X86ISelLowering.cpp revision e7852d014432a06c783de3c350eb96e686f10f92
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/StringExtras.h"
41#include "llvm/Support/CommandLine.h"
42using namespace llvm;
43
44static cl::opt<bool>
45DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
46
47// Forward declarations.
48static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG);
49
50X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
51  : TargetLowering(TM) {
52  Subtarget = &TM.getSubtarget<X86Subtarget>();
53  X86ScalarSSEf64 = Subtarget->hasSSE2();
54  X86ScalarSSEf32 = Subtarget->hasSSE1();
55  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
56
57  bool Fast = false;
58
59  RegInfo = TM.getRegisterInfo();
60  TD = getTargetData();
61
62  // Set up the TargetLowering object.
63
64  // X86 is weird, it always uses i8 for shift amounts and setcc results.
65  setShiftAmountType(MVT::i8);
66  setBooleanContents(ZeroOrOneBooleanContent);
67  setSchedulingPreference(SchedulingForRegPressure);
68  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
69  setStackPointerRegisterToSaveRestore(X86StackPtr);
70
71  if (Subtarget->isTargetDarwin()) {
72    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
73    setUseUnderscoreSetJmp(false);
74    setUseUnderscoreLongJmp(false);
75  } else if (Subtarget->isTargetMingw()) {
76    // MS runtime is weird: it exports _setjmp, but longjmp!
77    setUseUnderscoreSetJmp(true);
78    setUseUnderscoreLongJmp(false);
79  } else {
80    setUseUnderscoreSetJmp(true);
81    setUseUnderscoreLongJmp(true);
82  }
83
84  // Set up the register classes.
85  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
86  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
87  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
88  if (Subtarget->is64Bit())
89    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
90
91  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
92
93  // We don't accept any truncstore of integer registers.
94  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
95  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
96  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
97  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
98  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
99  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
100
101  // SETOEQ and SETUNE require checking two conditions.
102  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
103  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
104  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
105  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
106  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
107  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
108
109  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
110  // operation.
111  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
112  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
113  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
114
115  if (Subtarget->is64Bit()) {
116    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
117    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
118  } else {
119    if (X86ScalarSSEf64) {
120      // We have an impenetrably clever algorithm for ui64->double only.
121      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
122
123      // We have faster algorithm for ui32->single only.
124      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
125    } else
126      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
127  }
128
129  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
130  // this operation.
131  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
132  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
133  // SSE has no i16 to fp conversion, only i32
134  if (X86ScalarSSEf32) {
135    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
136    // f32 and f64 cases are Legal, f80 case is not
137    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
138  } else {
139    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
140    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
141  }
142
143  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
144  // are Legal, f80 is custom lowered.
145  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
146  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
147
148  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
149  // this operation.
150  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
151  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
152
153  if (X86ScalarSSEf32) {
154    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
155    // f32 and f64 cases are Legal, f80 case is not
156    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
157  } else {
158    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
159    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
160  }
161
162  // Handle FP_TO_UINT by promoting the destination to a larger signed
163  // conversion.
164  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
165  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
166  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
167
168  if (Subtarget->is64Bit()) {
169    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
170    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
171  } else {
172    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
173      // Expand FP_TO_UINT into a select.
174      // FIXME: We would like to use a Custom expander here eventually to do
175      // the optimal thing for SSE vs. the default expansion in the legalizer.
176      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
177    else
178      // With SSE3 we can use fisttpll to convert to a signed i64.
179      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
180  }
181
182  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
183  if (!X86ScalarSSEf64) {
184    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
185    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
186  }
187
188  // Scalar integer divide and remainder are lowered to use operations that
189  // produce two results, to match the available instructions. This exposes
190  // the two-result form to trivial CSE, which is able to combine x/y and x%y
191  // into a single instruction.
192  //
193  // Scalar integer multiply-high is also lowered to use two-result
194  // operations, to match the available instructions. However, plain multiply
195  // (low) operations are left as Legal, as there are single-result
196  // instructions for this in x86. Using the two-result multiply instructions
197  // when both high and low results are needed must be arranged by dagcombine.
198  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
199  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
200  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
201  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
202  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
203  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
204  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
205  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
206  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
207  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
208  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
209  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
210  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
211  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
212  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
213  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
214  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
215  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
216  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
217  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
218  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
219  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
220  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
221  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
222
223  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
224  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
225  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
226  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
227  if (Subtarget->is64Bit())
228    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
229  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
230  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
231  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
232  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
233  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
234  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
235  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
236  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
237
238  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
239  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
240  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
241  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
242  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
243  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
244  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
245  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
246  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
247  if (Subtarget->is64Bit()) {
248    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
249    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
250    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
251  }
252
253  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
254  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
255
256  // These should be promoted to a larger select which is supported.
257  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
258  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
259  // X86 wants to expand cmov itself.
260  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
261  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
262  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
263  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
264  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
265  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
266  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
267  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
268  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
269  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
270  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
271  if (Subtarget->is64Bit()) {
272    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
273    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
274  }
275  // X86 ret instruction may pop stack.
276  setOperationAction(ISD::RET             , MVT::Other, Custom);
277  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
278
279  // Darwin ABI issue.
280  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
281  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
282  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
283  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
284  if (Subtarget->is64Bit())
285    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
286  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
289    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
290    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
291    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
292  }
293  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
294  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
295  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
296  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
297  if (Subtarget->is64Bit()) {
298    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
299    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
300    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
301  }
302
303  if (Subtarget->hasSSE1())
304    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
305
306  if (!Subtarget->hasSSE2())
307    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
308
309  // Expand certain atomics
310  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
311  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
312  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
313  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
314
315  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
316  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
317  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
318  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
319
320  if (!Subtarget->is64Bit()) {
321    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
322    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
323    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
324    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
325    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
326    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
327    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
328  }
329
330  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
331  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
332  // FIXME - use subtarget debug flags
333  if (!Subtarget->isTargetDarwin() &&
334      !Subtarget->isTargetELF() &&
335      !Subtarget->isTargetCygMing()) {
336    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
337    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
338  }
339
340  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
341  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
342  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
343  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
344  if (Subtarget->is64Bit()) {
345    setExceptionPointerRegister(X86::RAX);
346    setExceptionSelectorRegister(X86::RDX);
347  } else {
348    setExceptionPointerRegister(X86::EAX);
349    setExceptionSelectorRegister(X86::EDX);
350  }
351  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
352  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
353
354  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
355
356  setOperationAction(ISD::TRAP, MVT::Other, Legal);
357
358  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
359  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
360  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
361  if (Subtarget->is64Bit()) {
362    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
363    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
364  } else {
365    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
366    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
367  }
368
369  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
370  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
371  if (Subtarget->is64Bit())
372    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
373  if (Subtarget->isTargetCygMing())
374    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
375  else
376    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
377
378  if (X86ScalarSSEf64) {
379    // f32 and f64 use SSE.
380    // Set up the FP register classes.
381    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
382    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
383
384    // Use ANDPD to simulate FABS.
385    setOperationAction(ISD::FABS , MVT::f64, Custom);
386    setOperationAction(ISD::FABS , MVT::f32, Custom);
387
388    // Use XORP to simulate FNEG.
389    setOperationAction(ISD::FNEG , MVT::f64, Custom);
390    setOperationAction(ISD::FNEG , MVT::f32, Custom);
391
392    // Use ANDPD and ORPD to simulate FCOPYSIGN.
393    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
394    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
395
396    // We don't support sin/cos/fmod
397    setOperationAction(ISD::FSIN , MVT::f64, Expand);
398    setOperationAction(ISD::FCOS , MVT::f64, Expand);
399    setOperationAction(ISD::FSIN , MVT::f32, Expand);
400    setOperationAction(ISD::FCOS , MVT::f32, Expand);
401
402    // Expand FP immediates into loads from the stack, except for the special
403    // cases we handle.
404    addLegalFPImmediate(APFloat(+0.0)); // xorpd
405    addLegalFPImmediate(APFloat(+0.0f)); // xorps
406
407    // Floating truncations from f80 and extensions to f80 go through memory.
408    // If optimizing, we lie about this though and handle it in
409    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
410    if (Fast) {
411      setConvertAction(MVT::f32, MVT::f80, Expand);
412      setConvertAction(MVT::f64, MVT::f80, Expand);
413      setConvertAction(MVT::f80, MVT::f32, Expand);
414      setConvertAction(MVT::f80, MVT::f64, Expand);
415    }
416  } else if (X86ScalarSSEf32) {
417    // Use SSE for f32, x87 for f64.
418    // Set up the FP register classes.
419    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
420    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
421
422    // Use ANDPS to simulate FABS.
423    setOperationAction(ISD::FABS , MVT::f32, Custom);
424
425    // Use XORP to simulate FNEG.
426    setOperationAction(ISD::FNEG , MVT::f32, Custom);
427
428    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
429
430    // Use ANDPS and ORPS to simulate FCOPYSIGN.
431    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
432    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
433
434    // We don't support sin/cos/fmod
435    setOperationAction(ISD::FSIN , MVT::f32, Expand);
436    setOperationAction(ISD::FCOS , MVT::f32, Expand);
437
438    // Special cases we handle for FP constants.
439    addLegalFPImmediate(APFloat(+0.0f)); // xorps
440    addLegalFPImmediate(APFloat(+0.0)); // FLD0
441    addLegalFPImmediate(APFloat(+1.0)); // FLD1
442    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
443    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
444
445    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
446    // this though and handle it in InstructionSelectPreprocess so that
447    // dagcombine2 can hack on these.
448    if (Fast) {
449      setConvertAction(MVT::f32, MVT::f64, Expand);
450      setConvertAction(MVT::f32, MVT::f80, Expand);
451      setConvertAction(MVT::f80, MVT::f32, Expand);
452      setConvertAction(MVT::f64, MVT::f32, Expand);
453      // And x87->x87 truncations also.
454      setConvertAction(MVT::f80, MVT::f64, Expand);
455    }
456
457    if (!UnsafeFPMath) {
458      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
459      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
460    }
461  } else {
462    // f32 and f64 in x87.
463    // Set up the FP register classes.
464    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
465    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
466
467    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
468    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
469    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
470    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
471
472    // Floating truncations go through memory.  If optimizing, we lie about
473    // this though and handle it in InstructionSelectPreprocess so that
474    // dagcombine2 can hack on these.
475    if (Fast) {
476      setConvertAction(MVT::f80, MVT::f32, Expand);
477      setConvertAction(MVT::f64, MVT::f32, Expand);
478      setConvertAction(MVT::f80, MVT::f64, Expand);
479    }
480
481    if (!UnsafeFPMath) {
482      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
483      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
484    }
485    addLegalFPImmediate(APFloat(+0.0)); // FLD0
486    addLegalFPImmediate(APFloat(+1.0)); // FLD1
487    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
488    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
489    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
490    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
491    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
492    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
493  }
494
495  // Long double always uses X87.
496  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
497  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
498  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
499  {
500    bool ignored;
501    APFloat TmpFlt(+0.0);
502    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
503                   &ignored);
504    addLegalFPImmediate(TmpFlt);  // FLD0
505    TmpFlt.changeSign();
506    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
507    APFloat TmpFlt2(+1.0);
508    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
509                    &ignored);
510    addLegalFPImmediate(TmpFlt2);  // FLD1
511    TmpFlt2.changeSign();
512    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
513  }
514
515  if (!UnsafeFPMath) {
516    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
517    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
518  }
519
520  // Always use a library call for pow.
521  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
522  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
523  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
524
525  setOperationAction(ISD::FLOG, MVT::f80, Expand);
526  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
527  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
528  setOperationAction(ISD::FEXP, MVT::f80, Expand);
529  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
530
531  // First set operation action for all vector types to either promote
532  // (for widening) or expand (for scalarization). Then we will selectively
533  // turn on ones that can be effectively codegen'd.
534  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
535       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
536    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
538    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
540    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
541    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
542    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
543    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
545    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
551    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
579  }
580
581  if (!DisableMMX && Subtarget->hasMMX()) {
582    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
583    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
584    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
585    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
586    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
587
588    // FIXME: add MMX packed arithmetics
589
590    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
591    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
592    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
593    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
594
595    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
596    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
597    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
598    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
599
600    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
601    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
602
603    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
604    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
605    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
606    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
607    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
608    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
609    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
610
611    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
612    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
613    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
614    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
615    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
616    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
617    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
618
619    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
620    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
621    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
622    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
623    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
624    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
625    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
626
627    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
628    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
629    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
630    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
631    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
632    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
633    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
634    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
635    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
636
637    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
638    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
639    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
640    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
641    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
642
643    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
644    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
645    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
646    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
647
648    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
649    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
650    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
651    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
652
653    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
654
655    setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
656    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
657    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
658    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
659    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
660    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
661  }
662
663  if (Subtarget->hasSSE1()) {
664    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
665
666    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
667    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
668    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
669    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
670    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
671    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
672    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
673    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
674    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
675    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
676    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
677    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
678  }
679
680  if (Subtarget->hasSSE2()) {
681    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
682    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
683    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
684    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
685    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
686
687    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
688    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
689    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
690    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
691    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
692    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
693    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
694    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
695    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
696    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
697    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
698    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
699    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
700    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
701    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
702    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
703
704    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
705    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
706    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
707    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
708
709    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
710    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
711    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
712    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
713    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
714
715    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
716    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
717      MVT VT = (MVT::SimpleValueType)i;
718      // Do not attempt to custom lower non-power-of-2 vectors
719      if (!isPowerOf2_32(VT.getVectorNumElements()))
720        continue;
721      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
722      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
723      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
724    }
725    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
726    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
727    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
728    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
729    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
730    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
731    if (Subtarget->is64Bit()) {
732      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
733      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
734    }
735
736    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
737    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
738      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
739      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
740      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
741      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
742      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
743      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
744      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
745      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
746      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
747      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
748    }
749
750    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
751
752    // Custom lower v2i64 and v2f64 selects.
753    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
754    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
755    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
756    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
757
758  }
759
760  if (Subtarget->hasSSE41()) {
761    // FIXME: Do we need to handle scalar-to-vector here?
762    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
763
764    // i8 and i16 vectors are custom , because the source register and source
765    // source memory operand types are not the same width.  f32 vectors are
766    // custom since the immediate controlling the insert encodes additional
767    // information.
768    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
769    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
770    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
771    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
772
773    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
774    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
775    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
776    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
777
778    if (Subtarget->is64Bit()) {
779      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
780      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
781    }
782  }
783
784  if (Subtarget->hasSSE42()) {
785    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
786  }
787
788  // We want to custom lower some of our intrinsics.
789  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
790
791  // Add/Sub/Mul with overflow operations are custom lowered.
792  setOperationAction(ISD::SADDO, MVT::i32, Custom);
793  setOperationAction(ISD::SADDO, MVT::i64, Custom);
794  setOperationAction(ISD::UADDO, MVT::i32, Custom);
795  setOperationAction(ISD::UADDO, MVT::i64, Custom);
796  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
797  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
798  setOperationAction(ISD::USUBO, MVT::i32, Custom);
799  setOperationAction(ISD::USUBO, MVT::i64, Custom);
800  setOperationAction(ISD::SMULO, MVT::i32, Custom);
801  setOperationAction(ISD::SMULO, MVT::i64, Custom);
802  setOperationAction(ISD::UMULO, MVT::i32, Custom);
803  setOperationAction(ISD::UMULO, MVT::i64, Custom);
804
805  // We have target-specific dag combine patterns for the following nodes:
806  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
807  setTargetDAGCombine(ISD::BUILD_VECTOR);
808  setTargetDAGCombine(ISD::SELECT);
809  setTargetDAGCombine(ISD::SHL);
810  setTargetDAGCombine(ISD::SRA);
811  setTargetDAGCombine(ISD::SRL);
812  setTargetDAGCombine(ISD::STORE);
813
814  computeRegisterProperties();
815
816  // FIXME: These should be based on subtarget info. Plus, the values should
817  // be smaller when we are in optimizing for size mode.
818  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
819  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
820  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
821  allowUnalignedMemoryAccesses = true; // x86 supports it!
822  setPrefLoopAlignment(16);
823}
824
825
826MVT X86TargetLowering::getSetCCResultType(MVT VT) const {
827  return MVT::i8;
828}
829
830
831/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
832/// the desired ByVal argument alignment.
833static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
834  if (MaxAlign == 16)
835    return;
836  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
837    if (VTy->getBitWidth() == 128)
838      MaxAlign = 16;
839  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
840    unsigned EltAlign = 0;
841    getMaxByValAlign(ATy->getElementType(), EltAlign);
842    if (EltAlign > MaxAlign)
843      MaxAlign = EltAlign;
844  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
845    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
846      unsigned EltAlign = 0;
847      getMaxByValAlign(STy->getElementType(i), EltAlign);
848      if (EltAlign > MaxAlign)
849        MaxAlign = EltAlign;
850      if (MaxAlign == 16)
851        break;
852    }
853  }
854  return;
855}
856
857/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
858/// function arguments in the caller parameter area. For X86, aggregates
859/// that contain SSE vectors are placed at 16-byte boundaries while the rest
860/// are at 4-byte boundaries.
861unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
862  if (Subtarget->is64Bit()) {
863    // Max of 8 and alignment of type.
864    unsigned TyAlign = TD->getABITypeAlignment(Ty);
865    if (TyAlign > 8)
866      return TyAlign;
867    return 8;
868  }
869
870  unsigned Align = 4;
871  if (Subtarget->hasSSE1())
872    getMaxByValAlign(Ty, Align);
873  return Align;
874}
875
876/// getOptimalMemOpType - Returns the target specific optimal type for load
877/// and store operations as a result of memset, memcpy, and memmove
878/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
879/// determining it.
880MVT
881X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
882                                       bool isSrcConst, bool isSrcStr) const {
883  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
884  // linux.  This is because the stack realignment code can't handle certain
885  // cases like PR2962.  This should be removed when PR2962 is fixed.
886  if (Subtarget->getStackAlignment() >= 16) {
887    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
888      return MVT::v4i32;
889    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
890      return MVT::v4f32;
891  }
892  if (Subtarget->is64Bit() && Size >= 8)
893    return MVT::i64;
894  return MVT::i32;
895}
896
897
898/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
899/// jumptable.
900SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
901                                                      SelectionDAG &DAG) const {
902  if (usesGlobalOffsetTable())
903    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
904  if (!Subtarget->isPICStyleRIPRel())
905    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
906  return Table;
907}
908
909//===----------------------------------------------------------------------===//
910//               Return Value Calling Convention Implementation
911//===----------------------------------------------------------------------===//
912
913#include "X86GenCallingConv.inc"
914
915/// LowerRET - Lower an ISD::RET node.
916SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
917  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
918
919  SmallVector<CCValAssign, 16> RVLocs;
920  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
921  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
922  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
923  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
924
925  // If this is the first return lowered for this function, add the regs to the
926  // liveout set for the function.
927  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
928    for (unsigned i = 0; i != RVLocs.size(); ++i)
929      if (RVLocs[i].isRegLoc())
930        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
931  }
932  SDValue Chain = Op.getOperand(0);
933
934  // Handle tail call return.
935  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
936  if (Chain.getOpcode() == X86ISD::TAILCALL) {
937    SDValue TailCall = Chain;
938    SDValue TargetAddress = TailCall.getOperand(1);
939    SDValue StackAdjustment = TailCall.getOperand(2);
940    assert(((TargetAddress.getOpcode() == ISD::Register &&
941               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
942                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
943              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
944              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
945             "Expecting an global address, external symbol, or register");
946    assert(StackAdjustment.getOpcode() == ISD::Constant &&
947           "Expecting a const value");
948
949    SmallVector<SDValue,8> Operands;
950    Operands.push_back(Chain.getOperand(0));
951    Operands.push_back(TargetAddress);
952    Operands.push_back(StackAdjustment);
953    // Copy registers used by the call. Last operand is a flag so it is not
954    // copied.
955    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
956      Operands.push_back(Chain.getOperand(i));
957    }
958    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
959                       Operands.size());
960  }
961
962  // Regular return.
963  SDValue Flag;
964
965  SmallVector<SDValue, 6> RetOps;
966  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
967  // Operand #1 = Bytes To Pop
968  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
969
970  // Copy the result values into the output registers.
971  for (unsigned i = 0; i != RVLocs.size(); ++i) {
972    CCValAssign &VA = RVLocs[i];
973    assert(VA.isRegLoc() && "Can only return in registers!");
974    SDValue ValToCopy = Op.getOperand(i*2+1);
975
976    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
977    // the RET instruction and handled by the FP Stackifier.
978    if (RVLocs[i].getLocReg() == X86::ST0 ||
979        RVLocs[i].getLocReg() == X86::ST1) {
980      // If this is a copy from an xmm register to ST(0), use an FPExtend to
981      // change the value to the FP stack register class.
982      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
983        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
984      RetOps.push_back(ValToCopy);
985      // Don't emit a copytoreg.
986      continue;
987    }
988
989    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
990    Flag = Chain.getValue(1);
991  }
992
993  // The x86-64 ABI for returning structs by value requires that we copy
994  // the sret argument into %rax for the return. We saved the argument into
995  // a virtual register in the entry block, so now we copy the value out
996  // and into %rax.
997  if (Subtarget->is64Bit() &&
998      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
999    MachineFunction &MF = DAG.getMachineFunction();
1000    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1001    unsigned Reg = FuncInfo->getSRetReturnReg();
1002    if (!Reg) {
1003      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1004      FuncInfo->setSRetReturnReg(Reg);
1005    }
1006    SDValue Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());
1007
1008    Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
1009    Flag = Chain.getValue(1);
1010  }
1011
1012  RetOps[0] = Chain;  // Update chain.
1013
1014  // Add the flag if we have it.
1015  if (Flag.getNode())
1016    RetOps.push_back(Flag);
1017
1018  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
1019}
1020
1021
1022/// LowerCallResult - Lower the result values of an ISD::CALL into the
1023/// appropriate copies out of appropriate physical registers.  This assumes that
1024/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1025/// being lowered.  The returns a SDNode with the same number of values as the
1026/// ISD::CALL.
1027SDNode *X86TargetLowering::
1028LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1029                unsigned CallingConv, SelectionDAG &DAG) {
1030
1031  // Assign locations to each value returned by this call.
1032  SmallVector<CCValAssign, 16> RVLocs;
1033  bool isVarArg = TheCall->isVarArg();
1034  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
1035  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1036
1037  SmallVector<SDValue, 8> ResultVals;
1038
1039  // Copy all of the result registers out of their specified physreg.
1040  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1041    MVT CopyVT = RVLocs[i].getValVT();
1042
1043    // If this is a call to a function that returns an fp value on the floating
1044    // point stack, but where we prefer to use the value in xmm registers, copy
1045    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1046    if ((RVLocs[i].getLocReg() == X86::ST0 ||
1047         RVLocs[i].getLocReg() == X86::ST1) &&
1048        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
1049      CopyVT = MVT::f80;
1050    }
1051
1052    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
1053                               CopyVT, InFlag).getValue(1);
1054    SDValue Val = Chain.getValue(0);
1055    InFlag = Chain.getValue(2);
1056
1057    if (CopyVT != RVLocs[i].getValVT()) {
1058      // Round the F80 the right size, which also moves to the appropriate xmm
1059      // register.
1060      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
1061                        // This truncation won't change the value.
1062                        DAG.getIntPtrConstant(1));
1063    }
1064
1065    ResultVals.push_back(Val);
1066  }
1067
1068  // Merge everything together with a MERGE_VALUES node.
1069  ResultVals.push_back(Chain);
1070  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(), &ResultVals[0],
1071                     ResultVals.size()).getNode();
1072}
1073
1074
1075//===----------------------------------------------------------------------===//
1076//                C & StdCall & Fast Calling Convention implementation
1077//===----------------------------------------------------------------------===//
1078//  StdCall calling convention seems to be standard for many Windows' API
1079//  routines and around. It differs from C calling convention just a little:
1080//  callee should clean up the stack, not caller. Symbols should be also
1081//  decorated in some fancy way :) It doesn't support any vector arguments.
1082//  For info on fast calling convention see Fast Calling Convention (tail call)
1083//  implementation LowerX86_32FastCCCallTo.
1084
1085/// AddLiveIn - This helper function adds the specified physical register to the
1086/// MachineFunction as a live in value.  It also creates a corresponding virtual
1087/// register for it.
1088static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
1089                          const TargetRegisterClass *RC) {
1090  assert(RC->contains(PReg) && "Not the correct regclass!");
1091  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1092  MF.getRegInfo().addLiveIn(PReg, VReg);
1093  return VReg;
1094}
1095
1096/// CallIsStructReturn - Determines whether a CALL node uses struct return
1097/// semantics.
1098static bool CallIsStructReturn(CallSDNode *TheCall) {
1099  unsigned NumOps = TheCall->getNumArgs();
1100  if (!NumOps)
1101    return false;
1102
1103  return TheCall->getArgFlags(0).isSRet();
1104}
1105
1106/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1107/// return semantics.
1108static bool ArgsAreStructReturn(SDValue Op) {
1109  unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1110  if (!NumArgs)
1111    return false;
1112
1113  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1114}
1115
1116/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1117/// the callee to pop its own arguments. Callee pop is necessary to support tail
1118/// calls.
1119bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1120  if (IsVarArg)
1121    return false;
1122
1123  switch (CallingConv) {
1124  default:
1125    return false;
1126  case CallingConv::X86_StdCall:
1127    return !Subtarget->is64Bit();
1128  case CallingConv::X86_FastCall:
1129    return !Subtarget->is64Bit();
1130  case CallingConv::Fast:
1131    return PerformTailCallOpt;
1132  }
1133}
1134
1135/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1136/// given CallingConvention value.
1137CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1138  if (Subtarget->is64Bit()) {
1139    if (Subtarget->isTargetWin64())
1140      return CC_X86_Win64_C;
1141    else if (CC == CallingConv::Fast && PerformTailCallOpt)
1142      return CC_X86_64_TailCall;
1143    else
1144      return CC_X86_64_C;
1145  }
1146
1147  if (CC == CallingConv::X86_FastCall)
1148    return CC_X86_32_FastCall;
1149  else if (CC == CallingConv::Fast)
1150    return CC_X86_32_FastCC;
1151  else
1152    return CC_X86_32_C;
1153}
1154
1155/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1156/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1157NameDecorationStyle
1158X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1159  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1160  if (CC == CallingConv::X86_FastCall)
1161    return FastCall;
1162  else if (CC == CallingConv::X86_StdCall)
1163    return StdCall;
1164  return None;
1165}
1166
1167
1168/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1169/// in a register before calling.
1170bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1171  return !IsTailCall && !Is64Bit &&
1172    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1173    Subtarget->isPICStyleGOT();
1174}
1175
1176/// CallRequiresFnAddressInReg - Check whether the call requires the function
1177/// address to be loaded in a register.
1178bool
1179X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1180  return !Is64Bit && IsTailCall &&
1181    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1182    Subtarget->isPICStyleGOT();
1183}
1184
1185/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1186/// by "Src" to address "Dst" with size and alignment information specified by
1187/// the specific parameter attribute. The copy will be passed as a byval
1188/// function parameter.
1189static SDValue
1190CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1191                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
1192  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1193  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
1194                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1195}
1196
1197SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1198                                              const CCValAssign &VA,
1199                                              MachineFrameInfo *MFI,
1200                                              unsigned CC,
1201                                              SDValue Root, unsigned i) {
1202  // Create the nodes corresponding to a load from this parameter slot.
1203  ISD::ArgFlagsTy Flags =
1204    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1205  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1206  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1207
1208  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1209  // changed with more analysis.
1210  // In case of tail call optimization mark all arguments mutable. Since they
1211  // could be overwritten by lowering of arguments in case of a tail call.
1212  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1213                                  VA.getLocMemOffset(), isImmutable);
1214  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1215  if (Flags.isByVal())
1216    return FIN;
1217  return DAG.getLoad(VA.getValVT(), Root, FIN,
1218                     PseudoSourceValue::getFixedStack(FI), 0);
1219}
1220
1221SDValue
1222X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1223  MachineFunction &MF = DAG.getMachineFunction();
1224  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1225
1226  const Function* Fn = MF.getFunction();
1227  if (Fn->hasExternalLinkage() &&
1228      Subtarget->isTargetCygMing() &&
1229      Fn->getName() == "main")
1230    FuncInfo->setForceFramePointer(true);
1231
1232  // Decorate the function name.
1233  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1234
1235  MachineFrameInfo *MFI = MF.getFrameInfo();
1236  SDValue Root = Op.getOperand(0);
1237  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1238  unsigned CC = MF.getFunction()->getCallingConv();
1239  bool Is64Bit = Subtarget->is64Bit();
1240  bool IsWin64 = Subtarget->isTargetWin64();
1241
1242  assert(!(isVarArg && CC == CallingConv::Fast) &&
1243         "Var args not supported with calling convention fastcc");
1244
1245  // Assign locations to all of the incoming arguments.
1246  SmallVector<CCValAssign, 16> ArgLocs;
1247  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1248  CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1249
1250  SmallVector<SDValue, 8> ArgValues;
1251  unsigned LastVal = ~0U;
1252  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1253    CCValAssign &VA = ArgLocs[i];
1254    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1255    // places.
1256    assert(VA.getValNo() != LastVal &&
1257           "Don't support value assigned to multiple locs yet");
1258    LastVal = VA.getValNo();
1259
1260    if (VA.isRegLoc()) {
1261      MVT RegVT = VA.getLocVT();
1262      TargetRegisterClass *RC = NULL;
1263      if (RegVT == MVT::i32)
1264        RC = X86::GR32RegisterClass;
1265      else if (Is64Bit && RegVT == MVT::i64)
1266        RC = X86::GR64RegisterClass;
1267      else if (RegVT == MVT::f32)
1268        RC = X86::FR32RegisterClass;
1269      else if (RegVT == MVT::f64)
1270        RC = X86::FR64RegisterClass;
1271      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1272        RC = X86::VR128RegisterClass;
1273      else if (RegVT.isVector()) {
1274        assert(RegVT.getSizeInBits() == 64);
1275        if (!Is64Bit)
1276          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1277        else {
1278          // Darwin calling convention passes MMX values in either GPRs or
1279          // XMMs in x86-64. Other targets pass them in memory.
1280          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1281            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1282            RegVT = MVT::v2i64;
1283          } else {
1284            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1285            RegVT = MVT::i64;
1286          }
1287        }
1288      } else {
1289        assert(0 && "Unknown argument type!");
1290      }
1291
1292      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1293      SDValue ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1294
1295      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1296      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1297      // right size.
1298      if (VA.getLocInfo() == CCValAssign::SExt)
1299        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1300                               DAG.getValueType(VA.getValVT()));
1301      else if (VA.getLocInfo() == CCValAssign::ZExt)
1302        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1303                               DAG.getValueType(VA.getValVT()));
1304
1305      if (VA.getLocInfo() != CCValAssign::Full)
1306        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1307
1308      // Handle MMX values passed in GPRs.
1309      if (Is64Bit && RegVT != VA.getLocVT()) {
1310        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1311          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1312        else if (RC == X86::VR128RegisterClass) {
1313          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
1314                                 DAG.getConstant(0, MVT::i64));
1315          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1316        }
1317      }
1318
1319      ArgValues.push_back(ArgValue);
1320    } else {
1321      assert(VA.isMemLoc());
1322      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1323    }
1324  }
1325
1326  // The x86-64 ABI for returning structs by value requires that we copy
1327  // the sret argument into %rax for the return. Save the argument into
1328  // a virtual register so that we can access it from the return points.
1329  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1330    MachineFunction &MF = DAG.getMachineFunction();
1331    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1332    unsigned Reg = FuncInfo->getSRetReturnReg();
1333    if (!Reg) {
1334      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1335      FuncInfo->setSRetReturnReg(Reg);
1336    }
1337    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
1338    Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
1339  }
1340
1341  unsigned StackSize = CCInfo.getNextStackOffset();
1342  // align stack specially for tail calls
1343  if (PerformTailCallOpt && CC == CallingConv::Fast)
1344    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1345
1346  // If the function takes variable number of arguments, make a frame index for
1347  // the start of the first vararg value... for expansion of llvm.va_start.
1348  if (isVarArg) {
1349    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1350      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1351    }
1352    if (Is64Bit) {
1353      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1354
1355      // FIXME: We should really autogenerate these arrays
1356      static const unsigned GPR64ArgRegsWin64[] = {
1357        X86::RCX, X86::RDX, X86::R8,  X86::R9
1358      };
1359      static const unsigned XMMArgRegsWin64[] = {
1360        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1361      };
1362      static const unsigned GPR64ArgRegs64Bit[] = {
1363        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1364      };
1365      static const unsigned XMMArgRegs64Bit[] = {
1366        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1367        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1368      };
1369      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1370
1371      if (IsWin64) {
1372        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1373        GPR64ArgRegs = GPR64ArgRegsWin64;
1374        XMMArgRegs = XMMArgRegsWin64;
1375      } else {
1376        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1377        GPR64ArgRegs = GPR64ArgRegs64Bit;
1378        XMMArgRegs = XMMArgRegs64Bit;
1379      }
1380      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1381                                                       TotalNumIntRegs);
1382      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1383                                                       TotalNumXMMRegs);
1384
1385      // For X86-64, if there are vararg parameters that are passed via
1386      // registers, then we must store them to their spots on the stack so they
1387      // may be loaded by deferencing the result of va_next.
1388      VarArgsGPOffset = NumIntRegs * 8;
1389      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1390      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1391                                                 TotalNumXMMRegs * 16, 16);
1392
1393      // Store the integer parameter registers.
1394      SmallVector<SDValue, 8> MemOps;
1395      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1396      SDValue FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1397                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1398      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1399        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1400                                  X86::GR64RegisterClass);
1401        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1402        SDValue Store =
1403          DAG.getStore(Val.getValue(1), Val, FIN,
1404                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1405        MemOps.push_back(Store);
1406        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1407                          DAG.getIntPtrConstant(8));
1408      }
1409
1410      // Now store the XMM (fp + vector) parameter registers.
1411      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1412                        DAG.getIntPtrConstant(VarArgsFPOffset));
1413      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1414        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1415                                  X86::VR128RegisterClass);
1416        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1417        SDValue Store =
1418          DAG.getStore(Val.getValue(1), Val, FIN,
1419                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1420        MemOps.push_back(Store);
1421        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1422                          DAG.getIntPtrConstant(16));
1423      }
1424      if (!MemOps.empty())
1425          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1426                             &MemOps[0], MemOps.size());
1427    }
1428  }
1429
1430  ArgValues.push_back(Root);
1431
1432  // Some CCs need callee pop.
1433  if (IsCalleePop(isVarArg, CC)) {
1434    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1435    BytesCallerReserves = 0;
1436  } else {
1437    BytesToPopOnReturn  = 0; // Callee pops nothing.
1438    // If this is an sret function, the return should pop the hidden pointer.
1439    if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1440      BytesToPopOnReturn = 4;
1441    BytesCallerReserves = StackSize;
1442  }
1443
1444  if (!Is64Bit) {
1445    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1446    if (CC == CallingConv::X86_FastCall)
1447      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1448  }
1449
1450  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1451
1452  // Return the new list of results.
1453  return DAG.getNode(ISD::MERGE_VALUES, Op.getNode()->getVTList(),
1454                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1455}
1456
1457SDValue
1458X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1459                                    const SDValue &StackPtr,
1460                                    const CCValAssign &VA,
1461                                    SDValue Chain,
1462                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
1463  unsigned LocMemOffset = VA.getLocMemOffset();
1464  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1465  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1466  if (Flags.isByVal()) {
1467    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1468  }
1469  return DAG.getStore(Chain, Arg, PtrOff,
1470                      PseudoSourceValue::getStack(), LocMemOffset);
1471}
1472
1473/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1474/// optimization is performed and it is required.
1475SDValue
1476X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1477                                           SDValue &OutRetAddr,
1478                                           SDValue Chain,
1479                                           bool IsTailCall,
1480                                           bool Is64Bit,
1481                                           int FPDiff) {
1482  if (!IsTailCall || FPDiff==0) return Chain;
1483
1484  // Adjust the Return address stack slot.
1485  MVT VT = getPointerTy();
1486  OutRetAddr = getReturnAddressFrameIndex(DAG);
1487
1488  // Load the "old" Return address.
1489  OutRetAddr = DAG.getLoad(VT, Chain, OutRetAddr, NULL, 0);
1490  return SDValue(OutRetAddr.getNode(), 1);
1491}
1492
1493/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1494/// optimization is performed and it is required (FPDiff!=0).
1495static SDValue
1496EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1497                         SDValue Chain, SDValue RetAddrFrIdx,
1498                         bool Is64Bit, int FPDiff) {
1499  // Store the return address to the appropriate stack slot.
1500  if (!FPDiff) return Chain;
1501  // Calculate the new stack slot for the return address.
1502  int SlotSize = Is64Bit ? 8 : 4;
1503  int NewReturnAddrFI =
1504    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1505  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1506  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1507  Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1508                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1509  return Chain;
1510}
1511
1512SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1513  MachineFunction &MF = DAG.getMachineFunction();
1514  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1515  SDValue Chain       = TheCall->getChain();
1516  unsigned CC         = TheCall->getCallingConv();
1517  bool isVarArg       = TheCall->isVarArg();
1518  bool IsTailCall     = TheCall->isTailCall() &&
1519                        CC == CallingConv::Fast && PerformTailCallOpt;
1520  SDValue Callee      = TheCall->getCallee();
1521  bool Is64Bit        = Subtarget->is64Bit();
1522  bool IsStructRet    = CallIsStructReturn(TheCall);
1523
1524  assert(!(isVarArg && CC == CallingConv::Fast) &&
1525         "Var args not supported with calling convention fastcc");
1526
1527  // Analyze operands of the call, assigning locations to each operand.
1528  SmallVector<CCValAssign, 16> ArgLocs;
1529  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1530  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1531
1532  // Get a count of how many bytes are to be pushed on the stack.
1533  unsigned NumBytes = CCInfo.getNextStackOffset();
1534  if (PerformTailCallOpt && CC == CallingConv::Fast)
1535    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1536
1537  int FPDiff = 0;
1538  if (IsTailCall) {
1539    // Lower arguments at fp - stackoffset + fpdiff.
1540    unsigned NumBytesCallerPushed =
1541      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1542    FPDiff = NumBytesCallerPushed - NumBytes;
1543
1544    // Set the delta of movement of the returnaddr stackslot.
1545    // But only set if delta is greater than previous delta.
1546    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1547      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1548  }
1549
1550  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1551
1552  SDValue RetAddrFrIdx;
1553  // Load return adress for tail calls.
1554  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1555                                  FPDiff);
1556
1557  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1558  SmallVector<SDValue, 8> MemOpChains;
1559  SDValue StackPtr;
1560
1561  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1562  // of tail call optimization arguments are handle later.
1563  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1564    CCValAssign &VA = ArgLocs[i];
1565    SDValue Arg = TheCall->getArg(i);
1566    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1567    bool isByVal = Flags.isByVal();
1568
1569    // Promote the value if needed.
1570    switch (VA.getLocInfo()) {
1571    default: assert(0 && "Unknown loc info!");
1572    case CCValAssign::Full: break;
1573    case CCValAssign::SExt:
1574      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1575      break;
1576    case CCValAssign::ZExt:
1577      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1578      break;
1579    case CCValAssign::AExt:
1580      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1581      break;
1582    }
1583
1584    if (VA.isRegLoc()) {
1585      if (Is64Bit) {
1586        MVT RegVT = VA.getLocVT();
1587        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1588          switch (VA.getLocReg()) {
1589          default:
1590            break;
1591          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1592          case X86::R8: {
1593            // Special case: passing MMX values in GPR registers.
1594            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1595            break;
1596          }
1597          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1598          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1599            // Special case: passing MMX values in XMM registers.
1600            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1601            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
1602            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
1603                              DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
1604                              getMOVLMask(2, DAG));
1605            break;
1606          }
1607          }
1608      }
1609      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1610    } else {
1611      if (!IsTailCall || (IsTailCall && isByVal)) {
1612        assert(VA.isMemLoc());
1613        if (StackPtr.getNode() == 0)
1614          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1615
1616        MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1617                                               Chain, Arg, Flags));
1618      }
1619    }
1620  }
1621
1622  if (!MemOpChains.empty())
1623    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1624                        &MemOpChains[0], MemOpChains.size());
1625
1626  // Build a sequence of copy-to-reg nodes chained together with token chain
1627  // and flag operands which copy the outgoing args into registers.
1628  SDValue InFlag;
1629  // Tail call byval lowering might overwrite argument registers so in case of
1630  // tail call optimization the copies to registers are lowered later.
1631  if (!IsTailCall)
1632    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1633      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1634                               InFlag);
1635      InFlag = Chain.getValue(1);
1636    }
1637
1638  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1639  // GOT pointer.
1640  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1641    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1642                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1643                             InFlag);
1644    InFlag = Chain.getValue(1);
1645  }
1646  // If we are tail calling and generating PIC/GOT style code load the address
1647  // of the callee into ecx. The value in ecx is used as target of the tail
1648  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1649  // calls on PIC/GOT architectures. Normally we would just put the address of
1650  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1651  // restored (since ebx is callee saved) before jumping to the target@PLT.
1652  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1653    // Note: The actual moving to ecx is done further down.
1654    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1655    if (G && !G->getGlobal()->hasHiddenVisibility() &&
1656        !G->getGlobal()->hasProtectedVisibility())
1657      Callee =  LowerGlobalAddress(Callee, DAG);
1658    else if (isa<ExternalSymbolSDNode>(Callee))
1659      Callee = LowerExternalSymbol(Callee,DAG);
1660  }
1661
1662  if (Is64Bit && isVarArg) {
1663    // From AMD64 ABI document:
1664    // For calls that may call functions that use varargs or stdargs
1665    // (prototype-less calls or calls to functions containing ellipsis (...) in
1666    // the declaration) %al is used as hidden argument to specify the number
1667    // of SSE registers used. The contents of %al do not need to match exactly
1668    // the number of registers, but must be an ubound on the number of SSE
1669    // registers used and is in the range 0 - 8 inclusive.
1670
1671    // FIXME: Verify this on Win64
1672    // Count the number of XMM registers allocated.
1673    static const unsigned XMMArgRegs[] = {
1674      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1675      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1676    };
1677    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1678
1679    Chain = DAG.getCopyToReg(Chain, X86::AL,
1680                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1681    InFlag = Chain.getValue(1);
1682  }
1683
1684
1685  // For tail calls lower the arguments to the 'real' stack slot.
1686  if (IsTailCall) {
1687    SmallVector<SDValue, 8> MemOpChains2;
1688    SDValue FIN;
1689    int FI = 0;
1690    // Do not flag preceeding copytoreg stuff together with the following stuff.
1691    InFlag = SDValue();
1692    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1693      CCValAssign &VA = ArgLocs[i];
1694      if (!VA.isRegLoc()) {
1695        assert(VA.isMemLoc());
1696        SDValue Arg = TheCall->getArg(i);
1697        ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1698        // Create frame index.
1699        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1700        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1701        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1702        FIN = DAG.getFrameIndex(FI, getPointerTy());
1703
1704        if (Flags.isByVal()) {
1705          // Copy relative to framepointer.
1706          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1707          if (StackPtr.getNode() == 0)
1708            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1709          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1710
1711          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1712                                                           Flags, DAG));
1713        } else {
1714          // Store relative to framepointer.
1715          MemOpChains2.push_back(
1716            DAG.getStore(Chain, Arg, FIN,
1717                         PseudoSourceValue::getFixedStack(FI), 0));
1718        }
1719      }
1720    }
1721
1722    if (!MemOpChains2.empty())
1723      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1724                          &MemOpChains2[0], MemOpChains2.size());
1725
1726    // Copy arguments to their registers.
1727    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1728      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1729                               InFlag);
1730      InFlag = Chain.getValue(1);
1731    }
1732    InFlag =SDValue();
1733
1734    // Store the return address to the appropriate stack slot.
1735    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1736                                     FPDiff);
1737  }
1738
1739  // If the callee is a GlobalAddress node (quite common, every direct call is)
1740  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1741  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1742    // We should use extra load for direct calls to dllimported functions in
1743    // non-JIT mode.
1744    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1745                                        getTargetMachine(), true))
1746      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy(),
1747                                          G->getOffset());
1748  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1749    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1750  } else if (IsTailCall) {
1751    unsigned Opc = Is64Bit ? X86::R9 : X86::EAX;
1752
1753    Chain = DAG.getCopyToReg(Chain,
1754                             DAG.getRegister(Opc, getPointerTy()),
1755                             Callee,InFlag);
1756    Callee = DAG.getRegister(Opc, getPointerTy());
1757    // Add register as live out.
1758    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1759  }
1760
1761  // Returns a chain & a flag for retval copy to use.
1762  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1763  SmallVector<SDValue, 8> Ops;
1764
1765  if (IsTailCall) {
1766    Ops.push_back(Chain);
1767    Ops.push_back(DAG.getIntPtrConstant(NumBytes, true));
1768    Ops.push_back(DAG.getIntPtrConstant(0, true));
1769    if (InFlag.getNode())
1770      Ops.push_back(InFlag);
1771    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1772    InFlag = Chain.getValue(1);
1773
1774    // Returns a chain & a flag for retval copy to use.
1775    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1776    Ops.clear();
1777  }
1778
1779  Ops.push_back(Chain);
1780  Ops.push_back(Callee);
1781
1782  if (IsTailCall)
1783    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1784
1785  // Add argument registers to the end of the list so that they are known live
1786  // into the call.
1787  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1788    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1789                                  RegsToPass[i].second.getValueType()));
1790
1791  // Add an implicit use GOT pointer in EBX.
1792  if (!IsTailCall && !Is64Bit &&
1793      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1794      Subtarget->isPICStyleGOT())
1795    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1796
1797  // Add an implicit use of AL for x86 vararg functions.
1798  if (Is64Bit && isVarArg)
1799    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1800
1801  if (InFlag.getNode())
1802    Ops.push_back(InFlag);
1803
1804  if (IsTailCall) {
1805    assert(InFlag.getNode() &&
1806           "Flag must be set. Depend on flag being set in LowerRET");
1807    Chain = DAG.getNode(X86ISD::TAILCALL,
1808                        TheCall->getVTList(), &Ops[0], Ops.size());
1809
1810    return SDValue(Chain.getNode(), Op.getResNo());
1811  }
1812
1813  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1814  InFlag = Chain.getValue(1);
1815
1816  // Create the CALLSEQ_END node.
1817  unsigned NumBytesForCalleeToPush;
1818  if (IsCalleePop(isVarArg, CC))
1819    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1820  else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
1821    // If this is is a call to a struct-return function, the callee
1822    // pops the hidden struct pointer, so we have to push it back.
1823    // This is common for Darwin/X86, Linux & Mingw32 targets.
1824    NumBytesForCalleeToPush = 4;
1825  else
1826    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1827
1828  // Returns a flag for retval copy to use.
1829  Chain = DAG.getCALLSEQ_END(Chain,
1830                             DAG.getIntPtrConstant(NumBytes, true),
1831                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
1832                                                   true),
1833                             InFlag);
1834  InFlag = Chain.getValue(1);
1835
1836  // Handle result values, copying them out of physregs into vregs that we
1837  // return.
1838  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1839                 Op.getResNo());
1840}
1841
1842
1843//===----------------------------------------------------------------------===//
1844//                Fast Calling Convention (tail call) implementation
1845//===----------------------------------------------------------------------===//
1846
1847//  Like std call, callee cleans arguments, convention except that ECX is
1848//  reserved for storing the tail called function address. Only 2 registers are
1849//  free for argument passing (inreg). Tail call optimization is performed
1850//  provided:
1851//                * tailcallopt is enabled
1852//                * caller/callee are fastcc
1853//  On X86_64 architecture with GOT-style position independent code only local
1854//  (within module) calls are supported at the moment.
1855//  To keep the stack aligned according to platform abi the function
1856//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1857//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1858//  If a tail called function callee has more arguments than the caller the
1859//  caller needs to make sure that there is room to move the RETADDR to. This is
1860//  achieved by reserving an area the size of the argument delta right after the
1861//  original REtADDR, but before the saved framepointer or the spilled registers
1862//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1863//  stack layout:
1864//    arg1
1865//    arg2
1866//    RETADDR
1867//    [ new RETADDR
1868//      move area ]
1869//    (possible EBP)
1870//    ESI
1871//    EDI
1872//    local1 ..
1873
1874/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1875/// for a 16 byte align requirement.
1876unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1877                                                        SelectionDAG& DAG) {
1878  MachineFunction &MF = DAG.getMachineFunction();
1879  const TargetMachine &TM = MF.getTarget();
1880  const TargetFrameInfo &TFI = *TM.getFrameInfo();
1881  unsigned StackAlignment = TFI.getStackAlignment();
1882  uint64_t AlignMask = StackAlignment - 1;
1883  int64_t Offset = StackSize;
1884  uint64_t SlotSize = TD->getPointerSize();
1885  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1886    // Number smaller than 12 so just add the difference.
1887    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1888  } else {
1889    // Mask out lower bits, add stackalignment once plus the 12 bytes.
1890    Offset = ((~AlignMask) & Offset) + StackAlignment +
1891      (StackAlignment-SlotSize);
1892  }
1893  return Offset;
1894}
1895
1896/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1897/// following the call is a return. A function is eligible if caller/callee
1898/// calling conventions match, currently only fastcc supports tail calls, and
1899/// the function CALL is immediatly followed by a RET.
1900bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1901                                                      SDValue Ret,
1902                                                      SelectionDAG& DAG) const {
1903  if (!PerformTailCallOpt)
1904    return false;
1905
1906  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1907    MachineFunction &MF = DAG.getMachineFunction();
1908    unsigned CallerCC = MF.getFunction()->getCallingConv();
1909    unsigned CalleeCC= TheCall->getCallingConv();
1910    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1911      SDValue Callee = TheCall->getCallee();
1912      // On x86/32Bit PIC/GOT  tail calls are supported.
1913      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1914          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1915        return true;
1916
1917      // Can only do local tail calls (in same module, hidden or protected) on
1918      // x86_64 PIC/GOT at the moment.
1919      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1920        return G->getGlobal()->hasHiddenVisibility()
1921            || G->getGlobal()->hasProtectedVisibility();
1922    }
1923  }
1924
1925  return false;
1926}
1927
1928FastISel *
1929X86TargetLowering::createFastISel(MachineFunction &mf,
1930                                  MachineModuleInfo *mmo,
1931                                  DwarfWriter *dw,
1932                                  DenseMap<const Value *, unsigned> &vm,
1933                                  DenseMap<const BasicBlock *,
1934                                           MachineBasicBlock *> &bm,
1935                                  DenseMap<const AllocaInst *, int> &am
1936#ifndef NDEBUG
1937                                  , SmallSet<Instruction*, 8> &cil
1938#endif
1939                                  ) {
1940  return X86::createFastISel(mf, mmo, dw, vm, bm, am
1941#ifndef NDEBUG
1942                             , cil
1943#endif
1944                             );
1945}
1946
1947
1948//===----------------------------------------------------------------------===//
1949//                           Other Lowering Hooks
1950//===----------------------------------------------------------------------===//
1951
1952
1953SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1954  MachineFunction &MF = DAG.getMachineFunction();
1955  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1956  int ReturnAddrIndex = FuncInfo->getRAIndex();
1957
1958  if (ReturnAddrIndex == 0) {
1959    // Set up a frame object for the return address.
1960    uint64_t SlotSize = TD->getPointerSize();
1961    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
1962    FuncInfo->setRAIndex(ReturnAddrIndex);
1963  }
1964
1965  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1966}
1967
1968
1969/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
1970/// specific condition code, returning the condition code and the LHS/RHS of the
1971/// comparison to make.
1972static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1973                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
1974  if (!isFP) {
1975    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1976      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1977        // X > -1   -> X == 0, jump !sign.
1978        RHS = DAG.getConstant(0, RHS.getValueType());
1979        return X86::COND_NS;
1980      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1981        // X < 0   -> X == 0, jump on sign.
1982        return X86::COND_S;
1983      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
1984        // X < 1   -> X <= 0
1985        RHS = DAG.getConstant(0, RHS.getValueType());
1986        return X86::COND_LE;
1987      }
1988    }
1989
1990    switch (SetCCOpcode) {
1991    default: assert(0 && "Invalid integer condition!");
1992    case ISD::SETEQ:  return X86::COND_E;
1993    case ISD::SETGT:  return X86::COND_G;
1994    case ISD::SETGE:  return X86::COND_GE;
1995    case ISD::SETLT:  return X86::COND_L;
1996    case ISD::SETLE:  return X86::COND_LE;
1997    case ISD::SETNE:  return X86::COND_NE;
1998    case ISD::SETULT: return X86::COND_B;
1999    case ISD::SETUGT: return X86::COND_A;
2000    case ISD::SETULE: return X86::COND_BE;
2001    case ISD::SETUGE: return X86::COND_AE;
2002    }
2003  }
2004
2005  // First determine if it is required or is profitable to flip the operands.
2006
2007  // If LHS is a foldable load, but RHS is not, flip the condition.
2008  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2009      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2010    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2011    std::swap(LHS, RHS);
2012  }
2013
2014  switch (SetCCOpcode) {
2015  default: break;
2016  case ISD::SETOLT:
2017  case ISD::SETOLE:
2018  case ISD::SETUGT:
2019  case ISD::SETUGE:
2020    std::swap(LHS, RHS);
2021    break;
2022  }
2023
2024  // On a floating point condition, the flags are set as follows:
2025  // ZF  PF  CF   op
2026  //  0 | 0 | 0 | X > Y
2027  //  0 | 0 | 1 | X < Y
2028  //  1 | 0 | 0 | X == Y
2029  //  1 | 1 | 1 | unordered
2030  switch (SetCCOpcode) {
2031  default: assert(0 && "Condcode should be pre-legalized away");
2032  case ISD::SETUEQ:
2033  case ISD::SETEQ:   return X86::COND_E;
2034  case ISD::SETOLT:              // flipped
2035  case ISD::SETOGT:
2036  case ISD::SETGT:   return X86::COND_A;
2037  case ISD::SETOLE:              // flipped
2038  case ISD::SETOGE:
2039  case ISD::SETGE:   return X86::COND_AE;
2040  case ISD::SETUGT:              // flipped
2041  case ISD::SETULT:
2042  case ISD::SETLT:   return X86::COND_B;
2043  case ISD::SETUGE:              // flipped
2044  case ISD::SETULE:
2045  case ISD::SETLE:   return X86::COND_BE;
2046  case ISD::SETONE:
2047  case ISD::SETNE:   return X86::COND_NE;
2048  case ISD::SETUO:   return X86::COND_P;
2049  case ISD::SETO:    return X86::COND_NP;
2050  }
2051}
2052
2053/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2054/// code. Current x86 isa includes the following FP cmov instructions:
2055/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2056static bool hasFPCMov(unsigned X86CC) {
2057  switch (X86CC) {
2058  default:
2059    return false;
2060  case X86::COND_B:
2061  case X86::COND_BE:
2062  case X86::COND_E:
2063  case X86::COND_P:
2064  case X86::COND_A:
2065  case X86::COND_AE:
2066  case X86::COND_NE:
2067  case X86::COND_NP:
2068    return true;
2069  }
2070}
2071
2072/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2073/// true if Op is undef or if its value falls within the specified range (L, H].
2074static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) {
2075  if (Op.getOpcode() == ISD::UNDEF)
2076    return true;
2077
2078  unsigned Val = cast<ConstantSDNode>(Op)->getZExtValue();
2079  return (Val >= Low && Val < Hi);
2080}
2081
2082/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2083/// true if Op is undef or if its value equal to the specified value.
2084static bool isUndefOrEqual(SDValue Op, unsigned Val) {
2085  if (Op.getOpcode() == ISD::UNDEF)
2086    return true;
2087  return cast<ConstantSDNode>(Op)->getZExtValue() == Val;
2088}
2089
2090/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2091/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2092bool X86::isPSHUFDMask(SDNode *N) {
2093  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2094
2095  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2096    return false;
2097
2098  // Check if the value doesn't reference the second vector.
2099  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2100    SDValue Arg = N->getOperand(i);
2101    if (Arg.getOpcode() == ISD::UNDEF) continue;
2102    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2103    if (cast<ConstantSDNode>(Arg)->getZExtValue() >= e)
2104      return false;
2105  }
2106
2107  return true;
2108}
2109
2110/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2111/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2112bool X86::isPSHUFHWMask(SDNode *N) {
2113  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2114
2115  if (N->getNumOperands() != 8)
2116    return false;
2117
2118  // Lower quadword copied in order.
2119  for (unsigned i = 0; i != 4; ++i) {
2120    SDValue Arg = N->getOperand(i);
2121    if (Arg.getOpcode() == ISD::UNDEF) continue;
2122    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2123    if (cast<ConstantSDNode>(Arg)->getZExtValue() != i)
2124      return false;
2125  }
2126
2127  // Upper quadword shuffled.
2128  for (unsigned i = 4; i != 8; ++i) {
2129    SDValue Arg = N->getOperand(i);
2130    if (Arg.getOpcode() == ISD::UNDEF) continue;
2131    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2132    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2133    if (Val < 4 || Val > 7)
2134      return false;
2135  }
2136
2137  return true;
2138}
2139
2140/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2141/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2142bool X86::isPSHUFLWMask(SDNode *N) {
2143  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2144
2145  if (N->getNumOperands() != 8)
2146    return false;
2147
2148  // Upper quadword copied in order.
2149  for (unsigned i = 4; i != 8; ++i)
2150    if (!isUndefOrEqual(N->getOperand(i), i))
2151      return false;
2152
2153  // Lower quadword shuffled.
2154  for (unsigned i = 0; i != 4; ++i)
2155    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2156      return false;
2157
2158  return true;
2159}
2160
2161/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2162/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2163template<class SDOperand>
2164static bool isSHUFPMask(SDOperand *Elems, unsigned NumElems) {
2165  if (NumElems != 2 && NumElems != 4) return false;
2166
2167  unsigned Half = NumElems / 2;
2168  for (unsigned i = 0; i < Half; ++i)
2169    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2170      return false;
2171  for (unsigned i = Half; i < NumElems; ++i)
2172    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2173      return false;
2174
2175  return true;
2176}
2177
2178bool X86::isSHUFPMask(SDNode *N) {
2179  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2180  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2181}
2182
2183/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2184/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2185/// half elements to come from vector 1 (which would equal the dest.) and
2186/// the upper half to come from vector 2.
2187template<class SDOperand>
2188static bool isCommutedSHUFP(SDOperand *Ops, unsigned NumOps) {
2189  if (NumOps != 2 && NumOps != 4) return false;
2190
2191  unsigned Half = NumOps / 2;
2192  for (unsigned i = 0; i < Half; ++i)
2193    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2194      return false;
2195  for (unsigned i = Half; i < NumOps; ++i)
2196    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2197      return false;
2198  return true;
2199}
2200
2201static bool isCommutedSHUFP(SDNode *N) {
2202  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2203  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2204}
2205
2206/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2207/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2208bool X86::isMOVHLPSMask(SDNode *N) {
2209  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2210
2211  if (N->getNumOperands() != 4)
2212    return false;
2213
2214  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2215  return isUndefOrEqual(N->getOperand(0), 6) &&
2216         isUndefOrEqual(N->getOperand(1), 7) &&
2217         isUndefOrEqual(N->getOperand(2), 2) &&
2218         isUndefOrEqual(N->getOperand(3), 3);
2219}
2220
2221/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2222/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2223/// <2, 3, 2, 3>
2224bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2225  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2226
2227  if (N->getNumOperands() != 4)
2228    return false;
2229
2230  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2231  return isUndefOrEqual(N->getOperand(0), 2) &&
2232         isUndefOrEqual(N->getOperand(1), 3) &&
2233         isUndefOrEqual(N->getOperand(2), 2) &&
2234         isUndefOrEqual(N->getOperand(3), 3);
2235}
2236
2237/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2238/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2239bool X86::isMOVLPMask(SDNode *N) {
2240  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2241
2242  unsigned NumElems = N->getNumOperands();
2243  if (NumElems != 2 && NumElems != 4)
2244    return false;
2245
2246  for (unsigned i = 0; i < NumElems/2; ++i)
2247    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2248      return false;
2249
2250  for (unsigned i = NumElems/2; i < NumElems; ++i)
2251    if (!isUndefOrEqual(N->getOperand(i), i))
2252      return false;
2253
2254  return true;
2255}
2256
2257/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2258/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2259/// and MOVLHPS.
2260bool X86::isMOVHPMask(SDNode *N) {
2261  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2262
2263  unsigned NumElems = N->getNumOperands();
2264  if (NumElems != 2 && NumElems != 4)
2265    return false;
2266
2267  for (unsigned i = 0; i < NumElems/2; ++i)
2268    if (!isUndefOrEqual(N->getOperand(i), i))
2269      return false;
2270
2271  for (unsigned i = 0; i < NumElems/2; ++i) {
2272    SDValue Arg = N->getOperand(i + NumElems/2);
2273    if (!isUndefOrEqual(Arg, i + NumElems))
2274      return false;
2275  }
2276
2277  return true;
2278}
2279
2280/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2281/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2282template<class SDOperand>
2283bool static isUNPCKLMask(SDOperand *Elts, unsigned NumElts,
2284                         bool V2IsSplat = false) {
2285  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2286    return false;
2287
2288  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2289    SDValue BitI  = Elts[i];
2290    SDValue BitI1 = Elts[i+1];
2291    if (!isUndefOrEqual(BitI, j))
2292      return false;
2293    if (V2IsSplat) {
2294      if (isUndefOrEqual(BitI1, NumElts))
2295        return false;
2296    } else {
2297      if (!isUndefOrEqual(BitI1, j + NumElts))
2298        return false;
2299    }
2300  }
2301
2302  return true;
2303}
2304
2305bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2306  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2307  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2308}
2309
2310/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2311/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2312template<class SDOperand>
2313bool static isUNPCKHMask(SDOperand *Elts, unsigned NumElts,
2314                         bool V2IsSplat = false) {
2315  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2316    return false;
2317
2318  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2319    SDValue BitI  = Elts[i];
2320    SDValue BitI1 = Elts[i+1];
2321    if (!isUndefOrEqual(BitI, j + NumElts/2))
2322      return false;
2323    if (V2IsSplat) {
2324      if (isUndefOrEqual(BitI1, NumElts))
2325        return false;
2326    } else {
2327      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2328        return false;
2329    }
2330  }
2331
2332  return true;
2333}
2334
2335bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2336  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2337  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2338}
2339
2340/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2341/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2342/// <0, 0, 1, 1>
2343bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2344  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2345
2346  unsigned NumElems = N->getNumOperands();
2347  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2348    return false;
2349
2350  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2351    SDValue BitI  = N->getOperand(i);
2352    SDValue BitI1 = N->getOperand(i+1);
2353
2354    if (!isUndefOrEqual(BitI, j))
2355      return false;
2356    if (!isUndefOrEqual(BitI1, j))
2357      return false;
2358  }
2359
2360  return true;
2361}
2362
2363/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2364/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2365/// <2, 2, 3, 3>
2366bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2367  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2368
2369  unsigned NumElems = N->getNumOperands();
2370  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2371    return false;
2372
2373  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2374    SDValue BitI  = N->getOperand(i);
2375    SDValue BitI1 = N->getOperand(i + 1);
2376
2377    if (!isUndefOrEqual(BitI, j))
2378      return false;
2379    if (!isUndefOrEqual(BitI1, j))
2380      return false;
2381  }
2382
2383  return true;
2384}
2385
2386/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2387/// specifies a shuffle of elements that is suitable for input to MOVSS,
2388/// MOVSD, and MOVD, i.e. setting the lowest element.
2389template<class SDOperand>
2390static bool isMOVLMask(SDOperand *Elts, unsigned NumElts) {
2391  if (NumElts != 2 && NumElts != 4)
2392    return false;
2393
2394  if (!isUndefOrEqual(Elts[0], NumElts))
2395    return false;
2396
2397  for (unsigned i = 1; i < NumElts; ++i) {
2398    if (!isUndefOrEqual(Elts[i], i))
2399      return false;
2400  }
2401
2402  return true;
2403}
2404
2405bool X86::isMOVLMask(SDNode *N) {
2406  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2407  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2408}
2409
2410/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2411/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2412/// element of vector 2 and the other elements to come from vector 1 in order.
2413template<class SDOperand>
2414static bool isCommutedMOVL(SDOperand *Ops, unsigned NumOps,
2415                           bool V2IsSplat = false,
2416                           bool V2IsUndef = false) {
2417  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2418    return false;
2419
2420  if (!isUndefOrEqual(Ops[0], 0))
2421    return false;
2422
2423  for (unsigned i = 1; i < NumOps; ++i) {
2424    SDValue Arg = Ops[i];
2425    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2426          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2427          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2428      return false;
2429  }
2430
2431  return true;
2432}
2433
2434static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2435                           bool V2IsUndef = false) {
2436  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2437  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2438                        V2IsSplat, V2IsUndef);
2439}
2440
2441/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2442/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2443bool X86::isMOVSHDUPMask(SDNode *N) {
2444  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2445
2446  if (N->getNumOperands() != 4)
2447    return false;
2448
2449  // Expect 1, 1, 3, 3
2450  for (unsigned i = 0; i < 2; ++i) {
2451    SDValue Arg = N->getOperand(i);
2452    if (Arg.getOpcode() == ISD::UNDEF) continue;
2453    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2454    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2455    if (Val != 1) return false;
2456  }
2457
2458  bool HasHi = false;
2459  for (unsigned i = 2; i < 4; ++i) {
2460    SDValue Arg = N->getOperand(i);
2461    if (Arg.getOpcode() == ISD::UNDEF) continue;
2462    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2463    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2464    if (Val != 3) return false;
2465    HasHi = true;
2466  }
2467
2468  // Don't use movshdup if it can be done with a shufps.
2469  return HasHi;
2470}
2471
2472/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2473/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2474bool X86::isMOVSLDUPMask(SDNode *N) {
2475  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2476
2477  if (N->getNumOperands() != 4)
2478    return false;
2479
2480  // Expect 0, 0, 2, 2
2481  for (unsigned i = 0; i < 2; ++i) {
2482    SDValue Arg = N->getOperand(i);
2483    if (Arg.getOpcode() == ISD::UNDEF) continue;
2484    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2485    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2486    if (Val != 0) return false;
2487  }
2488
2489  bool HasHi = false;
2490  for (unsigned i = 2; i < 4; ++i) {
2491    SDValue Arg = N->getOperand(i);
2492    if (Arg.getOpcode() == ISD::UNDEF) continue;
2493    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2494    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2495    if (Val != 2) return false;
2496    HasHi = true;
2497  }
2498
2499  // Don't use movshdup if it can be done with a shufps.
2500  return HasHi;
2501}
2502
2503/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2504/// specifies a identity operation on the LHS or RHS.
2505static bool isIdentityMask(SDNode *N, bool RHS = false) {
2506  unsigned NumElems = N->getNumOperands();
2507  for (unsigned i = 0; i < NumElems; ++i)
2508    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2509      return false;
2510  return true;
2511}
2512
2513/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2514/// a splat of a single element.
2515static bool isSplatMask(SDNode *N) {
2516  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2517
2518  // This is a splat operation if each element of the permute is the same, and
2519  // if the value doesn't reference the second vector.
2520  unsigned NumElems = N->getNumOperands();
2521  SDValue ElementBase;
2522  unsigned i = 0;
2523  for (; i != NumElems; ++i) {
2524    SDValue Elt = N->getOperand(i);
2525    if (isa<ConstantSDNode>(Elt)) {
2526      ElementBase = Elt;
2527      break;
2528    }
2529  }
2530
2531  if (!ElementBase.getNode())
2532    return false;
2533
2534  for (; i != NumElems; ++i) {
2535    SDValue Arg = N->getOperand(i);
2536    if (Arg.getOpcode() == ISD::UNDEF) continue;
2537    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2538    if (Arg != ElementBase) return false;
2539  }
2540
2541  // Make sure it is a splat of the first vector operand.
2542  return cast<ConstantSDNode>(ElementBase)->getZExtValue() < NumElems;
2543}
2544
2545/// getSplatMaskEltNo - Given a splat mask, return the index to the element
2546/// we want to splat.
2547static SDValue getSplatMaskEltNo(SDNode *N) {
2548  assert(isSplatMask(N) && "Not a splat mask");
2549  unsigned NumElems = N->getNumOperands();
2550  SDValue ElementBase;
2551  unsigned i = 0;
2552  for (; i != NumElems; ++i) {
2553    SDValue Elt = N->getOperand(i);
2554    if (isa<ConstantSDNode>(Elt))
2555      return Elt;
2556  }
2557  assert(0 && " No splat value found!");
2558  return SDValue();
2559}
2560
2561
2562/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2563/// a splat of a single element and it's a 2 or 4 element mask.
2564bool X86::isSplatMask(SDNode *N) {
2565  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2566
2567  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2568  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2569    return false;
2570  return ::isSplatMask(N);
2571}
2572
2573/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2574/// specifies a splat of zero element.
2575bool X86::isSplatLoMask(SDNode *N) {
2576  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2577
2578  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2579    if (!isUndefOrEqual(N->getOperand(i), 0))
2580      return false;
2581  return true;
2582}
2583
2584/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2585/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2586bool X86::isMOVDDUPMask(SDNode *N) {
2587  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2588
2589  unsigned e = N->getNumOperands() / 2;
2590  for (unsigned i = 0; i < e; ++i)
2591    if (!isUndefOrEqual(N->getOperand(i), i))
2592      return false;
2593  for (unsigned i = 0; i < e; ++i)
2594    if (!isUndefOrEqual(N->getOperand(e+i), i))
2595      return false;
2596  return true;
2597}
2598
2599/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2600/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2601/// instructions.
2602unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2603  unsigned NumOperands = N->getNumOperands();
2604  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2605  unsigned Mask = 0;
2606  for (unsigned i = 0; i < NumOperands; ++i) {
2607    unsigned Val = 0;
2608    SDValue Arg = N->getOperand(NumOperands-i-1);
2609    if (Arg.getOpcode() != ISD::UNDEF)
2610      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2611    if (Val >= NumOperands) Val -= NumOperands;
2612    Mask |= Val;
2613    if (i != NumOperands - 1)
2614      Mask <<= Shift;
2615  }
2616
2617  return Mask;
2618}
2619
2620/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2621/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2622/// instructions.
2623unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2624  unsigned Mask = 0;
2625  // 8 nodes, but we only care about the last 4.
2626  for (unsigned i = 7; i >= 4; --i) {
2627    unsigned Val = 0;
2628    SDValue Arg = N->getOperand(i);
2629    if (Arg.getOpcode() != ISD::UNDEF)
2630      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2631    Mask |= (Val - 4);
2632    if (i != 4)
2633      Mask <<= 2;
2634  }
2635
2636  return Mask;
2637}
2638
2639/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2640/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2641/// instructions.
2642unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2643  unsigned Mask = 0;
2644  // 8 nodes, but we only care about the first 4.
2645  for (int i = 3; i >= 0; --i) {
2646    unsigned Val = 0;
2647    SDValue Arg = N->getOperand(i);
2648    if (Arg.getOpcode() != ISD::UNDEF)
2649      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2650    Mask |= Val;
2651    if (i != 0)
2652      Mask <<= 2;
2653  }
2654
2655  return Mask;
2656}
2657
2658/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2659/// specifies a 8 element shuffle that can be broken into a pair of
2660/// PSHUFHW and PSHUFLW.
2661static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2662  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2663
2664  if (N->getNumOperands() != 8)
2665    return false;
2666
2667  // Lower quadword shuffled.
2668  for (unsigned i = 0; i != 4; ++i) {
2669    SDValue Arg = N->getOperand(i);
2670    if (Arg.getOpcode() == ISD::UNDEF) continue;
2671    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2672    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2673    if (Val >= 4)
2674      return false;
2675  }
2676
2677  // Upper quadword shuffled.
2678  for (unsigned i = 4; i != 8; ++i) {
2679    SDValue Arg = N->getOperand(i);
2680    if (Arg.getOpcode() == ISD::UNDEF) continue;
2681    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2682    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2683    if (Val < 4 || Val > 7)
2684      return false;
2685  }
2686
2687  return true;
2688}
2689
2690/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2691/// values in ther permute mask.
2692static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1,
2693                                      SDValue &V2, SDValue &Mask,
2694                                      SelectionDAG &DAG) {
2695  MVT VT = Op.getValueType();
2696  MVT MaskVT = Mask.getValueType();
2697  MVT EltVT = MaskVT.getVectorElementType();
2698  unsigned NumElems = Mask.getNumOperands();
2699  SmallVector<SDValue, 8> MaskVec;
2700
2701  for (unsigned i = 0; i != NumElems; ++i) {
2702    SDValue Arg = Mask.getOperand(i);
2703    if (Arg.getOpcode() == ISD::UNDEF) {
2704      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2705      continue;
2706    }
2707    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2708    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2709    if (Val < NumElems)
2710      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2711    else
2712      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2713  }
2714
2715  std::swap(V1, V2);
2716  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2717  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2718}
2719
2720/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2721/// the two vector operands have swapped position.
2722static
2723SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG) {
2724  MVT MaskVT = Mask.getValueType();
2725  MVT EltVT = MaskVT.getVectorElementType();
2726  unsigned NumElems = Mask.getNumOperands();
2727  SmallVector<SDValue, 8> MaskVec;
2728  for (unsigned i = 0; i != NumElems; ++i) {
2729    SDValue Arg = Mask.getOperand(i);
2730    if (Arg.getOpcode() == ISD::UNDEF) {
2731      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2732      continue;
2733    }
2734    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2735    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2736    if (Val < NumElems)
2737      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2738    else
2739      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2740  }
2741  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2742}
2743
2744
2745/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2746/// match movhlps. The lower half elements should come from upper half of
2747/// V1 (and in order), and the upper half elements should come from the upper
2748/// half of V2 (and in order).
2749static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2750  unsigned NumElems = Mask->getNumOperands();
2751  if (NumElems != 4)
2752    return false;
2753  for (unsigned i = 0, e = 2; i != e; ++i)
2754    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2755      return false;
2756  for (unsigned i = 2; i != 4; ++i)
2757    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2758      return false;
2759  return true;
2760}
2761
2762/// isScalarLoadToVector - Returns true if the node is a scalar load that
2763/// is promoted to a vector. It also returns the LoadSDNode by reference if
2764/// required.
2765static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2766  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2767    return false;
2768  N = N->getOperand(0).getNode();
2769  if (!ISD::isNON_EXTLoad(N))
2770    return false;
2771  if (LD)
2772    *LD = cast<LoadSDNode>(N);
2773  return true;
2774}
2775
2776/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2777/// match movlp{s|d}. The lower half elements should come from lower half of
2778/// V1 (and in order), and the upper half elements should come from the upper
2779/// half of V2 (and in order). And since V1 will become the source of the
2780/// MOVLP, it must be either a vector load or a scalar load to vector.
2781static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2782  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2783    return false;
2784  // Is V2 is a vector load, don't do this transformation. We will try to use
2785  // load folding shufps op.
2786  if (ISD::isNON_EXTLoad(V2))
2787    return false;
2788
2789  unsigned NumElems = Mask->getNumOperands();
2790  if (NumElems != 2 && NumElems != 4)
2791    return false;
2792  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2793    if (!isUndefOrEqual(Mask->getOperand(i), i))
2794      return false;
2795  for (unsigned i = NumElems/2; i != NumElems; ++i)
2796    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2797      return false;
2798  return true;
2799}
2800
2801/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2802/// all the same.
2803static bool isSplatVector(SDNode *N) {
2804  if (N->getOpcode() != ISD::BUILD_VECTOR)
2805    return false;
2806
2807  SDValue SplatValue = N->getOperand(0);
2808  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2809    if (N->getOperand(i) != SplatValue)
2810      return false;
2811  return true;
2812}
2813
2814/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2815/// to an undef.
2816static bool isUndefShuffle(SDNode *N) {
2817  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2818    return false;
2819
2820  SDValue V1 = N->getOperand(0);
2821  SDValue V2 = N->getOperand(1);
2822  SDValue Mask = N->getOperand(2);
2823  unsigned NumElems = Mask.getNumOperands();
2824  for (unsigned i = 0; i != NumElems; ++i) {
2825    SDValue Arg = Mask.getOperand(i);
2826    if (Arg.getOpcode() != ISD::UNDEF) {
2827      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2828      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2829        return false;
2830      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2831        return false;
2832    }
2833  }
2834  return true;
2835}
2836
2837/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2838/// constant +0.0.
2839static inline bool isZeroNode(SDValue Elt) {
2840  return ((isa<ConstantSDNode>(Elt) &&
2841           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2842          (isa<ConstantFPSDNode>(Elt) &&
2843           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2844}
2845
2846/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2847/// to an zero vector.
2848static bool isZeroShuffle(SDNode *N) {
2849  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2850    return false;
2851
2852  SDValue V1 = N->getOperand(0);
2853  SDValue V2 = N->getOperand(1);
2854  SDValue Mask = N->getOperand(2);
2855  unsigned NumElems = Mask.getNumOperands();
2856  for (unsigned i = 0; i != NumElems; ++i) {
2857    SDValue Arg = Mask.getOperand(i);
2858    if (Arg.getOpcode() == ISD::UNDEF)
2859      continue;
2860
2861    unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2862    if (Idx < NumElems) {
2863      unsigned Opc = V1.getNode()->getOpcode();
2864      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2865        continue;
2866      if (Opc != ISD::BUILD_VECTOR ||
2867          !isZeroNode(V1.getNode()->getOperand(Idx)))
2868        return false;
2869    } else if (Idx >= NumElems) {
2870      unsigned Opc = V2.getNode()->getOpcode();
2871      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2872        continue;
2873      if (Opc != ISD::BUILD_VECTOR ||
2874          !isZeroNode(V2.getNode()->getOperand(Idx - NumElems)))
2875        return false;
2876    }
2877  }
2878  return true;
2879}
2880
2881/// getZeroVector - Returns a vector of specified type with all zero elements.
2882///
2883static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) {
2884  assert(VT.isVector() && "Expected a vector type");
2885
2886  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2887  // type.  This ensures they get CSE'd.
2888  SDValue Vec;
2889  if (VT.getSizeInBits() == 64) { // MMX
2890    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2891    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2892  } else if (HasSSE2) {  // SSE2
2893    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2894    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2895  } else { // SSE1
2896    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2897    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
2898  }
2899  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2900}
2901
2902/// getOnesVector - Returns a vector of specified type with all bits set.
2903///
2904static SDValue getOnesVector(MVT VT, SelectionDAG &DAG) {
2905  assert(VT.isVector() && "Expected a vector type");
2906
2907  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2908  // type.  This ensures they get CSE'd.
2909  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2910  SDValue Vec;
2911  if (VT.getSizeInBits() == 64)  // MMX
2912    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2913  else                                              // SSE
2914    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2915  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2916}
2917
2918
2919/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2920/// that point to V2 points to its first element.
2921static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) {
2922  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2923
2924  bool Changed = false;
2925  SmallVector<SDValue, 8> MaskVec;
2926  unsigned NumElems = Mask.getNumOperands();
2927  for (unsigned i = 0; i != NumElems; ++i) {
2928    SDValue Arg = Mask.getOperand(i);
2929    if (Arg.getOpcode() != ISD::UNDEF) {
2930      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2931      if (Val > NumElems) {
2932        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2933        Changed = true;
2934      }
2935    }
2936    MaskVec.push_back(Arg);
2937  }
2938
2939  if (Changed)
2940    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2941                       &MaskVec[0], MaskVec.size());
2942  return Mask;
2943}
2944
2945/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2946/// operation of specified width.
2947static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2948  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2949  MVT BaseVT = MaskVT.getVectorElementType();
2950
2951  SmallVector<SDValue, 8> MaskVec;
2952  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2953  for (unsigned i = 1; i != NumElems; ++i)
2954    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2955  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2956}
2957
2958/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2959/// of specified width.
2960static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2961  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2962  MVT BaseVT = MaskVT.getVectorElementType();
2963  SmallVector<SDValue, 8> MaskVec;
2964  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2965    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2966    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2967  }
2968  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2969}
2970
2971/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2972/// of specified width.
2973static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2974  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2975  MVT BaseVT = MaskVT.getVectorElementType();
2976  unsigned Half = NumElems/2;
2977  SmallVector<SDValue, 8> MaskVec;
2978  for (unsigned i = 0; i != Half; ++i) {
2979    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2980    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2981  }
2982  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2983}
2984
2985/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2986/// element #0 of a vector with the specified index, leaving the rest of the
2987/// elements in place.
2988static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2989                                   SelectionDAG &DAG) {
2990  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2991  MVT BaseVT = MaskVT.getVectorElementType();
2992  SmallVector<SDValue, 8> MaskVec;
2993  // Element #0 of the result gets the elt we are replacing.
2994  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2995  for (unsigned i = 1; i != NumElems; ++i)
2996    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2997  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2998}
2999
3000/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3001static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) {
3002  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
3003  MVT VT = Op.getValueType();
3004  if (PVT == VT)
3005    return Op;
3006  SDValue V1 = Op.getOperand(0);
3007  SDValue Mask = Op.getOperand(2);
3008  unsigned MaskNumElems = Mask.getNumOperands();
3009  unsigned NumElems = MaskNumElems;
3010  // Special handling of v4f32 -> v4i32.
3011  if (VT != MVT::v4f32) {
3012    // Find which element we want to splat.
3013    SDNode* EltNoNode = getSplatMaskEltNo(Mask.getNode()).getNode();
3014    unsigned EltNo = cast<ConstantSDNode>(EltNoNode)->getZExtValue();
3015    // unpack elements to the correct location
3016    while (NumElems > 4) {
3017      if (EltNo < NumElems/2) {
3018        Mask = getUnpacklMask(MaskNumElems, DAG);
3019      } else {
3020        Mask = getUnpackhMask(MaskNumElems, DAG);
3021        EltNo -= NumElems/2;
3022      }
3023      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
3024      NumElems >>= 1;
3025    }
3026    SDValue Cst = DAG.getConstant(EltNo, MVT::i32);
3027    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
3028  }
3029
3030  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
3031  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
3032                                  DAG.getNode(ISD::UNDEF, PVT), Mask);
3033  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3034}
3035
3036/// isVectorLoad - Returns true if the node is a vector load, a scalar
3037/// load that's promoted to vector, or a load bitcasted.
3038static bool isVectorLoad(SDValue Op) {
3039  assert(Op.getValueType().isVector() && "Expected a vector type");
3040  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR ||
3041      Op.getOpcode() == ISD::BIT_CONVERT) {
3042    return isa<LoadSDNode>(Op.getOperand(0));
3043  }
3044  return isa<LoadSDNode>(Op);
3045}
3046
3047
3048/// CanonicalizeMovddup - Cannonicalize movddup shuffle to v2f64.
3049///
3050static SDValue CanonicalizeMovddup(SDValue Op, SDValue V1, SDValue Mask,
3051                                   SelectionDAG &DAG, bool HasSSE3) {
3052  // If we have sse3 and shuffle has more than one use or input is a load, then
3053  // use movddup. Otherwise, use movlhps.
3054  bool UseMovddup = HasSSE3 && (!Op.hasOneUse() || isVectorLoad(V1));
3055  MVT PVT = UseMovddup ? MVT::v2f64 : MVT::v4f32;
3056  MVT VT = Op.getValueType();
3057  if (VT == PVT)
3058    return Op;
3059  unsigned NumElems = PVT.getVectorNumElements();
3060  if (NumElems == 2) {
3061    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3062    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
3063  } else {
3064    assert(NumElems == 4);
3065    SDValue Cst0 = DAG.getTargetConstant(0, MVT::i32);
3066    SDValue Cst1 = DAG.getTargetConstant(1, MVT::i32);
3067    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst0, Cst1, Cst0, Cst1);
3068  }
3069
3070  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
3071  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
3072                                DAG.getNode(ISD::UNDEF, PVT), Mask);
3073  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3074}
3075
3076/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3077/// vector of zero or undef vector.  This produces a shuffle where the low
3078/// element of V2 is swizzled into the zero/undef vector, landing at element
3079/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3080static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3081                                             bool isZero, bool HasSSE2,
3082                                             SelectionDAG &DAG) {
3083  MVT VT = V2.getValueType();
3084  SDValue V1 = isZero
3085    ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
3086  unsigned NumElems = V2.getValueType().getVectorNumElements();
3087  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3088  MVT EVT = MaskVT.getVectorElementType();
3089  SmallVector<SDValue, 16> MaskVec;
3090  for (unsigned i = 0; i != NumElems; ++i)
3091    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
3092      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
3093    else
3094      MaskVec.push_back(DAG.getConstant(i, EVT));
3095  SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3096                               &MaskVec[0], MaskVec.size());
3097  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3098}
3099
3100/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3101/// a shuffle that is zero.
3102static
3103unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask,
3104                                  unsigned NumElems, bool Low,
3105                                  SelectionDAG &DAG) {
3106  unsigned NumZeros = 0;
3107  for (unsigned i = 0; i < NumElems; ++i) {
3108    unsigned Index = Low ? i : NumElems-i-1;
3109    SDValue Idx = Mask.getOperand(Index);
3110    if (Idx.getOpcode() == ISD::UNDEF) {
3111      ++NumZeros;
3112      continue;
3113    }
3114    SDValue Elt = DAG.getShuffleScalarElt(Op.getNode(), Index);
3115    if (Elt.getNode() && isZeroNode(Elt))
3116      ++NumZeros;
3117    else
3118      break;
3119  }
3120  return NumZeros;
3121}
3122
3123/// isVectorShift - Returns true if the shuffle can be implemented as a
3124/// logical left or right shift of a vector.
3125static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG,
3126                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3127  unsigned NumElems = Mask.getNumOperands();
3128
3129  isLeft = true;
3130  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
3131  if (!NumZeros) {
3132    isLeft = false;
3133    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
3134    if (!NumZeros)
3135      return false;
3136  }
3137
3138  bool SeenV1 = false;
3139  bool SeenV2 = false;
3140  for (unsigned i = NumZeros; i < NumElems; ++i) {
3141    unsigned Val = isLeft ? (i - NumZeros) : i;
3142    SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
3143    if (Idx.getOpcode() == ISD::UNDEF)
3144      continue;
3145    unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
3146    if (Index < NumElems)
3147      SeenV1 = true;
3148    else {
3149      Index -= NumElems;
3150      SeenV2 = true;
3151    }
3152    if (Index != Val)
3153      return false;
3154  }
3155  if (SeenV1 && SeenV2)
3156    return false;
3157
3158  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
3159  ShAmt = NumZeros;
3160  return true;
3161}
3162
3163
3164/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3165///
3166static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3167                                       unsigned NumNonZero, unsigned NumZero,
3168                                       SelectionDAG &DAG, TargetLowering &TLI) {
3169  if (NumNonZero > 8)
3170    return SDValue();
3171
3172  SDValue V(0, 0);
3173  bool First = true;
3174  for (unsigned i = 0; i < 16; ++i) {
3175    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3176    if (ThisIsNonZero && First) {
3177      if (NumZero)
3178        V = getZeroVector(MVT::v8i16, true, DAG);
3179      else
3180        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3181      First = false;
3182    }
3183
3184    if ((i & 1) != 0) {
3185      SDValue ThisElt(0, 0), LastElt(0, 0);
3186      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3187      if (LastIsNonZero) {
3188        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3189      }
3190      if (ThisIsNonZero) {
3191        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3192        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3193                              ThisElt, DAG.getConstant(8, MVT::i8));
3194        if (LastIsNonZero)
3195          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3196      } else
3197        ThisElt = LastElt;
3198
3199      if (ThisElt.getNode())
3200        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3201                        DAG.getIntPtrConstant(i/2));
3202    }
3203  }
3204
3205  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3206}
3207
3208/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3209///
3210static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3211                                       unsigned NumNonZero, unsigned NumZero,
3212                                       SelectionDAG &DAG, TargetLowering &TLI) {
3213  if (NumNonZero > 4)
3214    return SDValue();
3215
3216  SDValue V(0, 0);
3217  bool First = true;
3218  for (unsigned i = 0; i < 8; ++i) {
3219    bool isNonZero = (NonZeros & (1 << i)) != 0;
3220    if (isNonZero) {
3221      if (First) {
3222        if (NumZero)
3223          V = getZeroVector(MVT::v8i16, true, DAG);
3224        else
3225          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3226        First = false;
3227      }
3228      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3229                      DAG.getIntPtrConstant(i));
3230    }
3231  }
3232
3233  return V;
3234}
3235
3236/// getVShift - Return a vector logical shift node.
3237///
3238static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3239                           unsigned NumBits, SelectionDAG &DAG,
3240                           const TargetLowering &TLI) {
3241  bool isMMX = VT.getSizeInBits() == 64;
3242  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3243  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3244  SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp);
3245  return DAG.getNode(ISD::BIT_CONVERT, VT,
3246                     DAG.getNode(Opc, ShVT, SrcOp,
3247                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3248}
3249
3250SDValue
3251X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3252  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3253  if (ISD::isBuildVectorAllZeros(Op.getNode())
3254      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3255    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3256    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3257    // eliminated on x86-32 hosts.
3258    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3259      return Op;
3260
3261    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3262      return getOnesVector(Op.getValueType(), DAG);
3263    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
3264  }
3265
3266  MVT VT = Op.getValueType();
3267  MVT EVT = VT.getVectorElementType();
3268  unsigned EVTBits = EVT.getSizeInBits();
3269
3270  unsigned NumElems = Op.getNumOperands();
3271  unsigned NumZero  = 0;
3272  unsigned NumNonZero = 0;
3273  unsigned NonZeros = 0;
3274  bool IsAllConstants = true;
3275  SmallSet<SDValue, 8> Values;
3276  for (unsigned i = 0; i < NumElems; ++i) {
3277    SDValue Elt = Op.getOperand(i);
3278    if (Elt.getOpcode() == ISD::UNDEF)
3279      continue;
3280    Values.insert(Elt);
3281    if (Elt.getOpcode() != ISD::Constant &&
3282        Elt.getOpcode() != ISD::ConstantFP)
3283      IsAllConstants = false;
3284    if (isZeroNode(Elt))
3285      NumZero++;
3286    else {
3287      NonZeros |= (1 << i);
3288      NumNonZero++;
3289    }
3290  }
3291
3292  if (NumNonZero == 0) {
3293    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3294    return DAG.getNode(ISD::UNDEF, VT);
3295  }
3296
3297  // Special case for single non-zero, non-undef, element.
3298  if (NumNonZero == 1 && NumElems <= 4) {
3299    unsigned Idx = CountTrailingZeros_32(NonZeros);
3300    SDValue Item = Op.getOperand(Idx);
3301
3302    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3303    // the value are obviously zero, truncate the value to i32 and do the
3304    // insertion that way.  Only do this if the value is non-constant or if the
3305    // value is a constant being inserted into element 0.  It is cheaper to do
3306    // a constant pool load than it is to do a movd + shuffle.
3307    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3308        (!IsAllConstants || Idx == 0)) {
3309      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3310        // Handle MMX and SSE both.
3311        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3312        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3313
3314        // Truncate the value (which may itself be a constant) to i32, and
3315        // convert it to a vector with movd (S2V+shuffle to zero extend).
3316        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3317        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3318        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3319                                           Subtarget->hasSSE2(), DAG);
3320
3321        // Now we have our 32-bit value zero extended in the low element of
3322        // a vector.  If Idx != 0, swizzle it into place.
3323        if (Idx != 0) {
3324          SDValue Ops[] = {
3325            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3326            getSwapEltZeroMask(VecElts, Idx, DAG)
3327          };
3328          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3329        }
3330        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3331      }
3332    }
3333
3334    // If we have a constant or non-constant insertion into the low element of
3335    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3336    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3337    // depending on what the source datatype is.  Because we can only get here
3338    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3339    if (Idx == 0 &&
3340        // Don't do this for i64 values on x86-32.
3341        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3342      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3343      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3344      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3345                                         Subtarget->hasSSE2(), DAG);
3346    }
3347
3348    // Is it a vector logical left shift?
3349    if (NumElems == 2 && Idx == 1 &&
3350        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3351      unsigned NumBits = VT.getSizeInBits();
3352      return getVShift(true, VT,
3353                       DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)),
3354                       NumBits/2, DAG, *this);
3355    }
3356
3357    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3358      return SDValue();
3359
3360    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3361    // is a non-constant being inserted into an element other than the low one,
3362    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3363    // movd/movss) to move this into the low element, then shuffle it into
3364    // place.
3365    if (EVTBits == 32) {
3366      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3367
3368      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3369      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3370                                         Subtarget->hasSSE2(), DAG);
3371      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3372      MVT MaskEVT = MaskVT.getVectorElementType();
3373      SmallVector<SDValue, 8> MaskVec;
3374      for (unsigned i = 0; i < NumElems; i++)
3375        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3376      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3377                                   &MaskVec[0], MaskVec.size());
3378      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3379                         DAG.getNode(ISD::UNDEF, VT), Mask);
3380    }
3381  }
3382
3383  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3384  if (Values.size() == 1)
3385    return SDValue();
3386
3387  // A vector full of immediates; various special cases are already
3388  // handled, so this is best done with a single constant-pool load.
3389  if (IsAllConstants)
3390    return SDValue();
3391
3392  // Let legalizer expand 2-wide build_vectors.
3393  if (EVTBits == 64) {
3394    if (NumNonZero == 1) {
3395      // One half is zero or undef.
3396      unsigned Idx = CountTrailingZeros_32(NonZeros);
3397      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
3398                                 Op.getOperand(Idx));
3399      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3400                                         Subtarget->hasSSE2(), DAG);
3401    }
3402    return SDValue();
3403  }
3404
3405  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3406  if (EVTBits == 8 && NumElems == 16) {
3407    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3408                                        *this);
3409    if (V.getNode()) return V;
3410  }
3411
3412  if (EVTBits == 16 && NumElems == 8) {
3413    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3414                                        *this);
3415    if (V.getNode()) return V;
3416  }
3417
3418  // If element VT is == 32 bits, turn it into a number of shuffles.
3419  SmallVector<SDValue, 8> V;
3420  V.resize(NumElems);
3421  if (NumElems == 4 && NumZero > 0) {
3422    for (unsigned i = 0; i < 4; ++i) {
3423      bool isZero = !(NonZeros & (1 << i));
3424      if (isZero)
3425        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3426      else
3427        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3428    }
3429
3430    for (unsigned i = 0; i < 2; ++i) {
3431      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3432        default: break;
3433        case 0:
3434          V[i] = V[i*2];  // Must be a zero vector.
3435          break;
3436        case 1:
3437          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3438                             getMOVLMask(NumElems, DAG));
3439          break;
3440        case 2:
3441          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3442                             getMOVLMask(NumElems, DAG));
3443          break;
3444        case 3:
3445          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3446                             getUnpacklMask(NumElems, DAG));
3447          break;
3448      }
3449    }
3450
3451    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3452    MVT EVT = MaskVT.getVectorElementType();
3453    SmallVector<SDValue, 8> MaskVec;
3454    bool Reverse = (NonZeros & 0x3) == 2;
3455    for (unsigned i = 0; i < 2; ++i)
3456      if (Reverse)
3457        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3458      else
3459        MaskVec.push_back(DAG.getConstant(i, EVT));
3460    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3461    for (unsigned i = 0; i < 2; ++i)
3462      if (Reverse)
3463        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3464      else
3465        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3466    SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3467                                     &MaskVec[0], MaskVec.size());
3468    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3469  }
3470
3471  if (Values.size() > 2) {
3472    // Expand into a number of unpckl*.
3473    // e.g. for v4f32
3474    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3475    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3476    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3477    SDValue UnpckMask = getUnpacklMask(NumElems, DAG);
3478    for (unsigned i = 0; i < NumElems; ++i)
3479      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3480    NumElems >>= 1;
3481    while (NumElems != 0) {
3482      for (unsigned i = 0; i < NumElems; ++i)
3483        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3484                           UnpckMask);
3485      NumElems >>= 1;
3486    }
3487    return V[0];
3488  }
3489
3490  return SDValue();
3491}
3492
3493static
3494SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2,
3495                                 SDValue PermMask, SelectionDAG &DAG,
3496                                 TargetLowering &TLI) {
3497  SDValue NewV;
3498  MVT MaskVT = MVT::getIntVectorWithNumElements(8);
3499  MVT MaskEVT = MaskVT.getVectorElementType();
3500  MVT PtrVT = TLI.getPointerTy();
3501  SmallVector<SDValue, 8> MaskElts(PermMask.getNode()->op_begin(),
3502                                   PermMask.getNode()->op_end());
3503
3504  // First record which half of which vector the low elements come from.
3505  SmallVector<unsigned, 4> LowQuad(4);
3506  for (unsigned i = 0; i < 4; ++i) {
3507    SDValue Elt = MaskElts[i];
3508    if (Elt.getOpcode() == ISD::UNDEF)
3509      continue;
3510    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3511    int QuadIdx = EltIdx / 4;
3512    ++LowQuad[QuadIdx];
3513  }
3514
3515  int BestLowQuad = -1;
3516  unsigned MaxQuad = 1;
3517  for (unsigned i = 0; i < 4; ++i) {
3518    if (LowQuad[i] > MaxQuad) {
3519      BestLowQuad = i;
3520      MaxQuad = LowQuad[i];
3521    }
3522  }
3523
3524  // Record which half of which vector the high elements come from.
3525  SmallVector<unsigned, 4> HighQuad(4);
3526  for (unsigned i = 4; i < 8; ++i) {
3527    SDValue Elt = MaskElts[i];
3528    if (Elt.getOpcode() == ISD::UNDEF)
3529      continue;
3530    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3531    int QuadIdx = EltIdx / 4;
3532    ++HighQuad[QuadIdx];
3533  }
3534
3535  int BestHighQuad = -1;
3536  MaxQuad = 1;
3537  for (unsigned i = 0; i < 4; ++i) {
3538    if (HighQuad[i] > MaxQuad) {
3539      BestHighQuad = i;
3540      MaxQuad = HighQuad[i];
3541    }
3542  }
3543
3544  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3545  if (BestLowQuad != -1 || BestHighQuad != -1) {
3546    // First sort the 4 chunks in order using shufpd.
3547    SmallVector<SDValue, 8> MaskVec;
3548
3549    if (BestLowQuad != -1)
3550      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3551    else
3552      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3553
3554    if (BestHighQuad != -1)
3555      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3556    else
3557      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3558
3559    SDValue Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3560    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3561                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3562                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3563    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3564
3565    // Now sort high and low parts separately.
3566    BitVector InOrder(8);
3567    if (BestLowQuad != -1) {
3568      // Sort lower half in order using PSHUFLW.
3569      MaskVec.clear();
3570      bool AnyOutOrder = false;
3571
3572      for (unsigned i = 0; i != 4; ++i) {
3573        SDValue Elt = MaskElts[i];
3574        if (Elt.getOpcode() == ISD::UNDEF) {
3575          MaskVec.push_back(Elt);
3576          InOrder.set(i);
3577        } else {
3578          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3579          if (EltIdx != i)
3580            AnyOutOrder = true;
3581
3582          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3583
3584          // If this element is in the right place after this shuffle, then
3585          // remember it.
3586          if ((int)(EltIdx / 4) == BestLowQuad)
3587            InOrder.set(i);
3588        }
3589      }
3590      if (AnyOutOrder) {
3591        for (unsigned i = 4; i != 8; ++i)
3592          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3593        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3594        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3595      }
3596    }
3597
3598    if (BestHighQuad != -1) {
3599      // Sort high half in order using PSHUFHW if possible.
3600      MaskVec.clear();
3601
3602      for (unsigned i = 0; i != 4; ++i)
3603        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3604
3605      bool AnyOutOrder = false;
3606      for (unsigned i = 4; i != 8; ++i) {
3607        SDValue Elt = MaskElts[i];
3608        if (Elt.getOpcode() == ISD::UNDEF) {
3609          MaskVec.push_back(Elt);
3610          InOrder.set(i);
3611        } else {
3612          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3613          if (EltIdx != i)
3614            AnyOutOrder = true;
3615
3616          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3617
3618          // If this element is in the right place after this shuffle, then
3619          // remember it.
3620          if ((int)(EltIdx / 4) == BestHighQuad)
3621            InOrder.set(i);
3622        }
3623      }
3624
3625      if (AnyOutOrder) {
3626        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3627        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3628      }
3629    }
3630
3631    // The other elements are put in the right place using pextrw and pinsrw.
3632    for (unsigned i = 0; i != 8; ++i) {
3633      if (InOrder[i])
3634        continue;
3635      SDValue Elt = MaskElts[i];
3636      if (Elt.getOpcode() == ISD::UNDEF)
3637        continue;
3638      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3639      SDValue ExtOp = (EltIdx < 8)
3640        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3641                      DAG.getConstant(EltIdx, PtrVT))
3642        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3643                      DAG.getConstant(EltIdx - 8, PtrVT));
3644      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3645                         DAG.getConstant(i, PtrVT));
3646    }
3647
3648    return NewV;
3649  }
3650
3651  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use as
3652  // few as possible. First, let's find out how many elements are already in the
3653  // right order.
3654  unsigned V1InOrder = 0;
3655  unsigned V1FromV1 = 0;
3656  unsigned V2InOrder = 0;
3657  unsigned V2FromV2 = 0;
3658  SmallVector<SDValue, 8> V1Elts;
3659  SmallVector<SDValue, 8> V2Elts;
3660  for (unsigned i = 0; i < 8; ++i) {
3661    SDValue Elt = MaskElts[i];
3662    if (Elt.getOpcode() == ISD::UNDEF) {
3663      V1Elts.push_back(Elt);
3664      V2Elts.push_back(Elt);
3665      ++V1InOrder;
3666      ++V2InOrder;
3667      continue;
3668    }
3669    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3670    if (EltIdx == i) {
3671      V1Elts.push_back(Elt);
3672      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3673      ++V1InOrder;
3674    } else if (EltIdx == i+8) {
3675      V1Elts.push_back(Elt);
3676      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3677      ++V2InOrder;
3678    } else if (EltIdx < 8) {
3679      V1Elts.push_back(Elt);
3680      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3681      ++V1FromV1;
3682    } else {
3683      V1Elts.push_back(Elt);
3684      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3685      ++V2FromV2;
3686    }
3687  }
3688
3689  if (V2InOrder > V1InOrder) {
3690    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3691    std::swap(V1, V2);
3692    std::swap(V1Elts, V2Elts);
3693    std::swap(V1FromV1, V2FromV2);
3694  }
3695
3696  if ((V1FromV1 + V1InOrder) != 8) {
3697    // Some elements are from V2.
3698    if (V1FromV1) {
3699      // If there are elements that are from V1 but out of place,
3700      // then first sort them in place
3701      SmallVector<SDValue, 8> MaskVec;
3702      for (unsigned i = 0; i < 8; ++i) {
3703        SDValue Elt = V1Elts[i];
3704        if (Elt.getOpcode() == ISD::UNDEF) {
3705          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3706          continue;
3707        }
3708        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3709        if (EltIdx >= 8)
3710          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3711        else
3712          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3713      }
3714      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3715      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3716    }
3717
3718    NewV = V1;
3719    for (unsigned i = 0; i < 8; ++i) {
3720      SDValue Elt = V1Elts[i];
3721      if (Elt.getOpcode() == ISD::UNDEF)
3722        continue;
3723      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3724      if (EltIdx < 8)
3725        continue;
3726      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3727                                    DAG.getConstant(EltIdx - 8, PtrVT));
3728      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3729                         DAG.getConstant(i, PtrVT));
3730    }
3731    return NewV;
3732  } else {
3733    // All elements are from V1.
3734    NewV = V1;
3735    for (unsigned i = 0; i < 8; ++i) {
3736      SDValue Elt = V1Elts[i];
3737      if (Elt.getOpcode() == ISD::UNDEF)
3738        continue;
3739      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3740      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3741                                    DAG.getConstant(EltIdx, PtrVT));
3742      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3743                         DAG.getConstant(i, PtrVT));
3744    }
3745    return NewV;
3746  }
3747}
3748
3749/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3750/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3751/// done when every pair / quad of shuffle mask elements point to elements in
3752/// the right sequence. e.g.
3753/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3754static
3755SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2,
3756                                MVT VT,
3757                                SDValue PermMask, SelectionDAG &DAG,
3758                                TargetLowering &TLI) {
3759  unsigned NumElems = PermMask.getNumOperands();
3760  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3761  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3762  MVT MaskEltVT = MaskVT.getVectorElementType();
3763  MVT NewVT = MaskVT;
3764  switch (VT.getSimpleVT()) {
3765  default: assert(false && "Unexpected!");
3766  case MVT::v4f32: NewVT = MVT::v2f64; break;
3767  case MVT::v4i32: NewVT = MVT::v2i64; break;
3768  case MVT::v8i16: NewVT = MVT::v4i32; break;
3769  case MVT::v16i8: NewVT = MVT::v4i32; break;
3770  }
3771
3772  if (NewWidth == 2) {
3773    if (VT.isInteger())
3774      NewVT = MVT::v2i64;
3775    else
3776      NewVT = MVT::v2f64;
3777  }
3778  unsigned Scale = NumElems / NewWidth;
3779  SmallVector<SDValue, 8> MaskVec;
3780  for (unsigned i = 0; i < NumElems; i += Scale) {
3781    unsigned StartIdx = ~0U;
3782    for (unsigned j = 0; j < Scale; ++j) {
3783      SDValue Elt = PermMask.getOperand(i+j);
3784      if (Elt.getOpcode() == ISD::UNDEF)
3785        continue;
3786      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3787      if (StartIdx == ~0U)
3788        StartIdx = EltIdx - (EltIdx % Scale);
3789      if (EltIdx != StartIdx + j)
3790        return SDValue();
3791    }
3792    if (StartIdx == ~0U)
3793      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEltVT));
3794    else
3795      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT));
3796  }
3797
3798  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3799  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3800  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3801                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3802                                 &MaskVec[0], MaskVec.size()));
3803}
3804
3805/// getVZextMovL - Return a zero-extending vector move low node.
3806///
3807static SDValue getVZextMovL(MVT VT, MVT OpVT,
3808                              SDValue SrcOp, SelectionDAG &DAG,
3809                              const X86Subtarget *Subtarget) {
3810  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3811    LoadSDNode *LD = NULL;
3812    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3813      LD = dyn_cast<LoadSDNode>(SrcOp);
3814    if (!LD) {
3815      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3816      // instead.
3817      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3818      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3819          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3820          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3821          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3822        // PR2108
3823        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3824        return DAG.getNode(ISD::BIT_CONVERT, VT,
3825                           DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3826                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
3827                                                   SrcOp.getOperand(0)
3828                                                          .getOperand(0))));
3829      }
3830    }
3831  }
3832
3833  return DAG.getNode(ISD::BIT_CONVERT, VT,
3834                     DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3835                                 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
3836}
3837
3838/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3839/// shuffles.
3840static SDValue
3841LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2,
3842                          SDValue PermMask, MVT VT, SelectionDAG &DAG) {
3843  MVT MaskVT = PermMask.getValueType();
3844  MVT MaskEVT = MaskVT.getVectorElementType();
3845  SmallVector<std::pair<int, int>, 8> Locs;
3846  Locs.resize(4);
3847  SmallVector<SDValue, 8> Mask1(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3848  unsigned NumHi = 0;
3849  unsigned NumLo = 0;
3850  for (unsigned i = 0; i != 4; ++i) {
3851    SDValue Elt = PermMask.getOperand(i);
3852    if (Elt.getOpcode() == ISD::UNDEF) {
3853      Locs[i] = std::make_pair(-1, -1);
3854    } else {
3855      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
3856      assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!");
3857      if (Val < 4) {
3858        Locs[i] = std::make_pair(0, NumLo);
3859        Mask1[NumLo] = Elt;
3860        NumLo++;
3861      } else {
3862        Locs[i] = std::make_pair(1, NumHi);
3863        if (2+NumHi < 4)
3864          Mask1[2+NumHi] = Elt;
3865        NumHi++;
3866      }
3867    }
3868  }
3869
3870  if (NumLo <= 2 && NumHi <= 2) {
3871    // If no more than two elements come from either vector. This can be
3872    // implemented with two shuffles. First shuffle gather the elements.
3873    // The second shuffle, which takes the first shuffle as both of its
3874    // vector operands, put the elements into the right order.
3875    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3876                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3877                                 &Mask1[0], Mask1.size()));
3878
3879    SmallVector<SDValue, 8> Mask2(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3880    for (unsigned i = 0; i != 4; ++i) {
3881      if (Locs[i].first == -1)
3882        continue;
3883      else {
3884        unsigned Idx = (i < 2) ? 0 : 4;
3885        Idx += Locs[i].first * 2 + Locs[i].second;
3886        Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3887      }
3888    }
3889
3890    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3891                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3892                                   &Mask2[0], Mask2.size()));
3893  } else if (NumLo == 3 || NumHi == 3) {
3894    // Otherwise, we must have three elements from one vector, call it X, and
3895    // one element from the other, call it Y.  First, use a shufps to build an
3896    // intermediate vector with the one element from Y and the element from X
3897    // that will be in the same half in the final destination (the indexes don't
3898    // matter). Then, use a shufps to build the final vector, taking the half
3899    // containing the element from Y from the intermediate, and the other half
3900    // from X.
3901    if (NumHi == 3) {
3902      // Normalize it so the 3 elements come from V1.
3903      PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3904      std::swap(V1, V2);
3905    }
3906
3907    // Find the element from V2.
3908    unsigned HiIndex;
3909    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3910      SDValue Elt = PermMask.getOperand(HiIndex);
3911      if (Elt.getOpcode() == ISD::UNDEF)
3912        continue;
3913      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
3914      if (Val >= 4)
3915        break;
3916    }
3917
3918    Mask1[0] = PermMask.getOperand(HiIndex);
3919    Mask1[1] = DAG.getNode(ISD::UNDEF, MaskEVT);
3920    Mask1[2] = PermMask.getOperand(HiIndex^1);
3921    Mask1[3] = DAG.getNode(ISD::UNDEF, MaskEVT);
3922    V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3923                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3924
3925    if (HiIndex >= 2) {
3926      Mask1[0] = PermMask.getOperand(0);
3927      Mask1[1] = PermMask.getOperand(1);
3928      Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
3929      Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
3930      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3931                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3932    } else {
3933      Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
3934      Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT);
3935      Mask1[2] = PermMask.getOperand(2);
3936      Mask1[3] = PermMask.getOperand(3);
3937      if (Mask1[2].getOpcode() != ISD::UNDEF)
3938        Mask1[2] =
3939          DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getZExtValue()+4,
3940                          MaskEVT);
3941      if (Mask1[3].getOpcode() != ISD::UNDEF)
3942        Mask1[3] =
3943          DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getZExtValue()+4,
3944                          MaskEVT);
3945      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1,
3946                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3947    }
3948  }
3949
3950  // Break it into (shuffle shuffle_hi, shuffle_lo).
3951  Locs.clear();
3952  SmallVector<SDValue,8> LoMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3953  SmallVector<SDValue,8> HiMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3954  SmallVector<SDValue,8> *MaskPtr = &LoMask;
3955  unsigned MaskIdx = 0;
3956  unsigned LoIdx = 0;
3957  unsigned HiIdx = 2;
3958  for (unsigned i = 0; i != 4; ++i) {
3959    if (i == 2) {
3960      MaskPtr = &HiMask;
3961      MaskIdx = 1;
3962      LoIdx = 0;
3963      HiIdx = 2;
3964    }
3965    SDValue Elt = PermMask.getOperand(i);
3966    if (Elt.getOpcode() == ISD::UNDEF) {
3967      Locs[i] = std::make_pair(-1, -1);
3968    } else if (cast<ConstantSDNode>(Elt)->getZExtValue() < 4) {
3969      Locs[i] = std::make_pair(MaskIdx, LoIdx);
3970      (*MaskPtr)[LoIdx] = Elt;
3971      LoIdx++;
3972    } else {
3973      Locs[i] = std::make_pair(MaskIdx, HiIdx);
3974      (*MaskPtr)[HiIdx] = Elt;
3975      HiIdx++;
3976    }
3977  }
3978
3979  SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3980                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3981                                                &LoMask[0], LoMask.size()));
3982  SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3983                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3984                                                &HiMask[0], HiMask.size()));
3985  SmallVector<SDValue, 8> MaskOps;
3986  for (unsigned i = 0; i != 4; ++i) {
3987    if (Locs[i].first == -1) {
3988      MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3989    } else {
3990      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
3991      MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3992    }
3993  }
3994  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3995                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3996                                 &MaskOps[0], MaskOps.size()));
3997}
3998
3999SDValue
4000X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4001  SDValue V1 = Op.getOperand(0);
4002  SDValue V2 = Op.getOperand(1);
4003  SDValue PermMask = Op.getOperand(2);
4004  MVT VT = Op.getValueType();
4005  unsigned NumElems = PermMask.getNumOperands();
4006  bool isMMX = VT.getSizeInBits() == 64;
4007  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4008  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4009  bool V1IsSplat = false;
4010  bool V2IsSplat = false;
4011
4012  if (isUndefShuffle(Op.getNode()))
4013    return DAG.getNode(ISD::UNDEF, VT);
4014
4015  if (isZeroShuffle(Op.getNode()))
4016    return getZeroVector(VT, Subtarget->hasSSE2(), DAG);
4017
4018  if (isIdentityMask(PermMask.getNode()))
4019    return V1;
4020  else if (isIdentityMask(PermMask.getNode(), true))
4021    return V2;
4022
4023  // Canonicalize movddup shuffles.
4024  if (V2IsUndef && Subtarget->hasSSE2() &&
4025      VT.getSizeInBits() == 128 &&
4026      X86::isMOVDDUPMask(PermMask.getNode()))
4027    return CanonicalizeMovddup(Op, V1, PermMask, DAG, Subtarget->hasSSE3());
4028
4029  if (isSplatMask(PermMask.getNode())) {
4030    if (isMMX || NumElems < 4) return Op;
4031    // Promote it to a v4{if}32 splat.
4032    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
4033  }
4034
4035  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4036  // do it!
4037  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4038    SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
4039    if (NewOp.getNode())
4040      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
4041  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4042    // FIXME: Figure out a cleaner way to do this.
4043    // Try to make use of movq to zero out the top part.
4044    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4045      SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4046                                                 DAG, *this);
4047      if (NewOp.getNode()) {
4048        SDValue NewV1 = NewOp.getOperand(0);
4049        SDValue NewV2 = NewOp.getOperand(1);
4050        SDValue NewMask = NewOp.getOperand(2);
4051        if (isCommutedMOVL(NewMask.getNode(), true, false)) {
4052          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
4053          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
4054        }
4055      }
4056    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4057      SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4058                                                DAG, *this);
4059      if (NewOp.getNode() && X86::isMOVLMask(NewOp.getOperand(2).getNode()))
4060        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4061                             DAG, Subtarget);
4062    }
4063  }
4064
4065  // Check if this can be converted into a logical shift.
4066  bool isLeft = false;
4067  unsigned ShAmt = 0;
4068  SDValue ShVal;
4069  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
4070  if (isShift && ShVal.hasOneUse()) {
4071    // If the shifted value has multiple uses, it may be cheaper to use
4072    // v_set0 + movlhps or movhlps, etc.
4073    MVT EVT = VT.getVectorElementType();
4074    ShAmt *= EVT.getSizeInBits();
4075    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
4076  }
4077
4078  if (X86::isMOVLMask(PermMask.getNode())) {
4079    if (V1IsUndef)
4080      return V2;
4081    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4082      return getVZextMovL(VT, VT, V2, DAG, Subtarget);
4083    if (!isMMX)
4084      return Op;
4085  }
4086
4087  if (!isMMX && (X86::isMOVSHDUPMask(PermMask.getNode()) ||
4088                 X86::isMOVSLDUPMask(PermMask.getNode()) ||
4089                 X86::isMOVHLPSMask(PermMask.getNode()) ||
4090                 X86::isMOVHPMask(PermMask.getNode()) ||
4091                 X86::isMOVLPMask(PermMask.getNode())))
4092    return Op;
4093
4094  if (ShouldXformToMOVHLPS(PermMask.getNode()) ||
4095      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), PermMask.getNode()))
4096    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4097
4098  if (isShift) {
4099    // No better options. Use a vshl / vsrl.
4100    MVT EVT = VT.getVectorElementType();
4101    ShAmt *= EVT.getSizeInBits();
4102    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
4103  }
4104
4105  bool Commuted = false;
4106  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4107  // 1,1,1,1 -> v8i16 though.
4108  V1IsSplat = isSplatVector(V1.getNode());
4109  V2IsSplat = isSplatVector(V2.getNode());
4110
4111  // Canonicalize the splat or undef, if present, to be on the RHS.
4112  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4113    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4114    std::swap(V1IsSplat, V2IsSplat);
4115    std::swap(V1IsUndef, V2IsUndef);
4116    Commuted = true;
4117  }
4118
4119  // FIXME: Figure out a cleaner way to do this.
4120  if (isCommutedMOVL(PermMask.getNode(), V2IsSplat, V2IsUndef)) {
4121    if (V2IsUndef) return V1;
4122    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4123    if (V2IsSplat) {
4124      // V2 is a splat, so the mask may be malformed. That is, it may point
4125      // to any V2 element. The instruction selectior won't like this. Get
4126      // a corrected mask and commute to form a proper MOVS{S|D}.
4127      SDValue NewMask = getMOVLMask(NumElems, DAG);
4128      if (NewMask.getNode() != PermMask.getNode())
4129        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4130    }
4131    return Op;
4132  }
4133
4134  if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4135      X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4136      X86::isUNPCKLMask(PermMask.getNode()) ||
4137      X86::isUNPCKHMask(PermMask.getNode()))
4138    return Op;
4139
4140  if (V2IsSplat) {
4141    // Normalize mask so all entries that point to V2 points to its first
4142    // element then try to match unpck{h|l} again. If match, return a
4143    // new vector_shuffle with the corrected mask.
4144    SDValue NewMask = NormalizeMask(PermMask, DAG);
4145    if (NewMask.getNode() != PermMask.getNode()) {
4146      if (X86::isUNPCKLMask(PermMask.getNode(), true)) {
4147        SDValue NewMask = getUnpacklMask(NumElems, DAG);
4148        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4149      } else if (X86::isUNPCKHMask(PermMask.getNode(), true)) {
4150        SDValue NewMask = getUnpackhMask(NumElems, DAG);
4151        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4152      }
4153    }
4154  }
4155
4156  // Normalize the node to match x86 shuffle ops if needed
4157  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.getNode()))
4158      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4159
4160  if (Commuted) {
4161    // Commute is back and try unpck* again.
4162    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4163    if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4164        X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4165        X86::isUNPCKLMask(PermMask.getNode()) ||
4166        X86::isUNPCKHMask(PermMask.getNode()))
4167      return Op;
4168  }
4169
4170  // Try PSHUF* first, then SHUFP*.
4171  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
4172  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
4173  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.getNode())) {
4174    if (V2.getOpcode() != ISD::UNDEF)
4175      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
4176                         DAG.getNode(ISD::UNDEF, VT), PermMask);
4177    return Op;
4178  }
4179
4180  if (!isMMX) {
4181    if (Subtarget->hasSSE2() &&
4182        (X86::isPSHUFDMask(PermMask.getNode()) ||
4183         X86::isPSHUFHWMask(PermMask.getNode()) ||
4184         X86::isPSHUFLWMask(PermMask.getNode()))) {
4185      MVT RVT = VT;
4186      if (VT == MVT::v4f32) {
4187        RVT = MVT::v4i32;
4188        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
4189                         DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
4190                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4191      } else if (V2.getOpcode() != ISD::UNDEF)
4192        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
4193                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4194      if (RVT != VT)
4195        Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
4196      return Op;
4197    }
4198
4199    // Binary or unary shufps.
4200    if (X86::isSHUFPMask(PermMask.getNode()) ||
4201        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.getNode())))
4202      return Op;
4203  }
4204
4205  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4206  if (VT == MVT::v8i16) {
4207    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
4208    if (NewOp.getNode())
4209      return NewOp;
4210  }
4211
4212  // Handle all 4 wide cases with a number of shuffles except for MMX.
4213  if (NumElems == 4 && !isMMX)
4214    return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG);
4215
4216  return SDValue();
4217}
4218
4219SDValue
4220X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4221                                                SelectionDAG &DAG) {
4222  MVT VT = Op.getValueType();
4223  if (VT.getSizeInBits() == 8) {
4224    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
4225                                    Op.getOperand(0), Op.getOperand(1));
4226    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4227                                    DAG.getValueType(VT));
4228    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4229  } else if (VT.getSizeInBits() == 16) {
4230    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4231    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4232    if (Idx == 0)
4233      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
4234                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4235                                     DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32,
4236                                                 Op.getOperand(0)),
4237                                     Op.getOperand(1)));
4238    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
4239                                    Op.getOperand(0), Op.getOperand(1));
4240    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4241                                    DAG.getValueType(VT));
4242    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4243  } else if (VT == MVT::f32) {
4244    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4245    // the result back to FR32 register. It's only worth matching if the
4246    // result has a single use which is a store or a bitcast to i32.  And in
4247    // the case of a store, it's not worth it if the index is a constant 0,
4248    // because a MOVSSmr can be used instead, which is smaller and faster.
4249    if (!Op.hasOneUse())
4250      return SDValue();
4251    SDNode *User = *Op.getNode()->use_begin();
4252    if ((User->getOpcode() != ISD::STORE ||
4253         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4254          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4255        (User->getOpcode() != ISD::BIT_CONVERT ||
4256         User->getValueType(0) != MVT::i32))
4257      return SDValue();
4258    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4259                    DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
4260                                    Op.getOperand(1));
4261    return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
4262  } else if (VT == MVT::i32) {
4263    // ExtractPS works with constant index.
4264    if (isa<ConstantSDNode>(Op.getOperand(1)))
4265      return Op;
4266  }
4267  return SDValue();
4268}
4269
4270
4271SDValue
4272X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4273  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4274    return SDValue();
4275
4276  if (Subtarget->hasSSE41()) {
4277    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4278    if (Res.getNode())
4279      return Res;
4280  }
4281
4282  MVT VT = Op.getValueType();
4283  // TODO: handle v16i8.
4284  if (VT.getSizeInBits() == 16) {
4285    SDValue Vec = Op.getOperand(0);
4286    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4287    if (Idx == 0)
4288      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
4289                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4290                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
4291                                     Op.getOperand(1)));
4292    // Transform it so it match pextrw which produces a 32-bit result.
4293    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4294    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
4295                                    Op.getOperand(0), Op.getOperand(1));
4296    SDValue Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
4297                                    DAG.getValueType(VT));
4298    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4299  } else if (VT.getSizeInBits() == 32) {
4300    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4301    if (Idx == 0)
4302      return Op;
4303    // SHUFPS the element to the lowest double word, then movss.
4304    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4305    SmallVector<SDValue, 8> IdxVec;
4306    IdxVec.
4307      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
4308    IdxVec.
4309      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4310    IdxVec.
4311      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4312    IdxVec.
4313      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4314    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4315                                 &IdxVec[0], IdxVec.size());
4316    SDValue Vec = Op.getOperand(0);
4317    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4318                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4319    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4320                       DAG.getIntPtrConstant(0));
4321  } else if (VT.getSizeInBits() == 64) {
4322    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4323    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4324    //        to match extract_elt for f64.
4325    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4326    if (Idx == 0)
4327      return Op;
4328
4329    // UNPCKHPD the element to the lowest double word, then movsd.
4330    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4331    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4332    MVT MaskVT = MVT::getIntVectorWithNumElements(2);
4333    SmallVector<SDValue, 8> IdxVec;
4334    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
4335    IdxVec.
4336      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4337    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4338                                 &IdxVec[0], IdxVec.size());
4339    SDValue Vec = Op.getOperand(0);
4340    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4341                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4342    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4343                       DAG.getIntPtrConstant(0));
4344  }
4345
4346  return SDValue();
4347}
4348
4349SDValue
4350X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4351  MVT VT = Op.getValueType();
4352  MVT EVT = VT.getVectorElementType();
4353
4354  SDValue N0 = Op.getOperand(0);
4355  SDValue N1 = Op.getOperand(1);
4356  SDValue N2 = Op.getOperand(2);
4357
4358  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4359      isa<ConstantSDNode>(N2)) {
4360    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4361                                                  : X86ISD::PINSRW;
4362    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4363    // argument.
4364    if (N1.getValueType() != MVT::i32)
4365      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4366    if (N2.getValueType() != MVT::i32)
4367      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4368    return DAG.getNode(Opc, VT, N0, N1, N2);
4369  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4370    // Bits [7:6] of the constant are the source select.  This will always be
4371    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4372    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4373    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4374    // Bits [5:4] of the constant are the destination select.  This is the
4375    //  value of the incoming immediate.
4376    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4377    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4378    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4379    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
4380  } else if (EVT == MVT::i32) {
4381    // InsertPS works with constant index.
4382    if (isa<ConstantSDNode>(N2))
4383      return Op;
4384  }
4385  return SDValue();
4386}
4387
4388SDValue
4389X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4390  MVT VT = Op.getValueType();
4391  MVT EVT = VT.getVectorElementType();
4392
4393  if (Subtarget->hasSSE41())
4394    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4395
4396  if (EVT == MVT::i8)
4397    return SDValue();
4398
4399  SDValue N0 = Op.getOperand(0);
4400  SDValue N1 = Op.getOperand(1);
4401  SDValue N2 = Op.getOperand(2);
4402
4403  if (EVT.getSizeInBits() == 16) {
4404    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4405    // as its second argument.
4406    if (N1.getValueType() != MVT::i32)
4407      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4408    if (N2.getValueType() != MVT::i32)
4409      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4410    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
4411  }
4412  return SDValue();
4413}
4414
4415SDValue
4416X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4417  if (Op.getValueType() == MVT::v2f32)
4418    return DAG.getNode(ISD::BIT_CONVERT, MVT::v2f32,
4419                       DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i32,
4420                                   DAG.getNode(ISD::BIT_CONVERT, MVT::i32,
4421                                               Op.getOperand(0))));
4422
4423  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
4424  MVT VT = MVT::v2i32;
4425  switch (Op.getValueType().getSimpleVT()) {
4426  default: break;
4427  case MVT::v16i8:
4428  case MVT::v8i16:
4429    VT = MVT::v4i32;
4430    break;
4431  }
4432  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
4433                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
4434}
4435
4436// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4437// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4438// one of the above mentioned nodes. It has to be wrapped because otherwise
4439// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4440// be used to form addressing mode. These wrapped nodes will be selected
4441// into MOV32ri.
4442SDValue
4443X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4444  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4445  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(),
4446                                               getPointerTy(),
4447                                               CP->getAlignment());
4448  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4449  // With PIC, the address is actually $g + Offset.
4450  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4451      !Subtarget->isPICStyleRIPRel()) {
4452    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4453                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4454                         Result);
4455  }
4456
4457  return Result;
4458}
4459
4460SDValue
4461X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV,
4462                                      int64_t Offset,
4463                                      SelectionDAG &DAG) const {
4464  bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
4465  bool ExtraLoadRequired =
4466    Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
4467
4468  // Create the TargetGlobalAddress node, folding in the constant
4469  // offset if it is legal.
4470  SDValue Result;
4471  if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
4472    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4473    Offset = 0;
4474  } else
4475    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0);
4476  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4477
4478  // With PIC, the address is actually $g + Offset.
4479  if (IsPic && !Subtarget->isPICStyleRIPRel()) {
4480    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4481                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4482                         Result);
4483  }
4484
4485  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4486  // load the value at address GV, not the value of GV itself. This means that
4487  // the GlobalAddress must be in the base or index register of the address, not
4488  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4489  // The same applies for external symbols during PIC codegen
4490  if (ExtraLoadRequired)
4491    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4492                         PseudoSourceValue::getGOT(), 0);
4493
4494  // If there was a non-zero offset that we didn't fold, create an explicit
4495  // addition for it.
4496  if (Offset != 0)
4497    Result = DAG.getNode(ISD::ADD, getPointerTy(), Result,
4498                         DAG.getConstant(Offset, getPointerTy()));
4499
4500  return Result;
4501}
4502
4503SDValue
4504X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4505  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4506  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4507  return LowerGlobalAddress(GV, Offset, DAG);
4508}
4509
4510// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4511static SDValue
4512LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4513                                const MVT PtrVT) {
4514  SDValue InFlag;
4515  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4516                                     DAG.getNode(X86ISD::GlobalBaseReg,
4517                                                 PtrVT), InFlag);
4518  InFlag = Chain.getValue(1);
4519
4520  // emit leal symbol@TLSGD(,%ebx,1), %eax
4521  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4522  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4523                                             GA->getValueType(0),
4524                                             GA->getOffset());
4525  SDValue Ops[] = { Chain,  TGA, InFlag };
4526  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4527  InFlag = Result.getValue(2);
4528  Chain = Result.getValue(1);
4529
4530  // call ___tls_get_addr. This function receives its argument in
4531  // the register EAX.
4532  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4533  InFlag = Chain.getValue(1);
4534
4535  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4536  SDValue Ops1[] = { Chain,
4537                      DAG.getTargetExternalSymbol("___tls_get_addr",
4538                                                  PtrVT),
4539                      DAG.getRegister(X86::EAX, PtrVT),
4540                      DAG.getRegister(X86::EBX, PtrVT),
4541                      InFlag };
4542  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4543  InFlag = Chain.getValue(1);
4544
4545  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4546}
4547
4548// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4549static SDValue
4550LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4551                                const MVT PtrVT) {
4552  SDValue InFlag, Chain;
4553
4554  // emit leaq symbol@TLSGD(%rip), %rdi
4555  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4556  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4557                                             GA->getValueType(0),
4558                                             GA->getOffset());
4559  SDValue Ops[]  = { DAG.getEntryNode(), TGA};
4560  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
4561  Chain  = Result.getValue(1);
4562  InFlag = Result.getValue(2);
4563
4564  // call __tls_get_addr. This function receives its argument in
4565  // the register RDI.
4566  Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
4567  InFlag = Chain.getValue(1);
4568
4569  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4570  SDValue Ops1[] = { Chain,
4571                      DAG.getTargetExternalSymbol("__tls_get_addr",
4572                                                  PtrVT),
4573                      DAG.getRegister(X86::RDI, PtrVT),
4574                      InFlag };
4575  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
4576  InFlag = Chain.getValue(1);
4577
4578  return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
4579}
4580
4581// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4582// "local exec" model.
4583static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4584                                     const MVT PtrVT) {
4585  // Get the Thread Pointer
4586  SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4587  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4588  // exec)
4589  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4590                                             GA->getValueType(0),
4591                                             GA->getOffset());
4592  SDValue Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4593
4594  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4595    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4596                         PseudoSourceValue::getGOT(), 0);
4597
4598  // The address of the thread local variable is the add of the thread
4599  // pointer with the offset of the variable.
4600  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4601}
4602
4603SDValue
4604X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4605  // TODO: implement the "local dynamic" model
4606  // TODO: implement the "initial exec"model for pic executables
4607  assert(Subtarget->isTargetELF() &&
4608         "TLS not implemented for non-ELF targets");
4609  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4610  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4611  // otherwise use the "Local Exec"TLS Model
4612  if (Subtarget->is64Bit()) {
4613    return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4614  } else {
4615    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4616      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4617    else
4618      return LowerToTLSExecModel(GA, DAG, getPointerTy());
4619  }
4620}
4621
4622SDValue
4623X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4624  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4625  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4626  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4627  // With PIC, the address is actually $g + Offset.
4628  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4629      !Subtarget->isPICStyleRIPRel()) {
4630    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4631                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4632                         Result);
4633  }
4634
4635  return Result;
4636}
4637
4638SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4639  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4640  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4641  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4642  // With PIC, the address is actually $g + Offset.
4643  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4644      !Subtarget->isPICStyleRIPRel()) {
4645    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4646                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4647                         Result);
4648  }
4649
4650  return Result;
4651}
4652
4653/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4654/// take a 2 x i32 value to shift plus a shift amount.
4655SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4656  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4657  MVT VT = Op.getValueType();
4658  unsigned VTBits = VT.getSizeInBits();
4659  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4660  SDValue ShOpLo = Op.getOperand(0);
4661  SDValue ShOpHi = Op.getOperand(1);
4662  SDValue ShAmt  = Op.getOperand(2);
4663  SDValue Tmp1 = isSRA ?
4664    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4665    DAG.getConstant(0, VT);
4666
4667  SDValue Tmp2, Tmp3;
4668  if (Op.getOpcode() == ISD::SHL_PARTS) {
4669    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4670    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4671  } else {
4672    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4673    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4674  }
4675
4676  SDValue AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4677                                  DAG.getConstant(VTBits, MVT::i8));
4678  SDValue Cond = DAG.getNode(X86ISD::CMP, VT,
4679                               AndNode, DAG.getConstant(0, MVT::i8));
4680
4681  SDValue Hi, Lo;
4682  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4683  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4684  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4685
4686  if (Op.getOpcode() == ISD::SHL_PARTS) {
4687    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4688    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4689  } else {
4690    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4691    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4692  }
4693
4694  SDValue Ops[2] = { Lo, Hi };
4695  return DAG.getMergeValues(Ops, 2);
4696}
4697
4698SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4699  MVT SrcVT = Op.getOperand(0).getValueType();
4700  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4701         "Unknown SINT_TO_FP to lower!");
4702
4703  // These are really Legal; caller falls through into that case.
4704  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4705    return SDValue();
4706  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4707      Subtarget->is64Bit())
4708    return SDValue();
4709
4710  unsigned Size = SrcVT.getSizeInBits()/8;
4711  MachineFunction &MF = DAG.getMachineFunction();
4712  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4713  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4714  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4715                                 StackSlot,
4716                                 PseudoSourceValue::getFixedStack(SSFI), 0);
4717
4718  // Build the FILD
4719  SDVTList Tys;
4720  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4721  if (useSSE)
4722    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4723  else
4724    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4725  SmallVector<SDValue, 8> Ops;
4726  Ops.push_back(Chain);
4727  Ops.push_back(StackSlot);
4728  Ops.push_back(DAG.getValueType(SrcVT));
4729  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4730                                 Tys, &Ops[0], Ops.size());
4731
4732  if (useSSE) {
4733    Chain = Result.getValue(1);
4734    SDValue InFlag = Result.getValue(2);
4735
4736    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4737    // shouldn't be necessary except that RFP cannot be live across
4738    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4739    MachineFunction &MF = DAG.getMachineFunction();
4740    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4741    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4742    Tys = DAG.getVTList(MVT::Other);
4743    SmallVector<SDValue, 8> Ops;
4744    Ops.push_back(Chain);
4745    Ops.push_back(Result);
4746    Ops.push_back(StackSlot);
4747    Ops.push_back(DAG.getValueType(Op.getValueType()));
4748    Ops.push_back(InFlag);
4749    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4750    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4751                         PseudoSourceValue::getFixedStack(SSFI), 0);
4752  }
4753
4754  return Result;
4755}
4756
4757// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4758SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4759  // This algorithm is not obvious. Here it is in C code, more or less:
4760  /*
4761    double uint64_to_double( uint32_t hi, uint32_t lo ) {
4762      static const __m128i exp = { 0x4330000045300000ULL, 0 };
4763      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4764
4765      // Copy ints to xmm registers.
4766      __m128i xh = _mm_cvtsi32_si128( hi );
4767      __m128i xl = _mm_cvtsi32_si128( lo );
4768
4769      // Combine into low half of a single xmm register.
4770      __m128i x = _mm_unpacklo_epi32( xh, xl );
4771      __m128d d;
4772      double sd;
4773
4774      // Merge in appropriate exponents to give the integer bits the right
4775      // magnitude.
4776      x = _mm_unpacklo_epi32( x, exp );
4777
4778      // Subtract away the biases to deal with the IEEE-754 double precision
4779      // implicit 1.
4780      d = _mm_sub_pd( (__m128d) x, bias );
4781
4782      // All conversions up to here are exact. The correctly rounded result is
4783      // calculated using the current rounding mode using the following
4784      // horizontal add.
4785      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4786      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
4787                                // store doesn't really need to be here (except
4788                                // maybe to zero the other double)
4789      return sd;
4790    }
4791  */
4792
4793  // Build some magic constants.
4794  std::vector<Constant*> CV0;
4795  CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
4796  CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
4797  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4798  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4799  Constant *C0 = ConstantVector::get(CV0);
4800  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 4);
4801
4802  std::vector<Constant*> CV1;
4803  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
4804  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
4805  Constant *C1 = ConstantVector::get(CV1);
4806  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 4);
4807
4808  SmallVector<SDValue, 4> MaskVec;
4809  MaskVec.push_back(DAG.getConstant(0, MVT::i32));
4810  MaskVec.push_back(DAG.getConstant(4, MVT::i32));
4811  MaskVec.push_back(DAG.getConstant(1, MVT::i32));
4812  MaskVec.push_back(DAG.getConstant(5, MVT::i32));
4813  SDValue UnpcklMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, &MaskVec[0],
4814                                   MaskVec.size());
4815  SmallVector<SDValue, 4> MaskVec2;
4816  MaskVec2.push_back(DAG.getConstant(1, MVT::i32));
4817  MaskVec2.push_back(DAG.getConstant(0, MVT::i32));
4818  SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec2[0],
4819                                 MaskVec2.size());
4820
4821  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
4822                            DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
4823                                        Op.getOperand(0),
4824                                        DAG.getIntPtrConstant(1)));
4825  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
4826                            DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
4827                                        Op.getOperand(0),
4828                                        DAG.getIntPtrConstant(0)));
4829  SDValue Unpck1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32,
4830                                XR1, XR2, UnpcklMask);
4831  SDValue CLod0 = DAG.getLoad(MVT::v4i32, DAG.getEntryNode(), CPIdx0,
4832                              PseudoSourceValue::getConstantPool(), 0,
4833                              false, 16);
4834  SDValue Unpck2 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32,
4835                               Unpck1, CLod0, UnpcklMask);
4836  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64, Unpck2);
4837  SDValue CLod1 = DAG.getLoad(MVT::v2f64, CLod0.getValue(1), CPIdx1,
4838                              PseudoSourceValue::getConstantPool(), 0,
4839                              false, 16);
4840  SDValue Sub = DAG.getNode(ISD::FSUB, MVT::v2f64, XR2F, CLod1);
4841
4842  // Add the halves; easiest way is to swap them into another reg first.
4843  SDValue Shuf = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2f64,
4844                             Sub, Sub, ShufMask);
4845  SDValue Add = DAG.getNode(ISD::FADD, MVT::v2f64, Shuf, Sub);
4846  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f64, Add,
4847                     DAG.getIntPtrConstant(0));
4848}
4849
4850// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4851SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
4852  // FP constant to bias correct the final result.
4853  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
4854                                   MVT::f64);
4855
4856  // Load the 32-bit value into an XMM register.
4857  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
4858                             DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
4859                                         Op.getOperand(0),
4860                                         DAG.getIntPtrConstant(0)));
4861
4862  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f64,
4863                     DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64, Load),
4864                     DAG.getIntPtrConstant(0));
4865
4866  // Or the load with the bias.
4867  SDValue Or = DAG.getNode(ISD::OR, MVT::v2i64,
4868                           DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64,
4869                                       DAG.getNode(ISD::SCALAR_TO_VECTOR,
4870                                                   MVT::v2f64, Load)),
4871                           DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64,
4872                                       DAG.getNode(ISD::SCALAR_TO_VECTOR,
4873                                                   MVT::v2f64, Bias)));
4874  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f64,
4875                   DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64, Or),
4876                   DAG.getIntPtrConstant(0));
4877
4878  // Subtract the bias.
4879  SDValue Sub = DAG.getNode(ISD::FSUB, MVT::f64, Or, Bias);
4880
4881  // Handle final rounding.
4882  MVT DestVT = Op.getValueType();
4883
4884  if (DestVT.bitsLT(MVT::f64)) {
4885    return DAG.getNode(ISD::FP_ROUND, DestVT, Sub,
4886                       DAG.getIntPtrConstant(0));
4887  } else if (DestVT.bitsGT(MVT::f64)) {
4888    return DAG.getNode(ISD::FP_EXTEND, DestVT, Sub);
4889  }
4890
4891  // Handle final rounding.
4892  return Sub;
4893}
4894
4895SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4896  SDValue N0 = Op.getOperand(0);
4897
4898  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
4899  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
4900  // the optimization here.
4901  if (DAG.SignBitIsZero(N0))
4902    return DAG.getNode(ISD::SINT_TO_FP, Op.getValueType(), N0);
4903
4904  MVT SrcVT = N0.getValueType();
4905  if (SrcVT == MVT::i64) {
4906    // We only handle SSE2 f64 target here; caller can handle the rest.
4907    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
4908      return SDValue();
4909
4910    return LowerUINT_TO_FP_i64(Op, DAG);
4911  } else if (SrcVT == MVT::i32) {
4912    return LowerUINT_TO_FP_i32(Op, DAG);
4913  }
4914
4915  assert(0 && "Unknown UINT_TO_FP to lower!");
4916  return SDValue();
4917}
4918
4919std::pair<SDValue,SDValue> X86TargetLowering::
4920FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) {
4921  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
4922         Op.getValueType().getSimpleVT() >= MVT::i16 &&
4923         "Unknown FP_TO_SINT to lower!");
4924
4925  // These are really Legal.
4926  if (Op.getValueType() == MVT::i32 &&
4927      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4928    return std::make_pair(SDValue(), SDValue());
4929  if (Subtarget->is64Bit() &&
4930      Op.getValueType() == MVT::i64 &&
4931      Op.getOperand(0).getValueType() != MVT::f80)
4932    return std::make_pair(SDValue(), SDValue());
4933
4934  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4935  // stack slot.
4936  MachineFunction &MF = DAG.getMachineFunction();
4937  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
4938  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4939  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4940  unsigned Opc;
4941  switch (Op.getValueType().getSimpleVT()) {
4942  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4943  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4944  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4945  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4946  }
4947
4948  SDValue Chain = DAG.getEntryNode();
4949  SDValue Value = Op.getOperand(0);
4950  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4951    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4952    Chain = DAG.getStore(Chain, Value, StackSlot,
4953                         PseudoSourceValue::getFixedStack(SSFI), 0);
4954    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4955    SDValue Ops[] = {
4956      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4957    };
4958    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4959    Chain = Value.getValue(1);
4960    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4961    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4962  }
4963
4964  // Build the FP_TO_INT*_IN_MEM
4965  SDValue Ops[] = { Chain, Value, StackSlot };
4966  SDValue FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4967
4968  return std::make_pair(FIST, StackSlot);
4969}
4970
4971SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
4972  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG);
4973  SDValue FIST = Vals.first, StackSlot = Vals.second;
4974  if (FIST.getNode() == 0) return SDValue();
4975
4976  // Load the result.
4977  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4978}
4979
4980SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
4981  MVT VT = Op.getValueType();
4982  MVT EltVT = VT;
4983  if (VT.isVector())
4984    EltVT = VT.getVectorElementType();
4985  std::vector<Constant*> CV;
4986  if (EltVT == MVT::f64) {
4987    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4988    CV.push_back(C);
4989    CV.push_back(C);
4990  } else {
4991    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4992    CV.push_back(C);
4993    CV.push_back(C);
4994    CV.push_back(C);
4995    CV.push_back(C);
4996  }
4997  Constant *C = ConstantVector::get(CV);
4998  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4999  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
5000                               PseudoSourceValue::getConstantPool(), 0,
5001                               false, 16);
5002  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
5003}
5004
5005SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5006  MVT VT = Op.getValueType();
5007  MVT EltVT = VT;
5008  unsigned EltNum = 1;
5009  if (VT.isVector()) {
5010    EltVT = VT.getVectorElementType();
5011    EltNum = VT.getVectorNumElements();
5012  }
5013  std::vector<Constant*> CV;
5014  if (EltVT == MVT::f64) {
5015    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
5016    CV.push_back(C);
5017    CV.push_back(C);
5018  } else {
5019    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
5020    CV.push_back(C);
5021    CV.push_back(C);
5022    CV.push_back(C);
5023    CV.push_back(C);
5024  }
5025  Constant *C = ConstantVector::get(CV);
5026  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5027  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
5028                               PseudoSourceValue::getConstantPool(), 0,
5029                               false, 16);
5030  if (VT.isVector()) {
5031    return DAG.getNode(ISD::BIT_CONVERT, VT,
5032                       DAG.getNode(ISD::XOR, MVT::v2i64,
5033                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
5034                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
5035  } else {
5036    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
5037  }
5038}
5039
5040SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5041  SDValue Op0 = Op.getOperand(0);
5042  SDValue Op1 = Op.getOperand(1);
5043  MVT VT = Op.getValueType();
5044  MVT SrcVT = Op1.getValueType();
5045
5046  // If second operand is smaller, extend it first.
5047  if (SrcVT.bitsLT(VT)) {
5048    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
5049    SrcVT = VT;
5050  }
5051  // And if it is bigger, shrink it first.
5052  if (SrcVT.bitsGT(VT)) {
5053    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
5054    SrcVT = VT;
5055  }
5056
5057  // At this point the operands and the result should have the same
5058  // type, and that won't be f80 since that is not custom lowered.
5059
5060  // First get the sign bit of second operand.
5061  std::vector<Constant*> CV;
5062  if (SrcVT == MVT::f64) {
5063    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
5064    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5065  } else {
5066    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
5067    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5068    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5069    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5070  }
5071  Constant *C = ConstantVector::get(CV);
5072  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5073  SDValue Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
5074                                PseudoSourceValue::getConstantPool(), 0,
5075                                false, 16);
5076  SDValue SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
5077
5078  // Shift sign bit right or left if the two operands have different types.
5079  if (SrcVT.bitsGT(VT)) {
5080    // Op0 is MVT::f32, Op1 is MVT::f64.
5081    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
5082    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
5083                          DAG.getConstant(32, MVT::i32));
5084    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
5085    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
5086                          DAG.getIntPtrConstant(0));
5087  }
5088
5089  // Clear first operand sign bit.
5090  CV.clear();
5091  if (VT == MVT::f64) {
5092    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
5093    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5094  } else {
5095    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
5096    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5097    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5098    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5099  }
5100  C = ConstantVector::get(CV);
5101  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5102  SDValue Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
5103                                PseudoSourceValue::getConstantPool(), 0,
5104                                false, 16);
5105  SDValue Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
5106
5107  // Or the value with the sign bit.
5108  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
5109}
5110
5111SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5112  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5113  SDValue Op0 = Op.getOperand(0);
5114  SDValue Op1 = Op.getOperand(1);
5115  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5116
5117  // Lower (X & (1 << N)) == 0 to BT.
5118  // Lower ((X >>u N) & 1) != 0 to BT.
5119  // Lower ((X >>s N) & 1) != 0 to BT.
5120  if (Op0.getOpcode() == ISD::AND &&
5121      Op0.hasOneUse() &&
5122      Op1.getOpcode() == ISD::Constant &&
5123      Op0.getOperand(1).getOpcode() == ISD::Constant &&
5124      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5125    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5126    ConstantSDNode *CmpRHS = cast<ConstantSDNode>(Op1);
5127    SDValue AndLHS = Op0.getOperand(0);
5128    if (CmpRHS->getZExtValue() == 0 && AndRHS->getZExtValue() == 1 &&
5129        AndLHS.getOpcode() == ISD::SRL) {
5130      SDValue LHS = AndLHS.getOperand(0);
5131      SDValue RHS = AndLHS.getOperand(1);
5132
5133      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5134      // instruction.  Since the shift amount is in-range-or-undefined, we know
5135      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5136      // the encoding for the i16 version is larger than the i32 version.
5137      if (LHS.getValueType() == MVT::i8)
5138        LHS = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, LHS);
5139
5140      // If the operand types disagree, extend the shift amount to match.  Since
5141      // BT ignores high bits (like shifts) we can use anyextend.
5142      if (LHS.getValueType() != RHS.getValueType())
5143        RHS = DAG.getNode(ISD::ANY_EXTEND, LHS.getValueType(), RHS);
5144
5145      SDValue BT = DAG.getNode(X86ISD::BT, MVT::i32, LHS, RHS);
5146      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5147      return DAG.getNode(X86ISD::SETCC, MVT::i8,
5148                         DAG.getConstant(Cond, MVT::i8), BT);
5149    }
5150  }
5151
5152  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5153  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5154
5155  SDValue Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
5156  return DAG.getNode(X86ISD::SETCC, MVT::i8,
5157                     DAG.getConstant(X86CC, MVT::i8), Cond);
5158}
5159
5160SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5161  SDValue Cond;
5162  SDValue Op0 = Op.getOperand(0);
5163  SDValue Op1 = Op.getOperand(1);
5164  SDValue CC = Op.getOperand(2);
5165  MVT VT = Op.getValueType();
5166  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5167  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5168
5169  if (isFP) {
5170    unsigned SSECC = 8;
5171    MVT VT0 = Op0.getValueType();
5172    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5173    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5174    bool Swap = false;
5175
5176    switch (SetCCOpcode) {
5177    default: break;
5178    case ISD::SETOEQ:
5179    case ISD::SETEQ:  SSECC = 0; break;
5180    case ISD::SETOGT:
5181    case ISD::SETGT: Swap = true; // Fallthrough
5182    case ISD::SETLT:
5183    case ISD::SETOLT: SSECC = 1; break;
5184    case ISD::SETOGE:
5185    case ISD::SETGE: Swap = true; // Fallthrough
5186    case ISD::SETLE:
5187    case ISD::SETOLE: SSECC = 2; break;
5188    case ISD::SETUO:  SSECC = 3; break;
5189    case ISD::SETUNE:
5190    case ISD::SETNE:  SSECC = 4; break;
5191    case ISD::SETULE: Swap = true;
5192    case ISD::SETUGE: SSECC = 5; break;
5193    case ISD::SETULT: Swap = true;
5194    case ISD::SETUGT: SSECC = 6; break;
5195    case ISD::SETO:   SSECC = 7; break;
5196    }
5197    if (Swap)
5198      std::swap(Op0, Op1);
5199
5200    // In the two special cases we can't handle, emit two comparisons.
5201    if (SSECC == 8) {
5202      if (SetCCOpcode == ISD::SETUEQ) {
5203        SDValue UNORD, EQ;
5204        UNORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5205        EQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5206        return DAG.getNode(ISD::OR, VT, UNORD, EQ);
5207      }
5208      else if (SetCCOpcode == ISD::SETONE) {
5209        SDValue ORD, NEQ;
5210        ORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5211        NEQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5212        return DAG.getNode(ISD::AND, VT, ORD, NEQ);
5213      }
5214      assert(0 && "Illegal FP comparison");
5215    }
5216    // Handle all other FP comparisons here.
5217    return DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5218  }
5219
5220  // We are handling one of the integer comparisons here.  Since SSE only has
5221  // GT and EQ comparisons for integer, swapping operands and multiple
5222  // operations may be required for some comparisons.
5223  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5224  bool Swap = false, Invert = false, FlipSigns = false;
5225
5226  switch (VT.getSimpleVT()) {
5227  default: break;
5228  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5229  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5230  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5231  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5232  }
5233
5234  switch (SetCCOpcode) {
5235  default: break;
5236  case ISD::SETNE:  Invert = true;
5237  case ISD::SETEQ:  Opc = EQOpc; break;
5238  case ISD::SETLT:  Swap = true;
5239  case ISD::SETGT:  Opc = GTOpc; break;
5240  case ISD::SETGE:  Swap = true;
5241  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5242  case ISD::SETULT: Swap = true;
5243  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5244  case ISD::SETUGE: Swap = true;
5245  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5246  }
5247  if (Swap)
5248    std::swap(Op0, Op1);
5249
5250  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5251  // bits of the inputs before performing those operations.
5252  if (FlipSigns) {
5253    MVT EltVT = VT.getVectorElementType();
5254    SDValue SignBit = DAG.getConstant(EltVT.getIntegerVTSignBit(), EltVT);
5255    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5256    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, VT, &SignBits[0],
5257                                    SignBits.size());
5258    Op0 = DAG.getNode(ISD::XOR, VT, Op0, SignVec);
5259    Op1 = DAG.getNode(ISD::XOR, VT, Op1, SignVec);
5260  }
5261
5262  SDValue Result = DAG.getNode(Opc, VT, Op0, Op1);
5263
5264  // If the logical-not of the result is required, perform that now.
5265  if (Invert)
5266    Result = DAG.getNOT(Result, VT);
5267
5268  return Result;
5269}
5270
5271// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5272static bool isX86LogicalCmp(unsigned Opc) {
5273  return Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI;
5274}
5275
5276SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5277  bool addTest = true;
5278  SDValue Cond  = Op.getOperand(0);
5279  SDValue CC;
5280
5281  if (Cond.getOpcode() == ISD::SETCC)
5282    Cond = LowerSETCC(Cond, DAG);
5283
5284  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5285  // setting operand in place of the X86ISD::SETCC.
5286  if (Cond.getOpcode() == X86ISD::SETCC) {
5287    CC = Cond.getOperand(0);
5288
5289    SDValue Cmp = Cond.getOperand(1);
5290    unsigned Opc = Cmp.getOpcode();
5291    MVT VT = Op.getValueType();
5292
5293    bool IllegalFPCMov = false;
5294    if (VT.isFloatingPoint() && !VT.isVector() &&
5295        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5296      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5297
5298    if (isX86LogicalCmp(Opc) && !IllegalFPCMov) {
5299      Cond = Cmp;
5300      addTest = false;
5301    }
5302  }
5303
5304  if (addTest) {
5305    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5306    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
5307  }
5308
5309  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
5310                                                    MVT::Flag);
5311  SmallVector<SDValue, 4> Ops;
5312  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5313  // condition is true.
5314  Ops.push_back(Op.getOperand(2));
5315  Ops.push_back(Op.getOperand(1));
5316  Ops.push_back(CC);
5317  Ops.push_back(Cond);
5318  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
5319}
5320
5321// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5322// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5323// from the AND / OR.
5324static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5325  Opc = Op.getOpcode();
5326  if (Opc != ISD::OR && Opc != ISD::AND)
5327    return false;
5328  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5329          Op.getOperand(0).hasOneUse() &&
5330          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5331          Op.getOperand(1).hasOneUse());
5332}
5333
5334SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5335  bool addTest = true;
5336  SDValue Chain = Op.getOperand(0);
5337  SDValue Cond  = Op.getOperand(1);
5338  SDValue Dest  = Op.getOperand(2);
5339  SDValue CC;
5340
5341  if (Cond.getOpcode() == ISD::SETCC)
5342    Cond = LowerSETCC(Cond, DAG);
5343#if 0
5344  // FIXME: LowerXALUO doesn't handle these!!
5345  else if (Cond.getOpcode() == X86ISD::ADD  ||
5346           Cond.getOpcode() == X86ISD::SUB  ||
5347           Cond.getOpcode() == X86ISD::SMUL ||
5348           Cond.getOpcode() == X86ISD::UMUL)
5349    Cond = LowerXALUO(Cond, DAG);
5350#endif
5351
5352  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5353  // setting operand in place of the X86ISD::SETCC.
5354  if (Cond.getOpcode() == X86ISD::SETCC) {
5355    CC = Cond.getOperand(0);
5356
5357    SDValue Cmp = Cond.getOperand(1);
5358    unsigned Opc = Cmp.getOpcode();
5359    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5360    if (isX86LogicalCmp(Opc) || Opc == X86ISD::BT) {
5361      Cond = Cmp;
5362      addTest = false;
5363    } else {
5364      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5365      default: break;
5366      case X86::COND_O:
5367      case X86::COND_B:
5368        // These can only come from an arithmetic instruction with overflow,
5369        // e.g. SADDO, UADDO.
5370        Cond = Cond.getNode()->getOperand(1);
5371        addTest = false;
5372        break;
5373      }
5374    }
5375  } else {
5376    unsigned CondOpc;
5377    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5378      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5379      unsigned Opc = Cmp.getOpcode();
5380      if (CondOpc == ISD::OR) {
5381        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5382        // two branches instead of an explicit OR instruction with a
5383        // separate test.
5384        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5385            isX86LogicalCmp(Opc)) {
5386          CC = Cond.getOperand(0).getOperand(0);
5387          Chain = DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5388                              Chain, Dest, CC, Cmp);
5389          CC = Cond.getOperand(1).getOperand(0);
5390          Cond = Cmp;
5391          addTest = false;
5392        }
5393      } else { // ISD::AND
5394        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5395        // two branches instead of an explicit AND instruction with a
5396        // separate test. However, we only do this if this block doesn't
5397        // have a fall-through edge, because this requires an explicit
5398        // jmp when the condition is false.
5399        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5400            isX86LogicalCmp(Opc) &&
5401            Op.getNode()->hasOneUse()) {
5402          X86::CondCode CCode =
5403            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5404          CCode = X86::GetOppositeBranchCondition(CCode);
5405          CC = DAG.getConstant(CCode, MVT::i8);
5406          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5407          // Look for an unconditional branch following this conditional branch.
5408          // We need this because we need to reverse the successors in order
5409          // to implement FCMP_OEQ.
5410          if (User.getOpcode() == ISD::BR) {
5411            SDValue FalseBB = User.getOperand(1);
5412            SDValue NewBR =
5413              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5414            assert(NewBR == User);
5415            Dest = FalseBB;
5416
5417            Chain = DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5418                                Chain, Dest, CC, Cmp);
5419            X86::CondCode CCode =
5420              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5421            CCode = X86::GetOppositeBranchCondition(CCode);
5422            CC = DAG.getConstant(CCode, MVT::i8);
5423            Cond = Cmp;
5424            addTest = false;
5425          }
5426        }
5427      }
5428    }
5429  }
5430
5431  if (addTest) {
5432    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5433    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
5434  }
5435  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5436                     Chain, Dest, CC, Cond);
5437}
5438
5439
5440// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5441// Calls to _alloca is needed to probe the stack when allocating more than 4k
5442// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5443// that the guard pages used by the OS virtual memory manager are allocated in
5444// correct sequence.
5445SDValue
5446X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5447                                           SelectionDAG &DAG) {
5448  assert(Subtarget->isTargetCygMing() &&
5449         "This should be used only on Cygwin/Mingw targets");
5450
5451  // Get the inputs.
5452  SDValue Chain = Op.getOperand(0);
5453  SDValue Size  = Op.getOperand(1);
5454  // FIXME: Ensure alignment here
5455
5456  SDValue Flag;
5457
5458  MVT IntPtr = getPointerTy();
5459  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5460
5461  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5462
5463  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
5464  Flag = Chain.getValue(1);
5465
5466  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5467  SDValue Ops[] = { Chain,
5468                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5469                      DAG.getRegister(X86::EAX, IntPtr),
5470                      DAG.getRegister(X86StackPtr, SPTy),
5471                      Flag };
5472  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5);
5473  Flag = Chain.getValue(1);
5474
5475  Chain = DAG.getCALLSEQ_END(Chain,
5476                             DAG.getIntPtrConstant(0, true),
5477                             DAG.getIntPtrConstant(0, true),
5478                             Flag);
5479
5480  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
5481
5482  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5483  return DAG.getMergeValues(Ops1, 2);
5484}
5485
5486SDValue
5487X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
5488                                           SDValue Chain,
5489                                           SDValue Dst, SDValue Src,
5490                                           SDValue Size, unsigned Align,
5491                                           const Value *DstSV,
5492                                           uint64_t DstSVOff) {
5493  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5494
5495  // If not DWORD aligned or size is more than the threshold, call the library.
5496  // The libc version is likely to be faster for these cases. It can use the
5497  // address value and run time information about the CPU.
5498  if ((Align & 3) != 0 ||
5499      !ConstantSize ||
5500      ConstantSize->getZExtValue() >
5501        getSubtarget()->getMaxInlineSizeThreshold()) {
5502    SDValue InFlag(0, 0);
5503
5504    // Check to see if there is a specialized entry-point for memory zeroing.
5505    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5506
5507    if (const char *bzeroEntry =  V &&
5508        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5509      MVT IntPtr = getPointerTy();
5510      const Type *IntPtrTy = TD->getIntPtrType();
5511      TargetLowering::ArgListTy Args;
5512      TargetLowering::ArgListEntry Entry;
5513      Entry.Node = Dst;
5514      Entry.Ty = IntPtrTy;
5515      Args.push_back(Entry);
5516      Entry.Node = Size;
5517      Args.push_back(Entry);
5518      std::pair<SDValue,SDValue> CallResult =
5519        LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5520                    CallingConv::C, false,
5521                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG);
5522      return CallResult.second;
5523    }
5524
5525    // Otherwise have the target-independent code call memset.
5526    return SDValue();
5527  }
5528
5529  uint64_t SizeVal = ConstantSize->getZExtValue();
5530  SDValue InFlag(0, 0);
5531  MVT AVT;
5532  SDValue Count;
5533  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5534  unsigned BytesLeft = 0;
5535  bool TwoRepStos = false;
5536  if (ValC) {
5537    unsigned ValReg;
5538    uint64_t Val = ValC->getZExtValue() & 255;
5539
5540    // If the value is a constant, then we can potentially use larger sets.
5541    switch (Align & 3) {
5542    case 2:   // WORD aligned
5543      AVT = MVT::i16;
5544      ValReg = X86::AX;
5545      Val = (Val << 8) | Val;
5546      break;
5547    case 0:  // DWORD aligned
5548      AVT = MVT::i32;
5549      ValReg = X86::EAX;
5550      Val = (Val << 8)  | Val;
5551      Val = (Val << 16) | Val;
5552      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5553        AVT = MVT::i64;
5554        ValReg = X86::RAX;
5555        Val = (Val << 32) | Val;
5556      }
5557      break;
5558    default:  // Byte aligned
5559      AVT = MVT::i8;
5560      ValReg = X86::AL;
5561      Count = DAG.getIntPtrConstant(SizeVal);
5562      break;
5563    }
5564
5565    if (AVT.bitsGT(MVT::i8)) {
5566      unsigned UBytes = AVT.getSizeInBits() / 8;
5567      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5568      BytesLeft = SizeVal % UBytes;
5569    }
5570
5571    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
5572                              InFlag);
5573    InFlag = Chain.getValue(1);
5574  } else {
5575    AVT = MVT::i8;
5576    Count  = DAG.getIntPtrConstant(SizeVal);
5577    Chain  = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
5578    InFlag = Chain.getValue(1);
5579  }
5580
5581  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5582                            Count, InFlag);
5583  InFlag = Chain.getValue(1);
5584  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5585                            Dst, InFlag);
5586  InFlag = Chain.getValue(1);
5587
5588  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5589  SmallVector<SDValue, 8> Ops;
5590  Ops.push_back(Chain);
5591  Ops.push_back(DAG.getValueType(AVT));
5592  Ops.push_back(InFlag);
5593  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5594
5595  if (TwoRepStos) {
5596    InFlag = Chain.getValue(1);
5597    Count  = Size;
5598    MVT CVT = Count.getValueType();
5599    SDValue Left = DAG.getNode(ISD::AND, CVT, Count,
5600                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5601    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
5602                              Left, InFlag);
5603    InFlag = Chain.getValue(1);
5604    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5605    Ops.clear();
5606    Ops.push_back(Chain);
5607    Ops.push_back(DAG.getValueType(MVT::i8));
5608    Ops.push_back(InFlag);
5609    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5610  } else if (BytesLeft) {
5611    // Handle the last 1 - 7 bytes.
5612    unsigned Offset = SizeVal - BytesLeft;
5613    MVT AddrVT = Dst.getValueType();
5614    MVT SizeVT = Size.getValueType();
5615
5616    Chain = DAG.getMemset(Chain,
5617                          DAG.getNode(ISD::ADD, AddrVT, Dst,
5618                                      DAG.getConstant(Offset, AddrVT)),
5619                          Src,
5620                          DAG.getConstant(BytesLeft, SizeVT),
5621                          Align, DstSV, DstSVOff + Offset);
5622  }
5623
5624  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5625  return Chain;
5626}
5627
5628SDValue
5629X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
5630                                      SDValue Chain, SDValue Dst, SDValue Src,
5631                                      SDValue Size, unsigned Align,
5632                                      bool AlwaysInline,
5633                                      const Value *DstSV, uint64_t DstSVOff,
5634                                      const Value *SrcSV, uint64_t SrcSVOff) {
5635  // This requires the copy size to be a constant, preferrably
5636  // within a subtarget-specific limit.
5637  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5638  if (!ConstantSize)
5639    return SDValue();
5640  uint64_t SizeVal = ConstantSize->getZExtValue();
5641  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5642    return SDValue();
5643
5644  /// If not DWORD aligned, call the library.
5645  if ((Align & 3) != 0)
5646    return SDValue();
5647
5648  // DWORD aligned
5649  MVT AVT = MVT::i32;
5650  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5651    AVT = MVT::i64;
5652
5653  unsigned UBytes = AVT.getSizeInBits() / 8;
5654  unsigned CountVal = SizeVal / UBytes;
5655  SDValue Count = DAG.getIntPtrConstant(CountVal);
5656  unsigned BytesLeft = SizeVal % UBytes;
5657
5658  SDValue InFlag(0, 0);
5659  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5660                            Count, InFlag);
5661  InFlag = Chain.getValue(1);
5662  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5663                            Dst, InFlag);
5664  InFlag = Chain.getValue(1);
5665  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
5666                            Src, InFlag);
5667  InFlag = Chain.getValue(1);
5668
5669  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5670  SmallVector<SDValue, 8> Ops;
5671  Ops.push_back(Chain);
5672  Ops.push_back(DAG.getValueType(AVT));
5673  Ops.push_back(InFlag);
5674  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
5675
5676  SmallVector<SDValue, 4> Results;
5677  Results.push_back(RepMovs);
5678  if (BytesLeft) {
5679    // Handle the last 1 - 7 bytes.
5680    unsigned Offset = SizeVal - BytesLeft;
5681    MVT DstVT = Dst.getValueType();
5682    MVT SrcVT = Src.getValueType();
5683    MVT SizeVT = Size.getValueType();
5684    Results.push_back(DAG.getMemcpy(Chain,
5685                                    DAG.getNode(ISD::ADD, DstVT, Dst,
5686                                                DAG.getConstant(Offset, DstVT)),
5687                                    DAG.getNode(ISD::ADD, SrcVT, Src,
5688                                                DAG.getConstant(Offset, SrcVT)),
5689                                    DAG.getConstant(BytesLeft, SizeVT),
5690                                    Align, AlwaysInline,
5691                                    DstSV, DstSVOff + Offset,
5692                                    SrcSV, SrcSVOff + Offset));
5693  }
5694
5695  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
5696}
5697
5698SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
5699  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5700
5701  if (!Subtarget->is64Bit()) {
5702    // vastart just stores the address of the VarArgsFrameIndex slot into the
5703    // memory location argument.
5704    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5705    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
5706  }
5707
5708  // __va_list_tag:
5709  //   gp_offset         (0 - 6 * 8)
5710  //   fp_offset         (48 - 48 + 8 * 16)
5711  //   overflow_arg_area (point to parameters coming in memory).
5712  //   reg_save_area
5713  SmallVector<SDValue, 8> MemOps;
5714  SDValue FIN = Op.getOperand(1);
5715  // Store gp_offset
5716  SDValue Store = DAG.getStore(Op.getOperand(0),
5717                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5718                                 FIN, SV, 0);
5719  MemOps.push_back(Store);
5720
5721  // Store fp_offset
5722  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5723  Store = DAG.getStore(Op.getOperand(0),
5724                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5725                       FIN, SV, 0);
5726  MemOps.push_back(Store);
5727
5728  // Store ptr to overflow_arg_area
5729  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5730  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5731  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
5732  MemOps.push_back(Store);
5733
5734  // Store ptr to reg_save_area.
5735  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
5736  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5737  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
5738  MemOps.push_back(Store);
5739  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
5740}
5741
5742SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
5743  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5744  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5745  SDValue Chain = Op.getOperand(0);
5746  SDValue SrcPtr = Op.getOperand(1);
5747  SDValue SrcSV = Op.getOperand(2);
5748
5749  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5750  abort();
5751  return SDValue();
5752}
5753
5754SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
5755  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5756  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5757  SDValue Chain = Op.getOperand(0);
5758  SDValue DstPtr = Op.getOperand(1);
5759  SDValue SrcPtr = Op.getOperand(2);
5760  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5761  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5762
5763  return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
5764                       DAG.getIntPtrConstant(24), 8, false,
5765                       DstSV, 0, SrcSV, 0);
5766}
5767
5768SDValue
5769X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
5770  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5771  switch (IntNo) {
5772  default: return SDValue();    // Don't custom lower most intrinsics.
5773  // Comparison intrinsics.
5774  case Intrinsic::x86_sse_comieq_ss:
5775  case Intrinsic::x86_sse_comilt_ss:
5776  case Intrinsic::x86_sse_comile_ss:
5777  case Intrinsic::x86_sse_comigt_ss:
5778  case Intrinsic::x86_sse_comige_ss:
5779  case Intrinsic::x86_sse_comineq_ss:
5780  case Intrinsic::x86_sse_ucomieq_ss:
5781  case Intrinsic::x86_sse_ucomilt_ss:
5782  case Intrinsic::x86_sse_ucomile_ss:
5783  case Intrinsic::x86_sse_ucomigt_ss:
5784  case Intrinsic::x86_sse_ucomige_ss:
5785  case Intrinsic::x86_sse_ucomineq_ss:
5786  case Intrinsic::x86_sse2_comieq_sd:
5787  case Intrinsic::x86_sse2_comilt_sd:
5788  case Intrinsic::x86_sse2_comile_sd:
5789  case Intrinsic::x86_sse2_comigt_sd:
5790  case Intrinsic::x86_sse2_comige_sd:
5791  case Intrinsic::x86_sse2_comineq_sd:
5792  case Intrinsic::x86_sse2_ucomieq_sd:
5793  case Intrinsic::x86_sse2_ucomilt_sd:
5794  case Intrinsic::x86_sse2_ucomile_sd:
5795  case Intrinsic::x86_sse2_ucomigt_sd:
5796  case Intrinsic::x86_sse2_ucomige_sd:
5797  case Intrinsic::x86_sse2_ucomineq_sd: {
5798    unsigned Opc = 0;
5799    ISD::CondCode CC = ISD::SETCC_INVALID;
5800    switch (IntNo) {
5801    default: break;
5802    case Intrinsic::x86_sse_comieq_ss:
5803    case Intrinsic::x86_sse2_comieq_sd:
5804      Opc = X86ISD::COMI;
5805      CC = ISD::SETEQ;
5806      break;
5807    case Intrinsic::x86_sse_comilt_ss:
5808    case Intrinsic::x86_sse2_comilt_sd:
5809      Opc = X86ISD::COMI;
5810      CC = ISD::SETLT;
5811      break;
5812    case Intrinsic::x86_sse_comile_ss:
5813    case Intrinsic::x86_sse2_comile_sd:
5814      Opc = X86ISD::COMI;
5815      CC = ISD::SETLE;
5816      break;
5817    case Intrinsic::x86_sse_comigt_ss:
5818    case Intrinsic::x86_sse2_comigt_sd:
5819      Opc = X86ISD::COMI;
5820      CC = ISD::SETGT;
5821      break;
5822    case Intrinsic::x86_sse_comige_ss:
5823    case Intrinsic::x86_sse2_comige_sd:
5824      Opc = X86ISD::COMI;
5825      CC = ISD::SETGE;
5826      break;
5827    case Intrinsic::x86_sse_comineq_ss:
5828    case Intrinsic::x86_sse2_comineq_sd:
5829      Opc = X86ISD::COMI;
5830      CC = ISD::SETNE;
5831      break;
5832    case Intrinsic::x86_sse_ucomieq_ss:
5833    case Intrinsic::x86_sse2_ucomieq_sd:
5834      Opc = X86ISD::UCOMI;
5835      CC = ISD::SETEQ;
5836      break;
5837    case Intrinsic::x86_sse_ucomilt_ss:
5838    case Intrinsic::x86_sse2_ucomilt_sd:
5839      Opc = X86ISD::UCOMI;
5840      CC = ISD::SETLT;
5841      break;
5842    case Intrinsic::x86_sse_ucomile_ss:
5843    case Intrinsic::x86_sse2_ucomile_sd:
5844      Opc = X86ISD::UCOMI;
5845      CC = ISD::SETLE;
5846      break;
5847    case Intrinsic::x86_sse_ucomigt_ss:
5848    case Intrinsic::x86_sse2_ucomigt_sd:
5849      Opc = X86ISD::UCOMI;
5850      CC = ISD::SETGT;
5851      break;
5852    case Intrinsic::x86_sse_ucomige_ss:
5853    case Intrinsic::x86_sse2_ucomige_sd:
5854      Opc = X86ISD::UCOMI;
5855      CC = ISD::SETGE;
5856      break;
5857    case Intrinsic::x86_sse_ucomineq_ss:
5858    case Intrinsic::x86_sse2_ucomineq_sd:
5859      Opc = X86ISD::UCOMI;
5860      CC = ISD::SETNE;
5861      break;
5862    }
5863
5864    SDValue LHS = Op.getOperand(1);
5865    SDValue RHS = Op.getOperand(2);
5866    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
5867    SDValue Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5868    SDValue SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5869                                DAG.getConstant(X86CC, MVT::i8), Cond);
5870    return DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, SetCC);
5871  }
5872
5873  // Fix vector shift instructions where the last operand is a non-immediate
5874  // i32 value.
5875  case Intrinsic::x86_sse2_pslli_w:
5876  case Intrinsic::x86_sse2_pslli_d:
5877  case Intrinsic::x86_sse2_pslli_q:
5878  case Intrinsic::x86_sse2_psrli_w:
5879  case Intrinsic::x86_sse2_psrli_d:
5880  case Intrinsic::x86_sse2_psrli_q:
5881  case Intrinsic::x86_sse2_psrai_w:
5882  case Intrinsic::x86_sse2_psrai_d:
5883  case Intrinsic::x86_mmx_pslli_w:
5884  case Intrinsic::x86_mmx_pslli_d:
5885  case Intrinsic::x86_mmx_pslli_q:
5886  case Intrinsic::x86_mmx_psrli_w:
5887  case Intrinsic::x86_mmx_psrli_d:
5888  case Intrinsic::x86_mmx_psrli_q:
5889  case Intrinsic::x86_mmx_psrai_w:
5890  case Intrinsic::x86_mmx_psrai_d: {
5891    SDValue ShAmt = Op.getOperand(2);
5892    if (isa<ConstantSDNode>(ShAmt))
5893      return SDValue();
5894
5895    unsigned NewIntNo = 0;
5896    MVT ShAmtVT = MVT::v4i32;
5897    switch (IntNo) {
5898    case Intrinsic::x86_sse2_pslli_w:
5899      NewIntNo = Intrinsic::x86_sse2_psll_w;
5900      break;
5901    case Intrinsic::x86_sse2_pslli_d:
5902      NewIntNo = Intrinsic::x86_sse2_psll_d;
5903      break;
5904    case Intrinsic::x86_sse2_pslli_q:
5905      NewIntNo = Intrinsic::x86_sse2_psll_q;
5906      break;
5907    case Intrinsic::x86_sse2_psrli_w:
5908      NewIntNo = Intrinsic::x86_sse2_psrl_w;
5909      break;
5910    case Intrinsic::x86_sse2_psrli_d:
5911      NewIntNo = Intrinsic::x86_sse2_psrl_d;
5912      break;
5913    case Intrinsic::x86_sse2_psrli_q:
5914      NewIntNo = Intrinsic::x86_sse2_psrl_q;
5915      break;
5916    case Intrinsic::x86_sse2_psrai_w:
5917      NewIntNo = Intrinsic::x86_sse2_psra_w;
5918      break;
5919    case Intrinsic::x86_sse2_psrai_d:
5920      NewIntNo = Intrinsic::x86_sse2_psra_d;
5921      break;
5922    default: {
5923      ShAmtVT = MVT::v2i32;
5924      switch (IntNo) {
5925      case Intrinsic::x86_mmx_pslli_w:
5926        NewIntNo = Intrinsic::x86_mmx_psll_w;
5927        break;
5928      case Intrinsic::x86_mmx_pslli_d:
5929        NewIntNo = Intrinsic::x86_mmx_psll_d;
5930        break;
5931      case Intrinsic::x86_mmx_pslli_q:
5932        NewIntNo = Intrinsic::x86_mmx_psll_q;
5933        break;
5934      case Intrinsic::x86_mmx_psrli_w:
5935        NewIntNo = Intrinsic::x86_mmx_psrl_w;
5936        break;
5937      case Intrinsic::x86_mmx_psrli_d:
5938        NewIntNo = Intrinsic::x86_mmx_psrl_d;
5939        break;
5940      case Intrinsic::x86_mmx_psrli_q:
5941        NewIntNo = Intrinsic::x86_mmx_psrl_q;
5942        break;
5943      case Intrinsic::x86_mmx_psrai_w:
5944        NewIntNo = Intrinsic::x86_mmx_psra_w;
5945        break;
5946      case Intrinsic::x86_mmx_psrai_d:
5947        NewIntNo = Intrinsic::x86_mmx_psra_d;
5948        break;
5949      default: abort();  // Can't reach here.
5950      }
5951      break;
5952    }
5953    }
5954    MVT VT = Op.getValueType();
5955    ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
5956                        DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
5957    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
5958                       DAG.getConstant(NewIntNo, MVT::i32),
5959                       Op.getOperand(1), ShAmt);
5960  }
5961  }
5962}
5963
5964SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5965  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5966
5967  if (Depth > 0) {
5968    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5969    SDValue Offset =
5970      DAG.getConstant(TD->getPointerSize(),
5971                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
5972    return DAG.getLoad(getPointerTy(), DAG.getEntryNode(),
5973                       DAG.getNode(ISD::ADD, getPointerTy(), FrameAddr, Offset),
5974                       NULL, 0);
5975  }
5976
5977  // Just load the return address.
5978  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
5979  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5980}
5981
5982SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5983  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5984  MFI->setFrameAddressIsTaken(true);
5985  MVT VT = Op.getValueType();
5986  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5987  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
5988  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), FrameReg, VT);
5989  while (Depth--)
5990    FrameAddr = DAG.getLoad(VT, DAG.getEntryNode(), FrameAddr, NULL, 0);
5991  return FrameAddr;
5992}
5993
5994SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
5995                                                     SelectionDAG &DAG) {
5996  return DAG.getIntPtrConstant(2*TD->getPointerSize());
5997}
5998
5999SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6000{
6001  MachineFunction &MF = DAG.getMachineFunction();
6002  SDValue Chain     = Op.getOperand(0);
6003  SDValue Offset    = Op.getOperand(1);
6004  SDValue Handler   = Op.getOperand(2);
6005
6006  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6007                                  getPointerTy());
6008  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6009
6010  SDValue StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
6011                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6012  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
6013  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
6014  Chain = DAG.getCopyToReg(Chain, StoreAddrReg, StoreAddr);
6015  MF.getRegInfo().addLiveOut(StoreAddrReg);
6016
6017  return DAG.getNode(X86ISD::EH_RETURN,
6018                     MVT::Other,
6019                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6020}
6021
6022SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6023                                             SelectionDAG &DAG) {
6024  SDValue Root = Op.getOperand(0);
6025  SDValue Trmp = Op.getOperand(1); // trampoline
6026  SDValue FPtr = Op.getOperand(2); // nested function
6027  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6028
6029  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6030
6031  const X86InstrInfo *TII =
6032    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6033
6034  if (Subtarget->is64Bit()) {
6035    SDValue OutChains[6];
6036
6037    // Large code-model.
6038
6039    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6040    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6041
6042    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6043    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6044
6045    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6046
6047    // Load the pointer to the nested function into R11.
6048    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6049    SDValue Addr = Trmp;
6050    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
6051                                TrmpAddr, 0);
6052
6053    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
6054    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
6055
6056    // Load the 'nest' parameter value into R10.
6057    // R10 is specified in X86CallingConv.td
6058    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6059    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
6060    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
6061                                TrmpAddr, 10);
6062
6063    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
6064    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
6065
6066    // Jump to the nested function.
6067    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6068    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
6069    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
6070                                TrmpAddr, 20);
6071
6072    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6073    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
6074    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
6075                                TrmpAddr, 22);
6076
6077    SDValue Ops[] =
6078      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
6079    return DAG.getMergeValues(Ops, 2);
6080  } else {
6081    const Function *Func =
6082      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6083    unsigned CC = Func->getCallingConv();
6084    unsigned NestReg;
6085
6086    switch (CC) {
6087    default:
6088      assert(0 && "Unsupported calling convention");
6089    case CallingConv::C:
6090    case CallingConv::X86_StdCall: {
6091      // Pass 'nest' parameter in ECX.
6092      // Must be kept in sync with X86CallingConv.td
6093      NestReg = X86::ECX;
6094
6095      // Check that ECX wasn't needed by an 'inreg' parameter.
6096      const FunctionType *FTy = Func->getFunctionType();
6097      const AttrListPtr &Attrs = Func->getAttributes();
6098
6099      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6100        unsigned InRegCount = 0;
6101        unsigned Idx = 1;
6102
6103        for (FunctionType::param_iterator I = FTy->param_begin(),
6104             E = FTy->param_end(); I != E; ++I, ++Idx)
6105          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6106            // FIXME: should only count parameters that are lowered to integers.
6107            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6108
6109        if (InRegCount > 2) {
6110          cerr << "Nest register in use - reduce number of inreg parameters!\n";
6111          abort();
6112        }
6113      }
6114      break;
6115    }
6116    case CallingConv::X86_FastCall:
6117    case CallingConv::Fast:
6118      // Pass 'nest' parameter in EAX.
6119      // Must be kept in sync with X86CallingConv.td
6120      NestReg = X86::EAX;
6121      break;
6122    }
6123
6124    SDValue OutChains[4];
6125    SDValue Addr, Disp;
6126
6127    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
6128    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
6129
6130    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6131    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6132    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6133                                Trmp, TrmpAddr, 0);
6134
6135    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
6136    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
6137
6138    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6139    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
6140    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
6141                                TrmpAddr, 5, false, 1);
6142
6143    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
6144    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
6145
6146    SDValue Ops[] =
6147      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
6148    return DAG.getMergeValues(Ops, 2);
6149  }
6150}
6151
6152SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6153  /*
6154   The rounding mode is in bits 11:10 of FPSR, and has the following
6155   settings:
6156     00 Round to nearest
6157     01 Round to -inf
6158     10 Round to +inf
6159     11 Round to 0
6160
6161  FLT_ROUNDS, on the other hand, expects the following:
6162    -1 Undefined
6163     0 Round to 0
6164     1 Round to nearest
6165     2 Round to +inf
6166     3 Round to -inf
6167
6168  To perform the conversion, we do:
6169    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6170  */
6171
6172  MachineFunction &MF = DAG.getMachineFunction();
6173  const TargetMachine &TM = MF.getTarget();
6174  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6175  unsigned StackAlignment = TFI.getStackAlignment();
6176  MVT VT = Op.getValueType();
6177
6178  // Save FP Control Word to stack slot
6179  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6180  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6181
6182  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
6183                              DAG.getEntryNode(), StackSlot);
6184
6185  // Load FP Control Word from stack slot
6186  SDValue CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
6187
6188  // Transform as necessary
6189  SDValue CWD1 =
6190    DAG.getNode(ISD::SRL, MVT::i16,
6191                DAG.getNode(ISD::AND, MVT::i16,
6192                            CWD, DAG.getConstant(0x800, MVT::i16)),
6193                DAG.getConstant(11, MVT::i8));
6194  SDValue CWD2 =
6195    DAG.getNode(ISD::SRL, MVT::i16,
6196                DAG.getNode(ISD::AND, MVT::i16,
6197                            CWD, DAG.getConstant(0x400, MVT::i16)),
6198                DAG.getConstant(9, MVT::i8));
6199
6200  SDValue RetVal =
6201    DAG.getNode(ISD::AND, MVT::i16,
6202                DAG.getNode(ISD::ADD, MVT::i16,
6203                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
6204                            DAG.getConstant(1, MVT::i16)),
6205                DAG.getConstant(3, MVT::i16));
6206
6207
6208  return DAG.getNode((VT.getSizeInBits() < 16 ?
6209                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
6210}
6211
6212SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6213  MVT VT = Op.getValueType();
6214  MVT OpVT = VT;
6215  unsigned NumBits = VT.getSizeInBits();
6216
6217  Op = Op.getOperand(0);
6218  if (VT == MVT::i8) {
6219    // Zero extend to i32 since there is not an i8 bsr.
6220    OpVT = MVT::i32;
6221    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
6222  }
6223
6224  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6225  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6226  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
6227
6228  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6229  SmallVector<SDValue, 4> Ops;
6230  Ops.push_back(Op);
6231  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6232  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6233  Ops.push_back(Op.getValue(1));
6234  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
6235
6236  // Finally xor with NumBits-1.
6237  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6238
6239  if (VT == MVT::i8)
6240    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
6241  return Op;
6242}
6243
6244SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6245  MVT VT = Op.getValueType();
6246  MVT OpVT = VT;
6247  unsigned NumBits = VT.getSizeInBits();
6248
6249  Op = Op.getOperand(0);
6250  if (VT == MVT::i8) {
6251    OpVT = MVT::i32;
6252    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
6253  }
6254
6255  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6256  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6257  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
6258
6259  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6260  SmallVector<SDValue, 4> Ops;
6261  Ops.push_back(Op);
6262  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6263  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6264  Ops.push_back(Op.getValue(1));
6265  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
6266
6267  if (VT == MVT::i8)
6268    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
6269  return Op;
6270}
6271
6272SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6273  MVT VT = Op.getValueType();
6274  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6275
6276  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6277  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6278  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6279  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6280  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6281  //
6282  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6283  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6284  //  return AloBlo + AloBhi + AhiBlo;
6285
6286  SDValue A = Op.getOperand(0);
6287  SDValue B = Op.getOperand(1);
6288
6289  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6290                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6291                       A, DAG.getConstant(32, MVT::i32));
6292  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6293                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6294                       B, DAG.getConstant(32, MVT::i32));
6295  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6296                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6297                       A, B);
6298  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6299                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6300                       A, Bhi);
6301  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6302                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6303                       Ahi, B);
6304  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6305                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6306                       AloBhi, DAG.getConstant(32, MVT::i32));
6307  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6308                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6309                       AhiBlo, DAG.getConstant(32, MVT::i32));
6310  SDValue Res = DAG.getNode(ISD::ADD, VT, AloBlo, AloBhi);
6311  Res = DAG.getNode(ISD::ADD, VT, Res, AhiBlo);
6312  return Res;
6313}
6314
6315
6316SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6317  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6318  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6319  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6320  // has only one use.
6321  SDNode *N = Op.getNode();
6322  SDValue LHS = N->getOperand(0);
6323  SDValue RHS = N->getOperand(1);
6324  unsigned BaseOp = 0;
6325  unsigned Cond = 0;
6326
6327  switch (Op.getOpcode()) {
6328  default: assert(0 && "Unknown ovf instruction!");
6329  case ISD::SADDO:
6330    BaseOp = X86ISD::ADD;
6331    Cond = X86::COND_O;
6332    break;
6333  case ISD::UADDO:
6334    BaseOp = X86ISD::ADD;
6335    Cond = X86::COND_B;
6336    break;
6337  case ISD::SSUBO:
6338    BaseOp = X86ISD::SUB;
6339    Cond = X86::COND_O;
6340    break;
6341  case ISD::USUBO:
6342    BaseOp = X86ISD::SUB;
6343    Cond = X86::COND_B;
6344    break;
6345  case ISD::SMULO:
6346    BaseOp = X86ISD::SMUL;
6347    Cond = X86::COND_O;
6348    break;
6349  case ISD::UMULO:
6350    BaseOp = X86ISD::UMUL;
6351    Cond = X86::COND_B;
6352    break;
6353  }
6354
6355  // Also sets EFLAGS.
6356  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6357  SDValue Sum = DAG.getNode(BaseOp, VTs, LHS, RHS);
6358
6359  SDValue SetCC =
6360    DAG.getNode(X86ISD::SETCC, N->getValueType(1),
6361                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6362
6363  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6364  return Sum;
6365}
6366
6367SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6368  MVT T = Op.getValueType();
6369  unsigned Reg = 0;
6370  unsigned size = 0;
6371  switch(T.getSimpleVT()) {
6372  default:
6373    assert(false && "Invalid value type!");
6374  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6375  case MVT::i16: Reg = X86::AX;  size = 2; break;
6376  case MVT::i32: Reg = X86::EAX; size = 4; break;
6377  case MVT::i64:
6378    assert(Subtarget->is64Bit() && "Node not type legal!");
6379    Reg = X86::RAX; size = 8;
6380    break;
6381  }
6382  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
6383                                    Op.getOperand(2), SDValue());
6384  SDValue Ops[] = { cpIn.getValue(0),
6385                    Op.getOperand(1),
6386                    Op.getOperand(3),
6387                    DAG.getTargetConstant(size, MVT::i8),
6388                    cpIn.getValue(1) };
6389  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6390  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
6391  SDValue cpOut =
6392    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
6393  return cpOut;
6394}
6395
6396SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6397                                                 SelectionDAG &DAG) {
6398  assert(Subtarget->is64Bit() && "Result not type legalized?");
6399  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6400  SDValue TheChain = Op.getOperand(0);
6401  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
6402  SDValue rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
6403  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX, MVT::i64,
6404                                   rax.getValue(2));
6405  SDValue Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
6406                            DAG.getConstant(32, MVT::i8));
6407  SDValue Ops[] = {
6408    DAG.getNode(ISD::OR, MVT::i64, rax, Tmp),
6409    rdx.getValue(1)
6410  };
6411  return DAG.getMergeValues(Ops, 2);
6412}
6413
6414SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6415  SDNode *Node = Op.getNode();
6416  MVT T = Node->getValueType(0);
6417  SDValue negOp = DAG.getNode(ISD::SUB, T,
6418                                DAG.getConstant(0, T), Node->getOperand(2));
6419  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD,
6420                       cast<AtomicSDNode>(Node)->getMemoryVT(),
6421                       Node->getOperand(0),
6422                       Node->getOperand(1), negOp,
6423                       cast<AtomicSDNode>(Node)->getSrcValue(),
6424                       cast<AtomicSDNode>(Node)->getAlignment());
6425}
6426
6427/// LowerOperation - Provide custom lowering hooks for some operations.
6428///
6429SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6430  switch (Op.getOpcode()) {
6431  default: assert(0 && "Should not custom lower this!");
6432  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
6433  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
6434  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6435  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6436  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6437  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6438  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6439  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6440  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6441  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6442  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6443  case ISD::SHL_PARTS:
6444  case ISD::SRA_PARTS:
6445  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6446  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6447  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6448  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6449  case ISD::FABS:               return LowerFABS(Op, DAG);
6450  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6451  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6452  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6453  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6454  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6455  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6456  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6457  case ISD::CALL:               return LowerCALL(Op, DAG);
6458  case ISD::RET:                return LowerRET(Op, DAG);
6459  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
6460  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6461  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6462  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6463  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6464  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6465  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6466  case ISD::FRAME_TO_ARGS_OFFSET:
6467                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6468  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6469  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6470  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6471  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6472  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6473  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6474  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
6475  case ISD::SADDO:
6476  case ISD::UADDO:
6477  case ISD::SSUBO:
6478  case ISD::USUBO:
6479  case ISD::SMULO:
6480  case ISD::UMULO:              return LowerXALUO(Op, DAG);
6481  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
6482  }
6483}
6484
6485void X86TargetLowering::
6486ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6487                        SelectionDAG &DAG, unsigned NewOp) {
6488  MVT T = Node->getValueType(0);
6489  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6490
6491  SDValue Chain = Node->getOperand(0);
6492  SDValue In1 = Node->getOperand(1);
6493  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
6494                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6495  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
6496                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6497  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6498  // have a MemOperand.  Pass the info through as a normal operand.
6499  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6500  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6501  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6502  SDValue Result = DAG.getNode(NewOp, Tys, Ops, 5);
6503  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6504  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2));
6505  Results.push_back(Result.getValue(2));
6506}
6507
6508/// ReplaceNodeResults - Replace a node with an illegal result type
6509/// with a new node built out of custom code.
6510void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6511                                           SmallVectorImpl<SDValue>&Results,
6512                                           SelectionDAG &DAG) {
6513  switch (N->getOpcode()) {
6514  default:
6515    assert(false && "Do not know how to custom type legalize this operation!");
6516    return;
6517  case ISD::FP_TO_SINT: {
6518    std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG);
6519    SDValue FIST = Vals.first, StackSlot = Vals.second;
6520    if (FIST.getNode() != 0) {
6521      MVT VT = N->getValueType(0);
6522      // Return a load from the stack slot.
6523      Results.push_back(DAG.getLoad(VT, FIST, StackSlot, NULL, 0));
6524    }
6525    return;
6526  }
6527  case ISD::READCYCLECOUNTER: {
6528    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6529    SDValue TheChain = N->getOperand(0);
6530    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
6531    SDValue eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
6532    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX, MVT::i32,
6533                                     eax.getValue(2));
6534    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6535    SDValue Ops[] = { eax, edx };
6536    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2));
6537    Results.push_back(edx.getValue(1));
6538    return;
6539  }
6540  case ISD::ATOMIC_CMP_SWAP: {
6541    MVT T = N->getValueType(0);
6542    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6543    SDValue cpInL, cpInH;
6544    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(2),
6545                        DAG.getConstant(0, MVT::i32));
6546    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(2),
6547                        DAG.getConstant(1, MVT::i32));
6548    cpInL = DAG.getCopyToReg(N->getOperand(0), X86::EAX, cpInL, SDValue());
6549    cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX, cpInH,
6550                             cpInL.getValue(1));
6551    SDValue swapInL, swapInH;
6552    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(3),
6553                          DAG.getConstant(0, MVT::i32));
6554    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(3),
6555                          DAG.getConstant(1, MVT::i32));
6556    swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX, swapInL,
6557                               cpInH.getValue(1));
6558    swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX, swapInH,
6559                               swapInL.getValue(1));
6560    SDValue Ops[] = { swapInH.getValue(0),
6561                      N->getOperand(1),
6562                      swapInH.getValue(1) };
6563    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6564    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
6565    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
6566                                        Result.getValue(1));
6567    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
6568                                        cpOutL.getValue(2));
6569    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6570    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2));
6571    Results.push_back(cpOutH.getValue(1));
6572    return;
6573  }
6574  case ISD::ATOMIC_LOAD_ADD:
6575    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
6576    return;
6577  case ISD::ATOMIC_LOAD_AND:
6578    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
6579    return;
6580  case ISD::ATOMIC_LOAD_NAND:
6581    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
6582    return;
6583  case ISD::ATOMIC_LOAD_OR:
6584    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
6585    return;
6586  case ISD::ATOMIC_LOAD_SUB:
6587    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
6588    return;
6589  case ISD::ATOMIC_LOAD_XOR:
6590    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
6591    return;
6592  case ISD::ATOMIC_SWAP:
6593    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
6594    return;
6595  }
6596}
6597
6598const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6599  switch (Opcode) {
6600  default: return NULL;
6601  case X86ISD::BSF:                return "X86ISD::BSF";
6602  case X86ISD::BSR:                return "X86ISD::BSR";
6603  case X86ISD::SHLD:               return "X86ISD::SHLD";
6604  case X86ISD::SHRD:               return "X86ISD::SHRD";
6605  case X86ISD::FAND:               return "X86ISD::FAND";
6606  case X86ISD::FOR:                return "X86ISD::FOR";
6607  case X86ISD::FXOR:               return "X86ISD::FXOR";
6608  case X86ISD::FSRL:               return "X86ISD::FSRL";
6609  case X86ISD::FILD:               return "X86ISD::FILD";
6610  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
6611  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6612  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6613  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6614  case X86ISD::FLD:                return "X86ISD::FLD";
6615  case X86ISD::FST:                return "X86ISD::FST";
6616  case X86ISD::CALL:               return "X86ISD::CALL";
6617  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
6618  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
6619  case X86ISD::BT:                 return "X86ISD::BT";
6620  case X86ISD::CMP:                return "X86ISD::CMP";
6621  case X86ISD::COMI:               return "X86ISD::COMI";
6622  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
6623  case X86ISD::SETCC:              return "X86ISD::SETCC";
6624  case X86ISD::CMOV:               return "X86ISD::CMOV";
6625  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
6626  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
6627  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
6628  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
6629  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
6630  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
6631  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
6632  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
6633  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
6634  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
6635  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
6636  case X86ISD::FMAX:               return "X86ISD::FMAX";
6637  case X86ISD::FMIN:               return "X86ISD::FMIN";
6638  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
6639  case X86ISD::FRCP:               return "X86ISD::FRCP";
6640  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
6641  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
6642  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6643  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6644  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6645  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6646  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6647  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
6648  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
6649  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
6650  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
6651  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
6652  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
6653  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6654  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6655  case X86ISD::VSHL:               return "X86ISD::VSHL";
6656  case X86ISD::VSRL:               return "X86ISD::VSRL";
6657  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
6658  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
6659  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
6660  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
6661  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
6662  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
6663  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
6664  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
6665  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
6666  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
6667  case X86ISD::ADD:                return "X86ISD::ADD";
6668  case X86ISD::SUB:                return "X86ISD::SUB";
6669  case X86ISD::SMUL:               return "X86ISD::SMUL";
6670  case X86ISD::UMUL:               return "X86ISD::UMUL";
6671  }
6672}
6673
6674// isLegalAddressingMode - Return true if the addressing mode represented
6675// by AM is legal for this target, for a load/store of the specified type.
6676bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6677                                              const Type *Ty) const {
6678  // X86 supports extremely general addressing modes.
6679
6680  // X86 allows a sign-extended 32-bit immediate field as a displacement.
6681  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
6682    return false;
6683
6684  if (AM.BaseGV) {
6685    // We can only fold this if we don't need an extra load.
6686    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
6687      return false;
6688    // If BaseGV requires a register, we cannot also have a BaseReg.
6689    if (Subtarget->GVRequiresRegister(AM.BaseGV, getTargetMachine(), false) &&
6690        AM.HasBaseReg)
6691      return false;
6692
6693    // X86-64 only supports addr of globals in small code model.
6694    if (Subtarget->is64Bit()) {
6695      if (getTargetMachine().getCodeModel() != CodeModel::Small)
6696        return false;
6697      // If lower 4G is not available, then we must use rip-relative addressing.
6698      if (AM.BaseOffs || AM.Scale > 1)
6699        return false;
6700    }
6701  }
6702
6703  switch (AM.Scale) {
6704  case 0:
6705  case 1:
6706  case 2:
6707  case 4:
6708  case 8:
6709    // These scales always work.
6710    break;
6711  case 3:
6712  case 5:
6713  case 9:
6714    // These scales are formed with basereg+scalereg.  Only accept if there is
6715    // no basereg yet.
6716    if (AM.HasBaseReg)
6717      return false;
6718    break;
6719  default:  // Other stuff never works.
6720    return false;
6721  }
6722
6723  return true;
6724}
6725
6726
6727bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
6728  if (!Ty1->isInteger() || !Ty2->isInteger())
6729    return false;
6730  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6731  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6732  if (NumBits1 <= NumBits2)
6733    return false;
6734  return Subtarget->is64Bit() || NumBits1 < 64;
6735}
6736
6737bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
6738  if (!VT1.isInteger() || !VT2.isInteger())
6739    return false;
6740  unsigned NumBits1 = VT1.getSizeInBits();
6741  unsigned NumBits2 = VT2.getSizeInBits();
6742  if (NumBits1 <= NumBits2)
6743    return false;
6744  return Subtarget->is64Bit() || NumBits1 < 64;
6745}
6746
6747/// isShuffleMaskLegal - Targets can use this to indicate that they only
6748/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6749/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6750/// are assumed to be legal.
6751bool
6752X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const {
6753  // Only do shuffles on 128-bit vector types for now.
6754  if (VT.getSizeInBits() == 64) return false;
6755  return (Mask.getNode()->getNumOperands() <= 4 ||
6756          isIdentityMask(Mask.getNode()) ||
6757          isIdentityMask(Mask.getNode(), true) ||
6758          isSplatMask(Mask.getNode())  ||
6759          isPSHUFHW_PSHUFLWMask(Mask.getNode()) ||
6760          X86::isUNPCKLMask(Mask.getNode()) ||
6761          X86::isUNPCKHMask(Mask.getNode()) ||
6762          X86::isUNPCKL_v_undef_Mask(Mask.getNode()) ||
6763          X86::isUNPCKH_v_undef_Mask(Mask.getNode()));
6764}
6765
6766bool
6767X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
6768                                          MVT EVT, SelectionDAG &DAG) const {
6769  unsigned NumElts = BVOps.size();
6770  // Only do shuffles on 128-bit vector types for now.
6771  if (EVT.getSizeInBits() * NumElts == 64) return false;
6772  if (NumElts == 2) return true;
6773  if (NumElts == 4) {
6774    return (isMOVLMask(&BVOps[0], 4)  ||
6775            isCommutedMOVL(&BVOps[0], 4, true) ||
6776            isSHUFPMask(&BVOps[0], 4) ||
6777            isCommutedSHUFP(&BVOps[0], 4));
6778  }
6779  return false;
6780}
6781
6782//===----------------------------------------------------------------------===//
6783//                           X86 Scheduler Hooks
6784//===----------------------------------------------------------------------===//
6785
6786// private utility function
6787MachineBasicBlock *
6788X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
6789                                                       MachineBasicBlock *MBB,
6790                                                       unsigned regOpc,
6791                                                       unsigned immOpc,
6792                                                       unsigned LoadOpc,
6793                                                       unsigned CXchgOpc,
6794                                                       unsigned copyOpc,
6795                                                       unsigned notOpc,
6796                                                       unsigned EAXreg,
6797                                                       TargetRegisterClass *RC,
6798                                                       bool invSrc) {
6799  // For the atomic bitwise operator, we generate
6800  //   thisMBB:
6801  //   newMBB:
6802  //     ld  t1 = [bitinstr.addr]
6803  //     op  t2 = t1, [bitinstr.val]
6804  //     mov EAX = t1
6805  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6806  //     bz  newMBB
6807  //     fallthrough -->nextMBB
6808  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6809  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6810  MachineFunction::iterator MBBIter = MBB;
6811  ++MBBIter;
6812
6813  /// First build the CFG
6814  MachineFunction *F = MBB->getParent();
6815  MachineBasicBlock *thisMBB = MBB;
6816  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6817  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6818  F->insert(MBBIter, newMBB);
6819  F->insert(MBBIter, nextMBB);
6820
6821  // Move all successors to thisMBB to nextMBB
6822  nextMBB->transferSuccessors(thisMBB);
6823
6824  // Update thisMBB to fall through to newMBB
6825  thisMBB->addSuccessor(newMBB);
6826
6827  // newMBB jumps to itself and fall through to nextMBB
6828  newMBB->addSuccessor(nextMBB);
6829  newMBB->addSuccessor(newMBB);
6830
6831  // Insert instructions into newMBB based on incoming instruction
6832  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
6833  MachineOperand& destOper = bInstr->getOperand(0);
6834  MachineOperand* argOpers[6];
6835  int numArgs = bInstr->getNumOperands() - 1;
6836  for (int i=0; i < numArgs; ++i)
6837    argOpers[i] = &bInstr->getOperand(i+1);
6838
6839  // x86 address has 4 operands: base, index, scale, and displacement
6840  int lastAddrIndx = 3; // [0,3]
6841  int valArgIndx = 4;
6842
6843  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6844  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(LoadOpc), t1);
6845  for (int i=0; i <= lastAddrIndx; ++i)
6846    (*MIB).addOperand(*argOpers[i]);
6847
6848  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
6849  if (invSrc) {
6850    MIB = BuildMI(newMBB, TII->get(notOpc), tt).addReg(t1);
6851  }
6852  else
6853    tt = t1;
6854
6855  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6856  assert((argOpers[valArgIndx]->isReg() ||
6857          argOpers[valArgIndx]->isImm()) &&
6858         "invalid operand");
6859  if (argOpers[valArgIndx]->isReg())
6860    MIB = BuildMI(newMBB, TII->get(regOpc), t2);
6861  else
6862    MIB = BuildMI(newMBB, TII->get(immOpc), t2);
6863  MIB.addReg(tt);
6864  (*MIB).addOperand(*argOpers[valArgIndx]);
6865
6866  MIB = BuildMI(newMBB, TII->get(copyOpc), EAXreg);
6867  MIB.addReg(t1);
6868
6869  MIB = BuildMI(newMBB, TII->get(CXchgOpc));
6870  for (int i=0; i <= lastAddrIndx; ++i)
6871    (*MIB).addOperand(*argOpers[i]);
6872  MIB.addReg(t2);
6873  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6874  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6875
6876  MIB = BuildMI(newMBB, TII->get(copyOpc), destOper.getReg());
6877  MIB.addReg(EAXreg);
6878
6879  // insert branch
6880  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6881
6882  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6883  return nextMBB;
6884}
6885
6886// private utility function:  64 bit atomics on 32 bit host.
6887MachineBasicBlock *
6888X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
6889                                                       MachineBasicBlock *MBB,
6890                                                       unsigned regOpcL,
6891                                                       unsigned regOpcH,
6892                                                       unsigned immOpcL,
6893                                                       unsigned immOpcH,
6894                                                       bool invSrc) {
6895  // For the atomic bitwise operator, we generate
6896  //   thisMBB (instructions are in pairs, except cmpxchg8b)
6897  //     ld t1,t2 = [bitinstr.addr]
6898  //   newMBB:
6899  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
6900  //     op  t5, t6 <- out1, out2, [bitinstr.val]
6901  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
6902  //     mov ECX, EBX <- t5, t6
6903  //     mov EAX, EDX <- t1, t2
6904  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
6905  //     mov t3, t4 <- EAX, EDX
6906  //     bz  newMBB
6907  //     result in out1, out2
6908  //     fallthrough -->nextMBB
6909
6910  const TargetRegisterClass *RC = X86::GR32RegisterClass;
6911  const unsigned LoadOpc = X86::MOV32rm;
6912  const unsigned copyOpc = X86::MOV32rr;
6913  const unsigned NotOpc = X86::NOT32r;
6914  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6915  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6916  MachineFunction::iterator MBBIter = MBB;
6917  ++MBBIter;
6918
6919  /// First build the CFG
6920  MachineFunction *F = MBB->getParent();
6921  MachineBasicBlock *thisMBB = MBB;
6922  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6923  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6924  F->insert(MBBIter, newMBB);
6925  F->insert(MBBIter, nextMBB);
6926
6927  // Move all successors to thisMBB to nextMBB
6928  nextMBB->transferSuccessors(thisMBB);
6929
6930  // Update thisMBB to fall through to newMBB
6931  thisMBB->addSuccessor(newMBB);
6932
6933  // newMBB jumps to itself and fall through to nextMBB
6934  newMBB->addSuccessor(nextMBB);
6935  newMBB->addSuccessor(newMBB);
6936
6937  // Insert instructions into newMBB based on incoming instruction
6938  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
6939  assert(bInstr->getNumOperands() < 18 && "unexpected number of operands");
6940  MachineOperand& dest1Oper = bInstr->getOperand(0);
6941  MachineOperand& dest2Oper = bInstr->getOperand(1);
6942  MachineOperand* argOpers[6];
6943  for (int i=0; i < 6; ++i)
6944    argOpers[i] = &bInstr->getOperand(i+2);
6945
6946  // x86 address has 4 operands: base, index, scale, and displacement
6947  int lastAddrIndx = 3; // [0,3]
6948
6949  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6950  MachineInstrBuilder MIB = BuildMI(thisMBB, TII->get(LoadOpc), t1);
6951  for (int i=0; i <= lastAddrIndx; ++i)
6952    (*MIB).addOperand(*argOpers[i]);
6953  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6954  MIB = BuildMI(thisMBB, TII->get(LoadOpc), t2);
6955  // add 4 to displacement.
6956  for (int i=0; i <= lastAddrIndx-1; ++i)
6957    (*MIB).addOperand(*argOpers[i]);
6958  MachineOperand newOp3 = *(argOpers[3]);
6959  if (newOp3.isImm())
6960    newOp3.setImm(newOp3.getImm()+4);
6961  else
6962    newOp3.setOffset(newOp3.getOffset()+4);
6963  (*MIB).addOperand(newOp3);
6964
6965  // t3/4 are defined later, at the bottom of the loop
6966  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
6967  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
6968  BuildMI(newMBB, TII->get(X86::PHI), dest1Oper.getReg())
6969    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
6970  BuildMI(newMBB, TII->get(X86::PHI), dest2Oper.getReg())
6971    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
6972
6973  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
6974  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
6975  if (invSrc) {
6976    MIB = BuildMI(newMBB, TII->get(NotOpc), tt1).addReg(t1);
6977    MIB = BuildMI(newMBB, TII->get(NotOpc), tt2).addReg(t2);
6978  } else {
6979    tt1 = t1;
6980    tt2 = t2;
6981  }
6982
6983  assert((argOpers[4]->isReg() || argOpers[4]->isImm()) &&
6984         "invalid operand");
6985  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
6986  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
6987  if (argOpers[4]->isReg())
6988    MIB = BuildMI(newMBB, TII->get(regOpcL), t5);
6989  else
6990    MIB = BuildMI(newMBB, TII->get(immOpcL), t5);
6991  if (regOpcL != X86::MOV32rr)
6992    MIB.addReg(tt1);
6993  (*MIB).addOperand(*argOpers[4]);
6994  assert(argOpers[5]->isReg() == argOpers[4]->isReg());
6995  assert(argOpers[5]->isImm() == argOpers[4]->isImm());
6996  if (argOpers[5]->isReg())
6997    MIB = BuildMI(newMBB, TII->get(regOpcH), t6);
6998  else
6999    MIB = BuildMI(newMBB, TII->get(immOpcH), t6);
7000  if (regOpcH != X86::MOV32rr)
7001    MIB.addReg(tt2);
7002  (*MIB).addOperand(*argOpers[5]);
7003
7004  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EAX);
7005  MIB.addReg(t1);
7006  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EDX);
7007  MIB.addReg(t2);
7008
7009  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EBX);
7010  MIB.addReg(t5);
7011  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::ECX);
7012  MIB.addReg(t6);
7013
7014  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG8B));
7015  for (int i=0; i <= lastAddrIndx; ++i)
7016    (*MIB).addOperand(*argOpers[i]);
7017
7018  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7019  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7020
7021  MIB = BuildMI(newMBB, TII->get(copyOpc), t3);
7022  MIB.addReg(X86::EAX);
7023  MIB = BuildMI(newMBB, TII->get(copyOpc), t4);
7024  MIB.addReg(X86::EDX);
7025
7026  // insert branch
7027  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
7028
7029  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7030  return nextMBB;
7031}
7032
7033// private utility function
7034MachineBasicBlock *
7035X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7036                                                      MachineBasicBlock *MBB,
7037                                                      unsigned cmovOpc) {
7038  // For the atomic min/max operator, we generate
7039  //   thisMBB:
7040  //   newMBB:
7041  //     ld t1 = [min/max.addr]
7042  //     mov t2 = [min/max.val]
7043  //     cmp  t1, t2
7044  //     cmov[cond] t2 = t1
7045  //     mov EAX = t1
7046  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7047  //     bz   newMBB
7048  //     fallthrough -->nextMBB
7049  //
7050  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7051  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7052  MachineFunction::iterator MBBIter = MBB;
7053  ++MBBIter;
7054
7055  /// First build the CFG
7056  MachineFunction *F = MBB->getParent();
7057  MachineBasicBlock *thisMBB = MBB;
7058  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7059  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7060  F->insert(MBBIter, newMBB);
7061  F->insert(MBBIter, nextMBB);
7062
7063  // Move all successors to thisMBB to nextMBB
7064  nextMBB->transferSuccessors(thisMBB);
7065
7066  // Update thisMBB to fall through to newMBB
7067  thisMBB->addSuccessor(newMBB);
7068
7069  // newMBB jumps to newMBB and fall through to nextMBB
7070  newMBB->addSuccessor(nextMBB);
7071  newMBB->addSuccessor(newMBB);
7072
7073  // Insert instructions into newMBB based on incoming instruction
7074  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
7075  MachineOperand& destOper = mInstr->getOperand(0);
7076  MachineOperand* argOpers[6];
7077  int numArgs = mInstr->getNumOperands() - 1;
7078  for (int i=0; i < numArgs; ++i)
7079    argOpers[i] = &mInstr->getOperand(i+1);
7080
7081  // x86 address has 4 operands: base, index, scale, and displacement
7082  int lastAddrIndx = 3; // [0,3]
7083  int valArgIndx = 4;
7084
7085  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7086  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
7087  for (int i=0; i <= lastAddrIndx; ++i)
7088    (*MIB).addOperand(*argOpers[i]);
7089
7090  // We only support register and immediate values
7091  assert((argOpers[valArgIndx]->isReg() ||
7092          argOpers[valArgIndx]->isImm()) &&
7093         "invalid operand");
7094
7095  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7096  if (argOpers[valArgIndx]->isReg())
7097    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
7098  else
7099    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
7100  (*MIB).addOperand(*argOpers[valArgIndx]);
7101
7102  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
7103  MIB.addReg(t1);
7104
7105  MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
7106  MIB.addReg(t1);
7107  MIB.addReg(t2);
7108
7109  // Generate movc
7110  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7111  MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
7112  MIB.addReg(t2);
7113  MIB.addReg(t1);
7114
7115  // Cmp and exchange if none has modified the memory location
7116  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
7117  for (int i=0; i <= lastAddrIndx; ++i)
7118    (*MIB).addOperand(*argOpers[i]);
7119  MIB.addReg(t3);
7120  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7121  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7122
7123  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
7124  MIB.addReg(X86::EAX);
7125
7126  // insert branch
7127  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
7128
7129  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7130  return nextMBB;
7131}
7132
7133
7134MachineBasicBlock *
7135X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7136                                               MachineBasicBlock *BB) {
7137  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7138  switch (MI->getOpcode()) {
7139  default: assert(false && "Unexpected instr type to insert");
7140  case X86::CMOV_V1I64:
7141  case X86::CMOV_FR32:
7142  case X86::CMOV_FR64:
7143  case X86::CMOV_V4F32:
7144  case X86::CMOV_V2F64:
7145  case X86::CMOV_V2I64: {
7146    // To "insert" a SELECT_CC instruction, we actually have to insert the
7147    // diamond control-flow pattern.  The incoming instruction knows the
7148    // destination vreg to set, the condition code register to branch on, the
7149    // true/false values to select between, and a branch opcode to use.
7150    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7151    MachineFunction::iterator It = BB;
7152    ++It;
7153
7154    //  thisMBB:
7155    //  ...
7156    //   TrueVal = ...
7157    //   cmpTY ccX, r1, r2
7158    //   bCC copy1MBB
7159    //   fallthrough --> copy0MBB
7160    MachineBasicBlock *thisMBB = BB;
7161    MachineFunction *F = BB->getParent();
7162    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7163    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7164    unsigned Opc =
7165      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7166    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
7167    F->insert(It, copy0MBB);
7168    F->insert(It, sinkMBB);
7169    // Update machine-CFG edges by transferring all successors of the current
7170    // block to the new block which will contain the Phi node for the select.
7171    sinkMBB->transferSuccessors(BB);
7172
7173    // Add the true and fallthrough blocks as its successors.
7174    BB->addSuccessor(copy0MBB);
7175    BB->addSuccessor(sinkMBB);
7176
7177    //  copy0MBB:
7178    //   %FalseValue = ...
7179    //   # fallthrough to sinkMBB
7180    BB = copy0MBB;
7181
7182    // Update machine-CFG edges
7183    BB->addSuccessor(sinkMBB);
7184
7185    //  sinkMBB:
7186    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7187    //  ...
7188    BB = sinkMBB;
7189    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
7190      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7191      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7192
7193    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7194    return BB;
7195  }
7196
7197  case X86::FP32_TO_INT16_IN_MEM:
7198  case X86::FP32_TO_INT32_IN_MEM:
7199  case X86::FP32_TO_INT64_IN_MEM:
7200  case X86::FP64_TO_INT16_IN_MEM:
7201  case X86::FP64_TO_INT32_IN_MEM:
7202  case X86::FP64_TO_INT64_IN_MEM:
7203  case X86::FP80_TO_INT16_IN_MEM:
7204  case X86::FP80_TO_INT32_IN_MEM:
7205  case X86::FP80_TO_INT64_IN_MEM: {
7206    // Change the floating point control register to use "round towards zero"
7207    // mode when truncating to an integer value.
7208    MachineFunction *F = BB->getParent();
7209    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7210    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7211
7212    // Load the old value of the high byte of the control word...
7213    unsigned OldCW =
7214      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7215    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
7216
7217    // Set the high part to be round to zero...
7218    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
7219      .addImm(0xC7F);
7220
7221    // Reload the modified control word now...
7222    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
7223
7224    // Restore the memory image of control word to original value
7225    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
7226      .addReg(OldCW);
7227
7228    // Get the X86 opcode to use.
7229    unsigned Opc;
7230    switch (MI->getOpcode()) {
7231    default: assert(0 && "illegal opcode!");
7232    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7233    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7234    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7235    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7236    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7237    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7238    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7239    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7240    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7241    }
7242
7243    X86AddressMode AM;
7244    MachineOperand &Op = MI->getOperand(0);
7245    if (Op.isReg()) {
7246      AM.BaseType = X86AddressMode::RegBase;
7247      AM.Base.Reg = Op.getReg();
7248    } else {
7249      AM.BaseType = X86AddressMode::FrameIndexBase;
7250      AM.Base.FrameIndex = Op.getIndex();
7251    }
7252    Op = MI->getOperand(1);
7253    if (Op.isImm())
7254      AM.Scale = Op.getImm();
7255    Op = MI->getOperand(2);
7256    if (Op.isImm())
7257      AM.IndexReg = Op.getImm();
7258    Op = MI->getOperand(3);
7259    if (Op.isGlobal()) {
7260      AM.GV = Op.getGlobal();
7261    } else {
7262      AM.Disp = Op.getImm();
7263    }
7264    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
7265                      .addReg(MI->getOperand(4).getReg());
7266
7267    // Reload the original control word now.
7268    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
7269
7270    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7271    return BB;
7272  }
7273  case X86::ATOMAND32:
7274    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7275                                               X86::AND32ri, X86::MOV32rm,
7276                                               X86::LCMPXCHG32, X86::MOV32rr,
7277                                               X86::NOT32r, X86::EAX,
7278                                               X86::GR32RegisterClass);
7279  case X86::ATOMOR32:
7280    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7281                                               X86::OR32ri, X86::MOV32rm,
7282                                               X86::LCMPXCHG32, X86::MOV32rr,
7283                                               X86::NOT32r, X86::EAX,
7284                                               X86::GR32RegisterClass);
7285  case X86::ATOMXOR32:
7286    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7287                                               X86::XOR32ri, X86::MOV32rm,
7288                                               X86::LCMPXCHG32, X86::MOV32rr,
7289                                               X86::NOT32r, X86::EAX,
7290                                               X86::GR32RegisterClass);
7291  case X86::ATOMNAND32:
7292    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7293                                               X86::AND32ri, X86::MOV32rm,
7294                                               X86::LCMPXCHG32, X86::MOV32rr,
7295                                               X86::NOT32r, X86::EAX,
7296                                               X86::GR32RegisterClass, true);
7297  case X86::ATOMMIN32:
7298    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7299  case X86::ATOMMAX32:
7300    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7301  case X86::ATOMUMIN32:
7302    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7303  case X86::ATOMUMAX32:
7304    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7305
7306  case X86::ATOMAND16:
7307    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7308                                               X86::AND16ri, X86::MOV16rm,
7309                                               X86::LCMPXCHG16, X86::MOV16rr,
7310                                               X86::NOT16r, X86::AX,
7311                                               X86::GR16RegisterClass);
7312  case X86::ATOMOR16:
7313    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7314                                               X86::OR16ri, X86::MOV16rm,
7315                                               X86::LCMPXCHG16, X86::MOV16rr,
7316                                               X86::NOT16r, X86::AX,
7317                                               X86::GR16RegisterClass);
7318  case X86::ATOMXOR16:
7319    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7320                                               X86::XOR16ri, X86::MOV16rm,
7321                                               X86::LCMPXCHG16, X86::MOV16rr,
7322                                               X86::NOT16r, X86::AX,
7323                                               X86::GR16RegisterClass);
7324  case X86::ATOMNAND16:
7325    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7326                                               X86::AND16ri, X86::MOV16rm,
7327                                               X86::LCMPXCHG16, X86::MOV16rr,
7328                                               X86::NOT16r, X86::AX,
7329                                               X86::GR16RegisterClass, true);
7330  case X86::ATOMMIN16:
7331    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7332  case X86::ATOMMAX16:
7333    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7334  case X86::ATOMUMIN16:
7335    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7336  case X86::ATOMUMAX16:
7337    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7338
7339  case X86::ATOMAND8:
7340    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7341                                               X86::AND8ri, X86::MOV8rm,
7342                                               X86::LCMPXCHG8, X86::MOV8rr,
7343                                               X86::NOT8r, X86::AL,
7344                                               X86::GR8RegisterClass);
7345  case X86::ATOMOR8:
7346    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7347                                               X86::OR8ri, X86::MOV8rm,
7348                                               X86::LCMPXCHG8, X86::MOV8rr,
7349                                               X86::NOT8r, X86::AL,
7350                                               X86::GR8RegisterClass);
7351  case X86::ATOMXOR8:
7352    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7353                                               X86::XOR8ri, X86::MOV8rm,
7354                                               X86::LCMPXCHG8, X86::MOV8rr,
7355                                               X86::NOT8r, X86::AL,
7356                                               X86::GR8RegisterClass);
7357  case X86::ATOMNAND8:
7358    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7359                                               X86::AND8ri, X86::MOV8rm,
7360                                               X86::LCMPXCHG8, X86::MOV8rr,
7361                                               X86::NOT8r, X86::AL,
7362                                               X86::GR8RegisterClass, true);
7363  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7364  // This group is for 64-bit host.
7365  case X86::ATOMAND64:
7366    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7367                                               X86::AND64ri32, X86::MOV64rm,
7368                                               X86::LCMPXCHG64, X86::MOV64rr,
7369                                               X86::NOT64r, X86::RAX,
7370                                               X86::GR64RegisterClass);
7371  case X86::ATOMOR64:
7372    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7373                                               X86::OR64ri32, X86::MOV64rm,
7374                                               X86::LCMPXCHG64, X86::MOV64rr,
7375                                               X86::NOT64r, X86::RAX,
7376                                               X86::GR64RegisterClass);
7377  case X86::ATOMXOR64:
7378    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7379                                               X86::XOR64ri32, X86::MOV64rm,
7380                                               X86::LCMPXCHG64, X86::MOV64rr,
7381                                               X86::NOT64r, X86::RAX,
7382                                               X86::GR64RegisterClass);
7383  case X86::ATOMNAND64:
7384    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7385                                               X86::AND64ri32, X86::MOV64rm,
7386                                               X86::LCMPXCHG64, X86::MOV64rr,
7387                                               X86::NOT64r, X86::RAX,
7388                                               X86::GR64RegisterClass, true);
7389  case X86::ATOMMIN64:
7390    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7391  case X86::ATOMMAX64:
7392    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7393  case X86::ATOMUMIN64:
7394    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7395  case X86::ATOMUMAX64:
7396    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7397
7398  // This group does 64-bit operations on a 32-bit host.
7399  case X86::ATOMAND6432:
7400    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7401                                               X86::AND32rr, X86::AND32rr,
7402                                               X86::AND32ri, X86::AND32ri,
7403                                               false);
7404  case X86::ATOMOR6432:
7405    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7406                                               X86::OR32rr, X86::OR32rr,
7407                                               X86::OR32ri, X86::OR32ri,
7408                                               false);
7409  case X86::ATOMXOR6432:
7410    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7411                                               X86::XOR32rr, X86::XOR32rr,
7412                                               X86::XOR32ri, X86::XOR32ri,
7413                                               false);
7414  case X86::ATOMNAND6432:
7415    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7416                                               X86::AND32rr, X86::AND32rr,
7417                                               X86::AND32ri, X86::AND32ri,
7418                                               true);
7419  case X86::ATOMADD6432:
7420    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7421                                               X86::ADD32rr, X86::ADC32rr,
7422                                               X86::ADD32ri, X86::ADC32ri,
7423                                               false);
7424  case X86::ATOMSUB6432:
7425    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7426                                               X86::SUB32rr, X86::SBB32rr,
7427                                               X86::SUB32ri, X86::SBB32ri,
7428                                               false);
7429  case X86::ATOMSWAP6432:
7430    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7431                                               X86::MOV32rr, X86::MOV32rr,
7432                                               X86::MOV32ri, X86::MOV32ri,
7433                                               false);
7434  }
7435}
7436
7437//===----------------------------------------------------------------------===//
7438//                           X86 Optimization Hooks
7439//===----------------------------------------------------------------------===//
7440
7441void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7442                                                       const APInt &Mask,
7443                                                       APInt &KnownZero,
7444                                                       APInt &KnownOne,
7445                                                       const SelectionDAG &DAG,
7446                                                       unsigned Depth) const {
7447  unsigned Opc = Op.getOpcode();
7448  assert((Opc >= ISD::BUILTIN_OP_END ||
7449          Opc == ISD::INTRINSIC_WO_CHAIN ||
7450          Opc == ISD::INTRINSIC_W_CHAIN ||
7451          Opc == ISD::INTRINSIC_VOID) &&
7452         "Should use MaskedValueIsZero if you don't know whether Op"
7453         " is a target node!");
7454
7455  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
7456  switch (Opc) {
7457  default: break;
7458  case X86ISD::SETCC:
7459    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7460                                       Mask.getBitWidth() - 1);
7461    break;
7462  }
7463}
7464
7465/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7466/// node is a GlobalAddress + offset.
7467bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7468                                       GlobalValue* &GA, int64_t &Offset) const{
7469  if (N->getOpcode() == X86ISD::Wrapper) {
7470    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7471      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7472      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7473      return true;
7474    }
7475  }
7476  return TargetLowering::isGAPlusOffset(N, GA, Offset);
7477}
7478
7479static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7480                               const TargetLowering &TLI) {
7481  GlobalValue *GV;
7482  int64_t Offset = 0;
7483  if (TLI.isGAPlusOffset(Base, GV, Offset))
7484    return (GV->getAlignment() >= N && (Offset % N) == 0);
7485  // DAG combine handles the stack object case.
7486  return false;
7487}
7488
7489static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask,
7490                                     unsigned NumElems, MVT EVT,
7491                                     SDNode *&Base,
7492                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
7493                                     const TargetLowering &TLI) {
7494  Base = NULL;
7495  for (unsigned i = 0; i < NumElems; ++i) {
7496    SDValue Idx = PermMask.getOperand(i);
7497    if (Idx.getOpcode() == ISD::UNDEF) {
7498      if (!Base)
7499        return false;
7500      continue;
7501    }
7502
7503    SDValue Elt = DAG.getShuffleScalarElt(N, i);
7504    if (!Elt.getNode() ||
7505        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
7506      return false;
7507    if (!Base) {
7508      Base = Elt.getNode();
7509      if (Base->getOpcode() == ISD::UNDEF)
7510        return false;
7511      continue;
7512    }
7513    if (Elt.getOpcode() == ISD::UNDEF)
7514      continue;
7515
7516    if (!TLI.isConsecutiveLoad(Elt.getNode(), Base,
7517                               EVT.getSizeInBits()/8, i, MFI))
7518      return false;
7519  }
7520  return true;
7521}
7522
7523/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7524/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7525/// if the load addresses are consecutive, non-overlapping, and in the right
7526/// order.
7527static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
7528                                       const TargetLowering &TLI) {
7529  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7530  MVT VT = N->getValueType(0);
7531  MVT EVT = VT.getVectorElementType();
7532  SDValue PermMask = N->getOperand(2);
7533  unsigned NumElems = PermMask.getNumOperands();
7534  SDNode *Base = NULL;
7535  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
7536                                DAG, MFI, TLI))
7537    return SDValue();
7538
7539  LoadSDNode *LD = cast<LoadSDNode>(Base);
7540  if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
7541    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
7542                       LD->getSrcValueOffset(), LD->isVolatile());
7543  return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
7544                     LD->getSrcValueOffset(), LD->isVolatile(),
7545                     LD->getAlignment());
7546}
7547
7548/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
7549static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
7550                                         const X86Subtarget *Subtarget,
7551                                         const TargetLowering &TLI) {
7552  unsigned NumOps = N->getNumOperands();
7553
7554  // Ignore single operand BUILD_VECTOR.
7555  if (NumOps == 1)
7556    return SDValue();
7557
7558  MVT VT = N->getValueType(0);
7559  MVT EVT = VT.getVectorElementType();
7560  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
7561    // We are looking for load i64 and zero extend. We want to transform
7562    // it before legalizer has a chance to expand it. Also look for i64
7563    // BUILD_PAIR bit casted to f64.
7564    return SDValue();
7565  // This must be an insertion into a zero vector.
7566  SDValue HighElt = N->getOperand(1);
7567  if (!isZeroNode(HighElt))
7568    return SDValue();
7569
7570  // Value must be a load.
7571  SDNode *Base = N->getOperand(0).getNode();
7572  if (!isa<LoadSDNode>(Base)) {
7573    if (Base->getOpcode() != ISD::BIT_CONVERT)
7574      return SDValue();
7575    Base = Base->getOperand(0).getNode();
7576    if (!isa<LoadSDNode>(Base))
7577      return SDValue();
7578  }
7579
7580  // Transform it into VZEXT_LOAD addr.
7581  LoadSDNode *LD = cast<LoadSDNode>(Base);
7582
7583  // Load must not be an extload.
7584  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
7585    return SDValue();
7586
7587  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
7588  SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
7589  SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, Tys, Ops, 2);
7590  DAG.ReplaceAllUsesOfValueWith(SDValue(Base, 1), ResNode.getValue(1));
7591  return ResNode;
7592}
7593
7594/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7595static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
7596                                      const X86Subtarget *Subtarget) {
7597  SDValue Cond = N->getOperand(0);
7598
7599  // If we have SSE[12] support, try to form min/max nodes.
7600  if (Subtarget->hasSSE2() &&
7601      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
7602    if (Cond.getOpcode() == ISD::SETCC) {
7603      // Get the LHS/RHS of the select.
7604      SDValue LHS = N->getOperand(1);
7605      SDValue RHS = N->getOperand(2);
7606      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
7607
7608      unsigned Opcode = 0;
7609      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
7610        switch (CC) {
7611        default: break;
7612        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
7613        case ISD::SETULE:
7614        case ISD::SETLE:
7615          if (!UnsafeFPMath) break;
7616          // FALL THROUGH.
7617        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
7618        case ISD::SETLT:
7619          Opcode = X86ISD::FMIN;
7620          break;
7621
7622        case ISD::SETOGT: // (X > Y) ? X : Y -> max
7623        case ISD::SETUGT:
7624        case ISD::SETGT:
7625          if (!UnsafeFPMath) break;
7626          // FALL THROUGH.
7627        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
7628        case ISD::SETGE:
7629          Opcode = X86ISD::FMAX;
7630          break;
7631        }
7632      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
7633        switch (CC) {
7634        default: break;
7635        case ISD::SETOGT: // (X > Y) ? Y : X -> min
7636        case ISD::SETUGT:
7637        case ISD::SETGT:
7638          if (!UnsafeFPMath) break;
7639          // FALL THROUGH.
7640        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
7641        case ISD::SETGE:
7642          Opcode = X86ISD::FMIN;
7643          break;
7644
7645        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
7646        case ISD::SETULE:
7647        case ISD::SETLE:
7648          if (!UnsafeFPMath) break;
7649          // FALL THROUGH.
7650        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
7651        case ISD::SETLT:
7652          Opcode = X86ISD::FMAX;
7653          break;
7654        }
7655      }
7656
7657      if (Opcode)
7658        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
7659    }
7660
7661  }
7662
7663  return SDValue();
7664}
7665
7666/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
7667///                       when possible.
7668static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
7669                                   const X86Subtarget *Subtarget) {
7670  // On X86 with SSE2 support, we can transform this to a vector shift if
7671  // all elements are shifted by the same amount.  We can't do this in legalize
7672  // because the a constant vector is typically transformed to a constant pool
7673  // so we have no knowledge of the shift amount.
7674  if (!Subtarget->hasSSE2())
7675    return SDValue();
7676
7677  MVT VT = N->getValueType(0);
7678  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
7679    return SDValue();
7680
7681  SDValue  ShAmtOp = N->getOperand(1);
7682  if (ShAmtOp.getOpcode() != ISD::BUILD_VECTOR)
7683    return SDValue();
7684
7685  unsigned NumElts = VT.getVectorNumElements();
7686  unsigned i = 0;
7687  SDValue BaseShAmt;
7688  for (; i != NumElts; ++i) {
7689    SDValue Arg = ShAmtOp.getOperand(i);
7690    if (Arg.getOpcode() == ISD::UNDEF) continue;
7691    BaseShAmt = Arg;
7692    break;
7693  }
7694  for (; i != NumElts; ++i) {
7695    SDValue Arg = ShAmtOp.getOperand(i);
7696    if (Arg.getOpcode() == ISD::UNDEF) continue;
7697    if (Arg != BaseShAmt) {
7698      return SDValue();
7699    }
7700  }
7701
7702  MVT EltVT = VT.getVectorElementType();
7703  if (EltVT.bitsGT(MVT::i32))
7704    BaseShAmt = DAG.getNode(ISD::TRUNCATE, MVT::i32, BaseShAmt);
7705  else if (EltVT.bitsLT(MVT::i32))
7706    BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BaseShAmt);
7707
7708  // The shift amount is identical so we can do a vector shift.
7709  SDValue  ValOp = N->getOperand(0);
7710  switch (N->getOpcode()) {
7711  default:
7712    assert(0 && "Unknown shift opcode!");
7713    break;
7714  case ISD::SHL:
7715    if (VT == MVT::v2i64)
7716      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
7717                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7718                         ValOp, BaseShAmt);
7719    if (VT == MVT::v4i32)
7720      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
7721                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
7722                         ValOp, BaseShAmt);
7723    if (VT == MVT::v8i16)
7724      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
7725                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
7726                         ValOp, BaseShAmt);
7727    break;
7728  case ISD::SRA:
7729    if (VT == MVT::v4i32)
7730      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
7731                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
7732                         ValOp, BaseShAmt);
7733    if (VT == MVT::v8i16)
7734      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
7735                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
7736                         ValOp, BaseShAmt);
7737    break;
7738  case ISD::SRL:
7739    if (VT == MVT::v2i64)
7740      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
7741                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7742                         ValOp, BaseShAmt);
7743    if (VT == MVT::v4i32)
7744      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
7745                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
7746                         ValOp, BaseShAmt);
7747    if (VT ==  MVT::v8i16)
7748      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
7749                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
7750                         ValOp, BaseShAmt);
7751    break;
7752  }
7753  return SDValue();
7754}
7755
7756/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
7757static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
7758                                     const X86Subtarget *Subtarget) {
7759  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
7760  // the FP state in cases where an emms may be missing.
7761  // A preferable solution to the general problem is to figure out the right
7762  // places to insert EMMS.  This qualifies as a quick hack.
7763  StoreSDNode *St = cast<StoreSDNode>(N);
7764  if (St->getValue().getValueType().isVector() &&
7765      St->getValue().getValueType().getSizeInBits() == 64 &&
7766      isa<LoadSDNode>(St->getValue()) &&
7767      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
7768      St->getChain().hasOneUse() && !St->isVolatile()) {
7769    SDNode* LdVal = St->getValue().getNode();
7770    LoadSDNode *Ld = 0;
7771    int TokenFactorIndex = -1;
7772    SmallVector<SDValue, 8> Ops;
7773    SDNode* ChainVal = St->getChain().getNode();
7774    // Must be a store of a load.  We currently handle two cases:  the load
7775    // is a direct child, and it's under an intervening TokenFactor.  It is
7776    // possible to dig deeper under nested TokenFactors.
7777    if (ChainVal == LdVal)
7778      Ld = cast<LoadSDNode>(St->getChain());
7779    else if (St->getValue().hasOneUse() &&
7780             ChainVal->getOpcode() == ISD::TokenFactor) {
7781      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
7782        if (ChainVal->getOperand(i).getNode() == LdVal) {
7783          TokenFactorIndex = i;
7784          Ld = cast<LoadSDNode>(St->getValue());
7785        } else
7786          Ops.push_back(ChainVal->getOperand(i));
7787      }
7788    }
7789    if (Ld) {
7790      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
7791      if (Subtarget->is64Bit()) {
7792        SDValue NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
7793                                      Ld->getBasePtr(), Ld->getSrcValue(),
7794                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
7795                                      Ld->getAlignment());
7796        SDValue NewChain = NewLd.getValue(1);
7797        if (TokenFactorIndex != -1) {
7798          Ops.push_back(NewChain);
7799          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
7800                                 Ops.size());
7801        }
7802        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
7803                            St->getSrcValue(), St->getSrcValueOffset(),
7804                            St->isVolatile(), St->getAlignment());
7805      }
7806
7807      // Otherwise, lower to two 32-bit copies.
7808      SDValue LoAddr = Ld->getBasePtr();
7809      SDValue HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
7810                                     DAG.getConstant(4, MVT::i32));
7811
7812      SDValue LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
7813                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
7814                                   Ld->isVolatile(), Ld->getAlignment());
7815      SDValue HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
7816                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
7817                                   Ld->isVolatile(),
7818                                   MinAlign(Ld->getAlignment(), 4));
7819
7820      SDValue NewChain = LoLd.getValue(1);
7821      if (TokenFactorIndex != -1) {
7822        Ops.push_back(LoLd);
7823        Ops.push_back(HiLd);
7824        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
7825                               Ops.size());
7826      }
7827
7828      LoAddr = St->getBasePtr();
7829      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
7830                           DAG.getConstant(4, MVT::i32));
7831
7832      SDValue LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
7833                          St->getSrcValue(), St->getSrcValueOffset(),
7834                          St->isVolatile(), St->getAlignment());
7835      SDValue HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
7836                                    St->getSrcValue(),
7837                                    St->getSrcValueOffset() + 4,
7838                                    St->isVolatile(),
7839                                    MinAlign(St->getAlignment(), 4));
7840      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
7841    }
7842  }
7843  return SDValue();
7844}
7845
7846/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
7847/// X86ISD::FXOR nodes.
7848static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
7849  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
7850  // F[X]OR(0.0, x) -> x
7851  // F[X]OR(x, 0.0) -> x
7852  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
7853    if (C->getValueAPF().isPosZero())
7854      return N->getOperand(1);
7855  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
7856    if (C->getValueAPF().isPosZero())
7857      return N->getOperand(0);
7858  return SDValue();
7859}
7860
7861/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
7862static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
7863  // FAND(0.0, x) -> 0.0
7864  // FAND(x, 0.0) -> 0.0
7865  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
7866    if (C->getValueAPF().isPosZero())
7867      return N->getOperand(0);
7868  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
7869    if (C->getValueAPF().isPosZero())
7870      return N->getOperand(1);
7871  return SDValue();
7872}
7873
7874
7875SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
7876                                             DAGCombinerInfo &DCI) const {
7877  SelectionDAG &DAG = DCI.DAG;
7878  switch (N->getOpcode()) {
7879  default: break;
7880  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
7881  case ISD::BUILD_VECTOR:
7882    return PerformBuildVectorCombine(N, DAG, Subtarget, *this);
7883  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
7884  case ISD::SHL:
7885  case ISD::SRA:
7886  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
7887  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
7888  case X86ISD::FXOR:
7889  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
7890  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
7891  }
7892
7893  return SDValue();
7894}
7895
7896//===----------------------------------------------------------------------===//
7897//                           X86 Inline Assembly Support
7898//===----------------------------------------------------------------------===//
7899
7900/// getConstraintType - Given a constraint letter, return the type of
7901/// constraint it is for this target.
7902X86TargetLowering::ConstraintType
7903X86TargetLowering::getConstraintType(const std::string &Constraint) const {
7904  if (Constraint.size() == 1) {
7905    switch (Constraint[0]) {
7906    case 'A':
7907      return C_Register;
7908    case 'f':
7909    case 'r':
7910    case 'R':
7911    case 'l':
7912    case 'q':
7913    case 'Q':
7914    case 'x':
7915    case 'y':
7916    case 'Y':
7917      return C_RegisterClass;
7918    default:
7919      break;
7920    }
7921  }
7922  return TargetLowering::getConstraintType(Constraint);
7923}
7924
7925/// LowerXConstraint - try to replace an X constraint, which matches anything,
7926/// with another that has more specific requirements based on the type of the
7927/// corresponding operand.
7928const char *X86TargetLowering::
7929LowerXConstraint(MVT ConstraintVT) const {
7930  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
7931  // 'f' like normal targets.
7932  if (ConstraintVT.isFloatingPoint()) {
7933    if (Subtarget->hasSSE2())
7934      return "Y";
7935    if (Subtarget->hasSSE1())
7936      return "x";
7937  }
7938
7939  return TargetLowering::LowerXConstraint(ConstraintVT);
7940}
7941
7942/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7943/// vector.  If it is invalid, don't add anything to Ops.
7944void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7945                                                     char Constraint,
7946                                                     bool hasMemory,
7947                                                     std::vector<SDValue>&Ops,
7948                                                     SelectionDAG &DAG) const {
7949  SDValue Result(0, 0);
7950
7951  switch (Constraint) {
7952  default: break;
7953  case 'I':
7954    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7955      if (C->getZExtValue() <= 31) {
7956        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7957        break;
7958      }
7959    }
7960    return;
7961  case 'J':
7962    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7963      if (C->getZExtValue() <= 63) {
7964        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7965        break;
7966      }
7967    }
7968    return;
7969  case 'N':
7970    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7971      if (C->getZExtValue() <= 255) {
7972        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7973        break;
7974      }
7975    }
7976    return;
7977  case 'i': {
7978    // Literal immediates are always ok.
7979    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
7980      Result = DAG.getTargetConstant(CST->getZExtValue(), Op.getValueType());
7981      break;
7982    }
7983
7984    // If we are in non-pic codegen mode, we allow the address of a global (with
7985    // an optional displacement) to be used with 'i'.
7986    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
7987    int64_t Offset = 0;
7988
7989    // Match either (GA) or (GA+C)
7990    if (GA) {
7991      Offset = GA->getOffset();
7992    } else if (Op.getOpcode() == ISD::ADD) {
7993      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7994      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7995      if (C && GA) {
7996        Offset = GA->getOffset()+C->getZExtValue();
7997      } else {
7998        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7999        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
8000        if (C && GA)
8001          Offset = GA->getOffset()+C->getZExtValue();
8002        else
8003          C = 0, GA = 0;
8004      }
8005    }
8006
8007    if (GA) {
8008      if (hasMemory)
8009        Op = LowerGlobalAddress(GA->getGlobal(), Offset, DAG);
8010      else
8011        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
8012                                        Offset);
8013      Result = Op;
8014      break;
8015    }
8016
8017    // Otherwise, not valid for this mode.
8018    return;
8019  }
8020  }
8021
8022  if (Result.getNode()) {
8023    Ops.push_back(Result);
8024    return;
8025  }
8026  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
8027                                                      Ops, DAG);
8028}
8029
8030std::vector<unsigned> X86TargetLowering::
8031getRegClassForInlineAsmConstraint(const std::string &Constraint,
8032                                  MVT VT) const {
8033  if (Constraint.size() == 1) {
8034    // FIXME: not handling fp-stack yet!
8035    switch (Constraint[0]) {      // GCC X86 Constraint Letters
8036    default: break;  // Unknown constraint letter
8037    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
8038    case 'Q':   // Q_REGS
8039      if (VT == MVT::i32)
8040        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
8041      else if (VT == MVT::i16)
8042        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
8043      else if (VT == MVT::i8)
8044        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
8045      else if (VT == MVT::i64)
8046        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
8047      break;
8048    }
8049  }
8050
8051  return std::vector<unsigned>();
8052}
8053
8054std::pair<unsigned, const TargetRegisterClass*>
8055X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8056                                                MVT VT) const {
8057  // First, see if this is a constraint that directly corresponds to an LLVM
8058  // register class.
8059  if (Constraint.size() == 1) {
8060    // GCC Constraint Letters
8061    switch (Constraint[0]) {
8062    default: break;
8063    case 'r':   // GENERAL_REGS
8064    case 'R':   // LEGACY_REGS
8065    case 'l':   // INDEX_REGS
8066      if (VT == MVT::i8)
8067        return std::make_pair(0U, X86::GR8RegisterClass);
8068      if (VT == MVT::i16)
8069        return std::make_pair(0U, X86::GR16RegisterClass);
8070      if (VT == MVT::i32 || !Subtarget->is64Bit())
8071        return std::make_pair(0U, X86::GR32RegisterClass);
8072      return std::make_pair(0U, X86::GR64RegisterClass);
8073    case 'f':  // FP Stack registers.
8074      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
8075      // value to the correct fpstack register class.
8076      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
8077        return std::make_pair(0U, X86::RFP32RegisterClass);
8078      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
8079        return std::make_pair(0U, X86::RFP64RegisterClass);
8080      return std::make_pair(0U, X86::RFP80RegisterClass);
8081    case 'y':   // MMX_REGS if MMX allowed.
8082      if (!Subtarget->hasMMX()) break;
8083      return std::make_pair(0U, X86::VR64RegisterClass);
8084    case 'Y':   // SSE_REGS if SSE2 allowed
8085      if (!Subtarget->hasSSE2()) break;
8086      // FALL THROUGH.
8087    case 'x':   // SSE_REGS if SSE1 allowed
8088      if (!Subtarget->hasSSE1()) break;
8089
8090      switch (VT.getSimpleVT()) {
8091      default: break;
8092      // Scalar SSE types.
8093      case MVT::f32:
8094      case MVT::i32:
8095        return std::make_pair(0U, X86::FR32RegisterClass);
8096      case MVT::f64:
8097      case MVT::i64:
8098        return std::make_pair(0U, X86::FR64RegisterClass);
8099      // Vector types.
8100      case MVT::v16i8:
8101      case MVT::v8i16:
8102      case MVT::v4i32:
8103      case MVT::v2i64:
8104      case MVT::v4f32:
8105      case MVT::v2f64:
8106        return std::make_pair(0U, X86::VR128RegisterClass);
8107      }
8108      break;
8109    }
8110  }
8111
8112  // Use the default implementation in TargetLowering to convert the register
8113  // constraint into a member of a register class.
8114  std::pair<unsigned, const TargetRegisterClass*> Res;
8115  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8116
8117  // Not found as a standard register?
8118  if (Res.second == 0) {
8119    // GCC calls "st(0)" just plain "st".
8120    if (StringsEqualNoCase("{st}", Constraint)) {
8121      Res.first = X86::ST0;
8122      Res.second = X86::RFP80RegisterClass;
8123    }
8124    // 'A' means EAX + EDX.
8125    if (Constraint == "A") {
8126      Res.first = X86::EAX;
8127      Res.second = X86::GRADRegisterClass;
8128    }
8129    return Res;
8130  }
8131
8132  // Otherwise, check to see if this is a register class of the wrong value
8133  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8134  // turn into {ax},{dx}.
8135  if (Res.second->hasType(VT))
8136    return Res;   // Correct type already, nothing to do.
8137
8138  // All of the single-register GCC register classes map their values onto
8139  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
8140  // really want an 8-bit or 32-bit register, map to the appropriate register
8141  // class and return the appropriate register.
8142  if (Res.second == X86::GR16RegisterClass) {
8143    if (VT == MVT::i8) {
8144      unsigned DestReg = 0;
8145      switch (Res.first) {
8146      default: break;
8147      case X86::AX: DestReg = X86::AL; break;
8148      case X86::DX: DestReg = X86::DL; break;
8149      case X86::CX: DestReg = X86::CL; break;
8150      case X86::BX: DestReg = X86::BL; break;
8151      }
8152      if (DestReg) {
8153        Res.first = DestReg;
8154        Res.second = Res.second = X86::GR8RegisterClass;
8155      }
8156    } else if (VT == MVT::i32) {
8157      unsigned DestReg = 0;
8158      switch (Res.first) {
8159      default: break;
8160      case X86::AX: DestReg = X86::EAX; break;
8161      case X86::DX: DestReg = X86::EDX; break;
8162      case X86::CX: DestReg = X86::ECX; break;
8163      case X86::BX: DestReg = X86::EBX; break;
8164      case X86::SI: DestReg = X86::ESI; break;
8165      case X86::DI: DestReg = X86::EDI; break;
8166      case X86::BP: DestReg = X86::EBP; break;
8167      case X86::SP: DestReg = X86::ESP; break;
8168      }
8169      if (DestReg) {
8170        Res.first = DestReg;
8171        Res.second = Res.second = X86::GR32RegisterClass;
8172      }
8173    } else if (VT == MVT::i64) {
8174      unsigned DestReg = 0;
8175      switch (Res.first) {
8176      default: break;
8177      case X86::AX: DestReg = X86::RAX; break;
8178      case X86::DX: DestReg = X86::RDX; break;
8179      case X86::CX: DestReg = X86::RCX; break;
8180      case X86::BX: DestReg = X86::RBX; break;
8181      case X86::SI: DestReg = X86::RSI; break;
8182      case X86::DI: DestReg = X86::RDI; break;
8183      case X86::BP: DestReg = X86::RBP; break;
8184      case X86::SP: DestReg = X86::RSP; break;
8185      }
8186      if (DestReg) {
8187        Res.first = DestReg;
8188        Res.second = Res.second = X86::GR64RegisterClass;
8189      }
8190    }
8191  } else if (Res.second == X86::FR32RegisterClass ||
8192             Res.second == X86::FR64RegisterClass ||
8193             Res.second == X86::VR128RegisterClass) {
8194    // Handle references to XMM physical registers that got mapped into the
8195    // wrong class.  This can happen with constraints like {xmm0} where the
8196    // target independent register mapper will just pick the first match it can
8197    // find, ignoring the required type.
8198    if (VT == MVT::f32)
8199      Res.second = X86::FR32RegisterClass;
8200    else if (VT == MVT::f64)
8201      Res.second = X86::FR64RegisterClass;
8202    else if (X86::VR128RegisterClass->hasType(VT))
8203      Res.second = X86::VR128RegisterClass;
8204  }
8205
8206  return Res;
8207}
8208
8209//===----------------------------------------------------------------------===//
8210//                           X86 Widen vector type
8211//===----------------------------------------------------------------------===//
8212
8213/// getWidenVectorType: given a vector type, returns the type to widen
8214/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
8215/// If there is no vector type that we want to widen to, returns MVT::Other
8216/// When and where to widen is target dependent based on the cost of
8217/// scalarizing vs using the wider vector type.
8218
8219MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
8220  assert(VT.isVector());
8221  if (isTypeLegal(VT))
8222    return VT;
8223
8224  // TODO: In computeRegisterProperty, we can compute the list of legal vector
8225  //       type based on element type.  This would speed up our search (though
8226  //       it may not be worth it since the size of the list is relatively
8227  //       small).
8228  MVT EltVT = VT.getVectorElementType();
8229  unsigned NElts = VT.getVectorNumElements();
8230
8231  // On X86, it make sense to widen any vector wider than 1
8232  if (NElts <= 1)
8233    return MVT::Other;
8234
8235  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
8236       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
8237    MVT SVT = (MVT::SimpleValueType)nVT;
8238
8239    if (isTypeLegal(SVT) &&
8240        SVT.getVectorElementType() == EltVT &&
8241        SVT.getVectorNumElements() > NElts)
8242      return SVT;
8243  }
8244  return MVT::Other;
8245}
8246