not attempt to promote non-256-bit vectors
1228      if (!VT.is256BitVector())
1229        continue;
1230
1231      setOperationAction(ISD::AND,    VT, Promote);
1232      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1233      setOperationAction(ISD::OR,     VT, Promote);
1234      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1235      setOperationAction(ISD::XOR,    VT, Promote);
1236      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1237      setOperationAction(ISD::LOAD,   VT, Promote);
1238      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1239      setOperationAction(ISD::SELECT, VT, Promote);
1240      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1241    }
1242  }
1243
1244  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1245  // of this type with custom code.
1246  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1247           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1248    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1249                       Custom);
1250  }
1251
1252  // We want to custom lower some of our intrinsics.
1253  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1254  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1255
1256  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1257  // handle type legalization for these operations here.
1258  //
1259  // FIXME: We really should do custom legalization for addition and
1260  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1261  // than generic legalization for 64-bit multiplication-with-overflow, though.
1262  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1263    // Add/Sub/Mul with overflow operations are custom lowered.
1264    MVT VT = IntVTs[i];
1265    setOperationAction(ISD::SADDO, VT, Custom);
1266    setOperationAction(ISD::UADDO, VT, Custom);
1267    setOperationAction(ISD::SSUBO, VT, Custom);
1268    setOperationAction(ISD::USUBO, VT, Custom);
1269    setOperationAction(ISD::SMULO, VT, Custom);
1270    setOperationAction(ISD::UMULO, VT, Custom);
1271  }
1272
1273  // There are no 8-bit 3-address imul/mul instructions
1274  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1275  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1276
1277  if (!Subtarget->is64Bit()) {
1278    // These libcalls are not available in 32-bit.
1279    setLibcallName(RTLIB::SHL_I128, 0);
1280    setLibcallName(RTLIB::SRL_I128, 0);
1281    setLibcallName(RTLIB::SRA_I128, 0);
1282  }
1283
1284  // We have target-specific dag combine patterns for the following nodes:
1285  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1286  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1287  setTargetDAGCombine(ISD::VSELECT);
1288  setTargetDAGCombine(ISD::SELECT);
1289  setTargetDAGCombine(ISD::SHL);
1290  setTargetDAGCombine(ISD::SRA);
1291  setTargetDAGCombine(ISD::SRL);
1292  setTargetDAGCombine(ISD::OR);
1293  setTargetDAGCombine(ISD::AND);
1294  setTargetDAGCombine(ISD::ADD);
1295  setTargetDAGCombine(ISD::FADD);
1296  setTargetDAGCombine(ISD::FSUB);
1297  setTargetDAGCombine(ISD::FMA);
1298  setTargetDAGCombine(ISD::SUB);
1299  setTargetDAGCombine(ISD::LOAD);
1300  setTargetDAGCombine(ISD::STORE);
1301  setTargetDAGCombine(ISD::ZERO_EXTEND);
1302  setTargetDAGCombine(ISD::ANY_EXTEND);
1303  setTargetDAGCombine(ISD::SIGN_EXTEND);
1304  setTargetDAGCombine(ISD::TRUNCATE);
1305  setTargetDAGCombine(ISD::SINT_TO_FP);
1306  setTargetDAGCombine(ISD::SETCC);
1307  if (Subtarget->is64Bit())
1308    setTargetDAGCombine(ISD::MUL);
1309  setTargetDAGCombine(ISD::XOR);
1310
1311  computeRegisterProperties();
1312
1313  // On Darwin, -Os means optimize for size without hurting performance,
1314  // do not reduce the limit.
1315  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1316  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1317  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1318  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1319  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1320  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1321  setPrefLoopAlignment(4); // 2^4 bytes.
1322  benefitFromCodePlacementOpt = true;
1323
1324  // Predictable cmov don't hurt on atom because it's in-order.
1325  predictableSelectIsExpensive = !Subtarget->isAtom();
1326
1327  setPrefFunctionAlignment(4); // 2^4 bytes.
1328}
1329
1330EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1331  if (!VT.isVector()) return MVT::i8;
1332  return VT.changeVectorElementTypeToInteger();
1333}
1334
1335/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1336/// the desired ByVal argument alignment.
1337static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1338  if (MaxAlign == 16)
1339    return;
1340  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1341    if (VTy->getBitWidth() == 128)
1342      MaxAlign = 16;
1343  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1344    unsigned EltAlign = 0;
1345    getMaxByValAlign(ATy->getElementType(), EltAlign);
1346    if (EltAlign > MaxAlign)
1347      MaxAlign = EltAlign;
1348  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1349    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1350      unsigned EltAlign = 0;
1351      getMaxByValAlign(STy->getElementType(i), EltAlign);
1352      if (EltAlign > MaxAlign)
1353        MaxAlign = EltAlign;
1354      if (MaxAlign == 16)
1355        break;
1356    }
1357  }
1358}
1359
1360/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1361/// function arguments in the caller parameter area. For X86, aggregates
1362/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1363/// are at 4-byte boundaries.
1364unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1365  if (Subtarget->is64Bit()) {
1366    // Max of 8 and alignment of type.
1367    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1368    if (TyAlign > 8)
1369      return TyAlign;
1370    return 8;
1371  }
1372
1373  unsigned Align = 4;
1374  if (Subtarget->hasSSE1())
1375    getMaxByValAlign(Ty, Align);
1376  return Align;
1377}
1378
1379/// getOptimalMemOpType - Returns the target specific optimal type for load
1380/// and store operations as a result of memset, memcpy, and memmove
1381/// lowering. If DstAlign is zero that means it's safe to destination
1382/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1383/// means there isn't a need to check it against alignment requirement,
1384/// probably because the source does not need to be loaded. If 'IsMemset' is
1385/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1386/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1387/// source is constant so it does not need to be loaded.
1388/// It returns EVT::Other if the type should be determined using generic
1389/// target-independent logic.
1390EVT
1391X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1392                                       unsigned DstAlign, unsigned SrcAlign,
1393                                       bool IsMemset, bool ZeroMemset,
1394                                       bool MemcpyStrSrc,
1395                                       MachineFunction &MF) const {
1396  const Function *F = MF.getFunction();
1397  if ((!IsMemset || ZeroMemset) &&
1398      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1399                                       Attribute::NoImplicitFloat)) {
1400    if (Size >= 16 &&
1401        (Subtarget->isUnalignedMemAccessFast() ||
1402         ((DstAlign == 0 || DstAlign >= 16) &&
1403          (SrcAlign == 0 || SrcAlign >= 16)))) {
1404      if (Size >= 32) {
1405        if (Subtarget->hasInt256())
1406          return MVT::v8i32;
1407        if (Subtarget->hasFp256())
1408          return MVT::v8f32;
1409      }
1410      if (Subtarget->hasSSE2())
1411        return MVT::v4i32;
1412      if (Subtarget->hasSSE1())
1413        return MVT::v4f32;
1414    } else if (!MemcpyStrSrc && Size >= 8 &&
1415               !Subtarget->is64Bit() &&
1416               Subtarget->hasSSE2()) {
1417      // Do not use f64 to lower memcpy if source is string constant. It's
1418      // better to use i32 to avoid the loads.
1419      return MVT::f64;
1420    }
1421  }
1422  if (Subtarget->is64Bit() && Size >= 8)
1423    return MVT::i64;
1424  return MVT::i32;
1425}
1426
1427bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1428  if (VT == MVT::f32)
1429    return X86ScalarSSEf32;
1430  else if (VT == MVT::f64)
1431    return X86ScalarSSEf64;
1432  return true;
1433}
1434
1435bool
1436X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
1437  if (Fast)
1438    *Fast = Subtarget->isUnalignedMemAccessFast();
1439  return true;
1440}
1441
1442/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1443/// current function.  The returned value is a member of the
1444/// MachineJumpTableInfo::JTEntryKind enum.
1445unsigned X86TargetLowering::getJumpTableEncoding() const {
1446  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1447  // symbol.
1448  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1449      Subtarget->isPICStyleGOT())
1450    return MachineJumpTableInfo::EK_Custom32;
1451
1452  // Otherwise, use the normal jump table encoding heuristics.
1453  return TargetLowering::getJumpTableEncoding();
1454}
1455
1456const MCExpr *
1457X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1458                                             const MachineBasicBlock *MBB,
1459                                             unsigned uid,MCContext &Ctx) const{
1460  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1461         Subtarget->isPICStyleGOT());
1462  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1463  // entries.
1464  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1465                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1466}
1467
1468/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1469/// jumptable.
1470SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1471                                                    SelectionDAG &DAG) const {
1472  if (!Subtarget->is64Bit())
1473    // This doesn't have DebugLoc associated with it, but is not really the
1474    // same as a Register.
1475    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1476  return Table;
1477}
1478
1479/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1480/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1481/// MCExpr.
1482const MCExpr *X86TargetLowering::
1483getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1484                             MCContext &Ctx) const {
1485  // X86-64 uses RIP relative addressing based on the jump table label.
1486  if (Subtarget->isPICStyleRIPRel())
1487    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1488
1489  // Otherwise, the reference is relative to the PIC base.
1490  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1491}
1492
1493// FIXME: Why this routine is here? Move to RegInfo!
1494std::pair<const TargetRegisterClass*, uint8_t>
1495X86TargetLowering::findRepresentativeClass(MVT VT) const{
1496  const TargetRegisterClass *RRC = 0;
1497  uint8_t Cost = 1;
1498  switch (VT.SimpleTy) {
1499  default:
1500    return TargetLowering::findRepresentativeClass(VT);
1501  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1502    RRC = Subtarget->is64Bit() ?
1503      (const TargetRegisterClass*)&X86::GR64RegClass :
1504      (const TargetRegisterClass*)&X86::GR32RegClass;
1505    break;
1506  case MVT::x86mmx:
1507    RRC = &X86::VR64RegClass;
1508    break;
1509  case MVT::f32: case MVT::f64:
1510  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1511  case MVT::v4f32: case MVT::v2f64:
1512  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1513  case MVT::v4f64:
1514    RRC = &X86::VR128RegClass;
1515    break;
1516  }
1517  return std::make_pair(RRC, Cost);
1518}
1519
1520bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1521                                               unsigned &Offset) const {
1522  if (!Subtarget->isTargetLinux())
1523    return false;
1524
1525  if (Subtarget->is64Bit()) {
1526    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1527    Offset = 0x28;
1528    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1529      AddressSpace = 256;
1530    else
1531      AddressSpace = 257;
1532  } else {
1533    // %gs:0x14 on i386
1534    Offset = 0x14;
1535    AddressSpace = 256;
1536  }
1537  return true;
1538}
1539
1540//===----------------------------------------------------------------------===//
1541//               Return Value Calling Convention Implementation
1542//===----------------------------------------------------------------------===//
1543
1544#include "X86GenCallingConv.inc"
1545
1546bool
1547X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1548                                  MachineFunction &MF, bool isVarArg,
1549                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1550                        LLVMContext &Context) const {
1551  SmallVector<CCValAssign, 16> RVLocs;
1552  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1553                 RVLocs, Context);
1554  return CCInfo.CheckReturn(Outs, RetCC_X86);
1555}
1556
1557SDValue
1558X86TargetLowering::LowerReturn(SDValue Chain,
1559                               CallingConv::ID CallConv, bool isVarArg,
1560                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1561                               const SmallVectorImpl<SDValue> &OutVals,
1562                               DebugLoc dl, SelectionDAG &DAG) const {
1563  MachineFunction &MF = DAG.getMachineFunction();
1564  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1565
1566  SmallVector<CCValAssign, 16> RVLocs;
1567  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1568                 RVLocs, *DAG.getContext());
1569  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1570
1571  // Add the regs to the liveout set for the function.
1572  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1573  for (unsigned i = 0; i != RVLocs.size(); ++i)
1574    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1575      MRI.addLiveOut(RVLocs[i].getLocReg());
1576
1577  SDValue Flag;
1578
1579  SmallVector<SDValue, 6> RetOps;
1580  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1581  // Operand #1 = Bytes To Pop
1582  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1583                   MVT::i16));
1584
1585  // Copy the result values into the output registers.
1586  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1587    CCValAssign &VA = RVLocs[i];
1588    assert(VA.isRegLoc() && "Can only return in registers!");
1589    SDValue ValToCopy = OutVals[i];
1590    EVT ValVT = ValToCopy.getValueType();
1591
1592    // Promote values to the appropriate types
1593    if (VA.getLocInfo() == CCValAssign::SExt)
1594      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1595    else if (VA.getLocInfo() == CCValAssign::ZExt)
1596      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1597    else if (VA.getLocInfo() == CCValAssign::AExt)
1598      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1599    else if (VA.getLocInfo() == CCValAssign::BCvt)
1600      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1601
1602    // If this is x86-64, and we disabled SSE, we can't return FP values,
1603    // or SSE or MMX vectors.
1604    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1605         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1606          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1607      report_fatal_error("SSE register return with SSE disabled");
1608    }
1609    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1610    // llvm-gcc has never done it right and no one has noticed, so this
1611    // should be OK for now.
1612    if (ValVT == MVT::f64 &&
1613        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1614      report_fatal_error("SSE2 register return with SSE2 disabled");
1615
1616    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1617    // the RET instruction and handled by the FP Stackifier.
1618    if (VA.getLocReg() == X86::ST0 ||
1619        VA.getLocReg() == X86::ST1) {
1620      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1621      // change the value to the FP stack register class.
1622      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1623        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1624      RetOps.push_back(ValToCopy);
1625      // Don't emit a copytoreg.
1626      continue;
1627    }
1628
1629    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1630    // which is returned in RAX / RDX.
1631    if (Subtarget->is64Bit()) {
1632      if (ValVT == MVT::x86mmx) {
1633        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1634          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1635          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1636                                  ValToCopy);
1637          // If we don't have SSE2 available, convert to v4f32 so the generated
1638          // register is legal.
1639          if (!Subtarget->hasSSE2())
1640            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1641        }
1642      }
1643    }
1644
1645    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1646    Flag = Chain.getValue(1);
1647  }
1648
1649  // The x86-64 ABI for returning structs by value requires that we copy
1650  // the sret argument into %rax for the return. We saved the argument into
1651  // a virtual register in the entry block, so now we copy the value out
1652  // and into %rax.
1653  if (Subtarget->is64Bit() &&
1654      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1655    MachineFunction &MF = DAG.getMachineFunction();
1656    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1657    unsigned Reg = FuncInfo->getSRetReturnReg();
1658    assert(Reg &&
1659           "SRetReturnReg should have been set in LowerFormalArguments().");
1660    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1661
1662    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1663    Flag = Chain.getValue(1);
1664
1665    // RAX now acts like a return value.
1666    MRI.addLiveOut(X86::RAX);
1667  }
1668
1669  RetOps[0] = Chain;  // Update chain.
1670
1671  // Add the flag if we have it.
1672  if (Flag.getNode())
1673    RetOps.push_back(Flag);
1674
1675  return DAG.getNode(X86ISD::RET_FLAG, dl,
1676                     MVT::Other, &RetOps[0], RetOps.size());
1677}
1678
1679bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1680  if (N->getNumValues() != 1)
1681    return false;
1682  if (!N->hasNUsesOfValue(1, 0))
1683    return false;
1684
1685  SDValue TCChain = Chain;
1686  SDNode *Copy = *N->use_begin();
1687  if (Copy->getOpcode() == ISD::CopyToReg) {
1688    // If the copy has a glue operand, we conservatively assume it isn't safe to
1689    // perform a tail call.
1690    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1691      return false;
1692    TCChain = Copy->getOperand(0);
1693  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1694    return false;
1695
1696  bool HasRet = false;
1697  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1698       UI != UE; ++UI) {
1699    if (UI->getOpcode() != X86ISD::RET_FLAG)
1700      return false;
1701    HasRet = true;
1702  }
1703
1704  if (!HasRet)
1705    return false;
1706
1707  Chain = TCChain;
1708  return true;
1709}
1710
1711MVT
1712X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1713                                            ISD::NodeType ExtendKind) const {
1714  MVT ReturnMVT;
1715  // TODO: Is this also valid on 32-bit?
1716  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1717    ReturnMVT = MVT::i8;
1718  else
1719    ReturnMVT = MVT::i32;
1720
1721  MVT MinVT = getRegisterType(ReturnMVT);
1722  return VT.bitsLT(MinVT) ? MinVT : VT;
1723}
1724
1725/// LowerCallResult - Lower the result values of a call into the
1726/// appropriate copies out of appropriate physical registers.
1727///
1728SDValue
1729X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1730                                   CallingConv::ID CallConv, bool isVarArg,
1731                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1732                                   DebugLoc dl, SelectionDAG &DAG,
1733                                   SmallVectorImpl<SDValue> &InVals) const {
1734
1735  // Assign locations to each value returned by this call.
1736  SmallVector<CCValAssign, 16> RVLocs;
1737  bool Is64Bit = Subtarget->is64Bit();
1738  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1739                 getTargetMachine(), RVLocs, *DAG.getContext());
1740  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1741
1742  // Copy all of the result registers out of their specified physreg.
1743  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1744    CCValAssign &VA = RVLocs[i];
1745    EVT CopyVT = VA.getValVT();
1746
1747    // If this is x86-64, and we disabled SSE, we can't return FP values
1748    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1749        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1750      report_fatal_error("SSE register return with SSE disabled");
1751    }
1752
1753    SDValue Val;
1754
1755    // If this is a call to a function that returns an fp value on the floating
1756    // point stack, we must guarantee the value is popped from the stack, so
1757    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1758    // if the return value is not used. We use the FpPOP_RETVAL instruction
1759    // instead.
1760    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1761      // If we prefer to use the value in xmm registers, copy it out as f80 and
1762      // use a truncate to move it from fp stack reg to xmm reg.
1763      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1764      SDValue Ops[] = { Chain, InFlag };
1765      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1766                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1767      Val = Chain.getValue(0);
1768
1769      // Round the f80 to the right size, which also moves it to the appropriate
1770      // xmm register.
1771      if (CopyVT != VA.getValVT())
1772        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1773                          // This truncation won't change the value.
1774                          DAG.getIntPtrConstant(1));
1775    } else {
1776      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1777                                 CopyVT, InFlag).getValue(1);
1778      Val = Chain.getValue(0);
1779    }
1780    InFlag = Chain.getValue(2);
1781    InVals.push_back(Val);
1782  }
1783
1784  return Chain;
1785}
1786
1787//===----------------------------------------------------------------------===//
1788//                C & StdCall & Fast Calling Convention implementation
1789//===----------------------------------------------------------------------===//
1790//  StdCall calling convention seems to be standard for many Windows' API
1791//  routines and around. It differs from C calling convention just a little:
1792//  callee should clean up the stack, not caller. Symbols should be also
1793//  decorated in some fancy way :) It doesn't support any vector arguments.
1794//  For info on fast calling convention see Fast Calling Convention (tail call)
1795//  implementation LowerX86_32FastCCCallTo.
1796
1797/// CallIsStructReturn - Determines whether a call uses struct return
1798/// semantics.
1799enum StructReturnType {
1800  NotStructReturn,
1801  RegStructReturn,
1802  StackStructReturn
1803};
1804static StructReturnType
1805callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1806  if (Outs.empty())
1807    return NotStructReturn;
1808
1809  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1810  if (!Flags.isSRet())
1811    return NotStructReturn;
1812  if (Flags.isInReg())
1813    return RegStructReturn;
1814  return StackStructReturn;
1815}
1816
1817/// ArgsAreStructReturn - Determines whether a function uses struct
1818/// return semantics.
1819static StructReturnType
1820argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1821  if (Ins.empty())
1822    return NotStructReturn;
1823
1824  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1825  if (!Flags.isSRet())
1826    return NotStructReturn;
1827  if (Flags.isInReg())
1828    return RegStructReturn;
1829  return StackStructReturn;
1830}
1831
1832/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1833/// by "Src" to address "Dst" with size and alignment information specified by
1834/// the specific parameter attribute. The copy will be passed as a byval
1835/// function parameter.
1836static SDValue
1837CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1838                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1839                          DebugLoc dl) {
1840  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1841
1842  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1843                       /*isVolatile*/false, /*AlwaysInline=*/true,
1844                       MachinePointerInfo(), MachinePointerInfo());
1845}
1846
1847/// IsTailCallConvention - Return true if the calling convention is one that
1848/// supports tail call optimization.
1849static bool IsTailCallConvention(CallingConv::ID CC) {
1850  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
1851          CC == CallingConv::HiPE);
1852}
1853
1854bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1855  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1856    return false;
1857
1858  CallSite CS(CI);
1859  CallingConv::ID CalleeCC = CS.getCallingConv();
1860  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1861    return false;
1862
1863  return true;
1864}
1865
1866/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1867/// a tailcall target by changing its ABI.
1868static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1869                                   bool GuaranteedTailCallOpt) {
1870  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1871}
1872
1873SDValue
1874X86TargetLowering::LowerMemArgument(SDValue Chain,
1875                                    CallingConv::ID CallConv,
1876                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1877                                    DebugLoc dl, SelectionDAG &DAG,
1878                                    const CCValAssign &VA,
1879                                    MachineFrameInfo *MFI,
1880                                    unsigned i) const {
1881  // Create the nodes corresponding to a load from this parameter slot.
1882  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1883  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1884                              getTargetMachine().Options.GuaranteedTailCallOpt);
1885  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1886  EVT ValVT;
1887
1888  // If value is passed by pointer we have address passed instead of the value
1889  // itself.
1890  if (VA.getLocInfo() == CCValAssign::Indirect)
1891    ValVT = VA.getLocVT();
1892  else
1893    ValVT = VA.getValVT();
1894
1895  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1896  // changed with more analysis.
1897  // In case of tail call optimization mark all arguments mutable. Since they
1898  // could be overwritten by lowering of arguments in case of a tail call.
1899  if (Flags.isByVal()) {
1900    unsigned Bytes = Flags.getByValSize();
1901    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1902    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1903    return DAG.getFrameIndex(FI, getPointerTy());
1904  } else {
1905    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1906                                    VA.getLocMemOffset(), isImmutable);
1907    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1908    return DAG.getLoad(ValVT, dl, Chain, FIN,
1909                       MachinePointerInfo::getFixedStack(FI),
1910                       false, false, false, 0);
1911  }
1912}
1913
1914SDValue
1915X86TargetLowering::LowerFormalArguments(SDValue Chain,
1916                                        CallingConv::ID CallConv,
1917                                        bool isVarArg,
1918                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1919                                        DebugLoc dl,
1920                                        SelectionDAG &DAG,
1921                                        SmallVectorImpl<SDValue> &InVals)
1922                                          const {
1923  MachineFunction &MF = DAG.getMachineFunction();
1924  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1925
1926  const Function* Fn = MF.getFunction();
1927  if (Fn->hasExternalLinkage() &&
1928      Subtarget->isTargetCygMing() &&
1929      Fn->getName() == "main")
1930    FuncInfo->setForceFramePointer(true);
1931
1932  MachineFrameInfo *MFI = MF.getFrameInfo();
1933  bool Is64Bit = Subtarget->is64Bit();
1934  bool IsWindows = Subtarget->isTargetWindows();
1935  bool IsWin64 = Subtarget->isTargetWin64();
1936
1937  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1938         "Var args not supported with calling convention fastcc, ghc or hipe");
1939
1940  // Assign locations to all of the incoming arguments.
1941  SmallVector<CCValAssign, 16> ArgLocs;
1942  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1943                 ArgLocs, *DAG.getContext());
1944
1945  // Allocate shadow area for Win64
1946  if (IsWin64) {
1947    CCInfo.AllocateStack(32, 8);
1948  }
1949
1950  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1951
1952  unsigned LastVal = ~0U;
1953  SDValue ArgValue;
1954  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1955    CCValAssign &VA = ArgLocs[i];
1956    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1957    // places.
1958    assert(VA.getValNo() != LastVal &&
1959           "Don't support value assigned to multiple locs yet");
1960    (void)LastVal;
1961    LastVal = VA.getValNo();
1962
1963    if (VA.isRegLoc()) {
1964      EVT RegVT = VA.getLocVT();
1965      const TargetRegisterClass *RC;
1966      if (RegVT == MVT::i32)
1967        RC = &X86::GR32RegClass;
1968      else if (Is64Bit && RegVT == MVT::i64)
1969        RC = &X86::GR64RegClass;
1970      else if (RegVT == MVT::f32)
1971        RC = &X86::FR32RegClass;
1972      else if (RegVT == MVT::f64)
1973        RC = &X86::FR64RegClass;
1974      else if (RegVT.is256BitVector())
1975        RC = &X86::VR256RegClass;
1976      else if (RegVT.is128BitVector())
1977        RC = &X86::VR128RegClass;
1978      else if (RegVT == MVT::x86mmx)
1979        RC = &X86::VR64RegClass;
1980      else
1981        llvm_unreachable("Unknown argument type!");
1982
1983      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1984      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1985
1986      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1987      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1988      // right size.
1989      if (VA.getLocInfo() == CCValAssign::SExt)
1990        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1991                               DAG.getValueType(VA.getValVT()));
1992      else if (VA.getLocInfo() == CCValAssign::ZExt)
1993        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1994                               DAG.getValueType(VA.getValVT()));
1995      else if (VA.getLocInfo() == CCValAssign::BCvt)
1996        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1997
1998      if (VA.isExtInLoc()) {
1999        // Handle MMX values passed in XMM regs.
2000        if (RegVT.isVector())
2001          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2002        else
2003          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2004      }
2005    } else {
2006      assert(VA.isMemLoc());
2007      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2008    }
2009
2010    // If value is passed via pointer - do a load.
2011    if (VA.getLocInfo() == CCValAssign::Indirect)
2012      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2013                             MachinePointerInfo(), false, false, false, 0);
2014
2015    InVals.push_back(ArgValue);
2016  }
2017
2018  // The x86-64 ABI for returning structs by value requires that we copy
2019  // the sret argument into %rax for the return. Save the argument into
2020  // a virtual register so that we can access it from the return points.
2021  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
2022    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2023    unsigned Reg = FuncInfo->getSRetReturnReg();
2024    if (!Reg) {
2025      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
2026      FuncInfo->setSRetReturnReg(Reg);
2027    }
2028    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2029    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2030  }
2031
2032  unsigned StackSize = CCInfo.getNextStackOffset();
2033  // Align stack specially for tail calls.
2034  if (FuncIsMadeTailCallSafe(CallConv,
2035                             MF.getTarget().Options.GuaranteedTailCallOpt))
2036    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2037
2038  // If the function takes variable number of arguments, make a frame index for
2039  // the start of the first vararg value... for expansion of llvm.va_start.
2040  if (isVarArg) {
2041    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2042                    CallConv != CallingConv::X86_ThisCall)) {
2043      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2044    }
2045    if (Is64Bit) {
2046      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2047
2048      // FIXME: We should really autogenerate these arrays
2049      static const uint16_t GPR64ArgRegsWin64[] = {
2050        X86::RCX, X86::RDX, X86::R8,  X86::R9
2051      };
2052      static const uint16_t GPR64ArgRegs64Bit[] = {
2053        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2054      };
2055      static const uint16_t XMMArgRegs64Bit[] = {
2056        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2057        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2058      };
2059      const uint16_t *GPR64ArgRegs;
2060      unsigned NumXMMRegs = 0;
2061
2062      if (IsWin64) {
2063        // The XMM registers which might contain var arg parameters are shadowed
2064        // in their paired GPR.  So we only need to save the GPR to their home
2065        // slots.
2066        TotalNumIntRegs = 4;
2067        GPR64ArgRegs = GPR64ArgRegsWin64;
2068      } else {
2069        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2070        GPR64ArgRegs = GPR64ArgRegs64Bit;
2071
2072        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2073                                                TotalNumXMMRegs);
2074      }
2075      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2076                                                       TotalNumIntRegs);
2077
2078      bool NoImplicitFloatOps = Fn->getAttributes().
2079        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2080      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2081             "SSE register cannot be used when SSE is disabled!");
2082      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2083               NoImplicitFloatOps) &&
2084             "SSE register cannot be used when SSE is disabled!");
2085      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2086          !Subtarget->hasSSE1())
2087        // Kernel mode asks for SSE to be disabled, so don't push them
2088        // on the stack.
2089        TotalNumXMMRegs = 0;
2090
2091      if (IsWin64) {
2092        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2093        // Get to the caller-allocated home save location.  Add 8 to account
2094        // for the return address.
2095        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2096        FuncInfo->setRegSaveFrameIndex(
2097          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2098        // Fixup to set vararg frame on shadow area (4 x i64).
2099        if (NumIntRegs < 4)
2100          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2101      } else {
2102        // For X86-64, if there are vararg parameters that are passed via
2103        // registers, then we must store them to their spots on the stack so
2104        // they may be loaded by deferencing the result of va_next.
2105        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2106        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2107        FuncInfo->setRegSaveFrameIndex(
2108          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2109                               false));
2110      }
2111
2112      // Store the integer parameter registers.
2113      SmallVector<SDValue, 8> MemOps;
2114      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2115                                        getPointerTy());
2116      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2117      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2118        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2119                                  DAG.getIntPtrConstant(Offset));
2120        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2121                                     &X86::GR64RegClass);
2122        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2123        SDValue Store =
2124          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2125                       MachinePointerInfo::getFixedStack(
2126                         FuncInfo->getRegSaveFrameIndex(), Offset),
2127                       false, false, 0);
2128        MemOps.push_back(Store);
2129        Offset += 8;
2130      }
2131
2132      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2133        // Now store the XMM (fp + vector) parameter registers.
2134        SmallVector<SDValue, 11> SaveXMMOps;
2135        SaveXMMOps.push_back(Chain);
2136
2137        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2138        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2139        SaveXMMOps.push_back(ALVal);
2140
2141        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2142                               FuncInfo->getRegSaveFrameIndex()));
2143        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2144                               FuncInfo->getVarArgsFPOffset()));
2145
2146        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2147          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2148                                       &X86::VR128RegClass);
2149          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2150          SaveXMMOps.push_back(Val);
2151        }
2152        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2153                                     MVT::Other,
2154                                     &SaveXMMOps[0], SaveXMMOps.size()));
2155      }
2156
2157      if (!MemOps.empty())
2158        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2159                            &MemOps[0], MemOps.size());
2160    }
2161  }
2162
2163  // Some CCs need callee pop.
2164  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2165                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2166    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2167  } else {
2168    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2169    // If this is an sret function, the return should pop the hidden pointer.
2170    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2171        argsAreStructReturn(Ins) == StackStructReturn)
2172      FuncInfo->setBytesToPopOnReturn(4);
2173  }
2174
2175  if (!Is64Bit) {
2176    // RegSaveFrameIndex is X86-64 only.
2177    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2178    if (CallConv == CallingConv::X86_FastCall ||
2179        CallConv == CallingConv::X86_ThisCall)
2180      // fastcc functions can't have varargs.
2181      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2182  }
2183
2184  FuncInfo->setArgumentStackSize(StackSize);
2185
2186  return Chain;
2187}
2188
2189SDValue
2190X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2191                                    SDValue StackPtr, SDValue Arg,
2192                                    DebugLoc dl, SelectionDAG &DAG,
2193                                    const CCValAssign &VA,
2194                                    ISD::ArgFlagsTy Flags) const {
2195  unsigned LocMemOffset = VA.getLocMemOffset();
2196  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2197  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2198  if (Flags.isByVal())
2199    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2200
2201  return DAG.getStore(Chain, dl, Arg, PtrOff,
2202                      MachinePointerInfo::getStack(LocMemOffset),
2203                      false, false, 0);
2204}
2205
2206/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2207/// optimization is performed and it is required.
2208SDValue
2209X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2210                                           SDValue &OutRetAddr, SDValue Chain,
2211                                           bool IsTailCall, bool Is64Bit,
2212                                           int FPDiff, DebugLoc dl) const {
2213  // Adjust the Return address stack slot.
2214  EVT VT = getPointerTy();
2215  OutRetAddr = getReturnAddressFrameIndex(DAG);
2216
2217  // Load the "old" Return address.
2218  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2219                           false, false, false, 0);
2220  return SDValue(OutRetAddr.getNode(), 1);
2221}
2222
2223/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2224/// optimization is performed and it is required (FPDiff!=0).
2225static SDValue
2226EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2227                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2228                         unsigned SlotSize, int FPDiff, DebugLoc dl) {
2229  // Store the return address to the appropriate stack slot.
2230  if (!FPDiff) return Chain;
2231  // Calculate the new stack slot for the return address.
2232  int NewReturnAddrFI =
2233    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2234  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2235  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2236                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2237                       false, false, 0);
2238  return Chain;
2239}
2240
2241SDValue
2242X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2243                             SmallVectorImpl<SDValue> &InVals) const {
2244  SelectionDAG &DAG                     = CLI.DAG;
2245  DebugLoc &dl                          = CLI.DL;
2246  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2247  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2248  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2249  SDValue Chain                         = CLI.Chain;
2250  SDValue Callee                        = CLI.Callee;
2251  CallingConv::ID CallConv              = CLI.CallConv;
2252  bool &isTailCall                      = CLI.IsTailCall;
2253  bool isVarArg                         = CLI.IsVarArg;
2254
2255  MachineFunction &MF = DAG.getMachineFunction();
2256  bool Is64Bit        = Subtarget->is64Bit();
2257  bool IsWin64        = Subtarget->isTargetWin64();
2258  bool IsWindows      = Subtarget->isTargetWindows();
2259  StructReturnType SR = callIsStructReturn(Outs);
2260  bool IsSibcall      = false;
2261
2262  if (MF.getTarget().Options.DisableTailCalls)
2263    isTailCall = false;
2264
2265  if (isTailCall) {
2266    // Check if it's really possible to do a tail call.
2267    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2268                    isVarArg, SR != NotStructReturn,
2269                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2270                    Outs, OutVals, Ins, DAG);
2271
2272    // Sibcalls are automatically detected tailcalls which do not require
2273    // ABI changes.
2274    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2275      IsSibcall = true;
2276
2277    if (isTailCall)
2278      ++NumTailCalls;
2279  }
2280
2281  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2282         "Var args not supported with calling convention fastcc, ghc or hipe");
2283
2284  // Analyze operands of the call, assigning locations to each operand.
2285  SmallVector<CCValAssign, 16> ArgLocs;
2286  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2287                 ArgLocs, *DAG.getContext());
2288
2289  // Allocate shadow area for Win64
2290  if (IsWin64) {
2291    CCInfo.AllocateStack(32, 8);
2292  }
2293
2294  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2295
2296  // Get a count of how many bytes are to be pushed on the stack.
2297  unsigned NumBytes = CCInfo.getNextStackOffset();
2298  if (IsSibcall)
2299    // This is a sibcall. The memory operands are available in caller's
2300    // own caller's stack.
2301    NumBytes = 0;
2302  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2303           IsTailCallConvention(CallConv))
2304    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2305
2306  int FPDiff = 0;
2307  if (isTailCall && !IsSibcall) {
2308    // Lower arguments at fp - stackoffset + fpdiff.
2309    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2310    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2311
2312    FPDiff = NumBytesCallerPushed - NumBytes;
2313
2314    // Set the delta of movement of the returnaddr stackslot.
2315    // But only set if delta is greater than previous delta.
2316    if (FPDiff < X86Info->getTCReturnAddrDelta())
2317      X86Info->setTCReturnAddrDelta(FPDiff);
2318  }
2319
2320  if (!IsSibcall)
2321    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2322
2323  SDValue RetAddrFrIdx;
2324  // Load return address for tail calls.
2325  if (isTailCall && FPDiff)
2326    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2327                                    Is64Bit, FPDiff, dl);
2328
2329  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2330  SmallVector<SDValue, 8> MemOpChains;
2331  SDValue StackPtr;
2332
2333  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2334  // of tail call optimization arguments are handle later.
2335  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2336    CCValAssign &VA = ArgLocs[i];
2337    EVT RegVT = VA.getLocVT();
2338    SDValue Arg = OutVals[i];
2339    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2340    bool isByVal = Flags.isByVal();
2341
2342    // Promote the value if needed.
2343    switch (VA.getLocInfo()) {
2344    default: llvm_unreachable("Unknown loc info!");
2345    case CCValAssign::Full: break;
2346    case CCValAssign::SExt:
2347      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2348      break;
2349    case CCValAssign::ZExt:
2350      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2351      break;
2352    case CCValAssign::AExt:
2353      if (RegVT.is128BitVector()) {
2354        // Special case: passing MMX values in XMM registers.
2355        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2356        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2357        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2358      } else
2359        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2360      break;
2361    case CCValAssign::BCvt:
2362      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2363      break;
2364    case CCValAssign::Indirect: {
2365      // Store the argument.
2366      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2367      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2368      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2369                           MachinePointerInfo::getFixedStack(FI),
2370                           false, false, 0);
2371      Arg = SpillSlot;
2372      break;
2373    }
2374    }
2375
2376    if (VA.isRegLoc()) {
2377      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2378      if (isVarArg && IsWin64) {
2379        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2380        // shadow reg if callee is a varargs function.
2381        unsigned ShadowReg = 0;
2382        switch (VA.getLocReg()) {
2383        case X86::XMM0: ShadowReg = X86::RCX; break;
2384        case X86::XMM1: ShadowReg = X86::RDX; break;
2385        case X86::XMM2: ShadowReg = X86::R8; break;
2386        case X86::XMM3: ShadowReg = X86::R9; break;
2387        }
2388        if (ShadowReg)
2389          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2390      }
2391    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2392      assert(VA.isMemLoc());
2393      if (StackPtr.getNode() == 0)
2394        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2395                                      getPointerTy());
2396      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2397                                             dl, DAG, VA, Flags));
2398    }
2399  }
2400
2401  if (!MemOpChains.empty())
2402    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2403                        &MemOpChains[0], MemOpChains.size());
2404
2405  if (Subtarget->isPICStyleGOT()) {
2406    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2407    // GOT pointer.
2408    if (!isTailCall) {
2409      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2410               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2411    } else {
2412      // If we are tail calling and generating PIC/GOT style code load the
2413      // address of the callee into ECX. The value in ecx is used as target of
2414      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2415      // for tail calls on PIC/GOT architectures. Normally we would just put the
2416      // address of GOT into ebx and then call target@PLT. But for tail calls
2417      // ebx would be restored (since ebx is callee saved) before jumping to the
2418      // target@PLT.
2419
2420      // Note: The actual moving to ECX is done further down.
2421      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2422      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2423          !G->getGlobal()->hasProtectedVisibility())
2424        Callee = LowerGlobalAddress(Callee, DAG);
2425      else if (isa<ExternalSymbolSDNode>(Callee))
2426        Callee = LowerExternalSymbol(Callee, DAG);
2427    }
2428  }
2429
2430  if (Is64Bit && isVarArg && !IsWin64) {
2431    // From AMD64 ABI document:
2432    // For calls that may call functions that use varargs or stdargs
2433    // (prototype-less calls or calls to functions containing ellipsis (...) in
2434    // the declaration) %al is used as hidden argument to specify the number
2435    // of SSE registers used. The contents of %al do not need to match exactly
2436    // the number of registers, but must be an ubound on the number of SSE
2437    // registers used and is in the range 0 - 8 inclusive.
2438
2439    // Count the number of XMM registers allocated.
2440    static const uint16_t XMMArgRegs[] = {
2441      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2442      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2443    };
2444    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2445    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2446           && "SSE registers cannot be used when SSE is disabled");
2447
2448    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2449                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2450  }
2451
2452  // For tail calls lower the arguments to the 'real' stack slot.
2453  if (isTailCall) {
2454    // Force all the incoming stack arguments to be loaded from the stack
2455    // before any new outgoing arguments are stored to the stack, because the
2456    // outgoing stack slots may alias the incoming argument stack slots, and
2457    // the alias isn't otherwise explicit. This is slightly more conservative
2458    // than necessary, because it means that each store effectively depends
2459    // on every argument instead of just those arguments it would clobber.
2460    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2461
2462    SmallVector<SDValue, 8> MemOpChains2;
2463    SDValue FIN;
2464    int FI = 0;
2465    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2466      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2467        CCValAssign &VA = ArgLocs[i];
2468        if (VA.isRegLoc())
2469          continue;
2470        assert(VA.isMemLoc());
2471        SDValue Arg = OutVals[i];
2472        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2473        // Create frame index.
2474        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2475        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2476        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2477        FIN = DAG.getFrameIndex(FI, getPointerTy());
2478
2479        if (Flags.isByVal()) {
2480          // Copy relative to framepointer.
2481          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2482          if (StackPtr.getNode() == 0)
2483            StackPtr = DAG.getCopyFromReg(Chain, dl,
2484                                          RegInfo->getStackRegister(),
2485                                          getPointerTy());
2486          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2487
2488          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2489                                                           ArgChain,
2490                                                           Flags, DAG, dl));
2491        } else {
2492          // Store relative to framepointer.
2493          MemOpChains2.push_back(
2494            DAG.getStore(ArgChain, dl, Arg, FIN,
2495                         MachinePointerInfo::getFixedStack(FI),
2496                         false, false, 0));
2497        }
2498      }
2499    }
2500
2501    if (!MemOpChains2.empty())
2502      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2503                          &MemOpChains2[0], MemOpChains2.size());
2504
2505    // Store the return address to the appropriate stack slot.
2506    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2507                                     getPointerTy(), RegInfo->getSlotSize(),
2508                                     FPDiff, dl);
2509  }
2510
2511  // Build a sequence of copy-to-reg nodes chained together with token chain
2512  // and flag operands which copy the outgoing args into registers.
2513  SDValue InFlag;
2514  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2515    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2516                             RegsToPass[i].second, InFlag);
2517    InFlag = Chain.getValue(1);
2518  }
2519
2520  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2521    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2522    // In the 64-bit large code model, we have to make all calls
2523    // through a register, since the call instruction's 32-bit
2524    // pc-relative offset may not be large enough to hold the whole
2525    // address.
2526  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2527    // If the callee is a GlobalAddress node (quite common, every direct call
2528    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2529    // it.
2530
2531    // We should use extra load for direct calls to dllimported functions in
2532    // non-JIT mode.
2533    const GlobalValue *GV = G->getGlobal();
2534    if (!GV->hasDLLImportLinkage()) {
2535      unsigned char OpFlags = 0;
2536      bool ExtraLoad = false;
2537      unsigned WrapperKind = ISD::DELETED_NODE;
2538
2539      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2540      // external symbols most go through the PLT in PIC mode.  If the symbol
2541      // has hidden or protected visibility, or if it is static or local, then
2542      // we don't need to use the PLT - we can directly call it.
2543      if (Subtarget->isTargetELF() &&
2544          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2545          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2546        OpFlags = X86II::MO_PLT;
2547      } else if (Subtarget->isPICStyleStubAny() &&
2548                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2549                 (!Subtarget->getTargetTriple().isMacOSX() ||
2550                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2551        // PC-relative references to external symbols should go through $stub,
2552        // unless we're building with the leopard linker or later, which
2553        // automatically synthesizes these stubs.
2554        OpFlags = X86II::MO_DARWIN_STUB;
2555      } else if (Subtarget->isPICStyleRIPRel() &&
2556                 isa<Function>(GV) &&
2557                 cast<Function>(GV)->getAttributes().
2558                   hasAttribute(AttributeSet::FunctionIndex,
2559                                Attribute::NonLazyBind)) {
2560        // If the function is marked as non-lazy, generate an indirect call
2561        // which loads from the GOT directly. This avoids runtime overhead
2562        // at the cost of eager binding (and one extra byte of encoding).
2563        OpFlags = X86II::MO_GOTPCREL;
2564        WrapperKind = X86ISD::WrapperRIP;
2565        ExtraLoad = true;
2566      }
2567
2568      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2569                                          G->getOffset(), OpFlags);
2570
2571      // Add a wrapper if needed.
2572      if (WrapperKind != ISD::DELETED_NODE)
2573        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2574      // Add extra indirection if needed.
2575      if (ExtraLoad)
2576        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2577                             MachinePointerInfo::getGOT(),
2578                             false, false, false, 0);
2579    }
2580  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2581    unsigned char OpFlags = 0;
2582
2583    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2584    // external symbols should go through the PLT.
2585    if (Subtarget->isTargetELF() &&
2586        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2587      OpFlags = X86II::MO_PLT;
2588    } else if (Subtarget->isPICStyleStubAny() &&
2589               (!Subtarget->getTargetTriple().isMacOSX() ||
2590                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2591      // PC-relative references to external symbols should go through $stub,
2592      // unless we're building with the leopard linker or later, which
2593      // automatically synthesizes these stubs.
2594      OpFlags = X86II::MO_DARWIN_STUB;
2595    }
2596
2597    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2598                                         OpFlags);
2599  }
2600
2601  // Returns a chain & a flag for retval copy to use.
2602  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2603  SmallVector<SDValue, 8> Ops;
2604
2605  if (!IsSibcall && isTailCall) {
2606    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2607                           DAG.getIntPtrConstant(0, true), InFlag);
2608    InFlag = Chain.getValue(1);
2609  }
2610
2611  Ops.push_back(Chain);
2612  Ops.push_back(Callee);
2613
2614  if (isTailCall)
2615    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2616
2617  // Add argument registers to the end of the list so that they are known live
2618  // into the call.
2619  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2620    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2621                                  RegsToPass[i].second.getValueType()));
2622
2623  // Add a register mask operand representing the call-preserved registers.
2624  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2625  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2626  assert(Mask && "Missing call preserved mask for calling convention");
2627  Ops.push_back(DAG.getRegisterMask(Mask));
2628
2629  if (InFlag.getNode())
2630    Ops.push_back(InFlag);
2631
2632  if (isTailCall) {
2633    // We used to do:
2634    //// If this is the first return lowered for this function, add the regs
2635    //// to the liveout set for the function.
2636    // This isn't right, although it's probably harmless on x86; liveouts
2637    // should be computed from returns not tail calls.  Consider a void
2638    // function making a tail call to a function returning int.
2639    return DAG.getNode(X86ISD::TC_RETURN, dl,
2640                       NodeTys, &Ops[0], Ops.size());
2641  }
2642
2643  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2644  InFlag = Chain.getValue(1);
2645
2646  // Create the CALLSEQ_END node.
2647  unsigned NumBytesForCalleeToPush;
2648  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2649                       getTargetMachine().Options.GuaranteedTailCallOpt))
2650    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2651  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2652           SR == StackStructReturn)
2653    // If this is a call to a struct-return function, the callee
2654    // pops the hidden struct pointer, so we have to push it back.
2655    // This is common for Darwin/X86, Linux & Mingw32 targets.
2656    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2657    NumBytesForCalleeToPush = 4;
2658  else
2659    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2660
2661  // Returns a flag for retval copy to use.
2662  if (!IsSibcall) {
2663    Chain = DAG.getCALLSEQ_END(Chain,
2664                               DAG.getIntPtrConstant(NumBytes, true),
2665                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2666                                                     true),
2667                               InFlag);
2668    InFlag = Chain.getValue(1);
2669  }
2670
2671  // Handle result values, copying them out of physregs into vregs that we
2672  // return.
2673  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2674                         Ins, dl, DAG, InVals);
2675}
2676
2677//===----------------------------------------------------------------------===//
2678//                Fast Calling Convention (tail call) implementation
2679//===----------------------------------------------------------------------===//
2680
2681//  Like std call, callee cleans arguments, convention except that ECX is
2682//  reserved for storing the tail called function address. Only 2 registers are
2683//  free for argument passing (inreg). Tail call optimization is performed
2684//  provided:
2685//                * tailcallopt is enabled
2686//                * caller/callee are fastcc
2687//  On X86_64 architecture with GOT-style position independent code only local
2688//  (within module) calls are supported at the moment.
2689//  To keep the stack aligned according to platform abi the function
2690//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2691//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2692//  If a tail called function callee has more arguments than the caller the
2693//  caller needs to make sure that there is room to move the RETADDR to. This is
2694//  achieved by reserving an area the size of the argument delta right after the
2695//  original REtADDR, but before the saved framepointer or the spilled registers
2696//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2697//  stack layout:
2698//    arg1
2699//    arg2
2700//    RETADDR
2701//    [ new RETADDR
2702//      move area ]
2703//    (possible EBP)
2704//    ESI
2705//    EDI
2706//    local1 ..
2707
2708/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2709/// for a 16 byte align requirement.
2710unsigned
2711X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2712                                               SelectionDAG& DAG) const {
2713  MachineFunction &MF = DAG.getMachineFunction();
2714  const TargetMachine &TM = MF.getTarget();
2715  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2716  unsigned StackAlignment = TFI.getStackAlignment();
2717  uint64_t AlignMask = StackAlignment - 1;
2718  int64_t Offset = StackSize;
2719  unsigned SlotSize = RegInfo->getSlotSize();
2720  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2721    // Number smaller than 12 so just add the difference.
2722    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2723  } else {
2724    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2725    Offset = ((~AlignMask) & Offset) + StackAlignment +
2726      (StackAlignment-SlotSize);
2727  }
2728  return Offset;
2729}
2730
2731/// MatchingStackOffset - Return true if the given stack call argument is
2732/// already available in the same position (relatively) of the caller's
2733/// incoming argument stack.
2734static
2735bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2736                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2737                         const X86InstrInfo *TII) {
2738  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2739  int FI = INT_MAX;
2740  if (Arg.getOpcode() == ISD::CopyFromReg) {
2741    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2742    if (!TargetRegisterInfo::isVirtualRegister(VR))
2743      return false;
2744    MachineInstr *Def = MRI->getVRegDef(VR);
2745    if (!Def)
2746      return false;
2747    if (!Flags.isByVal()) {
2748      if (!TII->isLoadFromStackSlot(Def, FI))
2749        return false;
2750    } else {
2751      unsigned Opcode = Def->getOpcode();
2752      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2753          Def->getOperand(1).isFI()) {
2754        FI = Def->getOperand(1).getIndex();
2755        Bytes = Flags.getByValSize();
2756      } else
2757        return false;
2758    }
2759  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2760    if (Flags.isByVal())
2761      // ByVal argument is passed in as a pointer but it's now being
2762      // dereferenced. e.g.
2763      // define @foo(%struct.X* %A) {
2764      //   tail call @bar(%struct.X* byval %A)
2765      // }
2766      return false;
2767    SDValue Ptr = Ld->getBasePtr();
2768    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2769    if (!FINode)
2770      return false;
2771    FI = FINode->getIndex();
2772  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2773    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2774    FI = FINode->getIndex();
2775    Bytes = Flags.getByValSize();
2776  } else
2777    return false;
2778
2779  assert(FI != INT_MAX);
2780  if (!MFI->isFixedObjectIndex(FI))
2781    return false;
2782  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2783}
2784
2785/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2786/// for tail call optimization. Targets which want to do tail call
2787/// optimization should implement this function.
2788bool
2789X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2790                                                     CallingConv::ID CalleeCC,
2791                                                     bool isVarArg,
2792                                                     bool isCalleeStructRet,
2793                                                     bool isCallerStructRet,
2794                                                     Type *RetTy,
2795                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2796                                    const SmallVectorImpl<SDValue> &OutVals,
2797                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2798                                                     SelectionDAG& DAG) const {
2799  if (!IsTailCallConvention(CalleeCC) &&
2800      CalleeCC != CallingConv::C)
2801    return false;
2802
2803  // If -tailcallopt is specified, make fastcc functions tail-callable.
2804  const MachineFunction &MF = DAG.getMachineFunction();
2805  const Function *CallerF = DAG.getMachineFunction().getFunction();
2806
2807  // If the function return type is x86_fp80 and the callee return type is not,
2808  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2809  // perform a tailcall optimization here.
2810  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2811    return false;
2812
2813  CallingConv::ID CallerCC = CallerF->getCallingConv();
2814  bool CCMatch = CallerCC == CalleeCC;
2815
2816  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2817    if (IsTailCallConvention(CalleeCC) && CCMatch)
2818      return true;
2819    return false;
2820  }
2821
2822  // Look for obvious safe cases to perform tail call optimization that do not
2823  // require ABI changes. This is what gcc calls sibcall.
2824
2825  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2826  // emit a special epilogue.
2827  if (RegInfo->needsStackRealignment(MF))
2828    return false;
2829
2830  // Also avoid sibcall optimization if either caller or callee uses struct
2831  // return semantics.
2832  if (isCalleeStructRet || isCallerStructRet)
2833    return false;
2834
2835  // An stdcall caller is expected to clean up its arguments; the callee
2836  // isn't going to do that.
2837  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2838    return false;
2839
2840  // Do not sibcall optimize vararg calls unless all arguments are passed via
2841  // registers.
2842  if (isVarArg && !Outs.empty()) {
2843
2844    // Optimizing for varargs on Win64 is unlikely to be safe without
2845    // additional testing.
2846    if (Subtarget->isTargetWin64())
2847      return false;
2848
2849    SmallVector<CCValAssign, 16> ArgLocs;
2850    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2851                   getTargetMachine(), ArgLocs, *DAG.getContext());
2852
2853    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2854    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2855      if (!ArgLocs[i].isRegLoc())
2856        return false;
2857  }
2858
2859  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2860  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2861  // this into a sibcall.
2862  bool Unused = false;
2863  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2864    if (!Ins[i].Used) {
2865      Unused = true;
2866      break;
2867    }
2868  }
2869  if (Unused) {
2870    SmallVector<CCValAssign, 16> RVLocs;
2871    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2872                   getTargetMachine(), RVLocs, *DAG.getContext());
2873    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2874    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2875      CCValAssign &VA = RVLocs[i];
2876      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2877        return false;
2878    }
2879  }
2880
2881  // If the calling conventions do not match, then we'd better make sure the
2882  // results are returned in the same way as what the caller expects.
2883  if (!CCMatch) {
2884    SmallVector<CCValAssign, 16> RVLocs1;
2885    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2886                    getTargetMachine(), RVLocs1, *DAG.getContext());
2887    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2888
2889    SmallVector<CCValAssign, 16> RVLocs2;
2890    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2891                    getTargetMachine(), RVLocs2, *DAG.getContext());
2892    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2893
2894    if (RVLocs1.size() != RVLocs2.size())
2895      return false;
2896    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2897      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2898        return false;
2899      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2900        return false;
2901      if (RVLocs1[i].isRegLoc()) {
2902        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2903          return false;
2904      } else {
2905        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2906          return false;
2907      }
2908    }
2909  }
2910
2911  // If the callee takes no arguments then go on to check the results of the
2912  // call.
2913  if (!Outs.empty()) {
2914    // Check if stack adjustment is needed. For now, do not do this if any
2915    // argument is passed on the stack.
2916    SmallVector<CCValAssign, 16> ArgLocs;
2917    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2918                   getTargetMachine(), ArgLocs, *DAG.getContext());
2919
2920    // Allocate shadow area for Win64
2921    if (Subtarget->isTargetWin64()) {
2922      CCInfo.AllocateStack(32, 8);
2923    }
2924
2925    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2926    if (CCInfo.getNextStackOffset()) {
2927      MachineFunction &MF = DAG.getMachineFunction();
2928      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2929        return false;
2930
2931      // Check if the arguments are already laid out in the right way as
2932      // the caller's fixed stack objects.
2933      MachineFrameInfo *MFI = MF.getFrameInfo();
2934      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2935      const X86InstrInfo *TII =
2936        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2937      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2938        CCValAssign &VA = ArgLocs[i];
2939        SDValue Arg = OutVals[i];
2940        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2941        if (VA.getLocInfo() == CCValAssign::Indirect)
2942          return false;
2943        if (!VA.isRegLoc()) {
2944          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2945                                   MFI, MRI, TII))
2946            return false;
2947        }
2948      }
2949    }
2950
2951    // If the tailcall address may be in a register, then make sure it's
2952    // possible to register allocate for it. In 32-bit, the call address can
2953    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2954    // callee-saved registers are restored. These happen to be the same
2955    // registers used to pass 'inreg' arguments so watch out for those.
2956    if (!Subtarget->is64Bit() &&
2957        !isa<GlobalAddressSDNode>(Callee) &&
2958        !isa<ExternalSymbolSDNode>(Callee)) {
2959      unsigned NumInRegs = 0;
2960      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2961        CCValAssign &VA = ArgLocs[i];
2962        if (!VA.isRegLoc())
2963          continue;
2964        unsigned Reg = VA.getLocReg();
2965        switch (Reg) {
2966        default: break;
2967        case X86::EAX: case X86::EDX: case X86::ECX:
2968          if (++NumInRegs == 3)
2969            return false;
2970          break;
2971        }
2972      }
2973    }
2974  }
2975
2976  return true;
2977}
2978
2979FastISel *
2980X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
2981                                  const TargetLibraryInfo *libInfo) const {
2982  return X86::createFastISel(funcInfo, libInfo);
2983}
2984
2985//===----------------------------------------------------------------------===//
2986//                           Other Lowering Hooks
2987//===----------------------------------------------------------------------===//
2988
2989static bool MayFoldLoad(SDValue Op) {
2990  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2991}
2992
2993static bool MayFoldIntoStore(SDValue Op) {
2994  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2995}
2996
2997static bool isTargetShuffle(unsigned Opcode) {
2998  switch(Opcode) {
2999  default: return false;
3000  case X86ISD::PSHUFD:
3001  case X86ISD::PSHUFHW:
3002  case X86ISD::PSHUFLW:
3003  case X86ISD::SHUFP:
3004  case X86ISD::PALIGN:
3005  case X86ISD::MOVLHPS:
3006  case X86ISD::MOVLHPD:
3007  case X86ISD::MOVHLPS:
3008  case X86ISD::MOVLPS:
3009  case X86ISD::MOVLPD:
3010  case X86ISD::MOVSHDUP:
3011  case X86ISD::MOVSLDUP:
3012  case X86ISD::MOVDDUP:
3013  case X86ISD::MOVSS:
3014  case X86ISD::MOVSD:
3015  case X86ISD::UNPCKL:
3016  case X86ISD::UNPCKH:
3017  case X86ISD::VPERMILP:
3018  case X86ISD::VPERM2X128:
3019  case X86ISD::VPERMI:
3020    return true;
3021  }
3022}
3023
3024static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3025                                    SDValue V1, SelectionDAG &DAG) {
3026  switch(Opc) {
3027  default: llvm_unreachable("Unknown x86 shuffle node");
3028  case X86ISD::MOVSHDUP:
3029  case X86ISD::MOVSLDUP:
3030  case X86ISD::MOVDDUP:
3031    return DAG.getNode(Opc, dl, VT, V1);
3032  }
3033}
3034
3035static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3036                                    SDValue V1, unsigned TargetMask,
3037                                    SelectionDAG &DAG) {
3038  switch(Opc) {
3039  default: llvm_unreachable("Unknown x86 shuffle node");
3040  case X86ISD::PSHUFD:
3041  case X86ISD::PSHUFHW:
3042  case X86ISD::PSHUFLW:
3043  case X86ISD::VPERMILP:
3044  case X86ISD::VPERMI:
3045    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3046  }
3047}
3048
3049static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3050                                    SDValue V1, SDValue V2, unsigned TargetMask,
3051                                    SelectionDAG &DAG) {
3052  switch(Opc) {
3053  default: llvm_unreachable("Unknown x86 shuffle node");
3054  case X86ISD::PALIGN:
3055  case X86ISD::SHUFP:
3056  case X86ISD::VPERM2X128:
3057    return DAG.getNode(Opc, dl, VT, V1, V2,
3058                       DAG.getConstant(TargetMask, MVT::i8));
3059  }
3060}
3061
3062static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3063                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3064  switch(Opc) {
3065  default: llvm_unreachable("Unknown x86 shuffle node");
3066  case X86ISD::MOVLHPS:
3067  case X86ISD::MOVLHPD:
3068  case X86ISD::MOVHLPS:
3069  case X86ISD::MOVLPS:
3070  case X86ISD::MOVLPD:
3071  case X86ISD::MOVSS:
3072  case X86ISD::MOVSD:
3073  case X86ISD::UNPCKL:
3074  case X86ISD::UNPCKH:
3075    return DAG.getNode(Opc, dl, VT, V1, V2);
3076  }
3077}
3078
3079SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3080  MachineFunction &MF = DAG.getMachineFunction();
3081  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3082  int ReturnAddrIndex = FuncInfo->getRAIndex();
3083
3084  if (ReturnAddrIndex == 0) {
3085    // Set up a frame object for the return address.
3086    unsigned SlotSize = RegInfo->getSlotSize();
3087    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3088                                                           false);
3089    FuncInfo->setRAIndex(ReturnAddrIndex);
3090  }
3091
3092  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3093}
3094
3095bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3096                                       bool hasSymbolicDisplacement) {
3097  // Offset should fit into 32 bit immediate field.
3098  if (!isInt<32>(Offset))
3099    return false;
3100
3101  // If we don't have a symbolic displacement - we don't have any extra
3102  // restrictions.
3103  if (!hasSymbolicDisplacement)
3104    return true;
3105
3106  // FIXME: Some tweaks might be needed for medium code model.
3107  if (M != CodeModel::Small && M != CodeModel::Kernel)
3108    return false;
3109
3110  // For small code model we assume that latest object is 16MB before end of 31
3111  // bits boundary. We may also accept pretty large negative constants knowing
3112  // that all objects are in the positive half of address space.
3113  if (M == CodeModel::Small && Offset < 16*1024*1024)
3114    return true;
3115
3116  // For kernel code model we know that all object resist in the negative half
3117  // of 32bits address space. We may not accept negative offsets, since they may
3118  // be just off and we may accept pretty large positive ones.
3119  if (M == CodeModel::Kernel && Offset > 0)
3120    return true;
3121
3122  return false;
3123}
3124
3125/// isCalleePop - Determines whether the callee is required to pop its
3126/// own arguments. Callee pop is necessary to support tail calls.
3127bool X86::isCalleePop(CallingConv::ID CallingConv,
3128                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3129  if (IsVarArg)
3130    return false;
3131
3132  switch (CallingConv) {
3133  default:
3134    return false;
3135  case CallingConv::X86_StdCall:
3136    return !is64Bit;
3137  case CallingConv::X86_FastCall:
3138    return !is64Bit;
3139  case CallingConv::X86_ThisCall:
3140    return !is64Bit;
3141  case CallingConv::Fast:
3142    return TailCallOpt;
3143  case CallingConv::GHC:
3144    return TailCallOpt;
3145  case CallingConv::HiPE:
3146    return TailCallOpt;
3147  }
3148}
3149
3150/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3151/// specific condition code, returning the condition code and the LHS/RHS of the
3152/// comparison to make.
3153static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3154                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3155  if (!isFP) {
3156    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3157      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3158        // X > -1   -> X == 0, jump !sign.
3159        RHS = DAG.getConstant(0, RHS.getValueType());
3160        return X86::COND_NS;
3161      }
3162      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3163        // X < 0   -> X == 0, jump on sign.
3164        return X86::COND_S;
3165      }
3166      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3167        // X < 1   -> X <= 0
3168        RHS = DAG.getConstant(0, RHS.getValueType());
3169        return X86::COND_LE;
3170      }
3171    }
3172
3173    switch (SetCCOpcode) {
3174    default: llvm_unreachable("Invalid integer condition!");
3175    case ISD::SETEQ:  return X86::COND_E;
3176    case ISD::SETGT:  return X86::COND_G;
3177    case ISD::SETGE:  return X86::COND_GE;
3178    case ISD::SETLT:  return X86::COND_L;
3179    case ISD::SETLE:  return X86::COND_LE;
3180    case ISD::SETNE:  return X86::COND_NE;
3181    case ISD::SETULT: return X86::COND_B;
3182    case ISD::SETUGT: return X86::COND_A;
3183    case ISD::SETULE: return X86::COND_BE;
3184    case ISD::SETUGE: return X86::COND_AE;
3185    }
3186  }
3187
3188  // First determine if it is required or is profitable to flip the operands.
3189
3190  // If LHS is a foldable load, but RHS is not, flip the condition.
3191  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3192      !ISD::isNON_EXTLoad(RHS.getNode())) {
3193    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3194    std::swap(LHS, RHS);
3195  }
3196
3197  switch (SetCCOpcode) {
3198  default: break;
3199  case ISD::SETOLT:
3200  case ISD::SETOLE:
3201  case ISD::SETUGT:
3202  case ISD::SETUGE:
3203    std::swap(LHS, RHS);
3204    break;
3205  }
3206
3207  // On a floating point condition, the flags are set as follows:
3208  // ZF  PF  CF   op
3209  //  0 | 0 | 0 | X > Y
3210  //  0 | 0 | 1 | X < Y
3211  //  1 | 0 | 0 | X == Y
3212  //  1 | 1 | 1 | unordered
3213  switch (SetCCOpcode) {
3214  default: llvm_unreachable("Condcode should be pre-legalized away");
3215  case ISD::SETUEQ:
3216  case ISD::SETEQ:   return X86::COND_E;
3217  case ISD::SETOLT:              // flipped
3218  case ISD::SETOGT:
3219  case ISD::SETGT:   return X86::COND_A;
3220  case ISD::SETOLE:              // flipped
3221  case ISD::SETOGE:
3222  case ISD::SETGE:   return X86::COND_AE;
3223  case ISD::SETUGT:              // flipped
3224  case ISD::SETULT:
3225  case ISD::SETLT:   return X86::COND_B;
3226  case ISD::SETUGE:              // flipped
3227  case ISD::SETULE:
3228  case ISD::SETLE:   return X86::COND_BE;
3229  case ISD::SETONE:
3230  case ISD::SETNE:   return X86::COND_NE;
3231  case ISD::SETUO:   return X86::COND_P;
3232  case ISD::SETO:    return X86::COND_NP;
3233  case ISD::SETOEQ:
3234  case ISD::SETUNE:  return X86::COND_INVALID;
3235  }
3236}
3237
3238/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3239/// code. Current x86 isa includes the following FP cmov instructions:
3240/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3241static bool hasFPCMov(unsigned X86CC) {
3242  switch (X86CC) {
3243  default:
3244    return false;
3245  case X86::COND_B:
3246  case X86::COND_BE:
3247  case X86::COND_E:
3248  case X86::COND_P:
3249  case X86::COND_A:
3250  case X86::COND_AE:
3251  case X86::COND_NE:
3252  case X86::COND_NP:
3253    return true;
3254  }
3255}
3256
3257/// isFPImmLegal - Returns true if the target can instruction select the
3258/// specified FP immediate natively. If false, the legalizer will
3259/// materialize the FP immediate as a load from a constant pool.
3260bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3261  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3262    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3263      return true;
3264  }
3265  return false;
3266}
3267
3268/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3269/// the specified range (L, H].
3270static bool isUndefOrInRange(int Val, int Low, int Hi) {
3271  return (Val < 0) || (Val >= Low && Val < Hi);
3272}
3273
3274/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3275/// specified value.
3276static bool isUndefOrEqual(int Val, int CmpVal) {
3277  return (Val < 0 || Val == CmpVal);
3278}
3279
3280/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3281/// from position Pos and ending in Pos+Size, falls within the specified
3282/// sequential range (L, L+Pos]. or is undef.
3283static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3284                                       unsigned Pos, unsigned Size, int Low) {
3285  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3286    if (!isUndefOrEqual(Mask[i], Low))
3287      return false;
3288  return true;
3289}
3290
3291/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3292/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3293/// the second operand.
3294static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3295  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3296    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3297  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3298    return (Mask[0] < 2 && Mask[1] < 2);
3299  return false;
3300}
3301
3302/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3303/// is suitable for input to PSHUFHW.
3304static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3305  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3306    return false;
3307
3308  // Lower quadword copied in order or undef.
3309  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3310    return false;
3311
3312  // Upper quadword shuffled.
3313  for (unsigned i = 4; i != 8; ++i)
3314    if (!isUndefOrInRange(Mask[i], 4, 8))
3315      return false;
3316
3317  if (VT == MVT::v16i16) {
3318    // Lower quadword copied in order or undef.
3319    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3320      return false;
3321
3322    // Upper quadword shuffled.
3323    for (unsigned i = 12; i != 16; ++i)
3324      if (!isUndefOrInRange(Mask[i], 12, 16))
3325        return false;
3326  }
3327
3328  return true;
3329}
3330
3331/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3332/// is suitable for input to PSHUFLW.
3333static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3334  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3335    return false;
3336
3337  // Upper quadword copied in order.
3338  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3339    return false;
3340
3341  // Lower quadword shuffled.
3342  for (unsigned i = 0; i != 4; ++i)
3343    if (!isUndefOrInRange(Mask[i], 0, 4))
3344      return false;
3345
3346  if (VT == MVT::v16i16) {
3347    // Upper quadword copied in order.
3348    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3349      return false;
3350
3351    // Lower quadword shuffled.
3352    for (unsigned i = 8; i != 12; ++i)
3353      if (!isUndefOrInRange(Mask[i], 8, 12))
3354        return false;
3355  }
3356
3357  return true;
3358}
3359
3360/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3361/// is suitable for input to PALIGNR.
3362static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3363                          const X86Subtarget *Subtarget) {
3364  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3365      (VT.is256BitVector() && !Subtarget->hasInt256()))
3366    return false;
3367
3368  unsigned NumElts = VT.getVectorNumElements();
3369  unsigned NumLanes = VT.getSizeInBits()/128;
3370  unsigned NumLaneElts = NumElts/NumLanes;
3371
3372  // Do not handle 64-bit element shuffles with palignr.
3373  if (NumLaneElts == 2)
3374    return false;
3375
3376  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3377    unsigned i;
3378    for (i = 0; i != NumLaneElts; ++i) {
3379      if (Mask[i+l] >= 0)
3380        break;
3381    }
3382
3383    // Lane is all undef, go to next lane
3384    if (i == NumLaneElts)
3385      continue;
3386
3387    int Start = Mask[i+l];
3388
3389    // Make sure its in this lane in one of the sources
3390    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3391        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3392      return false;
3393
3394    // If not lane 0, then we must match lane 0
3395    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3396      return false;
3397
3398    // Correct second source to be contiguous with first source
3399    if (Start >= (int)NumElts)
3400      Start -= NumElts - NumLaneElts;
3401
3402    // Make sure we're shifting in the right direction.
3403    if (Start <= (int)(i+l))
3404      return false;
3405
3406    Start -= i;
3407
3408    // Check the rest of the elements to see if they are consecutive.
3409    for (++i; i != NumLaneElts; ++i) {
3410      int Idx = Mask[i+l];
3411
3412      // Make sure its in this lane
3413      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3414          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3415        return false;
3416
3417      // If not lane 0, then we must match lane 0
3418      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3419        return false;
3420
3421      if (Idx >= (int)NumElts)
3422        Idx -= NumElts - NumLaneElts;
3423
3424      if (!isUndefOrEqual(Idx, Start+i))
3425        return false;
3426
3427    }
3428  }
3429
3430  return true;
3431}
3432
3433/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3434/// the two vector operands have swapped position.
3435static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3436                                     unsigned NumElems) {
3437  for (unsigned i = 0; i != NumElems; ++i) {
3438    int idx = Mask[i];
3439    if (idx < 0)
3440      continue;
3441    else if (idx < (int)NumElems)
3442      Mask[i] = idx + NumElems;
3443    else
3444      Mask[i] = idx - NumElems;
3445  }
3446}
3447
3448/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3449/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3450/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3451/// reverse of what x86 shuffles want.
3452static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
3453                        bool Commuted = false) {
3454  if (!HasFp256 && VT.is256BitVector())
3455    return false;
3456
3457  unsigned NumElems = VT.getVectorNumElements();
3458  unsigned NumLanes = VT.getSizeInBits()/128;
3459  unsigned NumLaneElems = NumElems/NumLanes;
3460
3461  if (NumLaneElems != 2 && NumLaneElems != 4)
3462    return false;
3463
3464  // VSHUFPSY divides the resulting vector into 4 chunks.
3465  // The sources are also splitted into 4 chunks, and each destination
3466  // chunk must come from a different source chunk.
3467  //
3468  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3469  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3470  //
3471  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3472  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3473  //
3474  // VSHUFPDY divides the resulting vector into 4 chunks.
3475  // The sources are also splitted into 4 chunks, and each destination
3476  // chunk must come from a different source chunk.
3477  //
3478  //  SRC1 =>      X3       X2       X1       X0
3479  //  SRC2 =>      Y3       Y2       Y1       Y0
3480  //
3481  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3482  //
3483  unsigned HalfLaneElems = NumLaneElems/2;
3484  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3485    for (unsigned i = 0; i != NumLaneElems; ++i) {
3486      int Idx = Mask[i+l];
3487      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3488      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3489        return false;
3490      // For VSHUFPSY, the mask of the second half must be the same as the
3491      // first but with the appropriate offsets. This works in the same way as
3492      // VPERMILPS works with masks.
3493      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3494        continue;
3495      if (!isUndefOrEqual(Idx, Mask[i]+l))
3496        return false;
3497    }
3498  }
3499
3500  return true;
3501}
3502
3503/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3504/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3505static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3506  if (!VT.is128BitVector())
3507    return false;
3508
3509  unsigned NumElems = VT.getVectorNumElements();
3510
3511  if (NumElems != 4)
3512    return false;
3513
3514  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3515  return isUndefOrEqual(Mask[0], 6) &&
3516         isUndefOrEqual(Mask[1], 7) &&
3517         isUndefOrEqual(Mask[2], 2) &&
3518         isUndefOrEqual(Mask[3], 3);
3519}
3520
3521/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3522/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3523/// <2, 3, 2, 3>
3524static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3525  if (!VT.is128BitVector())
3526    return false;
3527
3528  unsigned NumElems = VT.getVectorNumElements();
3529
3530  if (NumElems != 4)
3531    return false;
3532
3533  return isUndefOrEqual(Mask[0], 2) &&
3534         isUndefOrEqual(Mask[1], 3) &&
3535         isUndefOrEqual(Mask[2], 2) &&
3536         isUndefOrEqual(Mask[3], 3);
3537}
3538
3539/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3540/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3541static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3542  if (!VT.is128BitVector())
3543    return false;
3544
3545  unsigned NumElems = VT.getVectorNumElements();
3546
3547  if (NumElems != 2 && NumElems != 4)
3548    return false;
3549
3550  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3551    if (!isUndefOrEqual(Mask[i], i + NumElems))
3552      return false;
3553
3554  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3555    if (!isUndefOrEqual(Mask[i], i))
3556      return false;
3557
3558  return true;
3559}
3560
3561/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3562/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3563static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3564  if (!VT.is128BitVector())
3565    return false;
3566
3567  unsigned NumElems = VT.getVectorNumElements();
3568
3569  if (NumElems != 2 && NumElems != 4)
3570    return false;
3571
3572  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3573    if (!isUndefOrEqual(Mask[i], i))
3574      return false;
3575
3576  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3577    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3578      return false;
3579
3580  return true;
3581}
3582
3583//
3584// Some special combinations that can be optimized.
3585//
3586static
3587SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3588                               SelectionDAG &DAG) {
3589  EVT VT = SVOp->getValueType(0);
3590  DebugLoc dl = SVOp->getDebugLoc();
3591
3592  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3593    return SDValue();
3594
3595  ArrayRef<int> Mask = SVOp->getMask();
3596
3597  // These are the special masks that may be optimized.
3598  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3599  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3600  bool MatchEvenMask = true;
3601  bool MatchOddMask  = true;
3602  for (int i=0; i<8; ++i) {
3603    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3604      MatchEvenMask = false;
3605    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3606      MatchOddMask = false;
3607  }
3608
3609  if (!MatchEvenMask && !MatchOddMask)
3610    return SDValue();
3611
3612  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3613
3614  SDValue Op0 = SVOp->getOperand(0);
3615  SDValue Op1 = SVOp->getOperand(1);
3616
3617  if (MatchEvenMask) {
3618    // Shift the second operand right to 32 bits.
3619    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3620    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3621  } else {
3622    // Shift the first operand left to 32 bits.
3623    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3624    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3625  }
3626  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3627  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3628}
3629
3630/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3631/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3632static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3633                         bool HasInt256, bool V2IsSplat = false) {
3634  unsigned NumElts = VT.getVectorNumElements();
3635
3636  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3637         "Unsupported vector type for unpckh");
3638
3639  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3640      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3641    return false;
3642
3643  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3644  // independently on 128-bit lanes.
3645  unsigned NumLanes = VT.getSizeInBits()/128;
3646  unsigned NumLaneElts = NumElts/NumLanes;
3647
3648  for (unsigned l = 0; l != NumLanes; ++l) {
3649    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3650         i != (l+1)*NumLaneElts;
3651         i += 2, ++j) {
3652      int BitI  = Mask[i];
3653      int BitI1 = Mask[i+1];
3654      if (!isUndefOrEqual(BitI, j))
3655        return false;
3656      if (V2IsSplat) {
3657        if (!isUndefOrEqual(BitI1, NumElts))
3658          return false;
3659      } else {
3660        if (!isUndefOrEqual(BitI1, j + NumElts))
3661          return false;
3662      }
3663    }
3664  }
3665
3666  return true;
3667}
3668
3669/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3670/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3671static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3672                         bool HasInt256, bool V2IsSplat = false) {
3673  unsigned NumElts = VT.getVectorNumElements();
3674
3675  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3676         "Unsupported vector type for unpckh");
3677
3678  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3679      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3680    return false;
3681
3682  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3683  // independently on 128-bit lanes.
3684  unsigned NumLanes = VT.getSizeInBits()/128;
3685  unsigned NumLaneElts = NumElts/NumLanes;
3686
3687  for (unsigned l = 0; l != NumLanes; ++l) {
3688    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3689         i != (l+1)*NumLaneElts; i += 2, ++j) {
3690      int BitI  = Mask[i];
3691      int BitI1 = Mask[i+1];
3692      if (!isUndefOrEqual(BitI, j))
3693        return false;
3694      if (V2IsSplat) {
3695        if (isUndefOrEqual(BitI1, NumElts))
3696          return false;
3697      } else {
3698        if (!isUndefOrEqual(BitI1, j+NumElts))
3699          return false;
3700      }
3701    }
3702  }
3703  return true;
3704}
3705
3706/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3707/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3708/// <0, 0, 1, 1>
3709static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3710  unsigned NumElts = VT.getVectorNumElements();
3711  bool Is256BitVec = VT.is256BitVector();
3712
3713  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3714         "Unsupported vector type for unpckh");
3715
3716  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
3717      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3718    return false;
3719
3720  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3721  // FIXME: Need a better way to get rid of this, there's no latency difference
3722  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3723  // the former later. We should also remove the "_undef" special mask.
3724  if (NumElts == 4 && Is256BitVec)
3725    return false;
3726
3727  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3728  // independently on 128-bit lanes.
3729  unsigned NumLanes = VT.getSizeInBits()/128;
3730  unsigned NumLaneElts = NumElts/NumLanes;
3731
3732  for (unsigned l = 0; l != NumLanes; ++l) {
3733    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3734         i != (l+1)*NumLaneElts;
3735         i += 2, ++j) {
3736      int BitI  = Mask[i];
3737      int BitI1 = Mask[i+1];
3738
3739      if (!isUndefOrEqual(BitI, j))
3740        return false;
3741      if (!isUndefOrEqual(BitI1, j))
3742        return false;
3743    }
3744  }
3745
3746  return true;
3747}
3748
3749/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3750/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3751/// <2, 2, 3, 3>
3752static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3753  unsigned NumElts = VT.getVectorNumElements();
3754
3755  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3756         "Unsupported vector type for unpckh");
3757
3758  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
3759      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3760    return false;
3761
3762  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3763  // independently on 128-bit lanes.
3764  unsigned NumLanes = VT.getSizeInBits()/128;
3765  unsigned NumLaneElts = NumElts/NumLanes;
3766
3767  for (unsigned l = 0; l != NumLanes; ++l) {
3768    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3769         i != (l+1)*NumLaneElts; i += 2, ++j) {
3770      int BitI  = Mask[i];
3771      int BitI1 = Mask[i+1];
3772      if (!isUndefOrEqual(BitI, j))
3773        return false;
3774      if (!isUndefOrEqual(BitI1, j))
3775        return false;
3776    }
3777  }
3778  return true;
3779}
3780
3781/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3782/// specifies a shuffle of elements that is suitable for input to MOVSS,
3783/// MOVSD, and MOVD, i.e. setting the lowest element.
3784static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3785  if (VT.getVectorElementType().getSizeInBits() < 32)
3786    return false;
3787  if (!VT.is128BitVector())
3788    return false;
3789
3790  unsigned NumElts = VT.getVectorNumElements();
3791
3792  if (!isUndefOrEqual(Mask[0], NumElts))
3793    return false;
3794
3795  for (unsigned i = 1; i != NumElts; ++i)
3796    if (!isUndefOrEqual(Mask[i], i))
3797      return false;
3798
3799  return true;
3800}
3801
3802/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3803/// as permutations between 128-bit chunks or halves. As an example: this
3804/// shuffle bellow:
3805///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3806/// The first half comes from the second half of V1 and the second half from the
3807/// the second half of V2.
3808static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3809  if (!HasFp256 || !VT.is256BitVector())
3810    return false;
3811
3812  // The shuffle result is divided into half A and half B. In total the two
3813  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3814  // B must come from C, D, E or F.
3815  unsigned HalfSize = VT.getVectorNumElements()/2;
3816  bool MatchA = false, MatchB = false;
3817
3818  // Check if A comes from one of C, D, E, F.
3819  for (unsigned Half = 0; Half != 4; ++Half) {
3820    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3821      MatchA = true;
3822      break;
3823    }
3824  }
3825
3826  // Check if B comes from one of C, D, E, F.
3827  for (unsigned Half = 0; Half != 4; ++Half) {
3828    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3829      MatchB = true;
3830      break;
3831    }
3832  }
3833
3834  return MatchA && MatchB;
3835}
3836
3837/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3838/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3839static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3840  EVT VT = SVOp->getValueType(0);
3841
3842  unsigned HalfSize = VT.getVectorNumElements()/2;
3843
3844  unsigned FstHalf = 0, SndHalf = 0;
3845  for (unsigned i = 0; i < HalfSize; ++i) {
3846    if (SVOp->getMaskElt(i) > 0) {
3847      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3848      break;
3849    }
3850  }
3851  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3852    if (SVOp->getMaskElt(i) > 0) {
3853      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3854      break;
3855    }
3856  }
3857
3858  return (FstHalf | (SndHalf << 4));
3859}
3860
3861/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3862/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3863/// Note that VPERMIL mask matching is different depending whether theunderlying
3864/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3865/// to the same elements of the low, but to the higher half of the source.
3866/// In VPERMILPD the two lanes could be shuffled independently of each other
3867/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3868static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3869  if (!HasFp256)
3870    return false;
3871
3872  unsigned NumElts = VT.getVectorNumElements();
3873  // Only match 256-bit with 32/64-bit types
3874  if (!VT.is256BitVector() || (NumElts != 4 && NumElts != 8))
3875    return false;
3876
3877  unsigned NumLanes = VT.getSizeInBits()/128;
3878  unsigned LaneSize = NumElts/NumLanes;
3879  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3880    for (unsigned i = 0; i != LaneSize; ++i) {
3881      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3882        return false;
3883      if (NumElts != 8 || l == 0)
3884        continue;
3885      // VPERMILPS handling
3886      if (Mask[i] < 0)
3887        continue;
3888      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3889        return false;
3890    }
3891  }
3892
3893  return true;
3894}
3895
3896/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3897/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3898/// element of vector 2 and the other elements to come from vector 1 in order.
3899static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3900                               bool V2IsSplat = false, bool V2IsUndef = false) {
3901  if (!VT.is128BitVector())
3902    return false;
3903
3904  unsigned NumOps = VT.getVectorNumElements();
3905  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3906    return false;
3907
3908  if (!isUndefOrEqual(Mask[0], 0))
3909    return false;
3910
3911  for (unsigned i = 1; i != NumOps; ++i)
3912    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3913          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3914          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3915      return false;
3916
3917  return true;
3918}
3919
3920/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3921/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3922/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3923static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3924                           const X86Subtarget *Subtarget) {
3925  if (!Subtarget->hasSSE3())
3926    return false;
3927
3928  unsigned NumElems = VT.getVectorNumElements();
3929
3930  if ((VT.is128BitVector() && NumElems != 4) ||
3931      (VT.is256BitVector() && NumElems != 8))
3932    return false;
3933
3934  // "i+1" is the value the indexed mask element must have
3935  for (unsigned i = 0; i != NumElems; i += 2)
3936    if (!isUndefOrEqual(Mask[i], i+1) ||
3937        !isUndefOrEqual(Mask[i+1], i+1))
3938      return false;
3939
3940  return true;
3941}
3942
3943/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3944/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3945/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3946static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3947                           const X86Subtarget *Subtarget) {
3948  if (!Subtarget->hasSSE3())
3949    return false;
3950
3951  unsigned NumElems = VT.getVectorNumElements();
3952
3953  if ((VT.is128BitVector() && NumElems != 4) ||
3954      (VT.is256BitVector() && NumElems != 8))
3955    return false;
3956
3957  // "i" is the value the indexed mask element must have
3958  for (unsigned i = 0; i != NumElems; i += 2)
3959    if (!isUndefOrEqual(Mask[i], i) ||
3960        !isUndefOrEqual(Mask[i+1], i))
3961      return false;
3962
3963  return true;
3964}
3965
3966/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3967/// specifies a shuffle of elements that is suitable for input to 256-bit
3968/// version of MOVDDUP.
3969static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3970  if (!HasFp256 || !VT.is256BitVector())
3971    return false;
3972
3973  unsigned NumElts = VT.getVectorNumElements();
3974  if (NumElts != 4)
3975    return false;
3976
3977  for (unsigned i = 0; i != NumElts/2; ++i)
3978    if (!isUndefOrEqual(Mask[i], 0))
3979      return false;
3980  for (unsigned i = NumElts/2; i != NumElts; ++i)
3981    if (!isUndefOrEqual(Mask[i], NumElts/2))
3982      return false;
3983  return true;
3984}
3985
3986/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3987/// specifies a shuffle of elements that is suitable for input to 128-bit
3988/// version of MOVDDUP.
3989static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3990  if (!VT.is128BitVector())
3991    return false;
3992
3993  unsigned e = VT.getVectorNumElements() / 2;
3994  for (unsigned i = 0; i != e; ++i)
3995    if (!isUndefOrEqual(Mask[i], i))
3996      return false;
3997  for (unsigned i = 0; i != e; ++i)
3998    if (!isUndefOrEqual(Mask[e+i], i))
3999      return false;
4000  return true;
4001}
4002
4003/// isVEXTRACTF128Index - Return true if the specified
4004/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4005/// suitable for input to VEXTRACTF128.
4006bool X86::isVEXTRACTF128Index(SDNode *N) {
4007  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4008    return false;
4009
4010  // The index should be aligned on a 128-bit boundary.
4011  uint64_t Index =
4012    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4013
4014  unsigned VL = N->getValueType(0).getVectorNumElements();
4015  unsigned VBits = N->getValueType(0).getSizeInBits();
4016  unsigned ElSize = VBits / VL;
4017  bool Result = (Index * ElSize) % 128 == 0;
4018
4019  return Result;
4020}
4021
4022/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4023/// operand specifies a subvector insert that is suitable for input to
4024/// VINSERTF128.
4025bool X86::isVINSERTF128Index(SDNode *N) {
4026  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4027    return false;
4028
4029  // The index should be aligned on a 128-bit boundary.
4030  uint64_t Index =
4031    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4032
4033  unsigned VL = N->getValueType(0).getVectorNumElements();
4034  unsigned VBits = N->getValueType(0).getSizeInBits();
4035  unsigned ElSize = VBits / VL;
4036  bool Result = (Index * ElSize) % 128 == 0;
4037
4038  return Result;
4039}
4040
4041/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4042/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4043/// Handles 128-bit and 256-bit.
4044static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4045  EVT VT = N->getValueType(0);
4046
4047  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4048         "Unsupported vector type for PSHUF/SHUFP");
4049
4050  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4051  // independently on 128-bit lanes.
4052  unsigned NumElts = VT.getVectorNumElements();
4053  unsigned NumLanes = VT.getSizeInBits()/128;
4054  unsigned NumLaneElts = NumElts/NumLanes;
4055
4056  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
4057         "Only supports 2 or 4 elements per lane");
4058
4059  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
4060  unsigned Mask = 0;
4061  for (unsigned i = 0; i != NumElts; ++i) {
4062    int Elt = N->getMaskElt(i);
4063    if (Elt < 0) continue;
4064    Elt &= NumLaneElts - 1;
4065    unsigned ShAmt = (i << Shift) % 8;
4066    Mask |= Elt << ShAmt;
4067  }
4068
4069  return Mask;
4070}
4071
4072/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4073/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4074static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4075  EVT VT = N->getValueType(0);
4076
4077  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4078         "Unsupported vector type for PSHUFHW");
4079
4080  unsigned NumElts = VT.getVectorNumElements();
4081
4082  unsigned Mask = 0;
4083  for (unsigned l = 0; l != NumElts; l += 8) {
4084    // 8 nodes per lane, but we only care about the last 4.
4085    for (unsigned i = 0; i < 4; ++i) {
4086      int Elt = N->getMaskElt(l+i+4);
4087      if (Elt < 0) continue;
4088      Elt &= 0x3; // only 2-bits.
4089      Mask |= Elt << (i * 2);
4090    }
4091  }
4092
4093  return Mask;
4094}
4095
4096/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4097/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4098static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4099  EVT VT = N->getValueType(0);
4100
4101  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4102         "Unsupported vector type for PSHUFHW");
4103
4104  unsigned NumElts = VT.getVectorNumElements();
4105
4106  unsigned Mask = 0;
4107  for (unsigned l = 0; l != NumElts; l += 8) {
4108    // 8 nodes per lane, but we only care about the first 4.
4109    for (unsigned i = 0; i < 4; ++i) {
4110      int Elt = N->getMaskElt(l+i);
4111      if (Elt < 0) continue;
4112      Elt &= 0x3; // only 2-bits
4113      Mask |= Elt << (i * 2);
4114    }
4115  }
4116
4117  return Mask;
4118}
4119
4120/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4121/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4122static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4123  EVT VT = SVOp->getValueType(0);
4124  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4125
4126  unsigned NumElts = VT.getVectorNumElements();
4127  unsigned NumLanes = VT.getSizeInBits()/128;
4128  unsigned NumLaneElts = NumElts/NumLanes;
4129
4130  int Val = 0;
4131  unsigned i;
4132  for (i = 0; i != NumElts; ++i) {
4133    Val = SVOp->getMaskElt(i);
4134    if (Val >= 0)
4135      break;
4136  }
4137  if (Val >= (int)NumElts)
4138    Val -= NumElts - NumLaneElts;
4139
4140  assert(Val - i > 0 && "PALIGNR imm should be positive");
4141  return (Val - i) * EltSize;
4142}
4143
4144/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4145/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4146/// instructions.
4147unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4148  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4149    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4150
4151  uint64_t Index =
4152    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4153
4154  EVT VecVT = N->getOperand(0).getValueType();
4155  EVT ElVT = VecVT.getVectorElementType();
4156
4157  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4158  return Index / NumElemsPerChunk;
4159}
4160
4161/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4162/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4163/// instructions.
4164unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4165  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4166    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4167
4168  uint64_t Index =
4169    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4170
4171  EVT VecVT = N->getValueType(0);
4172  EVT ElVT = VecVT.getVectorElementType();
4173
4174  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4175  return Index / NumElemsPerChunk;
4176}
4177
4178/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4179/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4180/// Handles 256-bit.
4181static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4182  EVT VT = N->getValueType(0);
4183
4184  unsigned NumElts = VT.getVectorNumElements();
4185
4186  assert((VT.is256BitVector() && NumElts == 4) &&
4187         "Unsupported vector type for VPERMQ/VPERMPD");
4188
4189  unsigned Mask = 0;
4190  for (unsigned i = 0; i != NumElts; ++i) {
4191    int Elt = N->getMaskElt(i);
4192    if (Elt < 0)
4193      continue;
4194    Mask |= Elt << (i*2);
4195  }
4196
4197  return Mask;
4198}
4199/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4200/// constant +0.0.
4201bool X86::isZeroNode(SDValue Elt) {
4202  return ((isa<ConstantSDNode>(Elt) &&
4203           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4204          (isa<ConstantFPSDNode>(Elt) &&
4205           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4206}
4207
4208/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4209/// their permute mask.
4210static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4211                                    SelectionDAG &DAG) {
4212  EVT VT = SVOp->getValueType(0);
4213  unsigned NumElems = VT.getVectorNumElements();
4214  SmallVector<int, 8> MaskVec;
4215
4216  for (unsigned i = 0; i != NumElems; ++i) {
4217    int Idx = SVOp->getMaskElt(i);
4218    if (Idx >= 0) {
4219      if (Idx < (int)NumElems)
4220        Idx += NumElems;
4221      else
4222        Idx -= NumElems;
4223    }
4224    MaskVec.push_back(Idx);
4225  }
4226  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4227                              SVOp->getOperand(0), &MaskVec[0]);
4228}
4229
4230/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4231/// match movhlps. The lower half elements should come from upper half of
4232/// V1 (and in order), and the upper half elements should come from the upper
4233/// half of V2 (and in order).
4234static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4235  if (!VT.is128BitVector())
4236    return false;
4237  if (VT.getVectorNumElements() != 4)
4238    return false;
4239  for (unsigned i = 0, e = 2; i != e; ++i)
4240    if (!isUndefOrEqual(Mask[i], i+2))
4241      return false;
4242  for (unsigned i = 2; i != 4; ++i)
4243    if (!isUndefOrEqual(Mask[i], i+4))
4244      return false;
4245  return true;
4246}
4247
4248/// isScalarLoadToVector - Returns true if the node is a scalar load that
4249/// is promoted to a vector. It also returns the LoadSDNode by reference if
4250/// required.
4251static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4252  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4253    return false;
4254  N = N->getOperand(0).getNode();
4255  if (!ISD::isNON_EXTLoad(N))
4256    return false;
4257  if (LD)
4258    *LD = cast<LoadSDNode>(N);
4259  return true;
4260}
4261
4262// Test whether the given value is a vector value which will be legalized
4263// into a load.
4264static bool WillBeConstantPoolLoad(SDNode *N) {
4265  if (N->getOpcode() != ISD::BUILD_VECTOR)
4266    return false;
4267
4268  // Check for any non-constant elements.
4269  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4270    switch (N->getOperand(i).getNode()->getOpcode()) {
4271    case ISD::UNDEF:
4272    case ISD::ConstantFP:
4273    case ISD::Constant:
4274      break;
4275    default:
4276      return false;
4277    }
4278
4279  // Vectors of all-zeros and all-ones are materialized with special
4280  // instructions rather than being loaded.
4281  return !ISD::isBuildVectorAllZeros(N) &&
4282         !ISD::isBuildVectorAllOnes(N);
4283}
4284
4285/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4286/// match movlp{s|d}. The lower half elements should come from lower half of
4287/// V1 (and in order), and the upper half elements should come from the upper
4288/// half of V2 (and in order). And since V1 will become the source of the
4289/// MOVLP, it must be either a vector load or a scalar load to vector.
4290static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4291                               ArrayRef<int> Mask, EVT VT) {
4292  if (!VT.is128BitVector())
4293    return false;
4294
4295  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4296    return false;
4297  // Is V2 is a vector load, don't do this transformation. We will try to use
4298  // load folding shufps op.
4299  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4300    return false;
4301
4302  unsigned NumElems = VT.getVectorNumElements();
4303
4304  if (NumElems != 2 && NumElems != 4)
4305    return false;
4306  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4307    if (!isUndefOrEqual(Mask[i], i))
4308      return false;
4309  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4310    if (!isUndefOrEqual(Mask[i], i+NumElems))
4311      return false;
4312  return true;
4313}
4314
4315/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4316/// all the same.
4317static bool isSplatVector(SDNode *N) {
4318  if (N->getOpcode() != ISD::BUILD_VECTOR)
4319    return false;
4320
4321  SDValue SplatValue = N->getOperand(0);
4322  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4323    if (N->getOperand(i) != SplatValue)
4324      return false;
4325  return true;
4326}
4327
4328/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4329/// to an zero vector.
4330/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4331static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4332  SDValue V1 = N->getOperand(0);
4333  SDValue V2 = N->getOperand(1);
4334  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4335  for (unsigned i = 0; i != NumElems; ++i) {
4336    int Idx = N->getMaskElt(i);
4337    if (Idx >= (int)NumElems) {
4338      unsigned Opc = V2.getOpcode();
4339      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4340        continue;
4341      if (Opc != ISD::BUILD_VECTOR ||
4342          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4343        return false;
4344    } else if (Idx >= 0) {
4345      unsigned Opc = V1.getOpcode();
4346      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4347        continue;
4348      if (Opc != ISD::BUILD_VECTOR ||
4349          !X86::isZeroNode(V1.getOperand(Idx)))
4350        return false;
4351    }
4352  }
4353  return true;
4354}
4355
4356/// getZeroVector - Returns a vector of specified type with all zero elements.
4357///
4358static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4359                             SelectionDAG &DAG, DebugLoc dl) {
4360  assert(VT.isVector() && "Expected a vector type");
4361
4362  // Always build SSE zero vectors as <4 x i32> bitcasted
4363  // to their dest type. This ensures they get CSE'd.
4364  SDValue Vec;
4365  if (VT.is128BitVector()) {  // SSE
4366    if (Subtarget->hasSSE2()) {  // SSE2
4367      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4368      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4369    } else { // SSE1
4370      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4371      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4372    }
4373  } else if (VT.is256BitVector()) { // AVX
4374    if (Subtarget->hasInt256()) { // AVX2
4375      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4376      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4377      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4378    } else {
4379      // 256-bit logic and arithmetic instructions in AVX are all
4380      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4381      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4382      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4383      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4384    }
4385  } else
4386    llvm_unreachable("Unexpected vector type");
4387
4388  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4389}
4390
4391/// getOnesVector - Returns a vector of specified type with all bits set.
4392/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4393/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4394/// Then bitcast to their original type, ensuring they get CSE'd.
4395static SDValue getOnesVector(EVT VT, bool HasInt256, SelectionDAG &DAG,
4396                             DebugLoc dl) {
4397  assert(VT.isVector() && "Expected a vector type");
4398
4399  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4400  SDValue Vec;
4401  if (VT.is256BitVector()) {
4402    if (HasInt256) { // AVX2
4403      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4404      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4405    } else { // AVX
4406      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4407      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4408    }
4409  } else if (VT.is128BitVector()) {
4410    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4411  } else
4412    llvm_unreachable("Unexpected vector type");
4413
4414  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4415}
4416
4417/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4418/// that point to V2 points to its first element.
4419static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4420  for (unsigned i = 0; i != NumElems; ++i) {
4421    if (Mask[i] > (int)NumElems) {
4422      Mask[i] = NumElems;
4423    }
4424  }
4425}
4426
4427/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4428/// operation of specified width.
4429static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4430                       SDValue V2) {
4431  unsigned NumElems = VT.getVectorNumElements();
4432  SmallVector<int, 8> Mask;
4433  Mask.push_back(NumElems);
4434  for (unsigned i = 1; i != NumElems; ++i)
4435    Mask.push_back(i);
4436  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4437}
4438
4439/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4440static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4441                          SDValue V2) {
4442  unsigned NumElems = VT.getVectorNumElements();
4443  SmallVector<int, 8> Mask;
4444  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4445    Mask.push_back(i);
4446    Mask.push_back(i + NumElems);
4447  }
4448  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4449}
4450
4451/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4452static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4453                          SDValue V2) {
4454  unsigned NumElems = VT.getVectorNumElements();
4455  SmallVector<int, 8> Mask;
4456  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4457    Mask.push_back(i + Half);
4458    Mask.push_back(i + NumElems + Half);
4459  }
4460  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4461}
4462
4463// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4464// a generic shuffle instruction because the target has no such instructions.
4465// Generate shuffles which repeat i16 and i8 several times until they can be
4466// represented by v4f32 and then be manipulated by target suported shuffles.
4467static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4468  EVT VT = V.getValueType();
4469  int NumElems = VT.getVectorNumElements();
4470  DebugLoc dl = V.getDebugLoc();
4471
4472  while (NumElems > 4) {
4473    if (EltNo < NumElems/2) {
4474      V = getUnpackl(DAG, dl, VT, V, V);
4475    } else {
4476      V = getUnpackh(DAG, dl, VT, V, V);
4477      EltNo -= NumElems/2;
4478    }
4479    NumElems >>= 1;
4480  }
4481  return V;
4482}
4483
4484/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4485static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4486  EVT VT = V.getValueType();
4487  DebugLoc dl = V.getDebugLoc();
4488
4489  if (VT.is128BitVector()) {
4490    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4491    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4492    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4493                             &SplatMask[0]);
4494  } else if (VT.is256BitVector()) {
4495    // To use VPERMILPS to splat scalars, the second half of indicies must
4496    // refer to the higher part, which is a duplication of the lower one,
4497    // because VPERMILPS can only handle in-lane permutations.
4498    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4499                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4500
4501    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4502    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4503                             &SplatMask[0]);
4504  } else
4505    llvm_unreachable("Vector size not supported");
4506
4507  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4508}
4509
4510/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4511static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4512  EVT SrcVT = SV->getValueType(0);
4513  SDValue V1 = SV->getOperand(0);
4514  DebugLoc dl = SV->getDebugLoc();
4515
4516  int EltNo = SV->getSplatIndex();
4517  int NumElems = SrcVT.getVectorNumElements();
4518  bool Is256BitVec = SrcVT.is256BitVector();
4519
4520  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
4521         "Unknown how to promote splat for type");
4522
4523  // Extract the 128-bit part containing the splat element and update
4524  // the splat element index when it refers to the higher register.
4525  if (Is256BitVec) {
4526    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4527    if (EltNo >= NumElems/2)
4528      EltNo -= NumElems/2;
4529  }
4530
4531  // All i16 and i8 vector types can't be used directly by a generic shuffle
4532  // instruction because the target has no such instruction. Generate shuffles
4533  // which repeat i16 and i8 several times until they fit in i32, and then can
4534  // be manipulated by target suported shuffles.
4535  EVT EltVT = SrcVT.getVectorElementType();
4536  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4537    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4538
4539  // Recreate the 256-bit vector and place the same 128-bit vector
4540  // into the low and high part. This is necessary because we want
4541  // to use VPERM* to shuffle the vectors
4542  if (Is256BitVec) {
4543    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4544  }
4545
4546  return getLegalSplat(DAG, V1, EltNo);
4547}
4548
4549/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4550/// vector of zero or undef vector.  This produces a shuffle where the low
4551/// element of V2 is swizzled into the zero/undef vector, landing at element
4552/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4553static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4554                                           bool IsZero,
4555                                           const X86Subtarget *Subtarget,
4556                                           SelectionDAG &DAG) {
4557  EVT VT = V2.getValueType();
4558  SDValue V1 = IsZero
4559    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4560  unsigned NumElems = VT.getVectorNumElements();
4561  SmallVector<int, 16> MaskVec;
4562  for (unsigned i = 0; i != NumElems; ++i)
4563    // If this is the insertion idx, put the low elt of V2 here.
4564    MaskVec.push_back(i == Idx ? NumElems : i);
4565  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4566}
4567
4568/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4569/// target specific opcode. Returns true if the Mask could be calculated.
4570/// Sets IsUnary to true if only uses one source.
4571static bool getTargetShuffleMask(SDNode *N, MVT VT,
4572                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4573  unsigned NumElems = VT.getVectorNumElements();
4574  SDValue ImmN;
4575
4576  IsUnary = false;
4577  switch(N->getOpcode()) {
4578  case X86ISD::SHUFP:
4579    ImmN = N->getOperand(N->getNumOperands()-1);
4580    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4581    break;
4582  case X86ISD::UNPCKH:
4583    DecodeUNPCKHMask(VT, Mask);
4584    break;
4585  case X86ISD::UNPCKL:
4586    DecodeUNPCKLMask(VT, Mask);
4587    break;
4588  case X86ISD::MOVHLPS:
4589    DecodeMOVHLPSMask(NumElems, Mask);
4590    break;
4591  case X86ISD::MOVLHPS:
4592    DecodeMOVLHPSMask(NumElems, Mask);
4593    break;
4594  case X86ISD::PSHUFD:
4595  case X86ISD::VPERMILP:
4596    ImmN = N->getOperand(N->getNumOperands()-1);
4597    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4598    IsUnary = true;
4599    break;
4600  case X86ISD::PSHUFHW:
4601    ImmN = N->getOperand(N->getNumOperands()-1);
4602    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4603    IsUnary = true;
4604    break;
4605  case X86ISD::PSHUFLW:
4606    ImmN = N->getOperand(N->getNumOperands()-1);
4607    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4608    IsUnary = true;
4609    break;
4610  case X86ISD::VPERMI:
4611    ImmN = N->getOperand(N->getNumOperands()-1);
4612    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4613    IsUnary = true;
4614    break;
4615  case X86ISD::MOVSS:
4616  case X86ISD::MOVSD: {
4617    // The index 0 always comes from the first element of the second source,
4618    // this is why MOVSS and MOVSD are used in the first place. The other
4619    // elements come from the other positions of the first source vector
4620    Mask.push_back(NumElems);
4621    for (unsigned i = 1; i != NumElems; ++i) {
4622      Mask.push_back(i);
4623    }
4624    break;
4625  }
4626  case X86ISD::VPERM2X128:
4627    ImmN = N->getOperand(N->getNumOperands()-1);
4628    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4629    if (Mask.empty()) return false;
4630    break;
4631  case X86ISD::MOVDDUP:
4632  case X86ISD::MOVLHPD:
4633  case X86ISD::MOVLPD:
4634  case X86ISD::MOVLPS:
4635  case X86ISD::MOVSHDUP:
4636  case X86ISD::MOVSLDUP:
4637  case X86ISD::PALIGN:
4638    // Not yet implemented
4639    return false;
4640  default: llvm_unreachable("unknown target shuffle node");
4641  }
4642
4643  return true;
4644}
4645
4646/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4647/// element of the result of the vector shuffle.
4648static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4649                                   unsigned Depth) {
4650  if (Depth == 6)
4651    return SDValue();  // Limit search depth.
4652
4653  SDValue V = SDValue(N, 0);
4654  EVT VT = V.getValueType();
4655  unsigned Opcode = V.getOpcode();
4656
4657  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4658  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4659    int Elt = SV->getMaskElt(Index);
4660
4661    if (Elt < 0)
4662      return DAG.getUNDEF(VT.getVectorElementType());
4663
4664    unsigned NumElems = VT.getVectorNumElements();
4665    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4666                                         : SV->getOperand(1);
4667    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4668  }
4669
4670  // Recurse into target specific vector shuffles to find scalars.
4671  if (isTargetShuffle(Opcode)) {
4672    MVT ShufVT = V.getValueType().getSimpleVT();
4673    unsigned NumElems = ShufVT.getVectorNumElements();
4674    SmallVector<int, 16> ShuffleMask;
4675    bool IsUnary;
4676
4677    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4678      return SDValue();
4679
4680    int Elt = ShuffleMask[Index];
4681    if (Elt < 0)
4682      return DAG.getUNDEF(ShufVT.getVectorElementType());
4683
4684    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4685                                         : N->getOperand(1);
4686    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4687                               Depth+1);
4688  }
4689
4690  // Actual nodes that may contain scalar elements
4691  if (Opcode == ISD::BITCAST) {
4692    V = V.getOperand(0);
4693    EVT SrcVT = V.getValueType();
4694    unsigned NumElems = VT.getVectorNumElements();
4695
4696    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4697      return SDValue();
4698  }
4699
4700  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4701    return (Index == 0) ? V.getOperand(0)
4702                        : DAG.getUNDEF(VT.getVectorElementType());
4703
4704  if (V.getOpcode() == ISD::BUILD_VECTOR)
4705    return V.getOperand(Index);
4706
4707  return SDValue();
4708}
4709
4710/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4711/// shuffle operation which come from a consecutively from a zero. The
4712/// search can start in two different directions, from left or right.
4713static
4714unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4715                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4716  unsigned i;
4717  for (i = 0; i != NumElems; ++i) {
4718    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4719    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4720    if (!(Elt.getNode() &&
4721         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4722      break;
4723  }
4724
4725  return i;
4726}
4727
4728/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4729/// correspond consecutively to elements from one of the vector operands,
4730/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4731static
4732bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4733                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4734                              unsigned NumElems, unsigned &OpNum) {
4735  bool SeenV1 = false;
4736  bool SeenV2 = false;
4737
4738  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4739    int Idx = SVOp->getMaskElt(i);
4740    // Ignore undef indicies
4741    if (Idx < 0)
4742      continue;
4743
4744    if (Idx < (int)NumElems)
4745      SeenV1 = true;
4746    else
4747      SeenV2 = true;
4748
4749    // Only accept consecutive elements from the same vector
4750    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4751      return false;
4752  }
4753
4754  OpNum = SeenV1 ? 0 : 1;
4755  return true;
4756}
4757
4758/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4759/// logical left shift of a vector.
4760static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4761                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4762  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4763  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4764              false /* check zeros from right */, DAG);
4765  unsigned OpSrc;
4766
4767  if (!NumZeros)
4768    return false;
4769
4770  // Considering the elements in the mask that are not consecutive zeros,
4771  // check if they consecutively come from only one of the source vectors.
4772  //
4773  //               V1 = {X, A, B, C}     0
4774  //                         \  \  \    /
4775  //   vector_shuffle V1, V2 <1, 2, 3, X>
4776  //
4777  if (!isShuffleMaskConsecutive(SVOp,
4778            0,                   // Mask Start Index
4779            NumElems-NumZeros,   // Mask End Index(exclusive)
4780            NumZeros,            // Where to start looking in the src vector
4781            NumElems,            // Number of elements in vector
4782            OpSrc))              // Which source operand ?
4783    return false;
4784
4785  isLeft = false;
4786  ShAmt = NumZeros;
4787  ShVal = SVOp->getOperand(OpSrc);
4788  return true;
4789}
4790
4791/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4792/// logical left shift of a vector.
4793static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4794                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4795  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4796  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4797              true /* check zeros from left */, DAG);
4798  unsigned OpSrc;
4799
4800  if (!NumZeros)
4801    return false;
4802
4803  // Considering the elements in the mask that are not consecutive zeros,
4804  // check if they consecutively come from only one of the source vectors.
4805  //
4806  //                           0    { A, B, X, X } = V2
4807  //                          / \    /  /
4808  //   vector_shuffle V1, V2 <X, X, 4, 5>
4809  //
4810  if (!isShuffleMaskConsecutive(SVOp,
4811            NumZeros,     // Mask Start Index
4812            NumElems,     // Mask End Index(exclusive)
4813            0,            // Where to start looking in the src vector
4814            NumElems,     // Number of elements in vector
4815            OpSrc))       // Which source operand ?
4816    return false;
4817
4818  isLeft = true;
4819  ShAmt = NumZeros;
4820  ShVal = SVOp->getOperand(OpSrc);
4821  return true;
4822}
4823
4824/// isVectorShift - Returns true if the shuffle can be implemented as a
4825/// logical left or right shift of a vector.
4826static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4827                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4828  // Although the logic below support any bitwidth size, there are no
4829  // shift instructions which handle more than 128-bit vectors.
4830  if (!SVOp->getValueType(0).is128BitVector())
4831    return false;
4832
4833  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4834      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4835    return true;
4836
4837  return false;
4838}
4839
4840/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4841///
4842static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4843                                       unsigned NumNonZero, unsigned NumZero,
4844                                       SelectionDAG &DAG,
4845                                       const X86Subtarget* Subtarget,
4846                                       const TargetLowering &TLI) {
4847  if (NumNonZero > 8)
4848    return SDValue();
4849
4850  DebugLoc dl = Op.getDebugLoc();
4851  SDValue V(0, 0);
4852  bool First = true;
4853  for (unsigned i = 0; i < 16; ++i) {
4854    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4855    if (ThisIsNonZero && First) {
4856      if (NumZero)
4857        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4858      else
4859        V = DAG.getUNDEF(MVT::v8i16);
4860      First = false;
4861    }
4862
4863    if ((i & 1) != 0) {
4864      SDValue ThisElt(0, 0), LastElt(0, 0);
4865      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4866      if (LastIsNonZero) {
4867        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4868                              MVT::i16, Op.getOperand(i-1));
4869      }
4870      if (ThisIsNonZero) {
4871        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4872        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4873                              ThisElt, DAG.getConstant(8, MVT::i8));
4874        if (LastIsNonZero)
4875          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4876      } else
4877        ThisElt = LastElt;
4878
4879      if (ThisElt.getNode())
4880        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4881                        DAG.getIntPtrConstant(i/2));
4882    }
4883  }
4884
4885  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4886}
4887
4888/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4889///
4890static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4891                                     unsigned NumNonZero, unsigned NumZero,
4892                                     SelectionDAG &DAG,
4893                                     const X86Subtarget* Subtarget,
4894                                     const TargetLowering &TLI) {
4895  if (NumNonZero > 4)
4896    return SDValue();
4897
4898  DebugLoc dl = Op.getDebugLoc();
4899  SDValue V(0, 0);
4900  bool First = true;
4901  for (unsigned i = 0; i < 8; ++i) {
4902    bool isNonZero = (NonZeros & (1 << i)) != 0;
4903    if (isNonZero) {
4904      if (First) {
4905        if (NumZero)
4906          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4907        else
4908          V = DAG.getUNDEF(MVT::v8i16);
4909        First = false;
4910      }
4911      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4912                      MVT::v8i16, V, Op.getOperand(i),
4913                      DAG.getIntPtrConstant(i));
4914    }
4915  }
4916
4917  return V;
4918}
4919
4920/// getVShift - Return a vector logical shift node.
4921///
4922static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4923                         unsigned NumBits, SelectionDAG &DAG,
4924                         const TargetLowering &TLI, DebugLoc dl) {
4925  assert(VT.is128BitVector() && "Unknown type for VShift");
4926  EVT ShVT = MVT::v2i64;
4927  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4928  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4929  return DAG.getNode(ISD::BITCAST, dl, VT,
4930                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4931                             DAG.getConstant(NumBits,
4932                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4933}
4934
4935SDValue
4936X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4937                                          SelectionDAG &DAG) const {
4938
4939  // Check if the scalar load can be widened into a vector load. And if
4940  // the address is "base + cst" see if the cst can be "absorbed" into
4941  // the shuffle mask.
4942  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4943    SDValue Ptr = LD->getBasePtr();
4944    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4945      return SDValue();
4946    EVT PVT = LD->getValueType(0);
4947    if (PVT != MVT::i32 && PVT != MVT::f32)
4948      return SDValue();
4949
4950    int FI = -1;
4951    int64_t Offset = 0;
4952    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4953      FI = FINode->getIndex();
4954      Offset = 0;
4955    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4956               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4957      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4958      Offset = Ptr.getConstantOperandVal(1);
4959      Ptr = Ptr.getOperand(0);
4960    } else {
4961      return SDValue();
4962    }
4963
4964    // FIXME: 256-bit vector instructions don't require a strict alignment,
4965    // improve this code to support it better.
4966    unsigned RequiredAlign = VT.getSizeInBits()/8;
4967    SDValue Chain = LD->getChain();
4968    // Make sure the stack object alignment is at least 16 or 32.
4969    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4970    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4971      if (MFI->isFixedObjectIndex(FI)) {
4972        // Can't change the alignment. FIXME: It's possible to compute
4973        // the exact stack offset and reference FI + adjust offset instead.
4974        // If someone *really* cares about this. That's the way to implement it.
4975        return SDValue();
4976      } else {
4977        MFI->setObjectAlignment(FI, RequiredAlign);
4978      }
4979    }
4980
4981    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4982    // Ptr + (Offset & ~15).
4983    if (Offset < 0)
4984      return SDValue();
4985    if ((Offset % RequiredAlign) & 3)
4986      return SDValue();
4987    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4988    if (StartOffset)
4989      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4990                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4991
4992    int EltNo = (Offset - StartOffset) >> 2;
4993    unsigned NumElems = VT.getVectorNumElements();
4994
4995    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4996    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4997                             LD->getPointerInfo().getWithOffset(StartOffset),
4998                             false, false, false, 0);
4999
5000    SmallVector<int, 8> Mask;
5001    for (unsigned i = 0; i != NumElems; ++i)
5002      Mask.push_back(EltNo);
5003
5004    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5005  }
5006
5007  return SDValue();
5008}
5009
5010/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5011/// vector of type 'VT', see if the elements can be replaced by a single large
5012/// load which has the same value as a build_vector whose operands are 'elts'.
5013///
5014/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5015///
5016/// FIXME: we'd also like to handle the case where the last elements are zero
5017/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5018/// There's even a handy isZeroNode for that purpose.
5019static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5020                                        DebugLoc &DL, SelectionDAG &DAG) {
5021  EVT EltVT = VT.getVectorElementType();
5022  unsigned NumElems = Elts.size();
5023
5024  LoadSDNode *LDBase = NULL;
5025  unsigned LastLoadedElt = -1U;
5026
5027  // For each element in the initializer, see if we've found a load or an undef.
5028  // If we don't find an initial load element, or later load elements are
5029  // non-consecutive, bail out.
5030  for (unsigned i = 0; i < NumElems; ++i) {
5031    SDValue Elt = Elts[i];
5032
5033    if (!Elt.getNode() ||
5034        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5035      return SDValue();
5036    if (!LDBase) {
5037      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5038        return SDValue();
5039      LDBase = cast<LoadSDNode>(Elt.getNode());
5040      LastLoadedElt = i;
5041      continue;
5042    }
5043    if (Elt.getOpcode() == ISD::UNDEF)
5044      continue;
5045
5046    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5047    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5048      return SDValue();
5049    LastLoadedElt = i;
5050  }
5051
5052  // If we have found an entire vector of loads and undefs, then return a large
5053  // load of the entire vector width starting at the base pointer.  If we found
5054  // consecutive loads for the low half, generate a vzext_load node.
5055  if (LastLoadedElt == NumElems - 1) {
5056    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5057      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5058                         LDBase->getPointerInfo(),
5059                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5060                         LDBase->isInvariant(), 0);
5061    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5062                       LDBase->getPointerInfo(),
5063                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5064                       LDBase->isInvariant(), LDBase->getAlignment());
5065  }
5066  if (NumElems == 4 && LastLoadedElt == 1 &&
5067      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5068    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5069    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5070    SDValue ResNode =
5071        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5072                                LDBase->getPointerInfo(),
5073                                LDBase->getAlignment(),
5074                                false/*isVolatile*/, true/*ReadMem*/,
5075                                false/*WriteMem*/);
5076
5077    // Make sure the newly-created LOAD is in the same position as LDBase in
5078    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5079    // update uses of LDBase's output chain to use the TokenFactor.
5080    if (LDBase->hasAnyUseOfValue(1)) {
5081      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5082                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5083      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5084      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5085                             SDValue(ResNode.getNode(), 1));
5086    }
5087
5088    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5089  }
5090  return SDValue();
5091}
5092
5093/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5094/// to generate a splat value for the following cases:
5095/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5096/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5097/// a scalar load, or a constant.
5098/// The VBROADCAST node is returned when a pattern is found,
5099/// or SDValue() otherwise.
5100SDValue
5101X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5102  if (!Subtarget->hasFp256())
5103    return SDValue();
5104
5105  EVT VT = Op.getValueType();
5106  DebugLoc dl = Op.getDebugLoc();
5107
5108  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5109         "Unsupported vector type for broadcast.");
5110
5111  SDValue Ld;
5112  bool ConstSplatVal;
5113
5114  switch (Op.getOpcode()) {
5115    default:
5116      // Unknown pattern found.
5117      return SDValue();
5118
5119    case ISD::BUILD_VECTOR: {
5120      // The BUILD_VECTOR node must be a splat.
5121      if (!isSplatVector(Op.getNode()))
5122        return SDValue();
5123
5124      Ld = Op.getOperand(0);
5125      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5126                     Ld.getOpcode() == ISD::ConstantFP);
5127
5128      // The suspected load node has several users. Make sure that all
5129      // of its users are from the BUILD_VECTOR node.
5130      // Constants may have multiple users.
5131      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5132        return SDValue();
5133      break;
5134    }
5135
5136    case ISD::VECTOR_SHUFFLE: {
5137      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5138
5139      // Shuffles must have a splat mask where the first element is
5140      // broadcasted.
5141      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5142        return SDValue();
5143
5144      SDValue Sc = Op.getOperand(0);
5145      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5146          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5147
5148        if (!Subtarget->hasInt256())
5149          return SDValue();
5150
5151        // Use the register form of the broadcast instruction available on AVX2.
5152        if (VT.is256BitVector())
5153          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5154        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5155      }
5156
5157      Ld = Sc.getOperand(0);
5158      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5159                       Ld.getOpcode() == ISD::ConstantFP);
5160
5161      // The scalar_to_vector node and the suspected
5162      // load node must have exactly one user.
5163      // Constants may have multiple users.
5164      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5165        return SDValue();
5166      break;
5167    }
5168  }
5169
5170  bool Is256 = VT.is256BitVector();
5171
5172  // Handle the broadcasting a single constant scalar from the constant pool
5173  // into a vector. On Sandybridge it is still better to load a constant vector
5174  // from the constant pool and not to broadcast it from a scalar.
5175  if (ConstSplatVal && Subtarget->hasInt256()) {
5176    EVT CVT = Ld.getValueType();
5177    assert(!CVT.isVector() && "Must not broadcast a vector type");
5178    unsigned ScalarSize = CVT.getSizeInBits();
5179
5180    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5181      const Constant *C = 0;
5182      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5183        C = CI->getConstantIntValue();
5184      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5185        C = CF->getConstantFPValue();
5186
5187      assert(C && "Invalid constant type");
5188
5189      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5190      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5191      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5192                       MachinePointerInfo::getConstantPool(),
5193                       false, false, false, Alignment);
5194
5195      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5196    }
5197  }
5198
5199  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5200  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5201
5202  // Handle AVX2 in-register broadcasts.
5203  if (!IsLoad && Subtarget->hasInt256() &&
5204      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5205    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5206
5207  // The scalar source must be a normal load.
5208  if (!IsLoad)
5209    return SDValue();
5210
5211  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5212    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5213
5214  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5215  // double since there is no vbroadcastsd xmm
5216  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5217    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5218      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5219  }
5220
5221  // Unsupported broadcast.
5222  return SDValue();
5223}
5224
5225SDValue
5226X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
5227  EVT VT = Op.getValueType();
5228
5229  // Skip if insert_vec_elt is not supported.
5230  if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5231    return SDValue();
5232
5233  DebugLoc DL = Op.getDebugLoc();
5234  unsigned NumElems = Op.getNumOperands();
5235
5236  SDValue VecIn1;
5237  SDValue VecIn2;
5238  SmallVector<unsigned, 4> InsertIndices;
5239  SmallVector<int, 8> Mask(NumElems, -1);
5240
5241  for (unsigned i = 0; i != NumElems; ++i) {
5242    unsigned Opc = Op.getOperand(i).getOpcode();
5243
5244    if (Opc == ISD::UNDEF)
5245      continue;
5246
5247    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5248      // Quit if more than 1 elements need inserting.
5249      if (InsertIndices.size() > 1)
5250        return SDValue();
5251
5252      InsertIndices.push_back(i);
5253      continue;
5254    }
5255
5256    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5257    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5258
5259    // Quit if extracted from vector of different type.
5260    if (ExtractedFromVec.getValueType() != VT)
5261      return SDValue();
5262
5263    // Quit if non-constant index.
5264    if (!isa<ConstantSDNode>(ExtIdx))
5265      return SDValue();
5266
5267    if (VecIn1.getNode() == 0)
5268      VecIn1 = ExtractedFromVec;
5269    else if (VecIn1 != ExtractedFromVec) {
5270      if (VecIn2.getNode() == 0)
5271        VecIn2 = ExtractedFromVec;
5272      else if (VecIn2 != ExtractedFromVec)
5273        // Quit if more than 2 vectors to shuffle
5274        return SDValue();
5275    }
5276
5277    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5278
5279    if (ExtractedFromVec == VecIn1)
5280      Mask[i] = Idx;
5281    else if (ExtractedFromVec == VecIn2)
5282      Mask[i] = Idx + NumElems;
5283  }
5284
5285  if (VecIn1.getNode() == 0)
5286    return SDValue();
5287
5288  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5289  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5290  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5291    unsigned Idx = InsertIndices[i];
5292    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5293                     DAG.getIntPtrConstant(Idx));
5294  }
5295
5296  return NV;
5297}
5298
5299SDValue
5300X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5301  DebugLoc dl = Op.getDebugLoc();
5302
5303  EVT VT = Op.getValueType();
5304  EVT ExtVT = VT.getVectorElementType();
5305  unsigned NumElems = Op.getNumOperands();
5306
5307  // Vectors containing all zeros can be matched by pxor and xorps later
5308  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5309    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5310    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5311    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5312      return Op;
5313
5314    return getZeroVector(VT, Subtarget, DAG, dl);
5315  }
5316
5317  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5318  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5319  // vpcmpeqd on 256-bit vectors.
5320  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5321    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5322      return Op;
5323
5324    return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5325  }
5326
5327  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5328  if (Broadcast.getNode())
5329    return Broadcast;
5330
5331  unsigned EVTBits = ExtVT.getSizeInBits();
5332
5333  unsigned NumZero  = 0;
5334  unsigned NumNonZero = 0;
5335  unsigned NonZeros = 0;
5336  bool IsAllConstants = true;
5337  SmallSet<SDValue, 8> Values;
5338  for (unsigned i = 0; i < NumElems; ++i) {
5339    SDValue Elt = Op.getOperand(i);
5340    if (Elt.getOpcode() == ISD::UNDEF)
5341      continue;
5342    Values.insert(Elt);
5343    if (Elt.getOpcode() != ISD::Constant &&
5344        Elt.getOpcode() != ISD::ConstantFP)
5345      IsAllConstants = false;
5346    if (X86::isZeroNode(Elt))
5347      NumZero++;
5348    else {
5349      NonZeros |= (1 << i);
5350      NumNonZero++;
5351    }
5352  }
5353
5354  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5355  if (NumNonZero == 0)
5356    return DAG.getUNDEF(VT);
5357
5358  // Special case for single non-zero, non-undef, element.
5359  if (NumNonZero == 1) {
5360    unsigned Idx = CountTrailingZeros_32(NonZeros);
5361    SDValue Item = Op.getOperand(Idx);
5362
5363    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5364    // the value are obviously zero, truncate the value to i32 and do the
5365    // insertion that way.  Only do this if the value is non-constant or if the
5366    // value is a constant being inserted into element 0.  It is cheaper to do
5367    // a constant pool load than it is to do a movd + shuffle.
5368    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5369        (!IsAllConstants || Idx == 0)) {
5370      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5371        // Handle SSE only.
5372        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5373        EVT VecVT = MVT::v4i32;
5374        unsigned VecElts = 4;
5375
5376        // Truncate the value (which may itself be a constant) to i32, and
5377        // convert it to a vector with movd (S2V+shuffle to zero extend).
5378        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5379        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5380        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5381
5382        // Now we have our 32-bit value zero extended in the low element of
5383        // a vector.  If Idx != 0, swizzle it into place.
5384        if (Idx != 0) {
5385          SmallVector<int, 4> Mask;
5386          Mask.push_back(Idx);
5387          for (unsigned i = 1; i != VecElts; ++i)
5388            Mask.push_back(i);
5389          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5390                                      &Mask[0]);
5391        }
5392        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5393      }
5394    }
5395
5396    // If we have a constant or non-constant insertion into the low element of
5397    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5398    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5399    // depending on what the source datatype is.
5400    if (Idx == 0) {
5401      if (NumZero == 0)
5402        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5403
5404      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5405          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5406        if (VT.is256BitVector()) {
5407          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5408          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5409                             Item, DAG.getIntPtrConstant(0));
5410        }
5411        assert(VT.is128BitVector() && "Expected an SSE value type!");
5412        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5413        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5414        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5415      }
5416
5417      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5418        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5419        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5420        if (VT.is256BitVector()) {
5421          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5422          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5423        } else {
5424          assert(VT.is128BitVector() && "Expected an SSE value type!");
5425          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5426        }
5427        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5428      }
5429    }
5430
5431    // Is it a vector logical left shift?
5432    if (NumElems == 2 && Idx == 1 &&
5433        X86::isZeroNode(Op.getOperand(0)) &&
5434        !X86::isZeroNode(Op.getOperand(1))) {
5435      unsigned NumBits = VT.getSizeInBits();
5436      return getVShift(true, VT,
5437                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5438                                   VT, Op.getOperand(1)),
5439                       NumBits/2, DAG, *this, dl);
5440    }
5441
5442    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5443      return SDValue();
5444
5445    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5446    // is a non-constant being inserted into an element other than the low one,
5447    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5448    // movd/movss) to move this into the low element, then shuffle it into
5449    // place.
5450    if (EVTBits == 32) {
5451      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5452
5453      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5454      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5455      SmallVector<int, 8> MaskVec;
5456      for (unsigned i = 0; i != NumElems; ++i)
5457        MaskVec.push_back(i == Idx ? 0 : 1);
5458      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5459    }
5460  }
5461
5462  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5463  if (Values.size() == 1) {
5464    if (EVTBits == 32) {
5465      // Instead of a shuffle like this:
5466      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5467      // Check if it's possible to issue this instead.
5468      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5469      unsigned Idx = CountTrailingZeros_32(NonZeros);
5470      SDValue Item = Op.getOperand(Idx);
5471      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5472        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5473    }
5474    return SDValue();
5475  }
5476
5477  // A vector full of immediates; various special cases are already
5478  // handled, so this is best done with a single constant-pool load.
5479  if (IsAllConstants)
5480    return SDValue();
5481
5482  // For AVX-length vectors, build the individual 128-bit pieces and use
5483  // shuffles to put them in place.
5484  if (VT.is256BitVector()) {
5485    SmallVector<SDValue, 32> V;
5486    for (unsigned i = 0; i != NumElems; ++i)
5487      V.push_back(Op.getOperand(i));
5488
5489    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5490
5491    // Build both the lower and upper subvector.
5492    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5493    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5494                                NumElems/2);
5495
5496    // Recreate the wider vector with the lower and upper part.
5497    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5498  }
5499
5500  // Let legalizer expand 2-wide build_vectors.
5501  if (EVTBits == 64) {
5502    if (NumNonZero == 1) {
5503      // One half is zero or undef.
5504      unsigned Idx = CountTrailingZeros_32(NonZeros);
5505      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5506                                 Op.getOperand(Idx));
5507      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5508    }
5509    return SDValue();
5510  }
5511
5512  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5513  if (EVTBits == 8 && NumElems == 16) {
5514    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5515                                        Subtarget, *this);
5516    if (V.getNode()) return V;
5517  }
5518
5519  if (EVTBits == 16 && NumElems == 8) {
5520    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5521                                      Subtarget, *this);
5522    if (V.getNode()) return V;
5523  }
5524
5525  // If element VT is == 32 bits, turn it into a number of shuffles.
5526  SmallVector<SDValue, 8> V(NumElems);
5527  if (NumElems == 4 && NumZero > 0) {
5528    for (unsigned i = 0; i < 4; ++i) {
5529      bool isZero = !(NonZeros & (1 << i));
5530      if (isZero)
5531        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5532      else
5533        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5534    }
5535
5536    for (unsigned i = 0; i < 2; ++i) {
5537      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5538        default: break;
5539        case 0:
5540          V[i] = V[i*2];  // Must be a zero vector.
5541          break;
5542        case 1:
5543          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5544          break;
5545        case 2:
5546          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5547          break;
5548        case 3:
5549          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5550          break;
5551      }
5552    }
5553
5554    bool Reverse1 = (NonZeros & 0x3) == 2;
5555    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5556    int MaskVec[] = {
5557      Reverse1 ? 1 : 0,
5558      Reverse1 ? 0 : 1,
5559      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5560      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5561    };
5562    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5563  }
5564
5565  if (Values.size() > 1 && VT.is128BitVector()) {
5566    // Check for a build vector of consecutive loads.
5567    for (unsigned i = 0; i < NumElems; ++i)
5568      V[i] = Op.getOperand(i);
5569
5570    // Check for elements which are consecutive loads.
5571    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5572    if (LD.getNode())
5573      return LD;
5574
5575    // Check for a build vector from mostly shuffle plus few inserting.
5576    SDValue Sh = buildFromShuffleMostly(Op, DAG);
5577    if (Sh.getNode())
5578      return Sh;
5579
5580    // For SSE 4.1, use insertps to put the high elements into the low element.
5581    if (getSubtarget()->hasSSE41()) {
5582      SDValue Result;
5583      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5584        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5585      else
5586        Result = DAG.getUNDEF(VT);
5587
5588      for (unsigned i = 1; i < NumElems; ++i) {
5589        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5590        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5591                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5592      }
5593      return Result;
5594    }
5595
5596    // Otherwise, expand into a number of unpckl*, start by extending each of
5597    // our (non-undef) elements to the full vector width with the element in the
5598    // bottom slot of the vector (which generates no code for SSE).
5599    for (unsigned i = 0; i < NumElems; ++i) {
5600      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5601        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5602      else
5603        V[i] = DAG.getUNDEF(VT);
5604    }
5605
5606    // Next, we iteratively mix elements, e.g. for v4f32:
5607    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5608    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5609    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5610    unsigned EltStride = NumElems >> 1;
5611    while (EltStride != 0) {
5612      for (unsigned i = 0; i < EltStride; ++i) {
5613        // If V[i+EltStride] is undef and this is the first round of mixing,
5614        // then it is safe to just drop this shuffle: V[i] is already in the
5615        // right place, the one element (since it's the first round) being
5616        // inserted as undef can be dropped.  This isn't safe for successive
5617        // rounds because they will permute elements within both vectors.
5618        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5619            EltStride == NumElems/2)
5620          continue;
5621
5622        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5623      }
5624      EltStride >>= 1;
5625    }
5626    return V[0];
5627  }
5628  return SDValue();
5629}
5630
5631// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5632// to create 256-bit vectors from two other 128-bit ones.
5633static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5634  DebugLoc dl = Op.getDebugLoc();
5635  EVT ResVT = Op.getValueType();
5636
5637  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5638
5639  SDValue V1 = Op.getOperand(0);
5640  SDValue V2 = Op.getOperand(1);
5641  unsigned NumElems = ResVT.getVectorNumElements();
5642
5643  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5644}
5645
5646static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5647  assert(Op.getNumOperands() == 2);
5648
5649  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5650  // from two other 128-bit ones.
5651  return LowerAVXCONCAT_VECTORS(Op, DAG);
5652}
5653
5654// Try to lower a shuffle node into a simple blend instruction.
5655static SDValue
5656LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5657                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5658  SDValue V1 = SVOp->getOperand(0);
5659  SDValue V2 = SVOp->getOperand(1);
5660  DebugLoc dl = SVOp->getDebugLoc();
5661  EVT VT = SVOp->getValueType(0);
5662  EVT EltVT = VT.getVectorElementType();
5663  unsigned NumElems = VT.getVectorNumElements();
5664
5665  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
5666    return SDValue();
5667  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
5668    return SDValue();
5669
5670  // Check the mask for BLEND and build the value.
5671  unsigned MaskValue = 0;
5672  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
5673  unsigned NumLanes = (NumElems-1)/8 + 1;
5674  unsigned NumElemsInLane = NumElems / NumLanes;
5675
5676  // Blend for v16i16 should be symetric for the both lanes.
5677  for (unsigned i = 0; i < NumElemsInLane; ++i) {
5678
5679    int SndLaneEltIdx = (NumLanes == 2) ?
5680      SVOp->getMaskElt(i + NumElemsInLane) : -1;
5681    int EltIdx = SVOp->getMaskElt(i);
5682
5683    if ((EltIdx == -1 || EltIdx == (int)i) &&
5684        (SndLaneEltIdx == -1 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
5685      continue;
5686
5687    if (((unsigned)EltIdx == (i + NumElems)) &&
5688        (SndLaneEltIdx == -1 ||
5689         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
5690      MaskValue |= (1<<i);
5691    else
5692      return SDValue();
5693  }
5694
5695  // Convert i32 vectors to floating point if it is not AVX2.
5696  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
5697  EVT BlendVT = VT;
5698  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
5699    BlendVT = EVT::getVectorVT(*DAG.getContext(),
5700                              EVT::getFloatingPointVT(EltVT.getSizeInBits()),
5701                              NumElems);
5702    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
5703    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
5704  }
5705
5706  SDValue Ret =  DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
5707                             DAG.getConstant(MaskValue, MVT::i32));
5708  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5709}
5710
5711// v8i16 shuffles - Prefer shuffles in the following order:
5712// 1. [all]   pshuflw, pshufhw, optional move
5713// 2. [ssse3] 1 x pshufb
5714// 3. [ssse3] 2 x pshufb + 1 x por
5715// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5716static SDValue
5717LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5718                         SelectionDAG &DAG) {
5719  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5720  SDValue V1 = SVOp->getOperand(0);
5721  SDValue V2 = SVOp->getOperand(1);
5722  DebugLoc dl = SVOp->getDebugLoc();
5723  SmallVector<int, 8> MaskVals;
5724
5725  // Determine if more than 1 of the words in each of the low and high quadwords
5726  // of the result come from the same quadword of one of the two inputs.  Undef
5727  // mask values count as coming from any quadword, for better codegen.
5728  unsigned LoQuad[] = { 0, 0, 0, 0 };
5729  unsigned HiQuad[] = { 0, 0, 0, 0 };
5730  std::bitset<4> InputQuads;
5731  for (unsigned i = 0; i < 8; ++i) {
5732    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5733    int EltIdx = SVOp->getMaskElt(i);
5734    MaskVals.push_back(EltIdx);
5735    if (EltIdx < 0) {
5736      ++Quad[0];
5737      ++Quad[1];
5738      ++Quad[2];
5739      ++Quad[3];
5740      continue;
5741    }
5742    ++Quad[EltIdx / 4];
5743    InputQuads.set(EltIdx / 4);
5744  }
5745
5746  int BestLoQuad = -1;
5747  unsigned MaxQuad = 1;
5748  for (unsigned i = 0; i < 4; ++i) {
5749    if (LoQuad[i] > MaxQuad) {
5750      BestLoQuad = i;
5751      MaxQuad = LoQuad[i];
5752    }
5753  }
5754
5755  int BestHiQuad = -1;
5756  MaxQuad = 1;
5757  for (unsigned i = 0; i < 4; ++i) {
5758    if (HiQuad[i] > MaxQuad) {
5759      BestHiQuad = i;
5760      MaxQuad = HiQuad[i];
5761    }
5762  }
5763
5764  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5765  // of the two input vectors, shuffle them into one input vector so only a
5766  // single pshufb instruction is necessary. If There are more than 2 input
5767  // quads, disable the next transformation since it does not help SSSE3.
5768  bool V1Used = InputQuads[0] || InputQuads[1];
5769  bool V2Used = InputQuads[2] || InputQuads[3];
5770  if (Subtarget->hasSSSE3()) {
5771    if (InputQuads.count() == 2 && V1Used && V2Used) {
5772      BestLoQuad = InputQuads[0] ? 0 : 1;
5773      BestHiQuad = InputQuads[2] ? 2 : 3;
5774    }
5775    if (InputQuads.count() > 2) {
5776      BestLoQuad = -1;
5777      BestHiQuad = -1;
5778    }
5779  }
5780
5781  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5782  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5783  // words from all 4 input quadwords.
5784  SDValue NewV;
5785  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5786    int MaskV[] = {
5787      BestLoQuad < 0 ? 0 : BestLoQuad,
5788      BestHiQuad < 0 ? 1 : BestHiQuad
5789    };
5790    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5791                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5792                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5793    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5794
5795    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5796    // source words for the shuffle, to aid later transformations.
5797    bool AllWordsInNewV = true;
5798    bool InOrder[2] = { true, true };
5799    for (unsigned i = 0; i != 8; ++i) {
5800      int idx = MaskVals[i];
5801      if (idx != (int)i)
5802        InOrder[i/4] = false;
5803      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5804        continue;
5805      AllWordsInNewV = false;
5806      break;
5807    }
5808
5809    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5810    if (AllWordsInNewV) {
5811      for (int i = 0; i != 8; ++i) {
5812        int idx = MaskVals[i];
5813        if (idx < 0)
5814          continue;
5815        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5816        if ((idx != i) && idx < 4)
5817          pshufhw = false;
5818        if ((idx != i) && idx > 3)
5819          pshuflw = false;
5820      }
5821      V1 = NewV;
5822      V2Used = false;
5823      BestLoQuad = 0;
5824      BestHiQuad = 1;
5825    }
5826
5827    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5828    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5829    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5830      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5831      unsigned TargetMask = 0;
5832      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5833                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5834      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5835      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5836                             getShufflePSHUFLWImmediate(SVOp);
5837      V1 = NewV.getOperand(0);
5838      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5839    }
5840  }
5841
5842  // If we have SSSE3, and all words of the result are from 1 input vector,
5843  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5844  // is present, fall back to case 4.
5845  if (Subtarget->hasSSSE3()) {
5846    SmallVector<SDValue,16> pshufbMask;
5847
5848    // If we have elements from both input vectors, set the high bit of the
5849    // shuffle mask element to zero out elements that come from V2 in the V1
5850    // mask, and elements that come from V1 in the V2 mask, so that the two
5851    // results can be OR'd together.
5852    bool TwoInputs = V1Used && V2Used;
5853    for (unsigned i = 0; i != 8; ++i) {
5854      int EltIdx = MaskVals[i] * 2;
5855      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5856      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5857      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5858      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5859    }
5860    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5861    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5862                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5863                                 MVT::v16i8, &pshufbMask[0], 16));
5864    if (!TwoInputs)
5865      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5866
5867    // Calculate the shuffle mask for the second input, shuffle it, and
5868    // OR it with the first shuffled input.
5869    pshufbMask.clear();
5870    for (unsigned i = 0; i != 8; ++i) {
5871      int EltIdx = MaskVals[i] * 2;
5872      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5873      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5874      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5875      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5876    }
5877    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5878    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5879                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5880                                 MVT::v16i8, &pshufbMask[0], 16));
5881    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5882    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5883  }
5884
5885  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5886  // and update MaskVals with new element order.
5887  std::bitset<8> InOrder;
5888  if (BestLoQuad >= 0) {
5889    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5890    for (int i = 0; i != 4; ++i) {
5891      int idx = MaskVals[i];
5892      if (idx < 0) {
5893        InOrder.set(i);
5894      } else if ((idx / 4) == BestLoQuad) {
5895        MaskV[i] = idx & 3;
5896        InOrder.set(i);
5897      }
5898    }
5899    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5900                                &MaskV[0]);
5901
5902    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5903      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5904      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5905                                  NewV.getOperand(0),
5906                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5907    }
5908  }
5909
5910  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5911  // and update MaskVals with the new element order.
5912  if (BestHiQuad >= 0) {
5913    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5914    for (unsigned i = 4; i != 8; ++i) {
5915      int idx = MaskVals[i];
5916      if (idx < 0) {
5917        InOrder.set(i);
5918      } else if ((idx / 4) == BestHiQuad) {
5919        MaskV[i] = (idx & 3) + 4;
5920        InOrder.set(i);
5921      }
5922    }
5923    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5924                                &MaskV[0]);
5925
5926    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5927      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5928      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5929                                  NewV.getOperand(0),
5930                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5931    }
5932  }
5933
5934  // In case BestHi & BestLo were both -1, which means each quadword has a word
5935  // from each of the four input quadwords, calculate the InOrder bitvector now
5936  // before falling through to the insert/extract cleanup.
5937  if (BestLoQuad == -1 && BestHiQuad == -1) {
5938    NewV = V1;
5939    for (int i = 0; i != 8; ++i)
5940      if (MaskVals[i] < 0 || MaskVals[i] == i)
5941        InOrder.set(i);
5942  }
5943
5944  // The other elements are put in the right place using pextrw and pinsrw.
5945  for (unsigned i = 0; i != 8; ++i) {
5946    if (InOrder[i])
5947      continue;
5948    int EltIdx = MaskVals[i];
5949    if (EltIdx < 0)
5950      continue;
5951    SDValue ExtOp = (EltIdx < 8) ?
5952      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5953                  DAG.getIntPtrConstant(EltIdx)) :
5954      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5955                  DAG.getIntPtrConstant(EltIdx - 8));
5956    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5957                       DAG.getIntPtrConstant(i));
5958  }
5959  return NewV;
5960}
5961
5962// v16i8 shuffles - Prefer shuffles in the following order:
5963// 1. [ssse3] 1 x pshufb
5964// 2. [ssse3] 2 x pshufb + 1 x por
5965// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5966static
5967SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5968                                 SelectionDAG &DAG,
5969                                 const X86TargetLowering &TLI) {
5970  SDValue V1 = SVOp->getOperand(0);
5971  SDValue V2 = SVOp->getOperand(1);
5972  DebugLoc dl = SVOp->getDebugLoc();
5973  ArrayRef<int> MaskVals = SVOp->getMask();
5974
5975  // If we have SSSE3, case 1 is generated when all result bytes come from
5976  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5977  // present, fall back to case 3.
5978
5979  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5980  if (TLI.getSubtarget()->hasSSSE3()) {
5981    SmallVector<SDValue,16> pshufbMask;
5982
5983    // If all result elements are from one input vector, then only translate
5984    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5985    //
5986    // Otherwise, we have elements from both input vectors, and must zero out
5987    // elements that come from V2 in the first mask, and V1 in the second mask
5988    // so that we can OR them together.
5989    for (unsigned i = 0; i != 16; ++i) {
5990      int EltIdx = MaskVals[i];
5991      if (EltIdx < 0 || EltIdx >= 16)
5992        EltIdx = 0x80;
5993      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5994    }
5995    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5996                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5997                                 MVT::v16i8, &pshufbMask[0], 16));
5998
5999    // As PSHUFB will zero elements with negative indices, it's safe to ignore
6000    // the 2nd operand if it's undefined or zero.
6001    if (V2.getOpcode() == ISD::UNDEF ||
6002        ISD::isBuildVectorAllZeros(V2.getNode()))
6003      return V1;
6004
6005    // Calculate the shuffle mask for the second input, shuffle it, and
6006    // OR it with the first shuffled input.
6007    pshufbMask.clear();
6008    for (unsigned i = 0; i != 16; ++i) {
6009      int EltIdx = MaskVals[i];
6010      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6011      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6012    }
6013    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6014                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6015                                 MVT::v16i8, &pshufbMask[0], 16));
6016    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6017  }
6018
6019  // No SSSE3 - Calculate in place words and then fix all out of place words
6020  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6021  // the 16 different words that comprise the two doublequadword input vectors.
6022  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6023  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6024  SDValue NewV = V1;
6025  for (int i = 0; i != 8; ++i) {
6026    int Elt0 = MaskVals[i*2];
6027    int Elt1 = MaskVals[i*2+1];
6028
6029    // This word of the result is all undef, skip it.
6030    if (Elt0 < 0 && Elt1 < 0)
6031      continue;
6032
6033    // This word of the result is already in the correct place, skip it.
6034    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6035      continue;
6036
6037    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6038    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6039    SDValue InsElt;
6040
6041    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6042    // using a single extract together, load it and store it.
6043    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6044      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6045                           DAG.getIntPtrConstant(Elt1 / 2));
6046      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6047                        DAG.getIntPtrConstant(i));
6048      continue;
6049    }
6050
6051    // If Elt1 is defined, extract it from the appropriate source.  If the
6052    // source byte is not also odd, shift the extracted word left 8 bits
6053    // otherwise clear the bottom 8 bits if we need to do an or.
6054    if (Elt1 >= 0) {
6055      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6056                           DAG.getIntPtrConstant(Elt1 / 2));
6057      if ((Elt1 & 1) == 0)
6058        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6059                             DAG.getConstant(8,
6060                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6061      else if (Elt0 >= 0)
6062        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6063                             DAG.getConstant(0xFF00, MVT::i16));
6064    }
6065    // If Elt0 is defined, extract it from the appropriate source.  If the
6066    // source byte is not also even, shift the extracted word right 8 bits. If
6067    // Elt1 was also defined, OR the extracted values together before
6068    // inserting them in the result.
6069    if (Elt0 >= 0) {
6070      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6071                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6072      if ((Elt0 & 1) != 0)
6073        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6074                              DAG.getConstant(8,
6075                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6076      else if (Elt1 >= 0)
6077        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6078                             DAG.getConstant(0x00FF, MVT::i16));
6079      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6080                         : InsElt0;
6081    }
6082    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6083                       DAG.getIntPtrConstant(i));
6084  }
6085  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6086}
6087
6088// v32i8 shuffles - Translate to VPSHUFB if possible.
6089static
6090SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6091                                 const X86Subtarget *Subtarget,
6092                                 SelectionDAG &DAG) {
6093  EVT VT = SVOp->getValueType(0);
6094  SDValue V1 = SVOp->getOperand(0);
6095  SDValue V2 = SVOp->getOperand(1);
6096  DebugLoc dl = SVOp->getDebugLoc();
6097  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6098
6099  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6100  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6101  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6102
6103  // VPSHUFB may be generated if
6104  // (1) one of input vector is undefined or zeroinitializer.
6105  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6106  // And (2) the mask indexes don't cross the 128-bit lane.
6107  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6108      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6109    return SDValue();
6110
6111  if (V1IsAllZero && !V2IsAllZero) {
6112    CommuteVectorShuffleMask(MaskVals, 32);
6113    V1 = V2;
6114  }
6115  SmallVector<SDValue, 32> pshufbMask;
6116  for (unsigned i = 0; i != 32; i++) {
6117    int EltIdx = MaskVals[i];
6118    if (EltIdx < 0 || EltIdx >= 32)
6119      EltIdx = 0x80;
6120    else {
6121      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6122        // Cross lane is not allowed.
6123        return SDValue();
6124      EltIdx &= 0xf;
6125    }
6126    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6127  }
6128  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6129                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6130                                  MVT::v32i8, &pshufbMask[0], 32));
6131}
6132
6133/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6134/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6135/// done when every pair / quad of shuffle mask elements point to elements in
6136/// the right sequence. e.g.
6137/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6138static
6139SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6140                                 SelectionDAG &DAG, DebugLoc dl) {
6141  MVT VT = SVOp->getValueType(0).getSimpleVT();
6142  unsigned NumElems = VT.getVectorNumElements();
6143  MVT NewVT;
6144  unsigned Scale;
6145  switch (VT.SimpleTy) {
6146  default: llvm_unreachable("Unexpected!");
6147  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6148  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6149  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6150  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6151  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6152  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6153  }
6154
6155  SmallVector<int, 8> MaskVec;
6156  for (unsigned i = 0; i != NumElems; i += Scale) {
6157    int StartIdx = -1;
6158    for (unsigned j = 0; j != Scale; ++j) {
6159      int EltIdx = SVOp->getMaskElt(i+j);
6160      if (EltIdx < 0)
6161        continue;
6162      if (StartIdx < 0)
6163        StartIdx = (EltIdx / Scale);
6164      if (EltIdx != (int)(StartIdx*Scale + j))
6165        return SDValue();
6166    }
6167    MaskVec.push_back(StartIdx);
6168  }
6169
6170  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6171  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6172  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6173}
6174
6175/// getVZextMovL - Return a zero-extending vector move low node.
6176///
6177static SDValue getVZextMovL(EVT VT, EVT OpVT,
6178                            SDValue SrcOp, SelectionDAG &DAG,
6179                            const X86Subtarget *Subtarget, DebugLoc dl) {
6180  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6181    LoadSDNode *LD = NULL;
6182    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6183      LD = dyn_cast<LoadSDNode>(SrcOp);
6184    if (!LD) {
6185      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6186      // instead.
6187      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6188      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6189          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6190          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6191          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6192        // PR2108
6193        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6194        return DAG.getNode(ISD::BITCAST, dl, VT,
6195                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6196                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6197                                                   OpVT,
6198                                                   SrcOp.getOperand(0)
6199                                                          .getOperand(0))));
6200      }
6201    }
6202  }
6203
6204  return DAG.getNode(ISD::BITCAST, dl, VT,
6205                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6206                                 DAG.getNode(ISD::BITCAST, dl,
6207                                             OpVT, SrcOp)));
6208}
6209
6210/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6211/// which could not be matched by any known target speficic shuffle
6212static SDValue
6213LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6214
6215  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6216  if (NewOp.getNode())
6217    return NewOp;
6218
6219  EVT VT = SVOp->getValueType(0);
6220
6221  unsigned NumElems = VT.getVectorNumElements();
6222  unsigned NumLaneElems = NumElems / 2;
6223
6224  DebugLoc dl = SVOp->getDebugLoc();
6225  MVT EltVT = VT.getVectorElementType().getSimpleVT();
6226  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6227  SDValue Output[2];
6228
6229  SmallVector<int, 16> Mask;
6230  for (unsigned l = 0; l < 2; ++l) {
6231    // Build a shuffle mask for the output, discovering on the fly which
6232    // input vectors to use as shuffle operands (recorded in InputUsed).
6233    // If building a suitable shuffle vector proves too hard, then bail
6234    // out with UseBuildVector set.
6235    bool UseBuildVector = false;
6236    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6237    unsigned LaneStart = l * NumLaneElems;
6238    for (unsigned i = 0; i != NumLaneElems; ++i) {
6239      // The mask element.  This indexes into the input.
6240      int Idx = SVOp->getMaskElt(i+LaneStart);
6241      if (Idx < 0) {
6242        // the mask element does not index into any input vector.
6243        Mask.push_back(-1);
6244        continue;
6245      }
6246
6247      // The input vector this mask element indexes into.
6248      int Input = Idx / NumLaneElems;
6249
6250      // Turn the index into an offset from the start of the input vector.
6251      Idx -= Input * NumLaneElems;
6252
6253      // Find or create a shuffle vector operand to hold this input.
6254      unsigned OpNo;
6255      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6256        if (InputUsed[OpNo] == Input)
6257          // This input vector is already an operand.
6258          break;
6259        if (InputUsed[OpNo] < 0) {
6260          // Create a new operand for this input vector.
6261          InputUsed[OpNo] = Input;
6262          break;
6263        }
6264      }
6265
6266      if (OpNo >= array_lengthof(InputUsed)) {
6267        // More than two input vectors used!  Give up on trying to create a
6268        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6269        UseBuildVector = true;
6270        break;
6271      }
6272
6273      // Add the mask index for the new shuffle vector.
6274      Mask.push_back(Idx + OpNo * NumLaneElems);
6275    }
6276
6277    if (UseBuildVector) {
6278      SmallVector<SDValue, 16> SVOps;
6279      for (unsigned i = 0; i != NumLaneElems; ++i) {
6280        // The mask element.  This indexes into the input.
6281        int Idx = SVOp->getMaskElt(i+LaneStart);
6282        if (Idx < 0) {
6283          SVOps.push_back(DAG.getUNDEF(EltVT));
6284          continue;
6285        }
6286
6287        // The input vector this mask element indexes into.
6288        int Input = Idx / NumElems;
6289
6290        // Turn the index into an offset from the start of the input vector.
6291        Idx -= Input * NumElems;
6292
6293        // Extract the vector element by hand.
6294        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6295                                    SVOp->getOperand(Input),
6296                                    DAG.getIntPtrConstant(Idx)));
6297      }
6298
6299      // Construct the output using a BUILD_VECTOR.
6300      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6301                              SVOps.size());
6302    } else if (InputUsed[0] < 0) {
6303      // No input vectors were used! The result is undefined.
6304      Output[l] = DAG.getUNDEF(NVT);
6305    } else {
6306      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6307                                        (InputUsed[0] % 2) * NumLaneElems,
6308                                        DAG, dl);
6309      // If only one input was used, use an undefined vector for the other.
6310      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6311        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6312                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6313      // At least one input vector was used. Create a new shuffle vector.
6314      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6315    }
6316
6317    Mask.clear();
6318  }
6319
6320  // Concatenate the result back
6321  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6322}
6323
6324/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6325/// 4 elements, and match them with several different shuffle types.
6326static SDValue
6327LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6328  SDValue V1 = SVOp->getOperand(0);
6329  SDValue V2 = SVOp->getOperand(1);
6330  DebugLoc dl = SVOp->getDebugLoc();
6331  EVT VT = SVOp->getValueType(0);
6332
6333  assert(VT.is128BitVector() && "Unsupported vector size");
6334
6335  std::pair<int, int> Locs[4];
6336  int Mask1[] = { -1, -1, -1, -1 };
6337  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6338
6339  unsigned NumHi = 0;
6340  unsigned NumLo = 0;
6341  for (unsigned i = 0; i != 4; ++i) {
6342    int Idx = PermMask[i];
6343    if (Idx < 0) {
6344      Locs[i] = std::make_pair(-1, -1);
6345    } else {
6346      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6347      if (Idx < 4) {
6348        Locs[i] = std::make_pair(0, NumLo);
6349        Mask1[NumLo] = Idx;
6350        NumLo++;
6351      } else {
6352        Locs[i] = std::make_pair(1, NumHi);
6353        if (2+NumHi < 4)
6354          Mask1[2+NumHi] = Idx;
6355        NumHi++;
6356      }
6357    }
6358  }
6359
6360  if (NumLo <= 2 && NumHi <= 2) {
6361    // If no more than two elements come from either vector. This can be
6362    // implemented with two shuffles. First shuffle gather the elements.
6363    // The second shuffle, which takes the first shuffle as both of its
6364    // vector operands, put the elements into the right order.
6365    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6366
6367    int Mask2[] = { -1, -1, -1, -1 };
6368
6369    for (unsigned i = 0; i != 4; ++i)
6370      if (Locs[i].first != -1) {
6371        unsigned Idx = (i < 2) ? 0 : 4;
6372        Idx += Locs[i].first * 2 + Locs[i].second;
6373        Mask2[i] = Idx;
6374      }
6375
6376    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6377  }
6378
6379  if (NumLo == 3 || NumHi == 3) {
6380    // Otherwise, we must have three elements from one vector, call it X, and
6381    // one element from the other, call it Y.  First, use a shufps to build an
6382    // intermediate vector with the one element from Y and the element from X
6383    // that will be in the same half in the final destination (the indexes don't
6384    // matter). Then, use a shufps to build the final vector, taking the half
6385    // containing the element from Y from the intermediate, and the other half
6386    // from X.
6387    if (NumHi == 3) {
6388      // Normalize it so the 3 elements come from V1.
6389      CommuteVectorShuffleMask(PermMask, 4);
6390      std::swap(V1, V2);
6391    }
6392
6393    // Find the element from V2.
6394    unsigned HiIndex;
6395    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6396      int Val = PermMask[HiIndex];
6397      if (Val < 0)
6398        continue;
6399      if (Val >= 4)
6400        break;
6401    }
6402
6403    Mask1[0] = PermMask[HiIndex];
6404    Mask1[1] = -1;
6405    Mask1[2] = PermMask[HiIndex^1];
6406    Mask1[3] = -1;
6407    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6408
6409    if (HiIndex >= 2) {
6410      Mask1[0] = PermMask[0];
6411      Mask1[1] = PermMask[1];
6412      Mask1[2] = HiIndex & 1 ? 6 : 4;
6413      Mask1[3] = HiIndex & 1 ? 4 : 6;
6414      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6415    }
6416
6417    Mask1[0] = HiIndex & 1 ? 2 : 0;
6418    Mask1[1] = HiIndex & 1 ? 0 : 2;
6419    Mask1[2] = PermMask[2];
6420    Mask1[3] = PermMask[3];
6421    if (Mask1[2] >= 0)
6422      Mask1[2] += 4;
6423    if (Mask1[3] >= 0)
6424      Mask1[3] += 4;
6425    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6426  }
6427
6428  // Break it into (shuffle shuffle_hi, shuffle_lo).
6429  int LoMask[] = { -1, -1, -1, -1 };
6430  int HiMask[] = { -1, -1, -1, -1 };
6431
6432  int *MaskPtr = LoMask;
6433  unsigned MaskIdx = 0;
6434  unsigned LoIdx = 0;
6435  unsigned HiIdx = 2;
6436  for (unsigned i = 0; i != 4; ++i) {
6437    if (i == 2) {
6438      MaskPtr = HiMask;
6439      MaskIdx = 1;
6440      LoIdx = 0;
6441      HiIdx = 2;
6442    }
6443    int Idx = PermMask[i];
6444    if (Idx < 0) {
6445      Locs[i] = std::make_pair(-1, -1);
6446    } else if (Idx < 4) {
6447      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6448      MaskPtr[LoIdx] = Idx;
6449      LoIdx++;
6450    } else {
6451      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6452      MaskPtr[HiIdx] = Idx;
6453      HiIdx++;
6454    }
6455  }
6456
6457  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6458  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6459  int MaskOps[] = { -1, -1, -1, -1 };
6460  for (unsigned i = 0; i != 4; ++i)
6461    if (Locs[i].first != -1)
6462      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6463  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6464}
6465
6466static bool MayFoldVectorLoad(SDValue V) {
6467  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6468    V = V.getOperand(0);
6469
6470  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6471    V = V.getOperand(0);
6472  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6473      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6474    // BUILD_VECTOR (load), undef
6475    V = V.getOperand(0);
6476
6477  return MayFoldLoad(V);
6478}
6479
6480static
6481SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6482  EVT VT = Op.getValueType();
6483
6484  // Canonizalize to v2f64.
6485  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6486  return DAG.getNode(ISD::BITCAST, dl, VT,
6487                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6488                                          V1, DAG));
6489}
6490
6491static
6492SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6493                        bool HasSSE2) {
6494  SDValue V1 = Op.getOperand(0);
6495  SDValue V2 = Op.getOperand(1);
6496  EVT VT = Op.getValueType();
6497
6498  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6499
6500  if (HasSSE2 && VT == MVT::v2f64)
6501    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6502
6503  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6504  return DAG.getNode(ISD::BITCAST, dl, VT,
6505                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6506                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6507                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6508}
6509
6510static
6511SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6512  SDValue V1 = Op.getOperand(0);
6513  SDValue V2 = Op.getOperand(1);
6514  EVT VT = Op.getValueType();
6515
6516  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6517         "unsupported shuffle type");
6518
6519  if (V2.getOpcode() == ISD::UNDEF)
6520    V2 = V1;
6521
6522  // v4i32 or v4f32
6523  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6524}
6525
6526static
6527SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6528  SDValue V1 = Op.getOperand(0);
6529  SDValue V2 = Op.getOperand(1);
6530  EVT VT = Op.getValueType();
6531  unsigned NumElems = VT.getVectorNumElements();
6532
6533  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6534  // operand of these instructions is only memory, so check if there's a
6535  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6536  // same masks.
6537  bool CanFoldLoad = false;
6538
6539  // Trivial case, when V2 comes from a load.
6540  if (MayFoldVectorLoad(V2))
6541    CanFoldLoad = true;
6542
6543  // When V1 is a load, it can be folded later into a store in isel, example:
6544  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6545  //    turns into:
6546  //  (MOVLPSmr addr:$src1, VR128:$src2)
6547  // So, recognize this potential and also use MOVLPS or MOVLPD
6548  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6549    CanFoldLoad = true;
6550
6551  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6552  if (CanFoldLoad) {
6553    if (HasSSE2 && NumElems == 2)
6554      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6555
6556    if (NumElems == 4)
6557      // If we don't care about the second element, proceed to use movss.
6558      if (SVOp->getMaskElt(1) != -1)
6559        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6560  }
6561
6562  // movl and movlp will both match v2i64, but v2i64 is never matched by
6563  // movl earlier because we make it strict to avoid messing with the movlp load
6564  // folding logic (see the code above getMOVLP call). Match it here then,
6565  // this is horrible, but will stay like this until we move all shuffle
6566  // matching to x86 specific nodes. Note that for the 1st condition all
6567  // types are matched with movsd.
6568  if (HasSSE2) {
6569    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6570    // as to remove this logic from here, as much as possible
6571    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6572      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6573    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6574  }
6575
6576  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6577
6578  // Invert the operand order and use SHUFPS to match it.
6579  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6580                              getShuffleSHUFImmediate(SVOp), DAG);
6581}
6582
6583// Reduce a vector shuffle to zext.
6584SDValue
6585X86TargetLowering::lowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
6586  // PMOVZX is only available from SSE41.
6587  if (!Subtarget->hasSSE41())
6588    return SDValue();
6589
6590  EVT VT = Op.getValueType();
6591
6592  // Only AVX2 support 256-bit vector integer extending.
6593  if (!Subtarget->hasInt256() && VT.is256BitVector())
6594    return SDValue();
6595
6596  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6597  DebugLoc DL = Op.getDebugLoc();
6598  SDValue V1 = Op.getOperand(0);
6599  SDValue V2 = Op.getOperand(1);
6600  unsigned NumElems = VT.getVectorNumElements();
6601
6602  // Extending is an unary operation and the element type of the source vector
6603  // won't be equal to or larger than i64.
6604  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
6605      VT.getVectorElementType() == MVT::i64)
6606    return SDValue();
6607
6608  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
6609  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
6610  while ((1U << Shift) < NumElems) {
6611    if (SVOp->getMaskElt(1U << Shift) == 1)
6612      break;
6613    Shift += 1;
6614    // The maximal ratio is 8, i.e. from i8 to i64.
6615    if (Shift > 3)
6616      return SDValue();
6617  }
6618
6619  // Check the shuffle mask.
6620  unsigned Mask = (1U << Shift) - 1;
6621  for (unsigned i = 0; i != NumElems; ++i) {
6622    int EltIdx = SVOp->getMaskElt(i);
6623    if ((i & Mask) != 0 && EltIdx != -1)
6624      return SDValue();
6625    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
6626      return SDValue();
6627  }
6628
6629  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
6630  EVT NeVT = EVT::getIntegerVT(*DAG.getContext(), NBits);
6631  EVT NVT = EVT::getVectorVT(*DAG.getContext(), NeVT, NumElems >> Shift);
6632
6633  if (!isTypeLegal(NVT))
6634    return SDValue();
6635
6636  // Simplify the operand as it's prepared to be fed into shuffle.
6637  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
6638  if (V1.getOpcode() == ISD::BITCAST &&
6639      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
6640      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6641      V1.getOperand(0)
6642        .getOperand(0).getValueType().getSizeInBits() == SignificantBits) {
6643    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
6644    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
6645    ConstantSDNode *CIdx =
6646      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
6647    // If it's foldable, i.e. normal load with single use, we will let code
6648    // selection to fold it. Otherwise, we will short the conversion sequence.
6649    if (CIdx && CIdx->getZExtValue() == 0 &&
6650        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse()))
6651      V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V);
6652  }
6653
6654  return DAG.getNode(ISD::BITCAST, DL, VT,
6655                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
6656}
6657
6658SDValue
6659X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6660  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6661  EVT VT = Op.getValueType();
6662  DebugLoc dl = Op.getDebugLoc();
6663  SDValue V1 = Op.getOperand(0);
6664  SDValue V2 = Op.getOperand(1);
6665
6666  if (isZeroShuffle(SVOp))
6667    return getZeroVector(VT, Subtarget, DAG, dl);
6668
6669  // Handle splat operations
6670  if (SVOp->isSplat()) {
6671    unsigned NumElem = VT.getVectorNumElements();
6672
6673    // Use vbroadcast whenever the splat comes from a foldable load
6674    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6675    if (Broadcast.getNode())
6676      return Broadcast;
6677
6678    // Handle splats by matching through known shuffle masks
6679    if ((VT.is128BitVector() && NumElem <= 4) ||
6680        (VT.is256BitVector() && NumElem <= 8))
6681      return SDValue();
6682
6683    // All remaning splats are promoted to target supported vector shuffles.
6684    return PromoteSplat(SVOp, DAG);
6685  }
6686
6687  // Check integer expanding shuffles.
6688  SDValue NewOp = lowerVectorIntExtend(Op, DAG);
6689  if (NewOp.getNode())
6690    return NewOp;
6691
6692  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6693  // do it!
6694  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6695      VT == MVT::v16i16 || VT == MVT::v32i8) {
6696    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6697    if (NewOp.getNode())
6698      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6699  } else if ((VT == MVT::v4i32 ||
6700             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6701    // FIXME: Figure out a cleaner way to do this.
6702    // Try to make use of movq to zero out the top part.
6703    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6704      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6705      if (NewOp.getNode()) {
6706        EVT NewVT = NewOp.getValueType();
6707        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6708                               NewVT, true, false))
6709          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6710                              DAG, Subtarget, dl);
6711      }
6712    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6713      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6714      if (NewOp.getNode()) {
6715        EVT NewVT = NewOp.getValueType();
6716        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6717          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6718                              DAG, Subtarget, dl);
6719      }
6720    }
6721  }
6722  return SDValue();
6723}
6724
6725SDValue
6726X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6727  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6728  SDValue V1 = Op.getOperand(0);
6729  SDValue V2 = Op.getOperand(1);
6730  EVT VT = Op.getValueType();
6731  DebugLoc dl = Op.getDebugLoc();
6732  unsigned NumElems = VT.getVectorNumElements();
6733  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6734  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6735  bool V1IsSplat = false;
6736  bool V2IsSplat = false;
6737  bool HasSSE2 = Subtarget->hasSSE2();
6738  bool HasFp256    = Subtarget->hasFp256();
6739  bool HasInt256   = Subtarget->hasInt256();
6740  MachineFunction &MF = DAG.getMachineFunction();
6741  bool OptForSize = MF.getFunction()->getAttributes().
6742    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
6743
6744  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6745
6746  if (V1IsUndef && V2IsUndef)
6747    return DAG.getUNDEF(VT);
6748
6749  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6750
6751  // Vector shuffle lowering takes 3 steps:
6752  //
6753  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6754  //    narrowing and commutation of operands should be handled.
6755  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6756  //    shuffle nodes.
6757  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6758  //    so the shuffle can be broken into other shuffles and the legalizer can
6759  //    try the lowering again.
6760  //
6761  // The general idea is that no vector_shuffle operation should be left to
6762  // be matched during isel, all of them must be converted to a target specific
6763  // node here.
6764
6765  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6766  // narrowing and commutation of operands should be handled. The actual code
6767  // doesn't include all of those, work in progress...
6768  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6769  if (NewOp.getNode())
6770    return NewOp;
6771
6772  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6773
6774  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6775  // unpckh_undef). Only use pshufd if speed is more important than size.
6776  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6777    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6778  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
6779    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6780
6781  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6782      V2IsUndef && MayFoldVectorLoad(V1))
6783    return getMOVDDup(Op, dl, V1, DAG);
6784
6785  if (isMOVHLPS_v_undef_Mask(M, VT))
6786    return getMOVHighToLow(Op, dl, DAG);
6787
6788  // Use to match splats
6789  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
6790      (VT == MVT::v2f64 || VT == MVT::v2i64))
6791    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6792
6793  if (isPSHUFDMask(M, VT)) {
6794    // The actual implementation will match the mask in the if above and then
6795    // during isel it can match several different instructions, not only pshufd
6796    // as its name says, sad but true, emulate the behavior for now...
6797    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6798      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6799
6800    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6801
6802    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6803      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6804
6805    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
6806      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
6807                                  DAG);
6808
6809    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6810                                TargetMask, DAG);
6811  }
6812
6813  // Check if this can be converted into a logical shift.
6814  bool isLeft = false;
6815  unsigned ShAmt = 0;
6816  SDValue ShVal;
6817  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6818  if (isShift && ShVal.hasOneUse()) {
6819    // If the shifted value has multiple uses, it may be cheaper to use
6820    // v_set0 + movlhps or movhlps, etc.
6821    EVT EltVT = VT.getVectorElementType();
6822    ShAmt *= EltVT.getSizeInBits();
6823    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6824  }
6825
6826  if (isMOVLMask(M, VT)) {
6827    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6828      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6829    if (!isMOVLPMask(M, VT)) {
6830      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6831        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6832
6833      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6834        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6835    }
6836  }
6837
6838  // FIXME: fold these into legal mask.
6839  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
6840    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6841
6842  if (isMOVHLPSMask(M, VT))
6843    return getMOVHighToLow(Op, dl, DAG);
6844
6845  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6846    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6847
6848  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6849    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6850
6851  if (isMOVLPMask(M, VT))
6852    return getMOVLP(Op, dl, DAG, HasSSE2);
6853
6854  if (ShouldXformToMOVHLPS(M, VT) ||
6855      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6856    return CommuteVectorShuffle(SVOp, DAG);
6857
6858  if (isShift) {
6859    // No better options. Use a vshldq / vsrldq.
6860    EVT EltVT = VT.getVectorElementType();
6861    ShAmt *= EltVT.getSizeInBits();
6862    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6863  }
6864
6865  bool Commuted = false;
6866  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6867  // 1,1,1,1 -> v8i16 though.
6868  V1IsSplat = isSplatVector(V1.getNode());
6869  V2IsSplat = isSplatVector(V2.getNode());
6870
6871  // Canonicalize the splat or undef, if present, to be on the RHS.
6872  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6873    CommuteVectorShuffleMask(M, NumElems);
6874    std::swap(V1, V2);
6875    std::swap(V1IsSplat, V2IsSplat);
6876    Commuted = true;
6877  }
6878
6879  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6880    // Shuffling low element of v1 into undef, just return v1.
6881    if (V2IsUndef)
6882      return V1;
6883    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6884    // the instruction selector will not match, so get a canonical MOVL with
6885    // swapped operands to undo the commute.
6886    return getMOVL(DAG, dl, VT, V2, V1);
6887  }
6888
6889  if (isUNPCKLMask(M, VT, HasInt256))
6890    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6891
6892  if (isUNPCKHMask(M, VT, HasInt256))
6893    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6894
6895  if (V2IsSplat) {
6896    // Normalize mask so all entries that point to V2 points to its first
6897    // element then try to match unpck{h|l} again. If match, return a
6898    // new vector_shuffle with the corrected mask.p
6899    SmallVector<int, 8> NewMask(M.begin(), M.end());
6900    NormalizeMask(NewMask, NumElems);
6901    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
6902      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6903    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
6904      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6905  }
6906
6907  if (Commuted) {
6908    // Commute is back and try unpck* again.
6909    // FIXME: this seems wrong.
6910    CommuteVectorShuffleMask(M, NumElems);
6911    std::swap(V1, V2);
6912    std::swap(V1IsSplat, V2IsSplat);
6913    Commuted = false;
6914
6915    if (isUNPCKLMask(M, VT, HasInt256))
6916      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6917
6918    if (isUNPCKHMask(M, VT, HasInt256))
6919      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6920  }
6921
6922  // Normalize the node to match x86 shuffle ops if needed
6923  if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true)))
6924    return CommuteVectorShuffle(SVOp, DAG);
6925
6926  // The checks below are all present in isShuffleMaskLegal, but they are
6927  // inlined here right now to enable us to directly emit target specific
6928  // nodes, and remove one by one until they don't return Op anymore.
6929
6930  if (isPALIGNRMask(M, VT, Subtarget))
6931    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6932                                getShufflePALIGNRImmediate(SVOp),
6933                                DAG);
6934
6935  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6936      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6937    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6938      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6939  }
6940
6941  if (isPSHUFHWMask(M, VT, HasInt256))
6942    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6943                                getShufflePSHUFHWImmediate(SVOp),
6944                                DAG);
6945
6946  if (isPSHUFLWMask(M, VT, HasInt256))
6947    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6948                                getShufflePSHUFLWImmediate(SVOp),
6949                                DAG);
6950
6951  if (isSHUFPMask(M, VT, HasFp256))
6952    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6953                                getShuffleSHUFImmediate(SVOp), DAG);
6954
6955  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6956    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6957  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
6958    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6959
6960  //===--------------------------------------------------------------------===//
6961  // Generate target specific nodes for 128 or 256-bit shuffles only
6962  // supported in the AVX instruction set.
6963  //
6964
6965  // Handle VMOVDDUPY permutations
6966  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
6967    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6968
6969  // Handle VPERMILPS/D* permutations
6970  if (isVPERMILPMask(M, VT, HasFp256)) {
6971    if (HasInt256 && VT == MVT::v8i32)
6972      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6973                                  getShuffleSHUFImmediate(SVOp), DAG);
6974    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6975                                getShuffleSHUFImmediate(SVOp), DAG);
6976  }
6977
6978  // Handle VPERM2F128/VPERM2I128 permutations
6979  if (isVPERM2X128Mask(M, VT, HasFp256))
6980    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6981                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6982
6983  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6984  if (BlendOp.getNode())
6985    return BlendOp;
6986
6987  if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6988    SmallVector<SDValue, 8> permclMask;
6989    for (unsigned i = 0; i != 8; ++i) {
6990      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6991    }
6992    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6993                               &permclMask[0], 8);
6994    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6995    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6996                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6997  }
6998
6999  if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64))
7000    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
7001                                getShuffleCLImmediate(SVOp), DAG);
7002
7003  //===--------------------------------------------------------------------===//
7004  // Since no target specific shuffle was selected for this generic one,
7005  // lower it into other known shuffles. FIXME: this isn't true yet, but
7006  // this is the plan.
7007  //
7008
7009  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7010  if (VT == MVT::v8i16) {
7011    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7012    if (NewOp.getNode())
7013      return NewOp;
7014  }
7015
7016  if (VT == MVT::v16i8) {
7017    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
7018    if (NewOp.getNode())
7019      return NewOp;
7020  }
7021
7022  if (VT == MVT::v32i8) {
7023    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7024    if (NewOp.getNode())
7025      return NewOp;
7026  }
7027
7028  // Handle all 128-bit wide vectors with 4 elements, and match them with
7029  // several different shuffle types.
7030  if (NumElems == 4 && VT.is128BitVector())
7031    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7032
7033  // Handle general 256-bit shuffles
7034  if (VT.is256BitVector())
7035    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7036
7037  return SDValue();
7038}
7039
7040SDValue
7041X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
7042                                                SelectionDAG &DAG) const {
7043  EVT VT = Op.getValueType();
7044  DebugLoc dl = Op.getDebugLoc();
7045
7046  if (!Op.getOperand(0).getValueType().is128BitVector())
7047    return SDValue();
7048
7049  if (VT.getSizeInBits() == 8) {
7050    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7051                                  Op.getOperand(0), Op.getOperand(1));
7052    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7053                                  DAG.getValueType(VT));
7054    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7055  }
7056
7057  if (VT.getSizeInBits() == 16) {
7058    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7059    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7060    if (Idx == 0)
7061      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7062                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7063                                     DAG.getNode(ISD::BITCAST, dl,
7064                                                 MVT::v4i32,
7065                                                 Op.getOperand(0)),
7066                                     Op.getOperand(1)));
7067    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7068                                  Op.getOperand(0), Op.getOperand(1));
7069    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7070                                  DAG.getValueType(VT));
7071    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7072  }
7073
7074  if (VT == MVT::f32) {
7075    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7076    // the result back to FR32 register. It's only worth matching if the
7077    // result has a single use which is a store or a bitcast to i32.  And in
7078    // the case of a store, it's not worth it if the index is a constant 0,
7079    // because a MOVSSmr can be used instead, which is smaller and faster.
7080    if (!Op.hasOneUse())
7081      return SDValue();
7082    SDNode *User = *Op.getNode()->use_begin();
7083    if ((User->getOpcode() != ISD::STORE ||
7084         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7085          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7086        (User->getOpcode() != ISD::BITCAST ||
7087         User->getValueType(0) != MVT::i32))
7088      return SDValue();
7089    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7090                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7091                                              Op.getOperand(0)),
7092                                              Op.getOperand(1));
7093    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7094  }
7095
7096  if (VT == MVT::i32 || VT == MVT::i64) {
7097    // ExtractPS/pextrq works with constant index.
7098    if (isa<ConstantSDNode>(Op.getOperand(1)))
7099      return Op;
7100  }
7101  return SDValue();
7102}
7103
7104SDValue
7105X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7106                                           SelectionDAG &DAG) const {
7107  if (!isa<ConstantSDNode>(Op.getOperand(1)))
7108    return SDValue();
7109
7110  SDValue Vec = Op.getOperand(0);
7111  EVT VecVT = Vec.getValueType();
7112
7113  // If this is a 256-bit vector result, first extract the 128-bit vector and
7114  // then extract the element from the 128-bit vector.
7115  if (VecVT.is256BitVector()) {
7116    DebugLoc dl = Op.getNode()->getDebugLoc();
7117    unsigned NumElems = VecVT.getVectorNumElements();
7118    SDValue Idx = Op.getOperand(1);
7119    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7120
7121    // Get the 128-bit vector.
7122    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7123
7124    if (IdxVal >= NumElems/2)
7125      IdxVal -= NumElems/2;
7126    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7127                       DAG.getConstant(IdxVal, MVT::i32));
7128  }
7129
7130  assert(VecVT.is128BitVector() && "Unexpected vector length");
7131
7132  if (Subtarget->hasSSE41()) {
7133    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7134    if (Res.getNode())
7135      return Res;
7136  }
7137
7138  EVT VT = Op.getValueType();
7139  DebugLoc dl = Op.getDebugLoc();
7140  // TODO: handle v16i8.
7141  if (VT.getSizeInBits() == 16) {
7142    SDValue Vec = Op.getOperand(0);
7143    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7144    if (Idx == 0)
7145      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7146                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7147                                     DAG.getNode(ISD::BITCAST, dl,
7148                                                 MVT::v4i32, Vec),
7149                                     Op.getOperand(1)));
7150    // Transform it so it match pextrw which produces a 32-bit result.
7151    EVT EltVT = MVT::i32;
7152    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7153                                  Op.getOperand(0), Op.getOperand(1));
7154    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7155                                  DAG.getValueType(VT));
7156    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7157  }
7158
7159  if (VT.getSizeInBits() == 32) {
7160    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7161    if (Idx == 0)
7162      return Op;
7163
7164    // SHUFPS the element to the lowest double word, then movss.
7165    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7166    EVT VVT = Op.getOperand(0).getValueType();
7167    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7168                                       DAG.getUNDEF(VVT), Mask);
7169    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7170                       DAG.getIntPtrConstant(0));
7171  }
7172
7173  if (VT.getSizeInBits() == 64) {
7174    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7175    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7176    //        to match extract_elt for f64.
7177    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7178    if (Idx == 0)
7179      return Op;
7180
7181    // UNPCKHPD the element to the lowest double word, then movsd.
7182    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7183    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7184    int Mask[2] = { 1, -1 };
7185    EVT VVT = Op.getOperand(0).getValueType();
7186    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7187                                       DAG.getUNDEF(VVT), Mask);
7188    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7189                       DAG.getIntPtrConstant(0));
7190  }
7191
7192  return SDValue();
7193}
7194
7195SDValue
7196X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
7197                                               SelectionDAG &DAG) const {
7198  EVT VT = Op.getValueType();
7199  EVT EltVT = VT.getVectorElementType();
7200  DebugLoc dl = Op.getDebugLoc();
7201
7202  SDValue N0 = Op.getOperand(0);
7203  SDValue N1 = Op.getOperand(1);
7204  SDValue N2 = Op.getOperand(2);
7205
7206  if (!VT.is128BitVector())
7207    return SDValue();
7208
7209  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7210      isa<ConstantSDNode>(N2)) {
7211    unsigned Opc;
7212    if (VT == MVT::v8i16)
7213      Opc = X86ISD::PINSRW;
7214    else if (VT == MVT::v16i8)
7215      Opc = X86ISD::PINSRB;
7216    else
7217      Opc = X86ISD::PINSRB;
7218
7219    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7220    // argument.
7221    if (N1.getValueType() != MVT::i32)
7222      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7223    if (N2.getValueType() != MVT::i32)
7224      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7225    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7226  }
7227
7228  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7229    // Bits [7:6] of the constant are the source select.  This will always be
7230    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7231    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7232    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7233    // Bits [5:4] of the constant are the destination select.  This is the
7234    //  value of the incoming immediate.
7235    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7236    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7237    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7238    // Create this as a scalar to vector..
7239    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7240    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7241  }
7242
7243  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7244    // PINSR* works with constant index.
7245    return Op;
7246  }
7247  return SDValue();
7248}
7249
7250SDValue
7251X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7252  EVT VT = Op.getValueType();
7253  EVT EltVT = VT.getVectorElementType();
7254
7255  DebugLoc dl = Op.getDebugLoc();
7256  SDValue N0 = Op.getOperand(0);
7257  SDValue N1 = Op.getOperand(1);
7258  SDValue N2 = Op.getOperand(2);
7259
7260  // If this is a 256-bit vector result, first extract the 128-bit vector,
7261  // insert the element into the extracted half and then place it back.
7262  if (VT.is256BitVector()) {
7263    if (!isa<ConstantSDNode>(N2))
7264      return SDValue();
7265
7266    // Get the desired 128-bit vector half.
7267    unsigned NumElems = VT.getVectorNumElements();
7268    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7269    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7270
7271    // Insert the element into the desired half.
7272    bool Upper = IdxVal >= NumElems/2;
7273    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7274                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7275
7276    // Insert the changed part back to the 256-bit vector
7277    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7278  }
7279
7280  if (Subtarget->hasSSE41())
7281    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7282
7283  if (EltVT == MVT::i8)
7284    return SDValue();
7285
7286  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7287    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7288    // as its second argument.
7289    if (N1.getValueType() != MVT::i32)
7290      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7291    if (N2.getValueType() != MVT::i32)
7292      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7293    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7294  }
7295  return SDValue();
7296}
7297
7298static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7299  LLVMContext *Context = DAG.getContext();
7300  DebugLoc dl = Op.getDebugLoc();
7301  EVT OpVT = Op.getValueType();
7302
7303  // If this is a 256-bit vector result, first insert into a 128-bit
7304  // vector and then insert into the 256-bit vector.
7305  if (!OpVT.is128BitVector()) {
7306    // Insert into a 128-bit vector.
7307    EVT VT128 = EVT::getVectorVT(*Context,
7308                                 OpVT.getVectorElementType(),
7309                                 OpVT.getVectorNumElements() / 2);
7310
7311    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7312
7313    // Insert the 128-bit vector.
7314    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7315  }
7316
7317  if (OpVT == MVT::v1i64 &&
7318      Op.getOperand(0).getValueType() == MVT::i64)
7319    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7320
7321  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7322  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7323  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7324                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7325}
7326
7327// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7328// a simple subregister reference or explicit instructions to grab
7329// upper bits of a vector.
7330static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7331                                      SelectionDAG &DAG) {
7332  if (Subtarget->hasFp256()) {
7333    DebugLoc dl = Op.getNode()->getDebugLoc();
7334    SDValue Vec = Op.getNode()->getOperand(0);
7335    SDValue Idx = Op.getNode()->getOperand(1);
7336
7337    if (Op.getNode()->getValueType(0).is128BitVector() &&
7338        Vec.getNode()->getValueType(0).is256BitVector() &&
7339        isa<ConstantSDNode>(Idx)) {
7340      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7341      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7342    }
7343  }
7344  return SDValue();
7345}
7346
7347// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7348// simple superregister reference or explicit instructions to insert
7349// the upper bits of a vector.
7350static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7351                                     SelectionDAG &DAG) {
7352  if (Subtarget->hasFp256()) {
7353    DebugLoc dl = Op.getNode()->getDebugLoc();
7354    SDValue Vec = Op.getNode()->getOperand(0);
7355    SDValue SubVec = Op.getNode()->getOperand(1);
7356    SDValue Idx = Op.getNode()->getOperand(2);
7357
7358    if (Op.getNode()->getValueType(0).is256BitVector() &&
7359        SubVec.getNode()->getValueType(0).is128BitVector() &&
7360        isa<ConstantSDNode>(Idx)) {
7361      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7362      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7363    }
7364  }
7365  return SDValue();
7366}
7367
7368// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7369// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7370// one of the above mentioned nodes. It has to be wrapped because otherwise
7371// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7372// be used to form addressing mode. These wrapped nodes will be selected
7373// into MOV32ri.
7374SDValue
7375X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7376  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7377
7378  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7379  // global base reg.
7380  unsigned char OpFlag = 0;
7381  unsigned WrapperKind = X86ISD::Wrapper;
7382  CodeModel::Model M = getTargetMachine().getCodeModel();
7383
7384  if (Subtarget->isPICStyleRIPRel() &&
7385      (M == CodeModel::Small || M == CodeModel::Kernel))
7386    WrapperKind = X86ISD::WrapperRIP;
7387  else if (Subtarget->isPICStyleGOT())
7388    OpFlag = X86II::MO_GOTOFF;
7389  else if (Subtarget->isPICStyleStubPIC())
7390    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7391
7392  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7393                                             CP->getAlignment(),
7394                                             CP->getOffset(), OpFlag);
7395  DebugLoc DL = CP->getDebugLoc();
7396  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7397  // With PIC, the address is actually $g + Offset.
7398  if (OpFlag) {
7399    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7400                         DAG.getNode(X86ISD::GlobalBaseReg,
7401                                     DebugLoc(), getPointerTy()),
7402                         Result);
7403  }
7404
7405  return Result;
7406}
7407
7408SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7409  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7410
7411  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7412  // global base reg.
7413  unsigned char OpFlag = 0;
7414  unsigned WrapperKind = X86ISD::Wrapper;
7415  CodeModel::Model M = getTargetMachine().getCodeModel();
7416
7417  if (Subtarget->isPICStyleRIPRel() &&
7418      (M == CodeModel::Small || M == CodeModel::Kernel))
7419    WrapperKind = X86ISD::WrapperRIP;
7420  else if (Subtarget->isPICStyleGOT())
7421    OpFlag = X86II::MO_GOTOFF;
7422  else if (Subtarget->isPICStyleStubPIC())
7423    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7424
7425  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7426                                          OpFlag);
7427  DebugLoc DL = JT->getDebugLoc();
7428  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7429
7430  // With PIC, the address is actually $g + Offset.
7431  if (OpFlag)
7432    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7433                         DAG.getNode(X86ISD::GlobalBaseReg,
7434                                     DebugLoc(), getPointerTy()),
7435                         Result);
7436
7437  return Result;
7438}
7439
7440SDValue
7441X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7442  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7443
7444  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7445  // global base reg.
7446  unsigned char OpFlag = 0;
7447  unsigned WrapperKind = X86ISD::Wrapper;
7448  CodeModel::Model M = getTargetMachine().getCodeModel();
7449
7450  if (Subtarget->isPICStyleRIPRel() &&
7451      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7452    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7453      OpFlag = X86II::MO_GOTPCREL;
7454    WrapperKind = X86ISD::WrapperRIP;
7455  } else if (Subtarget->isPICStyleGOT()) {
7456    OpFlag = X86II::MO_GOT;
7457  } else if (Subtarget->isPICStyleStubPIC()) {
7458    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7459  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7460    OpFlag = X86II::MO_DARWIN_NONLAZY;
7461  }
7462
7463  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7464
7465  DebugLoc DL = Op.getDebugLoc();
7466  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7467
7468  // With PIC, the address is actually $g + Offset.
7469  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7470      !Subtarget->is64Bit()) {
7471    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7472                         DAG.getNode(X86ISD::GlobalBaseReg,
7473                                     DebugLoc(), getPointerTy()),
7474                         Result);
7475  }
7476
7477  // For symbols that require a load from a stub to get the address, emit the
7478  // load.
7479  if (isGlobalStubReference(OpFlag))
7480    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7481                         MachinePointerInfo::getGOT(), false, false, false, 0);
7482
7483  return Result;
7484}
7485
7486SDValue
7487X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7488  // Create the TargetBlockAddressAddress node.
7489  unsigned char OpFlags =
7490    Subtarget->ClassifyBlockAddressReference();
7491  CodeModel::Model M = getTargetMachine().getCodeModel();
7492  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7493  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7494  DebugLoc dl = Op.getDebugLoc();
7495  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7496                                             OpFlags);
7497
7498  if (Subtarget->isPICStyleRIPRel() &&
7499      (M == CodeModel::Small || M == CodeModel::Kernel))
7500    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7501  else
7502    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7503
7504  // With PIC, the address is actually $g + Offset.
7505  if (isGlobalRelativeToPICBase(OpFlags)) {
7506    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7507                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7508                         Result);
7509  }
7510
7511  return Result;
7512}
7513
7514SDValue
7515X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7516                                      int64_t Offset,
7517                                      SelectionDAG &DAG) const {
7518  // Create the TargetGlobalAddress node, folding in the constant
7519  // offset if it is legal.
7520  unsigned char OpFlags =
7521    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7522  CodeModel::Model M = getTargetMachine().getCodeModel();
7523  SDValue Result;
7524  if (OpFlags == X86II::MO_NO_FLAG &&
7525      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7526    // A direct static reference to a global.
7527    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7528    Offset = 0;
7529  } else {
7530    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7531  }
7532
7533  if (Subtarget->isPICStyleRIPRel() &&
7534      (M == CodeModel::Small || M == CodeModel::Kernel))
7535    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7536  else
7537    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7538
7539  // With PIC, the address is actually $g + Offset.
7540  if (isGlobalRelativeToPICBase(OpFlags)) {
7541    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7542                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7543                         Result);
7544  }
7545
7546  // For globals that require a load from a stub to get the address, emit the
7547  // load.
7548  if (isGlobalStubReference(OpFlags))
7549    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7550                         MachinePointerInfo::getGOT(), false, false, false, 0);
7551
7552  // If there was a non-zero offset that we didn't fold, create an explicit
7553  // addition for it.
7554  if (Offset != 0)
7555    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7556                         DAG.getConstant(Offset, getPointerTy()));
7557
7558  return Result;
7559}
7560
7561SDValue
7562X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7563  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7564  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7565  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7566}
7567
7568static SDValue
7569GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7570           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7571           unsigned char OperandFlags, bool LocalDynamic = false) {
7572  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7573  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7574  DebugLoc dl = GA->getDebugLoc();
7575  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7576                                           GA->getValueType(0),
7577                                           GA->getOffset(),
7578                                           OperandFlags);
7579
7580  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7581                                           : X86ISD::TLSADDR;
7582
7583  if (InFlag) {
7584    SDValue Ops[] = { Chain,  TGA, *InFlag };
7585    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7586  } else {
7587    SDValue Ops[]  = { Chain, TGA };
7588    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7589  }
7590
7591  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7592  MFI->setAdjustsStack(true);
7593
7594  SDValue Flag = Chain.getValue(1);
7595  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7596}
7597
7598// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7599static SDValue
7600LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7601                                const EVT PtrVT) {
7602  SDValue InFlag;
7603  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7604  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7605                                   DAG.getNode(X86ISD::GlobalBaseReg,
7606                                               DebugLoc(), PtrVT), InFlag);
7607  InFlag = Chain.getValue(1);
7608
7609  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7610}
7611
7612// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7613static SDValue
7614LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7615                                const EVT PtrVT) {
7616  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7617                    X86::RAX, X86II::MO_TLSGD);
7618}
7619
7620static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7621                                           SelectionDAG &DAG,
7622                                           const EVT PtrVT,
7623                                           bool is64Bit) {
7624  DebugLoc dl = GA->getDebugLoc();
7625
7626  // Get the start address of the TLS block for this module.
7627  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7628      .getInfo<X86MachineFunctionInfo>();
7629  MFI->incNumLocalDynamicTLSAccesses();
7630
7631  SDValue Base;
7632  if (is64Bit) {
7633    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7634                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7635  } else {
7636    SDValue InFlag;
7637    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7638        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7639    InFlag = Chain.getValue(1);
7640    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7641                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7642  }
7643
7644  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7645  // of Base.
7646
7647  // Build x@dtpoff.
7648  unsigned char OperandFlags = X86II::MO_DTPOFF;
7649  unsigned WrapperKind = X86ISD::Wrapper;
7650  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7651                                           GA->getValueType(0),
7652                                           GA->getOffset(), OperandFlags);
7653  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7654
7655  // Add x@dtpoff with the base.
7656  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7657}
7658
7659// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7660static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7661                                   const EVT PtrVT, TLSModel::Model model,
7662                                   bool is64Bit, bool isPIC) {
7663  DebugLoc dl = GA->getDebugLoc();
7664
7665  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7666  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7667                                                         is64Bit ? 257 : 256));
7668
7669  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7670                                      DAG.getIntPtrConstant(0),
7671                                      MachinePointerInfo(Ptr),
7672                                      false, false, false, 0);
7673
7674  unsigned char OperandFlags = 0;
7675  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7676  // initialexec.
7677  unsigned WrapperKind = X86ISD::Wrapper;
7678  if (model == TLSModel::LocalExec) {
7679    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7680  } else if (model == TLSModel::InitialExec) {
7681    if (is64Bit) {
7682      OperandFlags = X86II::MO_GOTTPOFF;
7683      WrapperKind = X86ISD::WrapperRIP;
7684    } else {
7685      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7686    }
7687  } else {
7688    llvm_unreachable("Unexpected model");
7689  }
7690
7691  // emit "addl x@ntpoff,%eax" (local exec)
7692  // or "addl x@indntpoff,%eax" (initial exec)
7693  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7694  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7695                                           GA->getValueType(0),
7696                                           GA->getOffset(), OperandFlags);
7697  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7698
7699  if (model == TLSModel::InitialExec) {
7700    if (isPIC && !is64Bit) {
7701      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7702                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7703                           Offset);
7704    }
7705
7706    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7707                         MachinePointerInfo::getGOT(), false, false, false,
7708                         0);
7709  }
7710
7711  // The address of the thread local variable is the add of the thread
7712  // pointer with the offset of the variable.
7713  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7714}
7715
7716SDValue
7717X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7718
7719  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7720  const GlobalValue *GV = GA->getGlobal();
7721
7722  if (Subtarget->isTargetELF()) {
7723    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7724
7725    switch (model) {
7726      case TLSModel::GeneralDynamic:
7727        if (Subtarget->is64Bit())
7728          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7729        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7730      case TLSModel::LocalDynamic:
7731        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7732                                           Subtarget->is64Bit());
7733      case TLSModel::InitialExec:
7734      case TLSModel::LocalExec:
7735        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7736                                   Subtarget->is64Bit(),
7737                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7738    }
7739    llvm_unreachable("Unknown TLS model.");
7740  }
7741
7742  if (Subtarget->isTargetDarwin()) {
7743    // Darwin only has one model of TLS.  Lower to that.
7744    unsigned char OpFlag = 0;
7745    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7746                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7747
7748    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7749    // global base reg.
7750    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7751                  !Subtarget->is64Bit();
7752    if (PIC32)
7753      OpFlag = X86II::MO_TLVP_PIC_BASE;
7754    else
7755      OpFlag = X86II::MO_TLVP;
7756    DebugLoc DL = Op.getDebugLoc();
7757    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7758                                                GA->getValueType(0),
7759                                                GA->getOffset(), OpFlag);
7760    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7761
7762    // With PIC32, the address is actually $g + Offset.
7763    if (PIC32)
7764      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7765                           DAG.getNode(X86ISD::GlobalBaseReg,
7766                                       DebugLoc(), getPointerTy()),
7767                           Offset);
7768
7769    // Lowering the machine isd will make sure everything is in the right
7770    // location.
7771    SDValue Chain = DAG.getEntryNode();
7772    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7773    SDValue Args[] = { Chain, Offset };
7774    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7775
7776    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7777    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7778    MFI->setAdjustsStack(true);
7779
7780    // And our return value (tls address) is in the standard call return value
7781    // location.
7782    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7783    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7784                              Chain.getValue(1));
7785  }
7786
7787  if (Subtarget->isTargetWindows()) {
7788    // Just use the implicit TLS architecture
7789    // Need to generate someting similar to:
7790    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7791    //                                  ; from TEB
7792    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7793    //   mov     rcx, qword [rdx+rcx*8]
7794    //   mov     eax, .tls$:tlsvar
7795    //   [rax+rcx] contains the address
7796    // Windows 64bit: gs:0x58
7797    // Windows 32bit: fs:__tls_array
7798
7799    // If GV is an alias then use the aliasee for determining
7800    // thread-localness.
7801    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7802      GV = GA->resolveAliasedGlobal(false);
7803    DebugLoc dl = GA->getDebugLoc();
7804    SDValue Chain = DAG.getEntryNode();
7805
7806    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7807    // %gs:0x58 (64-bit).
7808    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7809                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7810                                                             256)
7811                                        : Type::getInt32PtrTy(*DAG.getContext(),
7812                                                              257));
7813
7814    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7815                                        Subtarget->is64Bit()
7816                                        ? DAG.getIntPtrConstant(0x58)
7817                                        : DAG.getExternalSymbol("_tls_array",
7818                                                                getPointerTy()),
7819                                        MachinePointerInfo(Ptr),
7820                                        false, false, false, 0);
7821
7822    // Load the _tls_index variable
7823    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7824    if (Subtarget->is64Bit())
7825      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7826                           IDX, MachinePointerInfo(), MVT::i32,
7827                           false, false, 0);
7828    else
7829      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7830                        false, false, false, 0);
7831
7832    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7833                                    getPointerTy());
7834    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7835
7836    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7837    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7838                      false, false, false, 0);
7839
7840    // Get the offset of start of .tls section
7841    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7842                                             GA->getValueType(0),
7843                                             GA->getOffset(), X86II::MO_SECREL);
7844    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7845
7846    // The address of the thread local variable is the add of the thread
7847    // pointer with the offset of the variable.
7848    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7849  }
7850
7851  llvm_unreachable("TLS not implemented for this target.");
7852}
7853
7854/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7855/// and take a 2 x i32 value to shift plus a shift amount.
7856SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7857  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7858  EVT VT = Op.getValueType();
7859  unsigned VTBits = VT.getSizeInBits();
7860  DebugLoc dl = Op.getDebugLoc();
7861  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7862  SDValue ShOpLo = Op.getOperand(0);
7863  SDValue ShOpHi = Op.getOperand(1);
7864  SDValue ShAmt  = Op.getOperand(2);
7865  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7866                                     DAG.getConstant(VTBits - 1, MVT::i8))
7867                       : DAG.getConstant(0, VT);
7868
7869  SDValue Tmp2, Tmp3;
7870  if (Op.getOpcode() == ISD::SHL_PARTS) {
7871    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7872    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7873  } else {
7874    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7875    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7876  }
7877
7878  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7879                                DAG.getConstant(VTBits, MVT::i8));
7880  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7881                             AndNode, DAG.getConstant(0, MVT::i8));
7882
7883  SDValue Hi, Lo;
7884  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7885  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7886  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7887
7888  if (Op.getOpcode() == ISD::SHL_PARTS) {
7889    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7890    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7891  } else {
7892    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7893    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7894  }
7895
7896  SDValue Ops[2] = { Lo, Hi };
7897  return DAG.getMergeValues(Ops, 2, dl);
7898}
7899
7900SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7901                                           SelectionDAG &DAG) const {
7902  EVT SrcVT = Op.getOperand(0).getValueType();
7903
7904  if (SrcVT.isVector())
7905    return SDValue();
7906
7907  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7908         "Unknown SINT_TO_FP to lower!");
7909
7910  // These are really Legal; return the operand so the caller accepts it as
7911  // Legal.
7912  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7913    return Op;
7914  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7915      Subtarget->is64Bit()) {
7916    return Op;
7917  }
7918
7919  DebugLoc dl = Op.getDebugLoc();
7920  unsigned Size = SrcVT.getSizeInBits()/8;
7921  MachineFunction &MF = DAG.getMachineFunction();
7922  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7923  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7924  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7925                               StackSlot,
7926                               MachinePointerInfo::getFixedStack(SSFI),
7927                               false, false, 0);
7928  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7929}
7930
7931SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7932                                     SDValue StackSlot,
7933                                     SelectionDAG &DAG) const {
7934  // Build the FILD
7935  DebugLoc DL = Op.getDebugLoc();
7936  SDVTList Tys;
7937  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7938  if (useSSE)
7939    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7940  else
7941    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7942
7943  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7944
7945  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7946  MachineMemOperand *MMO;
7947  if (FI) {
7948    int SSFI = FI->getIndex();
7949    MMO =
7950      DAG.getMachineFunction()
7951      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7952                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7953  } else {
7954    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7955    StackSlot = StackSlot.getOperand(1);
7956  }
7957  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7958  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7959                                           X86ISD::FILD, DL,
7960                                           Tys, Ops, array_lengthof(Ops),
7961                                           SrcVT, MMO);
7962
7963  if (useSSE) {
7964    Chain = Result.getValue(1);
7965    SDValue InFlag = Result.getValue(2);
7966
7967    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7968    // shouldn't be necessary except that RFP cannot be live across
7969    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7970    MachineFunction &MF = DAG.getMachineFunction();
7971    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7972    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7973    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7974    Tys = DAG.getVTList(MVT::Other);
7975    SDValue Ops[] = {
7976      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7977    };
7978    MachineMemOperand *MMO =
7979      DAG.getMachineFunction()
7980      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7981                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7982
7983    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7984                                    Ops, array_lengthof(Ops),
7985                                    Op.getValueType(), MMO);
7986    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7987                         MachinePointerInfo::getFixedStack(SSFI),
7988                         false, false, false, 0);
7989  }
7990
7991  return Result;
7992}
7993
7994// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7995SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7996                                               SelectionDAG &DAG) const {
7997  // This algorithm is not obvious. Here it is what we're trying to output:
7998  /*
7999     movq       %rax,  %xmm0
8000     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
8001     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
8002     #ifdef __SSE3__
8003       haddpd   %xmm0, %xmm0
8004     #else
8005       pshufd   $0x4e, %xmm0, %xmm1
8006       addpd    %xmm1, %xmm0
8007     #endif
8008  */
8009
8010  DebugLoc dl = Op.getDebugLoc();
8011  LLVMContext *Context = DAG.getContext();
8012
8013  // Build some magic constants.
8014  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8015  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8016  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8017
8018  SmallVector<Constant*,2> CV1;
8019  CV1.push_back(
8020        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
8021  CV1.push_back(
8022        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
8023  Constant *C1 = ConstantVector::get(CV1);
8024  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8025
8026  // Load the 64-bit value into an XMM register.
8027  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8028                            Op.getOperand(0));
8029  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8030                              MachinePointerInfo::getConstantPool(),
8031                              false, false, false, 16);
8032  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8033                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8034                              CLod0);
8035
8036  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8037                              MachinePointerInfo::getConstantPool(),
8038                              false, false, false, 16);
8039  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8040  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8041  SDValue Result;
8042
8043  if (Subtarget->hasSSE3()) {
8044    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8045    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8046  } else {
8047    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8048    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8049                                           S2F, 0x4E, DAG);
8050    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8051                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8052                         Sub);
8053  }
8054
8055  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8056                     DAG.getIntPtrConstant(0));
8057}
8058
8059// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8060SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8061                                               SelectionDAG &DAG) const {
8062  DebugLoc dl = Op.getDebugLoc();
8063  // FP constant to bias correct the final result.
8064  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8065                                   MVT::f64);
8066
8067  // Load the 32-bit value into an XMM register.
8068  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8069                             Op.getOperand(0));
8070
8071  // Zero out the upper parts of the register.
8072  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8073
8074  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8075                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8076                     DAG.getIntPtrConstant(0));
8077
8078  // Or the load with the bias.
8079  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8080                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8081                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8082                                                   MVT::v2f64, Load)),
8083                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8084                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8085                                                   MVT::v2f64, Bias)));
8086  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8087                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8088                   DAG.getIntPtrConstant(0));
8089
8090  // Subtract the bias.
8091  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8092
8093  // Handle final rounding.
8094  EVT DestVT = Op.getValueType();
8095
8096  if (DestVT.bitsLT(MVT::f64))
8097    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8098                       DAG.getIntPtrConstant(0));
8099  if (DestVT.bitsGT(MVT::f64))
8100    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8101
8102  // Handle final rounding.
8103  return Sub;
8104}
8105
8106SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8107                                               SelectionDAG &DAG) const {
8108  SDValue N0 = Op.getOperand(0);
8109  EVT SVT = N0.getValueType();
8110  DebugLoc dl = Op.getDebugLoc();
8111
8112  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8113          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8114         "Custom UINT_TO_FP is not supported!");
8115
8116  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, SVT.getVectorNumElements());
8117  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8118                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8119}
8120
8121SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8122                                           SelectionDAG &DAG) const {
8123  SDValue N0 = Op.getOperand(0);
8124  DebugLoc dl = Op.getDebugLoc();
8125
8126  if (Op.getValueType().isVector())
8127    return lowerUINT_TO_FP_vec(Op, DAG);
8128
8129  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8130  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8131  // the optimization here.
8132  if (DAG.SignBitIsZero(N0))
8133    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8134
8135  EVT SrcVT = N0.getValueType();
8136  EVT DstVT = Op.getValueType();
8137  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8138    return LowerUINT_TO_FP_i64(Op, DAG);
8139  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8140    return LowerUINT_TO_FP_i32(Op, DAG);
8141  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8142    return SDValue();
8143
8144  // Make a 64-bit buffer, and use it to build an FILD.
8145  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8146  if (SrcVT == MVT::i32) {
8147    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8148    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8149                                     getPointerTy(), StackSlot, WordOff);
8150    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8151                                  StackSlot, MachinePointerInfo(),
8152                                  false, false, 0);
8153    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8154                                  OffsetSlot, MachinePointerInfo(),
8155                                  false, false, 0);
8156    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8157    return Fild;
8158  }
8159
8160  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8161  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8162                               StackSlot, MachinePointerInfo(),
8163                               false, false, 0);
8164  // For i64 source, we need to add the appropriate power of 2 if the input
8165  // was negative.  This is the same as the optimization in
8166  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8167  // we must be careful to do the computation in x87 extended precision, not
8168  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8169  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8170  MachineMemOperand *MMO =
8171    DAG.getMachineFunction()
8172    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8173                          MachineMemOperand::MOLoad, 8, 8);
8174
8175  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8176  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8177  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
8178                                         MVT::i64, MMO);
8179
8180  APInt FF(32, 0x5F800000ULL);
8181
8182  // Check whether the sign bit is set.
8183  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
8184                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8185                                 ISD::SETLT);
8186
8187  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8188  SDValue FudgePtr = DAG.getConstantPool(
8189                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8190                                         getPointerTy());
8191
8192  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8193  SDValue Zero = DAG.getIntPtrConstant(0);
8194  SDValue Four = DAG.getIntPtrConstant(4);
8195  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8196                               Zero, Four);
8197  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8198
8199  // Load the value out, extending it from f32 to f80.
8200  // FIXME: Avoid the extend by constructing the right constant pool?
8201  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8202                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8203                                 MVT::f32, false, false, 4);
8204  // Extend everything to 80 bits to force it to be done on x87.
8205  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8206  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8207}
8208
8209std::pair<SDValue,SDValue> X86TargetLowering::
8210FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
8211  DebugLoc DL = Op.getDebugLoc();
8212
8213  EVT DstTy = Op.getValueType();
8214
8215  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8216    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8217    DstTy = MVT::i64;
8218  }
8219
8220  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8221         DstTy.getSimpleVT() >= MVT::i16 &&
8222         "Unknown FP_TO_INT to lower!");
8223
8224  // These are really Legal.
8225  if (DstTy == MVT::i32 &&
8226      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8227    return std::make_pair(SDValue(), SDValue());
8228  if (Subtarget->is64Bit() &&
8229      DstTy == MVT::i64 &&
8230      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8231    return std::make_pair(SDValue(), SDValue());
8232
8233  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8234  // stack slot, or into the FTOL runtime function.
8235  MachineFunction &MF = DAG.getMachineFunction();
8236  unsigned MemSize = DstTy.getSizeInBits()/8;
8237  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8238  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8239
8240  unsigned Opc;
8241  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8242    Opc = X86ISD::WIN_FTOL;
8243  else
8244    switch (DstTy.getSimpleVT().SimpleTy) {
8245    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8246    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8247    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8248    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8249    }
8250
8251  SDValue Chain = DAG.getEntryNode();
8252  SDValue Value = Op.getOperand(0);
8253  EVT TheVT = Op.getOperand(0).getValueType();
8254  // FIXME This causes a redundant load/store if the SSE-class value is already
8255  // in memory, such as if it is on the callstack.
8256  if (isScalarFPTypeInSSEReg(TheVT)) {
8257    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8258    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8259                         MachinePointerInfo::getFixedStack(SSFI),
8260                         false, false, 0);
8261    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8262    SDValue Ops[] = {
8263      Chain, StackSlot, DAG.getValueType(TheVT)
8264    };
8265
8266    MachineMemOperand *MMO =
8267      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8268                              MachineMemOperand::MOLoad, MemSize, MemSize);
8269    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8270                                    DstTy, MMO);
8271    Chain = Value.getValue(1);
8272    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8273    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8274  }
8275
8276  MachineMemOperand *MMO =
8277    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8278                            MachineMemOperand::MOStore, MemSize, MemSize);
8279
8280  if (Opc != X86ISD::WIN_FTOL) {
8281    // Build the FP_TO_INT*_IN_MEM
8282    SDValue Ops[] = { Chain, Value, StackSlot };
8283    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8284                                           Ops, 3, DstTy, MMO);
8285    return std::make_pair(FIST, StackSlot);
8286  } else {
8287    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8288      DAG.getVTList(MVT::Other, MVT::Glue),
8289      Chain, Value);
8290    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8291      MVT::i32, ftol.getValue(1));
8292    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8293      MVT::i32, eax.getValue(2));
8294    SDValue Ops[] = { eax, edx };
8295    SDValue pair = IsReplace
8296      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8297      : DAG.getMergeValues(Ops, 2, DL);
8298    return std::make_pair(pair, SDValue());
8299  }
8300}
8301
8302static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
8303                              const X86Subtarget *Subtarget) {
8304  EVT VT = Op->getValueType(0);
8305  SDValue In = Op->getOperand(0);
8306  EVT InVT = In.getValueType();
8307  DebugLoc dl = Op->getDebugLoc();
8308
8309  // Optimize vectors in AVX mode:
8310  //
8311  //   v8i16 -> v8i32
8312  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
8313  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
8314  //   Concat upper and lower parts.
8315  //
8316  //   v4i32 -> v4i64
8317  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
8318  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
8319  //   Concat upper and lower parts.
8320  //
8321
8322  if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
8323      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
8324    return SDValue();
8325
8326  if (Subtarget->hasInt256())
8327    return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
8328
8329  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
8330  SDValue Undef = DAG.getUNDEF(InVT);
8331  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
8332  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8333  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8334
8335  EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8336                             VT.getVectorNumElements()/2);
8337
8338  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
8339  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
8340
8341  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
8342}
8343
8344SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op,
8345                                           SelectionDAG &DAG) const {
8346  if (Subtarget->hasFp256()) {
8347    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8348    if (Res.getNode())
8349      return Res;
8350  }
8351
8352  return SDValue();
8353}
8354SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op,
8355                                            SelectionDAG &DAG) const {
8356  DebugLoc DL = Op.getDebugLoc();
8357  EVT VT = Op.getValueType();
8358  SDValue In = Op.getOperand(0);
8359  EVT SVT = In.getValueType();
8360
8361  if (Subtarget->hasFp256()) {
8362    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8363    if (Res.getNode())
8364      return Res;
8365  }
8366
8367  if (!VT.is256BitVector() || !SVT.is128BitVector() ||
8368      VT.getVectorNumElements() != SVT.getVectorNumElements())
8369    return SDValue();
8370
8371  assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
8372
8373  // AVX2 has better support of integer extending.
8374  if (Subtarget->hasInt256())
8375    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8376
8377  SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
8378  static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
8379  SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
8380                           DAG.getVectorShuffle(MVT::v8i16, DL, In,
8381                                                DAG.getUNDEF(MVT::v8i16),
8382                                                &Mask[0]));
8383
8384  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
8385}
8386
8387SDValue X86TargetLowering::lowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8388  DebugLoc DL = Op.getDebugLoc();
8389  EVT VT = Op.getValueType();
8390  SDValue In = Op.getOperand(0);
8391  EVT SVT = In.getValueType();
8392
8393  if ((VT == MVT::v4i32) && (SVT == MVT::v4i64)) {
8394    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
8395    if (Subtarget->hasInt256()) {
8396      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
8397      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
8398      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
8399                                ShufMask);
8400      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
8401                         DAG.getIntPtrConstant(0));
8402    }
8403
8404    // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
8405    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8406                               DAG.getIntPtrConstant(0));
8407    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8408                               DAG.getIntPtrConstant(2));
8409
8410    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8411    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8412
8413    // The PSHUFD mask:
8414    static const int ShufMask1[] = {0, 2, 0, 0};
8415    SDValue Undef = DAG.getUNDEF(VT);
8416    OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
8417    OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
8418
8419    // The MOVLHPS mask:
8420    static const int ShufMask2[] = {0, 1, 4, 5};
8421    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
8422  }
8423
8424  if ((VT == MVT::v8i16) && (SVT == MVT::v8i32)) {
8425    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
8426    if (Subtarget->hasInt256()) {
8427      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
8428
8429      SmallVector<SDValue,32> pshufbMask;
8430      for (unsigned i = 0; i < 2; ++i) {
8431        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
8432        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
8433        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
8434        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
8435        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
8436        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
8437        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
8438        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
8439        for (unsigned j = 0; j < 8; ++j)
8440          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
8441      }
8442      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
8443                               &pshufbMask[0], 32);
8444      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
8445      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
8446
8447      static const int ShufMask[] = {0,  2,  -1,  -1};
8448      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
8449                                &ShufMask[0]);
8450      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8451                       DAG.getIntPtrConstant(0));
8452      return DAG.getNode(ISD::BITCAST, DL, VT, In);
8453    }
8454
8455    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8456                               DAG.getIntPtrConstant(0));
8457
8458    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
8459                               DAG.getIntPtrConstant(4));
8460
8461    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
8462    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
8463
8464    // The PSHUFB mask:
8465    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
8466                                   -1, -1, -1, -1, -1, -1, -1, -1};
8467
8468    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
8469    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
8470    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
8471
8472    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8473    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8474
8475    // The MOVLHPS Mask:
8476    static const int ShufMask2[] = {0, 1, 4, 5};
8477    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
8478    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
8479  }
8480
8481  // Handle truncation of V256 to V128 using shuffles.
8482  if (!VT.is128BitVector() || !SVT.is256BitVector())
8483    return SDValue();
8484
8485  assert(VT.getVectorNumElements() != SVT.getVectorNumElements() &&
8486         "Invalid op");
8487  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
8488
8489  unsigned NumElems = VT.getVectorNumElements();
8490  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8491                             NumElems * 2);
8492
8493  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
8494  // Prepare truncation shuffle mask
8495  for (unsigned i = 0; i != NumElems; ++i)
8496    MaskVec[i] = i * 2;
8497  SDValue V = DAG.getVectorShuffle(NVT, DL,
8498                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
8499                                   DAG.getUNDEF(NVT), &MaskVec[0]);
8500  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
8501                     DAG.getIntPtrConstant(0));
8502}
8503
8504SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8505                                           SelectionDAG &DAG) const {
8506  if (Op.getValueType().isVector()) {
8507    if (Op.getValueType() == MVT::v8i16)
8508      return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), Op.getValueType(),
8509                         DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(),
8510                                     MVT::v8i32, Op.getOperand(0)));
8511    return SDValue();
8512  }
8513
8514  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8515    /*IsSigned=*/ true, /*IsReplace=*/ false);
8516  SDValue FIST = Vals.first, StackSlot = Vals.second;
8517  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8518  if (FIST.getNode() == 0) return Op;
8519
8520  if (StackSlot.getNode())
8521    // Load the result.
8522    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8523                       FIST, StackSlot, MachinePointerInfo(),
8524                       false, false, false, 0);
8525
8526  // The node is the result.
8527  return FIST;
8528}
8529
8530SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8531                                           SelectionDAG &DAG) const {
8532  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8533    /*IsSigned=*/ false, /*IsReplace=*/ false);
8534  SDValue FIST = Vals.first, StackSlot = Vals.second;
8535  assert(FIST.getNode() && "Unexpected failure");
8536
8537  if (StackSlot.getNode())
8538    // Load the result.
8539    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8540                       FIST, StackSlot, MachinePointerInfo(),
8541                       false, false, false, 0);
8542
8543  // The node is the result.
8544  return FIST;
8545}
8546
8547SDValue X86TargetLowering::lowerFP_EXTEND(SDValue Op,
8548                                          SelectionDAG &DAG) const {
8549  DebugLoc DL = Op.getDebugLoc();
8550  EVT VT = Op.getValueType();
8551  SDValue In = Op.getOperand(0);
8552  EVT SVT = In.getValueType();
8553
8554  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
8555
8556  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
8557                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
8558                                 In, DAG.getUNDEF(SVT)));
8559}
8560
8561SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8562  LLVMContext *Context = DAG.getContext();
8563  DebugLoc dl = Op.getDebugLoc();
8564  EVT VT = Op.getValueType();
8565  EVT EltVT = VT;
8566  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8567  if (VT.isVector()) {
8568    EltVT = VT.getVectorElementType();
8569    NumElts = VT.getVectorNumElements();
8570  }
8571  Constant *C;
8572  if (EltVT == MVT::f64)
8573    C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8574  else
8575    C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8576  C = ConstantVector::getSplat(NumElts, C);
8577  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8578  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8579  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8580                             MachinePointerInfo::getConstantPool(),
8581                             false, false, false, Alignment);
8582  if (VT.isVector()) {
8583    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8584    return DAG.getNode(ISD::BITCAST, dl, VT,
8585                       DAG.getNode(ISD::AND, dl, ANDVT,
8586                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8587                                               Op.getOperand(0)),
8588                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8589  }
8590  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8591}
8592
8593SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8594  LLVMContext *Context = DAG.getContext();
8595  DebugLoc dl = Op.getDebugLoc();
8596  EVT VT = Op.getValueType();
8597  EVT EltVT = VT;
8598  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8599  if (VT.isVector()) {
8600    EltVT = VT.getVectorElementType();
8601    NumElts = VT.getVectorNumElements();
8602  }
8603  Constant *C;
8604  if (EltVT == MVT::f64)
8605    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8606  else
8607    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8608  C = ConstantVector::getSplat(NumElts, C);
8609  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8610  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8611  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8612                             MachinePointerInfo::getConstantPool(),
8613                             false, false, false, Alignment);
8614  if (VT.isVector()) {
8615    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8616    return DAG.getNode(ISD::BITCAST, dl, VT,
8617                       DAG.getNode(ISD::XOR, dl, XORVT,
8618                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8619                                               Op.getOperand(0)),
8620                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8621  }
8622
8623  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8624}
8625
8626SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8627  LLVMContext *Context = DAG.getContext();
8628  SDValue Op0 = Op.getOperand(0);
8629  SDValue Op1 = Op.getOperand(1);
8630  DebugLoc dl = Op.getDebugLoc();
8631  EVT VT = Op.getValueType();
8632  EVT SrcVT = Op1.getValueType();
8633
8634  // If second operand is smaller, extend it first.
8635  if (SrcVT.bitsLT(VT)) {
8636    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8637    SrcVT = VT;
8638  }
8639  // And if it is bigger, shrink it first.
8640  if (SrcVT.bitsGT(VT)) {
8641    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8642    SrcVT = VT;
8643  }
8644
8645  // At this point the operands and the result should have the same
8646  // type, and that won't be f80 since that is not custom lowered.
8647
8648  // First get the sign bit of second operand.
8649  SmallVector<Constant*,4> CV;
8650  if (SrcVT == MVT::f64) {
8651    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8652    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8653  } else {
8654    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8655    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8656    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8657    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8658  }
8659  Constant *C = ConstantVector::get(CV);
8660  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8661  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8662                              MachinePointerInfo::getConstantPool(),
8663                              false, false, false, 16);
8664  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8665
8666  // Shift sign bit right or left if the two operands have different types.
8667  if (SrcVT.bitsGT(VT)) {
8668    // Op0 is MVT::f32, Op1 is MVT::f64.
8669    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8670    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8671                          DAG.getConstant(32, MVT::i32));
8672    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8673    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8674                          DAG.getIntPtrConstant(0));
8675  }
8676
8677  // Clear first operand sign bit.
8678  CV.clear();
8679  if (VT == MVT::f64) {
8680    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8681    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8682  } else {
8683    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8684    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8685    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8686    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8687  }
8688  C = ConstantVector::get(CV);
8689  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8690  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8691                              MachinePointerInfo::getConstantPool(),
8692                              false, false, false, 16);
8693  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8694
8695  // Or the value with the sign bit.
8696  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8697}
8698
8699static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8700  SDValue N0 = Op.getOperand(0);
8701  DebugLoc dl = Op.getDebugLoc();
8702  EVT VT = Op.getValueType();
8703
8704  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8705  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8706                                  DAG.getConstant(1, VT));
8707  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8708}
8709
8710// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8711//
8712SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const {
8713  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8714
8715  if (!Subtarget->hasSSE41())
8716    return SDValue();
8717
8718  if (!Op->hasOneUse())
8719    return SDValue();
8720
8721  SDNode *N = Op.getNode();
8722  DebugLoc DL = N->getDebugLoc();
8723
8724  SmallVector<SDValue, 8> Opnds;
8725  DenseMap<SDValue, unsigned> VecInMap;
8726  EVT VT = MVT::Other;
8727
8728  // Recognize a special case where a vector is casted into wide integer to
8729  // test all 0s.
8730  Opnds.push_back(N->getOperand(0));
8731  Opnds.push_back(N->getOperand(1));
8732
8733  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8734    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8735    // BFS traverse all OR'd operands.
8736    if (I->getOpcode() == ISD::OR) {
8737      Opnds.push_back(I->getOperand(0));
8738      Opnds.push_back(I->getOperand(1));
8739      // Re-evaluate the number of nodes to be traversed.
8740      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8741      continue;
8742    }
8743
8744    // Quit if a non-EXTRACT_VECTOR_ELT
8745    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8746      return SDValue();
8747
8748    // Quit if without a constant index.
8749    SDValue Idx = I->getOperand(1);
8750    if (!isa<ConstantSDNode>(Idx))
8751      return SDValue();
8752
8753    SDValue ExtractedFromVec = I->getOperand(0);
8754    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8755    if (M == VecInMap.end()) {
8756      VT = ExtractedFromVec.getValueType();
8757      // Quit if not 128/256-bit vector.
8758      if (!VT.is128BitVector() && !VT.is256BitVector())
8759        return SDValue();
8760      // Quit if not the same type.
8761      if (VecInMap.begin() != VecInMap.end() &&
8762          VT != VecInMap.begin()->first.getValueType())
8763        return SDValue();
8764      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8765    }
8766    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8767  }
8768
8769  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8770         "Not extracted from 128-/256-bit vector.");
8771
8772  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8773  SmallVector<SDValue, 8> VecIns;
8774
8775  for (DenseMap<SDValue, unsigned>::const_iterator
8776        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8777    // Quit if not all elements are used.
8778    if (I->second != FullMask)
8779      return SDValue();
8780    VecIns.push_back(I->first);
8781  }
8782
8783  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8784
8785  // Cast all vectors into TestVT for PTEST.
8786  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8787    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8788
8789  // If more than one full vectors are evaluated, OR them first before PTEST.
8790  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8791    // Each iteration will OR 2 nodes and append the result until there is only
8792    // 1 node left, i.e. the final OR'd value of all vectors.
8793    SDValue LHS = VecIns[Slot];
8794    SDValue RHS = VecIns[Slot + 1];
8795    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8796  }
8797
8798  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8799                     VecIns.back(), VecIns.back());
8800}
8801
8802/// Emit nodes that will be selected as "test Op0,Op0", or something
8803/// equivalent.
8804SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8805                                    SelectionDAG &DAG) const {
8806  DebugLoc dl = Op.getDebugLoc();
8807
8808  // CF and OF aren't always set the way we want. Determine which
8809  // of these we need.
8810  bool NeedCF = false;
8811  bool NeedOF = false;
8812  switch (X86CC) {
8813  default: break;
8814  case X86::COND_A: case X86::COND_AE:
8815  case X86::COND_B: case X86::COND_BE:
8816    NeedCF = true;
8817    break;
8818  case X86::COND_G: case X86::COND_GE:
8819  case X86::COND_L: case X86::COND_LE:
8820  case X86::COND_O: case X86::COND_NO:
8821    NeedOF = true;
8822    break;
8823  }
8824
8825  // See if we can use the EFLAGS value from the operand instead of
8826  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8827  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8828  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8829    // Emit a CMP with 0, which is the TEST pattern.
8830    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8831                       DAG.getConstant(0, Op.getValueType()));
8832
8833  unsigned Opcode = 0;
8834  unsigned NumOperands = 0;
8835
8836  // Truncate operations may prevent the merge of the SETCC instruction
8837  // and the arithmetic intruction before it. Attempt to truncate the operands
8838  // of the arithmetic instruction and use a reduced bit-width instruction.
8839  bool NeedTruncation = false;
8840  SDValue ArithOp = Op;
8841  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8842    SDValue Arith = Op->getOperand(0);
8843    // Both the trunc and the arithmetic op need to have one user each.
8844    if (Arith->hasOneUse())
8845      switch (Arith.getOpcode()) {
8846        default: break;
8847        case ISD::ADD:
8848        case ISD::SUB:
8849        case ISD::AND:
8850        case ISD::OR:
8851        case ISD::XOR: {
8852          NeedTruncation = true;
8853          ArithOp = Arith;
8854        }
8855      }
8856  }
8857
8858  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8859  // which may be the result of a CAST.  We use the variable 'Op', which is the
8860  // non-casted variable when we check for possible users.
8861  switch (ArithOp.getOpcode()) {
8862  case ISD::ADD:
8863    // Due to an isel shortcoming, be conservative if this add is likely to be
8864    // selected as part of a load-modify-store instruction. When the root node
8865    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8866    // uses of other nodes in the match, such as the ADD in this case. This
8867    // leads to the ADD being left around and reselected, with the result being
8868    // two adds in the output.  Alas, even if none our users are stores, that
8869    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8870    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8871    // climbing the DAG back to the root, and it doesn't seem to be worth the
8872    // effort.
8873    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8874         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8875      if (UI->getOpcode() != ISD::CopyToReg &&
8876          UI->getOpcode() != ISD::SETCC &&
8877          UI->getOpcode() != ISD::STORE)
8878        goto default_case;
8879
8880    if (ConstantSDNode *C =
8881        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8882      // An add of one will be selected as an INC.
8883      if (C->getAPIntValue() == 1) {
8884        Opcode = X86ISD::INC;
8885        NumOperands = 1;
8886        break;
8887      }
8888
8889      // An add of negative one (subtract of one) will be selected as a DEC.
8890      if (C->getAPIntValue().isAllOnesValue()) {
8891        Opcode = X86ISD::DEC;
8892        NumOperands = 1;
8893        break;
8894      }
8895    }
8896
8897    // Otherwise use a regular EFLAGS-setting add.
8898    Opcode = X86ISD::ADD;
8899    NumOperands = 2;
8900    break;
8901  case ISD::AND: {
8902    // If the primary and result isn't used, don't bother using X86ISD::AND,
8903    // because a TEST instruction will be better.
8904    bool NonFlagUse = false;
8905    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8906           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8907      SDNode *User = *UI;
8908      unsigned UOpNo = UI.getOperandNo();
8909      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8910        // Look pass truncate.
8911        UOpNo = User->use_begin().getOperandNo();
8912        User = *User->use_begin();
8913      }
8914
8915      if (User->getOpcode() != ISD::BRCOND &&
8916          User->getOpcode() != ISD::SETCC &&
8917          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8918        NonFlagUse = true;
8919        break;
8920      }
8921    }
8922
8923    if (!NonFlagUse)
8924      break;
8925  }
8926    // FALL THROUGH
8927  case ISD::SUB:
8928  case ISD::OR:
8929  case ISD::XOR:
8930    // Due to the ISEL shortcoming noted above, be conservative if this op is
8931    // likely to be selected as part of a load-modify-store instruction.
8932    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8933           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8934      if (UI->getOpcode() == ISD::STORE)
8935        goto default_case;
8936
8937    // Otherwise use a regular EFLAGS-setting instruction.
8938    switch (ArithOp.getOpcode()) {
8939    default: llvm_unreachable("unexpected operator!");
8940    case ISD::SUB: Opcode = X86ISD::SUB; break;
8941    case ISD::XOR: Opcode = X86ISD::XOR; break;
8942    case ISD::AND: Opcode = X86ISD::AND; break;
8943    case ISD::OR: {
8944      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
8945        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
8946        if (EFLAGS.getNode())
8947          return EFLAGS;
8948      }
8949      Opcode = X86ISD::OR;
8950      break;
8951    }
8952    }
8953
8954    NumOperands = 2;
8955    break;
8956  case X86ISD::ADD:
8957  case X86ISD::SUB:
8958  case X86ISD::INC:
8959  case X86ISD::DEC:
8960  case X86ISD::OR:
8961  case X86ISD::XOR:
8962  case X86ISD::AND:
8963    return SDValue(Op.getNode(), 1);
8964  default:
8965  default_case:
8966    break;
8967  }
8968
8969  // If we found that truncation is beneficial, perform the truncation and
8970  // update 'Op'.
8971  if (NeedTruncation) {
8972    EVT VT = Op.getValueType();
8973    SDValue WideVal = Op->getOperand(0);
8974    EVT WideVT = WideVal.getValueType();
8975    unsigned ConvertedOp = 0;
8976    // Use a target machine opcode to prevent further DAGCombine
8977    // optimizations that may separate the arithmetic operations
8978    // from the setcc node.
8979    switch (WideVal.getOpcode()) {
8980      default: break;
8981      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
8982      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
8983      case ISD::AND: ConvertedOp = X86ISD::AND; break;
8984      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
8985      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
8986    }
8987
8988    if (ConvertedOp) {
8989      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8990      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
8991        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
8992        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
8993        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
8994      }
8995    }
8996  }
8997
8998  if (Opcode == 0)
8999    // Emit a CMP with 0, which is the TEST pattern.
9000    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9001                       DAG.getConstant(0, Op.getValueType()));
9002
9003  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9004  SmallVector<SDValue, 4> Ops;
9005  for (unsigned i = 0; i != NumOperands; ++i)
9006    Ops.push_back(Op.getOperand(i));
9007
9008  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
9009  DAG.ReplaceAllUsesWith(Op, New);
9010  return SDValue(New.getNode(), 1);
9011}
9012
9013/// Emit nodes that will be selected as "cmp Op0,Op1", or something
9014/// equivalent.
9015SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
9016                                   SelectionDAG &DAG) const {
9017  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
9018    if (C->getAPIntValue() == 0)
9019      return EmitTest(Op0, X86CC, DAG);
9020
9021  DebugLoc dl = Op0.getDebugLoc();
9022  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
9023       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
9024    // Use SUB instead of CMP to enable CSE between SUB and CMP.
9025    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
9026    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
9027                              Op0, Op1);
9028    return SDValue(Sub.getNode(), 1);
9029  }
9030  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
9031}
9032
9033/// Convert a comparison if required by the subtarget.
9034SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
9035                                                 SelectionDAG &DAG) const {
9036  // If the subtarget does not support the FUCOMI instruction, floating-point
9037  // comparisons have to be converted.
9038  if (Subtarget->hasCMov() ||
9039      Cmp.getOpcode() != X86ISD::CMP ||
9040      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
9041      !Cmp.getOperand(1).getValueType().isFloatingPoint())
9042    return Cmp;
9043
9044  // The instruction selector will select an FUCOM instruction instead of
9045  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
9046  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
9047  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
9048  DebugLoc dl = Cmp.getDebugLoc();
9049  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
9050  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
9051  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
9052                            DAG.getConstant(8, MVT::i8));
9053  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
9054  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
9055}
9056
9057static bool isAllOnes(SDValue V) {
9058  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9059  return C && C->isAllOnesValue();
9060}
9061
9062/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
9063/// if it's possible.
9064SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
9065                                     DebugLoc dl, SelectionDAG &DAG) const {
9066  SDValue Op0 = And.getOperand(0);
9067  SDValue Op1 = And.getOperand(1);
9068  if (Op0.getOpcode() == ISD::TRUNCATE)
9069    Op0 = Op0.getOperand(0);
9070  if (Op1.getOpcode() == ISD::TRUNCATE)
9071    Op1 = Op1.getOperand(0);
9072
9073  SDValue LHS, RHS;
9074  if (Op1.getOpcode() == ISD::SHL)
9075    std::swap(Op0, Op1);
9076  if (Op0.getOpcode() == ISD::SHL) {
9077    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
9078      if (And00C->getZExtValue() == 1) {
9079        // If we looked past a truncate, check that it's only truncating away
9080        // known zeros.
9081        unsigned BitWidth = Op0.getValueSizeInBits();
9082        unsigned AndBitWidth = And.getValueSizeInBits();
9083        if (BitWidth > AndBitWidth) {
9084          APInt Zeros, Ones;
9085          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
9086          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
9087            return SDValue();
9088        }
9089        LHS = Op1;
9090        RHS = Op0.getOperand(1);
9091      }
9092  } else if (Op1.getOpcode() == ISD::Constant) {
9093    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
9094    uint64_t AndRHSVal = AndRHS->getZExtValue();
9095    SDValue AndLHS = Op0;
9096
9097    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
9098      LHS = AndLHS.getOperand(0);
9099      RHS = AndLHS.getOperand(1);
9100    }
9101
9102    // Use BT if the immediate can't be encoded in a TEST instruction.
9103    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
9104      LHS = AndLHS;
9105      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
9106    }
9107  }
9108
9109  if (LHS.getNode()) {
9110    // If the LHS is of the form (x ^ -1) then replace the LHS with x and flip
9111    // the condition code later.
9112    bool Invert = false;
9113    if (LHS.getOpcode() == ISD::XOR && isAllOnes(LHS.getOperand(1))) {
9114      Invert = true;
9115      LHS = LHS.getOperand(0);
9116    }
9117
9118    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
9119    // instruction.  Since the shift amount is in-range-or-undefined, we know
9120    // that doing a bittest on the i32 value is ok.  We extend to i32 because
9121    // the encoding for the i16 version is larger than the i32 version.
9122    // Also promote i16 to i32 for performance / code size reason.
9123    if (LHS.getValueType() == MVT::i8 ||
9124        LHS.getValueType() == MVT::i16)
9125      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
9126
9127    // If the operand types disagree, extend the shift amount to match.  Since
9128    // BT ignores high bits (like shifts) we can use anyextend.
9129    if (LHS.getValueType() != RHS.getValueType())
9130      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
9131
9132    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
9133    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
9134    // Flip the condition if the LHS was a not instruction
9135    if (Invert)
9136      Cond = X86::GetOppositeBranchCondition(Cond);
9137    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9138                       DAG.getConstant(Cond, MVT::i8), BT);
9139  }
9140
9141  return SDValue();
9142}
9143
9144SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
9145
9146  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
9147
9148  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
9149  SDValue Op0 = Op.getOperand(0);
9150  SDValue Op1 = Op.getOperand(1);
9151  DebugLoc dl = Op.getDebugLoc();
9152  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9153
9154  // Optimize to BT if possible.
9155  // Lower (X & (1 << N)) == 0 to BT(X, N).
9156  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
9157  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
9158  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
9159      Op1.getOpcode() == ISD::Constant &&
9160      cast<ConstantSDNode>(Op1)->isNullValue() &&
9161      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9162    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
9163    if (NewSetCC.getNode())
9164      return NewSetCC;
9165  }
9166
9167  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
9168  // these.
9169  if (Op1.getOpcode() == ISD::Constant &&
9170      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
9171       cast<ConstantSDNode>(Op1)->isNullValue()) &&
9172      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9173
9174    // If the input is a setcc, then reuse the input setcc or use a new one with
9175    // the inverted condition.
9176    if (Op0.getOpcode() == X86ISD::SETCC) {
9177      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
9178      bool Invert = (CC == ISD::SETNE) ^
9179        cast<ConstantSDNode>(Op1)->isNullValue();
9180      if (!Invert) return Op0;
9181
9182      CCode = X86::GetOppositeBranchCondition(CCode);
9183      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9184                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
9185    }
9186  }
9187
9188  bool isFP = Op1.getValueType().isFloatingPoint();
9189  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
9190  if (X86CC == X86::COND_INVALID)
9191    return SDValue();
9192
9193  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
9194  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
9195  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9196                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
9197}
9198
9199// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9200// ones, and then concatenate the result back.
9201static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9202  EVT VT = Op.getValueType();
9203
9204  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9205         "Unsupported value type for operation");
9206
9207  unsigned NumElems = VT.getVectorNumElements();
9208  DebugLoc dl = Op.getDebugLoc();
9209  SDValue CC = Op.getOperand(2);
9210
9211  // Extract the LHS vectors
9212  SDValue LHS = Op.getOperand(0);
9213  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9214  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9215
9216  // Extract the RHS vectors
9217  SDValue RHS = Op.getOperand(1);
9218  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9219  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9220
9221  // Issue the operation on the smaller types and concatenate the result back
9222  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9223  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9224  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9225                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9226                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9227}
9228
9229SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
9230  SDValue Cond;
9231  SDValue Op0 = Op.getOperand(0);
9232  SDValue Op1 = Op.getOperand(1);
9233  SDValue CC = Op.getOperand(2);
9234  EVT VT = Op.getValueType();
9235  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9236  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
9237  DebugLoc dl = Op.getDebugLoc();
9238
9239  if (isFP) {
9240#ifndef NDEBUG
9241    EVT EltVT = Op0.getValueType().getVectorElementType();
9242    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9243#endif
9244
9245    unsigned SSECC;
9246    bool Swap = false;
9247
9248    // SSE Condition code mapping:
9249    //  0 - EQ
9250    //  1 - LT
9251    //  2 - LE
9252    //  3 - UNORD
9253    //  4 - NEQ
9254    //  5 - NLT
9255    //  6 - NLE
9256    //  7 - ORD
9257    switch (SetCCOpcode) {
9258    default: llvm_unreachable("Unexpected SETCC condition");
9259    case ISD::SETOEQ:
9260    case ISD::SETEQ:  SSECC = 0; break;
9261    case ISD::SETOGT:
9262    case ISD::SETGT: Swap = true; // Fallthrough
9263    case ISD::SETLT:
9264    case ISD::SETOLT: SSECC = 1; break;
9265    case ISD::SETOGE:
9266    case ISD::SETGE: Swap = true; // Fallthrough
9267    case ISD::SETLE:
9268    case ISD::SETOLE: SSECC = 2; break;
9269    case ISD::SETUO:  SSECC = 3; break;
9270    case ISD::SETUNE:
9271    case ISD::SETNE:  SSECC = 4; break;
9272    case ISD::SETULE: Swap = true; // Fallthrough
9273    case ISD::SETUGE: SSECC = 5; break;
9274    case ISD::SETULT: Swap = true; // Fallthrough
9275    case ISD::SETUGT: SSECC = 6; break;
9276    case ISD::SETO:   SSECC = 7; break;
9277    case ISD::SETUEQ:
9278    case ISD::SETONE: SSECC = 8; break;
9279    }
9280    if (Swap)
9281      std::swap(Op0, Op1);
9282
9283    // In the two special cases we can't handle, emit two comparisons.
9284    if (SSECC == 8) {
9285      unsigned CC0, CC1;
9286      unsigned CombineOpc;
9287      if (SetCCOpcode == ISD::SETUEQ) {
9288        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9289      } else {
9290        assert(SetCCOpcode == ISD::SETONE);
9291        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9292      }
9293
9294      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9295                                 DAG.getConstant(CC0, MVT::i8));
9296      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9297                                 DAG.getConstant(CC1, MVT::i8));
9298      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9299    }
9300    // Handle all other FP comparisons here.
9301    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9302                       DAG.getConstant(SSECC, MVT::i8));
9303  }
9304
9305  // Break 256-bit integer vector compare into smaller ones.
9306  if (VT.is256BitVector() && !Subtarget->hasInt256())
9307    return Lower256IntVSETCC(Op, DAG);
9308
9309  // We are handling one of the integer comparisons here.  Since SSE only has
9310  // GT and EQ comparisons for integer, swapping operands and multiple
9311  // operations may be required for some comparisons.
9312  unsigned Opc;
9313  bool Swap = false, Invert = false, FlipSigns = false;
9314
9315  switch (SetCCOpcode) {
9316  default: llvm_unreachable("Unexpected SETCC condition");
9317  case ISD::SETNE:  Invert = true;
9318  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
9319  case ISD::SETLT:  Swap = true;
9320  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
9321  case ISD::SETGE:  Swap = true;
9322  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
9323  case ISD::SETULT: Swap = true;
9324  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
9325  case ISD::SETUGE: Swap = true;
9326  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
9327  }
9328  if (Swap)
9329    std::swap(Op0, Op1);
9330
9331  // Check that the operation in question is available (most are plain SSE2,
9332  // but PCMPGTQ and PCMPEQQ have different requirements).
9333  if (VT == MVT::v2i64) {
9334    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
9335      return SDValue();
9336    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
9337      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
9338      // pcmpeqd + pshufd + pand.
9339      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
9340
9341      // First cast everything to the right type,
9342      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9343      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9344
9345      // Do the compare.
9346      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
9347
9348      // Make sure the lower and upper halves are both all-ones.
9349      const int Mask[] = { 1, 0, 3, 2 };
9350      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
9351      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
9352
9353      if (Invert)
9354        Result = DAG.getNOT(dl, Result, MVT::v4i32);
9355
9356      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9357    }
9358  }
9359
9360  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
9361  // bits of the inputs before performing those operations.
9362  if (FlipSigns) {
9363    EVT EltVT = VT.getVectorElementType();
9364    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
9365                                      EltVT);
9366    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
9367    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
9368                                    SignBits.size());
9369    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
9370    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
9371  }
9372
9373  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
9374
9375  // If the logical-not of the result is required, perform that now.
9376  if (Invert)
9377    Result = DAG.getNOT(dl, Result, VT);
9378
9379  return Result;
9380}
9381
9382// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
9383static bool isX86LogicalCmp(SDValue Op) {
9384  unsigned Opc = Op.getNode()->getOpcode();
9385  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
9386      Opc == X86ISD::SAHF)
9387    return true;
9388  if (Op.getResNo() == 1 &&
9389      (Opc == X86ISD::ADD ||
9390       Opc == X86ISD::SUB ||
9391       Opc == X86ISD::ADC ||
9392       Opc == X86ISD::SBB ||
9393       Opc == X86ISD::SMUL ||
9394       Opc == X86ISD::UMUL ||
9395       Opc == X86ISD::INC ||
9396       Opc == X86ISD::DEC ||
9397       Opc == X86ISD::OR ||
9398       Opc == X86ISD::XOR ||
9399       Opc == X86ISD::AND))
9400    return true;
9401
9402  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9403    return true;
9404
9405  return false;
9406}
9407
9408static bool isZero(SDValue V) {
9409  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9410  return C && C->isNullValue();
9411}
9412
9413static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9414  if (V.getOpcode() != ISD::TRUNCATE)
9415    return false;
9416
9417  SDValue VOp0 = V.getOperand(0);
9418  unsigned InBits = VOp0.getValueSizeInBits();
9419  unsigned Bits = V.getValueSizeInBits();
9420  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9421}
9422
9423SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9424  bool addTest = true;
9425  SDValue Cond  = Op.getOperand(0);
9426  SDValue Op1 = Op.getOperand(1);
9427  SDValue Op2 = Op.getOperand(2);
9428  DebugLoc DL = Op.getDebugLoc();
9429  SDValue CC;
9430
9431  if (Cond.getOpcode() == ISD::SETCC) {
9432    SDValue NewCond = LowerSETCC(Cond, DAG);
9433    if (NewCond.getNode())
9434      Cond = NewCond;
9435  }
9436
9437  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9438  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9439  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9440  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9441  if (Cond.getOpcode() == X86ISD::SETCC &&
9442      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9443      isZero(Cond.getOperand(1).getOperand(1))) {
9444    SDValue Cmp = Cond.getOperand(1);
9445
9446    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9447
9448    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9449        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9450      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9451
9452      SDValue CmpOp0 = Cmp.getOperand(0);
9453      // Apply further optimizations for special cases
9454      // (select (x != 0), -1, 0) -> neg & sbb
9455      // (select (x == 0), 0, -1) -> neg & sbb
9456      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9457        if (YC->isNullValue() &&
9458            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9459          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9460          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9461                                    DAG.getConstant(0, CmpOp0.getValueType()),
9462                                    CmpOp0);
9463          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9464                                    DAG.getConstant(X86::COND_B, MVT::i8),
9465                                    SDValue(Neg.getNode(), 1));
9466          return Res;
9467        }
9468
9469      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9470                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9471      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9472
9473      SDValue Res =   // Res = 0 or -1.
9474        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9475                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9476
9477      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9478        Res = DAG.getNOT(DL, Res, Res.getValueType());
9479
9480      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9481      if (N2C == 0 || !N2C->isNullValue())
9482        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9483      return Res;
9484    }
9485  }
9486
9487  // Look past (and (setcc_carry (cmp ...)), 1).
9488  if (Cond.getOpcode() == ISD::AND &&
9489      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9490    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9491    if (C && C->getAPIntValue() == 1)
9492      Cond = Cond.getOperand(0);
9493  }
9494
9495  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9496  // setting operand in place of the X86ISD::SETCC.
9497  unsigned CondOpcode = Cond.getOpcode();
9498  if (CondOpcode == X86ISD::SETCC ||
9499      CondOpcode == X86ISD::SETCC_CARRY) {
9500    CC = Cond.getOperand(0);
9501
9502    SDValue Cmp = Cond.getOperand(1);
9503    unsigned Opc = Cmp.getOpcode();
9504    EVT VT = Op.getValueType();
9505
9506    bool IllegalFPCMov = false;
9507    if (VT.isFloatingPoint() && !VT.isVector() &&
9508        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9509      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9510
9511    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9512        Opc == X86ISD::BT) { // FIXME
9513      Cond = Cmp;
9514      addTest = false;
9515    }
9516  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9517             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9518             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9519              Cond.getOperand(0).getValueType() != MVT::i8)) {
9520    SDValue LHS = Cond.getOperand(0);
9521    SDValue RHS = Cond.getOperand(1);
9522    unsigned X86Opcode;
9523    unsigned X86Cond;
9524    SDVTList VTs;
9525    switch (CondOpcode) {
9526    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9527    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9528    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9529    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9530    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9531    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9532    default: llvm_unreachable("unexpected overflowing operator");
9533    }
9534    if (CondOpcode == ISD::UMULO)
9535      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9536                          MVT::i32);
9537    else
9538      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9539
9540    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9541
9542    if (CondOpcode == ISD::UMULO)
9543      Cond = X86Op.getValue(2);
9544    else
9545      Cond = X86Op.getValue(1);
9546
9547    CC = DAG.getConstant(X86Cond, MVT::i8);
9548    addTest = false;
9549  }
9550
9551  if (addTest) {
9552    // Look pass the truncate if the high bits are known zero.
9553    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9554        Cond = Cond.getOperand(0);
9555
9556    // We know the result of AND is compared against zero. Try to match
9557    // it to BT.
9558    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9559      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9560      if (NewSetCC.getNode()) {
9561        CC = NewSetCC.getOperand(0);
9562        Cond = NewSetCC.getOperand(1);
9563        addTest = false;
9564      }
9565    }
9566  }
9567
9568  if (addTest) {
9569    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9570    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9571  }
9572
9573  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9574  // a <  b ?  0 : -1 -> RES = setcc_carry
9575  // a >= b ? -1 :  0 -> RES = setcc_carry
9576  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9577  if (Cond.getOpcode() == X86ISD::SUB) {
9578    Cond = ConvertCmpIfNecessary(Cond, DAG);
9579    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9580
9581    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9582        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9583      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9584                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9585      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9586        return DAG.getNOT(DL, Res, Res.getValueType());
9587      return Res;
9588    }
9589  }
9590
9591  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
9592  // widen the cmov and push the truncate through. This avoids introducing a new
9593  // branch during isel and doesn't add any extensions.
9594  if (Op.getValueType() == MVT::i8 &&
9595      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
9596    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
9597    if (T1.getValueType() == T2.getValueType() &&
9598        // Blacklist CopyFromReg to avoid partial register stalls.
9599        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
9600      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
9601      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
9602      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
9603    }
9604  }
9605
9606  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9607  // condition is true.
9608  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9609  SDValue Ops[] = { Op2, Op1, CC, Cond };
9610  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9611}
9612
9613SDValue X86TargetLowering::LowerSIGN_EXTEND(SDValue Op,
9614                                            SelectionDAG &DAG) const {
9615  EVT VT = Op->getValueType(0);
9616  SDValue In = Op->getOperand(0);
9617  EVT InVT = In.getValueType();
9618  DebugLoc dl = Op->getDebugLoc();
9619
9620  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
9621      (VT != MVT::v8i32 || InVT != MVT::v8i16))
9622    return SDValue();
9623
9624  if (Subtarget->hasInt256())
9625    return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
9626
9627  // Optimize vectors in AVX mode
9628  // Sign extend  v8i16 to v8i32 and
9629  //              v4i32 to v4i64
9630  //
9631  // Divide input vector into two parts
9632  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
9633  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
9634  // concat the vectors to original VT
9635
9636  unsigned NumElems = InVT.getVectorNumElements();
9637  SDValue Undef = DAG.getUNDEF(InVT);
9638
9639  SmallVector<int,8> ShufMask1(NumElems, -1);
9640  for (unsigned i = 0; i != NumElems/2; ++i)
9641    ShufMask1[i] = i;
9642
9643  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
9644
9645  SmallVector<int,8> ShufMask2(NumElems, -1);
9646  for (unsigned i = 0; i != NumElems/2; ++i)
9647    ShufMask2[i] = i + NumElems/2;
9648
9649  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
9650
9651  EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
9652                                VT.getVectorNumElements()/2);
9653
9654  OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
9655  OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
9656
9657  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
9658}
9659
9660// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9661// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9662// from the AND / OR.
9663static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9664  Opc = Op.getOpcode();
9665  if (Opc != ISD::OR && Opc != ISD::AND)
9666    return false;
9667  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9668          Op.getOperand(0).hasOneUse() &&
9669          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9670          Op.getOperand(1).hasOneUse());
9671}
9672
9673// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9674// 1 and that the SETCC node has a single use.
9675static bool isXor1OfSetCC(SDValue Op) {
9676  if (Op.getOpcode() != ISD::XOR)
9677    return false;
9678  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9679  if (N1C && N1C->getAPIntValue() == 1) {
9680    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9681      Op.getOperand(0).hasOneUse();
9682  }
9683  return false;
9684}
9685
9686SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9687  bool addTest = true;
9688  SDValue Chain = Op.getOperand(0);
9689  SDValue Cond  = Op.getOperand(1);
9690  SDValue Dest  = Op.getOperand(2);
9691  DebugLoc dl = Op.getDebugLoc();
9692  SDValue CC;
9693  bool Inverted = false;
9694
9695  if (Cond.getOpcode() == ISD::SETCC) {
9696    // Check for setcc([su]{add,sub,mul}o == 0).
9697    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9698        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9699        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9700        Cond.getOperand(0).getResNo() == 1 &&
9701        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9702         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9703         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9704         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9705         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9706         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9707      Inverted = true;
9708      Cond = Cond.getOperand(0);
9709    } else {
9710      SDValue NewCond = LowerSETCC(Cond, DAG);
9711      if (NewCond.getNode())
9712        Cond = NewCond;
9713    }
9714  }
9715#if 0
9716  // FIXME: LowerXALUO doesn't handle these!!
9717  else if (Cond.getOpcode() == X86ISD::ADD  ||
9718           Cond.getOpcode() == X86ISD::SUB  ||
9719           Cond.getOpcode() == X86ISD::SMUL ||
9720           Cond.getOpcode() == X86ISD::UMUL)
9721    Cond = LowerXALUO(Cond, DAG);
9722#endif
9723
9724  // Look pass (and (setcc_carry (cmp ...)), 1).
9725  if (Cond.getOpcode() == ISD::AND &&
9726      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9727    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9728    if (C && C->getAPIntValue() == 1)
9729      Cond = Cond.getOperand(0);
9730  }
9731
9732  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9733  // setting operand in place of the X86ISD::SETCC.
9734  unsigned CondOpcode = Cond.getOpcode();
9735  if (CondOpcode == X86ISD::SETCC ||
9736      CondOpcode == X86ISD::SETCC_CARRY) {
9737    CC = Cond.getOperand(0);
9738
9739    SDValue Cmp = Cond.getOperand(1);
9740    unsigned Opc = Cmp.getOpcode();
9741    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9742    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9743      Cond = Cmp;
9744      addTest = false;
9745    } else {
9746      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9747      default: break;
9748      case X86::COND_O:
9749      case X86::COND_B:
9750        // These can only come from an arithmetic instruction with overflow,
9751        // e.g. SADDO, UADDO.
9752        Cond = Cond.getNode()->getOperand(1);
9753        addTest = false;
9754        break;
9755      }
9756    }
9757  }
9758  CondOpcode = Cond.getOpcode();
9759  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9760      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9761      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9762       Cond.getOperand(0).getValueType() != MVT::i8)) {
9763    SDValue LHS = Cond.getOperand(0);
9764    SDValue RHS = Cond.getOperand(1);
9765    unsigned X86Opcode;
9766    unsigned X86Cond;
9767    SDVTList VTs;
9768    switch (CondOpcode) {
9769    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9770    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9771    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9772    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9773    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9774    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9775    default: llvm_unreachable("unexpected overflowing operator");
9776    }
9777    if (Inverted)
9778      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9779    if (CondOpcode == ISD::UMULO)
9780      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9781                          MVT::i32);
9782    else
9783      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9784
9785    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9786
9787    if (CondOpcode == ISD::UMULO)
9788      Cond = X86Op.getValue(2);
9789    else
9790      Cond = X86Op.getValue(1);
9791
9792    CC = DAG.getConstant(X86Cond, MVT::i8);
9793    addTest = false;
9794  } else {
9795    unsigned CondOpc;
9796    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9797      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9798      if (CondOpc == ISD::OR) {
9799        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9800        // two branches instead of an explicit OR instruction with a
9801        // separate test.
9802        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9803            isX86LogicalCmp(Cmp)) {
9804          CC = Cond.getOperand(0).getOperand(0);
9805          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9806                              Chain, Dest, CC, Cmp);
9807          CC = Cond.getOperand(1).getOperand(0);
9808          Cond = Cmp;
9809          addTest = false;
9810        }
9811      } else { // ISD::AND
9812        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9813        // two branches instead of an explicit AND instruction with a
9814        // separate test. However, we only do this if this block doesn't
9815        // have a fall-through edge, because this requires an explicit
9816        // jmp when the condition is false.
9817        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9818            isX86LogicalCmp(Cmp) &&
9819            Op.getNode()->hasOneUse()) {
9820          X86::CondCode CCode =
9821            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9822          CCode = X86::GetOppositeBranchCondition(CCode);
9823          CC = DAG.getConstant(CCode, MVT::i8);
9824          SDNode *User = *Op.getNode()->use_begin();
9825          // Look for an unconditional branch following this conditional branch.
9826          // We need this because we need to reverse the successors in order
9827          // to implement FCMP_OEQ.
9828          if (User->getOpcode() == ISD::BR) {
9829            SDValue FalseBB = User->getOperand(1);
9830            SDNode *NewBR =
9831              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9832            assert(NewBR == User);
9833            (void)NewBR;
9834            Dest = FalseBB;
9835
9836            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9837                                Chain, Dest, CC, Cmp);
9838            X86::CondCode CCode =
9839              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9840            CCode = X86::GetOppositeBranchCondition(CCode);
9841            CC = DAG.getConstant(CCode, MVT::i8);
9842            Cond = Cmp;
9843            addTest = false;
9844          }
9845        }
9846      }
9847    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9848      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9849      // It should be transformed during dag combiner except when the condition
9850      // is set by a arithmetics with overflow node.
9851      X86::CondCode CCode =
9852        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9853      CCode = X86::GetOppositeBranchCondition(CCode);
9854      CC = DAG.getConstant(CCode, MVT::i8);
9855      Cond = Cond.getOperand(0).getOperand(1);
9856      addTest = false;
9857    } else if (Cond.getOpcode() == ISD::SETCC &&
9858               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9859      // For FCMP_OEQ, we can emit
9860      // two branches instead of an explicit AND instruction with a
9861      // separate test. However, we only do this if this block doesn't
9862      // have a fall-through edge, because this requires an explicit
9863      // jmp when the condition is false.
9864      if (Op.getNode()->hasOneUse()) {
9865        SDNode *User = *Op.getNode()->use_begin();
9866        // Look for an unconditional branch following this conditional branch.
9867        // We need this because we need to reverse the successors in order
9868        // to implement FCMP_OEQ.
9869        if (User->getOpcode() == ISD::BR) {
9870          SDValue FalseBB = User->getOperand(1);
9871          SDNode *NewBR =
9872            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9873          assert(NewBR == User);
9874          (void)NewBR;
9875          Dest = FalseBB;
9876
9877          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9878                                    Cond.getOperand(0), Cond.getOperand(1));
9879          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9880          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9881          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9882                              Chain, Dest, CC, Cmp);
9883          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9884          Cond = Cmp;
9885          addTest = false;
9886        }
9887      }
9888    } else if (Cond.getOpcode() == ISD::SETCC &&
9889               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9890      // For FCMP_UNE, we can emit
9891      // two branches instead of an explicit AND instruction with a
9892      // separate test. However, we only do this if this block doesn't
9893      // have a fall-through edge, because this requires an explicit
9894      // jmp when the condition is false.
9895      if (Op.getNode()->hasOneUse()) {
9896        SDNode *User = *Op.getNode()->use_begin();
9897        // Look for an unconditional branch following this conditional branch.
9898        // We need this because we need to reverse the successors in order
9899        // to implement FCMP_UNE.
9900        if (User->getOpcode() == ISD::BR) {
9901          SDValue FalseBB = User->getOperand(1);
9902          SDNode *NewBR =
9903            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9904          assert(NewBR == User);
9905          (void)NewBR;
9906
9907          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9908                                    Cond.getOperand(0), Cond.getOperand(1));
9909          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9910          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9911          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9912                              Chain, Dest, CC, Cmp);
9913          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9914          Cond = Cmp;
9915          addTest = false;
9916          Dest = FalseBB;
9917        }
9918      }
9919    }
9920  }
9921
9922  if (addTest) {
9923    // Look pass the truncate if the high bits are known zero.
9924    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9925        Cond = Cond.getOperand(0);
9926
9927    // We know the result of AND is compared against zero. Try to match
9928    // it to BT.
9929    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9930      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9931      if (NewSetCC.getNode()) {
9932        CC = NewSetCC.getOperand(0);
9933        Cond = NewSetCC.getOperand(1);
9934        addTest = false;
9935      }
9936    }
9937  }
9938
9939  if (addTest) {
9940    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9941    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9942  }
9943  Cond = ConvertCmpIfNecessary(Cond, DAG);
9944  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9945                     Chain, Dest, CC, Cond);
9946}
9947
9948// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9949// Calls to _alloca is needed to probe the stack when allocating more than 4k
9950// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9951// that the guard pages used by the OS virtual memory manager are allocated in
9952// correct sequence.
9953SDValue
9954X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9955                                           SelectionDAG &DAG) const {
9956  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9957          getTargetMachine().Options.EnableSegmentedStacks) &&
9958         "This should be used only on Windows targets or when segmented stacks "
9959         "are being used");
9960  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9961  DebugLoc dl = Op.getDebugLoc();
9962
9963  // Get the inputs.
9964  SDValue Chain = Op.getOperand(0);
9965  SDValue Size  = Op.getOperand(1);
9966  // FIXME: Ensure alignment here
9967
9968  bool Is64Bit = Subtarget->is64Bit();
9969  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9970
9971  if (getTargetMachine().Options.EnableSegmentedStacks) {
9972    MachineFunction &MF = DAG.getMachineFunction();
9973    MachineRegisterInfo &MRI = MF.getRegInfo();
9974
9975    if (Is64Bit) {
9976      // The 64 bit implementation of segmented stacks needs to clobber both r10
9977      // r11. This makes it impossible to use it along with nested parameters.
9978      const Function *F = MF.getFunction();
9979
9980      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9981           I != E; ++I)
9982        if (I->hasNestAttr())
9983          report_fatal_error("Cannot use segmented stacks with functions that "
9984                             "have nested arguments.");
9985    }
9986
9987    const TargetRegisterClass *AddrRegClass =
9988      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9989    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9990    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9991    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9992                                DAG.getRegister(Vreg, SPTy));
9993    SDValue Ops1[2] = { Value, Chain };
9994    return DAG.getMergeValues(Ops1, 2, dl);
9995  } else {
9996    SDValue Flag;
9997    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9998
9999    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
10000    Flag = Chain.getValue(1);
10001    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10002
10003    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
10004    Flag = Chain.getValue(1);
10005
10006    Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
10007                               SPTy).getValue(1);
10008
10009    SDValue Ops1[2] = { Chain.getValue(0), Chain };
10010    return DAG.getMergeValues(Ops1, 2, dl);
10011  }
10012}
10013
10014SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
10015  MachineFunction &MF = DAG.getMachineFunction();
10016  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
10017
10018  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10019  DebugLoc DL = Op.getDebugLoc();
10020
10021  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
10022    // vastart just stores the address of the VarArgsFrameIndex slot into the
10023    // memory location argument.
10024    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10025                                   getPointerTy());
10026    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
10027                        MachinePointerInfo(SV), false, false, 0);
10028  }
10029
10030  // __va_list_tag:
10031  //   gp_offset         (0 - 6 * 8)
10032  //   fp_offset         (48 - 48 + 8 * 16)
10033  //   overflow_arg_area (point to parameters coming in memory).
10034  //   reg_save_area
10035  SmallVector<SDValue, 8> MemOps;
10036  SDValue FIN = Op.getOperand(1);
10037  // Store gp_offset
10038  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
10039                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
10040                                               MVT::i32),
10041                               FIN, MachinePointerInfo(SV), false, false, 0);
10042  MemOps.push_back(Store);
10043
10044  // Store fp_offset
10045  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10046                    FIN, DAG.getIntPtrConstant(4));
10047  Store = DAG.getStore(Op.getOperand(0), DL,
10048                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
10049                                       MVT::i32),
10050                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
10051  MemOps.push_back(Store);
10052
10053  // Store ptr to overflow_arg_area
10054  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10055                    FIN, DAG.getIntPtrConstant(4));
10056  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10057                                    getPointerTy());
10058  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
10059                       MachinePointerInfo(SV, 8),
10060                       false, false, 0);
10061  MemOps.push_back(Store);
10062
10063  // Store ptr to reg_save_area.
10064  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10065                    FIN, DAG.getIntPtrConstant(8));
10066  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
10067                                    getPointerTy());
10068  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
10069                       MachinePointerInfo(SV, 16), false, false, 0);
10070  MemOps.push_back(Store);
10071  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
10072                     &MemOps[0], MemOps.size());
10073}
10074
10075SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
10076  assert(Subtarget->is64Bit() &&
10077         "LowerVAARG only handles 64-bit va_arg!");
10078  assert((Subtarget->isTargetLinux() ||
10079          Subtarget->isTargetDarwin()) &&
10080          "Unhandled target in LowerVAARG");
10081  assert(Op.getNode()->getNumOperands() == 4);
10082  SDValue Chain = Op.getOperand(0);
10083  SDValue SrcPtr = Op.getOperand(1);
10084  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10085  unsigned Align = Op.getConstantOperandVal(3);
10086  DebugLoc dl = Op.getDebugLoc();
10087
10088  EVT ArgVT = Op.getNode()->getValueType(0);
10089  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10090  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
10091  uint8_t ArgMode;
10092
10093  // Decide which area this value should be read from.
10094  // TODO: Implement the AMD64 ABI in its entirety. This simple
10095  // selection mechanism works only for the basic types.
10096  if (ArgVT == MVT::f80) {
10097    llvm_unreachable("va_arg for f80 not yet implemented");
10098  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
10099    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
10100  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
10101    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
10102  } else {
10103    llvm_unreachable("Unhandled argument type in LowerVAARG");
10104  }
10105
10106  if (ArgMode == 2) {
10107    // Sanity Check: Make sure using fp_offset makes sense.
10108    assert(!getTargetMachine().Options.UseSoftFloat &&
10109           !(DAG.getMachineFunction()
10110                .getFunction()->getAttributes()
10111                .hasAttribute(AttributeSet::FunctionIndex,
10112                              Attribute::NoImplicitFloat)) &&
10113           Subtarget->hasSSE1());
10114  }
10115
10116  // Insert VAARG_64 node into the DAG
10117  // VAARG_64 returns two values: Variable Argument Address, Chain
10118  SmallVector<SDValue, 11> InstOps;
10119  InstOps.push_back(Chain);
10120  InstOps.push_back(SrcPtr);
10121  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
10122  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
10123  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
10124  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
10125  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
10126                                          VTs, &InstOps[0], InstOps.size(),
10127                                          MVT::i64,
10128                                          MachinePointerInfo(SV),
10129                                          /*Align=*/0,
10130                                          /*Volatile=*/false,
10131                                          /*ReadMem=*/true,
10132                                          /*WriteMem=*/true);
10133  Chain = VAARG.getValue(1);
10134
10135  // Load the next argument and return it
10136  return DAG.getLoad(ArgVT, dl,
10137                     Chain,
10138                     VAARG,
10139                     MachinePointerInfo(),
10140                     false, false, false, 0);
10141}
10142
10143static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
10144                           SelectionDAG &DAG) {
10145  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
10146  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
10147  SDValue Chain = Op.getOperand(0);
10148  SDValue DstPtr = Op.getOperand(1);
10149  SDValue SrcPtr = Op.getOperand(2);
10150  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
10151  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10152  DebugLoc DL = Op.getDebugLoc();
10153
10154  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
10155                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
10156                       false,
10157                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
10158}
10159
10160// getTargetVShiftNOde - Handle vector element shifts where the shift amount
10161// may or may not be a constant. Takes immediate version of shift as input.
10162static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
10163                                   SDValue SrcOp, SDValue ShAmt,
10164                                   SelectionDAG &DAG) {
10165  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
10166
10167  if (isa<ConstantSDNode>(ShAmt)) {
10168    // Constant may be a TargetConstant. Use a regular constant.
10169    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10170    switch (Opc) {
10171      default: llvm_unreachable("Unknown target vector shift node");
10172      case X86ISD::VSHLI:
10173      case X86ISD::VSRLI:
10174      case X86ISD::VSRAI:
10175        return DAG.getNode(Opc, dl, VT, SrcOp,
10176                           DAG.getConstant(ShiftAmt, MVT::i32));
10177    }
10178  }
10179
10180  // Change opcode to non-immediate version
10181  switch (Opc) {
10182    default: llvm_unreachable("Unknown target vector shift node");
10183    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
10184    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
10185    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
10186  }
10187
10188  // Need to build a vector containing shift amount
10189  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
10190  SDValue ShOps[4];
10191  ShOps[0] = ShAmt;
10192  ShOps[1] = DAG.getConstant(0, MVT::i32);
10193  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
10194  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
10195
10196  // The return type has to be a 128-bit type with the same element
10197  // type as the input type.
10198  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10199  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
10200
10201  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
10202  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
10203}
10204
10205static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
10206  DebugLoc dl = Op.getDebugLoc();
10207  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10208  switch (IntNo) {
10209  default: return SDValue();    // Don't custom lower most intrinsics.
10210  // Comparison intrinsics.
10211  case Intrinsic::x86_sse_comieq_ss:
10212  case Intrinsic::x86_sse_comilt_ss:
10213  case Intrinsic::x86_sse_comile_ss:
10214  case Intrinsic::x86_sse_comigt_ss:
10215  case Intrinsic::x86_sse_comige_ss:
10216  case Intrinsic::x86_sse_comineq_ss:
10217  case Intrinsic::x86_sse_ucomieq_ss:
10218  case Intrinsic::x86_sse_ucomilt_ss:
10219  case Intrinsic::x86_sse_ucomile_ss:
10220  case Intrinsic::x86_sse_ucomigt_ss:
10221  case Intrinsic::x86_sse_ucomige_ss:
10222  case Intrinsic::x86_sse_ucomineq_ss:
10223  case Intrinsic::x86_sse2_comieq_sd:
10224  case Intrinsic::x86_sse2_comilt_sd:
10225  case Intrinsic::x86_sse2_comile_sd:
10226  case Intrinsic::x86_sse2_comigt_sd:
10227  case Intrinsic::x86_sse2_comige_sd:
10228  case Intrinsic::x86_sse2_comineq_sd:
10229  case Intrinsic::x86_sse2_ucomieq_sd:
10230  case Intrinsic::x86_sse2_ucomilt_sd:
10231  case Intrinsic::x86_sse2_ucomile_sd:
10232  case Intrinsic::x86_sse2_ucomigt_sd:
10233  case Intrinsic::x86_sse2_ucomige_sd:
10234  case Intrinsic::x86_sse2_ucomineq_sd: {
10235    unsigned Opc;
10236    ISD::CondCode CC;
10237    switch (IntNo) {
10238    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10239    case Intrinsic::x86_sse_comieq_ss:
10240    case Intrinsic::x86_sse2_comieq_sd:
10241      Opc = X86ISD::COMI;
10242      CC = ISD::SETEQ;
10243      break;
10244    case Intrinsic::x86_sse_comilt_ss:
10245    case Intrinsic::x86_sse2_comilt_sd:
10246      Opc = X86ISD::COMI;
10247      CC = ISD::SETLT;
10248      break;
10249    case Intrinsic::x86_sse_comile_ss:
10250    case Intrinsic::x86_sse2_comile_sd:
10251      Opc = X86ISD::COMI;
10252      CC = ISD::SETLE;
10253      break;
10254    case Intrinsic::x86_sse_comigt_ss:
10255    case Intrinsic::x86_sse2_comigt_sd:
10256      Opc = X86ISD::COMI;
10257      CC = ISD::SETGT;
10258      break;
10259    case Intrinsic::x86_sse_comige_ss:
10260    case Intrinsic::x86_sse2_comige_sd:
10261      Opc = X86ISD::COMI;
10262      CC = ISD::SETGE;
10263      break;
10264    case Intrinsic::x86_sse_comineq_ss:
10265    case Intrinsic::x86_sse2_comineq_sd:
10266      Opc = X86ISD::COMI;
10267      CC = ISD::SETNE;
10268      break;
10269    case Intrinsic::x86_sse_ucomieq_ss:
10270    case Intrinsic::x86_sse2_ucomieq_sd:
10271      Opc = X86ISD::UCOMI;
10272      CC = ISD::SETEQ;
10273      break;
10274    case Intrinsic::x86_sse_ucomilt_ss:
10275    case Intrinsic::x86_sse2_ucomilt_sd:
10276      Opc = X86ISD::UCOMI;
10277      CC = ISD::SETLT;
10278      break;
10279    case Intrinsic::x86_sse_ucomile_ss:
10280    case Intrinsic::x86_sse2_ucomile_sd:
10281      Opc = X86ISD::UCOMI;
10282      CC = ISD::SETLE;
10283      break;
10284    case Intrinsic::x86_sse_ucomigt_ss:
10285    case Intrinsic::x86_sse2_ucomigt_sd:
10286      Opc = X86ISD::UCOMI;
10287      CC = ISD::SETGT;
10288      break;
10289    case Intrinsic::x86_sse_ucomige_ss:
10290    case Intrinsic::x86_sse2_ucomige_sd:
10291      Opc = X86ISD::UCOMI;
10292      CC = ISD::SETGE;
10293      break;
10294    case Intrinsic::x86_sse_ucomineq_ss:
10295    case Intrinsic::x86_sse2_ucomineq_sd:
10296      Opc = X86ISD::UCOMI;
10297      CC = ISD::SETNE;
10298      break;
10299    }
10300
10301    SDValue LHS = Op.getOperand(1);
10302    SDValue RHS = Op.getOperand(2);
10303    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
10304    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
10305    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
10306    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10307                                DAG.getConstant(X86CC, MVT::i8), Cond);
10308    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10309  }
10310
10311  // Arithmetic intrinsics.
10312  case Intrinsic::x86_sse2_pmulu_dq:
10313  case Intrinsic::x86_avx2_pmulu_dq:
10314    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
10315                       Op.getOperand(1), Op.getOperand(2));
10316
10317  // SSE2/AVX2 sub with unsigned saturation intrinsics
10318  case Intrinsic::x86_sse2_psubus_b:
10319  case Intrinsic::x86_sse2_psubus_w:
10320  case Intrinsic::x86_avx2_psubus_b:
10321  case Intrinsic::x86_avx2_psubus_w:
10322    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
10323                       Op.getOperand(1), Op.getOperand(2));
10324
10325  // SSE3/AVX horizontal add/sub intrinsics
10326  case Intrinsic::x86_sse3_hadd_ps:
10327  case Intrinsic::x86_sse3_hadd_pd:
10328  case Intrinsic::x86_avx_hadd_ps_256:
10329  case Intrinsic::x86_avx_hadd_pd_256:
10330  case Intrinsic::x86_sse3_hsub_ps:
10331  case Intrinsic::x86_sse3_hsub_pd:
10332  case Intrinsic::x86_avx_hsub_ps_256:
10333  case Intrinsic::x86_avx_hsub_pd_256:
10334  case Intrinsic::x86_ssse3_phadd_w_128:
10335  case Intrinsic::x86_ssse3_phadd_d_128:
10336  case Intrinsic::x86_avx2_phadd_w:
10337  case Intrinsic::x86_avx2_phadd_d:
10338  case Intrinsic::x86_ssse3_phsub_w_128:
10339  case Intrinsic::x86_ssse3_phsub_d_128:
10340  case Intrinsic::x86_avx2_phsub_w:
10341  case Intrinsic::x86_avx2_phsub_d: {
10342    unsigned Opcode;
10343    switch (IntNo) {
10344    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10345    case Intrinsic::x86_sse3_hadd_ps:
10346    case Intrinsic::x86_sse3_hadd_pd:
10347    case Intrinsic::x86_avx_hadd_ps_256:
10348    case Intrinsic::x86_avx_hadd_pd_256:
10349      Opcode = X86ISD::FHADD;
10350      break;
10351    case Intrinsic::x86_sse3_hsub_ps:
10352    case Intrinsic::x86_sse3_hsub_pd:
10353    case Intrinsic::x86_avx_hsub_ps_256:
10354    case Intrinsic::x86_avx_hsub_pd_256:
10355      Opcode = X86ISD::FHSUB;
10356      break;
10357    case Intrinsic::x86_ssse3_phadd_w_128:
10358    case Intrinsic::x86_ssse3_phadd_d_128:
10359    case Intrinsic::x86_avx2_phadd_w:
10360    case Intrinsic::x86_avx2_phadd_d:
10361      Opcode = X86ISD::HADD;
10362      break;
10363    case Intrinsic::x86_ssse3_phsub_w_128:
10364    case Intrinsic::x86_ssse3_phsub_d_128:
10365    case Intrinsic::x86_avx2_phsub_w:
10366    case Intrinsic::x86_avx2_phsub_d:
10367      Opcode = X86ISD::HSUB;
10368      break;
10369    }
10370    return DAG.getNode(Opcode, dl, Op.getValueType(),
10371                       Op.getOperand(1), Op.getOperand(2));
10372  }
10373
10374  // SSE2/SSE41/AVX2 integer max/min intrinsics.
10375  case Intrinsic::x86_sse2_pmaxu_b:
10376  case Intrinsic::x86_sse41_pmaxuw:
10377  case Intrinsic::x86_sse41_pmaxud:
10378  case Intrinsic::x86_avx2_pmaxu_b:
10379  case Intrinsic::x86_avx2_pmaxu_w:
10380  case Intrinsic::x86_avx2_pmaxu_d:
10381  case Intrinsic::x86_sse2_pminu_b:
10382  case Intrinsic::x86_sse41_pminuw:
10383  case Intrinsic::x86_sse41_pminud:
10384  case Intrinsic::x86_avx2_pminu_b:
10385  case Intrinsic::x86_avx2_pminu_w:
10386  case Intrinsic::x86_avx2_pminu_d:
10387  case Intrinsic::x86_sse41_pmaxsb:
10388  case Intrinsic::x86_sse2_pmaxs_w:
10389  case Intrinsic::x86_sse41_pmaxsd:
10390  case Intrinsic::x86_avx2_pmaxs_b:
10391  case Intrinsic::x86_avx2_pmaxs_w:
10392  case Intrinsic::x86_avx2_pmaxs_d:
10393  case Intrinsic::x86_sse41_pminsb:
10394  case Intrinsic::x86_sse2_pmins_w:
10395  case Intrinsic::x86_sse41_pminsd:
10396  case Intrinsic::x86_avx2_pmins_b:
10397  case Intrinsic::x86_avx2_pmins_w:
10398  case Intrinsic::x86_avx2_pmins_d: {
10399    unsigned Opcode;
10400    switch (IntNo) {
10401    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10402    case Intrinsic::x86_sse2_pmaxu_b:
10403    case Intrinsic::x86_sse41_pmaxuw:
10404    case Intrinsic::x86_sse41_pmaxud:
10405    case Intrinsic::x86_avx2_pmaxu_b:
10406    case Intrinsic::x86_avx2_pmaxu_w:
10407    case Intrinsic::x86_avx2_pmaxu_d:
10408      Opcode = X86ISD::UMAX;
10409      break;
10410    case Intrinsic::x86_sse2_pminu_b:
10411    case Intrinsic::x86_sse41_pminuw:
10412    case Intrinsic::x86_sse41_pminud:
10413    case Intrinsic::x86_avx2_pminu_b:
10414    case Intrinsic::x86_avx2_pminu_w:
10415    case Intrinsic::x86_avx2_pminu_d:
10416      Opcode = X86ISD::UMIN;
10417      break;
10418    case Intrinsic::x86_sse41_pmaxsb:
10419    case Intrinsic::x86_sse2_pmaxs_w:
10420    case Intrinsic::x86_sse41_pmaxsd:
10421    case Intrinsic::x86_avx2_pmaxs_b:
10422    case Intrinsic::x86_avx2_pmaxs_w:
10423    case Intrinsic::x86_avx2_pmaxs_d:
10424      Opcode = X86ISD::SMAX;
10425      break;
10426    case Intrinsic::x86_sse41_pminsb:
10427    case Intrinsic::x86_sse2_pmins_w:
10428    case Intrinsic::x86_sse41_pminsd:
10429    case Intrinsic::x86_avx2_pmins_b:
10430    case Intrinsic::x86_avx2_pmins_w:
10431    case Intrinsic::x86_avx2_pmins_d:
10432      Opcode = X86ISD::SMIN;
10433      break;
10434    }
10435    return DAG.getNode(Opcode, dl, Op.getValueType(),
10436                       Op.getOperand(1), Op.getOperand(2));
10437  }
10438
10439  // SSE/SSE2/AVX floating point max/min intrinsics.
10440  case Intrinsic::x86_sse_max_ps:
10441  case Intrinsic::x86_sse2_max_pd:
10442  case Intrinsic::x86_avx_max_ps_256:
10443  case Intrinsic::x86_avx_max_pd_256:
10444  case Intrinsic::x86_sse_min_ps:
10445  case Intrinsic::x86_sse2_min_pd:
10446  case Intrinsic::x86_avx_min_ps_256:
10447  case Intrinsic::x86_avx_min_pd_256: {
10448    unsigned Opcode;
10449    switch (IntNo) {
10450    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10451    case Intrinsic::x86_sse_max_ps:
10452    case Intrinsic::x86_sse2_max_pd:
10453    case Intrinsic::x86_avx_max_ps_256:
10454    case Intrinsic::x86_avx_max_pd_256:
10455      Opcode = X86ISD::FMAX;
10456      break;
10457    case Intrinsic::x86_sse_min_ps:
10458    case Intrinsic::x86_sse2_min_pd:
10459    case Intrinsic::x86_avx_min_ps_256:
10460    case Intrinsic::x86_avx_min_pd_256:
10461      Opcode = X86ISD::FMIN;
10462      break;
10463    }
10464    return DAG.getNode(Opcode, dl, Op.getValueType(),
10465                       Op.getOperand(1), Op.getOperand(2));
10466  }
10467
10468  // AVX2 variable shift intrinsics
10469  case Intrinsic::x86_avx2_psllv_d:
10470  case Intrinsic::x86_avx2_psllv_q:
10471  case Intrinsic::x86_avx2_psllv_d_256:
10472  case Intrinsic::x86_avx2_psllv_q_256:
10473  case Intrinsic::x86_avx2_psrlv_d:
10474  case Intrinsic::x86_avx2_psrlv_q:
10475  case Intrinsic::x86_avx2_psrlv_d_256:
10476  case Intrinsic::x86_avx2_psrlv_q_256:
10477  case Intrinsic::x86_avx2_psrav_d:
10478  case Intrinsic::x86_avx2_psrav_d_256: {
10479    unsigned Opcode;
10480    switch (IntNo) {
10481    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10482    case Intrinsic::x86_avx2_psllv_d:
10483    case Intrinsic::x86_avx2_psllv_q:
10484    case Intrinsic::x86_avx2_psllv_d_256:
10485    case Intrinsic::x86_avx2_psllv_q_256:
10486      Opcode = ISD::SHL;
10487      break;
10488    case Intrinsic::x86_avx2_psrlv_d:
10489    case Intrinsic::x86_avx2_psrlv_q:
10490    case Intrinsic::x86_avx2_psrlv_d_256:
10491    case Intrinsic::x86_avx2_psrlv_q_256:
10492      Opcode = ISD::SRL;
10493      break;
10494    case Intrinsic::x86_avx2_psrav_d:
10495    case Intrinsic::x86_avx2_psrav_d_256:
10496      Opcode = ISD::SRA;
10497      break;
10498    }
10499    return DAG.getNode(Opcode, dl, Op.getValueType(),
10500                       Op.getOperand(1), Op.getOperand(2));
10501  }
10502
10503  case Intrinsic::x86_ssse3_pshuf_b_128:
10504  case Intrinsic::x86_avx2_pshuf_b:
10505    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
10506                       Op.getOperand(1), Op.getOperand(2));
10507
10508  case Intrinsic::x86_ssse3_psign_b_128:
10509  case Intrinsic::x86_ssse3_psign_w_128:
10510  case Intrinsic::x86_ssse3_psign_d_128:
10511  case Intrinsic::x86_avx2_psign_b:
10512  case Intrinsic::x86_avx2_psign_w:
10513  case Intrinsic::x86_avx2_psign_d:
10514    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
10515                       Op.getOperand(1), Op.getOperand(2));
10516
10517  case Intrinsic::x86_sse41_insertps:
10518    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
10519                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10520
10521  case Intrinsic::x86_avx_vperm2f128_ps_256:
10522  case Intrinsic::x86_avx_vperm2f128_pd_256:
10523  case Intrinsic::x86_avx_vperm2f128_si_256:
10524  case Intrinsic::x86_avx2_vperm2i128:
10525    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
10526                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10527
10528  case Intrinsic::x86_avx2_permd:
10529  case Intrinsic::x86_avx2_permps:
10530    // Operands intentionally swapped. Mask is last operand to intrinsic,
10531    // but second operand for node/intruction.
10532    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
10533                       Op.getOperand(2), Op.getOperand(1));
10534
10535  case Intrinsic::x86_sse_sqrt_ps:
10536  case Intrinsic::x86_sse2_sqrt_pd:
10537  case Intrinsic::x86_avx_sqrt_ps_256:
10538  case Intrinsic::x86_avx_sqrt_pd_256:
10539    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
10540
10541  // ptest and testp intrinsics. The intrinsic these come from are designed to
10542  // return an integer value, not just an instruction so lower it to the ptest
10543  // or testp pattern and a setcc for the result.
10544  case Intrinsic::x86_sse41_ptestz:
10545  case Intrinsic::x86_sse41_ptestc:
10546  case Intrinsic::x86_sse41_ptestnzc:
10547  case Intrinsic::x86_avx_ptestz_256:
10548  case Intrinsic::x86_avx_ptestc_256:
10549  case Intrinsic::x86_avx_ptestnzc_256:
10550  case Intrinsic::x86_avx_vtestz_ps:
10551  case Intrinsic::x86_avx_vtestc_ps:
10552  case Intrinsic::x86_avx_vtestnzc_ps:
10553  case Intrinsic::x86_avx_vtestz_pd:
10554  case Intrinsic::x86_avx_vtestc_pd:
10555  case Intrinsic::x86_avx_vtestnzc_pd:
10556  case Intrinsic::x86_avx_vtestz_ps_256:
10557  case Intrinsic::x86_avx_vtestc_ps_256:
10558  case Intrinsic::x86_avx_vtestnzc_ps_256:
10559  case Intrinsic::x86_avx_vtestz_pd_256:
10560  case Intrinsic::x86_avx_vtestc_pd_256:
10561  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10562    bool IsTestPacked = false;
10563    unsigned X86CC;
10564    switch (IntNo) {
10565    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10566    case Intrinsic::x86_avx_vtestz_ps:
10567    case Intrinsic::x86_avx_vtestz_pd:
10568    case Intrinsic::x86_avx_vtestz_ps_256:
10569    case Intrinsic::x86_avx_vtestz_pd_256:
10570      IsTestPacked = true; // Fallthrough
10571    case Intrinsic::x86_sse41_ptestz:
10572    case Intrinsic::x86_avx_ptestz_256:
10573      // ZF = 1
10574      X86CC = X86::COND_E;
10575      break;
10576    case Intrinsic::x86_avx_vtestc_ps:
10577    case Intrinsic::x86_avx_vtestc_pd:
10578    case Intrinsic::x86_avx_vtestc_ps_256:
10579    case Intrinsic::x86_avx_vtestc_pd_256:
10580      IsTestPacked = true; // Fallthrough
10581    case Intrinsic::x86_sse41_ptestc:
10582    case Intrinsic::x86_avx_ptestc_256:
10583      // CF = 1
10584      X86CC = X86::COND_B;
10585      break;
10586    case Intrinsic::x86_avx_vtestnzc_ps:
10587    case Intrinsic::x86_avx_vtestnzc_pd:
10588    case Intrinsic::x86_avx_vtestnzc_ps_256:
10589    case Intrinsic::x86_avx_vtestnzc_pd_256:
10590      IsTestPacked = true; // Fallthrough
10591    case Intrinsic::x86_sse41_ptestnzc:
10592    case Intrinsic::x86_avx_ptestnzc_256:
10593      // ZF and CF = 0
10594      X86CC = X86::COND_A;
10595      break;
10596    }
10597
10598    SDValue LHS = Op.getOperand(1);
10599    SDValue RHS = Op.getOperand(2);
10600    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10601    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10602    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10603    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10604    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10605  }
10606
10607  // SSE/AVX shift intrinsics
10608  case Intrinsic::x86_sse2_psll_w:
10609  case Intrinsic::x86_sse2_psll_d:
10610  case Intrinsic::x86_sse2_psll_q:
10611  case Intrinsic::x86_avx2_psll_w:
10612  case Intrinsic::x86_avx2_psll_d:
10613  case Intrinsic::x86_avx2_psll_q:
10614  case Intrinsic::x86_sse2_psrl_w:
10615  case Intrinsic::x86_sse2_psrl_d:
10616  case Intrinsic::x86_sse2_psrl_q:
10617  case Intrinsic::x86_avx2_psrl_w:
10618  case Intrinsic::x86_avx2_psrl_d:
10619  case Intrinsic::x86_avx2_psrl_q:
10620  case Intrinsic::x86_sse2_psra_w:
10621  case Intrinsic::x86_sse2_psra_d:
10622  case Intrinsic::x86_avx2_psra_w:
10623  case Intrinsic::x86_avx2_psra_d: {
10624    unsigned Opcode;
10625    switch (IntNo) {
10626    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10627    case Intrinsic::x86_sse2_psll_w:
10628    case Intrinsic::x86_sse2_psll_d:
10629    case Intrinsic::x86_sse2_psll_q:
10630    case Intrinsic::x86_avx2_psll_w:
10631    case Intrinsic::x86_avx2_psll_d:
10632    case Intrinsic::x86_avx2_psll_q:
10633      Opcode = X86ISD::VSHL;
10634      break;
10635    case Intrinsic::x86_sse2_psrl_w:
10636    case Intrinsic::x86_sse2_psrl_d:
10637    case Intrinsic::x86_sse2_psrl_q:
10638    case Intrinsic::x86_avx2_psrl_w:
10639    case Intrinsic::x86_avx2_psrl_d:
10640    case Intrinsic::x86_avx2_psrl_q:
10641      Opcode = X86ISD::VSRL;
10642      break;
10643    case Intrinsic::x86_sse2_psra_w:
10644    case Intrinsic::x86_sse2_psra_d:
10645    case Intrinsic::x86_avx2_psra_w:
10646    case Intrinsic::x86_avx2_psra_d:
10647      Opcode = X86ISD::VSRA;
10648      break;
10649    }
10650    return DAG.getNode(Opcode, dl, Op.getValueType(),
10651                       Op.getOperand(1), Op.getOperand(2));
10652  }
10653
10654  // SSE/AVX immediate shift intrinsics
10655  case Intrinsic::x86_sse2_pslli_w:
10656  case Intrinsic::x86_sse2_pslli_d:
10657  case Intrinsic::x86_sse2_pslli_q:
10658  case Intrinsic::x86_avx2_pslli_w:
10659  case Intrinsic::x86_avx2_pslli_d:
10660  case Intrinsic::x86_avx2_pslli_q:
10661  case Intrinsic::x86_sse2_psrli_w:
10662  case Intrinsic::x86_sse2_psrli_d:
10663  case Intrinsic::x86_sse2_psrli_q:
10664  case Intrinsic::x86_avx2_psrli_w:
10665  case Intrinsic::x86_avx2_psrli_d:
10666  case Intrinsic::x86_avx2_psrli_q:
10667  case Intrinsic::x86_sse2_psrai_w:
10668  case Intrinsic::x86_sse2_psrai_d:
10669  case Intrinsic::x86_avx2_psrai_w:
10670  case Intrinsic::x86_avx2_psrai_d: {
10671    unsigned Opcode;
10672    switch (IntNo) {
10673    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10674    case Intrinsic::x86_sse2_pslli_w:
10675    case Intrinsic::x86_sse2_pslli_d:
10676    case Intrinsic::x86_sse2_pslli_q:
10677    case Intrinsic::x86_avx2_pslli_w:
10678    case Intrinsic::x86_avx2_pslli_d:
10679    case Intrinsic::x86_avx2_pslli_q:
10680      Opcode = X86ISD::VSHLI;
10681      break;
10682    case Intrinsic::x86_sse2_psrli_w:
10683    case Intrinsic::x86_sse2_psrli_d:
10684    case Intrinsic::x86_sse2_psrli_q:
10685    case Intrinsic::x86_avx2_psrli_w:
10686    case Intrinsic::x86_avx2_psrli_d:
10687    case Intrinsic::x86_avx2_psrli_q:
10688      Opcode = X86ISD::VSRLI;
10689      break;
10690    case Intrinsic::x86_sse2_psrai_w:
10691    case Intrinsic::x86_sse2_psrai_d:
10692    case Intrinsic::x86_avx2_psrai_w:
10693    case Intrinsic::x86_avx2_psrai_d:
10694      Opcode = X86ISD::VSRAI;
10695      break;
10696    }
10697    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10698                               Op.getOperand(1), Op.getOperand(2), DAG);
10699  }
10700
10701  case Intrinsic::x86_sse42_pcmpistria128:
10702  case Intrinsic::x86_sse42_pcmpestria128:
10703  case Intrinsic::x86_sse42_pcmpistric128:
10704  case Intrinsic::x86_sse42_pcmpestric128:
10705  case Intrinsic::x86_sse42_pcmpistrio128:
10706  case Intrinsic::x86_sse42_pcmpestrio128:
10707  case Intrinsic::x86_sse42_pcmpistris128:
10708  case Intrinsic::x86_sse42_pcmpestris128:
10709  case Intrinsic::x86_sse42_pcmpistriz128:
10710  case Intrinsic::x86_sse42_pcmpestriz128: {
10711    unsigned Opcode;
10712    unsigned X86CC;
10713    switch (IntNo) {
10714    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10715    case Intrinsic::x86_sse42_pcmpistria128:
10716      Opcode = X86ISD::PCMPISTRI;
10717      X86CC = X86::COND_A;
10718      break;
10719    case Intrinsic::x86_sse42_pcmpestria128:
10720      Opcode = X86ISD::PCMPESTRI;
10721      X86CC = X86::COND_A;
10722      break;
10723    case Intrinsic::x86_sse42_pcmpistric128:
10724      Opcode = X86ISD::PCMPISTRI;
10725      X86CC = X86::COND_B;
10726      break;
10727    case Intrinsic::x86_sse42_pcmpestric128:
10728      Opcode = X86ISD::PCMPESTRI;
10729      X86CC = X86::COND_B;
10730      break;
10731    case Intrinsic::x86_sse42_pcmpistrio128:
10732      Opcode = X86ISD::PCMPISTRI;
10733      X86CC = X86::COND_O;
10734      break;
10735    case Intrinsic::x86_sse42_pcmpestrio128:
10736      Opcode = X86ISD::PCMPESTRI;
10737      X86CC = X86::COND_O;
10738      break;
10739    case Intrinsic::x86_sse42_pcmpistris128:
10740      Opcode = X86ISD::PCMPISTRI;
10741      X86CC = X86::COND_S;
10742      break;
10743    case Intrinsic::x86_sse42_pcmpestris128:
10744      Opcode = X86ISD::PCMPESTRI;
10745      X86CC = X86::COND_S;
10746      break;
10747    case Intrinsic::x86_sse42_pcmpistriz128:
10748      Opcode = X86ISD::PCMPISTRI;
10749      X86CC = X86::COND_E;
10750      break;
10751    case Intrinsic::x86_sse42_pcmpestriz128:
10752      Opcode = X86ISD::PCMPESTRI;
10753      X86CC = X86::COND_E;
10754      break;
10755    }
10756    SmallVector<SDValue, 5> NewOps;
10757    NewOps.append(Op->op_begin()+1, Op->op_end());
10758    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10759    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10760    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10761                                DAG.getConstant(X86CC, MVT::i8),
10762                                SDValue(PCMP.getNode(), 1));
10763    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10764  }
10765
10766  case Intrinsic::x86_sse42_pcmpistri128:
10767  case Intrinsic::x86_sse42_pcmpestri128: {
10768    unsigned Opcode;
10769    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10770      Opcode = X86ISD::PCMPISTRI;
10771    else
10772      Opcode = X86ISD::PCMPESTRI;
10773
10774    SmallVector<SDValue, 5> NewOps;
10775    NewOps.append(Op->op_begin()+1, Op->op_end());
10776    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10777    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10778  }
10779  case Intrinsic::x86_fma_vfmadd_ps:
10780  case Intrinsic::x86_fma_vfmadd_pd:
10781  case Intrinsic::x86_fma_vfmsub_ps:
10782  case Intrinsic::x86_fma_vfmsub_pd:
10783  case Intrinsic::x86_fma_vfnmadd_ps:
10784  case Intrinsic::x86_fma_vfnmadd_pd:
10785  case Intrinsic::x86_fma_vfnmsub_ps:
10786  case Intrinsic::x86_fma_vfnmsub_pd:
10787  case Intrinsic::x86_fma_vfmaddsub_ps:
10788  case Intrinsic::x86_fma_vfmaddsub_pd:
10789  case Intrinsic::x86_fma_vfmsubadd_ps:
10790  case Intrinsic::x86_fma_vfmsubadd_pd:
10791  case Intrinsic::x86_fma_vfmadd_ps_256:
10792  case Intrinsic::x86_fma_vfmadd_pd_256:
10793  case Intrinsic::x86_fma_vfmsub_ps_256:
10794  case Intrinsic::x86_fma_vfmsub_pd_256:
10795  case Intrinsic::x86_fma_vfnmadd_ps_256:
10796  case Intrinsic::x86_fma_vfnmadd_pd_256:
10797  case Intrinsic::x86_fma_vfnmsub_ps_256:
10798  case Intrinsic::x86_fma_vfnmsub_pd_256:
10799  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10800  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10801  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10802  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10803    unsigned Opc;
10804    switch (IntNo) {
10805    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10806    case Intrinsic::x86_fma_vfmadd_ps:
10807    case Intrinsic::x86_fma_vfmadd_pd:
10808    case Intrinsic::x86_fma_vfmadd_ps_256:
10809    case Intrinsic::x86_fma_vfmadd_pd_256:
10810      Opc = X86ISD::FMADD;
10811      break;
10812    case Intrinsic::x86_fma_vfmsub_ps:
10813    case Intrinsic::x86_fma_vfmsub_pd:
10814    case Intrinsic::x86_fma_vfmsub_ps_256:
10815    case Intrinsic::x86_fma_vfmsub_pd_256:
10816      Opc = X86ISD::FMSUB;
10817      break;
10818    case Intrinsic::x86_fma_vfnmadd_ps:
10819    case Intrinsic::x86_fma_vfnmadd_pd:
10820    case Intrinsic::x86_fma_vfnmadd_ps_256:
10821    case Intrinsic::x86_fma_vfnmadd_pd_256:
10822      Opc = X86ISD::FNMADD;
10823      break;
10824    case Intrinsic::x86_fma_vfnmsub_ps:
10825    case Intrinsic::x86_fma_vfnmsub_pd:
10826    case Intrinsic::x86_fma_vfnmsub_ps_256:
10827    case Intrinsic::x86_fma_vfnmsub_pd_256:
10828      Opc = X86ISD::FNMSUB;
10829      break;
10830    case Intrinsic::x86_fma_vfmaddsub_ps:
10831    case Intrinsic::x86_fma_vfmaddsub_pd:
10832    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10833    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10834      Opc = X86ISD::FMADDSUB;
10835      break;
10836    case Intrinsic::x86_fma_vfmsubadd_ps:
10837    case Intrinsic::x86_fma_vfmsubadd_pd:
10838    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10839    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10840      Opc = X86ISD::FMSUBADD;
10841      break;
10842    }
10843
10844    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10845                       Op.getOperand(2), Op.getOperand(3));
10846  }
10847  }
10848}
10849
10850static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10851  DebugLoc dl = Op.getDebugLoc();
10852  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10853  switch (IntNo) {
10854  default: return SDValue();    // Don't custom lower most intrinsics.
10855
10856  // RDRAND intrinsics.
10857  case Intrinsic::x86_rdrand_16:
10858  case Intrinsic::x86_rdrand_32:
10859  case Intrinsic::x86_rdrand_64: {
10860    // Emit the node with the right value type.
10861    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10862    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10863
10864    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10865    // return the value from Rand, which is always 0, casted to i32.
10866    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10867                      DAG.getConstant(1, Op->getValueType(1)),
10868                      DAG.getConstant(X86::COND_B, MVT::i32),
10869                      SDValue(Result.getNode(), 1) };
10870    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10871                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10872                                  Ops, 4);
10873
10874    // Return { result, isValid, chain }.
10875    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10876                       SDValue(Result.getNode(), 2));
10877  }
10878  }
10879}
10880
10881SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10882                                           SelectionDAG &DAG) const {
10883  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10884  MFI->setReturnAddressIsTaken(true);
10885
10886  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10887  DebugLoc dl = Op.getDebugLoc();
10888  EVT PtrVT = getPointerTy();
10889
10890  if (Depth > 0) {
10891    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10892    SDValue Offset =
10893      DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
10894    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10895                       DAG.getNode(ISD::ADD, dl, PtrVT,
10896                                   FrameAddr, Offset),
10897                       MachinePointerInfo(), false, false, false, 0);
10898  }
10899
10900  // Just load the return address.
10901  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10902  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10903                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10904}
10905
10906SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10907  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10908  MFI->setFrameAddressIsTaken(true);
10909
10910  EVT VT = Op.getValueType();
10911  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10912  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10913  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10914  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10915  while (Depth--)
10916    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10917                            MachinePointerInfo(),
10918                            false, false, false, 0);
10919  return FrameAddr;
10920}
10921
10922SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10923                                                     SelectionDAG &DAG) const {
10924  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
10925}
10926
10927SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10928  SDValue Chain     = Op.getOperand(0);
10929  SDValue Offset    = Op.getOperand(1);
10930  SDValue Handler   = Op.getOperand(2);
10931  DebugLoc dl       = Op.getDebugLoc();
10932
10933  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
10934                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
10935                                     getPointerTy());
10936  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
10937
10938  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
10939                                  DAG.getIntPtrConstant(RegInfo->getSlotSize()));
10940  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
10941  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
10942                       false, false, 0);
10943  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
10944
10945  return DAG.getNode(X86ISD::EH_RETURN, dl,
10946                     MVT::Other,
10947                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
10948}
10949
10950SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
10951                                               SelectionDAG &DAG) const {
10952  DebugLoc DL = Op.getDebugLoc();
10953  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
10954                     DAG.getVTList(MVT::i32, MVT::Other),
10955                     Op.getOperand(0), Op.getOperand(1));
10956}
10957
10958SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
10959                                                SelectionDAG &DAG) const {
10960  DebugLoc DL = Op.getDebugLoc();
10961  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
10962                     Op.getOperand(0), Op.getOperand(1));
10963}
10964
10965static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
10966  return Op.getOperand(0);
10967}
10968
10969SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
10970                                                SelectionDAG &DAG) const {
10971  SDValue Root = Op.getOperand(0);
10972  SDValue Trmp = Op.getOperand(1); // trampoline
10973  SDValue FPtr = Op.getOperand(2); // nested function
10974  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
10975  DebugLoc dl  = Op.getDebugLoc();
10976
10977  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10978  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
10979
10980  if (Subtarget->is64Bit()) {
10981    SDValue OutChains[6];
10982
10983    // Large code-model.
10984    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
10985    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
10986
10987    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
10988    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
10989
10990    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
10991
10992    // Load the pointer to the nested function into R11.
10993    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
10994    SDValue Addr = Trmp;
10995    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10996                                Addr, MachinePointerInfo(TrmpAddr),
10997                                false, false, 0);
10998
10999    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11000                       DAG.getConstant(2, MVT::i64));
11001    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
11002                                MachinePointerInfo(TrmpAddr, 2),
11003                                false, false, 2);
11004
11005    // Load the 'nest' parameter value into R10.
11006    // R10 is specified in X86CallingConv.td
11007    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
11008    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11009                       DAG.getConstant(10, MVT::i64));
11010    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11011                                Addr, MachinePointerInfo(TrmpAddr, 10),
11012                                false, false, 0);
11013
11014    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11015                       DAG.getConstant(12, MVT::i64));
11016    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
11017                                MachinePointerInfo(TrmpAddr, 12),
11018                                false, false, 2);
11019
11020    // Jump to the nested function.
11021    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
11022    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11023                       DAG.getConstant(20, MVT::i64));
11024    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11025                                Addr, MachinePointerInfo(TrmpAddr, 20),
11026                                false, false, 0);
11027
11028    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
11029    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11030                       DAG.getConstant(22, MVT::i64));
11031    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
11032                                MachinePointerInfo(TrmpAddr, 22),
11033                                false, false, 0);
11034
11035    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
11036  } else {
11037    const Function *Func =
11038      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
11039    CallingConv::ID CC = Func->getCallingConv();
11040    unsigned NestReg;
11041
11042    switch (CC) {
11043    default:
11044      llvm_unreachable("Unsupported calling convention");
11045    case CallingConv::C:
11046    case CallingConv::X86_StdCall: {
11047      // Pass 'nest' parameter in ECX.
11048      // Must be kept in sync with X86CallingConv.td
11049      NestReg = X86::ECX;
11050
11051      // Check that ECX wasn't needed by an 'inreg' parameter.
11052      FunctionType *FTy = Func->getFunctionType();
11053      const AttributeSet &Attrs = Func->getAttributes();
11054
11055      if (!Attrs.isEmpty() && !Func->isVarArg()) {
11056        unsigned InRegCount = 0;
11057        unsigned Idx = 1;
11058
11059        for (FunctionType::param_iterator I = FTy->param_begin(),
11060             E = FTy->param_end(); I != E; ++I, ++Idx)
11061          if (Attrs.hasAttribute(Idx, Attribute::InReg))
11062            // FIXME: should only count parameters that are lowered to integers.
11063            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
11064
11065        if (InRegCount > 2) {
11066          report_fatal_error("Nest register in use - reduce number of inreg"
11067                             " parameters!");
11068        }
11069      }
11070      break;
11071    }
11072    case CallingConv::X86_FastCall:
11073    case CallingConv::X86_ThisCall:
11074    case CallingConv::Fast:
11075      // Pass 'nest' parameter in EAX.
11076      // Must be kept in sync with X86CallingConv.td
11077      NestReg = X86::EAX;
11078      break;
11079    }
11080
11081    SDValue OutChains[4];
11082    SDValue Addr, Disp;
11083
11084    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11085                       DAG.getConstant(10, MVT::i32));
11086    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
11087
11088    // This is storing the opcode for MOV32ri.
11089    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
11090    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
11091    OutChains[0] = DAG.getStore(Root, dl,
11092                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
11093                                Trmp, MachinePointerInfo(TrmpAddr),
11094                                false, false, 0);
11095
11096    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11097                       DAG.getConstant(1, MVT::i32));
11098    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
11099                                MachinePointerInfo(TrmpAddr, 1),
11100                                false, false, 1);
11101
11102    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
11103    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11104                       DAG.getConstant(5, MVT::i32));
11105    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
11106                                MachinePointerInfo(TrmpAddr, 5),
11107                                false, false, 1);
11108
11109    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11110                       DAG.getConstant(6, MVT::i32));
11111    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
11112                                MachinePointerInfo(TrmpAddr, 6),
11113                                false, false, 1);
11114
11115    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
11116  }
11117}
11118
11119SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
11120                                            SelectionDAG &DAG) const {
11121  /*
11122   The rounding mode is in bits 11:10 of FPSR, and has the following
11123   settings:
11124     00 Round to nearest
11125     01 Round to -inf
11126     10 Round to +inf
11127     11 Round to 0
11128
11129  FLT_ROUNDS, on the other hand, expects the following:
11130    -1 Undefined
11131     0 Round to 0
11132     1 Round to nearest
11133     2 Round to +inf
11134     3 Round to -inf
11135
11136  To perform the conversion, we do:
11137    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
11138  */
11139
11140  MachineFunction &MF = DAG.getMachineFunction();
11141  const TargetMachine &TM = MF.getTarget();
11142  const TargetFrameLowering &TFI = *TM.getFrameLowering();
11143  unsigned StackAlignment = TFI.getStackAlignment();
11144  EVT VT = Op.getValueType();
11145  DebugLoc DL = Op.getDebugLoc();
11146
11147  // Save FP Control Word to stack slot
11148  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
11149  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11150
11151  MachineMemOperand *MMO =
11152   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11153                           MachineMemOperand::MOStore, 2, 2);
11154
11155  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
11156  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
11157                                          DAG.getVTList(MVT::Other),
11158                                          Ops, 2, MVT::i16, MMO);
11159
11160  // Load FP Control Word from stack slot
11161  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
11162                            MachinePointerInfo(), false, false, false, 0);
11163
11164  // Transform as necessary
11165  SDValue CWD1 =
11166    DAG.getNode(ISD::SRL, DL, MVT::i16,
11167                DAG.getNode(ISD::AND, DL, MVT::i16,
11168                            CWD, DAG.getConstant(0x800, MVT::i16)),
11169                DAG.getConstant(11, MVT::i8));
11170  SDValue CWD2 =
11171    DAG.getNode(ISD::SRL, DL, MVT::i16,
11172                DAG.getNode(ISD::AND, DL, MVT::i16,
11173                            CWD, DAG.getConstant(0x400, MVT::i16)),
11174                DAG.getConstant(9, MVT::i8));
11175
11176  SDValue RetVal =
11177    DAG.getNode(ISD::AND, DL, MVT::i16,
11178                DAG.getNode(ISD::ADD, DL, MVT::i16,
11179                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
11180                            DAG.getConstant(1, MVT::i16)),
11181                DAG.getConstant(3, MVT::i16));
11182
11183  return DAG.getNode((VT.getSizeInBits() < 16 ?
11184                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
11185}
11186
11187static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
11188  EVT VT = Op.getValueType();
11189  EVT OpVT = VT;
11190  unsigned NumBits = VT.getSizeInBits();
11191  DebugLoc dl = Op.getDebugLoc();
11192
11193  Op = Op.getOperand(0);
11194  if (VT == MVT::i8) {
11195    // Zero extend to i32 since there is not an i8 bsr.
11196    OpVT = MVT::i32;
11197    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11198  }
11199
11200  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
11201  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11202  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11203
11204  // If src is zero (i.e. bsr sets ZF), returns NumBits.
11205  SDValue Ops[] = {
11206    Op,
11207    DAG.getConstant(NumBits+NumBits-1, OpVT),
11208    DAG.getConstant(X86::COND_E, MVT::i8),
11209    Op.getValue(1)
11210  };
11211  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
11212
11213  // Finally xor with NumBits-1.
11214  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11215
11216  if (VT == MVT::i8)
11217    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11218  return Op;
11219}
11220
11221static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
11222  EVT VT = Op.getValueType();
11223  EVT OpVT = VT;
11224  unsigned NumBits = VT.getSizeInBits();
11225  DebugLoc dl = Op.getDebugLoc();
11226
11227  Op = Op.getOperand(0);
11228  if (VT == MVT::i8) {
11229    // Zero extend to i32 since there is not an i8 bsr.
11230    OpVT = MVT::i32;
11231    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
11232  }
11233
11234  // Issue a bsr (scan bits in reverse).
11235  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
11236  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
11237
11238  // And xor with NumBits-1.
11239  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
11240
11241  if (VT == MVT::i8)
11242    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
11243  return Op;
11244}
11245
11246static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
11247  EVT VT = Op.getValueType();
11248  unsigned NumBits = VT.getSizeInBits();
11249  DebugLoc dl = Op.getDebugLoc();
11250  Op = Op.getOperand(0);
11251
11252  // Issue a bsf (scan bits forward) which also sets EFLAGS.
11253  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11254  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
11255
11256  // If src is zero (i.e. bsf sets ZF), returns NumBits.
11257  SDValue Ops[] = {
11258    Op,
11259    DAG.getConstant(NumBits, VT),
11260    DAG.getConstant(X86::COND_E, MVT::i8),
11261    Op.getValue(1)
11262  };
11263  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
11264}
11265
11266// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
11267// ones, and then concatenate the result back.
11268static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
11269  EVT VT = Op.getValueType();
11270
11271  assert(VT.is256BitVector() && VT.isInteger() &&
11272         "Unsupported value type for operation");
11273
11274  unsigned NumElems = VT.getVectorNumElements();
11275  DebugLoc dl = Op.getDebugLoc();
11276
11277  // Extract the LHS vectors
11278  SDValue LHS = Op.getOperand(0);
11279  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11280  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11281
11282  // Extract the RHS vectors
11283  SDValue RHS = Op.getOperand(1);
11284  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
11285  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
11286
11287  MVT EltVT = VT.getVectorElementType().getSimpleVT();
11288  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11289
11290  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
11291                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
11292                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
11293}
11294
11295static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
11296  assert(Op.getValueType().is256BitVector() &&
11297         Op.getValueType().isInteger() &&
11298         "Only handle AVX 256-bit vector integer operation");
11299  return Lower256IntArith(Op, DAG);
11300}
11301
11302static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
11303  assert(Op.getValueType().is256BitVector() &&
11304         Op.getValueType().isInteger() &&
11305         "Only handle AVX 256-bit vector integer operation");
11306  return Lower256IntArith(Op, DAG);
11307}
11308
11309static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
11310                        SelectionDAG &DAG) {
11311  DebugLoc dl = Op.getDebugLoc();
11312  EVT VT = Op.getValueType();
11313
11314  // Decompose 256-bit ops into smaller 128-bit ops.
11315  if (VT.is256BitVector() && !Subtarget->hasInt256())
11316    return Lower256IntArith(Op, DAG);
11317
11318  SDValue A = Op.getOperand(0);
11319  SDValue B = Op.getOperand(1);
11320
11321  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
11322  if (VT == MVT::v4i32) {
11323    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
11324           "Should not custom lower when pmuldq is available!");
11325
11326    // Extract the odd parts.
11327    const int UnpackMask[] = { 1, -1, 3, -1 };
11328    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
11329    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
11330
11331    // Multiply the even parts.
11332    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
11333    // Now multiply odd parts.
11334    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
11335
11336    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
11337    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
11338
11339    // Merge the two vectors back together with a shuffle. This expands into 2
11340    // shuffles.
11341    const int ShufMask[] = { 0, 4, 2, 6 };
11342    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
11343  }
11344
11345  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
11346         "Only know how to lower V2I64/V4I64 multiply");
11347
11348  //  Ahi = psrlqi(a, 32);
11349  //  Bhi = psrlqi(b, 32);
11350  //
11351  //  AloBlo = pmuludq(a, b);
11352  //  AloBhi = pmuludq(a, Bhi);
11353  //  AhiBlo = pmuludq(Ahi, b);
11354
11355  //  AloBhi = psllqi(AloBhi, 32);
11356  //  AhiBlo = psllqi(AhiBlo, 32);
11357  //  return AloBlo + AloBhi + AhiBlo;
11358
11359  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
11360
11361  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
11362  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
11363
11364  // Bit cast to 32-bit vectors for MULUDQ
11365  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
11366  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
11367  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
11368  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
11369  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
11370
11371  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
11372  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
11373  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
11374
11375  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
11376  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
11377
11378  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
11379  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
11380}
11381
11382SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
11383  EVT VT = Op.getValueType();
11384  EVT EltTy = VT.getVectorElementType();
11385  unsigned NumElts = VT.getVectorNumElements();
11386  SDValue N0 = Op.getOperand(0);
11387  DebugLoc dl = Op.getDebugLoc();
11388
11389  // Lower sdiv X, pow2-const.
11390  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
11391  if (!C)
11392    return SDValue();
11393
11394  APInt SplatValue, SplatUndef;
11395  unsigned MinSplatBits;
11396  bool HasAnyUndefs;
11397  if (!C->isConstantSplat(SplatValue, SplatUndef, MinSplatBits, HasAnyUndefs))
11398    return SDValue();
11399
11400  if ((SplatValue != 0) &&
11401      (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
11402    unsigned lg2 = SplatValue.countTrailingZeros();
11403    // Splat the sign bit.
11404    SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32);
11405    SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG);
11406    // Add (N0 < 0) ? abs2 - 1 : 0;
11407    SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32);
11408    SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG);
11409    SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
11410    SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32);
11411    SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG);
11412
11413    // If we're dividing by a positive value, we're done.  Otherwise, we must
11414    // negate the result.
11415    if (SplatValue.isNonNegative())
11416      return SRA;
11417
11418    SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
11419    SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
11420    return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
11421  }
11422  return SDValue();
11423}
11424
11425SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
11426
11427  EVT VT = Op.getValueType();
11428  DebugLoc dl = Op.getDebugLoc();
11429  SDValue R = Op.getOperand(0);
11430  SDValue Amt = Op.getOperand(1);
11431  LLVMContext *Context = DAG.getContext();
11432
11433  if (!Subtarget->hasSSE2())
11434    return SDValue();
11435
11436  // Optimize shl/srl/sra with constant shift amount.
11437  if (isSplatVector(Amt.getNode())) {
11438    SDValue SclrAmt = Amt->getOperand(0);
11439    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
11440      uint64_t ShiftAmt = C->getZExtValue();
11441
11442      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
11443          (Subtarget->hasInt256() &&
11444           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
11445        if (Op.getOpcode() == ISD::SHL)
11446          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11447                             DAG.getConstant(ShiftAmt, MVT::i32));
11448        if (Op.getOpcode() == ISD::SRL)
11449          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11450                             DAG.getConstant(ShiftAmt, MVT::i32));
11451        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
11452          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11453                             DAG.getConstant(ShiftAmt, MVT::i32));
11454      }
11455
11456      if (VT == MVT::v16i8) {
11457        if (Op.getOpcode() == ISD::SHL) {
11458          // Make a large shift.
11459          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
11460                                    DAG.getConstant(ShiftAmt, MVT::i32));
11461          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11462          // Zero out the rightmost bits.
11463          SmallVector<SDValue, 16> V(16,
11464                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11465                                                     MVT::i8));
11466          return DAG.getNode(ISD::AND, dl, VT, SHL,
11467                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11468        }
11469        if (Op.getOpcode() == ISD::SRL) {
11470          // Make a large shift.
11471          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
11472                                    DAG.getConstant(ShiftAmt, MVT::i32));
11473          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11474          // Zero out the leftmost bits.
11475          SmallVector<SDValue, 16> V(16,
11476                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11477                                                     MVT::i8));
11478          return DAG.getNode(ISD::AND, dl, VT, SRL,
11479                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11480        }
11481        if (Op.getOpcode() == ISD::SRA) {
11482          if (ShiftAmt == 7) {
11483            // R s>> 7  ===  R s< 0
11484            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11485            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11486          }
11487
11488          // R s>> a === ((R u>> a) ^ m) - m
11489          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11490          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
11491                                                         MVT::i8));
11492          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
11493          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11494          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11495          return Res;
11496        }
11497        llvm_unreachable("Unknown shift opcode.");
11498      }
11499
11500      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
11501        if (Op.getOpcode() == ISD::SHL) {
11502          // Make a large shift.
11503          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
11504                                    DAG.getConstant(ShiftAmt, MVT::i32));
11505          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11506          // Zero out the rightmost bits.
11507          SmallVector<SDValue, 32> V(32,
11508                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11509                                                     MVT::i8));
11510          return DAG.getNode(ISD::AND, dl, VT, SHL,
11511                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11512        }
11513        if (Op.getOpcode() == ISD::SRL) {
11514          // Make a large shift.
11515          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
11516                                    DAG.getConstant(ShiftAmt, MVT::i32));
11517          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11518          // Zero out the leftmost bits.
11519          SmallVector<SDValue, 32> V(32,
11520                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11521                                                     MVT::i8));
11522          return DAG.getNode(ISD::AND, dl, VT, SRL,
11523                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11524        }
11525        if (Op.getOpcode() == ISD::SRA) {
11526          if (ShiftAmt == 7) {
11527            // R s>> 7  ===  R s< 0
11528            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11529            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11530          }
11531
11532          // R s>> a === ((R u>> a) ^ m) - m
11533          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11534          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
11535                                                         MVT::i8));
11536          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
11537          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11538          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11539          return Res;
11540        }
11541        llvm_unreachable("Unknown shift opcode.");
11542      }
11543    }
11544  }
11545
11546  // Lower SHL with variable shift amount.
11547  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
11548    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
11549                     DAG.getConstant(23, MVT::i32));
11550
11551    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
11552    Constant *C = ConstantDataVector::get(*Context, CV);
11553    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
11554    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
11555                                 MachinePointerInfo::getConstantPool(),
11556                                 false, false, false, 16);
11557
11558    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
11559    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
11560    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
11561    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
11562  }
11563  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
11564    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
11565
11566    // a = a << 5;
11567    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
11568                     DAG.getConstant(5, MVT::i32));
11569    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
11570
11571    // Turn 'a' into a mask suitable for VSELECT
11572    SDValue VSelM = DAG.getConstant(0x80, VT);
11573    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11574    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11575
11576    SDValue CM1 = DAG.getConstant(0x0f, VT);
11577    SDValue CM2 = DAG.getConstant(0x3f, VT);
11578
11579    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
11580    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
11581    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11582                            DAG.getConstant(4, MVT::i32), DAG);
11583    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11584    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11585
11586    // a += a
11587    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11588    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11589    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11590
11591    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
11592    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
11593    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11594                            DAG.getConstant(2, MVT::i32), DAG);
11595    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11596    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11597
11598    // a += a
11599    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11600    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11601    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11602
11603    // return VSELECT(r, r+r, a);
11604    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
11605                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
11606    return R;
11607  }
11608
11609  // Decompose 256-bit shifts into smaller 128-bit shifts.
11610  if (VT.is256BitVector()) {
11611    unsigned NumElems = VT.getVectorNumElements();
11612    MVT EltVT = VT.getVectorElementType().getSimpleVT();
11613    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11614
11615    // Extract the two vectors
11616    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
11617    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
11618
11619    // Recreate the shift amount vectors
11620    SDValue Amt1, Amt2;
11621    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11622      // Constant shift amount
11623      SmallVector<SDValue, 4> Amt1Csts;
11624      SmallVector<SDValue, 4> Amt2Csts;
11625      for (unsigned i = 0; i != NumElems/2; ++i)
11626        Amt1Csts.push_back(Amt->getOperand(i));
11627      for (unsigned i = NumElems/2; i != NumElems; ++i)
11628        Amt2Csts.push_back(Amt->getOperand(i));
11629
11630      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11631                                 &Amt1Csts[0], NumElems/2);
11632      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11633                                 &Amt2Csts[0], NumElems/2);
11634    } else {
11635      // Variable shift amount
11636      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
11637      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
11638    }
11639
11640    // Issue new vector shifts for the smaller types
11641    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11642    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11643
11644    // Concatenate the result back
11645    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11646  }
11647
11648  return SDValue();
11649}
11650
11651static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11652  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11653  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11654  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11655  // has only one use.
11656  SDNode *N = Op.getNode();
11657  SDValue LHS = N->getOperand(0);
11658  SDValue RHS = N->getOperand(1);
11659  unsigned BaseOp = 0;
11660  unsigned Cond = 0;
11661  DebugLoc DL = Op.getDebugLoc();
11662  switch (Op.getOpcode()) {
11663  default: llvm_unreachable("Unknown ovf instruction!");
11664  case ISD::SADDO:
11665    // A subtract of one will be selected as a INC. Note that INC doesn't
11666    // set CF, so we can't do this for UADDO.
11667    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11668      if (C->isOne()) {
11669        BaseOp = X86ISD::INC;
11670        Cond = X86::COND_O;
11671        break;
11672      }
11673    BaseOp = X86ISD::ADD;
11674    Cond = X86::COND_O;
11675    break;
11676  case ISD::UADDO:
11677    BaseOp = X86ISD::ADD;
11678    Cond = X86::COND_B;
11679    break;
11680  case ISD::SSUBO:
11681    // A subtract of one will be selected as a DEC. Note that DEC doesn't
11682    // set CF, so we can't do this for USUBO.
11683    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11684      if (C->isOne()) {
11685        BaseOp = X86ISD::DEC;
11686        Cond = X86::COND_O;
11687        break;
11688      }
11689    BaseOp = X86ISD::SUB;
11690    Cond = X86::COND_O;
11691    break;
11692  case ISD::USUBO:
11693    BaseOp = X86ISD::SUB;
11694    Cond = X86::COND_B;
11695    break;
11696  case ISD::SMULO:
11697    BaseOp = X86ISD::SMUL;
11698    Cond = X86::COND_O;
11699    break;
11700  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
11701    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
11702                                 MVT::i32);
11703    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
11704
11705    SDValue SetCC =
11706      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11707                  DAG.getConstant(X86::COND_O, MVT::i32),
11708                  SDValue(Sum.getNode(), 2));
11709
11710    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11711  }
11712  }
11713
11714  // Also sets EFLAGS.
11715  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
11716  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
11717
11718  SDValue SetCC =
11719    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
11720                DAG.getConstant(Cond, MVT::i32),
11721                SDValue(Sum.getNode(), 1));
11722
11723  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11724}
11725
11726SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
11727                                                  SelectionDAG &DAG) const {
11728  DebugLoc dl = Op.getDebugLoc();
11729  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
11730  EVT VT = Op.getValueType();
11731
11732  if (!Subtarget->hasSSE2() || !VT.isVector())
11733    return SDValue();
11734
11735  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
11736                      ExtraVT.getScalarType().getSizeInBits();
11737  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
11738
11739  switch (VT.getSimpleVT().SimpleTy) {
11740    default: return SDValue();
11741    case MVT::v8i32:
11742    case MVT::v16i16:
11743      if (!Subtarget->hasFp256())
11744        return SDValue();
11745      if (!Subtarget->hasInt256()) {
11746        // needs to be split
11747        unsigned NumElems = VT.getVectorNumElements();
11748
11749        // Extract the LHS vectors
11750        SDValue LHS = Op.getOperand(0);
11751        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11752        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11753
11754        MVT EltVT = VT.getVectorElementType().getSimpleVT();
11755        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11756
11757        EVT ExtraEltVT = ExtraVT.getVectorElementType();
11758        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
11759        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
11760                                   ExtraNumElems/2);
11761        SDValue Extra = DAG.getValueType(ExtraVT);
11762
11763        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
11764        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
11765
11766        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
11767      }
11768      // fall through
11769    case MVT::v4i32:
11770    case MVT::v8i16: {
11771      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
11772                                         Op.getOperand(0), ShAmt, DAG);
11773      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
11774    }
11775  }
11776}
11777
11778static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
11779                              SelectionDAG &DAG) {
11780  DebugLoc dl = Op.getDebugLoc();
11781
11782  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
11783  // There isn't any reason to disable it if the target processor supports it.
11784  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
11785    SDValue Chain = Op.getOperand(0);
11786    SDValue Zero = DAG.getConstant(0, MVT::i32);
11787    SDValue Ops[] = {
11788      DAG.getRegister(X86::ESP, MVT::i32), // Base
11789      DAG.getTargetConstant(1, MVT::i8),   // Scale
11790      DAG.getRegister(0, MVT::i32),        // Index
11791      DAG.getTargetConstant(0, MVT::i32),  // Disp
11792      DAG.getRegister(0, MVT::i32),        // Segment.
11793      Zero,
11794      Chain
11795    };
11796    SDNode *Res =
11797      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11798                          array_lengthof(Ops));
11799    return SDValue(Res, 0);
11800  }
11801
11802  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
11803  if (!isDev)
11804    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11805
11806  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11807  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
11808  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
11809  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
11810
11811  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
11812  if (!Op1 && !Op2 && !Op3 && Op4)
11813    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
11814
11815  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
11816  if (Op1 && !Op2 && !Op3 && !Op4)
11817    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
11818
11819  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
11820  //           (MFENCE)>;
11821  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11822}
11823
11824static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
11825                                 SelectionDAG &DAG) {
11826  DebugLoc dl = Op.getDebugLoc();
11827  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
11828    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
11829  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
11830    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
11831
11832  // The only fence that needs an instruction is a sequentially-consistent
11833  // cross-thread fence.
11834  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
11835    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
11836    // no-sse2). There isn't any reason to disable it if the target processor
11837    // supports it.
11838    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
11839      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11840
11841    SDValue Chain = Op.getOperand(0);
11842    SDValue Zero = DAG.getConstant(0, MVT::i32);
11843    SDValue Ops[] = {
11844      DAG.getRegister(X86::ESP, MVT::i32), // Base
11845      DAG.getTargetConstant(1, MVT::i8),   // Scale
11846      DAG.getRegister(0, MVT::i32),        // Index
11847      DAG.getTargetConstant(0, MVT::i32),  // Disp
11848      DAG.getRegister(0, MVT::i32),        // Segment.
11849      Zero,
11850      Chain
11851    };
11852    SDNode *Res =
11853      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11854                         array_lengthof(Ops));
11855    return SDValue(Res, 0);
11856  }
11857
11858  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
11859  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11860}
11861
11862static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
11863                             SelectionDAG &DAG) {
11864  EVT T = Op.getValueType();
11865  DebugLoc DL = Op.getDebugLoc();
11866  unsigned Reg = 0;
11867  unsigned size = 0;
11868  switch(T.getSimpleVT().SimpleTy) {
11869  default: llvm_unreachable("Invalid value type!");
11870  case MVT::i8:  Reg = X86::AL;  size = 1; break;
11871  case MVT::i16: Reg = X86::AX;  size = 2; break;
11872  case MVT::i32: Reg = X86::EAX; size = 4; break;
11873  case MVT::i64:
11874    assert(Subtarget->is64Bit() && "Node not type legal!");
11875    Reg = X86::RAX; size = 8;
11876    break;
11877  }
11878  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
11879                                    Op.getOperand(2), SDValue());
11880  SDValue Ops[] = { cpIn.getValue(0),
11881                    Op.getOperand(1),
11882                    Op.getOperand(3),
11883                    DAG.getTargetConstant(size, MVT::i8),
11884                    cpIn.getValue(1) };
11885  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11886  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
11887  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
11888                                           Ops, 5, T, MMO);
11889  SDValue cpOut =
11890    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
11891  return cpOut;
11892}
11893
11894static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
11895                                     SelectionDAG &DAG) {
11896  assert(Subtarget->is64Bit() && "Result not type legalized?");
11897  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11898  SDValue TheChain = Op.getOperand(0);
11899  DebugLoc dl = Op.getDebugLoc();
11900  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11901  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
11902  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
11903                                   rax.getValue(2));
11904  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
11905                            DAG.getConstant(32, MVT::i8));
11906  SDValue Ops[] = {
11907    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
11908    rdx.getValue(1)
11909  };
11910  return DAG.getMergeValues(Ops, 2, dl);
11911}
11912
11913SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
11914  EVT SrcVT = Op.getOperand(0).getValueType();
11915  EVT DstVT = Op.getValueType();
11916  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
11917         Subtarget->hasMMX() && "Unexpected custom BITCAST");
11918  assert((DstVT == MVT::i64 ||
11919          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
11920         "Unexpected custom BITCAST");
11921  // i64 <=> MMX conversions are Legal.
11922  if (SrcVT==MVT::i64 && DstVT.isVector())
11923    return Op;
11924  if (DstVT==MVT::i64 && SrcVT.isVector())
11925    return Op;
11926  // MMX <=> MMX conversions are Legal.
11927  if (SrcVT.isVector() && DstVT.isVector())
11928    return Op;
11929  // All other conversions need to be expanded.
11930  return SDValue();
11931}
11932
11933static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
11934  SDNode *Node = Op.getNode();
11935  DebugLoc dl = Node->getDebugLoc();
11936  EVT T = Node->getValueType(0);
11937  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
11938                              DAG.getConstant(0, T), Node->getOperand(2));
11939  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
11940                       cast<AtomicSDNode>(Node)->getMemoryVT(),
11941                       Node->getOperand(0),
11942                       Node->getOperand(1), negOp,
11943                       cast<AtomicSDNode>(Node)->getSrcValue(),
11944                       cast<AtomicSDNode>(Node)->getAlignment(),
11945                       cast<AtomicSDNode>(Node)->getOrdering(),
11946                       cast<AtomicSDNode>(Node)->getSynchScope());
11947}
11948
11949static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
11950  SDNode *Node = Op.getNode();
11951  DebugLoc dl = Node->getDebugLoc();
11952  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11953
11954  // Convert seq_cst store -> xchg
11955  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
11956  // FIXME: On 32-bit, store -> fist or movq would be more efficient
11957  //        (The only way to get a 16-byte store is cmpxchg16b)
11958  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
11959  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
11960      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11961    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
11962                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
11963                                 Node->getOperand(0),
11964                                 Node->getOperand(1), Node->getOperand(2),
11965                                 cast<AtomicSDNode>(Node)->getMemOperand(),
11966                                 cast<AtomicSDNode>(Node)->getOrdering(),
11967                                 cast<AtomicSDNode>(Node)->getSynchScope());
11968    return Swap.getValue(1);
11969  }
11970  // Other atomic stores have a simple pattern.
11971  return Op;
11972}
11973
11974static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
11975  EVT VT = Op.getNode()->getValueType(0);
11976
11977  // Let legalize expand this if it isn't a legal type yet.
11978  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11979    return SDValue();
11980
11981  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11982
11983  unsigned Opc;
11984  bool ExtraOp = false;
11985  switch (Op.getOpcode()) {
11986  default: llvm_unreachable("Invalid code");
11987  case ISD::ADDC: Opc = X86ISD::ADD; break;
11988  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
11989  case ISD::SUBC: Opc = X86ISD::SUB; break;
11990  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
11991  }
11992
11993  if (!ExtraOp)
11994    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11995                       Op.getOperand(1));
11996  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11997                     Op.getOperand(1), Op.getOperand(2));
11998}
11999
12000/// LowerOperation - Provide custom lowering hooks for some operations.
12001///
12002SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
12003  switch (Op.getOpcode()) {
12004  default: llvm_unreachable("Should not custom lower this!");
12005  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
12006  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, Subtarget, DAG);
12007  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
12008  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
12009  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
12010  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
12011  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
12012  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
12013  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
12014  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
12015  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
12016  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
12017  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
12018  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
12019  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
12020  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
12021  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
12022  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
12023  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
12024  case ISD::SHL_PARTS:
12025  case ISD::SRA_PARTS:
12026  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
12027  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
12028  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
12029  case ISD::TRUNCATE:           return lowerTRUNCATE(Op, DAG);
12030  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, DAG);
12031  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, DAG);
12032  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, DAG);
12033  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
12034  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
12035  case ISD::FP_EXTEND:          return lowerFP_EXTEND(Op, DAG);
12036  case ISD::FABS:               return LowerFABS(Op, DAG);
12037  case ISD::FNEG:               return LowerFNEG(Op, DAG);
12038  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
12039  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
12040  case ISD::SETCC:              return LowerSETCC(Op, DAG);
12041  case ISD::SELECT:             return LowerSELECT(Op, DAG);
12042  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
12043  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
12044  case ISD::VASTART:            return LowerVASTART(Op, DAG);
12045  case ISD::VAARG:              return LowerVAARG(Op, DAG);
12046  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
12047  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
12048  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
12049  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
12050  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
12051  case ISD::FRAME_TO_ARGS_OFFSET:
12052                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
12053  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
12054  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
12055  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
12056  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
12057  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
12058  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
12059  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
12060  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
12061  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
12062  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
12063  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
12064  case ISD::SRA:
12065  case ISD::SRL:
12066  case ISD::SHL:                return LowerShift(Op, DAG);
12067  case ISD::SADDO:
12068  case ISD::UADDO:
12069  case ISD::SSUBO:
12070  case ISD::USUBO:
12071  case ISD::SMULO:
12072  case ISD::UMULO:              return LowerXALUO(Op, DAG);
12073  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
12074  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
12075  case ISD::ADDC:
12076  case ISD::ADDE:
12077  case ISD::SUBC:
12078  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
12079  case ISD::ADD:                return LowerADD(Op, DAG);
12080  case ISD::SUB:                return LowerSUB(Op, DAG);
12081  case ISD::SDIV:               return LowerSDIV(Op, DAG);
12082  }
12083}
12084
12085static void ReplaceATOMIC_LOAD(SDNode *Node,
12086                                  SmallVectorImpl<SDValue> &Results,
12087                                  SelectionDAG &DAG) {
12088  DebugLoc dl = Node->getDebugLoc();
12089  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12090
12091  // Convert wide load -> cmpxchg8b/cmpxchg16b
12092  // FIXME: On 32-bit, load -> fild or movq would be more efficient
12093  //        (The only way to get a 16-byte load is cmpxchg16b)
12094  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
12095  SDValue Zero = DAG.getConstant(0, VT);
12096  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
12097                               Node->getOperand(0),
12098                               Node->getOperand(1), Zero, Zero,
12099                               cast<AtomicSDNode>(Node)->getMemOperand(),
12100                               cast<AtomicSDNode>(Node)->getOrdering(),
12101                               cast<AtomicSDNode>(Node)->getSynchScope());
12102  Results.push_back(Swap.getValue(0));
12103  Results.push_back(Swap.getValue(1));
12104}
12105
12106static void
12107ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
12108                        SelectionDAG &DAG, unsigned NewOp) {
12109  DebugLoc dl = Node->getDebugLoc();
12110  assert (Node->getValueType(0) == MVT::i64 &&
12111          "Only know how to expand i64 atomics");
12112
12113  SDValue Chain = Node->getOperand(0);
12114  SDValue In1 = Node->getOperand(1);
12115  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12116                             Node->getOperand(2), DAG.getIntPtrConstant(0));
12117  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
12118                             Node->getOperand(2), DAG.getIntPtrConstant(1));
12119  SDValue Ops[] = { Chain, In1, In2L, In2H };
12120  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
12121  SDValue Result =
12122    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
12123                            cast<MemSDNode>(Node)->getMemOperand());
12124  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
12125  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
12126  Results.push_back(Result.getValue(2));
12127}
12128
12129/// ReplaceNodeResults - Replace a node with an illegal result type
12130/// with a new node built out of custom code.
12131void X86TargetLowering::ReplaceNodeResults(SDNode *N,
12132                                           SmallVectorImpl<SDValue>&Results,
12133                                           SelectionDAG &DAG) const {
12134  DebugLoc dl = N->getDebugLoc();
12135  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12136  switch (N->getOpcode()) {
12137  default:
12138    llvm_unreachable("Do not know how to custom type legalize this operation!");
12139  case ISD::SIGN_EXTEND_INREG:
12140  case ISD::ADDC:
12141  case ISD::ADDE:
12142  case ISD::SUBC:
12143  case ISD::SUBE:
12144    // We don't want to expand or promote these.
12145    return;
12146  case ISD::FP_TO_SINT:
12147  case ISD::FP_TO_UINT: {
12148    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
12149
12150    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
12151      return;
12152
12153    std::pair<SDValue,SDValue> Vals =
12154        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
12155    SDValue FIST = Vals.first, StackSlot = Vals.second;
12156    if (FIST.getNode() != 0) {
12157      EVT VT = N->getValueType(0);
12158      // Return a load from the stack slot.
12159      if (StackSlot.getNode() != 0)
12160        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
12161                                      MachinePointerInfo(),
12162                                      false, false, false, 0));
12163      else
12164        Results.push_back(FIST);
12165    }
12166    return;
12167  }
12168  case ISD::UINT_TO_FP: {
12169    if (N->getOperand(0).getValueType() != MVT::v2i32 &&
12170        N->getValueType(0) != MVT::v2f32)
12171      return;
12172    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
12173                                 N->getOperand(0));
12174    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
12175                                     MVT::f64);
12176    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
12177    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
12178                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
12179    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
12180    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
12181    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
12182    return;
12183  }
12184  case ISD::FP_ROUND: {
12185    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
12186        return;
12187    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
12188    Results.push_back(V);
12189    return;
12190  }
12191  case ISD::READCYCLECOUNTER: {
12192    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12193    SDValue TheChain = N->getOperand(0);
12194    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
12195    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
12196                                     rd.getValue(1));
12197    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
12198                                     eax.getValue(2));
12199    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
12200    SDValue Ops[] = { eax, edx };
12201    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
12202    Results.push_back(edx.getValue(1));
12203    return;
12204  }
12205  case ISD::ATOMIC_CMP_SWAP: {
12206    EVT T = N->getValueType(0);
12207    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
12208    bool Regs64bit = T == MVT::i128;
12209    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
12210    SDValue cpInL, cpInH;
12211    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12212                        DAG.getConstant(0, HalfT));
12213    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
12214                        DAG.getConstant(1, HalfT));
12215    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
12216                             Regs64bit ? X86::RAX : X86::EAX,
12217                             cpInL, SDValue());
12218    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
12219                             Regs64bit ? X86::RDX : X86::EDX,
12220                             cpInH, cpInL.getValue(1));
12221    SDValue swapInL, swapInH;
12222    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12223                          DAG.getConstant(0, HalfT));
12224    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
12225                          DAG.getConstant(1, HalfT));
12226    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
12227                               Regs64bit ? X86::RBX : X86::EBX,
12228                               swapInL, cpInH.getValue(1));
12229    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
12230                               Regs64bit ? X86::RCX : X86::ECX,
12231                               swapInH, swapInL.getValue(1));
12232    SDValue Ops[] = { swapInH.getValue(0),
12233                      N->getOperand(1),
12234                      swapInH.getValue(1) };
12235    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12236    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
12237    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
12238                                  X86ISD::LCMPXCHG8_DAG;
12239    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
12240                                             Ops, 3, T, MMO);
12241    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
12242                                        Regs64bit ? X86::RAX : X86::EAX,
12243                                        HalfT, Result.getValue(1));
12244    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
12245                                        Regs64bit ? X86::RDX : X86::EDX,
12246                                        HalfT, cpOutL.getValue(2));
12247    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
12248    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
12249    Results.push_back(cpOutH.getValue(1));
12250    return;
12251  }
12252  case ISD::ATOMIC_LOAD_ADD:
12253  case ISD::ATOMIC_LOAD_AND:
12254  case ISD::ATOMIC_LOAD_NAND:
12255  case ISD::ATOMIC_LOAD_OR:
12256  case ISD::ATOMIC_LOAD_SUB:
12257  case ISD::ATOMIC_LOAD_XOR:
12258  case ISD::ATOMIC_LOAD_MAX:
12259  case ISD::ATOMIC_LOAD_MIN:
12260  case ISD::ATOMIC_LOAD_UMAX:
12261  case ISD::ATOMIC_LOAD_UMIN:
12262  case ISD::ATOMIC_SWAP: {
12263    unsigned Opc;
12264    switch (N->getOpcode()) {
12265    default: llvm_unreachable("Unexpected opcode");
12266    case ISD::ATOMIC_LOAD_ADD:
12267      Opc = X86ISD::ATOMADD64_DAG;
12268      break;
12269    case ISD::ATOMIC_LOAD_AND:
12270      Opc = X86ISD::ATOMAND64_DAG;
12271      break;
12272    case ISD::ATOMIC_LOAD_NAND:
12273      Opc = X86ISD::ATOMNAND64_DAG;
12274      break;
12275    case ISD::ATOMIC_LOAD_OR:
12276      Opc = X86ISD::ATOMOR64_DAG;
12277      break;
12278    case ISD::ATOMIC_LOAD_SUB:
12279      Opc = X86ISD::ATOMSUB64_DAG;
12280      break;
12281    case ISD::ATOMIC_LOAD_XOR:
12282      Opc = X86ISD::ATOMXOR64_DAG;
12283      break;
12284    case ISD::ATOMIC_LOAD_MAX:
12285      Opc = X86ISD::ATOMMAX64_DAG;
12286      break;
12287    case ISD::ATOMIC_LOAD_MIN:
12288      Opc = X86ISD::ATOMMIN64_DAG;
12289      break;
12290    case ISD::ATOMIC_LOAD_UMAX:
12291      Opc = X86ISD::ATOMUMAX64_DAG;
12292      break;
12293    case ISD::ATOMIC_LOAD_UMIN:
12294      Opc = X86ISD::ATOMUMIN64_DAG;
12295      break;
12296    case ISD::ATOMIC_SWAP:
12297      Opc = X86ISD::ATOMSWAP64_DAG;
12298      break;
12299    }
12300    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
12301    return;
12302  }
12303  case ISD::ATOMIC_LOAD:
12304    ReplaceATOMIC_LOAD(N, Results, DAG);
12305  }
12306}
12307
12308const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
12309  switch (Opcode) {
12310  default: return NULL;
12311  case X86ISD::BSF:                return "X86ISD::BSF";
12312  case X86ISD::BSR:                return "X86ISD::BSR";
12313  case X86ISD::SHLD:               return "X86ISD::SHLD";
12314  case X86ISD::SHRD:               return "X86ISD::SHRD";
12315  case X86ISD::FAND:               return "X86ISD::FAND";
12316  case X86ISD::FOR:                return "X86ISD::FOR";
12317  case X86ISD::FXOR:               return "X86ISD::FXOR";
12318  case X86ISD::FSRL:               return "X86ISD::FSRL";
12319  case X86ISD::FILD:               return "X86ISD::FILD";
12320  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
12321  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
12322  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
12323  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
12324  case X86ISD::FLD:                return "X86ISD::FLD";
12325  case X86ISD::FST:                return "X86ISD::FST";
12326  case X86ISD::CALL:               return "X86ISD::CALL";
12327  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
12328  case X86ISD::BT:                 return "X86ISD::BT";
12329  case X86ISD::CMP:                return "X86ISD::CMP";
12330  case X86ISD::COMI:               return "X86ISD::COMI";
12331  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
12332  case X86ISD::SETCC:              return "X86ISD::SETCC";
12333  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
12334  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
12335  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
12336  case X86ISD::CMOV:               return "X86ISD::CMOV";
12337  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
12338  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
12339  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
12340  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
12341  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
12342  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
12343  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
12344  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
12345  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
12346  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
12347  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
12348  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
12349  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
12350  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
12351  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
12352  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
12353  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
12354  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
12355  case X86ISD::HADD:               return "X86ISD::HADD";
12356  case X86ISD::HSUB:               return "X86ISD::HSUB";
12357  case X86ISD::FHADD:              return "X86ISD::FHADD";
12358  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
12359  case X86ISD::UMAX:               return "X86ISD::UMAX";
12360  case X86ISD::UMIN:               return "X86ISD::UMIN";
12361  case X86ISD::SMAX:               return "X86ISD::SMAX";
12362  case X86ISD::SMIN:               return "X86ISD::SMIN";
12363  case X86ISD::FMAX:               return "X86ISD::FMAX";
12364  case X86ISD::FMIN:               return "X86ISD::FMIN";
12365  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
12366  case X86ISD::FMINC:              return "X86ISD::FMINC";
12367  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
12368  case X86ISD::FRCP:               return "X86ISD::FRCP";
12369  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
12370  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
12371  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
12372  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
12373  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
12374  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
12375  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
12376  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
12377  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
12378  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
12379  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
12380  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
12381  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
12382  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
12383  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
12384  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
12385  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
12386  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
12387  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
12388  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
12389  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
12390  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
12391  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
12392  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
12393  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
12394  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
12395  case X86ISD::VSHL:               return "X86ISD::VSHL";
12396  case X86ISD::VSRL:               return "X86ISD::VSRL";
12397  case X86ISD::VSRA:               return "X86ISD::VSRA";
12398  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
12399  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
12400  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
12401  case X86ISD::CMPP:               return "X86ISD::CMPP";
12402  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
12403  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
12404  case X86ISD::ADD:                return "X86ISD::ADD";
12405  case X86ISD::SUB:                return "X86ISD::SUB";
12406  case X86ISD::ADC:                return "X86ISD::ADC";
12407  case X86ISD::SBB:                return "X86ISD::SBB";
12408  case X86ISD::SMUL:               return "X86ISD::SMUL";
12409  case X86ISD::UMUL:               return "X86ISD::UMUL";
12410  case X86ISD::INC:                return "X86ISD::INC";
12411  case X86ISD::DEC:                return "X86ISD::DEC";
12412  case X86ISD::OR:                 return "X86ISD::OR";
12413  case X86ISD::XOR:                return "X86ISD::XOR";
12414  case X86ISD::AND:                return "X86ISD::AND";
12415  case X86ISD::BLSI:               return "X86ISD::BLSI";
12416  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
12417  case X86ISD::BLSR:               return "X86ISD::BLSR";
12418  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
12419  case X86ISD::PTEST:              return "X86ISD::PTEST";
12420  case X86ISD::TESTP:              return "X86ISD::TESTP";
12421  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
12422  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
12423  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
12424  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
12425  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
12426  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
12427  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
12428  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
12429  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
12430  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
12431  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
12432  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
12433  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
12434  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
12435  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
12436  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
12437  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
12438  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
12439  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
12440  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
12441  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
12442  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
12443  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
12444  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
12445  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
12446  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
12447  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
12448  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
12449  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
12450  case X86ISD::SAHF:               return "X86ISD::SAHF";
12451  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
12452  case X86ISD::FMADD:              return "X86ISD::FMADD";
12453  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
12454  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
12455  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
12456  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
12457  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
12458  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
12459  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
12460  }
12461}
12462
12463// isLegalAddressingMode - Return true if the addressing mode represented
12464// by AM is legal for this target, for a load/store of the specified type.
12465bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
12466                                              Type *Ty) const {
12467  // X86 supports extremely general addressing modes.
12468  CodeModel::Model M = getTargetMachine().getCodeModel();
12469  Reloc::Model R = getTargetMachine().getRelocationModel();
12470
12471  // X86 allows a sign-extended 32-bit immediate field as a displacement.
12472  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
12473    return false;
12474
12475  if (AM.BaseGV) {
12476    unsigned GVFlags =
12477      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
12478
12479    // If a reference to this global requires an extra load, we can't fold it.
12480    if (isGlobalStubReference(GVFlags))
12481      return false;
12482
12483    // If BaseGV requires a register for the PIC base, we cannot also have a
12484    // BaseReg specified.
12485    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
12486      return false;
12487
12488    // If lower 4G is not available, then we must use rip-relative addressing.
12489    if ((M != CodeModel::Small || R != Reloc::Static) &&
12490        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
12491      return false;
12492  }
12493
12494  switch (AM.Scale) {
12495  case 0:
12496  case 1:
12497  case 2:
12498  case 4:
12499  case 8:
12500    // These scales always work.
12501    break;
12502  case 3:
12503  case 5:
12504  case 9:
12505    // These scales are formed with basereg+scalereg.  Only accept if there is
12506    // no basereg yet.
12507    if (AM.HasBaseReg)
12508      return false;
12509    break;
12510  default:  // Other stuff never works.
12511    return false;
12512  }
12513
12514  return true;
12515}
12516
12517bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
12518  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12519    return false;
12520  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
12521  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
12522  return NumBits1 > NumBits2;
12523}
12524
12525bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12526  return isInt<32>(Imm);
12527}
12528
12529bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
12530  // Can also use sub to handle negated immediates.
12531  return isInt<32>(Imm);
12532}
12533
12534bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
12535  if (!VT1.isInteger() || !VT2.isInteger())
12536    return false;
12537  unsigned NumBits1 = VT1.getSizeInBits();
12538  unsigned NumBits2 = VT2.getSizeInBits();
12539  return NumBits1 > NumBits2;
12540}
12541
12542bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
12543  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12544  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
12545}
12546
12547bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
12548  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12549  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
12550}
12551
12552bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12553  EVT VT1 = Val.getValueType();
12554  if (isZExtFree(VT1, VT2))
12555    return true;
12556
12557  if (Val.getOpcode() != ISD::LOAD)
12558    return false;
12559
12560  if (!VT1.isSimple() || !VT1.isInteger() ||
12561      !VT2.isSimple() || !VT2.isInteger())
12562    return false;
12563
12564  switch (VT1.getSimpleVT().SimpleTy) {
12565  default: break;
12566  case MVT::i8:
12567  case MVT::i16:
12568  case MVT::i32:
12569    // X86 has 8, 16, and 32-bit zero-extending loads.
12570    return true;
12571  }
12572
12573  return false;
12574}
12575
12576bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
12577  // i16 instructions are longer (0x66 prefix) and potentially slower.
12578  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
12579}
12580
12581/// isShuffleMaskLegal - Targets can use this to indicate that they only
12582/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
12583/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
12584/// are assumed to be legal.
12585bool
12586X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
12587                                      EVT VT) const {
12588  // Very little shuffling can be done for 64-bit vectors right now.
12589  if (VT.getSizeInBits() == 64)
12590    return false;
12591
12592  // FIXME: pshufb, blends, shifts.
12593  return (VT.getVectorNumElements() == 2 ||
12594          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
12595          isMOVLMask(M, VT) ||
12596          isSHUFPMask(M, VT, Subtarget->hasFp256()) ||
12597          isPSHUFDMask(M, VT) ||
12598          isPSHUFHWMask(M, VT, Subtarget->hasInt256()) ||
12599          isPSHUFLWMask(M, VT, Subtarget->hasInt256()) ||
12600          isPALIGNRMask(M, VT, Subtarget) ||
12601          isUNPCKLMask(M, VT, Subtarget->hasInt256()) ||
12602          isUNPCKHMask(M, VT, Subtarget->hasInt256()) ||
12603          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) ||
12604          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256()));
12605}
12606
12607bool
12608X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
12609                                          EVT VT) const {
12610  unsigned NumElts = VT.getVectorNumElements();
12611  // FIXME: This collection of masks seems suspect.
12612  if (NumElts == 2)
12613    return true;
12614  if (NumElts == 4 && VT.is128BitVector()) {
12615    return (isMOVLMask(Mask, VT)  ||
12616            isCommutedMOVLMask(Mask, VT, true) ||
12617            isSHUFPMask(Mask, VT, Subtarget->hasFp256()) ||
12618            isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true));
12619  }
12620  return false;
12621}
12622
12623//===----------------------------------------------------------------------===//
12624//                           X86 Scheduler Hooks
12625//===----------------------------------------------------------------------===//
12626
12627/// Utility function to emit xbegin specifying the start of an RTM region.
12628static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
12629                                     const TargetInstrInfo *TII) {
12630  DebugLoc DL = MI->getDebugLoc();
12631
12632  const BasicBlock *BB = MBB->getBasicBlock();
12633  MachineFunction::iterator I = MBB;
12634  ++I;
12635
12636  // For the v = xbegin(), we generate
12637  //
12638  // thisMBB:
12639  //  xbegin sinkMBB
12640  //
12641  // mainMBB:
12642  //  eax = -1
12643  //
12644  // sinkMBB:
12645  //  v = eax
12646
12647  MachineBasicBlock *thisMBB = MBB;
12648  MachineFunction *MF = MBB->getParent();
12649  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12650  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12651  MF->insert(I, mainMBB);
12652  MF->insert(I, sinkMBB);
12653
12654  // Transfer the remainder of BB and its successor edges to sinkMBB.
12655  sinkMBB->splice(sinkMBB->begin(), MBB,
12656                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12657  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12658
12659  // thisMBB:
12660  //  xbegin sinkMBB
12661  //  # fallthrough to mainMBB
12662  //  # abortion to sinkMBB
12663  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
12664  thisMBB->addSuccessor(mainMBB);
12665  thisMBB->addSuccessor(sinkMBB);
12666
12667  // mainMBB:
12668  //  EAX = -1
12669  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
12670  mainMBB->addSuccessor(sinkMBB);
12671
12672  // sinkMBB:
12673  // EAX is live into the sinkMBB
12674  sinkMBB->addLiveIn(X86::EAX);
12675  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12676          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12677    .addReg(X86::EAX);
12678
12679  MI->eraseFromParent();
12680  return sinkMBB;
12681}
12682
12683// Get CMPXCHG opcode for the specified data type.
12684static unsigned getCmpXChgOpcode(EVT VT) {
12685  switch (VT.getSimpleVT().SimpleTy) {
12686  case MVT::i8:  return X86::LCMPXCHG8;
12687  case MVT::i16: return X86::LCMPXCHG16;
12688  case MVT::i32: return X86::LCMPXCHG32;
12689  case MVT::i64: return X86::LCMPXCHG64;
12690  default:
12691    break;
12692  }
12693  llvm_unreachable("Invalid operand size!");
12694}
12695
12696// Get LOAD opcode for the specified data type.
12697static unsigned getLoadOpcode(EVT VT) {
12698  switch (VT.getSimpleVT().SimpleTy) {
12699  case MVT::i8:  return X86::MOV8rm;
12700  case MVT::i16: return X86::MOV16rm;
12701  case MVT::i32: return X86::MOV32rm;
12702  case MVT::i64: return X86::MOV64rm;
12703  default:
12704    break;
12705  }
12706  llvm_unreachable("Invalid operand size!");
12707}
12708
12709// Get opcode of the non-atomic one from the specified atomic instruction.
12710static unsigned getNonAtomicOpcode(unsigned Opc) {
12711  switch (Opc) {
12712  case X86::ATOMAND8:  return X86::AND8rr;
12713  case X86::ATOMAND16: return X86::AND16rr;
12714  case X86::ATOMAND32: return X86::AND32rr;
12715  case X86::ATOMAND64: return X86::AND64rr;
12716  case X86::ATOMOR8:   return X86::OR8rr;
12717  case X86::ATOMOR16:  return X86::OR16rr;
12718  case X86::ATOMOR32:  return X86::OR32rr;
12719  case X86::ATOMOR64:  return X86::OR64rr;
12720  case X86::ATOMXOR8:  return X86::XOR8rr;
12721  case X86::ATOMXOR16: return X86::XOR16rr;
12722  case X86::ATOMXOR32: return X86::XOR32rr;
12723  case X86::ATOMXOR64: return X86::XOR64rr;
12724  }
12725  llvm_unreachable("Unhandled atomic-load-op opcode!");
12726}
12727
12728// Get opcode of the non-atomic one from the specified atomic instruction with
12729// extra opcode.
12730static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
12731                                               unsigned &ExtraOpc) {
12732  switch (Opc) {
12733  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
12734  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
12735  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
12736  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
12737  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
12738  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
12739  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
12740  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
12741  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
12742  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
12743  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
12744  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
12745  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
12746  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
12747  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
12748  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
12749  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
12750  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
12751  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
12752  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
12753  }
12754  llvm_unreachable("Unhandled atomic-load-op opcode!");
12755}
12756
12757// Get opcode of the non-atomic one from the specified atomic instruction for
12758// 64-bit data type on 32-bit target.
12759static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
12760  switch (Opc) {
12761  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
12762  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
12763  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
12764  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
12765  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
12766  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
12767  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
12768  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
12769  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
12770  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
12771  }
12772  llvm_unreachable("Unhandled atomic-load-op opcode!");
12773}
12774
12775// Get opcode of the non-atomic one from the specified atomic instruction for
12776// 64-bit data type on 32-bit target with extra opcode.
12777static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
12778                                                   unsigned &HiOpc,
12779                                                   unsigned &ExtraOpc) {
12780  switch (Opc) {
12781  case X86::ATOMNAND6432:
12782    ExtraOpc = X86::NOT32r;
12783    HiOpc = X86::AND32rr;
12784    return X86::AND32rr;
12785  }
12786  llvm_unreachable("Unhandled atomic-load-op opcode!");
12787}
12788
12789// Get pseudo CMOV opcode from the specified data type.
12790static unsigned getPseudoCMOVOpc(EVT VT) {
12791  switch (VT.getSimpleVT().SimpleTy) {
12792  case MVT::i8:  return X86::CMOV_GR8;
12793  case MVT::i16: return X86::CMOV_GR16;
12794  case MVT::i32: return X86::CMOV_GR32;
12795  default:
12796    break;
12797  }
12798  llvm_unreachable("Unknown CMOV opcode!");
12799}
12800
12801// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
12802// They will be translated into a spin-loop or compare-exchange loop from
12803//
12804//    ...
12805//    dst = atomic-fetch-op MI.addr, MI.val
12806//    ...
12807//
12808// to
12809//
12810//    ...
12811//    EAX = LOAD MI.addr
12812// loop:
12813//    t1 = OP MI.val, EAX
12814//    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12815//    JNE loop
12816// sink:
12817//    dst = EAX
12818//    ...
12819MachineBasicBlock *
12820X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
12821                                       MachineBasicBlock *MBB) const {
12822  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12823  DebugLoc DL = MI->getDebugLoc();
12824
12825  MachineFunction *MF = MBB->getParent();
12826  MachineRegisterInfo &MRI = MF->getRegInfo();
12827
12828  const BasicBlock *BB = MBB->getBasicBlock();
12829  MachineFunction::iterator I = MBB;
12830  ++I;
12831
12832  assert(MI->getNumOperands() <= X86::AddrNumOperands + 2 &&
12833         "Unexpected number of operands");
12834
12835  assert(MI->hasOneMemOperand() &&
12836         "Expected atomic-load-op to have one memoperand");
12837
12838  // Memory Reference
12839  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12840  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12841
12842  unsigned DstReg, SrcReg;
12843  unsigned MemOpndSlot;
12844
12845  unsigned CurOp = 0;
12846
12847  DstReg = MI->getOperand(CurOp++).getReg();
12848  MemOpndSlot = CurOp;
12849  CurOp += X86::AddrNumOperands;
12850  SrcReg = MI->getOperand(CurOp++).getReg();
12851
12852  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
12853  MVT::SimpleValueType VT = *RC->vt_begin();
12854  unsigned AccPhyReg = getX86SubSuperRegister(X86::EAX, VT);
12855
12856  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
12857  unsigned LOADOpc = getLoadOpcode(VT);
12858
12859  // For the atomic load-arith operator, we generate
12860  //
12861  //  thisMBB:
12862  //    EAX = LOAD [MI.addr]
12863  //  mainMBB:
12864  //    t1 = OP MI.val, EAX
12865  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12866  //    JNE mainMBB
12867  //  sinkMBB:
12868
12869  MachineBasicBlock *thisMBB = MBB;
12870  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12871  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12872  MF->insert(I, mainMBB);
12873  MF->insert(I, sinkMBB);
12874
12875  MachineInstrBuilder MIB;
12876
12877  // Transfer the remainder of BB and its successor edges to sinkMBB.
12878  sinkMBB->splice(sinkMBB->begin(), MBB,
12879                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12880  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12881
12882  // thisMBB:
12883  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), AccPhyReg);
12884  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12885    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12886  MIB.setMemRefs(MMOBegin, MMOEnd);
12887
12888  thisMBB->addSuccessor(mainMBB);
12889
12890  // mainMBB:
12891  MachineBasicBlock *origMainMBB = mainMBB;
12892  mainMBB->addLiveIn(AccPhyReg);
12893
12894  // Copy AccPhyReg as it is used more than once.
12895  unsigned AccReg = MRI.createVirtualRegister(RC);
12896  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccReg)
12897    .addReg(AccPhyReg);
12898
12899  unsigned t1 = MRI.createVirtualRegister(RC);
12900  unsigned Opc = MI->getOpcode();
12901  switch (Opc) {
12902  default:
12903    llvm_unreachable("Unhandled atomic-load-op opcode!");
12904  case X86::ATOMAND8:
12905  case X86::ATOMAND16:
12906  case X86::ATOMAND32:
12907  case X86::ATOMAND64:
12908  case X86::ATOMOR8:
12909  case X86::ATOMOR16:
12910  case X86::ATOMOR32:
12911  case X86::ATOMOR64:
12912  case X86::ATOMXOR8:
12913  case X86::ATOMXOR16:
12914  case X86::ATOMXOR32:
12915  case X86::ATOMXOR64: {
12916    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
12917    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t1).addReg(SrcReg)
12918      .addReg(AccReg);
12919    break;
12920  }
12921  case X86::ATOMNAND8:
12922  case X86::ATOMNAND16:
12923  case X86::ATOMNAND32:
12924  case X86::ATOMNAND64: {
12925    unsigned t2 = MRI.createVirtualRegister(RC);
12926    unsigned NOTOpc;
12927    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
12928    BuildMI(mainMBB, DL, TII->get(ANDOpc), t2).addReg(SrcReg)
12929      .addReg(AccReg);
12930    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1).addReg(t2);
12931    break;
12932  }
12933  case X86::ATOMMAX8:
12934  case X86::ATOMMAX16:
12935  case X86::ATOMMAX32:
12936  case X86::ATOMMAX64:
12937  case X86::ATOMMIN8:
12938  case X86::ATOMMIN16:
12939  case X86::ATOMMIN32:
12940  case X86::ATOMMIN64:
12941  case X86::ATOMUMAX8:
12942  case X86::ATOMUMAX16:
12943  case X86::ATOMUMAX32:
12944  case X86::ATOMUMAX64:
12945  case X86::ATOMUMIN8:
12946  case X86::ATOMUMIN16:
12947  case X86::ATOMUMIN32:
12948  case X86::ATOMUMIN64: {
12949    unsigned CMPOpc;
12950    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
12951
12952    BuildMI(mainMBB, DL, TII->get(CMPOpc))
12953      .addReg(SrcReg)
12954      .addReg(AccReg);
12955
12956    if (Subtarget->hasCMov()) {
12957      if (VT != MVT::i8) {
12958        // Native support
12959        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t1)
12960          .addReg(SrcReg)
12961          .addReg(AccReg);
12962      } else {
12963        // Promote i8 to i32 to use CMOV32
12964        const TargetRegisterClass *RC32 = getRegClassFor(MVT::i32);
12965        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
12966        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
12967        unsigned t2 = MRI.createVirtualRegister(RC32);
12968
12969        unsigned Undef = MRI.createVirtualRegister(RC32);
12970        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
12971
12972        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
12973          .addReg(Undef)
12974          .addReg(SrcReg)
12975          .addImm(X86::sub_8bit);
12976        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
12977          .addReg(Undef)
12978          .addReg(AccReg)
12979          .addImm(X86::sub_8bit);
12980
12981        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
12982          .addReg(SrcReg32)
12983          .addReg(AccReg32);
12984
12985        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t1)
12986          .addReg(t2, 0, X86::sub_8bit);
12987      }
12988    } else {
12989      // Use pseudo select and lower them.
12990      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
12991             "Invalid atomic-load-op transformation!");
12992      unsigned SelOpc = getPseudoCMOVOpc(VT);
12993      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
12994      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
12995      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t1)
12996              .addReg(SrcReg).addReg(AccReg)
12997              .addImm(CC);
12998      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12999    }
13000    break;
13001  }
13002  }
13003
13004  // Copy AccPhyReg back from virtual register.
13005  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccPhyReg)
13006    .addReg(AccReg);
13007
13008  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13009  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
13010    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13011  MIB.addReg(t1);
13012  MIB.setMemRefs(MMOBegin, MMOEnd);
13013
13014  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13015
13016  mainMBB->addSuccessor(origMainMBB);
13017  mainMBB->addSuccessor(sinkMBB);
13018
13019  // sinkMBB:
13020  sinkMBB->addLiveIn(AccPhyReg);
13021
13022  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13023          TII->get(TargetOpcode::COPY), DstReg)
13024    .addReg(AccPhyReg);
13025
13026  MI->eraseFromParent();
13027  return sinkMBB;
13028}
13029
13030// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
13031// instructions. They will be translated into a spin-loop or compare-exchange
13032// loop from
13033//
13034//    ...
13035//    dst = atomic-fetch-op MI.addr, MI.val
13036//    ...
13037//
13038// to
13039//
13040//    ...
13041//    EAX = LOAD [MI.addr + 0]
13042//    EDX = LOAD [MI.addr + 4]
13043// loop:
13044//    EBX = OP MI.val.lo, EAX
13045//    ECX = OP MI.val.hi, EDX
13046//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13047//    JNE loop
13048// sink:
13049//    dst = EDX:EAX
13050//    ...
13051MachineBasicBlock *
13052X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
13053                                           MachineBasicBlock *MBB) const {
13054  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13055  DebugLoc DL = MI->getDebugLoc();
13056
13057  MachineFunction *MF = MBB->getParent();
13058  MachineRegisterInfo &MRI = MF->getRegInfo();
13059
13060  const BasicBlock *BB = MBB->getBasicBlock();
13061  MachineFunction::iterator I = MBB;
13062  ++I;
13063
13064  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
13065         "Unexpected number of operands");
13066
13067  assert(MI->hasOneMemOperand() &&
13068         "Expected atomic-load-op32 to have one memoperand");
13069
13070  // Memory Reference
13071  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13072  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13073
13074  unsigned DstLoReg, DstHiReg;
13075  unsigned SrcLoReg, SrcHiReg;
13076  unsigned MemOpndSlot;
13077
13078  unsigned CurOp = 0;
13079
13080  DstLoReg = MI->getOperand(CurOp++).getReg();
13081  DstHiReg = MI->getOperand(CurOp++).getReg();
13082  MemOpndSlot = CurOp;
13083  CurOp += X86::AddrNumOperands;
13084  SrcLoReg = MI->getOperand(CurOp++).getReg();
13085  SrcHiReg = MI->getOperand(CurOp++).getReg();
13086
13087  const TargetRegisterClass *RC = &X86::GR32RegClass;
13088  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
13089
13090  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
13091  unsigned LOADOpc = X86::MOV32rm;
13092
13093  // For the atomic load-arith operator, we generate
13094  //
13095  //  thisMBB:
13096  //    EAX = LOAD [MI.addr + 0]
13097  //    EDX = LOAD [MI.addr + 4]
13098  //  mainMBB:
13099  //    EBX = OP MI.vallo, EAX
13100  //    ECX = OP MI.valhi, EDX
13101  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
13102  //    JNE mainMBB
13103  //  sinkMBB:
13104
13105  MachineBasicBlock *thisMBB = MBB;
13106  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13107  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13108  MF->insert(I, mainMBB);
13109  MF->insert(I, sinkMBB);
13110
13111  MachineInstrBuilder MIB;
13112
13113  // Transfer the remainder of BB and its successor edges to sinkMBB.
13114  sinkMBB->splice(sinkMBB->begin(), MBB,
13115                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13116  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13117
13118  // thisMBB:
13119  // Lo
13120  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EAX);
13121  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
13122    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13123  MIB.setMemRefs(MMOBegin, MMOEnd);
13124  // Hi
13125  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EDX);
13126  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13127    if (i == X86::AddrDisp)
13128      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
13129    else
13130      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13131  }
13132  MIB.setMemRefs(MMOBegin, MMOEnd);
13133
13134  thisMBB->addSuccessor(mainMBB);
13135
13136  // mainMBB:
13137  MachineBasicBlock *origMainMBB = mainMBB;
13138  mainMBB->addLiveIn(X86::EAX);
13139  mainMBB->addLiveIn(X86::EDX);
13140
13141  // Copy EDX:EAX as they are used more than once.
13142  unsigned LoReg = MRI.createVirtualRegister(RC);
13143  unsigned HiReg = MRI.createVirtualRegister(RC);
13144  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), LoReg).addReg(X86::EAX);
13145  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), HiReg).addReg(X86::EDX);
13146
13147  unsigned t1L = MRI.createVirtualRegister(RC);
13148  unsigned t1H = MRI.createVirtualRegister(RC);
13149
13150  unsigned Opc = MI->getOpcode();
13151  switch (Opc) {
13152  default:
13153    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
13154  case X86::ATOMAND6432:
13155  case X86::ATOMOR6432:
13156  case X86::ATOMXOR6432:
13157  case X86::ATOMADD6432:
13158  case X86::ATOMSUB6432: {
13159    unsigned HiOpc;
13160    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13161    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(LoReg).addReg(SrcLoReg);
13162    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(HiReg).addReg(SrcHiReg);
13163    break;
13164  }
13165  case X86::ATOMNAND6432: {
13166    unsigned HiOpc, NOTOpc;
13167    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
13168    unsigned t2L = MRI.createVirtualRegister(RC);
13169    unsigned t2H = MRI.createVirtualRegister(RC);
13170    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg).addReg(LoReg);
13171    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg).addReg(HiReg);
13172    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1L).addReg(t2L);
13173    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1H).addReg(t2H);
13174    break;
13175  }
13176  case X86::ATOMMAX6432:
13177  case X86::ATOMMIN6432:
13178  case X86::ATOMUMAX6432:
13179  case X86::ATOMUMIN6432: {
13180    unsigned HiOpc;
13181    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13182    unsigned cL = MRI.createVirtualRegister(RC8);
13183    unsigned cH = MRI.createVirtualRegister(RC8);
13184    unsigned cL32 = MRI.createVirtualRegister(RC);
13185    unsigned cH32 = MRI.createVirtualRegister(RC);
13186    unsigned cc = MRI.createVirtualRegister(RC);
13187    // cl := cmp src_lo, lo
13188    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13189      .addReg(SrcLoReg).addReg(LoReg);
13190    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
13191    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
13192    // ch := cmp src_hi, hi
13193    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
13194      .addReg(SrcHiReg).addReg(HiReg);
13195    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
13196    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
13197    // cc := if (src_hi == hi) ? cl : ch;
13198    if (Subtarget->hasCMov()) {
13199      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
13200        .addReg(cH32).addReg(cL32);
13201    } else {
13202      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
13203              .addReg(cH32).addReg(cL32)
13204              .addImm(X86::COND_E);
13205      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13206    }
13207    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
13208    if (Subtarget->hasCMov()) {
13209      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1L)
13210        .addReg(SrcLoReg).addReg(LoReg);
13211      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1H)
13212        .addReg(SrcHiReg).addReg(HiReg);
13213    } else {
13214      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1L)
13215              .addReg(SrcLoReg).addReg(LoReg)
13216              .addImm(X86::COND_NE);
13217      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13218      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1H)
13219              .addReg(SrcHiReg).addReg(HiReg)
13220              .addImm(X86::COND_NE);
13221      mainMBB = EmitLoweredSelect(MIB, mainMBB);
13222    }
13223    break;
13224  }
13225  case X86::ATOMSWAP6432: {
13226    unsigned HiOpc;
13227    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
13228    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg);
13229    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg);
13230    break;
13231  }
13232  }
13233
13234  // Copy EDX:EAX back from HiReg:LoReg
13235  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(LoReg);
13236  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(HiReg);
13237  // Copy ECX:EBX from t1H:t1L
13238  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t1L);
13239  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t1H);
13240
13241  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
13242  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
13243    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13244  MIB.setMemRefs(MMOBegin, MMOEnd);
13245
13246  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
13247
13248  mainMBB->addSuccessor(origMainMBB);
13249  mainMBB->addSuccessor(sinkMBB);
13250
13251  // sinkMBB:
13252  sinkMBB->addLiveIn(X86::EAX);
13253  sinkMBB->addLiveIn(X86::EDX);
13254
13255  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13256          TII->get(TargetOpcode::COPY), DstLoReg)
13257    .addReg(X86::EAX);
13258  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13259          TII->get(TargetOpcode::COPY), DstHiReg)
13260    .addReg(X86::EDX);
13261
13262  MI->eraseFromParent();
13263  return sinkMBB;
13264}
13265
13266// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
13267// or XMM0_V32I8 in AVX all of this code can be replaced with that
13268// in the .td file.
13269static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
13270                                       const TargetInstrInfo *TII) {
13271  unsigned Opc;
13272  switch (MI->getOpcode()) {
13273  default: llvm_unreachable("illegal opcode!");
13274  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
13275  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
13276  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
13277  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
13278  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
13279  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
13280  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
13281  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
13282  }
13283
13284  DebugLoc dl = MI->getDebugLoc();
13285  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13286
13287  unsigned NumArgs = MI->getNumOperands();
13288  for (unsigned i = 1; i < NumArgs; ++i) {
13289    MachineOperand &Op = MI->getOperand(i);
13290    if (!(Op.isReg() && Op.isImplicit()))
13291      MIB.addOperand(Op);
13292  }
13293  if (MI->hasOneMemOperand())
13294    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13295
13296  BuildMI(*BB, MI, dl,
13297    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13298    .addReg(X86::XMM0);
13299
13300  MI->eraseFromParent();
13301  return BB;
13302}
13303
13304// FIXME: Custom handling because TableGen doesn't support multiple implicit
13305// defs in an instruction pattern
13306static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
13307                                       const TargetInstrInfo *TII) {
13308  unsigned Opc;
13309  switch (MI->getOpcode()) {
13310  default: llvm_unreachable("illegal opcode!");
13311  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
13312  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
13313  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
13314  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
13315  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
13316  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
13317  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
13318  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
13319  }
13320
13321  DebugLoc dl = MI->getDebugLoc();
13322  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
13323
13324  unsigned NumArgs = MI->getNumOperands(); // remove the results
13325  for (unsigned i = 1; i < NumArgs; ++i) {
13326    MachineOperand &Op = MI->getOperand(i);
13327    if (!(Op.isReg() && Op.isImplicit()))
13328      MIB.addOperand(Op);
13329  }
13330  if (MI->hasOneMemOperand())
13331    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
13332
13333  BuildMI(*BB, MI, dl,
13334    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13335    .addReg(X86::ECX);
13336
13337  MI->eraseFromParent();
13338  return BB;
13339}
13340
13341static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
13342                                       const TargetInstrInfo *TII,
13343                                       const X86Subtarget* Subtarget) {
13344  DebugLoc dl = MI->getDebugLoc();
13345
13346  // Address into RAX/EAX, other two args into ECX, EDX.
13347  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
13348  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
13349  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
13350  for (int i = 0; i < X86::AddrNumOperands; ++i)
13351    MIB.addOperand(MI->getOperand(i));
13352
13353  unsigned ValOps = X86::AddrNumOperands;
13354  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
13355    .addReg(MI->getOperand(ValOps).getReg());
13356  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
13357    .addReg(MI->getOperand(ValOps+1).getReg());
13358
13359  // The instruction doesn't actually take any operands though.
13360  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
13361
13362  MI->eraseFromParent(); // The pseudo is gone now.
13363  return BB;
13364}
13365
13366MachineBasicBlock *
13367X86TargetLowering::EmitVAARG64WithCustomInserter(
13368                   MachineInstr *MI,
13369                   MachineBasicBlock *MBB) const {
13370  // Emit va_arg instruction on X86-64.
13371
13372  // Operands to this pseudo-instruction:
13373  // 0  ) Output        : destination address (reg)
13374  // 1-5) Input         : va_list address (addr, i64mem)
13375  // 6  ) ArgSize       : Size (in bytes) of vararg type
13376  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
13377  // 8  ) Align         : Alignment of type
13378  // 9  ) EFLAGS (implicit-def)
13379
13380  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
13381  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
13382
13383  unsigned DestReg = MI->getOperand(0).getReg();
13384  MachineOperand &Base = MI->getOperand(1);
13385  MachineOperand &Scale = MI->getOperand(2);
13386  MachineOperand &Index = MI->getOperand(3);
13387  MachineOperand &Disp = MI->getOperand(4);
13388  MachineOperand &Segment = MI->getOperand(5);
13389  unsigned ArgSize = MI->getOperand(6).getImm();
13390  unsigned ArgMode = MI->getOperand(7).getImm();
13391  unsigned Align = MI->getOperand(8).getImm();
13392
13393  // Memory Reference
13394  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
13395  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13396  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13397
13398  // Machine Information
13399  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13400  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
13401  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
13402  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
13403  DebugLoc DL = MI->getDebugLoc();
13404
13405  // struct va_list {
13406  //   i32   gp_offset
13407  //   i32   fp_offset
13408  //   i64   overflow_area (address)
13409  //   i64   reg_save_area (address)
13410  // }
13411  // sizeof(va_list) = 24
13412  // alignment(va_list) = 8
13413
13414  unsigned TotalNumIntRegs = 6;
13415  unsigned TotalNumXMMRegs = 8;
13416  bool UseGPOffset = (ArgMode == 1);
13417  bool UseFPOffset = (ArgMode == 2);
13418  unsigned MaxOffset = TotalNumIntRegs * 8 +
13419                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
13420
13421  /* Align ArgSize to a multiple of 8 */
13422  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
13423  bool NeedsAlign = (Align > 8);
13424
13425  MachineBasicBlock *thisMBB = MBB;
13426  MachineBasicBlock *overflowMBB;
13427  MachineBasicBlock *offsetMBB;
13428  MachineBasicBlock *endMBB;
13429
13430  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
13431  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
13432  unsigned OffsetReg = 0;
13433
13434  if (!UseGPOffset && !UseFPOffset) {
13435    // If we only pull from the overflow region, we don't create a branch.
13436    // We don't need to alter control flow.
13437    OffsetDestReg = 0; // unused
13438    OverflowDestReg = DestReg;
13439
13440    offsetMBB = NULL;
13441    overflowMBB = thisMBB;
13442    endMBB = thisMBB;
13443  } else {
13444    // First emit code to check if gp_offset (or fp_offset) is below the bound.
13445    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
13446    // If not, pull from overflow_area. (branch to overflowMBB)
13447    //
13448    //       thisMBB
13449    //         |     .
13450    //         |        .
13451    //     offsetMBB   overflowMBB
13452    //         |        .
13453    //         |     .
13454    //        endMBB
13455
13456    // Registers for the PHI in endMBB
13457    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
13458    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
13459
13460    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13461    MachineFunction *MF = MBB->getParent();
13462    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13463    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13464    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13465
13466    MachineFunction::iterator MBBIter = MBB;
13467    ++MBBIter;
13468
13469    // Insert the new basic blocks
13470    MF->insert(MBBIter, offsetMBB);
13471    MF->insert(MBBIter, overflowMBB);
13472    MF->insert(MBBIter, endMBB);
13473
13474    // Transfer the remainder of MBB and its successor edges to endMBB.
13475    endMBB->splice(endMBB->begin(), thisMBB,
13476                    llvm::next(MachineBasicBlock::iterator(MI)),
13477                    thisMBB->end());
13478    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
13479
13480    // Make offsetMBB and overflowMBB successors of thisMBB
13481    thisMBB->addSuccessor(offsetMBB);
13482    thisMBB->addSuccessor(overflowMBB);
13483
13484    // endMBB is a successor of both offsetMBB and overflowMBB
13485    offsetMBB->addSuccessor(endMBB);
13486    overflowMBB->addSuccessor(endMBB);
13487
13488    // Load the offset value into a register
13489    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13490    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
13491      .addOperand(Base)
13492      .addOperand(Scale)
13493      .addOperand(Index)
13494      .addDisp(Disp, UseFPOffset ? 4 : 0)
13495      .addOperand(Segment)
13496      .setMemRefs(MMOBegin, MMOEnd);
13497
13498    // Check if there is enough room left to pull this argument.
13499    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
13500      .addReg(OffsetReg)
13501      .addImm(MaxOffset + 8 - ArgSizeA8);
13502
13503    // Branch to "overflowMBB" if offset >= max
13504    // Fall through to "offsetMBB" otherwise
13505    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
13506      .addMBB(overflowMBB);
13507  }
13508
13509  // In offsetMBB, emit code to use the reg_save_area.
13510  if (offsetMBB) {
13511    assert(OffsetReg != 0);
13512
13513    // Read the reg_save_area address.
13514    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
13515    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
13516      .addOperand(Base)
13517      .addOperand(Scale)
13518      .addOperand(Index)
13519      .addDisp(Disp, 16)
13520      .addOperand(Segment)
13521      .setMemRefs(MMOBegin, MMOEnd);
13522
13523    // Zero-extend the offset
13524    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
13525      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
13526        .addImm(0)
13527        .addReg(OffsetReg)
13528        .addImm(X86::sub_32bit);
13529
13530    // Add the offset to the reg_save_area to get the final address.
13531    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
13532      .addReg(OffsetReg64)
13533      .addReg(RegSaveReg);
13534
13535    // Compute the offset for the next argument
13536    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13537    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
13538      .addReg(OffsetReg)
13539      .addImm(UseFPOffset ? 16 : 8);
13540
13541    // Store it back into the va_list.
13542    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
13543      .addOperand(Base)
13544      .addOperand(Scale)
13545      .addOperand(Index)
13546      .addDisp(Disp, UseFPOffset ? 4 : 0)
13547      .addOperand(Segment)
13548      .addReg(NextOffsetReg)
13549      .setMemRefs(MMOBegin, MMOEnd);
13550
13551    // Jump to endMBB
13552    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
13553      .addMBB(endMBB);
13554  }
13555
13556  //
13557  // Emit code to use overflow area
13558  //
13559
13560  // Load the overflow_area address into a register.
13561  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
13562  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
13563    .addOperand(Base)
13564    .addOperand(Scale)
13565    .addOperand(Index)
13566    .addDisp(Disp, 8)
13567    .addOperand(Segment)
13568    .setMemRefs(MMOBegin, MMOEnd);
13569
13570  // If we need to align it, do so. Otherwise, just copy the address
13571  // to OverflowDestReg.
13572  if (NeedsAlign) {
13573    // Align the overflow address
13574    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
13575    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
13576
13577    // aligned_addr = (addr + (align-1)) & ~(align-1)
13578    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
13579      .addReg(OverflowAddrReg)
13580      .addImm(Align-1);
13581
13582    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
13583      .addReg(TmpReg)
13584      .addImm(~(uint64_t)(Align-1));
13585  } else {
13586    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
13587      .addReg(OverflowAddrReg);
13588  }
13589
13590  // Compute the next overflow address after this argument.
13591  // (the overflow address should be kept 8-byte aligned)
13592  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
13593  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
13594    .addReg(OverflowDestReg)
13595    .addImm(ArgSizeA8);
13596
13597  // Store the new overflow address.
13598  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
13599    .addOperand(Base)
13600    .addOperand(Scale)
13601    .addOperand(Index)
13602    .addDisp(Disp, 8)
13603    .addOperand(Segment)
13604    .addReg(NextAddrReg)
13605    .setMemRefs(MMOBegin, MMOEnd);
13606
13607  // If we branched, emit the PHI to the front of endMBB.
13608  if (offsetMBB) {
13609    BuildMI(*endMBB, endMBB->begin(), DL,
13610            TII->get(X86::PHI), DestReg)
13611      .addReg(OffsetDestReg).addMBB(offsetMBB)
13612      .addReg(OverflowDestReg).addMBB(overflowMBB);
13613  }
13614
13615  // Erase the pseudo instruction
13616  MI->eraseFromParent();
13617
13618  return endMBB;
13619}
13620
13621MachineBasicBlock *
13622X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
13623                                                 MachineInstr *MI,
13624                                                 MachineBasicBlock *MBB) const {
13625  // Emit code to save XMM registers to the stack. The ABI says that the
13626  // number of registers to save is given in %al, so it's theoretically
13627  // possible to do an indirect jump trick to avoid saving all of them,
13628  // however this code takes a simpler approach and just executes all
13629  // of the stores if %al is non-zero. It's less code, and it's probably
13630  // easier on the hardware branch predictor, and stores aren't all that
13631  // expensive anyway.
13632
13633  // Create the new basic blocks. One block contains all the XMM stores,
13634  // and one block is the final destination regardless of whether any
13635  // stores were performed.
13636  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13637  MachineFunction *F = MBB->getParent();
13638  MachineFunction::iterator MBBIter = MBB;
13639  ++MBBIter;
13640  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
13641  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
13642  F->insert(MBBIter, XMMSaveMBB);
13643  F->insert(MBBIter, EndMBB);
13644
13645  // Transfer the remainder of MBB and its successor edges to EndMBB.
13646  EndMBB->splice(EndMBB->begin(), MBB,
13647                 llvm::next(MachineBasicBlock::iterator(MI)),
13648                 MBB->end());
13649  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
13650
13651  // The original block will now fall through to the XMM save block.
13652  MBB->addSuccessor(XMMSaveMBB);
13653  // The XMMSaveMBB will fall through to the end block.
13654  XMMSaveMBB->addSuccessor(EndMBB);
13655
13656  // Now add the instructions.
13657  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13658  DebugLoc DL = MI->getDebugLoc();
13659
13660  unsigned CountReg = MI->getOperand(0).getReg();
13661  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
13662  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
13663
13664  if (!Subtarget->isTargetWin64()) {
13665    // If %al is 0, branch around the XMM save block.
13666    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
13667    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
13668    MBB->addSuccessor(EndMBB);
13669  }
13670
13671  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
13672  // In the XMM save block, save all the XMM argument registers.
13673  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
13674    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
13675    MachineMemOperand *MMO =
13676      F->getMachineMemOperand(
13677          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
13678        MachineMemOperand::MOStore,
13679        /*Size=*/16, /*Align=*/16);
13680    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
13681      .addFrameIndex(RegSaveFrameIndex)
13682      .addImm(/*Scale=*/1)
13683      .addReg(/*IndexReg=*/0)
13684      .addImm(/*Disp=*/Offset)
13685      .addReg(/*Segment=*/0)
13686      .addReg(MI->getOperand(i).getReg())
13687      .addMemOperand(MMO);
13688  }
13689
13690  MI->eraseFromParent();   // The pseudo instruction is gone now.
13691
13692  return EndMBB;
13693}
13694
13695// The EFLAGS operand of SelectItr might be missing a kill marker
13696// because there were multiple uses of EFLAGS, and ISel didn't know
13697// which to mark. Figure out whether SelectItr should have had a
13698// kill marker, and set it if it should. Returns the correct kill
13699// marker value.
13700static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
13701                                     MachineBasicBlock* BB,
13702                                     const TargetRegisterInfo* TRI) {
13703  // Scan forward through BB for a use/def of EFLAGS.
13704  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
13705  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
13706    const MachineInstr& mi = *miI;
13707    if (mi.readsRegister(X86::EFLAGS))
13708      return false;
13709    if (mi.definesRegister(X86::EFLAGS))
13710      break; // Should have kill-flag - update below.
13711  }
13712
13713  // If we hit the end of the block, check whether EFLAGS is live into a
13714  // successor.
13715  if (miI == BB->end()) {
13716    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
13717                                          sEnd = BB->succ_end();
13718         sItr != sEnd; ++sItr) {
13719      MachineBasicBlock* succ = *sItr;
13720      if (succ->isLiveIn(X86::EFLAGS))
13721        return false;
13722    }
13723  }
13724
13725  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
13726  // out. SelectMI should have a kill flag on EFLAGS.
13727  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
13728  return true;
13729}
13730
13731MachineBasicBlock *
13732X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
13733                                     MachineBasicBlock *BB) const {
13734  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13735  DebugLoc DL = MI->getDebugLoc();
13736
13737  // To "insert" a SELECT_CC instruction, we actually have to insert the
13738  // diamond control-flow pattern.  The incoming instruction knows the
13739  // destination vreg to set, the condition code register to branch on, the
13740  // true/false values to select between, and a branch opcode to use.
13741  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13742  MachineFunction::iterator It = BB;
13743  ++It;
13744
13745  //  thisMBB:
13746  //  ...
13747  //   TrueVal = ...
13748  //   cmpTY ccX, r1, r2
13749  //   bCC copy1MBB
13750  //   fallthrough --> copy0MBB
13751  MachineBasicBlock *thisMBB = BB;
13752  MachineFunction *F = BB->getParent();
13753  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
13754  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
13755  F->insert(It, copy0MBB);
13756  F->insert(It, sinkMBB);
13757
13758  // If the EFLAGS register isn't dead in the terminator, then claim that it's
13759  // live into the sink and copy blocks.
13760  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13761  if (!MI->killsRegister(X86::EFLAGS) &&
13762      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
13763    copy0MBB->addLiveIn(X86::EFLAGS);
13764    sinkMBB->addLiveIn(X86::EFLAGS);
13765  }
13766
13767  // Transfer the remainder of BB and its successor edges to sinkMBB.
13768  sinkMBB->splice(sinkMBB->begin(), BB,
13769                  llvm::next(MachineBasicBlock::iterator(MI)),
13770                  BB->end());
13771  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
13772
13773  // Add the true and fallthrough blocks as its successors.
13774  BB->addSuccessor(copy0MBB);
13775  BB->addSuccessor(sinkMBB);
13776
13777  // Create the conditional branch instruction.
13778  unsigned Opc =
13779    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
13780  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
13781
13782  //  copy0MBB:
13783  //   %FalseValue = ...
13784  //   # fallthrough to sinkMBB
13785  copy0MBB->addSuccessor(sinkMBB);
13786
13787  //  sinkMBB:
13788  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
13789  //  ...
13790  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13791          TII->get(X86::PHI), MI->getOperand(0).getReg())
13792    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
13793    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
13794
13795  MI->eraseFromParent();   // The pseudo instruction is gone now.
13796  return sinkMBB;
13797}
13798
13799MachineBasicBlock *
13800X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
13801                                        bool Is64Bit) const {
13802  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13803  DebugLoc DL = MI->getDebugLoc();
13804  MachineFunction *MF = BB->getParent();
13805  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13806
13807  assert(getTargetMachine().Options.EnableSegmentedStacks);
13808
13809  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
13810  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
13811
13812  // BB:
13813  //  ... [Till the alloca]
13814  // If stacklet is not large enough, jump to mallocMBB
13815  //
13816  // bumpMBB:
13817  //  Allocate by subtracting from RSP
13818  //  Jump to continueMBB
13819  //
13820  // mallocMBB:
13821  //  Allocate by call to runtime
13822  //
13823  // continueMBB:
13824  //  ...
13825  //  [rest of original BB]
13826  //
13827
13828  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13829  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13830  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13831
13832  MachineRegisterInfo &MRI = MF->getRegInfo();
13833  const TargetRegisterClass *AddrRegClass =
13834    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
13835
13836  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13837    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13838    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
13839    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
13840    sizeVReg = MI->getOperand(1).getReg(),
13841    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
13842
13843  MachineFunction::iterator MBBIter = BB;
13844  ++MBBIter;
13845
13846  MF->insert(MBBIter, bumpMBB);
13847  MF->insert(MBBIter, mallocMBB);
13848  MF->insert(MBBIter, continueMBB);
13849
13850  continueMBB->splice(continueMBB->begin(), BB, llvm::next
13851                      (MachineBasicBlock::iterator(MI)), BB->end());
13852  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
13853
13854  // Add code to the main basic block to check if the stack limit has been hit,
13855  // and if so, jump to mallocMBB otherwise to bumpMBB.
13856  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
13857  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
13858    .addReg(tmpSPVReg).addReg(sizeVReg);
13859  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
13860    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
13861    .addReg(SPLimitVReg);
13862  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
13863
13864  // bumpMBB simply decreases the stack pointer, since we know the current
13865  // stacklet has enough space.
13866  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
13867    .addReg(SPLimitVReg);
13868  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
13869    .addReg(SPLimitVReg);
13870  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13871
13872  // Calls into a routine in libgcc to allocate more space from the heap.
13873  const uint32_t *RegMask =
13874    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13875  if (Is64Bit) {
13876    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
13877      .addReg(sizeVReg);
13878    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
13879      .addExternalSymbol("__morestack_allocate_stack_space")
13880      .addRegMask(RegMask)
13881      .addReg(X86::RDI, RegState::Implicit)
13882      .addReg(X86::RAX, RegState::ImplicitDefine);
13883  } else {
13884    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
13885      .addImm(12);
13886    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
13887    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
13888      .addExternalSymbol("__morestack_allocate_stack_space")
13889      .addRegMask(RegMask)
13890      .addReg(X86::EAX, RegState::ImplicitDefine);
13891  }
13892
13893  if (!Is64Bit)
13894    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
13895      .addImm(16);
13896
13897  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
13898    .addReg(Is64Bit ? X86::RAX : X86::EAX);
13899  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13900
13901  // Set up the CFG correctly.
13902  BB->addSuccessor(bumpMBB);
13903  BB->addSuccessor(mallocMBB);
13904  mallocMBB->addSuccessor(continueMBB);
13905  bumpMBB->addSuccessor(continueMBB);
13906
13907  // Take care of the PHI nodes.
13908  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
13909          MI->getOperand(0).getReg())
13910    .addReg(mallocPtrVReg).addMBB(mallocMBB)
13911    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
13912
13913  // Delete the original pseudo instruction.
13914  MI->eraseFromParent();
13915
13916  // And we're done.
13917  return continueMBB;
13918}
13919
13920MachineBasicBlock *
13921X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
13922                                          MachineBasicBlock *BB) const {
13923  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13924  DebugLoc DL = MI->getDebugLoc();
13925
13926  assert(!Subtarget->isTargetEnvMacho());
13927
13928  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
13929  // non-trivial part is impdef of ESP.
13930
13931  if (Subtarget->isTargetWin64()) {
13932    if (Subtarget->isTargetCygMing()) {
13933      // ___chkstk(Mingw64):
13934      // Clobbers R10, R11, RAX and EFLAGS.
13935      // Updates RSP.
13936      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13937        .addExternalSymbol("___chkstk")
13938        .addReg(X86::RAX, RegState::Implicit)
13939        .addReg(X86::RSP, RegState::Implicit)
13940        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
13941        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
13942        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13943    } else {
13944      // __chkstk(MSVCRT): does not update stack pointer.
13945      // Clobbers R10, R11 and EFLAGS.
13946      // FIXME: RAX(allocated size) might be reused and not killed.
13947      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13948        .addExternalSymbol("__chkstk")
13949        .addReg(X86::RAX, RegState::Implicit)
13950        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13951      // RAX has the offset to subtracted from RSP.
13952      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
13953        .addReg(X86::RSP)
13954        .addReg(X86::RAX);
13955    }
13956  } else {
13957    const char *StackProbeSymbol =
13958      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
13959
13960    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
13961      .addExternalSymbol(StackProbeSymbol)
13962      .addReg(X86::EAX, RegState::Implicit)
13963      .addReg(X86::ESP, RegState::Implicit)
13964      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
13965      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
13966      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13967  }
13968
13969  MI->eraseFromParent();   // The pseudo instruction is gone now.
13970  return BB;
13971}
13972
13973MachineBasicBlock *
13974X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
13975                                      MachineBasicBlock *BB) const {
13976  // This is pretty easy.  We're taking the value that we received from
13977  // our load from the relocation, sticking it in either RDI (x86-64)
13978  // or EAX and doing an indirect call.  The return value will then
13979  // be in the normal return register.
13980  const X86InstrInfo *TII
13981    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
13982  DebugLoc DL = MI->getDebugLoc();
13983  MachineFunction *F = BB->getParent();
13984
13985  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
13986  assert(MI->getOperand(3).isGlobal() && "This should be a global");
13987
13988  // Get a register mask for the lowered call.
13989  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
13990  // proper register mask.
13991  const uint32_t *RegMask =
13992    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13993  if (Subtarget->is64Bit()) {
13994    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13995                                      TII->get(X86::MOV64rm), X86::RDI)
13996    .addReg(X86::RIP)
13997    .addImm(0).addReg(0)
13998    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13999                      MI->getOperand(3).getTargetFlags())
14000    .addReg(0);
14001    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
14002    addDirectMem(MIB, X86::RDI);
14003    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
14004  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
14005    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14006                                      TII->get(X86::MOV32rm), X86::EAX)
14007    .addReg(0)
14008    .addImm(0).addReg(0)
14009    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14010                      MI->getOperand(3).getTargetFlags())
14011    .addReg(0);
14012    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14013    addDirectMem(MIB, X86::EAX);
14014    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14015  } else {
14016    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
14017                                      TII->get(X86::MOV32rm), X86::EAX)
14018    .addReg(TII->getGlobalBaseReg(F))
14019    .addImm(0).addReg(0)
14020    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
14021                      MI->getOperand(3).getTargetFlags())
14022    .addReg(0);
14023    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
14024    addDirectMem(MIB, X86::EAX);
14025    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
14026  }
14027
14028  MI->eraseFromParent(); // The pseudo instruction is gone now.
14029  return BB;
14030}
14031
14032MachineBasicBlock *
14033X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
14034                                    MachineBasicBlock *MBB) const {
14035  DebugLoc DL = MI->getDebugLoc();
14036  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14037
14038  MachineFunction *MF = MBB->getParent();
14039  MachineRegisterInfo &MRI = MF->getRegInfo();
14040
14041  const BasicBlock *BB = MBB->getBasicBlock();
14042  MachineFunction::iterator I = MBB;
14043  ++I;
14044
14045  // Memory Reference
14046  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14047  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14048
14049  unsigned DstReg;
14050  unsigned MemOpndSlot = 0;
14051
14052  unsigned CurOp = 0;
14053
14054  DstReg = MI->getOperand(CurOp++).getReg();
14055  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
14056  assert(RC->hasType(MVT::i32) && "Invalid destination!");
14057  unsigned mainDstReg = MRI.createVirtualRegister(RC);
14058  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
14059
14060  MemOpndSlot = CurOp;
14061
14062  MVT PVT = getPointerTy();
14063  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14064         "Invalid Pointer Size!");
14065
14066  // For v = setjmp(buf), we generate
14067  //
14068  // thisMBB:
14069  //  buf[LabelOffset] = restoreMBB
14070  //  SjLjSetup restoreMBB
14071  //
14072  // mainMBB:
14073  //  v_main = 0
14074  //
14075  // sinkMBB:
14076  //  v = phi(main, restore)
14077  //
14078  // restoreMBB:
14079  //  v_restore = 1
14080
14081  MachineBasicBlock *thisMBB = MBB;
14082  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14083  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14084  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
14085  MF->insert(I, mainMBB);
14086  MF->insert(I, sinkMBB);
14087  MF->push_back(restoreMBB);
14088
14089  MachineInstrBuilder MIB;
14090
14091  // Transfer the remainder of BB and its successor edges to sinkMBB.
14092  sinkMBB->splice(sinkMBB->begin(), MBB,
14093                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14094  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14095
14096  // thisMBB:
14097  unsigned PtrStoreOpc = 0;
14098  unsigned LabelReg = 0;
14099  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14100  Reloc::Model RM = getTargetMachine().getRelocationModel();
14101  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
14102                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
14103
14104  // Prepare IP either in reg or imm.
14105  if (!UseImmLabel) {
14106    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
14107    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
14108    LabelReg = MRI.createVirtualRegister(PtrRC);
14109    if (Subtarget->is64Bit()) {
14110      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
14111              .addReg(X86::RIP)
14112              .addImm(0)
14113              .addReg(0)
14114              .addMBB(restoreMBB)
14115              .addReg(0);
14116    } else {
14117      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
14118      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
14119              .addReg(XII->getGlobalBaseReg(MF))
14120              .addImm(0)
14121              .addReg(0)
14122              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
14123              .addReg(0);
14124    }
14125  } else
14126    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
14127  // Store IP
14128  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
14129  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14130    if (i == X86::AddrDisp)
14131      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
14132    else
14133      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
14134  }
14135  if (!UseImmLabel)
14136    MIB.addReg(LabelReg);
14137  else
14138    MIB.addMBB(restoreMBB);
14139  MIB.setMemRefs(MMOBegin, MMOEnd);
14140  // Setup
14141  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
14142          .addMBB(restoreMBB);
14143  MIB.addRegMask(RegInfo->getNoPreservedMask());
14144  thisMBB->addSuccessor(mainMBB);
14145  thisMBB->addSuccessor(restoreMBB);
14146
14147  // mainMBB:
14148  //  EAX = 0
14149  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
14150  mainMBB->addSuccessor(sinkMBB);
14151
14152  // sinkMBB:
14153  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14154          TII->get(X86::PHI), DstReg)
14155    .addReg(mainDstReg).addMBB(mainMBB)
14156    .addReg(restoreDstReg).addMBB(restoreMBB);
14157
14158  // restoreMBB:
14159  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
14160  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
14161  restoreMBB->addSuccessor(sinkMBB);
14162
14163  MI->eraseFromParent();
14164  return sinkMBB;
14165}
14166
14167MachineBasicBlock *
14168X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
14169                                     MachineBasicBlock *MBB) const {
14170  DebugLoc DL = MI->getDebugLoc();
14171  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14172
14173  MachineFunction *MF = MBB->getParent();
14174  MachineRegisterInfo &MRI = MF->getRegInfo();
14175
14176  // Memory Reference
14177  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14178  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14179
14180  MVT PVT = getPointerTy();
14181  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
14182         "Invalid Pointer Size!");
14183
14184  const TargetRegisterClass *RC =
14185    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
14186  unsigned Tmp = MRI.createVirtualRegister(RC);
14187  // Since FP is only updated here but NOT referenced, it's treated as GPR.
14188  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
14189  unsigned SP = RegInfo->getStackRegister();
14190
14191  MachineInstrBuilder MIB;
14192
14193  const int64_t LabelOffset = 1 * PVT.getStoreSize();
14194  const int64_t SPOffset = 2 * PVT.getStoreSize();
14195
14196  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
14197  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
14198
14199  // Reload FP
14200  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
14201  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
14202    MIB.addOperand(MI->getOperand(i));
14203  MIB.setMemRefs(MMOBegin, MMOEnd);
14204  // Reload IP
14205  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
14206  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14207    if (i == X86::AddrDisp)
14208      MIB.addDisp(MI->getOperand(i), LabelOffset);
14209    else
14210      MIB.addOperand(MI->getOperand(i));
14211  }
14212  MIB.setMemRefs(MMOBegin, MMOEnd);
14213  // Reload SP
14214  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
14215  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14216    if (i == X86::AddrDisp)
14217      MIB.addDisp(MI->getOperand(i), SPOffset);
14218    else
14219      MIB.addOperand(MI->getOperand(i));
14220  }
14221  MIB.setMemRefs(MMOBegin, MMOEnd);
14222  // Jump
14223  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
14224
14225  MI->eraseFromParent();
14226  return MBB;
14227}
14228
14229MachineBasicBlock *
14230X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
14231                                               MachineBasicBlock *BB) const {
14232  switch (MI->getOpcode()) {
14233  default: llvm_unreachable("Unexpected instr type to insert");
14234  case X86::TAILJMPd64:
14235  case X86::TAILJMPr64:
14236  case X86::TAILJMPm64:
14237    llvm_unreachable("TAILJMP64 would not be touched here.");
14238  case X86::TCRETURNdi64:
14239  case X86::TCRETURNri64:
14240  case X86::TCRETURNmi64:
14241    return BB;
14242  case X86::WIN_ALLOCA:
14243    return EmitLoweredWinAlloca(MI, BB);
14244  case X86::SEG_ALLOCA_32:
14245    return EmitLoweredSegAlloca(MI, BB, false);
14246  case X86::SEG_ALLOCA_64:
14247    return EmitLoweredSegAlloca(MI, BB, true);
14248  case X86::TLSCall_32:
14249  case X86::TLSCall_64:
14250    return EmitLoweredTLSCall(MI, BB);
14251  case X86::CMOV_GR8:
14252  case X86::CMOV_FR32:
14253  case X86::CMOV_FR64:
14254  case X86::CMOV_V4F32:
14255  case X86::CMOV_V2F64:
14256  case X86::CMOV_V2I64:
14257  case X86::CMOV_V8F32:
14258  case X86::CMOV_V4F64:
14259  case X86::CMOV_V4I64:
14260  case X86::CMOV_GR16:
14261  case X86::CMOV_GR32:
14262  case X86::CMOV_RFP32:
14263  case X86::CMOV_RFP64:
14264  case X86::CMOV_RFP80:
14265    return EmitLoweredSelect(MI, BB);
14266
14267  case X86::FP32_TO_INT16_IN_MEM:
14268  case X86::FP32_TO_INT32_IN_MEM:
14269  case X86::FP32_TO_INT64_IN_MEM:
14270  case X86::FP64_TO_INT16_IN_MEM:
14271  case X86::FP64_TO_INT32_IN_MEM:
14272  case X86::FP64_TO_INT64_IN_MEM:
14273  case X86::FP80_TO_INT16_IN_MEM:
14274  case X86::FP80_TO_INT32_IN_MEM:
14275  case X86::FP80_TO_INT64_IN_MEM: {
14276    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14277    DebugLoc DL = MI->getDebugLoc();
14278
14279    // Change the floating point control register to use "round towards zero"
14280    // mode when truncating to an integer value.
14281    MachineFunction *F = BB->getParent();
14282    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
14283    addFrameReference(BuildMI(*BB, MI, DL,
14284                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
14285
14286    // Load the old value of the high byte of the control word...
14287    unsigned OldCW =
14288      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
14289    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
14290                      CWFrameIdx);
14291
14292    // Set the high part to be round to zero...
14293    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
14294      .addImm(0xC7F);
14295
14296    // Reload the modified control word now...
14297    addFrameReference(BuildMI(*BB, MI, DL,
14298                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14299
14300    // Restore the memory image of control word to original value
14301    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
14302      .addReg(OldCW);
14303
14304    // Get the X86 opcode to use.
14305    unsigned Opc;
14306    switch (MI->getOpcode()) {
14307    default: llvm_unreachable("illegal opcode!");
14308    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
14309    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
14310    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
14311    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
14312    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
14313    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
14314    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
14315    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
14316    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
14317    }
14318
14319    X86AddressMode AM;
14320    MachineOperand &Op = MI->getOperand(0);
14321    if (Op.isReg()) {
14322      AM.BaseType = X86AddressMode::RegBase;
14323      AM.Base.Reg = Op.getReg();
14324    } else {
14325      AM.BaseType = X86AddressMode::FrameIndexBase;
14326      AM.Base.FrameIndex = Op.getIndex();
14327    }
14328    Op = MI->getOperand(1);
14329    if (Op.isImm())
14330      AM.Scale = Op.getImm();
14331    Op = MI->getOperand(2);
14332    if (Op.isImm())
14333      AM.IndexReg = Op.getImm();
14334    Op = MI->getOperand(3);
14335    if (Op.isGlobal()) {
14336      AM.GV = Op.getGlobal();
14337    } else {
14338      AM.Disp = Op.getImm();
14339    }
14340    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
14341                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
14342
14343    // Reload the original control word now.
14344    addFrameReference(BuildMI(*BB, MI, DL,
14345                              TII->get(X86::FLDCW16m)), CWFrameIdx);
14346
14347    MI->eraseFromParent();   // The pseudo instruction is gone now.
14348    return BB;
14349  }
14350    // String/text processing lowering.
14351  case X86::PCMPISTRM128REG:
14352  case X86::VPCMPISTRM128REG:
14353  case X86::PCMPISTRM128MEM:
14354  case X86::VPCMPISTRM128MEM:
14355  case X86::PCMPESTRM128REG:
14356  case X86::VPCMPESTRM128REG:
14357  case X86::PCMPESTRM128MEM:
14358  case X86::VPCMPESTRM128MEM:
14359    assert(Subtarget->hasSSE42() &&
14360           "Target must have SSE4.2 or AVX features enabled");
14361    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
14362
14363  // String/text processing lowering.
14364  case X86::PCMPISTRIREG:
14365  case X86::VPCMPISTRIREG:
14366  case X86::PCMPISTRIMEM:
14367  case X86::VPCMPISTRIMEM:
14368  case X86::PCMPESTRIREG:
14369  case X86::VPCMPESTRIREG:
14370  case X86::PCMPESTRIMEM:
14371  case X86::VPCMPESTRIMEM:
14372    assert(Subtarget->hasSSE42() &&
14373           "Target must have SSE4.2 or AVX features enabled");
14374    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
14375
14376  // Thread synchronization.
14377  case X86::MONITOR:
14378    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
14379
14380  // xbegin
14381  case X86::XBEGIN:
14382    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
14383
14384  // Atomic Lowering.
14385  case X86::ATOMAND8:
14386  case X86::ATOMAND16:
14387  case X86::ATOMAND32:
14388  case X86::ATOMAND64:
14389    // Fall through
14390  case X86::ATOMOR8:
14391  case X86::ATOMOR16:
14392  case X86::ATOMOR32:
14393  case X86::ATOMOR64:
14394    // Fall through
14395  case X86::ATOMXOR16:
14396  case X86::ATOMXOR8:
14397  case X86::ATOMXOR32:
14398  case X86::ATOMXOR64:
14399    // Fall through
14400  case X86::ATOMNAND8:
14401  case X86::ATOMNAND16:
14402  case X86::ATOMNAND32:
14403  case X86::ATOMNAND64:
14404    // Fall through
14405  case X86::ATOMMAX8:
14406  case X86::ATOMMAX16:
14407  case X86::ATOMMAX32:
14408  case X86::ATOMMAX64:
14409    // Fall through
14410  case X86::ATOMMIN8:
14411  case X86::ATOMMIN16:
14412  case X86::ATOMMIN32:
14413  case X86::ATOMMIN64:
14414    // Fall through
14415  case X86::ATOMUMAX8:
14416  case X86::ATOMUMAX16:
14417  case X86::ATOMUMAX32:
14418  case X86::ATOMUMAX64:
14419    // Fall through
14420  case X86::ATOMUMIN8:
14421  case X86::ATOMUMIN16:
14422  case X86::ATOMUMIN32:
14423  case X86::ATOMUMIN64:
14424    return EmitAtomicLoadArith(MI, BB);
14425
14426  // This group does 64-bit operations on a 32-bit host.
14427  case X86::ATOMAND6432:
14428  case X86::ATOMOR6432:
14429  case X86::ATOMXOR6432:
14430  case X86::ATOMNAND6432:
14431  case X86::ATOMADD6432:
14432  case X86::ATOMSUB6432:
14433  case X86::ATOMMAX6432:
14434  case X86::ATOMMIN6432:
14435  case X86::ATOMUMAX6432:
14436  case X86::ATOMUMIN6432:
14437  case X86::ATOMSWAP6432:
14438    return EmitAtomicLoadArith6432(MI, BB);
14439
14440  case X86::VASTART_SAVE_XMM_REGS:
14441    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
14442
14443  case X86::VAARG_64:
14444    return EmitVAARG64WithCustomInserter(MI, BB);
14445
14446  case X86::EH_SjLj_SetJmp32:
14447  case X86::EH_SjLj_SetJmp64:
14448    return emitEHSjLjSetJmp(MI, BB);
14449
14450  case X86::EH_SjLj_LongJmp32:
14451  case X86::EH_SjLj_LongJmp64:
14452    return emitEHSjLjLongJmp(MI, BB);
14453  }
14454}
14455
14456//===----------------------------------------------------------------------===//
14457//                           X86 Optimization Hooks
14458//===----------------------------------------------------------------------===//
14459
14460void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
14461                                                       APInt &KnownZero,
14462                                                       APInt &KnownOne,
14463                                                       const SelectionDAG &DAG,
14464                                                       unsigned Depth) const {
14465  unsigned BitWidth = KnownZero.getBitWidth();
14466  unsigned Opc = Op.getOpcode();
14467  assert((Opc >= ISD::BUILTIN_OP_END ||
14468          Opc == ISD::INTRINSIC_WO_CHAIN ||
14469          Opc == ISD::INTRINSIC_W_CHAIN ||
14470          Opc == ISD::INTRINSIC_VOID) &&
14471         "Should use MaskedValueIsZero if you don't know whether Op"
14472         " is a target node!");
14473
14474  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
14475  switch (Opc) {
14476  default: break;
14477  case X86ISD::ADD:
14478  case X86ISD::SUB:
14479  case X86ISD::ADC:
14480  case X86ISD::SBB:
14481  case X86ISD::SMUL:
14482  case X86ISD::UMUL:
14483  case X86ISD::INC:
14484  case X86ISD::DEC:
14485  case X86ISD::OR:
14486  case X86ISD::XOR:
14487  case X86ISD::AND:
14488    // These nodes' second result is a boolean.
14489    if (Op.getResNo() == 0)
14490      break;
14491    // Fallthrough
14492  case X86ISD::SETCC:
14493    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
14494    break;
14495  case ISD::INTRINSIC_WO_CHAIN: {
14496    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14497    unsigned NumLoBits = 0;
14498    switch (IntId) {
14499    default: break;
14500    case Intrinsic::x86_sse_movmsk_ps:
14501    case Intrinsic::x86_avx_movmsk_ps_256:
14502    case Intrinsic::x86_sse2_movmsk_pd:
14503    case Intrinsic::x86_avx_movmsk_pd_256:
14504    case Intrinsic::x86_mmx_pmovmskb:
14505    case Intrinsic::x86_sse2_pmovmskb_128:
14506    case Intrinsic::x86_avx2_pmovmskb: {
14507      // High bits of movmskp{s|d}, pmovmskb are known zero.
14508      switch (IntId) {
14509        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
14510        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
14511        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
14512        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
14513        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
14514        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
14515        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
14516        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
14517      }
14518      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
14519      break;
14520    }
14521    }
14522    break;
14523  }
14524  }
14525}
14526
14527unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
14528                                                         unsigned Depth) const {
14529  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
14530  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
14531    return Op.getValueType().getScalarType().getSizeInBits();
14532
14533  // Fallback case.
14534  return 1;
14535}
14536
14537/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
14538/// node is a GlobalAddress + offset.
14539bool X86TargetLowering::isGAPlusOffset(SDNode *N,
14540                                       const GlobalValue* &GA,
14541                                       int64_t &Offset) const {
14542  if (N->getOpcode() == X86ISD::Wrapper) {
14543    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
14544      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
14545      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
14546      return true;
14547    }
14548  }
14549  return TargetLowering::isGAPlusOffset(N, GA, Offset);
14550}
14551
14552/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
14553/// same as extracting the high 128-bit part of 256-bit vector and then
14554/// inserting the result into the low part of a new 256-bit vector
14555static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
14556  EVT VT = SVOp->getValueType(0);
14557  unsigned NumElems = VT.getVectorNumElements();
14558
14559  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14560  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
14561    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14562        SVOp->getMaskElt(j) >= 0)
14563      return false;
14564
14565  return true;
14566}
14567
14568/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
14569/// same as extracting the low 128-bit part of 256-bit vector and then
14570/// inserting the result into the high part of a new 256-bit vector
14571static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
14572  EVT VT = SVOp->getValueType(0);
14573  unsigned NumElems = VT.getVectorNumElements();
14574
14575  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14576  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
14577    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14578        SVOp->getMaskElt(j) >= 0)
14579      return false;
14580
14581  return true;
14582}
14583
14584/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
14585static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
14586                                        TargetLowering::DAGCombinerInfo &DCI,
14587                                        const X86Subtarget* Subtarget) {
14588  DebugLoc dl = N->getDebugLoc();
14589  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
14590  SDValue V1 = SVOp->getOperand(0);
14591  SDValue V2 = SVOp->getOperand(1);
14592  EVT VT = SVOp->getValueType(0);
14593  unsigned NumElems = VT.getVectorNumElements();
14594
14595  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
14596      V2.getOpcode() == ISD::CONCAT_VECTORS) {
14597    //
14598    //                   0,0,0,...
14599    //                      |
14600    //    V      UNDEF    BUILD_VECTOR    UNDEF
14601    //     \      /           \           /
14602    //  CONCAT_VECTOR         CONCAT_VECTOR
14603    //         \                  /
14604    //          \                /
14605    //          RESULT: V + zero extended
14606    //
14607    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
14608        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
14609        V1.getOperand(1).getOpcode() != ISD::UNDEF)
14610      return SDValue();
14611
14612    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
14613      return SDValue();
14614
14615    // To match the shuffle mask, the first half of the mask should
14616    // be exactly the first vector, and all the rest a splat with the
14617    // first element of the second one.
14618    for (unsigned i = 0; i != NumElems/2; ++i)
14619      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
14620          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
14621        return SDValue();
14622
14623    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
14624    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
14625      if (Ld->hasNUsesOfValue(1, 0)) {
14626        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
14627        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
14628        SDValue ResNode =
14629          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
14630                                  Ld->getMemoryVT(),
14631                                  Ld->getPointerInfo(),
14632                                  Ld->getAlignment(),
14633                                  false/*isVolatile*/, true/*ReadMem*/,
14634                                  false/*WriteMem*/);
14635
14636        // Make sure the newly-created LOAD is in the same position as Ld in
14637        // terms of dependency. We create a TokenFactor for Ld and ResNode,
14638        // and update uses of Ld's output chain to use the TokenFactor.
14639        if (Ld->hasAnyUseOfValue(1)) {
14640          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14641                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
14642          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
14643          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
14644                                 SDValue(ResNode.getNode(), 1));
14645        }
14646
14647        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
14648      }
14649    }
14650
14651    // Emit a zeroed vector and insert the desired subvector on its
14652    // first half.
14653    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
14654    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
14655    return DCI.CombineTo(N, InsV);
14656  }
14657
14658  //===--------------------------------------------------------------------===//
14659  // Combine some shuffles into subvector extracts and inserts:
14660  //
14661
14662  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14663  if (isShuffleHigh128VectorInsertLow(SVOp)) {
14664    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
14665    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
14666    return DCI.CombineTo(N, InsV);
14667  }
14668
14669  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14670  if (isShuffleLow128VectorInsertHigh(SVOp)) {
14671    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
14672    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
14673    return DCI.CombineTo(N, InsV);
14674  }
14675
14676  return SDValue();
14677}
14678
14679/// PerformShuffleCombine - Performs several different shuffle combines.
14680static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
14681                                     TargetLowering::DAGCombinerInfo &DCI,
14682                                     const X86Subtarget *Subtarget) {
14683  DebugLoc dl = N->getDebugLoc();
14684  EVT VT = N->getValueType(0);
14685
14686  // Don't create instructions with illegal types after legalize types has run.
14687  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14688  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
14689    return SDValue();
14690
14691  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
14692  if (Subtarget->hasFp256() && VT.is256BitVector() &&
14693      N->getOpcode() == ISD::VECTOR_SHUFFLE)
14694    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
14695
14696  // Only handle 128 wide vector from here on.
14697  if (!VT.is128BitVector())
14698    return SDValue();
14699
14700  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
14701  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
14702  // consecutive, non-overlapping, and in the right order.
14703  SmallVector<SDValue, 16> Elts;
14704  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
14705    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
14706
14707  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
14708}
14709
14710/// PerformTruncateCombine - Converts truncate operation to
14711/// a sequence of vector shuffle operations.
14712/// It is possible when we truncate 256-bit vector to 128-bit vector
14713static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
14714                                      TargetLowering::DAGCombinerInfo &DCI,
14715                                      const X86Subtarget *Subtarget)  {
14716  return SDValue();
14717}
14718
14719/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
14720/// specific shuffle of a load can be folded into a single element load.
14721/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
14722/// shuffles have been customed lowered so we need to handle those here.
14723static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
14724                                         TargetLowering::DAGCombinerInfo &DCI) {
14725  if (DCI.isBeforeLegalizeOps())
14726    return SDValue();
14727
14728  SDValue InVec = N->getOperand(0);
14729  SDValue EltNo = N->getOperand(1);
14730
14731  if (!isa<ConstantSDNode>(EltNo))
14732    return SDValue();
14733
14734  EVT VT = InVec.getValueType();
14735
14736  bool HasShuffleIntoBitcast = false;
14737  if (InVec.getOpcode() == ISD::BITCAST) {
14738    // Don't duplicate a load with other uses.
14739    if (!InVec.hasOneUse())
14740      return SDValue();
14741    EVT BCVT = InVec.getOperand(0).getValueType();
14742    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
14743      return SDValue();
14744    InVec = InVec.getOperand(0);
14745    HasShuffleIntoBitcast = true;
14746  }
14747
14748  if (!isTargetShuffle(InVec.getOpcode()))
14749    return SDValue();
14750
14751  // Don't duplicate a load with other uses.
14752  if (!InVec.hasOneUse())
14753    return SDValue();
14754
14755  SmallVector<int, 16> ShuffleMask;
14756  bool UnaryShuffle;
14757  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
14758                            UnaryShuffle))
14759    return SDValue();
14760
14761  // Select the input vector, guarding against out of range extract vector.
14762  unsigned NumElems = VT.getVectorNumElements();
14763  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
14764  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
14765  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
14766                                         : InVec.getOperand(1);
14767
14768  // If inputs to shuffle are the same for both ops, then allow 2 uses
14769  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
14770
14771  if (LdNode.getOpcode() == ISD::BITCAST) {
14772    // Don't duplicate a load with other uses.
14773    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
14774      return SDValue();
14775
14776    AllowedUses = 1; // only allow 1 load use if we have a bitcast
14777    LdNode = LdNode.getOperand(0);
14778  }
14779
14780  if (!ISD::isNormalLoad(LdNode.getNode()))
14781    return SDValue();
14782
14783  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
14784
14785  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
14786    return SDValue();
14787
14788  if (HasShuffleIntoBitcast) {
14789    // If there's a bitcast before the shuffle, check if the load type and
14790    // alignment is valid.
14791    unsigned Align = LN0->getAlignment();
14792    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14793    unsigned NewAlign = TLI.getDataLayout()->
14794      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
14795
14796    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
14797      return SDValue();
14798  }
14799
14800  // All checks match so transform back to vector_shuffle so that DAG combiner
14801  // can finish the job
14802  DebugLoc dl = N->getDebugLoc();
14803
14804  // Create shuffle node taking into account the case that its a unary shuffle
14805  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
14806  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
14807                                 InVec.getOperand(0), Shuffle,
14808                                 &ShuffleMask[0]);
14809  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
14810  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
14811                     EltNo);
14812}
14813
14814/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
14815/// generation and convert it from being a bunch of shuffles and extracts
14816/// to a simple store and scalar loads to extract the elements.
14817static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
14818                                         TargetLowering::DAGCombinerInfo &DCI) {
14819  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
14820  if (NewOp.getNode())
14821    return NewOp;
14822
14823  SDValue InputVector = N->getOperand(0);
14824  // Detect whether we are trying to convert from mmx to i32 and the bitcast
14825  // from mmx to v2i32 has a single usage.
14826  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
14827      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
14828      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
14829    return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(),
14830                       N->getValueType(0),
14831                       InputVector.getNode()->getOperand(0));
14832
14833  // Only operate on vectors of 4 elements, where the alternative shuffling
14834  // gets to be more expensive.
14835  if (InputVector.getValueType() != MVT::v4i32)
14836    return SDValue();
14837
14838  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
14839  // single use which is a sign-extend or zero-extend, and all elements are
14840  // used.
14841  SmallVector<SDNode *, 4> Uses;
14842  unsigned ExtractedElements = 0;
14843  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
14844       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
14845    if (UI.getUse().getResNo() != InputVector.getResNo())
14846      return SDValue();
14847
14848    SDNode *Extract = *UI;
14849    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14850      return SDValue();
14851
14852    if (Extract->getValueType(0) != MVT::i32)
14853      return SDValue();
14854    if (!Extract->hasOneUse())
14855      return SDValue();
14856    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
14857        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
14858      return SDValue();
14859    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
14860      return SDValue();
14861
14862    // Record which element was extracted.
14863    ExtractedElements |=
14864      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
14865
14866    Uses.push_back(Extract);
14867  }
14868
14869  // If not all the elements were used, this may not be worthwhile.
14870  if (ExtractedElements != 15)
14871    return SDValue();
14872
14873  // Ok, we've now decided to do the transformation.
14874  DebugLoc dl = InputVector.getDebugLoc();
14875
14876  // Store the value to a temporary stack slot.
14877  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
14878  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
14879                            MachinePointerInfo(), false, false, 0);
14880
14881  // Replace each use (extract) with a load of the appropriate element.
14882  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
14883       UE = Uses.end(); UI != UE; ++UI) {
14884    SDNode *Extract = *UI;
14885
14886    // cOMpute the element's address.
14887    SDValue Idx = Extract->getOperand(1);
14888    unsigned EltSize =
14889        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
14890    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
14891    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14892    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
14893
14894    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
14895                                     StackPtr, OffsetVal);
14896
14897    // Load the scalar.
14898    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
14899                                     ScalarAddr, MachinePointerInfo(),
14900                                     false, false, false, 0);
14901
14902    // Replace the exact with the load.
14903    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
14904  }
14905
14906  // The replacement was made in place; don't return anything.
14907  return SDValue();
14908}
14909
14910/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
14911static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
14912                                   SDValue RHS, SelectionDAG &DAG,
14913                                   const X86Subtarget *Subtarget) {
14914  if (!VT.isVector())
14915    return 0;
14916
14917  switch (VT.getSimpleVT().SimpleTy) {
14918  default: return 0;
14919  case MVT::v32i8:
14920  case MVT::v16i16:
14921  case MVT::v8i32:
14922    if (!Subtarget->hasAVX2())
14923      return 0;
14924  case MVT::v16i8:
14925  case MVT::v8i16:
14926  case MVT::v4i32:
14927    if (!Subtarget->hasSSE2())
14928      return 0;
14929  }
14930
14931  // SSE2 has only a small subset of the operations.
14932  bool hasUnsigned = Subtarget->hasSSE41() ||
14933                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
14934  bool hasSigned = Subtarget->hasSSE41() ||
14935                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
14936
14937  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14938
14939  // Check for x CC y ? x : y.
14940  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14941      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14942    switch (CC) {
14943    default: break;
14944    case ISD::SETULT:
14945    case ISD::SETULE:
14946      return hasUnsigned ? X86ISD::UMIN : 0;
14947    case ISD::SETUGT:
14948    case ISD::SETUGE:
14949      return hasUnsigned ? X86ISD::UMAX : 0;
14950    case ISD::SETLT:
14951    case ISD::SETLE:
14952      return hasSigned ? X86ISD::SMIN : 0;
14953    case ISD::SETGT:
14954    case ISD::SETGE:
14955      return hasSigned ? X86ISD::SMAX : 0;
14956    }
14957  // Check for x CC y ? y : x -- a min/max with reversed arms.
14958  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
14959             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
14960    switch (CC) {
14961    default: break;
14962    case ISD::SETULT:
14963    case ISD::SETULE:
14964      return hasUnsigned ? X86ISD::UMAX : 0;
14965    case ISD::SETUGT:
14966    case ISD::SETUGE:
14967      return hasUnsigned ? X86ISD::UMIN : 0;
14968    case ISD::SETLT:
14969    case ISD::SETLE:
14970      return hasSigned ? X86ISD::SMAX : 0;
14971    case ISD::SETGT:
14972    case ISD::SETGE:
14973      return hasSigned ? X86ISD::SMIN : 0;
14974    }
14975  }
14976
14977  return 0;
14978}
14979
14980/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
14981/// nodes.
14982static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
14983                                    TargetLowering::DAGCombinerInfo &DCI,
14984                                    const X86Subtarget *Subtarget) {
14985  DebugLoc DL = N->getDebugLoc();
14986  SDValue Cond = N->getOperand(0);
14987  // Get the LHS/RHS of the select.
14988  SDValue LHS = N->getOperand(1);
14989  SDValue RHS = N->getOperand(2);
14990  EVT VT = LHS.getValueType();
14991
14992  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
14993  // instructions match the semantics of the common C idiom x<y?x:y but not
14994  // x<=y?x:y, because of how they handle negative zero (which can be
14995  // ignored in unsafe-math mode).
14996  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
14997      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
14998      (Subtarget->hasSSE2() ||
14999       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
15000    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15001
15002    unsigned Opcode = 0;
15003    // Check for x CC y ? x : y.
15004    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15005        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15006      switch (CC) {
15007      default: break;
15008      case ISD::SETULT:
15009        // Converting this to a min would handle NaNs incorrectly, and swapping
15010        // the operands would cause it to handle comparisons between positive
15011        // and negative zero incorrectly.
15012        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15013          if (!DAG.getTarget().Options.UnsafeFPMath &&
15014              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15015            break;
15016          std::swap(LHS, RHS);
15017        }
15018        Opcode = X86ISD::FMIN;
15019        break;
15020      case ISD::SETOLE:
15021        // Converting this to a min would handle comparisons between positive
15022        // and negative zero incorrectly.
15023        if (!DAG.getTarget().Options.UnsafeFPMath &&
15024            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15025          break;
15026        Opcode = X86ISD::FMIN;
15027        break;
15028      case ISD::SETULE:
15029        // Converting this to a min would handle both negative zeros and NaNs
15030        // incorrectly, but we can swap the operands to fix both.
15031        std::swap(LHS, RHS);
15032      case ISD::SETOLT:
15033      case ISD::SETLT:
15034      case ISD::SETLE:
15035        Opcode = X86ISD::FMIN;
15036        break;
15037
15038      case ISD::SETOGE:
15039        // Converting this to a max would handle comparisons between positive
15040        // and negative zero incorrectly.
15041        if (!DAG.getTarget().Options.UnsafeFPMath &&
15042            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
15043          break;
15044        Opcode = X86ISD::FMAX;
15045        break;
15046      case ISD::SETUGT:
15047        // Converting this to a max would handle NaNs incorrectly, and swapping
15048        // the operands would cause it to handle comparisons between positive
15049        // and negative zero incorrectly.
15050        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
15051          if (!DAG.getTarget().Options.UnsafeFPMath &&
15052              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
15053            break;
15054          std::swap(LHS, RHS);
15055        }
15056        Opcode = X86ISD::FMAX;
15057        break;
15058      case ISD::SETUGE:
15059        // Converting this to a max would handle both negative zeros and NaNs
15060        // incorrectly, but we can swap the operands to fix both.
15061        std::swap(LHS, RHS);
15062      case ISD::SETOGT:
15063      case ISD::SETGT:
15064      case ISD::SETGE:
15065        Opcode = X86ISD::FMAX;
15066        break;
15067      }
15068    // Check for x CC y ? y : x -- a min/max with reversed arms.
15069    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
15070               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
15071      switch (CC) {
15072      default: break;
15073      case ISD::SETOGE:
15074        // Converting this to a min would handle comparisons between positive
15075        // and negative zero incorrectly, and swapping the operands would
15076        // cause it to handle NaNs incorrectly.
15077        if (!DAG.getTarget().Options.UnsafeFPMath &&
15078            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
15079          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15080            break;
15081          std::swap(LHS, RHS);
15082        }
15083        Opcode = X86ISD::FMIN;
15084        break;
15085      case ISD::SETUGT:
15086        // Converting this to a min would handle NaNs incorrectly.
15087        if (!DAG.getTarget().Options.UnsafeFPMath &&
15088            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
15089          break;
15090        Opcode = X86ISD::FMIN;
15091        break;
15092      case ISD::SETUGE:
15093        // Converting this to a min would handle both negative zeros and NaNs
15094        // incorrectly, but we can swap the operands to fix both.
15095        std::swap(LHS, RHS);
15096      case ISD::SETOGT:
15097      case ISD::SETGT:
15098      case ISD::SETGE:
15099        Opcode = X86ISD::FMIN;
15100        break;
15101
15102      case ISD::SETULT:
15103        // Converting this to a max would handle NaNs incorrectly.
15104        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15105          break;
15106        Opcode = X86ISD::FMAX;
15107        break;
15108      case ISD::SETOLE:
15109        // Converting this to a max would handle comparisons between positive
15110        // and negative zero incorrectly, and swapping the operands would
15111        // cause it to handle NaNs incorrectly.
15112        if (!DAG.getTarget().Options.UnsafeFPMath &&
15113            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
15114          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
15115            break;
15116          std::swap(LHS, RHS);
15117        }
15118        Opcode = X86ISD::FMAX;
15119        break;
15120      case ISD::SETULE:
15121        // Converting this to a max would handle both negative zeros and NaNs
15122        // incorrectly, but we can swap the operands to fix both.
15123        std::swap(LHS, RHS);
15124      case ISD::SETOLT:
15125      case ISD::SETLT:
15126      case ISD::SETLE:
15127        Opcode = X86ISD::FMAX;
15128        break;
15129      }
15130    }
15131
15132    if (Opcode)
15133      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
15134  }
15135
15136  // If this is a select between two integer constants, try to do some
15137  // optimizations.
15138  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
15139    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
15140      // Don't do this for crazy integer types.
15141      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
15142        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
15143        // so that TrueC (the true value) is larger than FalseC.
15144        bool NeedsCondInvert = false;
15145
15146        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
15147            // Efficiently invertible.
15148            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
15149             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
15150              isa<ConstantSDNode>(Cond.getOperand(1))))) {
15151          NeedsCondInvert = true;
15152          std::swap(TrueC, FalseC);
15153        }
15154
15155        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
15156        if (FalseC->getAPIntValue() == 0 &&
15157            TrueC->getAPIntValue().isPowerOf2()) {
15158          if (NeedsCondInvert) // Invert the condition if needed.
15159            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15160                               DAG.getConstant(1, Cond.getValueType()));
15161
15162          // Zero extend the condition if needed.
15163          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
15164
15165          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15166          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
15167                             DAG.getConstant(ShAmt, MVT::i8));
15168        }
15169
15170        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
15171        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15172          if (NeedsCondInvert) // Invert the condition if needed.
15173            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15174                               DAG.getConstant(1, Cond.getValueType()));
15175
15176          // Zero extend the condition if needed.
15177          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15178                             FalseC->getValueType(0), Cond);
15179          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15180                             SDValue(FalseC, 0));
15181        }
15182
15183        // Optimize cases that will turn into an LEA instruction.  This requires
15184        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15185        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15186          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15187          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15188
15189          bool isFastMultiplier = false;
15190          if (Diff < 10) {
15191            switch ((unsigned char)Diff) {
15192              default: break;
15193              case 1:  // result = add base, cond
15194              case 2:  // result = lea base(    , cond*2)
15195              case 3:  // result = lea base(cond, cond*2)
15196              case 4:  // result = lea base(    , cond*4)
15197              case 5:  // result = lea base(cond, cond*4)
15198              case 8:  // result = lea base(    , cond*8)
15199              case 9:  // result = lea base(cond, cond*8)
15200                isFastMultiplier = true;
15201                break;
15202            }
15203          }
15204
15205          if (isFastMultiplier) {
15206            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15207            if (NeedsCondInvert) // Invert the condition if needed.
15208              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
15209                                 DAG.getConstant(1, Cond.getValueType()));
15210
15211            // Zero extend the condition if needed.
15212            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15213                               Cond);
15214            // Scale the condition by the difference.
15215            if (Diff != 1)
15216              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15217                                 DAG.getConstant(Diff, Cond.getValueType()));
15218
15219            // Add the base if non-zero.
15220            if (FalseC->getAPIntValue() != 0)
15221              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15222                                 SDValue(FalseC, 0));
15223            return Cond;
15224          }
15225        }
15226      }
15227  }
15228
15229  // Canonicalize max and min:
15230  // (x > y) ? x : y -> (x >= y) ? x : y
15231  // (x < y) ? x : y -> (x <= y) ? x : y
15232  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
15233  // the need for an extra compare
15234  // against zero. e.g.
15235  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
15236  // subl   %esi, %edi
15237  // testl  %edi, %edi
15238  // movl   $0, %eax
15239  // cmovgl %edi, %eax
15240  // =>
15241  // xorl   %eax, %eax
15242  // subl   %esi, $edi
15243  // cmovsl %eax, %edi
15244  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
15245      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
15246      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
15247    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15248    switch (CC) {
15249    default: break;
15250    case ISD::SETLT:
15251    case ISD::SETGT: {
15252      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
15253      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
15254                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
15255      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
15256    }
15257    }
15258  }
15259
15260  // Match VSELECTs into subs with unsigned saturation.
15261  if (!DCI.isBeforeLegalize() &&
15262      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
15263      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
15264      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
15265       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
15266    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15267
15268    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
15269    // left side invert the predicate to simplify logic below.
15270    SDValue Other;
15271    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
15272      Other = RHS;
15273      CC = ISD::getSetCCInverse(CC, true);
15274    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
15275      Other = LHS;
15276    }
15277
15278    if (Other.getNode() && Other->getNumOperands() == 2 &&
15279        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
15280      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
15281      SDValue CondRHS = Cond->getOperand(1);
15282
15283      // Look for a general sub with unsigned saturation first.
15284      // x >= y ? x-y : 0 --> subus x, y
15285      // x >  y ? x-y : 0 --> subus x, y
15286      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
15287          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
15288        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15289
15290      // If the RHS is a constant we have to reverse the const canonicalization.
15291      // x > C-1 ? x+-C : 0 --> subus x, C
15292      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
15293          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
15294        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15295        if (CondRHS.getConstantOperandVal(0) == -A-1) {
15296          SmallVector<SDValue, 32> V(VT.getVectorNumElements(),
15297                                     DAG.getConstant(-A, VT.getScalarType()));
15298          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
15299                             DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
15300                                         V.data(), V.size()));
15301        }
15302      }
15303
15304      // Another special case: If C was a sign bit, the sub has been
15305      // canonicalized into a xor.
15306      // FIXME: Would it be better to use ComputeMaskedBits to determine whether
15307      //        it's safe to decanonicalize the xor?
15308      // x s< 0 ? x^C : 0 --> subus x, C
15309      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
15310          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
15311          isSplatVector(OpRHS.getNode())) {
15312        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
15313        if (A.isSignBit())
15314          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
15315      }
15316    }
15317  }
15318
15319  // Try to match a min/max vector operation.
15320  if (!DCI.isBeforeLegalize() &&
15321      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC)
15322    if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget))
15323      return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS);
15324
15325  // If we know that this node is legal then we know that it is going to be
15326  // matched by one of the SSE/AVX BLEND instructions. These instructions only
15327  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
15328  // to simplify previous instructions.
15329  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15330  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
15331      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
15332    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
15333
15334    // Don't optimize vector selects that map to mask-registers.
15335    if (BitWidth == 1)
15336      return SDValue();
15337
15338    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
15339    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
15340
15341    APInt KnownZero, KnownOne;
15342    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
15343                                          DCI.isBeforeLegalizeOps());
15344    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
15345        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
15346      DCI.CommitTargetLoweringOpt(TLO);
15347  }
15348
15349  return SDValue();
15350}
15351
15352// Check whether a boolean test is testing a boolean value generated by
15353// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
15354// code.
15355//
15356// Simplify the following patterns:
15357// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
15358// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
15359// to (Op EFLAGS Cond)
15360//
15361// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
15362// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
15363// to (Op EFLAGS !Cond)
15364//
15365// where Op could be BRCOND or CMOV.
15366//
15367static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
15368  // Quit if not CMP and SUB with its value result used.
15369  if (Cmp.getOpcode() != X86ISD::CMP &&
15370      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
15371      return SDValue();
15372
15373  // Quit if not used as a boolean value.
15374  if (CC != X86::COND_E && CC != X86::COND_NE)
15375    return SDValue();
15376
15377  // Check CMP operands. One of them should be 0 or 1 and the other should be
15378  // an SetCC or extended from it.
15379  SDValue Op1 = Cmp.getOperand(0);
15380  SDValue Op2 = Cmp.getOperand(1);
15381
15382  SDValue SetCC;
15383  const ConstantSDNode* C = 0;
15384  bool needOppositeCond = (CC == X86::COND_E);
15385
15386  if ((C = dyn_cast<ConstantSDNode>(Op1)))
15387    SetCC = Op2;
15388  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
15389    SetCC = Op1;
15390  else // Quit if all operands are not constants.
15391    return SDValue();
15392
15393  if (C->getZExtValue() == 1)
15394    needOppositeCond = !needOppositeCond;
15395  else if (C->getZExtValue() != 0)
15396    // Quit if the constant is neither 0 or 1.
15397    return SDValue();
15398
15399  // Skip 'zext' node.
15400  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
15401    SetCC = SetCC.getOperand(0);
15402
15403  switch (SetCC.getOpcode()) {
15404  case X86ISD::SETCC:
15405    // Set the condition code or opposite one if necessary.
15406    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
15407    if (needOppositeCond)
15408      CC = X86::GetOppositeBranchCondition(CC);
15409    return SetCC.getOperand(1);
15410  case X86ISD::CMOV: {
15411    // Check whether false/true value has canonical one, i.e. 0 or 1.
15412    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
15413    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
15414    // Quit if true value is not a constant.
15415    if (!TVal)
15416      return SDValue();
15417    // Quit if false value is not a constant.
15418    if (!FVal) {
15419      // A special case for rdrand, where 0 is set if false cond is found.
15420      SDValue Op = SetCC.getOperand(0);
15421      if (Op.getOpcode() != X86ISD::RDRAND)
15422        return SDValue();
15423    }
15424    // Quit if false value is not the constant 0 or 1.
15425    bool FValIsFalse = true;
15426    if (FVal && FVal->getZExtValue() != 0) {
15427      if (FVal->getZExtValue() != 1)
15428        return SDValue();
15429      // If FVal is 1, opposite cond is needed.
15430      needOppositeCond = !needOppositeCond;
15431      FValIsFalse = false;
15432    }
15433    // Quit if TVal is not the constant opposite of FVal.
15434    if (FValIsFalse && TVal->getZExtValue() != 1)
15435      return SDValue();
15436    if (!FValIsFalse && TVal->getZExtValue() != 0)
15437      return SDValue();
15438    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
15439    if (needOppositeCond)
15440      CC = X86::GetOppositeBranchCondition(CC);
15441    return SetCC.getOperand(3);
15442  }
15443  }
15444
15445  return SDValue();
15446}
15447
15448/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
15449static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
15450                                  TargetLowering::DAGCombinerInfo &DCI,
15451                                  const X86Subtarget *Subtarget) {
15452  DebugLoc DL = N->getDebugLoc();
15453
15454  // If the flag operand isn't dead, don't touch this CMOV.
15455  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
15456    return SDValue();
15457
15458  SDValue FalseOp = N->getOperand(0);
15459  SDValue TrueOp = N->getOperand(1);
15460  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
15461  SDValue Cond = N->getOperand(3);
15462
15463  if (CC == X86::COND_E || CC == X86::COND_NE) {
15464    switch (Cond.getOpcode()) {
15465    default: break;
15466    case X86ISD::BSR:
15467    case X86ISD::BSF:
15468      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
15469      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
15470        return (CC == X86::COND_E) ? FalseOp : TrueOp;
15471    }
15472  }
15473
15474  SDValue Flags;
15475
15476  Flags = checkBoolTestSetCCCombine(Cond, CC);
15477  if (Flags.getNode() &&
15478      // Extra check as FCMOV only supports a subset of X86 cond.
15479      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
15480    SDValue Ops[] = { FalseOp, TrueOp,
15481                      DAG.getConstant(CC, MVT::i8), Flags };
15482    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
15483                       Ops, array_lengthof(Ops));
15484  }
15485
15486  // If this is a select between two integer constants, try to do some
15487  // optimizations.  Note that the operands are ordered the opposite of SELECT
15488  // operands.
15489  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
15490    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
15491      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
15492      // larger than FalseC (the false value).
15493      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
15494        CC = X86::GetOppositeBranchCondition(CC);
15495        std::swap(TrueC, FalseC);
15496        std::swap(TrueOp, FalseOp);
15497      }
15498
15499      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
15500      // This is efficient for any integer data type (including i8/i16) and
15501      // shift amount.
15502      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
15503        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15504                           DAG.getConstant(CC, MVT::i8), Cond);
15505
15506        // Zero extend the condition if needed.
15507        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
15508
15509        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15510        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
15511                           DAG.getConstant(ShAmt, MVT::i8));
15512        if (N->getNumValues() == 2)  // Dead flag value?
15513          return DCI.CombineTo(N, Cond, SDValue());
15514        return Cond;
15515      }
15516
15517      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
15518      // for any integer data type, including i8/i16.
15519      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15520        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15521                           DAG.getConstant(CC, MVT::i8), Cond);
15522
15523        // Zero extend the condition if needed.
15524        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15525                           FalseC->getValueType(0), Cond);
15526        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15527                           SDValue(FalseC, 0));
15528
15529        if (N->getNumValues() == 2)  // Dead flag value?
15530          return DCI.CombineTo(N, Cond, SDValue());
15531        return Cond;
15532      }
15533
15534      // Optimize cases that will turn into an LEA instruction.  This requires
15535      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15536      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15537        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15538        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15539
15540        bool isFastMultiplier = false;
15541        if (Diff < 10) {
15542          switch ((unsigned char)Diff) {
15543          default: break;
15544          case 1:  // result = add base, cond
15545          case 2:  // result = lea base(    , cond*2)
15546          case 3:  // result = lea base(cond, cond*2)
15547          case 4:  // result = lea base(    , cond*4)
15548          case 5:  // result = lea base(cond, cond*4)
15549          case 8:  // result = lea base(    , cond*8)
15550          case 9:  // result = lea base(cond, cond*8)
15551            isFastMultiplier = true;
15552            break;
15553          }
15554        }
15555
15556        if (isFastMultiplier) {
15557          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15558          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15559                             DAG.getConstant(CC, MVT::i8), Cond);
15560          // Zero extend the condition if needed.
15561          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15562                             Cond);
15563          // Scale the condition by the difference.
15564          if (Diff != 1)
15565            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15566                               DAG.getConstant(Diff, Cond.getValueType()));
15567
15568          // Add the base if non-zero.
15569          if (FalseC->getAPIntValue() != 0)
15570            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15571                               SDValue(FalseC, 0));
15572          if (N->getNumValues() == 2)  // Dead flag value?
15573            return DCI.CombineTo(N, Cond, SDValue());
15574          return Cond;
15575        }
15576      }
15577    }
15578  }
15579
15580  // Handle these cases:
15581  //   (select (x != c), e, c) -> select (x != c), e, x),
15582  //   (select (x == c), c, e) -> select (x == c), x, e)
15583  // where the c is an integer constant, and the "select" is the combination
15584  // of CMOV and CMP.
15585  //
15586  // The rationale for this change is that the conditional-move from a constant
15587  // needs two instructions, however, conditional-move from a register needs
15588  // only one instruction.
15589  //
15590  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
15591  //  some instruction-combining opportunities. This opt needs to be
15592  //  postponed as late as possible.
15593  //
15594  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
15595    // the DCI.xxxx conditions are provided to postpone the optimization as
15596    // late as possible.
15597
15598    ConstantSDNode *CmpAgainst = 0;
15599    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
15600        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
15601        dyn_cast<ConstantSDNode>(Cond.getOperand(0)) == 0) {
15602
15603      if (CC == X86::COND_NE &&
15604          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
15605        CC = X86::GetOppositeBranchCondition(CC);
15606        std::swap(TrueOp, FalseOp);
15607      }
15608
15609      if (CC == X86::COND_E &&
15610          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
15611        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
15612                          DAG.getConstant(CC, MVT::i8), Cond };
15613        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
15614                           array_lengthof(Ops));
15615      }
15616    }
15617  }
15618
15619  return SDValue();
15620}
15621
15622/// PerformMulCombine - Optimize a single multiply with constant into two
15623/// in order to implement it with two cheaper instructions, e.g.
15624/// LEA + SHL, LEA + LEA.
15625static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
15626                                 TargetLowering::DAGCombinerInfo &DCI) {
15627  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
15628    return SDValue();
15629
15630  EVT VT = N->getValueType(0);
15631  if (VT != MVT::i64)
15632    return SDValue();
15633
15634  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
15635  if (!C)
15636    return SDValue();
15637  uint64_t MulAmt = C->getZExtValue();
15638  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
15639    return SDValue();
15640
15641  uint64_t MulAmt1 = 0;
15642  uint64_t MulAmt2 = 0;
15643  if ((MulAmt % 9) == 0) {
15644    MulAmt1 = 9;
15645    MulAmt2 = MulAmt / 9;
15646  } else if ((MulAmt % 5) == 0) {
15647    MulAmt1 = 5;
15648    MulAmt2 = MulAmt / 5;
15649  } else if ((MulAmt % 3) == 0) {
15650    MulAmt1 = 3;
15651    MulAmt2 = MulAmt / 3;
15652  }
15653  if (MulAmt2 &&
15654      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
15655    DebugLoc DL = N->getDebugLoc();
15656
15657    if (isPowerOf2_64(MulAmt2) &&
15658        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
15659      // If second multiplifer is pow2, issue it first. We want the multiply by
15660      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
15661      // is an add.
15662      std::swap(MulAmt1, MulAmt2);
15663
15664    SDValue NewMul;
15665    if (isPowerOf2_64(MulAmt1))
15666      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15667                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
15668    else
15669      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
15670                           DAG.getConstant(MulAmt1, VT));
15671
15672    if (isPowerOf2_64(MulAmt2))
15673      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
15674                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
15675    else
15676      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
15677                           DAG.getConstant(MulAmt2, VT));
15678
15679    // Do not add new nodes to DAG combiner worklist.
15680    DCI.CombineTo(N, NewMul, false);
15681  }
15682  return SDValue();
15683}
15684
15685static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
15686  SDValue N0 = N->getOperand(0);
15687  SDValue N1 = N->getOperand(1);
15688  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
15689  EVT VT = N0.getValueType();
15690
15691  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
15692  // since the result of setcc_c is all zero's or all ones.
15693  if (VT.isInteger() && !VT.isVector() &&
15694      N1C && N0.getOpcode() == ISD::AND &&
15695      N0.getOperand(1).getOpcode() == ISD::Constant) {
15696    SDValue N00 = N0.getOperand(0);
15697    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
15698        ((N00.getOpcode() == ISD::ANY_EXTEND ||
15699          N00.getOpcode() == ISD::ZERO_EXTEND) &&
15700         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
15701      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
15702      APInt ShAmt = N1C->getAPIntValue();
15703      Mask = Mask.shl(ShAmt);
15704      if (Mask != 0)
15705        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
15706                           N00, DAG.getConstant(Mask, VT));
15707    }
15708  }
15709
15710  // Hardware support for vector shifts is sparse which makes us scalarize the
15711  // vector operations in many cases. Also, on sandybridge ADD is faster than
15712  // shl.
15713  // (shl V, 1) -> add V,V
15714  if (isSplatVector(N1.getNode())) {
15715    assert(N0.getValueType().isVector() && "Invalid vector shift type");
15716    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
15717    // We shift all of the values by one. In many cases we do not have
15718    // hardware support for this operation. This is better expressed as an ADD
15719    // of two values.
15720    if (N1C && (1 == N1C->getZExtValue())) {
15721      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
15722    }
15723  }
15724
15725  return SDValue();
15726}
15727
15728/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
15729///                       when possible.
15730static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
15731                                   TargetLowering::DAGCombinerInfo &DCI,
15732                                   const X86Subtarget *Subtarget) {
15733  EVT VT = N->getValueType(0);
15734  if (N->getOpcode() == ISD::SHL) {
15735    SDValue V = PerformSHLCombine(N, DAG);
15736    if (V.getNode()) return V;
15737  }
15738
15739  // On X86 with SSE2 support, we can transform this to a vector shift if
15740  // all elements are shifted by the same amount.  We can't do this in legalize
15741  // because the a constant vector is typically transformed to a constant pool
15742  // so we have no knowledge of the shift amount.
15743  if (!Subtarget->hasSSE2())
15744    return SDValue();
15745
15746  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
15747      (!Subtarget->hasInt256() ||
15748       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
15749    return SDValue();
15750
15751  SDValue ShAmtOp = N->getOperand(1);
15752  EVT EltVT = VT.getVectorElementType();
15753  DebugLoc DL = N->getDebugLoc();
15754  SDValue BaseShAmt = SDValue();
15755  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
15756    unsigned NumElts = VT.getVectorNumElements();
15757    unsigned i = 0;
15758    for (; i != NumElts; ++i) {
15759      SDValue Arg = ShAmtOp.getOperand(i);
15760      if (Arg.getOpcode() == ISD::UNDEF) continue;
15761      BaseShAmt = Arg;
15762      break;
15763    }
15764    // Handle the case where the build_vector is all undef
15765    // FIXME: Should DAG allow this?
15766    if (i == NumElts)
15767      return SDValue();
15768
15769    for (; i != NumElts; ++i) {
15770      SDValue Arg = ShAmtOp.getOperand(i);
15771      if (Arg.getOpcode() == ISD::UNDEF) continue;
15772      if (Arg != BaseShAmt) {
15773        return SDValue();
15774      }
15775    }
15776  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
15777             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
15778    SDValue InVec = ShAmtOp.getOperand(0);
15779    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
15780      unsigned NumElts = InVec.getValueType().getVectorNumElements();
15781      unsigned i = 0;
15782      for (; i != NumElts; ++i) {
15783        SDValue Arg = InVec.getOperand(i);
15784        if (Arg.getOpcode() == ISD::UNDEF) continue;
15785        BaseShAmt = Arg;
15786        break;
15787      }
15788    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
15789       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
15790         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
15791         if (C->getZExtValue() == SplatIdx)
15792           BaseShAmt = InVec.getOperand(1);
15793       }
15794    }
15795    if (BaseShAmt.getNode() == 0) {
15796      // Don't create instructions with illegal types after legalize
15797      // types has run.
15798      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
15799          !DCI.isBeforeLegalize())
15800        return SDValue();
15801
15802      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
15803                              DAG.getIntPtrConstant(0));
15804    }
15805  } else
15806    return SDValue();
15807
15808  // The shift amount is an i32.
15809  if (EltVT.bitsGT(MVT::i32))
15810    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
15811  else if (EltVT.bitsLT(MVT::i32))
15812    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
15813
15814  // The shift amount is identical so we can do a vector shift.
15815  SDValue  ValOp = N->getOperand(0);
15816  switch (N->getOpcode()) {
15817  default:
15818    llvm_unreachable("Unknown shift opcode!");
15819  case ISD::SHL:
15820    switch (VT.getSimpleVT().SimpleTy) {
15821    default: return SDValue();
15822    case MVT::v2i64:
15823    case MVT::v4i32:
15824    case MVT::v8i16:
15825    case MVT::v4i64:
15826    case MVT::v8i32:
15827    case MVT::v16i16:
15828      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
15829    }
15830  case ISD::SRA:
15831    switch (VT.getSimpleVT().SimpleTy) {
15832    default: return SDValue();
15833    case MVT::v4i32:
15834    case MVT::v8i16:
15835    case MVT::v8i32:
15836    case MVT::v16i16:
15837      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
15838    }
15839  case ISD::SRL:
15840    switch (VT.getSimpleVT().SimpleTy) {
15841    default: return SDValue();
15842    case MVT::v2i64:
15843    case MVT::v4i32:
15844    case MVT::v8i16:
15845    case MVT::v4i64:
15846    case MVT::v8i32:
15847    case MVT::v16i16:
15848      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
15849    }
15850  }
15851}
15852
15853// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
15854// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
15855// and friends.  Likewise for OR -> CMPNEQSS.
15856static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
15857                            TargetLowering::DAGCombinerInfo &DCI,
15858                            const X86Subtarget *Subtarget) {
15859  unsigned opcode;
15860
15861  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
15862  // we're requiring SSE2 for both.
15863  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
15864    SDValue N0 = N->getOperand(0);
15865    SDValue N1 = N->getOperand(1);
15866    SDValue CMP0 = N0->getOperand(1);
15867    SDValue CMP1 = N1->getOperand(1);
15868    DebugLoc DL = N->getDebugLoc();
15869
15870    // The SETCCs should both refer to the same CMP.
15871    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
15872      return SDValue();
15873
15874    SDValue CMP00 = CMP0->getOperand(0);
15875    SDValue CMP01 = CMP0->getOperand(1);
15876    EVT     VT    = CMP00.getValueType();
15877
15878    if (VT == MVT::f32 || VT == MVT::f64) {
15879      bool ExpectingFlags = false;
15880      // Check for any users that want flags:
15881      for (SDNode::use_iterator UI = N->use_begin(),
15882             UE = N->use_end();
15883           !ExpectingFlags && UI != UE; ++UI)
15884        switch (UI->getOpcode()) {
15885        default:
15886        case ISD::BR_CC:
15887        case ISD::BRCOND:
15888        case ISD::SELECT:
15889          ExpectingFlags = true;
15890          break;
15891        case ISD::CopyToReg:
15892        case ISD::SIGN_EXTEND:
15893        case ISD::ZERO_EXTEND:
15894        case ISD::ANY_EXTEND:
15895          break;
15896        }
15897
15898      if (!ExpectingFlags) {
15899        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
15900        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
15901
15902        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
15903          X86::CondCode tmp = cc0;
15904          cc0 = cc1;
15905          cc1 = tmp;
15906        }
15907
15908        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
15909            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
15910          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
15911          X86ISD::NodeType NTOperator = is64BitFP ?
15912            X86ISD::FSETCCsd : X86ISD::FSETCCss;
15913          // FIXME: need symbolic constants for these magic numbers.
15914          // See X86ATTInstPrinter.cpp:printSSECC().
15915          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
15916          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
15917                                              DAG.getConstant(x86cc, MVT::i8));
15918          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
15919                                              OnesOrZeroesF);
15920          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
15921                                      DAG.getConstant(1, MVT::i32));
15922          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
15923          return OneBitOfTruth;
15924        }
15925      }
15926    }
15927  }
15928  return SDValue();
15929}
15930
15931/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
15932/// so it can be folded inside ANDNP.
15933static bool CanFoldXORWithAllOnes(const SDNode *N) {
15934  EVT VT = N->getValueType(0);
15935
15936  // Match direct AllOnes for 128 and 256-bit vectors
15937  if (ISD::isBuildVectorAllOnes(N))
15938    return true;
15939
15940  // Look through a bit convert.
15941  if (N->getOpcode() == ISD::BITCAST)
15942    N = N->getOperand(0).getNode();
15943
15944  // Sometimes the operand may come from a insert_subvector building a 256-bit
15945  // allones vector
15946  if (VT.is256BitVector() &&
15947      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
15948    SDValue V1 = N->getOperand(0);
15949    SDValue V2 = N->getOperand(1);
15950
15951    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
15952        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
15953        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
15954        ISD::isBuildVectorAllOnes(V2.getNode()))
15955      return true;
15956  }
15957
15958  return false;
15959}
15960
15961// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
15962// register. In most cases we actually compare or select YMM-sized registers
15963// and mixing the two types creates horrible code. This method optimizes
15964// some of the transition sequences.
15965static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
15966                                 TargetLowering::DAGCombinerInfo &DCI,
15967                                 const X86Subtarget *Subtarget) {
15968  EVT VT = N->getValueType(0);
15969  if (!VT.is256BitVector())
15970    return SDValue();
15971
15972  assert((N->getOpcode() == ISD::ANY_EXTEND ||
15973          N->getOpcode() == ISD::ZERO_EXTEND ||
15974          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
15975
15976  SDValue Narrow = N->getOperand(0);
15977  EVT NarrowVT = Narrow->getValueType(0);
15978  if (!NarrowVT.is128BitVector())
15979    return SDValue();
15980
15981  if (Narrow->getOpcode() != ISD::XOR &&
15982      Narrow->getOpcode() != ISD::AND &&
15983      Narrow->getOpcode() != ISD::OR)
15984    return SDValue();
15985
15986  SDValue N0  = Narrow->getOperand(0);
15987  SDValue N1  = Narrow->getOperand(1);
15988  DebugLoc DL = Narrow->getDebugLoc();
15989
15990  // The Left side has to be a trunc.
15991  if (N0.getOpcode() != ISD::TRUNCATE)
15992    return SDValue();
15993
15994  // The type of the truncated inputs.
15995  EVT WideVT = N0->getOperand(0)->getValueType(0);
15996  if (WideVT != VT)
15997    return SDValue();
15998
15999  // The right side has to be a 'trunc' or a constant vector.
16000  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
16001  bool RHSConst = (isSplatVector(N1.getNode()) &&
16002                   isa<ConstantSDNode>(N1->getOperand(0)));
16003  if (!RHSTrunc && !RHSConst)
16004    return SDValue();
16005
16006  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16007
16008  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
16009    return SDValue();
16010
16011  // Set N0 and N1 to hold the inputs to the new wide operation.
16012  N0 = N0->getOperand(0);
16013  if (RHSConst) {
16014    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
16015                     N1->getOperand(0));
16016    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
16017    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
16018  } else if (RHSTrunc) {
16019    N1 = N1->getOperand(0);
16020  }
16021
16022  // Generate the wide operation.
16023  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
16024  unsigned Opcode = N->getOpcode();
16025  switch (Opcode) {
16026  case ISD::ANY_EXTEND:
16027    return Op;
16028  case ISD::ZERO_EXTEND: {
16029    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
16030    APInt Mask = APInt::getAllOnesValue(InBits);
16031    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
16032    return DAG.getNode(ISD::AND, DL, VT,
16033                       Op, DAG.getConstant(Mask, VT));
16034  }
16035  case ISD::SIGN_EXTEND:
16036    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
16037                       Op, DAG.getValueType(NarrowVT));
16038  default:
16039    llvm_unreachable("Unexpected opcode");
16040  }
16041}
16042
16043static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
16044                                 TargetLowering::DAGCombinerInfo &DCI,
16045                                 const X86Subtarget *Subtarget) {
16046  EVT VT = N->getValueType(0);
16047  if (DCI.isBeforeLegalizeOps())
16048    return SDValue();
16049
16050  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16051  if (R.getNode())
16052    return R;
16053
16054  // Create BLSI, and BLSR instructions
16055  // BLSI is X & (-X)
16056  // BLSR is X & (X-1)
16057  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
16058    SDValue N0 = N->getOperand(0);
16059    SDValue N1 = N->getOperand(1);
16060    DebugLoc DL = N->getDebugLoc();
16061
16062    // Check LHS for neg
16063    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
16064        isZero(N0.getOperand(0)))
16065      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
16066
16067    // Check RHS for neg
16068    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
16069        isZero(N1.getOperand(0)))
16070      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
16071
16072    // Check LHS for X-1
16073    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16074        isAllOnes(N0.getOperand(1)))
16075      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
16076
16077    // Check RHS for X-1
16078    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16079        isAllOnes(N1.getOperand(1)))
16080      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
16081
16082    return SDValue();
16083  }
16084
16085  // Want to form ANDNP nodes:
16086  // 1) In the hopes of then easily combining them with OR and AND nodes
16087  //    to form PBLEND/PSIGN.
16088  // 2) To match ANDN packed intrinsics
16089  if (VT != MVT::v2i64 && VT != MVT::v4i64)
16090    return SDValue();
16091
16092  SDValue N0 = N->getOperand(0);
16093  SDValue N1 = N->getOperand(1);
16094  DebugLoc DL = N->getDebugLoc();
16095
16096  // Check LHS for vnot
16097  if (N0.getOpcode() == ISD::XOR &&
16098      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
16099      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
16100    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
16101
16102  // Check RHS for vnot
16103  if (N1.getOpcode() == ISD::XOR &&
16104      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
16105      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
16106    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
16107
16108  return SDValue();
16109}
16110
16111static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
16112                                TargetLowering::DAGCombinerInfo &DCI,
16113                                const X86Subtarget *Subtarget) {
16114  EVT VT = N->getValueType(0);
16115  if (DCI.isBeforeLegalizeOps())
16116    return SDValue();
16117
16118  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
16119  if (R.getNode())
16120    return R;
16121
16122  SDValue N0 = N->getOperand(0);
16123  SDValue N1 = N->getOperand(1);
16124
16125  // look for psign/blend
16126  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
16127    if (!Subtarget->hasSSSE3() ||
16128        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
16129      return SDValue();
16130
16131    // Canonicalize pandn to RHS
16132    if (N0.getOpcode() == X86ISD::ANDNP)
16133      std::swap(N0, N1);
16134    // or (and (m, y), (pandn m, x))
16135    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
16136      SDValue Mask = N1.getOperand(0);
16137      SDValue X    = N1.getOperand(1);
16138      SDValue Y;
16139      if (N0.getOperand(0) == Mask)
16140        Y = N0.getOperand(1);
16141      if (N0.getOperand(1) == Mask)
16142        Y = N0.getOperand(0);
16143
16144      // Check to see if the mask appeared in both the AND and ANDNP and
16145      if (!Y.getNode())
16146        return SDValue();
16147
16148      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
16149      // Look through mask bitcast.
16150      if (Mask.getOpcode() == ISD::BITCAST)
16151        Mask = Mask.getOperand(0);
16152      if (X.getOpcode() == ISD::BITCAST)
16153        X = X.getOperand(0);
16154      if (Y.getOpcode() == ISD::BITCAST)
16155        Y = Y.getOperand(0);
16156
16157      EVT MaskVT = Mask.getValueType();
16158
16159      // Validate that the Mask operand is a vector sra node.
16160      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
16161      // there is no psrai.b
16162      if (Mask.getOpcode() != X86ISD::VSRAI)
16163        return SDValue();
16164
16165      // Check that the SRA is all signbits.
16166      SDValue SraC = Mask.getOperand(1);
16167      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
16168      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
16169      if ((SraAmt + 1) != EltBits)
16170        return SDValue();
16171
16172      DebugLoc DL = N->getDebugLoc();
16173
16174      // We are going to replace the AND, OR, NAND with either BLEND
16175      // or PSIGN, which only look at the MSB. The VSRAI instruction
16176      // does not affect the highest bit, so we can get rid of it.
16177      Mask = Mask.getOperand(0);
16178
16179      // Now we know we at least have a plendvb with the mask val.  See if
16180      // we can form a psignb/w/d.
16181      // psign = x.type == y.type == mask.type && y = sub(0, x);
16182      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
16183          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
16184          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
16185        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
16186               "Unsupported VT for PSIGN");
16187        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask);
16188        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16189      }
16190      // PBLENDVB only available on SSE 4.1
16191      if (!Subtarget->hasSSE41())
16192        return SDValue();
16193
16194      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
16195
16196      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
16197      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
16198      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
16199      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
16200      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
16201    }
16202  }
16203
16204  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
16205    return SDValue();
16206
16207  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
16208  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
16209    std::swap(N0, N1);
16210  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
16211    return SDValue();
16212  if (!N0.hasOneUse() || !N1.hasOneUse())
16213    return SDValue();
16214
16215  SDValue ShAmt0 = N0.getOperand(1);
16216  if (ShAmt0.getValueType() != MVT::i8)
16217    return SDValue();
16218  SDValue ShAmt1 = N1.getOperand(1);
16219  if (ShAmt1.getValueType() != MVT::i8)
16220    return SDValue();
16221  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
16222    ShAmt0 = ShAmt0.getOperand(0);
16223  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
16224    ShAmt1 = ShAmt1.getOperand(0);
16225
16226  DebugLoc DL = N->getDebugLoc();
16227  unsigned Opc = X86ISD::SHLD;
16228  SDValue Op0 = N0.getOperand(0);
16229  SDValue Op1 = N1.getOperand(0);
16230  if (ShAmt0.getOpcode() == ISD::SUB) {
16231    Opc = X86ISD::SHRD;
16232    std::swap(Op0, Op1);
16233    std::swap(ShAmt0, ShAmt1);
16234  }
16235
16236  unsigned Bits = VT.getSizeInBits();
16237  if (ShAmt1.getOpcode() == ISD::SUB) {
16238    SDValue Sum = ShAmt1.getOperand(0);
16239    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
16240      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
16241      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
16242        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
16243      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
16244        return DAG.getNode(Opc, DL, VT,
16245                           Op0, Op1,
16246                           DAG.getNode(ISD::TRUNCATE, DL,
16247                                       MVT::i8, ShAmt0));
16248    }
16249  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
16250    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
16251    if (ShAmt0C &&
16252        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
16253      return DAG.getNode(Opc, DL, VT,
16254                         N0.getOperand(0), N1.getOperand(0),
16255                         DAG.getNode(ISD::TRUNCATE, DL,
16256                                       MVT::i8, ShAmt0));
16257  }
16258
16259  return SDValue();
16260}
16261
16262// Generate NEG and CMOV for integer abs.
16263static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
16264  EVT VT = N->getValueType(0);
16265
16266  // Since X86 does not have CMOV for 8-bit integer, we don't convert
16267  // 8-bit integer abs to NEG and CMOV.
16268  if (VT.isInteger() && VT.getSizeInBits() == 8)
16269    return SDValue();
16270
16271  SDValue N0 = N->getOperand(0);
16272  SDValue N1 = N->getOperand(1);
16273  DebugLoc DL = N->getDebugLoc();
16274
16275  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
16276  // and change it to SUB and CMOV.
16277  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
16278      N0.getOpcode() == ISD::ADD &&
16279      N0.getOperand(1) == N1 &&
16280      N1.getOpcode() == ISD::SRA &&
16281      N1.getOperand(0) == N0.getOperand(0))
16282    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
16283      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
16284        // Generate SUB & CMOV.
16285        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
16286                                  DAG.getConstant(0, VT), N0.getOperand(0));
16287
16288        SDValue Ops[] = { N0.getOperand(0), Neg,
16289                          DAG.getConstant(X86::COND_GE, MVT::i8),
16290                          SDValue(Neg.getNode(), 1) };
16291        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
16292                           Ops, array_lengthof(Ops));
16293      }
16294  return SDValue();
16295}
16296
16297// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
16298static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
16299                                 TargetLowering::DAGCombinerInfo &DCI,
16300                                 const X86Subtarget *Subtarget) {
16301  EVT VT = N->getValueType(0);
16302  if (DCI.isBeforeLegalizeOps())
16303    return SDValue();
16304
16305  if (Subtarget->hasCMov()) {
16306    SDValue RV = performIntegerAbsCombine(N, DAG);
16307    if (RV.getNode())
16308      return RV;
16309  }
16310
16311  // Try forming BMI if it is available.
16312  if (!Subtarget->hasBMI())
16313    return SDValue();
16314
16315  if (VT != MVT::i32 && VT != MVT::i64)
16316    return SDValue();
16317
16318  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
16319
16320  // Create BLSMSK instructions by finding X ^ (X-1)
16321  SDValue N0 = N->getOperand(0);
16322  SDValue N1 = N->getOperand(1);
16323  DebugLoc DL = N->getDebugLoc();
16324
16325  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
16326      isAllOnes(N0.getOperand(1)))
16327    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
16328
16329  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
16330      isAllOnes(N1.getOperand(1)))
16331    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
16332
16333  return SDValue();
16334}
16335
16336/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
16337static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
16338                                  TargetLowering::DAGCombinerInfo &DCI,
16339                                  const X86Subtarget *Subtarget) {
16340  LoadSDNode *Ld = cast<LoadSDNode>(N);
16341  EVT RegVT = Ld->getValueType(0);
16342  EVT MemVT = Ld->getMemoryVT();
16343  DebugLoc dl = Ld->getDebugLoc();
16344  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16345
16346  ISD::LoadExtType Ext = Ld->getExtensionType();
16347
16348  // If this is a vector EXT Load then attempt to optimize it using a
16349  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
16350  // expansion is still better than scalar code.
16351  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
16352  // emit a shuffle and a arithmetic shift.
16353  // TODO: It is possible to support ZExt by zeroing the undef values
16354  // during the shuffle phase or after the shuffle.
16355  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
16356      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
16357    assert(MemVT != RegVT && "Cannot extend to the same type");
16358    assert(MemVT.isVector() && "Must load a vector from memory");
16359
16360    unsigned NumElems = RegVT.getVectorNumElements();
16361    unsigned RegSz = RegVT.getSizeInBits();
16362    unsigned MemSz = MemVT.getSizeInBits();
16363    assert(RegSz > MemSz && "Register size must be greater than the mem size");
16364
16365    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
16366      return SDValue();
16367
16368    // All sizes must be a power of two.
16369    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
16370      return SDValue();
16371
16372    // Attempt to load the original value using scalar loads.
16373    // Find the largest scalar type that divides the total loaded size.
16374    MVT SclrLoadTy = MVT::i8;
16375    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16376         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16377      MVT Tp = (MVT::SimpleValueType)tp;
16378      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
16379        SclrLoadTy = Tp;
16380      }
16381    }
16382
16383    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16384    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
16385        (64 <= MemSz))
16386      SclrLoadTy = MVT::f64;
16387
16388    // Calculate the number of scalar loads that we need to perform
16389    // in order to load our vector from memory.
16390    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
16391    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
16392      return SDValue();
16393
16394    unsigned loadRegZize = RegSz;
16395    if (Ext == ISD::SEXTLOAD && RegSz == 256)
16396      loadRegZize /= 2;
16397
16398    // Represent our vector as a sequence of elements which are the
16399    // largest scalar that we can load.
16400    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
16401      loadRegZize/SclrLoadTy.getSizeInBits());
16402
16403    // Represent the data using the same element type that is stored in
16404    // memory. In practice, we ''widen'' MemVT.
16405    EVT WideVecVT =
16406	  EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
16407                       loadRegZize/MemVT.getScalarType().getSizeInBits());
16408
16409    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
16410      "Invalid vector type");
16411
16412    // We can't shuffle using an illegal type.
16413    if (!TLI.isTypeLegal(WideVecVT))
16414      return SDValue();
16415
16416    SmallVector<SDValue, 8> Chains;
16417    SDValue Ptr = Ld->getBasePtr();
16418    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
16419                                        TLI.getPointerTy());
16420    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
16421
16422    for (unsigned i = 0; i < NumLoads; ++i) {
16423      // Perform a single load.
16424      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
16425                                       Ptr, Ld->getPointerInfo(),
16426                                       Ld->isVolatile(), Ld->isNonTemporal(),
16427                                       Ld->isInvariant(), Ld->getAlignment());
16428      Chains.push_back(ScalarLoad.getValue(1));
16429      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
16430      // another round of DAGCombining.
16431      if (i == 0)
16432        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
16433      else
16434        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
16435                          ScalarLoad, DAG.getIntPtrConstant(i));
16436
16437      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16438    }
16439
16440    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16441                               Chains.size());
16442
16443    // Bitcast the loaded value to a vector of the original element type, in
16444    // the size of the target vector type.
16445    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
16446    unsigned SizeRatio = RegSz/MemSz;
16447
16448    if (Ext == ISD::SEXTLOAD) {
16449      // If we have SSE4.1 we can directly emit a VSEXT node.
16450      if (Subtarget->hasSSE41()) {
16451        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
16452        return DCI.CombineTo(N, Sext, TF, true);
16453      }
16454
16455      // Otherwise we'll shuffle the small elements in the high bits of the
16456      // larger type and perform an arithmetic shift. If the shift is not legal
16457      // it's better to scalarize.
16458      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
16459        return SDValue();
16460
16461      // Redistribute the loaded elements into the different locations.
16462      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16463      for (unsigned i = 0; i != NumElems; ++i)
16464        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
16465
16466      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16467                                           DAG.getUNDEF(WideVecVT),
16468                                           &ShuffleVec[0]);
16469
16470      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16471
16472      // Build the arithmetic shift.
16473      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
16474                     MemVT.getVectorElementType().getSizeInBits();
16475      SmallVector<SDValue, 8> C(NumElems,
16476                                DAG.getConstant(Amt, RegVT.getScalarType()));
16477      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, RegVT, &C[0], C.size());
16478      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff, BV);
16479
16480      return DCI.CombineTo(N, Shuff, TF, true);
16481    }
16482
16483    // Redistribute the loaded elements into the different locations.
16484    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16485    for (unsigned i = 0; i != NumElems; ++i)
16486      ShuffleVec[i*SizeRatio] = i;
16487
16488    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
16489                                         DAG.getUNDEF(WideVecVT),
16490                                         &ShuffleVec[0]);
16491
16492    // Bitcast to the requested type.
16493    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
16494    // Replace the original load with the new sequence
16495    // and return the new chain.
16496    return DCI.CombineTo(N, Shuff, TF, true);
16497  }
16498
16499  return SDValue();
16500}
16501
16502/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
16503static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
16504                                   const X86Subtarget *Subtarget) {
16505  StoreSDNode *St = cast<StoreSDNode>(N);
16506  EVT VT = St->getValue().getValueType();
16507  EVT StVT = St->getMemoryVT();
16508  DebugLoc dl = St->getDebugLoc();
16509  SDValue StoredVal = St->getOperand(1);
16510  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16511
16512  // If we are saving a concatenation of two XMM registers, perform two stores.
16513  // On Sandy Bridge, 256-bit memory operations are executed by two
16514  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
16515  // memory  operation.
16516  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
16517      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
16518      StoredVal.getNumOperands() == 2) {
16519    SDValue Value0 = StoredVal.getOperand(0);
16520    SDValue Value1 = StoredVal.getOperand(1);
16521
16522    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
16523    SDValue Ptr0 = St->getBasePtr();
16524    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
16525
16526    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
16527                                St->getPointerInfo(), St->isVolatile(),
16528                                St->isNonTemporal(), St->getAlignment());
16529    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
16530                                St->getPointerInfo(), St->isVolatile(),
16531                                St->isNonTemporal(), St->getAlignment());
16532    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
16533  }
16534
16535  // Optimize trunc store (of multiple scalars) to shuffle and store.
16536  // First, pack all of the elements in one place. Next, store to memory
16537  // in fewer chunks.
16538  if (St->isTruncatingStore() && VT.isVector()) {
16539    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16540    unsigned NumElems = VT.getVectorNumElements();
16541    assert(StVT != VT && "Cannot truncate to the same type");
16542    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
16543    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
16544
16545    // From, To sizes and ElemCount must be pow of two
16546    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
16547    // We are going to use the original vector elt for storing.
16548    // Accumulated smaller vector elements must be a multiple of the store size.
16549    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
16550
16551    unsigned SizeRatio  = FromSz / ToSz;
16552
16553    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
16554
16555    // Create a type on which we perform the shuffle
16556    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
16557            StVT.getScalarType(), NumElems*SizeRatio);
16558
16559    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
16560
16561    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
16562    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16563    for (unsigned i = 0; i != NumElems; ++i)
16564      ShuffleVec[i] = i * SizeRatio;
16565
16566    // Can't shuffle using an illegal type.
16567    if (!TLI.isTypeLegal(WideVecVT))
16568      return SDValue();
16569
16570    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
16571                                         DAG.getUNDEF(WideVecVT),
16572                                         &ShuffleVec[0]);
16573    // At this point all of the data is stored at the bottom of the
16574    // register. We now need to save it to mem.
16575
16576    // Find the largest store unit
16577    MVT StoreType = MVT::i8;
16578    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16579         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16580      MVT Tp = (MVT::SimpleValueType)tp;
16581      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
16582        StoreType = Tp;
16583    }
16584
16585    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16586    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
16587        (64 <= NumElems * ToSz))
16588      StoreType = MVT::f64;
16589
16590    // Bitcast the original vector into a vector of store-size units
16591    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
16592            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
16593    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
16594    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
16595    SmallVector<SDValue, 8> Chains;
16596    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
16597                                        TLI.getPointerTy());
16598    SDValue Ptr = St->getBasePtr();
16599
16600    // Perform one or more big stores into memory.
16601    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
16602      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
16603                                   StoreType, ShuffWide,
16604                                   DAG.getIntPtrConstant(i));
16605      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
16606                                St->getPointerInfo(), St->isVolatile(),
16607                                St->isNonTemporal(), St->getAlignment());
16608      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16609      Chains.push_back(Ch);
16610    }
16611
16612    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16613                               Chains.size());
16614  }
16615
16616  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
16617  // the FP state in cases where an emms may be missing.
16618  // A preferable solution to the general problem is to figure out the right
16619  // places to insert EMMS.  This qualifies as a quick hack.
16620
16621  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
16622  if (VT.getSizeInBits() != 64)
16623    return SDValue();
16624
16625  const Function *F = DAG.getMachineFunction().getFunction();
16626  bool NoImplicitFloatOps = F->getAttributes().
16627    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
16628  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
16629                     && Subtarget->hasSSE2();
16630  if ((VT.isVector() ||
16631       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
16632      isa<LoadSDNode>(St->getValue()) &&
16633      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
16634      St->getChain().hasOneUse() && !St->isVolatile()) {
16635    SDNode* LdVal = St->getValue().getNode();
16636    LoadSDNode *Ld = 0;
16637    int TokenFactorIndex = -1;
16638    SmallVector<SDValue, 8> Ops;
16639    SDNode* ChainVal = St->getChain().getNode();
16640    // Must be a store of a load.  We currently handle two cases:  the load
16641    // is a direct child, and it's under an intervening TokenFactor.  It is
16642    // possible to dig deeper under nested TokenFactors.
16643    if (ChainVal == LdVal)
16644      Ld = cast<LoadSDNode>(St->getChain());
16645    else if (St->getValue().hasOneUse() &&
16646             ChainVal->getOpcode() == ISD::TokenFactor) {
16647      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
16648        if (ChainVal->getOperand(i).getNode() == LdVal) {
16649          TokenFactorIndex = i;
16650          Ld = cast<LoadSDNode>(St->getValue());
16651        } else
16652          Ops.push_back(ChainVal->getOperand(i));
16653      }
16654    }
16655
16656    if (!Ld || !ISD::isNormalLoad(Ld))
16657      return SDValue();
16658
16659    // If this is not the MMX case, i.e. we are just turning i64 load/store
16660    // into f64 load/store, avoid the transformation if there are multiple
16661    // uses of the loaded value.
16662    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
16663      return SDValue();
16664
16665    DebugLoc LdDL = Ld->getDebugLoc();
16666    DebugLoc StDL = N->getDebugLoc();
16667    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
16668    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
16669    // pair instead.
16670    if (Subtarget->is64Bit() || F64IsLegal) {
16671      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
16672      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
16673                                  Ld->getPointerInfo(), Ld->isVolatile(),
16674                                  Ld->isNonTemporal(), Ld->isInvariant(),
16675                                  Ld->getAlignment());
16676      SDValue NewChain = NewLd.getValue(1);
16677      if (TokenFactorIndex != -1) {
16678        Ops.push_back(NewChain);
16679        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
16680                               Ops.size());
16681      }
16682      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
16683                          St->getPointerInfo(),
16684                          St->isVolatile(), St->isNonTemporal(),
16685                          St->getAlignment());
16686    }
16687
16688    // Otherwise, lower to two pairs of 32-bit loads / stores.
16689    SDValue LoAddr = Ld->getBasePtr();
16690    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
16691                                 DAG.getConstant(4, MVT::i32));
16692
16693    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
16694                               Ld->getPointerInfo(),
16695                               Ld->isVolatile(), Ld->isNonTemporal(),
16696                               Ld->isInvariant(), Ld->getAlignment());
16697    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
16698                               Ld->getPointerInfo().getWithOffset(4),
16699                               Ld->isVolatile(), Ld->isNonTemporal(),
16700                               Ld->isInvariant(),
16701                               MinAlign(Ld->getAlignment(), 4));
16702
16703    SDValue NewChain = LoLd.getValue(1);
16704    if (TokenFactorIndex != -1) {
16705      Ops.push_back(LoLd);
16706      Ops.push_back(HiLd);
16707      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
16708                             Ops.size());
16709    }
16710
16711    LoAddr = St->getBasePtr();
16712    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
16713                         DAG.getConstant(4, MVT::i32));
16714
16715    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
16716                                St->getPointerInfo(),
16717                                St->isVolatile(), St->isNonTemporal(),
16718                                St->getAlignment());
16719    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
16720                                St->getPointerInfo().getWithOffset(4),
16721                                St->isVolatile(),
16722                                St->isNonTemporal(),
16723                                MinAlign(St->getAlignment(), 4));
16724    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
16725  }
16726  return SDValue();
16727}
16728
16729/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
16730/// and return the operands for the horizontal operation in LHS and RHS.  A
16731/// horizontal operation performs the binary operation on successive elements
16732/// of its first operand, then on successive elements of its second operand,
16733/// returning the resulting values in a vector.  For example, if
16734///   A = < float a0, float a1, float a2, float a3 >
16735/// and
16736///   B = < float b0, float b1, float b2, float b3 >
16737/// then the result of doing a horizontal operation on A and B is
16738///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
16739/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
16740/// A horizontal-op B, for some already available A and B, and if so then LHS is
16741/// set to A, RHS to B, and the routine returns 'true'.
16742/// Note that the binary operation should have the property that if one of the
16743/// operands is UNDEF then the result is UNDEF.
16744static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
16745  // Look for the following pattern: if
16746  //   A = < float a0, float a1, float a2, float a3 >
16747  //   B = < float b0, float b1, float b2, float b3 >
16748  // and
16749  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
16750  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
16751  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
16752  // which is A horizontal-op B.
16753
16754  // At least one of the operands should be a vector shuffle.
16755  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
16756      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
16757    return false;
16758
16759  EVT VT = LHS.getValueType();
16760
16761  assert((VT.is128BitVector() || VT.is256BitVector()) &&
16762         "Unsupported vector type for horizontal add/sub");
16763
16764  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
16765  // operate independently on 128-bit lanes.
16766  unsigned NumElts = VT.getVectorNumElements();
16767  unsigned NumLanes = VT.getSizeInBits()/128;
16768  unsigned NumLaneElts = NumElts / NumLanes;
16769  assert((NumLaneElts % 2 == 0) &&
16770         "Vector type should have an even number of elements in each lane");
16771  unsigned HalfLaneElts = NumLaneElts/2;
16772
16773  // View LHS in the form
16774  //   LHS = VECTOR_SHUFFLE A, B, LMask
16775  // If LHS is not a shuffle then pretend it is the shuffle
16776  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
16777  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
16778  // type VT.
16779  SDValue A, B;
16780  SmallVector<int, 16> LMask(NumElts);
16781  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
16782    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
16783      A = LHS.getOperand(0);
16784    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
16785      B = LHS.getOperand(1);
16786    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
16787    std::copy(Mask.begin(), Mask.end(), LMask.begin());
16788  } else {
16789    if (LHS.getOpcode() != ISD::UNDEF)
16790      A = LHS;
16791    for (unsigned i = 0; i != NumElts; ++i)
16792      LMask[i] = i;
16793  }
16794
16795  // Likewise, view RHS in the form
16796  //   RHS = VECTOR_SHUFFLE C, D, RMask
16797  SDValue C, D;
16798  SmallVector<int, 16> RMask(NumElts);
16799  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
16800    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
16801      C = RHS.getOperand(0);
16802    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
16803      D = RHS.getOperand(1);
16804    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
16805    std::copy(Mask.begin(), Mask.end(), RMask.begin());
16806  } else {
16807    if (RHS.getOpcode() != ISD::UNDEF)
16808      C = RHS;
16809    for (unsigned i = 0; i != NumElts; ++i)
16810      RMask[i] = i;
16811  }
16812
16813  // Check that the shuffles are both shuffling the same vectors.
16814  if (!(A == C && B == D) && !(A == D && B == C))
16815    return false;
16816
16817  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
16818  if (!A.getNode() && !B.getNode())
16819    return false;
16820
16821  // If A and B occur in reverse order in RHS, then "swap" them (which means
16822  // rewriting the mask).
16823  if (A != C)
16824    CommuteVectorShuffleMask(RMask, NumElts);
16825
16826  // At this point LHS and RHS are equivalent to
16827  //   LHS = VECTOR_SHUFFLE A, B, LMask
16828  //   RHS = VECTOR_SHUFFLE A, B, RMask
16829  // Check that the masks correspond to performing a horizontal operation.
16830  for (unsigned i = 0; i != NumElts; ++i) {
16831    int LIdx = LMask[i], RIdx = RMask[i];
16832
16833    // Ignore any UNDEF components.
16834    if (LIdx < 0 || RIdx < 0 ||
16835        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
16836        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
16837      continue;
16838
16839    // Check that successive elements are being operated on.  If not, this is
16840    // not a horizontal operation.
16841    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
16842    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
16843    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
16844    if (!(LIdx == Index && RIdx == Index + 1) &&
16845        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
16846      return false;
16847  }
16848
16849  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
16850  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
16851  return true;
16852}
16853
16854/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
16855static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
16856                                  const X86Subtarget *Subtarget) {
16857  EVT VT = N->getValueType(0);
16858  SDValue LHS = N->getOperand(0);
16859  SDValue RHS = N->getOperand(1);
16860
16861  // Try to synthesize horizontal adds from adds of shuffles.
16862  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
16863       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
16864      isHorizontalBinOp(LHS, RHS, true))
16865    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
16866  return SDValue();
16867}
16868
16869/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
16870static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
16871                                  const X86Subtarget *Subtarget) {
16872  EVT VT = N->getValueType(0);
16873  SDValue LHS = N->getOperand(0);
16874  SDValue RHS = N->getOperand(1);
16875
16876  // Try to synthesize horizontal subs from subs of shuffles.
16877  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
16878       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
16879      isHorizontalBinOp(LHS, RHS, false))
16880    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
16881  return SDValue();
16882}
16883
16884/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
16885/// X86ISD::FXOR nodes.
16886static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
16887  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
16888  // F[X]OR(0.0, x) -> x
16889  // F[X]OR(x, 0.0) -> x
16890  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
16891    if (C->getValueAPF().isPosZero())
16892      return N->getOperand(1);
16893  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
16894    if (C->getValueAPF().isPosZero())
16895      return N->getOperand(0);
16896  return SDValue();
16897}
16898
16899/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
16900/// X86ISD::FMAX nodes.
16901static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
16902  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
16903
16904  // Only perform optimizations if UnsafeMath is used.
16905  if (!DAG.getTarget().Options.UnsafeFPMath)
16906    return SDValue();
16907
16908  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
16909  // into FMINC and FMAXC, which are Commutative operations.
16910  unsigned NewOp = 0;
16911  switch (N->getOpcode()) {
16912    default: llvm_unreachable("unknown opcode");
16913    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
16914    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
16915  }
16916
16917  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
16918                     N->getOperand(0), N->getOperand(1));
16919}
16920
16921/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
16922static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
16923  // FAND(0.0, x) -> 0.0
16924  // FAND(x, 0.0) -> 0.0
16925  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
16926    if (C->getValueAPF().isPosZero())
16927      return N->getOperand(0);
16928  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
16929    if (C->getValueAPF().isPosZero())
16930      return N->getOperand(1);
16931  return SDValue();
16932}
16933
16934static SDValue PerformBTCombine(SDNode *N,
16935                                SelectionDAG &DAG,
16936                                TargetLowering::DAGCombinerInfo &DCI) {
16937  // BT ignores high bits in the bit index operand.
16938  SDValue Op1 = N->getOperand(1);
16939  if (Op1.hasOneUse()) {
16940    unsigned BitWidth = Op1.getValueSizeInBits();
16941    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
16942    APInt KnownZero, KnownOne;
16943    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
16944                                          !DCI.isBeforeLegalizeOps());
16945    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16946    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
16947        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
16948      DCI.CommitTargetLoweringOpt(TLO);
16949  }
16950  return SDValue();
16951}
16952
16953static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
16954  SDValue Op = N->getOperand(0);
16955  if (Op.getOpcode() == ISD::BITCAST)
16956    Op = Op.getOperand(0);
16957  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
16958  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
16959      VT.getVectorElementType().getSizeInBits() ==
16960      OpVT.getVectorElementType().getSizeInBits()) {
16961    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
16962  }
16963  return SDValue();
16964}
16965
16966static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
16967                                  TargetLowering::DAGCombinerInfo &DCI,
16968                                  const X86Subtarget *Subtarget) {
16969  EVT VT = N->getValueType(0);
16970
16971  if (!VT.isVector())
16972    return SDValue();
16973
16974  SDValue In = N->getOperand(0);
16975  EVT InVT = In.getValueType();
16976  DebugLoc dl = N->getDebugLoc();
16977  unsigned ExtendedEltSize = VT.getVectorElementType().getSizeInBits();
16978
16979  // Split SIGN_EXTEND operation to use vmovsx instruction when possible
16980  if (InVT == MVT::v8i8) {
16981    if (ExtendedEltSize > 16 && !Subtarget->hasInt256())
16982      In = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, In);
16983    if (ExtendedEltSize > 32)
16984      In = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i32, In);
16985    return DAG.getNode(ISD::SIGN_EXTEND, dl, VT, In);
16986  }
16987
16988  if ((InVT == MVT::v4i8 || InVT == MVT::v4i16) &&
16989      ExtendedEltSize > 32 && !Subtarget->hasInt256()) {
16990    In = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, In);
16991    return DAG.getNode(ISD::SIGN_EXTEND, dl, VT, In);
16992  }
16993
16994  if (!DCI.isBeforeLegalizeOps())
16995    return SDValue();
16996
16997  if (!Subtarget->hasFp256())
16998    return SDValue();
16999
17000  if (VT.is256BitVector()) {
17001    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17002    if (R.getNode())
17003      return R;
17004  }
17005
17006  return SDValue();
17007}
17008
17009static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
17010                                 const X86Subtarget* Subtarget) {
17011  DebugLoc dl = N->getDebugLoc();
17012  EVT VT = N->getValueType(0);
17013
17014  // Let legalize expand this if it isn't a legal type yet.
17015  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
17016    return SDValue();
17017
17018  EVT ScalarVT = VT.getScalarType();
17019  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
17020      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
17021    return SDValue();
17022
17023  SDValue A = N->getOperand(0);
17024  SDValue B = N->getOperand(1);
17025  SDValue C = N->getOperand(2);
17026
17027  bool NegA = (A.getOpcode() == ISD::FNEG);
17028  bool NegB = (B.getOpcode() == ISD::FNEG);
17029  bool NegC = (C.getOpcode() == ISD::FNEG);
17030
17031  // Negative multiplication when NegA xor NegB
17032  bool NegMul = (NegA != NegB);
17033  if (NegA)
17034    A = A.getOperand(0);
17035  if (NegB)
17036    B = B.getOperand(0);
17037  if (NegC)
17038    C = C.getOperand(0);
17039
17040  unsigned Opcode;
17041  if (!NegMul)
17042    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
17043  else
17044    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
17045
17046  return DAG.getNode(Opcode, dl, VT, A, B, C);
17047}
17048
17049static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
17050                                  TargetLowering::DAGCombinerInfo &DCI,
17051                                  const X86Subtarget *Subtarget) {
17052  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
17053  //           (and (i32 x86isd::setcc_carry), 1)
17054  // This eliminates the zext. This transformation is necessary because
17055  // ISD::SETCC is always legalized to i8.
17056  DebugLoc dl = N->getDebugLoc();
17057  SDValue N0 = N->getOperand(0);
17058  EVT VT = N->getValueType(0);
17059
17060  if (N0.getOpcode() == ISD::AND &&
17061      N0.hasOneUse() &&
17062      N0.getOperand(0).hasOneUse()) {
17063    SDValue N00 = N0.getOperand(0);
17064    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
17065      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
17066      if (!C || C->getZExtValue() != 1)
17067        return SDValue();
17068      return DAG.getNode(ISD::AND, dl, VT,
17069                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
17070                                     N00.getOperand(0), N00.getOperand(1)),
17071                         DAG.getConstant(1, VT));
17072    }
17073  }
17074
17075  if (VT.is256BitVector()) {
17076    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
17077    if (R.getNode())
17078      return R;
17079  }
17080
17081  return SDValue();
17082}
17083
17084// Optimize x == -y --> x+y == 0
17085//          x != -y --> x+y != 0
17086static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
17087  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
17088  SDValue LHS = N->getOperand(0);
17089  SDValue RHS = N->getOperand(1);
17090
17091  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
17092    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
17093      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
17094        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17095                                   LHS.getValueType(), RHS, LHS.getOperand(1));
17096        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17097                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17098      }
17099  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
17100    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
17101      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
17102        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
17103                                   RHS.getValueType(), LHS, RHS.getOperand(1));
17104        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
17105                            addV, DAG.getConstant(0, addV.getValueType()), CC);
17106      }
17107  return SDValue();
17108}
17109
17110// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
17111// as "sbb reg,reg", since it can be extended without zext and produces
17112// an all-ones bit which is more useful than 0/1 in some cases.
17113static SDValue MaterializeSETB(DebugLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
17114  return DAG.getNode(ISD::AND, DL, MVT::i8,
17115                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
17116                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
17117                     DAG.getConstant(1, MVT::i8));
17118}
17119
17120// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
17121static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
17122                                   TargetLowering::DAGCombinerInfo &DCI,
17123                                   const X86Subtarget *Subtarget) {
17124  DebugLoc DL = N->getDebugLoc();
17125  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
17126  SDValue EFLAGS = N->getOperand(1);
17127
17128  if (CC == X86::COND_A) {
17129    // Try to convert COND_A into COND_B in an attempt to facilitate
17130    // materializing "setb reg".
17131    //
17132    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
17133    // cannot take an immediate as its first operand.
17134    //
17135    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
17136        EFLAGS.getValueType().isInteger() &&
17137        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
17138      SDValue NewSub = DAG.getNode(X86ISD::SUB, EFLAGS.getDebugLoc(),
17139                                   EFLAGS.getNode()->getVTList(),
17140                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
17141      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
17142      return MaterializeSETB(DL, NewEFLAGS, DAG);
17143    }
17144  }
17145
17146  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
17147  // a zext and produces an all-ones bit which is more useful than 0/1 in some
17148  // cases.
17149  if (CC == X86::COND_B)
17150    return MaterializeSETB(DL, EFLAGS, DAG);
17151
17152  SDValue Flags;
17153
17154  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17155  if (Flags.getNode()) {
17156    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17157    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
17158  }
17159
17160  return SDValue();
17161}
17162
17163// Optimize branch condition evaluation.
17164//
17165static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
17166                                    TargetLowering::DAGCombinerInfo &DCI,
17167                                    const X86Subtarget *Subtarget) {
17168  DebugLoc DL = N->getDebugLoc();
17169  SDValue Chain = N->getOperand(0);
17170  SDValue Dest = N->getOperand(1);
17171  SDValue EFLAGS = N->getOperand(3);
17172  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
17173
17174  SDValue Flags;
17175
17176  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
17177  if (Flags.getNode()) {
17178    SDValue Cond = DAG.getConstant(CC, MVT::i8);
17179    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
17180                       Flags);
17181  }
17182
17183  return SDValue();
17184}
17185
17186static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
17187                                        const X86TargetLowering *XTLI) {
17188  SDValue Op0 = N->getOperand(0);
17189  EVT InVT = Op0->getValueType(0);
17190
17191  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
17192  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
17193    DebugLoc dl = N->getDebugLoc();
17194    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
17195    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
17196    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
17197  }
17198
17199  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
17200  // a 32-bit target where SSE doesn't support i64->FP operations.
17201  if (Op0.getOpcode() == ISD::LOAD) {
17202    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
17203    EVT VT = Ld->getValueType(0);
17204    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
17205        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
17206        !XTLI->getSubtarget()->is64Bit() &&
17207        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
17208      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
17209                                          Ld->getChain(), Op0, DAG);
17210      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
17211      return FILDChain;
17212    }
17213  }
17214  return SDValue();
17215}
17216
17217// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
17218static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
17219                                 X86TargetLowering::DAGCombinerInfo &DCI) {
17220  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
17221  // the result is either zero or one (depending on the input carry bit).
17222  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
17223  if (X86::isZeroNode(N->getOperand(0)) &&
17224      X86::isZeroNode(N->getOperand(1)) &&
17225      // We don't have a good way to replace an EFLAGS use, so only do this when
17226      // dead right now.
17227      SDValue(N, 1).use_empty()) {
17228    DebugLoc DL = N->getDebugLoc();
17229    EVT VT = N->getValueType(0);
17230    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
17231    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
17232                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
17233                                           DAG.getConstant(X86::COND_B,MVT::i8),
17234                                           N->getOperand(2)),
17235                               DAG.getConstant(1, VT));
17236    return DCI.CombineTo(N, Res1, CarryOut);
17237  }
17238
17239  return SDValue();
17240}
17241
17242// fold (add Y, (sete  X, 0)) -> adc  0, Y
17243//      (add Y, (setne X, 0)) -> sbb -1, Y
17244//      (sub (sete  X, 0), Y) -> sbb  0, Y
17245//      (sub (setne X, 0), Y) -> adc -1, Y
17246static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
17247  DebugLoc DL = N->getDebugLoc();
17248
17249  // Look through ZExts.
17250  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
17251  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
17252    return SDValue();
17253
17254  SDValue SetCC = Ext.getOperand(0);
17255  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
17256    return SDValue();
17257
17258  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
17259  if (CC != X86::COND_E && CC != X86::COND_NE)
17260    return SDValue();
17261
17262  SDValue Cmp = SetCC.getOperand(1);
17263  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
17264      !X86::isZeroNode(Cmp.getOperand(1)) ||
17265      !Cmp.getOperand(0).getValueType().isInteger())
17266    return SDValue();
17267
17268  SDValue CmpOp0 = Cmp.getOperand(0);
17269  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
17270                               DAG.getConstant(1, CmpOp0.getValueType()));
17271
17272  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
17273  if (CC == X86::COND_NE)
17274    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
17275                       DL, OtherVal.getValueType(), OtherVal,
17276                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
17277  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
17278                     DL, OtherVal.getValueType(), OtherVal,
17279                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
17280}
17281
17282/// PerformADDCombine - Do target-specific dag combines on integer adds.
17283static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
17284                                 const X86Subtarget *Subtarget) {
17285  EVT VT = N->getValueType(0);
17286  SDValue Op0 = N->getOperand(0);
17287  SDValue Op1 = N->getOperand(1);
17288
17289  // Try to synthesize horizontal adds from adds of shuffles.
17290  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17291       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17292      isHorizontalBinOp(Op0, Op1, true))
17293    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
17294
17295  return OptimizeConditionalInDecrement(N, DAG);
17296}
17297
17298static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
17299                                 const X86Subtarget *Subtarget) {
17300  SDValue Op0 = N->getOperand(0);
17301  SDValue Op1 = N->getOperand(1);
17302
17303  // X86 can't encode an immediate LHS of a sub. See if we can push the
17304  // negation into a preceding instruction.
17305  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
17306    // If the RHS of the sub is a XOR with one use and a constant, invert the
17307    // immediate. Then add one to the LHS of the sub so we can turn
17308    // X-Y -> X+~Y+1, saving one register.
17309    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
17310        isa<ConstantSDNode>(Op1.getOperand(1))) {
17311      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
17312      EVT VT = Op0.getValueType();
17313      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
17314                                   Op1.getOperand(0),
17315                                   DAG.getConstant(~XorC, VT));
17316      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
17317                         DAG.getConstant(C->getAPIntValue()+1, VT));
17318    }
17319  }
17320
17321  // Try to synthesize horizontal adds from adds of shuffles.
17322  EVT VT = N->getValueType(0);
17323  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
17324       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
17325      isHorizontalBinOp(Op0, Op1, true))
17326    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
17327
17328  return OptimizeConditionalInDecrement(N, DAG);
17329}
17330
17331/// performVZEXTCombine - Performs build vector combines
17332static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
17333                                        TargetLowering::DAGCombinerInfo &DCI,
17334                                        const X86Subtarget *Subtarget) {
17335  // (vzext (bitcast (vzext (x)) -> (vzext x)
17336  SDValue In = N->getOperand(0);
17337  while (In.getOpcode() == ISD::BITCAST)
17338    In = In.getOperand(0);
17339
17340  if (In.getOpcode() != X86ISD::VZEXT)
17341    return SDValue();
17342
17343  return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0), In.getOperand(0));
17344}
17345
17346SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
17347                                             DAGCombinerInfo &DCI) const {
17348  SelectionDAG &DAG = DCI.DAG;
17349  switch (N->getOpcode()) {
17350  default: break;
17351  case ISD::EXTRACT_VECTOR_ELT:
17352    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
17353  case ISD::VSELECT:
17354  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
17355  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
17356  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
17357  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
17358  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
17359  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
17360  case ISD::SHL:
17361  case ISD::SRA:
17362  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
17363  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
17364  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
17365  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
17366  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
17367  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
17368  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
17369  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
17370  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
17371  case X86ISD::FXOR:
17372  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
17373  case X86ISD::FMIN:
17374  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
17375  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
17376  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
17377  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
17378  case ISD::ANY_EXTEND:
17379  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
17380  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
17381  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
17382  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
17383  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
17384  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
17385  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
17386  case X86ISD::SHUFP:       // Handle all target specific shuffles
17387  case X86ISD::PALIGN:
17388  case X86ISD::UNPCKH:
17389  case X86ISD::UNPCKL:
17390  case X86ISD::MOVHLPS:
17391  case X86ISD::MOVLHPS:
17392  case X86ISD::PSHUFD:
17393  case X86ISD::PSHUFHW:
17394  case X86ISD::PSHUFLW:
17395  case X86ISD::MOVSS:
17396  case X86ISD::MOVSD:
17397  case X86ISD::VPERMILP:
17398  case X86ISD::VPERM2X128:
17399  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
17400  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
17401  }
17402
17403  return SDValue();
17404}
17405
17406/// isTypeDesirableForOp - Return true if the target has native support for
17407/// the specified value type and it is 'desirable' to use the type for the
17408/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
17409/// instruction encodings are longer and some i16 instructions are slow.
17410bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
17411  if (!isTypeLegal(VT))
17412    return false;
17413  if (VT != MVT::i16)
17414    return true;
17415
17416  switch (Opc) {
17417  default:
17418    return true;
17419  case ISD::LOAD:
17420  case ISD::SIGN_EXTEND:
17421  case ISD::ZERO_EXTEND:
17422  case ISD::ANY_EXTEND:
17423  case ISD::SHL:
17424  case ISD::SRL:
17425  case ISD::SUB:
17426  case ISD::ADD:
17427  case ISD::MUL:
17428  case ISD::AND:
17429  case ISD::OR:
17430  case ISD::XOR:
17431    return false;
17432  }
17433}
17434
17435/// IsDesirableToPromoteOp - This method query the target whether it is
17436/// beneficial for dag combiner to promote the specified node. If true, it
17437/// should return the desired promotion type by reference.
17438bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
17439  EVT VT = Op.getValueType();
17440  if (VT != MVT::i16)
17441    return false;
17442
17443  bool Promote = false;
17444  bool Commute = false;
17445  switch (Op.getOpcode()) {
17446  default: break;
17447  case ISD::LOAD: {
17448    LoadSDNode *LD = cast<LoadSDNode>(Op);
17449    // If the non-extending load has a single use and it's not live out, then it
17450    // might be folded.
17451    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
17452                                                     Op.hasOneUse()*/) {
17453      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
17454             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
17455        // The only case where we'd want to promote LOAD (rather then it being
17456        // promoted as an operand is when it's only use is liveout.
17457        if (UI->getOpcode() != ISD::CopyToReg)
17458          return false;
17459      }
17460    }
17461    Promote = true;
17462    break;
17463  }
17464  case ISD::SIGN_EXTEND:
17465  case ISD::ZERO_EXTEND:
17466  case ISD::ANY_EXTEND:
17467    Promote = true;
17468    break;
17469  case ISD::SHL:
17470  case ISD::SRL: {
17471    SDValue N0 = Op.getOperand(0);
17472    // Look out for (store (shl (load), x)).
17473    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
17474      return false;
17475    Promote = true;
17476    break;
17477  }
17478  case ISD::ADD:
17479  case ISD::MUL:
17480  case ISD::AND:
17481  case ISD::OR:
17482  case ISD::XOR:
17483    Commute = true;
17484    // fallthrough
17485  case ISD::SUB: {
17486    SDValue N0 = Op.getOperand(0);
17487    SDValue N1 = Op.getOperand(1);
17488    if (!Commute && MayFoldLoad(N1))
17489      return false;
17490    // Avoid disabling potential load folding opportunities.
17491    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
17492      return false;
17493    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
17494      return false;
17495    Promote = true;
17496  }
17497  }
17498
17499  PVT = MVT::i32;
17500  return Promote;
17501}
17502
17503//===----------------------------------------------------------------------===//
17504//                           X86 Inline Assembly Support
17505//===----------------------------------------------------------------------===//
17506
17507namespace {
17508  // Helper to match a string separated by whitespace.
17509  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
17510    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
17511
17512    for (unsigned i = 0, e = args.size(); i != e; ++i) {
17513      StringRef piece(*args[i]);
17514      if (!s.startswith(piece)) // Check if the piece matches.
17515        return false;
17516
17517      s = s.substr(piece.size());
17518      StringRef::size_type pos = s.find_first_not_of(" \t");
17519      if (pos == 0) // We matched a prefix.
17520        return false;
17521
17522      s = s.substr(pos);
17523    }
17524
17525    return s.empty();
17526  }
17527  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
17528}
17529
17530bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
17531  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
17532
17533  std::string AsmStr = IA->getAsmString();
17534
17535  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
17536  if (!Ty || Ty->getBitWidth() % 16 != 0)
17537    return false;
17538
17539  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
17540  SmallVector<StringRef, 4> AsmPieces;
17541  SplitString(AsmStr, AsmPieces, ";\n");
17542
17543  switch (AsmPieces.size()) {
17544  default: return false;
17545  case 1:
17546    // FIXME: this should verify that we are targeting a 486 or better.  If not,
17547    // we will turn this bswap into something that will be lowered to logical
17548    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
17549    // lower so don't worry about this.
17550    // bswap $0
17551    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
17552        matchAsm(AsmPieces[0], "bswapl", "$0") ||
17553        matchAsm(AsmPieces[0], "bswapq", "$0") ||
17554        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
17555        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
17556        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
17557      // No need to check constraints, nothing other than the equivalent of
17558      // "=r,0" would be valid here.
17559      return IntrinsicLowering::LowerToByteSwap(CI);
17560    }
17561
17562    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
17563    if (CI->getType()->isIntegerTy(16) &&
17564        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
17565        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
17566         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
17567      AsmPieces.clear();
17568      const std::string &ConstraintsStr = IA->getConstraintString();
17569      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
17570      std::sort(AsmPieces.begin(), AsmPieces.end());
17571      if (AsmPieces.size() == 4 &&
17572          AsmPieces[0] == "~{cc}" &&
17573          AsmPieces[1] == "~{dirflag}" &&
17574          AsmPieces[2] == "~{flags}" &&
17575          AsmPieces[3] == "~{fpsr}")
17576      return IntrinsicLowering::LowerToByteSwap(CI);
17577    }
17578    break;
17579  case 3:
17580    if (CI->getType()->isIntegerTy(32) &&
17581        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
17582        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
17583        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
17584        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
17585      AsmPieces.clear();
17586      const std::string &ConstraintsStr = IA->getConstraintString();
17587      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
17588      std::sort(AsmPieces.begin(), AsmPieces.end());
17589      if (AsmPieces.size() == 4 &&
17590          AsmPieces[0] == "~{cc}" &&
17591          AsmPieces[1] == "~{dirflag}" &&
17592          AsmPieces[2] == "~{flags}" &&
17593          AsmPieces[3] == "~{fpsr}")
17594        return IntrinsicLowering::LowerToByteSwap(CI);
17595    }
17596
17597    if (CI->getType()->isIntegerTy(64)) {
17598      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
17599      if (Constraints.size() >= 2 &&
17600          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
17601          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
17602        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
17603        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
17604            matchAsm(AsmPieces[1], "bswap", "%edx") &&
17605            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
17606          return IntrinsicLowering::LowerToByteSwap(CI);
17607      }
17608    }
17609    break;
17610  }
17611  return false;
17612}
17613
17614/// getConstraintType - Given a constraint letter, return the type of
17615/// constraint it is for this target.
17616X86TargetLowering::ConstraintType
17617X86TargetLowering::getConstraintType(const std::string &Constraint) const {
17618  if (Constraint.size() == 1) {
17619    switch (Constraint[0]) {
17620    case 'R':
17621    case 'q':
17622    case 'Q':
17623    case 'f':
17624    case 't':
17625    case 'u':
17626    case 'y':
17627    case 'x':
17628    case 'Y':
17629    case 'l':
17630      return C_RegisterClass;
17631    case 'a':
17632    case 'b':
17633    case 'c':
17634    case 'd':
17635    case 'S':
17636    case 'D':
17637    case 'A':
17638      return C_Register;
17639    case 'I':
17640    case 'J':
17641    case 'K':
17642    case 'L':
17643    case 'M':
17644    case 'N':
17645    case 'G':
17646    case 'C':
17647    case 'e':
17648    case 'Z':
17649      return C_Other;
17650    default:
17651      break;
17652    }
17653  }
17654  return TargetLowering::getConstraintType(Constraint);
17655}
17656
17657/// Examine constraint type and operand type and determine a weight value.
17658/// This object must already have been set up with the operand type
17659/// and the current alternative constraint selected.
17660TargetLowering::ConstraintWeight
17661  X86TargetLowering::getSingleConstraintMatchWeight(
17662    AsmOperandInfo &info, const char *constraint) const {
17663  ConstraintWeight weight = CW_Invalid;
17664  Value *CallOperandVal = info.CallOperandVal;
17665    // If we don't have a value, we can't do a match,
17666    // but allow it at the lowest weight.
17667  if (CallOperandVal == NULL)
17668    return CW_Default;
17669  Type *type = CallOperandVal->getType();
17670  // Look at the constraint type.
17671  switch (*constraint) {
17672  default:
17673    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
17674  case 'R':
17675  case 'q':
17676  case 'Q':
17677  case 'a':
17678  case 'b':
17679  case 'c':
17680  case 'd':
17681  case 'S':
17682  case 'D':
17683  case 'A':
17684    if (CallOperandVal->getType()->isIntegerTy())
17685      weight = CW_SpecificReg;
17686    break;
17687  case 'f':
17688  case 't':
17689  case 'u':
17690    if (type->isFloatingPointTy())
17691      weight = CW_SpecificReg;
17692    break;
17693  case 'y':
17694    if (type->isX86_MMXTy() && Subtarget->hasMMX())
17695      weight = CW_SpecificReg;
17696    break;
17697  case 'x':
17698  case 'Y':
17699    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
17700        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
17701      weight = CW_Register;
17702    break;
17703  case 'I':
17704    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
17705      if (C->getZExtValue() <= 31)
17706        weight = CW_Constant;
17707    }
17708    break;
17709  case 'J':
17710    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17711      if (C->getZExtValue() <= 63)
17712        weight = CW_Constant;
17713    }
17714    break;
17715  case 'K':
17716    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17717      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
17718        weight = CW_Constant;
17719    }
17720    break;
17721  case 'L':
17722    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17723      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
17724        weight = CW_Constant;
17725    }
17726    break;
17727  case 'M':
17728    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17729      if (C->getZExtValue() <= 3)
17730        weight = CW_Constant;
17731    }
17732    break;
17733  case 'N':
17734    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17735      if (C->getZExtValue() <= 0xff)
17736        weight = CW_Constant;
17737    }
17738    break;
17739  case 'G':
17740  case 'C':
17741    if (dyn_cast<ConstantFP>(CallOperandVal)) {
17742      weight = CW_Constant;
17743    }
17744    break;
17745  case 'e':
17746    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17747      if ((C->getSExtValue() >= -0x80000000LL) &&
17748          (C->getSExtValue() <= 0x7fffffffLL))
17749        weight = CW_Constant;
17750    }
17751    break;
17752  case 'Z':
17753    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17754      if (C->getZExtValue() <= 0xffffffff)
17755        weight = CW_Constant;
17756    }
17757    break;
17758  }
17759  return weight;
17760}
17761
17762/// LowerXConstraint - try to replace an X constraint, which matches anything,
17763/// with another that has more specific requirements based on the type of the
17764/// corresponding operand.
17765const char *X86TargetLowering::
17766LowerXConstraint(EVT ConstraintVT) const {
17767  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
17768  // 'f' like normal targets.
17769  if (ConstraintVT.isFloatingPoint()) {
17770    if (Subtarget->hasSSE2())
17771      return "Y";
17772    if (Subtarget->hasSSE1())
17773      return "x";
17774  }
17775
17776  return TargetLowering::LowerXConstraint(ConstraintVT);
17777}
17778
17779/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
17780/// vector.  If it is invalid, don't add anything to Ops.
17781void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
17782                                                     std::string &Constraint,
17783                                                     std::vector<SDValue>&Ops,
17784                                                     SelectionDAG &DAG) const {
17785  SDValue Result(0, 0);
17786
17787  // Only support length 1 constraints for now.
17788  if (Constraint.length() > 1) return;
17789
17790  char ConstraintLetter = Constraint[0];
17791  switch (ConstraintLetter) {
17792  default: break;
17793  case 'I':
17794    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17795      if (C->getZExtValue() <= 31) {
17796        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17797        break;
17798      }
17799    }
17800    return;
17801  case 'J':
17802    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17803      if (C->getZExtValue() <= 63) {
17804        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17805        break;
17806      }
17807    }
17808    return;
17809  case 'K':
17810    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17811      if (isInt<8>(C->getSExtValue())) {
17812        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17813        break;
17814      }
17815    }
17816    return;
17817  case 'N':
17818    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17819      if (C->getZExtValue() <= 255) {
17820        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17821        break;
17822      }
17823    }
17824    return;
17825  case 'e': {
17826    // 32-bit signed value
17827    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17828      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
17829                                           C->getSExtValue())) {
17830        // Widen to 64 bits here to get it sign extended.
17831        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
17832        break;
17833      }
17834    // FIXME gcc accepts some relocatable values here too, but only in certain
17835    // memory models; it's complicated.
17836    }
17837    return;
17838  }
17839  case 'Z': {
17840    // 32-bit unsigned value
17841    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17842      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
17843                                           C->getZExtValue())) {
17844        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17845        break;
17846      }
17847    }
17848    // FIXME gcc accepts some relocatable values here too, but only in certain
17849    // memory models; it's complicated.
17850    return;
17851  }
17852  case 'i': {
17853    // Literal immediates are always ok.
17854    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
17855      // Widen to 64 bits here to get it sign extended.
17856      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
17857      break;
17858    }
17859
17860    // In any sort of PIC mode addresses need to be computed at runtime by
17861    // adding in a register or some sort of table lookup.  These can't
17862    // be used as immediates.
17863    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
17864      return;
17865
17866    // If we are in non-pic codegen mode, we allow the address of a global (with
17867    // an optional displacement) to be used with 'i'.
17868    GlobalAddressSDNode *GA = 0;
17869    int64_t Offset = 0;
17870
17871    // Match either (GA), (GA+C), (GA+C1+C2), etc.
17872    while (1) {
17873      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
17874        Offset += GA->getOffset();
17875        break;
17876      } else if (Op.getOpcode() == ISD::ADD) {
17877        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
17878          Offset += C->getZExtValue();
17879          Op = Op.getOperand(0);
17880          continue;
17881        }
17882      } else if (Op.getOpcode() == ISD::SUB) {
17883        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
17884          Offset += -C->getZExtValue();
17885          Op = Op.getOperand(0);
17886          continue;
17887        }
17888      }
17889
17890      // Otherwise, this isn't something we can handle, reject it.
17891      return;
17892    }
17893
17894    const GlobalValue *GV = GA->getGlobal();
17895    // If we require an extra load to get this address, as in PIC mode, we
17896    // can't accept it.
17897    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
17898                                                        getTargetMachine())))
17899      return;
17900
17901    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
17902                                        GA->getValueType(0), Offset);
17903    break;
17904  }
17905  }
17906
17907  if (Result.getNode()) {
17908    Ops.push_back(Result);
17909    return;
17910  }
17911  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
17912}
17913
17914std::pair<unsigned, const TargetRegisterClass*>
17915X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
17916                                                EVT VT) const {
17917  // First, see if this is a constraint that directly corresponds to an LLVM
17918  // register class.
17919  if (Constraint.size() == 1) {
17920    // GCC Constraint Letters
17921    switch (Constraint[0]) {
17922    default: break;
17923      // TODO: Slight differences here in allocation order and leaving
17924      // RIP in the class. Do they matter any more here than they do
17925      // in the normal allocation?
17926    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
17927      if (Subtarget->is64Bit()) {
17928        if (VT == MVT::i32 || VT == MVT::f32)
17929          return std::make_pair(0U, &X86::GR32RegClass);
17930        if (VT == MVT::i16)
17931          return std::make_pair(0U, &X86::GR16RegClass);
17932        if (VT == MVT::i8 || VT == MVT::i1)
17933          return std::make_pair(0U, &X86::GR8RegClass);
17934        if (VT == MVT::i64 || VT == MVT::f64)
17935          return std::make_pair(0U, &X86::GR64RegClass);
17936        break;
17937      }
17938      // 32-bit fallthrough
17939    case 'Q':   // Q_REGS
17940      if (VT == MVT::i32 || VT == MVT::f32)
17941        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
17942      if (VT == MVT::i16)
17943        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
17944      if (VT == MVT::i8 || VT == MVT::i1)
17945        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
17946      if (VT == MVT::i64)
17947        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
17948      break;
17949    case 'r':   // GENERAL_REGS
17950    case 'l':   // INDEX_REGS
17951      if (VT == MVT::i8 || VT == MVT::i1)
17952        return std::make_pair(0U, &X86::GR8RegClass);
17953      if (VT == MVT::i16)
17954        return std::make_pair(0U, &X86::GR16RegClass);
17955      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
17956        return std::make_pair(0U, &X86::GR32RegClass);
17957      return std::make_pair(0U, &X86::GR64RegClass);
17958    case 'R':   // LEGACY_REGS
17959      if (VT == MVT::i8 || VT == MVT::i1)
17960        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
17961      if (VT == MVT::i16)
17962        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
17963      if (VT == MVT::i32 || !Subtarget->is64Bit())
17964        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
17965      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
17966    case 'f':  // FP Stack registers.
17967      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
17968      // value to the correct fpstack register class.
17969      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
17970        return std::make_pair(0U, &X86::RFP32RegClass);
17971      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
17972        return std::make_pair(0U, &X86::RFP64RegClass);
17973      return std::make_pair(0U, &X86::RFP80RegClass);
17974    case 'y':   // MMX_REGS if MMX allowed.
17975      if (!Subtarget->hasMMX()) break;
17976      return std::make_pair(0U, &X86::VR64RegClass);
17977    case 'Y':   // SSE_REGS if SSE2 allowed
17978      if (!Subtarget->hasSSE2()) break;
17979      // FALL THROUGH.
17980    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
17981      if (!Subtarget->hasSSE1()) break;
17982
17983      switch (VT.getSimpleVT().SimpleTy) {
17984      default: break;
17985      // Scalar SSE types.
17986      case MVT::f32:
17987      case MVT::i32:
17988        return std::make_pair(0U, &X86::FR32RegClass);
17989      case MVT::f64:
17990      case MVT::i64:
17991        return std::make_pair(0U, &X86::FR64RegClass);
17992      // Vector types.
17993      case MVT::v16i8:
17994      case MVT::v8i16:
17995      case MVT::v4i32:
17996      case MVT::v2i64:
17997      case MVT::v4f32:
17998      case MVT::v2f64:
17999        return std::make_pair(0U, &X86::VR128RegClass);
18000      // AVX types.
18001      case MVT::v32i8:
18002      case MVT::v16i16:
18003      case MVT::v8i32:
18004      case MVT::v4i64:
18005      case MVT::v8f32:
18006      case MVT::v4f64:
18007        return std::make_pair(0U, &X86::VR256RegClass);
18008      }
18009      break;
18010    }
18011  }
18012
18013  // Use the default implementation in TargetLowering to convert the register
18014  // constraint into a member of a register class.
18015  std::pair<unsigned, const TargetRegisterClass*> Res;
18016  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
18017
18018  // Not found as a standard register?
18019  if (Res.second == 0) {
18020    // Map st(0) -> st(7) -> ST0
18021    if (Constraint.size() == 7 && Constraint[0] == '{' &&
18022        tolower(Constraint[1]) == 's' &&
18023        tolower(Constraint[2]) == 't' &&
18024        Constraint[3] == '(' &&
18025        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
18026        Constraint[5] == ')' &&
18027        Constraint[6] == '}') {
18028
18029      Res.first = X86::ST0+Constraint[4]-'0';
18030      Res.second = &X86::RFP80RegClass;
18031      return Res;
18032    }
18033
18034    // GCC allows "st(0)" to be called just plain "st".
18035    if (StringRef("{st}").equals_lower(Constraint)) {
18036      Res.first = X86::ST0;
18037      Res.second = &X86::RFP80RegClass;
18038      return Res;
18039    }
18040
18041    // flags -> EFLAGS
18042    if (StringRef("{flags}").equals_lower(Constraint)) {
18043      Res.first = X86::EFLAGS;
18044      Res.second = &X86::CCRRegClass;
18045      return Res;
18046    }
18047
18048    // 'A' means EAX + EDX.
18049    if (Constraint == "A") {
18050      Res.first = X86::EAX;
18051      Res.second = &X86::GR32_ADRegClass;
18052      return Res;
18053    }
18054    return Res;
18055  }
18056
18057  // Otherwise, check to see if this is a register class of the wrong value
18058  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
18059  // turn into {ax},{dx}.
18060  if (Res.second->hasType(VT))
18061    return Res;   // Correct type already, nothing to do.
18062
18063  // All of the single-register GCC register classes map their values onto
18064  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
18065  // really want an 8-bit or 32-bit register, map to the appropriate register
18066  // class and return the appropriate register.
18067  if (Res.second == &X86::GR16RegClass) {
18068    if (VT == MVT::i8) {
18069      unsigned DestReg = 0;
18070      switch (Res.first) {
18071      default: break;
18072      case X86::AX: DestReg = X86::AL; break;
18073      case X86::DX: DestReg = X86::DL; break;
18074      case X86::CX: DestReg = X86::CL; break;
18075      case X86::BX: DestReg = X86::BL; break;
18076      }
18077      if (DestReg) {
18078        Res.first = DestReg;
18079        Res.second = &X86::GR8RegClass;
18080      }
18081    } else if (VT == MVT::i32) {
18082      unsigned DestReg = 0;
18083      switch (Res.first) {
18084      default: break;
18085      case X86::AX: DestReg = X86::EAX; break;
18086      case X86::DX: DestReg = X86::EDX; break;
18087      case X86::CX: DestReg = X86::ECX; break;
18088      case X86::BX: DestReg = X86::EBX; break;
18089      case X86::SI: DestReg = X86::ESI; break;
18090      case X86::DI: DestReg = X86::EDI; break;
18091      case X86::BP: DestReg = X86::EBP; break;
18092      case X86::SP: DestReg = X86::ESP; break;
18093      }
18094      if (DestReg) {
18095        Res.first = DestReg;
18096        Res.second = &X86::GR32RegClass;
18097      }
18098    } else if (VT == MVT::i64) {
18099      unsigned DestReg = 0;
18100      switch (Res.first) {
18101      default: break;
18102      case X86::AX: DestReg = X86::RAX; break;
18103      case X86::DX: DestReg = X86::RDX; break;
18104      case X86::CX: DestReg = X86::RCX; break;
18105      case X86::BX: DestReg = X86::RBX; break;
18106      case X86::SI: DestReg = X86::RSI; break;
18107      case X86::DI: DestReg = X86::RDI; break;
18108      case X86::BP: DestReg = X86::RBP; break;
18109      case X86::SP: DestReg = X86::RSP; break;
18110      }
18111      if (DestReg) {
18112        Res.first = DestReg;
18113        Res.second = &X86::GR64RegClass;
18114      }
18115    }
18116  } else if (Res.second == &X86::FR32RegClass ||
18117             Res.second == &X86::FR64RegClass ||
18118             Res.second == &X86::VR128RegClass) {
18119    // Handle references to XMM physical registers that got mapped into the
18120    // wrong class.  This can happen with constraints like {xmm0} where the
18121    // target independent register mapper will just pick the first match it can
18122    // find, ignoring the required type.
18123
18124    if (VT == MVT::f32 || VT == MVT::i32)
18125      Res.second = &X86::FR32RegClass;
18126    else if (VT == MVT::f64 || VT == MVT::i64)
18127      Res.second = &X86::FR64RegClass;
18128    else if (X86::VR128RegClass.hasType(VT))
18129      Res.second = &X86::VR128RegClass;
18130    else if (X86::VR256RegClass.hasType(VT))
18131      Res.second = &X86::VR256RegClass;
18132  }
18133
18134  return Res;
18135}
18136